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Many databases involve ordered discrete responses in a temporal and spatial 

context, including, for example, land development intensity levels, vehicle 

ownership, and pavement conditions. An appreciation of such behaviors requires 

rigorous statistical methods, recognizing spatial effects and dynamic processes.  

This dissertation develops a dynamic spatial ordered probit (DSOP) model in 

order to capture patterns of spatial and temporal autocorrelation in ordered 

categorical response data. This model is estimated in a Bayesian framework using 

Gibbs sampling and data augmentation, in order to generate all autocorrelated 

latent variables. The specifications, methodologies, and applications undertaken 
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here advance the field of spatial econometrics while enhancing our understanding 

of land use and air quality changes. 

The proposed DSOP model incorporates spatial effects in an ordered probit model 

by allowing for inter-regional spatial interactions and heteroskedasticity, along 

with random effects across regions (where “region” describes any cluster of 

observational units). The model assumes an autoregressive, AR(1), process across 

latent response values, thereby recognizing time-series dynamics in panel data 

sets.  

The model code and estimation approach is first tested on simulated data sets, in 

order to reproduce known parameter values and provide insights into estimation 

performance. Root mean squared errors (RMSE) are used to evaluate the accuracy 

of estimates, and the deviance information criterion (DIC) is used for model 

comparisons. It is found that the DSOP model yields much more accurate 

estimates than standard, non-spatial techniques. As for model selection, even 

considering the penalty for using more parameters, the DSOP model is clearly 

preferred to standard OP, dynamic OP and spatial OP models.  

The model and methods are then used to analyze both land use and air quality 

(ozone) dynamics in Austin, Texas. In analyzing Austin’s land use intensity 

patterns over a 4-point panel, the observational units are 300 m × 300 m grid cells 

derived from satellite images (at 30 m resolution). The sample contains 2,771 

such grid cells, spread among 57 clusters (zip code regions), covering about 10% 

of the overall study area. In this analysis, temporal and spatial autocorrelation 

effects are found to be significantly positive. In addition, increases in travel times 

to the region’s central business district (CBD) are estimated to substantially 

reduce land development intensity.  
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The observational units for the ozone variation analysis are 4 km ×  4 km grid 

cells, and all 132 observations falling in the study area are used. While variations 

in ozone concentration levels are found to exhibit strong patterns of temporal 

autocorrelation, they appear strikingly random in a spatial context (after 

controlling for local land cover, transportation, and temperature conditions). 

While transportation and land cover conditions appear to influence ozone levels, 

their effects are not as instantaneous, nor as practically significant as the impact of 

temperature.   

The proposed and tested DSOP model is felt to be a significant contribution to the 

field of spatial econometrics, where binary applications (for discrete response data) 

have been seen as the cutting edge.  The Bayesian framework and Gibbs sampling 

techniques used here permit such complexity, in world of two-dimensional 

autocorrelation. 
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NOTATION 

In this dissertation, bold characters indicate vectors or matrixces, while regular 

characters are for scalars. The following summarizes the notation used in this 

dissertation, in order of appearance. 

i : Index for regions, 1, 2,...,i M∈

k : Index for individuals, 1, 2,..., ik n∈ , and 
1

M

i
i

n N
=

=∑

t : Index for time periods, 1, 2,...,t T∈

s : Index for ranks or levels, 1, 2,...,s S∈

r : Index for iterations, 1,2,...,r R∈

ikty : Observed dependent variable for individual k in region i at time t 

y : Vector of ikty , stacked first by region, then by time 

iktX : Vector of explanatory variables for individual k in region i at time t 

X : Matrix of explanatory variables, stacked first by region, then by time 

iktU : Latent variable for individual k in region i at time t 

U : Vector of latent variables, stacked first by region, then by time 

1
λ λ −= −U U U : Vector of temporally differentiated latent variables 

0ikU : Initial value of latent variable for individual k in region i 

0U : Vector of initial values  

β : Vector of unknown parameters corresponding to X

λ : Temporal autocorrelation coefficient 

ρ : Spatial autocorrelation coefficient 

W : The row-standardized weight matrix with elements ijw

minς : Minimum eigenvalue of W

maxς : Maximum eigenvalue of W
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1

M

i ij j i
j

w uθ ρ θ
=

= +∑ : regional effect for region i

iu : Regional effect that is not caused by specified spatial factors 
2σ : Variance of iu , 1, 2,...i M∀ ∈

u : Vector of iu ,  

MI : Identity matrix of dimension M 

( ) 1
M ρ −= −I W uθ : Vector of regional effects. 

Mρ ρ= −B I W : Matrix representing regional dependencies 

ikε : Individual-specific error term for individual k in region i 

tε : Vector of ikε

ε : Vector of tε  

iυ : Variance for ikε , 1, 2,..., ik n∀ ∈

1

2

1

2

M

n

n

M n

I

I

I

υ

υ

υ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0

0
O

V : Variance matrix for tε , 1, 2,...,t T∀ ∈

T= ⊗I VΩ : Variance matrix for ε  

TI : Identity matrix of dimension T 

i

M

n

n

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

0

0
O

l

L
l

: N M× matrix with each 
inl being a 1in ×  vector of ones. 

= ⊗Tl LΔ : NT M× matrix 
λ= − −e U Xθ βΔ : Vector of estimated individual-specific errors 

ik i ikξ θ ε= + : Total error for individual k in region i 

γ : Vector of threshold parameters (for ordered probit specification) 
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sγ : Element of γ , 0γ = −∞ , Sγ = +∞ , and 1 2 1... Sγ γ γ −< < <  

( )Aδ : Indicator function (1 if A is true and 0 otherwise) 

( )π ∗ : Prior distribution of the random parameter ∗   

∗Θ : Set of arguments that the random parameter ∗  conditioned on 

( )p ∗∗Θ : Conditional posterior distribution of the random parameter ∗ . 

c : Vector of β ’s prior means 

Qh=H I : β ’s prior variance matrix 

QI : Identity matrix of dimension Q 

0λ : Hyperparameter for λ ’s prior distribution (mean) 

D : Hyperparameter for λ ’s prior distribution (variance) 

α : Hyperparameter for 2σ ’s prior distribution (shape parameter) 

τ : Hyperparameter for 2σ ’s prior distribution (scale parameter) 

ϖ : Hyperparameter for iυ ’s prior distribution 

q : Vector of γ ’s prior means, with elements 0sγ . 

G : Diagonal matrix of γ ’s prior variance, with diagonal elements sg

0a : Hyperparameter for 0ikU ’s prior distribution (mean), 
1, 2,... , 1, 2,..., ii M k n∀ ∈ ∀ ∈

0d : Hyperparameter for 0ikU ’s prior distribution (variance), 
1, 2,... , 1, 2,..., ii M k n∀ ∈ ∀ ∈

A : Hyperparameter for β ’s posterior distribution (inverse of its variance matrix) 

b : Hyperparameter for β ’s posterior distribution ( β ’s mean is -1A b ) 

Aλ : Hyperparameter for λ ’s posterior distribution (inverse of its variance) 

bλ : Hyperparameter for λ ’s posterior distribution (λ ’s mean is 1A bλ λ
− ) 

Aθ : Hyperparameter for θ ’s posterior distribution (inverse of its variance matrix) 
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bθ : Hyperparameter for θ ’s posterior distribution (θ ’s mean is 1−A bθ θ ) 
inf
sγ : Hyperparameter for sγ ’s posterior density, left threshold for truncation 
sup
sγ : Hyperparameter for sγ ’s posterior density, right threshold for truncation 

0UA : Hyperparameter for 0ikU ’s posterior distribution (inverse of its variance) 

0Ub : Hyperparameter for 0ikU ’s posterior distribution ( 0ikU ’s mean is 1
0 0U UA b− ) 

ikta : Hyperparameter for iktU ’s posterior distribution (mean), 

 1, 2,... , 1, 2,..., , 1, 2,...,ii M k n t T∀ ∈ ∀ ∈ ∀ ∈

iktb : Hyperparameter for iktU ’s posterior distribution (variance), 
1, 2,... , 1, 2,..., , 1, 2,..., 1ii M k n t T∀ ∈ ∀ ∈ ∀ ∈ −  
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CHAPTER 1. INTRODUCTION AND MOTIVATION 

1.1 OVERVIEW AND MOTIVATION 
In transportation-related studies, the variables of interest often are discrete in 

nature and involve temporal and spatial relationships. For example, travel mode 

choices, trade flow distributions, vehicle ownership and pavement surface 

deterioration levels can all be measured (and/or coded) as discrete responses, 

dependent on various influential factors. These discrete responses share a 

common feature: they all exhibit some degree of temporal and spatial dependence 

or autocorrelation. For example, in two slices of a panel survey of households, the 

count of vehicles owned by the same household will be highly correlated. This 

phenomenon is normally defined as temporal dependency or autocorrelation. 

Meanwhile, even after controlling for household attributes, auto ownership levels 

are expected to exhibit positive correlations in the spatial context. To some extent, 

such correlation patterns can be explained by uncertainty or proximity because, in 

reality, there are always influential factors that cannot be controlled (e.g. 

pedestrian friendliness of all neighborhoods). The sign and magnitude of such 

uncertainties tend to vary rather gradually over space. Of course in a spatial 

context, in contrast to time-series data, such dependencies are two dimensional – 

which adds complexity. Like temporal relationships, correlation tends to diminish 

with increases in distance between any two households/observed units.  

In studies of social behaviors and human activities, many choices or attributes 

(e.g., religious beliefs, presidential election outcomes, and levels of crime) 

involve discrete responses in a temporal and spatial context. The widespread 

nature of such phenomena and a need for understanding these behaviors compel 

the quest for rigorous statistical methods for analysis of such data. No currently 

existing statistical methods fully meet this need. 
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As part of a long-term research framework aimed at establishing an integrated 

land use-transport and environmental model, this dissertation selects two distinct 

datasets to illustrate the temporal and spatial dependencies that exist. The first 

features dynamics in land development intensity levels under the influence of 

geology, demographics, transportation conditions and other, socio-economic 

factors. The second tracks ozone concentration levels and their dependence on 

local land use, traffic intensity and air temperature.  

Both of these analyzes rely on Austin, Texas data sets. Of course, one reason for 

choosing this area is the convenience of data acquisition. More importantly, the 

traffic and air quality conditions in the study area make it an interesting case study: 

thanks to rapid population growth and economic expansion, the area has 

experienced some dramatic changes during the last two decades. As will be 

shown in more detail in Chapter 5, during this time period, the region’s land 

development has both sprawled over space and escalated in intensity. One direct 

result of this development is congestion. The Texas Transportation Institute’s 

urban mobility report (Schrank and Lomax, 2005) indicates that Austin ranks 

number 1 among all 30 medium-sized U.S. cities in its annual study.  

Meanwhile, the area’s air quality has been deteriorating. According to the U.S. 

Environmental Protection Agency (EPA, 2003), the three-county area (including 

Williamson, Travis, and Hays Counties) are very close to being designated as 

non-attainment for national ambient air quality standards.1 The situation may get 

worse if no actions are taken. Findings from this dissertation may help remedy the 

current situation.  

In the first model, land development intensity is defined based on how much land 

is covered by manmade materials, which are characterized by higher reflectance 

                                                 
1 EPA designates an area as non-attainment if it has violated, or has contributed to violations of the 
national 8-hour ozone standard over a three-year period. (EPA, 2006) 
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levels and other visual clues provided via satellite images. (In fact, the application 

of satellite images is another major motivation for this study, as will be discussed 

in Section 1.3.) These “intensity levels” are indexed as integers, and their order is 

key. It should also be noted that the ozone concentration information used in this 

study is derived from the continuous values generated by the CAMx projection 

model (CAPCO et al., 2004). The actual observed data for ozone concentration in 

the study area is, unfortunately, unavailable. 2Therefore, though the study can still 

provide some reasonable insights into the area’s air quality problem, data quality 

issues should be expected.  

The land development and ozone datasets are used as examples, to illustrate the 

specification, estimation and application of dynamic spatial ordered probit models. 

The following two sections describe the temporal, spatial and discrete nature of 

such data as well as limitations of current studies in this area, highlighting the 

need for more rigorous statistical analysis methods and the potential of satellite 

images as an innovative data source.  

1.2 MODELS OF LAND DEVELOPMENT INTENSITY  
Modeling land development intensity levels illustrates the temporal, spatial and 

discrete nature of land development data. For urban areas, the evolution of land 

development intensity is a topic of interest to traffic demand modelers, policy 

makers, and land developers. Such changes influence regional economies and 

environmental conditions. For non-urban areas, analyzing the dynamics of land 

development intensity is also important: For example, undeveloped land around 

the world, including some precious lands like the Amazon rainforest, are being 

converted for agriculture and other human uses. Such changes can significantly 

                                                 
2 In practice, the number of measuring sites is very limited. As will be discussed in Chapter 7, the 
study area has only two such sites in 1999 and seven in 2007. 
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contribute to climate change, desertification, resource depletion and loss of 

habitats and species. 

In this dissertation, land development intensity is derived based on land cover 

information in the each 300 m x 300 m neighborhood. However, as discussed in 

Chapter 5, “land cover information” in reality is often intertwined with land use 

information. Therefore, before beginning a formal discussion of land development 

intensity, definitions of “land use” and “land cover” terms are provided, and their 

differences discussed. 

“Land use” normally refers to what the land is actually used for. For example, 

residential, commercial, transportation or industrial uses connote uses like homes 

versus businesses, roads versus offices, and manufacturing plants versus airports. 

In contrast, “land cover” emphasizes how the land “looks,” rather than how it is 

being used. For example, whether land is covered by water, brush, forests, cement 

and soil is key information for a variety of environmental studies, including flood 

control and deforestation. Land use and land cover information is important for 

studies of land development. For this reason, the two terms are often used in 

tandem, as “land use/land cover”. 

In a review of existing land use/land cover models, Parker et al. (2003) concluded 

that no single approach yet “dominates this nascent field.” However, some 

approaches are more common than others and already have been used in the 

integrated models of land use and transportation. Examples include de la Barra’s 

(1989) TRANUS, Waddell’s (2002) UrbanSim and the Hunt and Abraham’s 

(2003) PECAS model. The land development modules within these packages rely 

on standard, MNL specifications to handle the discrete nature of land use type. 

TRANUS and PECAS are both aggregate models with zones (typically census 

tracts or traffic analysis zones) as their observational units. UrbanSim can use grid 

cells or (in version 4) user-defined zones as its observational units.  
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None of these models recognizes spatial or temporal autorcorrelations in a 

statistically rigorous manner. TRANUS and PECAS simply recognize spatial 

effects by controlling for results from a spatial input-output model. And 

UrbanSim controls for regional, neighborhood and cell characteristics to diminish 

spatial effects. The cellular automata-based SLEUTH model (Candau et al., 2000) 

has received some attention. It consists of Clarke et al.’s (1996, 1997) Urban 

Growth Model (UGM) and Deltatron Land Use/Land Cover Model. Though 

SLEUTH simulates land cover change recognizing the temporal and spatial 

context of each cell, it can only share information across immediate cells, so that 

more dispersed interactions and correlations are largely ignored. In addition, 

SLEUTH is not (yet) designed to flexibly accommodate the effects of many 

influential and related human factors (such as land prices, employment and 

population density.) Finally, it relies on rule-driven algorithms, rather than more 

behavioral or statistical models.  

In fact, many studies that acknowledge the presence of spatial effects have tried to 

remove all spatial correlation – by either controlling for a variety of neighborhood 

attributes or using strategic sampling (to provide a dispersed sample, with 

minimal interactions). Some also attempt to recognize temporal dependencies by 

controlling for variables from previous periods. For example, Nelson and 

Hellerstein (1997) sampled selectively and created exogenous variables based on 

neighboring units’ land cover data in order to study the deforestation effects of 

roadways via a multinomial logit model. Wear and Bolstad (1998) controlled for 

prior land uses in the neighborhood of each data cell in their study of southern 

Appalachian landscapes, which involved binary response data. Munroe et al. 

(2001) attempted to filter out spatial correlations through sampling and then 

removed the residual spatial dependence through a “trend surface” approach (Cliff 

and Ord, 1981). As with all other existing models dealing with discrete response 
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data in a temporal and/or spatial context, the applicability of these methods is still 

limited because of the neglect of spatial effects (even intentionally) and data 

dynamics. These other works are discussed in depth in Chapter 2. 

1.3 ISSUES IN LAND DEVELOPMENT DATA: DATA 

AVAILABILITY AND DEFINITION OF OBSERVATIONAL 

UNITS 
In order to better understand land development, practitioners have been looking 

for more accessible and disaggregate datasets. Municipal land use data sets 

emphasize parcel geometry, for purposes of tax assessment, utility provision, and 

so on. Such datasets can provide precise information on how the land is actually 

“used.”  However, using parcels as spatial units may not be detailed enough for 

certain types of analyses, such as those focusing on vegetative and other species, 

crime occurrence, and so forth. In addition, “parcel” is not a very desirable unit 

for statistical studies when temporal relationships must be considered. Large, 

undeveloped parcels may sub-divide and/or experience partial redevelopment, 

which can make these hard to treat in a panel fashion.  

Because of the ways such data are collected, reliable and timely parcel-based data 

is also hard to access. Current land use information is often only updated and 

released every five to ten years, if that. For some rapidly developed areas, this 

lack of updating frequency leads to the loss of very important information. More 

and more, practitioners, researchers, and the public are looking for alternative data 

resources that provide highly detailed, accessible, and low-cost information. And 

technological advances are paving the way. 

Developments in remote sensing via satellite provide such an opportunity. 

Generally, remote sensing works on the principle of “the inverse problem” (Aster 

et al, 2004), which means transforming data set information into model 
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parameters. The spatial units detected by satellite images can be very small. These 

often are selected at a 30m x 30m resolution, but can be scaled down to 1ft x 1 ft. 

In addition, development in satellite image acquisition and classification 

techniques means that such data may be accessed more easily and at a lower cost. 

Moreover, the derivation of multiple-year data also allows direct incorporation of 

temporal and spatial correlation into a model’s specification.  

Another advantage of satellite data is that it offers much more precise information 

on vegetation, which can be critical to air quality, due to biogenic sources of (and 

sinks for) various chemicals of interest. (More details on this are provided in 

Section 1.4.) All these advances and aspirations suggest that using satellite data 

may ultimately be the optimal choice for integrated land use-transport-

environment (ILUTE) models, which are highly valued in many regions in order 

to demonstrate compliance with air quality-related planning standards.  

The acquisition of satellite data, however, is a complex process, full of potential 

errors and omissions. Sophistication and expertise are needed to extract 

information from multiple spectra, correct this information radiometrically and 

atmospherically, and finally, interpret it3. While a detailed discussion of these 

issues is not the focus of this dissertation, data quality issues associated with the 

use of remote sensing data should be noted. For example, Foody (2002), 

Townshend (1992), and Wilkinson (196) describe various types of uncertainty 

inherent in satellite data and discuss data-quality limitations. Ideally, such 

uncertainty should be quantified. Typically, however, information on data quality 

is wholly missing (see, e.g., Johnston and Timlin, 2000). The presence of 

measurement errors in the data examined here is simply the nature of the beast.  

(Even carefully collected household surveys on travel behavior and the like 

                                                 
3 Some classic works that provide technical details for such data processing include those by 
Campbell (2002), Jensen (1996 and 2007), Lillesand et al. (2003), and Richards and Jia (2006). 
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contain mistakes, as humans forget where they have been, what they have 

purchased and so on.)  In reality, very few – if any – data sets are truly flawless. 

In part for this reason, the model specification and estimation methods presented 

here can be viewed as the primary contribution of this dissertation. 

1.4 OZONE CONCENTRATION MODELS  
As a gas in the stratosphere that protects Earth from harmful ultraviolet rays, the 

ozone layer shields living things. However, in the troposphere, ozone is a 

powerful oxidizer and can damage lung tissue. Under the National Ambient Air 

Quality Standards (NAAQS), all Metropolitan Statistical Areas (MSAs) in the 

United States are required to develop strategies for attaining the standards and 

accommodate future growth. Thus, planners and policy makers must understand 

the spatial distribution of air pollutants, like ozone. Most predictive studies for 

ozone concentrations emphasize the photochemical process. Though such an 

approach is more behavioral in nature than purely statistical modeling, it can 

prove much more challenging to specify and does not offer information on the 

nature of unexplained variations in ozone concentrations. 

Ozone concentration is usually expressed as a continuous value. For example, the 

California one-hour ozone standard is set at 0.09 parts per million (ppm) and the 

eight-hour average ozone standard is 0.070 ppm (BAAQMD, 2005). However, in 

order to illustrate these levels clearly for policy makers and the public, especially 

for the purpose of air quality forecasting, these values may be categorized into 

ordered categories (indexed, for example, as low, medium and high 

concentrations). (See, for example, Athanasiadis et al., 2007.)  

Of course, many factors can and do influence ozone concentration levels through 

complex chemical and physical processes. Travel choices and land development 

patterns impact concentrations. For example, Niemeier et al. (2006) found that for 

most regions in the Northern Hemisphere, road traffic intensity is closely 
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associated with local ozone concentrations. They surmised that, if traffic-related 

emissions per capita in south Asia hit U.S. levels, that continent’s surface ozone 

concentrations would increase by 50 to 100%. Wang et al. (2005) concluded that 

transportation sources are the main contributor to ozone concentrations, averaging 

roughly twice the effect of industrial emissions. Friedman et al. (2001) studied 

changes in commuting behaviors during the1996 Summer Olympic Games in 

Atlanta and noted how decreased traffic densities were associated with a 

prolonged reduction in ozone pollution. 

Land coverage development and intensity are also important determinants. And, 

of course, even if the land is not developed for human use, its features need to be 

classified for calculation of biogenic emissions. These are naturally occurring 

emissions from vegetation, which can be a strong function of tree type. For 

example, live oak trees are high emitters of isoprene, a highly reactive, volatile 

organic compound (VOC) that is a precursor to ozone. In areas such as eastern 

Texas, where this species is common, biogenic emissions of VOCs dominate the 

area’s emissions inventory (Wiedinmyer, 1999). Another reason for requiring 

such land coverage information is the calculation of dry deposition rates. Dry 

deposition refers to the accumulation of particles and gases as they come into 

contact with soil, water or vegetation on the earth's surfaces. Allen (2002) 

suggests that during ozone season in Texas, dry deposition is the most important 

physical removal mechanism for air pollutants. Dry deposition rates for specific 

pollutants are typically computed according to land cover type. McDonald-Buller 

et al. (2001) investigated the sensitivity of dry deposition and ozone mixing ratios 

as a function of land cover classification and noted the importance of establishing 

accurate, internally consistent land cover data for air quality modeling. Thus, 

changes to both developed and undeveloped land cover type can significantly 

alter the magnitude spatial distribution of ozone. 
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Of course, many other factors also play a role. For example, Guldmann and Kim 

(2001) suggest that, in addition to land development and transportation 

characteristics, pollution measurements, meteorological factors and 

socioeconomic data can and do influence ozone concentrations. Loibl et al. (1994) 

show how relative altitude and time of day are influential. Pont and Fontan (2001) 

suggest that though local reduction in traffic is important, advection4 of ozone is 

also critical to its concentration.  

Obviously, ignoring any of these relevant factors introduces uncertainty in model 

estimation and prediction. Such variables, if unobserved, can generate both 

temporal and spatial autocorrelations in model error terms. For example, 

meteorological factors (such as local wind speeds, rainfall, relative humidity, and 

temperature), precursors of ozone, and pollution control policies all exhibit 

positive temporal and spatial dependencies (see, for example, Lin, 2007, and 

Hancock, 1994). Therefore, it is reasonable to incorporate temporally and 

spatially lagged term and neighborhood effects in model specification.  

In summary, ozone concentration levels are related to numerous factors. Among 

them, transportation conditions and land use/land cover information are critical. A 

statistically rigorous analysis of ozone concentration can be achieved with an 

ordered discrete choice model with a temporal lagged item and spatial 

autocorrelation in error terms.  

1.5 STUDY OBJECTIVES 
The first objective of this study is to develop a model that is appropriate for 

describing the temporal and spatial relationships that exist in ordered categorical 

data. Related issues also will be explored, indicating model estimation techniques, 

model validation and model comparisons (with simplified, less behaviorally 

                                                 
4 Advection refers to the transport of something from one region to another. Ozone’s advection is 
predominantly horizontal, following weather system patterns. 
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reasonable models). Such model specifications and estimation techniques may be 

viewed as breakthroughs in the area of spatial econometrics. This dissertation’s 

results can be extended to a wide range of topics, as long as the dependent 

variables are ordered discrete values and may involve temporal and spatial 

dependencies across observations.  

A second objective is to develop a framework for interpreting, processing and 

applying remotely sensed (satellite imagery) data in land use and air quality 

analyses. This framework may offer researchers and planners much inspiration, 

by illuminating the potential of satellite databases. 

A third objective is an understanding of how different factors affect land 

development decisions, especially the role of transportation conditions.  

A final objective is a stronger understanding of the spatial patterns and dynamics 

of ozone concentrations for the environmental impact module in the integrated 

model. These results may facilitate policy making and the model specifications 

can be used in an integrated model of land use, transportation, and air quality. 

1.6 ORGANIZATION 
The rest of the dissertation is organized as follows. Chapter 2 conducts an 

extensive review of existing studies on related topics. Chapter 3 explains the 

intuition of model specification, incorporating a temporally lagged latent variable 

and a spatially autocorrelated regional5 effect. Chapter 3 also illustrates how to 

use Gibbs Sampling to estimate the unknown parameters in such models via a 

Bayesian framework. Chapter 4 validates model code performances by testing 

with a simulated dataset.  

                                                 
5 In this dissertation, “region” is used to indicate a cluster of observational units. It can be 
interpreted as a sub-area of the study zone, a neighborhood, or a socially defined group. 
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Chapter 5 describes the empirical datasets used in this study - one for the 

dynamics of land development intensity and the other for ozone concentration 

levels. Both datasets come from Austin’s urban area, but their spatial scales and 

observational units differ. Chapter 5 explains details about the utilization of 

satellite data and its integration with other data sources. In Chapter 6, the model is 

applied to the Austin datasets, and the effects of different factors are discussed 

based on the estimation results. The estimates also are applied to predict land 

development intensity levels and ozone concentration levels in two hypothetical 

scenarios. Chapter 7 summarizes this dissertation’s contributions and findings, 

while illuminating study limitations and opportunities for extension of the work. 

1.7 CHAPTER SUMMARY  
This chapter introduced key motivations for and objectives of this dissertation 

research, which are as follows: (1) establishing a statistically rigorous model for 

analyzing discrete response data in a spatial and temporal setting, (2) mining 

information present in satellite imagery, and (3) understanding the dynamics of 

land development and ozone concentrations in Austin, Texas. Chapter 2 provides 

further background while placing more emphasis on methodology. Subsequent 

chapters show how these objectives are realized, how the model is specified and 

tested, and how the data are assembled and analyzed, how the model compares to 

simpler specifications and approaches, and how the results lend themselves to 

useful interpretations for application in a broad range of topic areas.  
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CHAPTER 2. LITERATURE REVIEW  
While Chapter 1 offers a discussion of some land development change and air 

quality modeling literature, this chapter emphasizes the methodological side. This 

chapter starts from a discussion of fundamental aspects. The exploration is then 

deepened into specific topics, which are more and more closely related to the 

innovative method that will be proposed in the study. The following sections 

introduce common notions in spatial econometrics and models of discrete 

responses, and discuss existing spatial models of discrete responses. Methods for 

specifying and estimating such models are compared, with emphasis on the 

Bayesian methods used in this study. The chapter ends with a discussion of the 

Bayesian approach for ordered, discrete responses in a dynamic and spatial setting.  

2.1 SPATIAL ECONOMETRICS 
Econometrics is a statistically rigorous method for mining useful information and 

exploring relationships of interest that are embedded in behavioral data. As an 

emerging subfield, spatial econometrics holds considerable interest. The need for 

spatial econometrics exists in fields like sociology, agriculture, ecology, 

environment and city planning. (See, e.g., recent reviews in Anselin [1999], and 

Anselin and Florax [2002].) In transportation and urban studies, recognition of 

spatial relationships is almost inevitable. Normally, land owners make 

development decisions based on their knowledge and prediction of neighboring 

land development (See, e.g., Waddell, 2002, and Candau et al., 2000). As a result, 

land development is often clustered. For example, one can expect that a parcel of 

land is more likely to be intensely developed if its neighborhood offers intensely 

developed land.  

Such spatial autocorrelation also exists in many naturally evolving activities. For 

example, ozone concentration levels are influenced by land cover, weather and 

many other factors. Perhaps most importantly, they are influenced by the 
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concentrations of chemicals and emissions in neighboring areas. As a result, 

ozone concentration patterns tend to be smooth (see, e.g., Guttorp et al., 2006), 

and their analysis needs to be examined in both a temporal and spatial context 

(Gao and Niemeier, 2005). 

As long as there is spatial interaction, there is a need for spatial econometrics 

(Anselin, 1988). In some cases, people need to understand the operation of a 

spatial process in order to estimate the magnitude and trend of the neighboring 

units’ influence. In such circumstances, explicit spatial effects are required. Even 

in circumstances where analysts are not so interested in spatial relationships, they 

may require spatial econometric methods in order to obtain reasonable and robust 

model estimates. Otherwise, their model specification may be statistically and 

functionally problematic. For example, if positive spatial correlation exists but is 

ignored in a linear model, the estimation is biased and precision generally is 

overestimated (Magnussen, 1992, and Briggs, 2006). Intuitively, the coefficients 

tend to be biased high because areas with higher event magnitudes will have a 

greater impact on model estimates. Precision is exaggerated (i.e., lower standard 

errors are reported and estimates are more likely to be found “statistically 

significant”) because the actual number of independent observations is lower than 

assumed (Anselin, 1988).  

Of course, in order to account for spatial effects in data, one first needs to have an 

indicator of “distance” between observations. A natural choice is an indicator 

variable for general location (e.g., which city or neighborhood a zone belongs to) 

(Wangen and Biom, 2001). However, as heterogeneity or cluster divisions 

increase, the number of indicator variables may increase to the extent that the 

method is no longer computationally feasible. A more effective measurement 

tends to be relative distance between observations. As Tobler’s first law of 

geography claims, everything is related to everything else, but near things are 
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more related than distant things (Tobler, 1970). Using this law, it is not difficult to 

construct a spatial weight matrix to index the relative location of all pairs of 

observational units. The value of each element can be either an index of 

contiguity or a monotonically decreasing function of impedance (Anselin et al., 

2006, O’Sullivan and Unwin, 2003). Depending on the topic of interest, this 

impedance can be Euclidean distance, travel time, number of links in a chain of 

economic interactions or even rock hardness. This spatial weight matrix is also 

called a spatial lag operator, analogous to the lag operator in time series data 

(Anselin, 1999), which essentially produces a weighted average of the neighbors’ 

values (of error terms, explanatory variables or responses, for example).  

This dissertation uses an index of (queen) contiguity to construct the two weight 

matrices used throughout. One advantage of such matrices is that most elements 

are zero, allowing utilization of sparse matrix algorithms. This numerical 

efficiency and the resulting, shorter calculation times are important in practice, 

especially for studies with large samples and/or complex specifications. More 

importantly, the convenience of using a contiguity matrix is not obtained at the 

cost of significant loss in spatial information, as compared to a more detailed 

(thus more memory-demanding and computationally intensive) distance-decay 

matrix.  This is because, in practice, the weight matrix is typically row-

standardized (as discussed in Chapter 3). In this case, using a distance decay 

matrix no longer provides more meaningful interpretations.6 Furthermore, when 

the magnitudes of distance differ considerably, normalizing a distance decay 

matrix may push many elements down to almost zero values, creating a matrix 

numerically similar to a contiguity matrix.  

                                                 
6 As Anselin (1988, P. 514) pointS out, “distance decay has a meaningful economic interpretation; 
and scaling the rows so that the weights sum to one may result in a loss of that interpretation.”  
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Spatial econometrics certainly shares some similarities with time series data 

analysis. However, in contrast to the relatively mature development of time-series 

data analysis, spatial econometrics is in its infancy. The reason for this is that the 

correlation relationships are two dimensional. (With standard longitudinal/time 

series data; there is a single direction of effect.) In two-dimensional space, one 

can not rely on a single, serial correlation parameter. Methodological issues are 

not the only reason hindering the development of spatial econometrics: 

computational issues also play a key role. Spatial data can be large-scale and 

memory intensive (Nelson and Geoghegan, 2001), and computational demands 

increase exponentially with data set size. Therefore, efficient estimation methods 

generally must accompany model specification in order to enjoy operational 

success. Over the past two decades, researchers have invested much effort with 

these considerations in mind. Existing spatial econometric studies can be 

generally categorized into three classes, each offering a distinct notion for dealing 

with the hypothesized spatial relationship.  

The first class of specification is geographically weighted regression (GWR), as 

formulated by Fotheringham et al. (2002). To some extent, GWR can be 

considered a transition from spatial statistics to spatial econometrics. Essentially, 

GWR extends the idea of local spatial statistics to model estimates: Local spatial 

statistics can be calculated for each individual based on neighborhood information 

by applying a matrix of location weights (W) to the standard formulae for the 

statistic of interest. Similarly, GWR generates a separate regression equation for 

each observational unit (Mennis, 2006, and Briggs, 2006). The model estimates 

thus vary from location to location. The GWR model specification can be 

illustrated via the following simple regression example: using ( )1 2,z z  to denote 

the coordinates of one data point’s position, the model can be written as follows: 
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( ) ( ) ( ) ( )1 2 0 1 2 1 1 2 1 1 2, , , ,y z z z z z z x z zβ β ε= + +     (2.1) 

In other words, now the model parameters are location-specific, rather than 

constant across all observations. This model can be estimated based on a 

predetermined weighting scheme which basically assigns data closer to ( )1 2,z z  a 

higher weight than data further away. This method was first applied in ecology 

and biology, where it is reasonable to believe that spatial processes vary with 

location. For example, Zhang et al. (2004) used GWR to model spatial variation 

of tree diameter and height relationships, and Shi et al. (2006) applied GWR to 

model deer distributions. In analyzing human activities, Malczewski and Poetz 

(2005) used GWR to find local variations in the relationships between the risk of 

residential burglary and neighborhood socioeconomics in London, Ontario. An 

example of GWR in transportation is Zhao and Park’s (2004) study of annual 

average daily traffic (by zone). As Paez (2005) explains, GWR is an appealing 

approach for exploring spatial non-stationarity. When the interest lies in spatial 

autocorrelation, rather than behavioral variation over space, the GWR method is 

no longer an appropriate choice. 

The second class of spatial econometrics models is called spatial filtering. Work 

mentioned previously, including studies by Nelson and Hellerstein (1997), Wear 

and Bolstad (1998), and Munroe et al. (2001) (in Chapter 1), belongs to this class. 

Some other studies use spatial statistics as explanatory variables for similar 

reasons (i.e., to remove spatial correlations.) These statistics are normally derived 

from exogenous, location-specific data. For example, Kockelman (1997) included 

land use mix, accessibility, and neighborhood entropy statistics in her study of 

household travel behaviors. However, issues remain in such approaches because 

spatial correlation generally cannot be perfectly removed through sampling, 

filtering, or controlling for neighborhood attributes. Neighborhood information 

and/or any spatial statistics derived from it can be endogenous in many cases. In 
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other words, explanatory and dependent variables are often interdependent, and 

such variables typically are not available to analysts in predicting future behaviors. 

Moreover, application of such models (e.g., traffic and land use forecasting) 

generally requires modeling of all data points, so correlation exists in the 

applications. 

The third class of model is direct incorporation of spatial effects in model 

specification. Though this method has also uses spatially lagged explanatory 

and/or response variables, as in the spatial filter models, many of the variables are 

treated as endogenous. Anselin (1999) notes that this method can correct for 

“structural instabilities” (including heteroskedasticity and variable model 

coefficients) occurring as a result of spatial heterogeneity in the data. Anselin 

(1988, 1999) suggests that there are three main methods for incorporating such 

spatial effects: use of spatial stochastic processes, a direct representation of 

correlations, and a non-parametric framework. The relatively common spatial 

autoregressive (SAR) and spatial moving average (SMA) specifications are 

examples of spatial stochastic processes. (Anselin, 1988, Anselin and Bera, 1998, 

and Anselin, 2003 provide extensive technical discussions on these two processes.) 

In general, SAR and SMA are used for dependent variables and error terms, 

respectively. The former case is called “spatial lag”, while the latter is often called 

“spatial error”. By using these two specifications, it is assumed that the spatial 

process follows a recursive pattern. Such methods are rather used regularly by 

researchers, thanks to their flexibility and applicability. For example, Besner 

(2002) used SAR to analyze housing prices in the Montreal Urban Community 

real estate market, and Miyamoto et al. (2004) incorporated SAR processes in 

both dependent variable and error term specifications for their location choice 

analysis. Frazier and Kockelman (2005) use a SAR process to understand urban 

land cover change in Austin.  
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A frequently encountered issue in spatial stochastic processes is the lack of 

stationary covariance terms, which can violate asymptotic property assumptions 

established based on the central limit theorem and law of large numbers (Cressie, 

1993). By using a “direct representation,” the covariance matrix among 

unobservable components can be directly expressed as an inverse function of 

distances. This method is most suitable when some prior knowledge (for the 

functional form) of the spatial interaction pattern exists. This also meets 

stationarity requirements (Anselin, 1999). Such models have been used primarily 

for analysis of housing prices, including works by Dubin (1988, 1992), Olmo 

(1995) and Basu and Thibodeau (1998). Wang and Kockelman (2006c) also 

applied such methods, for their analysis of land cover change in Austin. Though 

this specification is intuitive in some cases, formulation of the inverse function is 

often restricted, because flexible expressions may suffer from estimation and 

identification problems.  

Anselin’s (1988, 1999) third suggestion for direct incorporation of spatial effects 

involves non-parametric methods. While these do not require an explicit spatial 

process or functional form for the distance decay, they do require a long panel of 

data, with a time dimension (T) that is much greater than the cross-sectional 

dimension (N) (see Fiebig, 1999). Thus, they are seldom found in practice. 

2.2 MODELS OF DISCRETE RESPONSES 
Models of discrete response are an important sub-area of econometrics. They are 

used to model discrete choices among sets of alternatives, rather than a 

continuous response (Greene, 2000). Such models play an important role in 

scientific studies, both social and natural. The specification of discrete response 

models tends to require specific assumptions on the error term distribution. Two 

commonly used specifications are probit and logit models. The most basic form is 

a binary response, where the value of the dependent variable is either 0 or 1, 
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indicating no or yes. Of course, in many circumstances, the number of alternatives 

is more than two. When the data is multinomial and unordered, a common model 

specification is established based on the utility maximization theory introduced by 

McFadden (1994). In this framework, the alternative offering the maximum utility 

(a latent variable) is chosen. If the data are ordered, the model specification is 

more similar to binary choice settings, but with a set of thresholds to 

distinguishing different level of response (alternatives) and requiring estimation. 

Land development decisions often offer a nice example of unordered, multinomial 

discrete choice, but land development intensity and ozone concentration, when 

categorized by level, offer an example for ordered (discrete) response data. Such 

nonlinear models for limited dependent variables generally require more 

complicated estimation techniques than do continuous data. When spatial and 

temporal effects also exist, the modeling process becomes even more complicated 

than the spatial econometric and time series data models used for continuous 

response data. 

2.3 SPATIAL ECONOMETRICS FOR MODELS OF 

DISCRETE RESPONSE 
Similar to the standard probit and logit models, existing studies using spatial 

econometrics for discrete response analysis can be divided into two categories 

based on error term assumptions: those assuming normally distributed error terms 

and those assuming GEV distributed error terms. Also, as in standard spatial 

econometrics, methods for dealing with spatial effects in discrete choice models 

can be categorized into the three types discussed earlier, in Section 2.1. The first 

method is GWR, where spatial variation in behavioral parameters is of strong 

interest. In an analysis on suburban subcenters and employment density, 

McMillen and McDonald (1998) propose the idea of applying standard logit or 

probit methods to distance weighted sub-samples of the data in place of least 
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squares, which is essentially using GWR to deal with discrete responses. LeSage 

(1999) provided code for producing binary logit and probit GWR estimates, using 

crime data. Atkinson et al. (2003) also used a GWR binary logit model to explore 

relationships between the presence (or absence) of riverbank erosion and geo-

morphological controls. Vanasse (2005) incorporated GWR in a binary logit 

model to study spatial variation in the management and outcomes of acute 

coronary syndrome. 

The second method, spatial filtering, has been applied more broadly. It saves 

much specification and estimation effort. In addition to several land use/land 

cover models (e.g., Nelson and Hellerstein, 1997, Wear and Bolstad, 1998, and 

Munroe et al., 2001), there are also many other works that use this method. For 

example, an early study by Boots and Kanaroglou (1988) introduced a measure of 

spatial structure and used it as an explanatory variable when considering spatial 

effects in intra-metropolitan migration in Toronto. Dugundji and Walker (2004) 

controlled for spatial network independencies in their mixed logit model when 

studying mode choice behavior. Coughlin et al. (2003) incorporated global and 

regional spatial effects into an analysis of state lotteries.  

The third method incorporates spatial effects directly in a discrete choice model 

setting and is the focus of this study. This method can be further divided into two 

approaches.  

The first considers spatial autocorrelation across choices or alternatives, as often 

discussed for location choice models. This approach extends the commonly used 

GEV model by allowing correlated alternative-specific error terms in a mixed 

logit framework. For example, Miyamoto et al. (2004) assumed that location 

choice follows an SAR process, and used the weight matrix as a multiplier on 

dependent variables. Bhat and Guo (2004) used a contiguity matrix on their latent 

dependent variables to represent alternative-zone correlation patterns.  
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The second approach considers spatial autocorrelation across observational units 

(or individuals), the topic of this dissertation. Currently, studies recognizing such 

spatial autocorrelation are limited to binary choice settings. To some extent, 

Wang and Kockelman (2006c)’s work on estimating urban land cover evolution 

seems an exception, because multiple choices are studied in a mixed logit 

framework. However, rather than permitting a more flexible SAR process, Wang 

and Kockelman used a direct representation method and assumed a specific 

distance-decay function for inter-observational correlations, making the spatial 

correlation pattern across observations rather arbitrary. All other existing spatial 

probit and logit work is binary in nature. Anselin (2005) reviewed such spatial 

probit models and notes that, McMillen (1995) first used the EM algorithm to 

estimate a probit model with an SAR process. Vijverberg et al. (1999, 2000) 

specified probit models with both spatial errors and spatial lags, and then 

estimated these models by using recursive importance sampling (RIS) to 

approximate the n-dimensional log-likelihood. Beron and Vijverberg (2004) used 

a similar method to examine the bias caused by ignoring spatial relationships in a 

probit model. LeSage (2000) specified a model with a spatially correlated error 

term and used Gibbs sampling for estimation. Smith and LeSage (2002) extended 

this study by incorporating a regional effect and used Bayesian techniques to 

analyze the 1996 presidential election results. Similar studies include Kakamu and 

Wago’s (2006) Bayesian estimation of a spatial probit model for panel data to 

analyze the business cycle in Japan. Another estimation approach is the 

generalized method of moments, or GMM. Pinkse and Slade (1998) first used 

GMM to estimate a probit model with spatial error components. Pinkse et al. 

(2005) refined that study by incorporating a dynamic structure for dependent 

variables and applying a one-step GMM. There is also spatial logit model that 

incorporates spatial autocorrelation across observations. For example, Klier and 
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McMillen (2007) used GMM to estimate a spatial logit model for analyzing the 

clustering of auto supplier plants in the U.S. 

It has been argued that the most important issue for estimation of any spatial 

discrete response data model is efficiency. The use of GMM is limited because it 

requires orthogonality conditions (as discussed in works like Klier and McMillen, 

2007, Pinkse and Slade, 1998, and Pinkse et al., 2005), and standard errors must 

be derived. For this reason, it presently is applied only to binary response models; 

it has not yet been extended to multiple-response models. All the other estimation 

methods can be called simulation estimators. As Anselin (2005) concluded, all 

current simulation estimators are slow, but Gibbs sampler is relatively less slow. 

In other words, among all three general methods discussed above, the most 

promising one for a model of multiple discrete response (ordered and unordered) 

with spatial effects (both autocorrelation and heteroskedasticity) is one using a 

Gibbs sampler in a Bayesian framework. The next section gives a brief review of 

Bayesian notions.  

2.4 THE BAYESIAN APPROACH TO MODEL ESTIMATION 
In contrast to frequentist methods (i.e., classical statistical analysis), the Bayesian 

approach is rather straightforward in both model estimation and results 

interpretation. The primary motivation for using a Bayesian approach is its rather 

direct interpretation of parameter estimates and probabilities. A Bayesian 

approach yields estimates of parameter distributions (rather than relying on 

asympotics for normality). These distributions effectively define intervals that can 

be “regarded as having a high probability of containing the unknown quantit(ies) 

of interest” (Gelman et al., 2004). In contrast, frequentist methods focus on 

producing point estimates and rather standard confidence intervals, and resulting 

probabilities that are strictly interpreted as “long run (asymptotic) relative 

frequenc(ies)” (Koop et al., 2007).  
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In practice, an important advantage of a Bayesian framework is its flexibility, 

allowing it to deal with complex estimation problems more easily. In fact, this is 

the main reason for this dissertation’s choice of a Bayesian framework – in 

addition to wanting to develop new methods of model estimation for the 

transportation sciences (where frequentist methods are the norm). In general, 

Bayesian estimation via Markov chain Monte Carlo (MCMC) simulation relies on 

a set of conditional distributions to deduce each parameter’s marginal distribution. 

In this way, models with many parameters and complicated multiple-layered 

probability specifications can be decomposed into a set of simpler sub-problems. 

By contrast, with frequentist methods, the models have to deal directly with any 

complicated model specification and any statistical problems arising from it. Of 

course, another well-understood advantage of using a Bayesian approach is that 

by having priors, one can make use of established intuition and experience to 

balance new information found in sample data. Unfortunately, such priors are 

generally rare in the practice of transportation engineering, so this benefit is often 

not realized. The Bayesian approach is regularly used without informative priors. 

(For example, Wallerman et al. (2004) used it to analyze remotely sensed forestry 

data, and Hamilton et al. (2005) used it to estimate expansion and migration rates 

for Swiss populations.) 

2.4.1 Bayesian Theory 
Essentially, Bayesian approaches rest on the basic property of conditional 

probability known as Bayes’ rule: 

( ) ( ) ( )
( ) ( ) ( ),

, ,
π π

π π π
π

= ∝
X y X

y X X y X
y X

θ θ
θ θ θ    (2.2) 

where y  is a vector of dependent variables and X  is a matrix explanatory 

information. Together they compose the observed data. θ  is a vector of unknown 

parameters. If explanatory variables are irrelevant to the parameters (as in most 
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cases), ( ) ( )π π=Xθ θ  . This is known as the prior, or prior distribution of the 

random parameters θ . One can incorporate intuition and/or experience in this 

prior distribution. ( ),π y Xθ  is the likelihood function of y  given X  andθ . 

Thus, Bayesian methods model information from two sources: one’s beliefs and 

sample data. Together, they lead to updated information on θ , producing a 

posterior distribution ofθ , which is denoted as ( ),π y Xθ .   

The most commonly used method for estimating unknown parameters is MCMC 

simulation technique, and the Gibbs sampler is one of the most popular7. The next 

section first introduces MCMC and then the Gibbs sampler. 

2.4.2 Gibbs Sampling  
As Gelman et al. (2004) summarize, MCMC simulation is based on drawing 

parameter values from approximate distributions and then correcting these draws 

to better approximate the target posterior distribution ( ),π y Xθ . The draws are 

sampled sequentially, and the distribution of the sampled draws ignores the initial 

(“burn in”) sample values.  

The Gibbs sampler is a particular MCMC algorithm, also called an alternating 

conditional sampler, because in each iteration it simulates components conditional 

on the values of all other parameters. In other words, at iteration t , each t
jθ  is 

sampled from its conditional distribution given all other components of θ : 

( )1,t t
j jπ −

− yθ θ , where j−θ  represents all components of θ , except for jθ . 

                                                 
7 The Metropolis-Hastings algorithm is also an important (and the standard) member of MCMC 
simulation techniques. It is especially useful when models are not conditionally conjugate. 
(Readers may see Chapter 3 for a detailed explanation of the term “conjugate”.) However, as 
Gelman et al. (2004) suggest, Gibbs sampling is the simplest of the MCMC algorithms, and 
should be chosen first whenever possible. This dissertation uses a Gibbs sampler throughout. 



 

26 

2.4.3 Data Augmentation 
Data augmentation where one adds auxiliary variable, is an efficient way to 

simplify or accelerate convergence when using the Gibbs sampler (see, e.g., 

Tanner and Wong, 1987, Chib, 1992, Albert and Chib, 1993, and Gelman et al., 

2004). In cases of non-binary discrete response the latent variables must be 

recovered, and so one must resort to data augmentation. Chapter 3 explains in 

more detail how this data augmentation technique is used here. 

2.5 BAYESIAN APPROACH FOR DYNAMIC SPATIAL 

ORDERED CATEGORICAL MODELS 
The Bayesian approach for (stationary, non-spatial) discrete choice models was 

introduced by Albert and Chib (1993). LeSage (2000) first extended Albert and 

Chib’s approach to models involving spatial dependencies. Later work by Smith 

and LeSage (2002) further extended the model by incorporating an error 

specification that allows both spatial dependencies and general spatial 

heteroscedasticity. However, all such studies deal only with binary data. As 

previously discussed, many data sets offer multiple categories. No existing studies 

tackle such patterns in a spatial context. While Albert and Chib (1993) briefly 

mentioned possible extensions from binary data to ordered categorical data, they 

did not offer any methodological details. Several years later, Johnson and Albert 

(1999) suggested a detailed Bayesian framework for modeling ordinal data, and 

Cowles (1996) presented a method for accelerating MCMC convergence for 

models like the ordered probit. Girard and Parent (2001) even extended Albert 

and Chib’s study (1993) to temporally autocorrelated ordered categorical data, but 

there is nothing spatial in these studies.  

A related and interesting topic is the use of Bayesian techniques to analyze 

unordered discrete response data. Recently, both Scott (2004) and Fruhwith-

Schnatter and Waldl (2004) used data augmentation techniques for recovering 
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latent utilities in a multinomial logit set-up. However, due to very complex 

specification and estimation demands made via Bayesian simulation, no studies 

have attempted to accommodate dynamic and/or spatial features.  

To summarize, existing studies either deal with binary data, spatial relationships, 

or dynamic patterns. None incorporates all these conditions simultaneously. This 

dissertation is inspired by such studies but adds sophistication while combining 

space and time for ordered categorical data. It goes beyond a simple extension or 

combination of these works. The contribution of these prior studies is discussed in 

more detail in the next chapter, through illustrations of model specification and 

estimation techniques. 

2.6 CHAPTER SUMMARY 
This chapter reviewed a variety of literature related to the specification and 

estimation of the proposed DSOP model. Section 2.1 introduced general methods 

and common notions used in spatial econometrics, while Section 2.2 briefly 

introduced models of discrete response. Section 2.3 then summarized existing 

methods for specifying and estimating models involving spatial effects and 

discrete responses.  

After a comparison of these existing methods, it seems likely that the Bayesian 

framework with a Gibbs sampler is the best method for coping with the 

specification and estimation issues inherent in this study. Thus, Section 2.4 further 

discussed Bayesian methods, and Section 2.5 discussed Bayesian approaches for 

models of ordered categorical data in a dynamic and spatial setting. 
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CHAPTER 3. SPECIFICATION OF A DYNAMIC 

SPATIAL ORDERED PROBIT (DSOP) MODEL, FOR 

BAYESIAN ANALYSIS 

3.1 INTRODUCTION 
This chapter describes the specification of a dynamic spatial ordered probit model, 

and methods for its estimation. The intuition behind this proposed model 

specification is that, first, spatial effects are incorporated into a standard ordered 

probit model, and then dynamic features are included. The model is to be 

estimated in a Bayesian framework using Gibbs sampling. Prior distributions of 

all parameters and variables of interest are explored here, and their posterior 

distributions are derived. The MCMC simulation process is then summarized. 

Several special (and simple) cases of the models are discussed briefly as well.  

3.2 MODEL SPECIFICATION 

3.2.1 Standard Ordered Probit (OP) Model 
A standard ordered probit model has been used widely for estimating discrete 

responses of an ordinal nature (Greene, 2000). The model is built upon a latent 

regression that is expressed as follows: 

i i iU ξ′= +X β          (3.1) 

where i  indexes observations, ( 1,...,i N= ,) and iU  is a latent (unobserved) 

response variable for individual i . iX  is a 1Q×  vector of explanatory variables, 

and β  is the set of corresponding parameters. iξ  stands for unobservable factors 

for observation i  and (for a standard ordered probit model) is assumed to follow 

an iid standard normal distribution. 

The observed response variable, y , for the ith observation is as follows: 
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iy s=  if 1s i sUγ γ− < < , 1,...,s S=  

That is, the observed variable is a censored form of the latent variable, and its 

possible outcomes are integers ranging from 1 to S . The latent variable iU  is 

allowed to vary between unknown boundaries 0 1 1S Sγ γ γ γ−< < < <L , where 0γ  

is −∞  and Sγ  is +∞ . If constants are to be included in the explanatory variables, 

1γ  also is normalized to equal zero. The probabilities for these S outcomes are as 

follows: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 0

2 1

1

Pr 1

Pr 2

Pr

i i i i

i i i i

i i S i S i

y

y

y S

γ γ

γ γ

γ γ −

′ ′= = Φ − −Φ −

′ ′= = Φ − −Φ −

′ ′= = Φ − −Φ −

M

X X X

X X X

X X X

β β

β β

β β

    (3.2) 

where ( )Φ •  is the Cumulative Distribution Function (CDF) for standard normal 

distribution. If iξ  has non-unit variance, the CDF in Equation (3.2) must be 

modified as follows: 

s iγ
υ

⎛ ⎞′−
⎜ ⎟Φ
⎜ ⎟
⎝ ⎠

X β         (3.3) 

3.2.2 Spatial Ordered Probit (SOP) Model 
In many studies, individuals are surveyed from a region containing several sub-

regions or neighborhoods. A certain number of observations is collected from 

each of these sub-regions. In such cases, the effects of different regions need to be 

considered, so that the latent variable is now in the form of  

ik ik ikU ξ′= +X β , with ik i ikξ θ ε= +       (3.4) 
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where i  now indexes regions (instead of individuals) ( 1,...,i M= ) and k  indexes 

individuals inside each region (i.e., 1,..., ik n= ). In other words, there are M  

regions, each containing in  observations, so that the total number of observations 

is 
1

M

i
i

n N
=

=∑ . 

The main difference between Equations (3.4) and (3.1) is that the unobserved 

factor ikξ  is now composed of two parts: a “regional effect” iθ  and an individual 

effect ikε . This iθ  captures all unobserved, common features for observations 

within region i . To some extent, this specification is very close to a random 

effect in panel data, only here the “common factor” is cross-sectional rather than 

temporal. As discussed in Chapters 1 and 2, these regional effects should exhibit 

spatial autocorrelation: individuals in region i  are likely to be more similar to 

those in neighboring regions than those in more distant locations. Therefore, a 

spatial autoregressive process can be formulated here, where 

1

M

i ij j i
j

w uθ ρ θ
=

= +∑ , 1,...,i M=       (3.5) 

and weight ijw  can be derived based on contiguity and/or distance. In addition, 

the weight matrix is row-standardized8 so that 0iiw =  and 
1

1
M

ij
j

w
=

=∑ . The 

magnitude of overall neighborhood influence is thus reflected by ρ , also called 

the spatial coefficient. iu  aims to capture any regional effects that are not 

spatially distributed, and is assumed to be iid normally distributed, with zero 

                                                 
8 The row-standardized approach is chosen because in this way the “Wy term becomes essentially 
a weighted average of observations at neighboring locations” (Aneselin and Hudak, 1992). This 
leads to a more meaningful interpretation of ρ.  
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mean and common variance 2σ . Stacking all regions, then, the vector of regional 

effects can be formulated as 

ρ= +W uθ θ , ( )2, MN σ0�u I       (3.6) 

Here, W  is the exogenous weight matrix with elements ijw  and MI  is an identity 

matrix with rank M . Let Mρ ρ= −B I W , where the subscript ρ  means that ρB  

depends only on the unknown parameter ρ . Now, the vector of regional effects 

can be expressed as  

1
ρ
−= B uθ          (3.7) 

In other words, the distribution of θ  depends on two unknown parameters: ρ  

and 2σ . It has a multivariate normal distribution: 

( ) ( ) 12 2, 0,N ρ ρρ σ σ
−⎡ ⎤′⎢ ⎥⎣ ⎦

� B Bθ       (3.8) 

The intuition behind this “regional effect” can be explained as follows: In many 

cases, individuals in a region9 share common features, yet these features differ 

from region to region. One source of such differentiations is policy variations by 

regions. For example, parcels subject to the same zoning constraints may share 

common features, but differ across zone boundaries. Animals enjoying the same 

habitat share experiences, thanks to vegetation and micro climates. Their settings 

shift across wide rivers, mountain ranges, or high-capacity freeways. Multiple 

regions may exist based on these physical boundaries. In short, there are reasons 

to believe that observations across space are influenced by “local effects”, which 

may exhibit spatial autoregressive patterns as a function of proximity. The use of 

such regional effects to capture certain spatial dependencies also enhances 

                                                 
9 As used here, “region” means a cluster of observational units, within the same neighborhood or 
socially defined group (such as members of the same household or employees in the same firm).   
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computational efficiency: normally, the number of regions is much lower than the 

total number of observations, allowing use of a ρB  of relatively low rank. Thanks 

to a lower dimension, the inversion of ρB and calculation of its eigenvalues, are 

much less memory-intensive. Of course, both of these computations are necessary 

for parameter estimation. 

This “regional effect” offers an opportunity to make each individual a region, i.e., 

1in = , i M∀ ∈ , (so M N= ). This allows all individuals to be spatially auto-

correlated without imposing regional boundaries. While increasing computational 

burdens, this is definitely feasible with a reasonable sample size.  

The final item requiring specification is the individual effect, ikε . It is 

computationally simplest to assume an iid distribution for ikε . And, within each 

region, it is behaviorally reasonable to make such assumptions (i.e., all ikε .follow 

a normal distribution with zero mean and variance iυ . Across regions, it seems 

reasonable to expect heteroscedasticity. Stacking all observations and denoting 

( ),N 0� Vε , one has  

1 1n

M nM

υ

υ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

O

I
V

I
       (3.9) 

which is an N N×  matrix with non-zero elements only along its diagonal. 

3.2.3 Dynamics to the Spatial Ordered Probit Model 

As discussed in Chapter 2, there are four ways to incorporate both spatial and 

temporal (sequential) dependencies (Anselin, 1999). In this study, it is assumed 

that a time-space recursive formulation is proper, which means that the current 

value depends on the previous period’s value (at the same location, and thus 
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affected by neighboring locations), along with various contemporaneous factors. 

Furthermore, after controlling for all these temporally lagged and 

contemporaneous variables, the residuals remain spatially autocorrelated:  

1ikt ikt ikt it iktU Uλ θ ε−
′= + + +X β , 1,...,t T=      (3.10) 

where t  indexes time periods and λ  is the temporal autocorrelation coefficient to 

be estimated. The absolute value of this λ  must be less than one in order to 

guarantee temporal stationarity (Hamilton, 1994). Each individual is now 

observed T  times (the dataset is a balanced panel), and the total number of 

observations is NT . itθ  is assumed to iid distributed over t  and so is iktε . In 

other words, after controlling for lagged dependent variables ( 1iktU − ), the error 

terms are sequentially uncorrelated and identically distributed. Though a more 

flexible framework is, of course, to allow itθ  and iktε  to exhibit sequentially 

dependencies or at least heteroscedasticity, it is reasonable enough to believe that 

after one controls for lagged latent dependencies (both spatial and temporal), the 

remaining error terms may be temporally constant, i.e.,  

it iθ θ≡  or t =θ θ , for all 1,...,t T=       (3.11) 

and  

ikt ikε ε≡  or t =ε ε , for all 1,...,t T=       (3.12) 

A standard problem in considering such dynamic features is the treatment of 

initial conditions (Wooldrige, 2002). 0ikU  is called the initial latent variable and is 

an unknown quantity, generally assumed to be normally distributed. Section 3.3.3 

discusses the distributional assumptions of 0ikU  in more details. 
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3.2.4 Specification of the Dynamic Spatial Ordered Probit (DSOP) 

Model 

Equations (3.10) through (3.12) specify a dynamic spatial ordered probit model. 

The two empirical examples used in this dissertation (land development intensity 

levels and ozone concentration categories) both fit this specification. For example, 

land development decisions strongly depend on pre-existing and existing 

conditions, as well as owner/developer expectations of future conditions (such as 

local and regional congestion, population, and school access). These expectations 

can be approximated using contemporaneous measures of access and land use 

intensity, after which some spatial correlation in unobserved factors is likely to 

remain.  

It is similar with ozone concentration levels: changes are temporally continuous 

so inclusion of lagged variables is wise. The impact of some factors, such as 

temperature, may be instantaneous, so their contemporaneous values should be 

used. Advection and other unobserved factors may cause spatial dependence, so 

spatially autocorrelated effects (regional/clustered or observational in nature) 

should be considered. Certainly, recognition of such temporal dependencies and 

spatial autocorrelation (of nuisance terms) is behaviorally more convincing and 

statistically more rigorous than simply controlling for contemporaneous factors 

and ignoring other, underlying spatial dependencies. 

The model specification can be expressed in vector form as follows: for each 

t T∈ , observations can be stacked by region, then by individuals. The resulting 

utility vector is expressed as: 

1t t tλ −= + + +U U X Lβ θ ε        (3.13) 
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where 

1t

t it

Mt

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M

M

U

U U

U

, with each 

1

i

i t

iktit

in t

U

U

U

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

M

M

U . It is similar with tX , only tX  is an 

N Q×  matrix (instead of an 1N ×  vector). Here, 
1

M

n

n

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

O

l

L
l

, with each 

1

1
i

i

n

n

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Ml being a 1in ×  vector of 1’s.  

If observations over all time periods are stacked, the model can be written as  

λ = + +U Xβ θ εΔ      (3.14) 

where λU  is the vector of differences between adjacent time periods: 

( )1 2, ,... T
λ λ λ λ ′=U U U U , with each 1t t t

λ λ −= −U U U  .  

T= ⊗l LΔ       (3.15) 

where Tl  is a 1T ×  vector of 1’s. 

Here, X  is an NT Q×  matrix, and ε  is an 1NT ×  vector with variance matrix 

T= ⊗I VΩ      (3.16) 

The likelihood function is thus 

( ) ( ) ( )1
11 1 1

Pr ,
inT M S

ikt s ikt s
st i k

y s Uδ δ γ γ−
== = =

= = ⋅ < <∑∏∏∏y U γ   (3.17) 
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where ( )Aδ  is an indicator function equaling 1 when event A  is true (and 0 

otherwise). Now it is clear that the parameters of interest are ( )2, , , , ,λ ρ σVβ γ , 

together with unobserved (“nuisance”) variables θ  and U . One way to estimate 

these is via MCMC sampling under a Bayesian framework, as discussed below. 

3.3 PARAMETER ESTIMATION VIA MCMC SIMULATION 

Estimation of the dynamic spatial ordered probit model is achieved via MCMC 

methods, as described below. Sections 3.3.1 and 3.3.2 discuss the theoretical 

background for using a set of conditional distributions to approximate the joint 

posterior distributions, and Section 3.3.3 explains how prior distributions are 

chosen. Section 3.3.4 then describes how appropriate conditional posterior 

distributions for all parameters are established.   

3.3.1 Conditional Distribution 

As discussed in Chapter 2, MCMC simulation can be used in model estimation by 

sampling sequentially from the parameters’ complete set of conditional 

distributions. Gelfand and Smith (1990) showed that MCMC sampling leads to 

consistent estimates of the true joint posterior distribution of all parameters 

(including “nuisance parameters”, such as 2,σV  and θ ). Using Bayes’ basic rule, 

the following formulation always holds true:  

( ) ( )2
0, , , , , , , ,p pλ ρ σ �V U U y yβ γ θ  

( ) ( )2 2
0 0, , , , , , , , , , , , , , , ,p λ ρ σ π λ ρ σ= �y V U U V U Uβ γ θ β γ θ   (3.18) 

Here, 0U  is a vector for all individuals’ utility in the initial period, ( )p •  indicates 

posterior densities, and ( )π •  stands for prior distribution assumptions. Assuming 
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certain forms of independent priors, the posterior joint density 

( )2
0, , , , , , , ,p λ ρ σV U U yβ γ θ  will exhibit the following proportionality: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2
0 0

2
0

, , , , , , , , , , , , , ,p pλ ρ σ π λ π ρ σ

π π π π ρ π σ π λ π

∝ � �

� � � � � � �

V U U y y U U U V

U V

β γ θ γ β θ θ

γ β
 (3.19) 

3.3.2 A Summary of Conditional Posterior Distributions  

Considering two random events A  and B , and observed values y , Bayes’ Rule 

implies that the following always holds: 

( ) ( )
( ) ( )

,
, ,

p A B y
p A B y p A B y

p B y
= ∝       (3.20) 

In other words, the conditional distribution ( ),p A B y  is proportional to the 

conditional posterior distribution of ( ),A B , and only terms involving A need to 

be extracted. Therefore, from Equation (3.19), the conditional distributions can be 

derived as follows, for each parameter and variable of interest. The ∗Θ  in these 

formulations represents the set of conditional arguments for the conditional 

distribution of ∗ . It includes all arguments except ∗ . (For example, βΘ  stands 

for ( )2
0, , , , , ,λ ρ σ ,V U U , yγ θ .) 

( ) ( ) ( )0 , , , ,p π λ π∝ �U U Vββ β θ βΘ      (3.21) 

( ) ( ) ( )2
0 , , , , ,p π λ π ρ σ∝ �U U Vθ β θ θθΘ      (3.22) 

( ) ( ) ( )0 , , , ,p λλ π λ π λ∝ �U U Vβ θΘ      (3.23) 

( ) ( ) ( )2,p ρρ π ρ σ π ρ∝ �θΘ       (3.24) 
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( ) ( ) ( )2
2 2 2,p

σ
σ π ρ σ π σ∝ �θΘ       (3.25) 

( ) ( ) ( ) ( ) ( )0 0
1

, , , , , , , ,
M

i
i

p π λ π π λ π υ
=

∝ = ∏� �VV U U V V U U Vβ θ β θΘ  (3.26) 

( ) ( ) ( ),p p π∝ �y Uγγ γ γΘ        (3.27) 

( ) ( ) ( )
00 0 0, , , ,p π λ π∝ �UU U U V Uβ θΘ      (3.28) 

( ) ( ) ( )0, , , , ,p p π λ∝ �UU y U U U Vγ β θΘ      (3.29) 

These formulations (Equations 3.21 to 3.29) all involve three factors: 

( )0 , , , ,π λU U Vβ θ , ( ),p y U γ  and ( )2,π ρ σθ . The following paragraphs 

discuss these three items in more detail: 

From Equation (3.13), it can be observed that for all 0, 1...,t t T≠ = ,  

( )1, , , , ,t t t tNλ λ≠ − + +�U U V U X L Vβ θ β θ , so the conditional prior distribution 

can be expressed as 

( ) ( ) ( )1 2 1
1 1

1, , , , exp
2t t t t t t t tπ λ λ λ− −

≠ − −
⎧ ⎫′= − − − − − − −⎨ ⎬
⎩ ⎭

U U V V U U L X V U U L Xβ θ θ β θ β

( ) ( )1 2 11exp
2 t t t t

λ λ− −⎧ ⎫′= − − − − −⎨ ⎬
⎩ ⎭

V U L X V U L Xθ β θ β  (3.30) 

Therefore, for 1 2( , ,... )T ′=U U U U  

( ) ( ) ( )

( ) ( )

1 2 1
0

1

1 2 1

1, , , , exp
2

1exp
2

T

t t t t
t

λ λ

λ λ

π λ − −

=

− −

⎧ ⎫′= − − − − −⎨ ⎬
⎩ ⎭

⎧ ⎫′= − − − − −⎨ ⎬
⎩ ⎭

∏U U V V U L X V U L X

U X U X

β θ θ β θ β

θ β θ βΩ Δ Ω Δ
(3.31) 

Alternatively, this can be expressed as 
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( ) ( )2
1 2

0 1
1 1 1

1, , , , exp
2

inT M

i ikt ikt ikt i
t i k i

U Uπ λ υ λ θ
υ

−
−

= = =

⎧ ⎫⎡ ⎤−⎪ ⎪′= − − −⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∏∏∏U U V Xβ θ β  (3.32) 

( ),p y U γ is already given by Equation (3.17) and ( )2,ρ σθ  is given by 

Equation (3.8), so that  

( )2 2
2

1, exp
2

M
ρ ρ ρπ ρ σ σ

σ
− −⎛ ⎞′ ′= ⎜ ⎟

⎝ ⎠
B B Bθ θ θ     (3.33) 

3.3.3 Prior Distributions for All Parameters 

Two types of prior distributions are commonly used in Bayesian statistics. 

Diffuse (also called non-informative or flat) priors reflect the notion of “letting 

the data speak for themselves.” The definition of “diffuse” has been argued over 

years, and various rules for generating diffuse priors have been proposed. In this 

dissertation, a prior is considered “diffuse” as long as it allows the data to 

dominate the location and form of the posterior distributions.  

Another commonly used prior distribution is conjugate prior. Conjugate priors are 

designed so that posterior distributions fall within the same family of distributions 

as the priors, thus facilitating the derivation of posterior distributions. For 

conjugate priors, prior information can be viewed as “ficticious sample 

information in that it can be combined with the sample in exactly the same way 

that additional sample information would be combined.” (Koop et al., 2006, pp.23) 

Without prior information, “diffuse” priors are empirically very reasonable. The 

prior distributions for needed parameters in this dissertation are set to be diffuse 

and conjugate, wherever possible, and only conjugate if a diffuse prior of any 

possible form leads to a non-standard and non-derivable posterior distribution.  

Gelman et al. (1995) pointed out that the use of conjugate priors means that the 

resulting posteriors are weighted averages of standard maximum likelihood 
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estimators and prior mean values. And Geweke (1993) and LeSage (1999) 

provided standard prior distributions for linear models. In this study, most of the 

priors take the forms provided by Smith and LeSage (2002), while others are 

similar to work by Girard and Parent (2001).  

For example, the parameter set β  is assumed to enjoy a normal conjugate prior 

( ),N� c Hβ          (3.34) 

where Qh=H I . If c is small enough and h goes to infinity, this prior becomes 

diffuse. Of course, if one has valid reasons for specifying other values of c and h, 

it can be very helpful, especially with small sample sizes. Estimation may be 

improved through experience and intuition, which can impact selection of priors.  

It is similar with the threshold parameters, where it is assumed that  

( ) ( )1 2 1, ... SN δ γ γ γ −< < <� �q Gγ       (3.35) 

where q  is a 1S ×  vector, with elements 0sγ . G  is a diagonal matrix, with 

elements sg  on its diagonal and zeros elsewhere. In this way, the threshold 

parameters also follow a normal conjugate prior, only now with one more 

constraint to ensure that all probabilities derived from these thresholds are 

positive. So as q approaches zero and sg  approaches infinity, this also becomes a 

diffuse prior. 

The variance of regional effects 2σ  and the variance of individual effects iυ  are 

assumed to be conjugate inverse-gamma priors:  

( )21 ,σ α τΓ�         (3.36) 
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More specifically, 2σ  is given a diffuse prior by setting parameters 0α τ= = . All 

iυ  are assumed to follow an inverse chi-square distribution with hyperparameter 

ϖ , which is a special case of the inverse gamma: 

( )2
ir υ χ ϖ�          (3.37) 

Here, the spatial autocorrelation coefficient ρ  is given a uniform prior that is 

diffuse. As Sun et al. (1999) prove, the lower and upper bounds for ρ  are 

determined by the inverse of eigenvalues from weight matrix W . Let minς  and 

maxς  denote the minimum and maximum eigenvalues; then  

1 1
min max,Uρ ς ς− −⎡ ⎤⎣ ⎦�         (3.38) 

In other words,  

( ) 1π ρ ∝          (3.39) 

λ  is specified to have a normal distribution but limited to the range ( )1,1−  in 

order to ensure stationarity, as discussed in Section 3.2.3: 

( ) ( )0 , 1N Dλ λ δ λ <� �        (3.40) 

Selection of an initial value for the latent variable U is termed the “initial 

conditional problem.” Many have discussed this complicated issue (e.g., Vishniac, 

1993; Wooldrige, 2005; and Barlevy and Nagaraja, 2006), and there are two ways 

to specify the initial condition. One is to give non-stochastic values to these initial 

utility values. This assumption, however, is very strong, implying that initial 

values are independent of all other conditions (such as the unobserved regional 

effects and heteroskedastic individual effects, both of which should exist from the 

very beginning, in the “initial state”). Another, more flexible approach is to assign 
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a distribution for initial values. Here 0U  is assumed to be normally distributed, in 

order to be compatible with U’s distribution in other periods. It has the following 

prior:  

( )0 0 0,N NN a d�U l I         (3.41) 

where Nl  is a 1N ×  vector with all elements equal to 1 and NI  is an N -

dimension identity matrix. Therefore, this distribution approximates a diffuse 

prior when 0a  is bounded and 0d  goes to infinity.  

3.3.4 Full Conditional Posterior Distributions 

Sections 3.3.2 and 3.3.3 introduce calculations for conditional posterior 

distributions and list the parameters’ prior distributions. This section shows in 

detail how each parameter’s conditional posterior distribution can be 

mathematically derived. Each of the following sub-sections focuses on one 

parameter (or one variable of interest) and discusses its posterior distribution, 

hyperparameters, and links to MLE estimators. If the parameter has a non-

standard posterior distribution, the numerical method for generating random 

numbers from that distribution is also briefly explained.  

3.3.4.1 Conditional Posterior Distribution of β  

From Equations (3.21) and (3.34), it can be derived that 

( ) ( ) ( )0 , , , ,p π λ π∝ �U U Vββ β θ βΘ  

( ) ( )

( ) ( )

1

1

1exp
2
1exp
2

λ λ

−

−

⎧ ⎫′∝ − − −⎨ ⎬
⎩ ⎭
⎧ ⎫′− − − − −⎨ ⎬
⎩ ⎭

�c H c

U X U X

β β

θ β θ βΔ Ω Δ
   (3.42) 
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As many previous studies show (e.g., Gelman et al., 1995; and Smith and LeSage, 

2002) and as described in Appendix A, this form can be simplified to  

( ) ( ) ( )1 11exp
2

p − −⎡ ⎤′∝ − − −⎢ ⎥⎣ ⎦
A b A A bββ β βΘ     (3.43) 

where 1 1' − −= +A X X HΩ        (3.44) 

and ( )1 1λ− −′= − +b X U H cθΩ Δ .      (3.45) 

These equations indicate that the posterior mean vector for β  is 1−A b  and the 

variance-covariance matrix is 1−A . In fact, as Gelman et al. (1995) show, such a 

posterior distribution is a weighted average of β ’s prior distribution and sample 

data information and the weights are the inverse of the variance-covariance 

matrices or associated “uncertainty” levels. Using maximum likelihood 

estimation methods, the estimator of β  is  

( ) ( )1-1 1ˆ
MLE

λ− −′ ′= −β θX X X UΩ Ω Δ       (3.46) 

Here, the prior mean of β  is assumed to be c  and its prior variance is assumed to 

be H. It is not difficult to show that the posterior mean can then be written as 

follows: 

( )
( ) ( )
( )

1

1 1 1 1

1 1 1 1

'

ˆ' '

E
λ

−

− − − −

− − − −

=

⎡ ⎤′= + − +⎣ ⎦
⎡ ⎤= + +⎣ ⎦

�

�

ββ

θ

β

A b

X X H X U H c

X X H X X H c

Ω Ω Δ

Ω Ω

Θ

   (3.47) 

In Equation (3.47), as sample size and information quality increase, the variance 

Ω  should decrease, which allows 1' −X XΩ to dominate, giving ˆ
MLEβ  more 

weight. 
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3.3.4.2 Conditional Posterior Distribution of θ  

Some manipulation of Equations (3.22) and (3.33) can show that   

( ) ( ) ( )2
0 , , , , ,p π λ π ρ σ∝ �U U Vθ β θ θθΘ  

( ) ( )1
2

1 1exp exp
2 2

λ λ
ρ ρσ

− −⎧ ⎫ ⎛ ⎞′ ′ ′∝ − − − − −⎨ ⎬ ⎜ ⎟
⎝ ⎠⎩ ⎭

�θ β θ β θ θU X U X B BΔ Ω Δ

( ) ( )2 1 11exp 2
2

λ
ρ ρσ − − −⎧ ⎫⎡ ⎤′ ′ ′ ′= − + − − +⎨ ⎬⎣ ⎦⎩ ⎭

θ θ θ θ β θB B U X CΔ Ω Δ Ω Δ

( ) ( )2 1 11exp 2
2

λ
ρ ρσ − − −⎧ ⎫⎡ ⎤′ ′ ′∝ − + − −⎨ ⎬⎣ ⎦⎩ ⎭

θ θ β θB B U XΔ Ω Δ Ω Δ  (3.48) 

where C stands for the constant term, which does not involve θ . Similar to the 

derivation of the conditional posterior distribution for β , it can be shown that  

( ) ( ) ( )1 11exp
2

− −⎡ ⎤′∝ − − −⎢ ⎥⎣ ⎦
p A b A A bθ θ θ θ θθ θ θθΘ     (3.49) 

where 2 1
ρ ρσ − −′ ′= +A B Bθ Δ Ω Δ       (3.50) 

and ( )1−′= −b U Xλ
θ βΔ Ω .       (3.51) 

These equations indicate that the mean vector for θ  is 1−A bθ θ  and the variance-

covariance matrix is 1−Aθ . It should be noticed here, however, Aθ depends on 

ρB , which depends on ρ . That is, each random draw involves a matrix inversion. 

This computation demands much memory, especially when the number of regions 

( M ) is large. Therefore, an appropriate sampling approach is very important. 

There are two alternative ways to calculate this matrix inverse. One is to compute 

the inverse directly; the other way, as Smith and LeSage (2002) suggest (when 

M  is larger), is to sample from univariate normal distributions for each iθ  

conditional on all other elements of θ  (excluding the ith element).  
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3.3.4.3 Conditional Posterior Distribution of λ  

From Equations (3.23), (3.32), and (3.40), one can obtain the full form of λ ’s 

conditional posterior distribution, written as follows: 

( ) ( ) ( )0 , , , ,p λλ π λ π λ∝ �U U Vβ θΘ  

( ) ( )

( ) ( ) ( )

1
1 1

1

1
0 0

1exp
2
1exp 1
2

T

t t t t t t
t

D

λ λ

λ λ λ λ δ λ

−
− −

=

−

⎧ ⎫′∝ − − − − − − −⎨ ⎬
⎩ ⎭
⎧ ⎫′− − − <⎨ ⎬
⎩ ⎭

∑ �

�

θ β θ βU U L X V U U L X
 (3.52) 

This is another conjugate distribution; so, similar to β’s conditional posterior 

distribution: 

( ) ( ) ( ) ( )1 11exp 1
2

p A b A A bλ λ λ λ λ λλ λ λ δ λ− −⎡ ⎤′∝ − − − <⎢ ⎥⎣ ⎦
�Θ   (3.53) 

where 1 1
1 1

1

T

t t
t

A Dλ
− −

− −
=

′= +∑U V U       (3.54) 

and ( )1 1
1 0

1

T

t t t
t

b Dλ λ− −
−

=

′= − − +∑U V U X Lβ θ .    (3.55) 

One evident difference between this distribution of λ  and the distributions of β  

and θ  is that this is a truncated normal. In each draw, the value of λ  needs to be 

limited to ( )1,1− . 

3.3.4.4 Conditional Posterior Distribution of ρ  

Equations (3.24), (3.33) and (3.39) lead to the following formulation for ρ ’s 

conditional posterior distribution: 

( ) ( ) ( )2,p ρρ π ρ σ π ρ∝ �θΘ  
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2

1exp
2ρ ρ ρσ
−⎛ ⎞′ ′∝ ⎜ ⎟

⎝ ⎠
� θ θB B B      (3.56) 

and 1 1
min max,ρ ς ς− −⎡ ⎤∈ ⎣ ⎦ . As Smith and LeSage (2002) point out, this expression 

cannot be simplified into a standard distribution. They further suggest that one 

may use univariate numerical integration to obtain this posterior density, as 

described below: 

First, a range of ρ  values between 1 1
min max,ς ς− −⎡ ⎤⎣ ⎦  is generated from a uniform 

distribution. Before MCMC sampling, a vector of determinant values for ρB  

corresponding to this range of ρ  values can be constructed. Thus, during the 

iterative sampling process, only the second item ( 2

1exp
2 ρ ρσ
−⎛ ⎞′ ′⎜ ⎟

⎝ ⎠
θ θB B ) needs to 

be updated for each draw. Equation (3.56) is then numerically integrated (via a 

sum of point-area estimates) over the range of ρ  values. The normalizing 

constant is obtained, given the condition that ρ  is limited to the interval 

1 1
min max,ς ς− −⎡ ⎤⎣ ⎦ , and this renders Equation (3.56)’s proportionality an equality. After 

this approximation for ρ ’s CDF is acquired, one can randomly draw the ρ  value 

from its inversion. As Smith and LeSage (2002) have suggested, the advantage of 

this approach (over a standard Metropolis-Hastings approach) is that it is more 

efficient: each pass through the sampler produces a draw for ρ .  

3.3.4.5 Conditional Posterior Distribution of 2σ  

From Equations (3.25), (3.33) and (3.36), the following distribution for 2σ  can be 

obtained: 

( ) ( ) ( )2
2 2 2,p

σ
σ π ρ σ π σ∝ �θΘ  
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( ) ( ) ( )2 12 2
2 2

1exp exp
2

M α

ρ ρ
τσ σ

σ σ
− − +−⎛ ⎞ ⎛ ⎞′ ′∝ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
� � �θ θB B   (3.57) 

( ) ( )2 12
2

2
exp

2
M α ρ ρ τ

σ
σ

− + + ′ ′ +⎛ ⎞
= −⎜ ⎟

⎝ ⎠
�

θ θB B
 

This is an inverse gamma distribution with shape parameter 2M α− +  and scale 

parameter ( )2 2ρ ρ τ′ ′ +θ θB B . 

Letting ( ) 22ρ ρκ τ σ′ ′= +B Bθ θ , so that ( )2 2ρ ρσ τ κ′ ′= +B Bθ θ , and following 

the work of Geweke (1993), Equation (3.57) can be expressed as follows: 

( ) ( )( ) ( )
2

22 12 2 exp
2

M dp
d

α

ρ ρσ

κ σσ τ κ
κ

− + + ⎛ ⎞′ ′∝ + −⎜ ⎟
⎝ ⎠

� �θ θB BΘ  

( )( ) ( ) ( )2 1

2

2
2 exp

2
M α ρ ρ

ρ ρ

τκτ κ
κ

− + + ′ ′ +⎛ ⎞′ ′= + −⎜ ⎟
⎝ ⎠

� �
θ θ

θ θ
B B

B B  (3.58) 

( )2 1 exp
2

M α κκ + − ⎛ ⎞∝ −⎜ ⎟
⎝ ⎠  

This density is proportional to a chi-square density with 2M α+  degrees of 

freedom (DOF). Alternatively, the conditional posterior of 2σ  can be expressed 

as 

( )2
2

2

2
2Mρ ρ

σ

τ
χ α

σ
′ ′ +

+�
B Bθ θ

Θ       (3.59) 

3.3.4.6 Conditional Posterior Distribution of V  

From Equations (3.26) and (3.37), it can be shown that 

( ) ( ) ( )0
1

, , , ,
M

i
i

p π λ π υ
=

∝ ∏�VV U U Vβ θΘ  
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( ) ( ) ( )1 2 1

1

1exp
2

M

i
i

λ λ π υ− −

=

⎧ ⎫′∝ − − − − −⎨ ⎬
⎩ ⎭

∏� �U X U Xθ β θ βΩ Δ Ω Δ  (3.60) 

By letting λ= − −e U Xθ βΔ , the distribution of V  can also be derived term by 

term for each i : 

( ) ( )1 2 11exp
2ii ip υυ π υ− −⎛ ⎞′∝ −⎜ ⎟

⎝ ⎠
� �e eΩ ΩΘ  

12 2

1 11

exp exp
2 2

j
M T M

n T jt jt
j j

t jj j j

ϖ ϖυ υ
υ υ

⎛ ⎞− +⎜ ⎟− ⎝ ⎠

= ==

⎡ ⎤⎛ ⎞′ ⎛ ⎞
⎢ ⎥⎜ ⎟= − −⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∑∑∏ � � �
e e

 

1
2 2

1
exp exp

2 2
i

T
n T it it

i i
t i i

ϖ ϖυ υ
υ υ

⎛ ⎞− +⎜ ⎟− ⎝ ⎠

=

⎛ ⎞′ ⎛ ⎞
⎜ ⎟∝ − −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∑� � �
e e    (3.61) 

1
2 1exp

2

i

T

n T it it
t

i
i

ϖ ϖ
υ

υ

+⎛ ⎞− +⎜ ⎟ =⎝ ⎠

⎛ ⎞′ +⎜ ⎟
⎜ ⎟= −
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
�

e e
 

Similar to the derivation of 2σ ’s posterior distribution, letting 1

T

it it
t

i
i

ϖ
κ

υ
=

′ +
=
∑e e

, 

then this can be shown as the following chi-square distribution: 

( )

1
2

1 1
2exp

2

i

i

n T
T T

it it it it
t i t

i
i i

p

ϖ

υ

ϖ ϖ
κυ

κ κ

+⎛ ⎞− +⎜ ⎟
⎝ ⎠

= =

⎛ ⎞′ ′+ +⎜ ⎟ ⎛ ⎞⎜ ⎟= −⎜ ⎟⎜ ⎟ ⎝ ⎠
⎜ ⎟
⎝ ⎠

∑ ∑
� �

e e e e
Θ  

1
2 exp

2

in T
i

i

ϖ κκ
+⎛ ⎞−⎜ ⎟

⎝ ⎠ ⎛ ⎞= −⎜ ⎟
⎝ ⎠

�       (3.62) 
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Therefore, it follows a chi-square density with ir n T+  degrees of freedom, i.e., 

( )21
i

T

it it
t

i
i

n Tυ

ϖ
χ ϖ

υ
=

′ +
+

∑
�

e e
Θ       (3.63) 

Similar toβ , Smith and LeSage (2002) show that the posterior mean of iυ  is a 

weighted average of the maximum likelihood estimator îυ  and the prior mean, iμ , 

which equals ( )2ϖ ϖ − . In the dynamic model, the weights can be calculated 

using a method very similar to that suggested by Smith and LeSage (2002). These 

weights are in T  and 2ϖ − , respectively.  

As expected, this means that more weight is given to the sample information as 

sample size in  or the panel length, T , increases. ϖ  needs to be larger than 2, but 

also needs to be kept small if one wants to use a diffuse prior. Here the 

hyperparameter ϖ  is assumed to be 4.  

3.3.4.7 Conditional Posterior Distribution of γ  

Equations (3.17), (3.27), and (3.35) lead to the following formulation for the 

conditional posterior distribution of γ : 

( ) ( ) ( ),p p π∝ �y Uγγ γ γΘ  

( ) ( )1
11 1 1

inT M S

ikt s ikt s
st i k

y s Uδ δ γ γ−
== = =

⎡ ⎤
∝ = < <⎢ ⎥
⎣ ⎦

∑∏∏∏ � �   (3.64) 

( ) ( )1 2 1, ... SN δ γ γ γ −< < <�q G  

This equation can be considered term by term for 1,... 1s S= − , by only extracting 

terms that involve sγ : 
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( ) ( ) ( )
1 1 1 1 1 1

1
i i

s

n nT M T M

s r ikt s ikt ikt s ikt
t i k t i k

p U y s U y sγ δ γ δ γ
= = = = = =

∝ < = > = +∏∏∏ ∏∏∏� �Θ

( ) ( )

( ) ( )

0 1 1

2inf sup
0

,

1exp
2

s s s s s

s s s s s
s

N g

g

γ δ γ γ γ

δ γ γ γ γ γ

− +< <

⎧ ⎫
= < < − −⎨ ⎬

⎩ ⎭

�

�
   (3.65) 

With { }{ }inf
1max max : ;s ikt ikt sU y sγ γ −= =       (3.66) 

and { }{ }sup
1min min : 1 ;s ikt ikt sU y sγ γ += = + , for , ,ii M k n t T∀ ∈ ∈ ∈ . (3.67) 

Similar to the derivation for λ , this is a truncated normal distribution. The 

normalizing constant can be found using a univariate normal distribution, with the 

given lower and upper bounds. The major difference is, however, that these lower 

and upper bounds are interdependent, which may make the final posterior 

distribution multimodal. 

3.3.4.8 Conditional Posterior Distribution of 0U  

Substituting Equations (3.32) and (3.41) into Equation (3.28), one can get the 

following formulation: 

( ) ( ) ( )
00 0 0, , , ,p π λ π∝ �UU U U V Uβ θΘ   

( ) ( )2 2
1 0 0

1 1 1 0

1 1exp exp   
2 2

inT M

ikt ikt i ikt ik
t i k i

U U U a
d

λ θ
υ −

= = =

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪∝ − − − − − −⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

∏∏∏ �X β

( ) ( )2 2
1 0 1 0 0

1 1 0

exp   
2 2

inM
ik ik i ik ik

i k i

U U U a
d

λ θ
υ= =

⎡ ⎤− − − −
∝ − −⎢ ⎥

⎢ ⎥⎣ ⎦
∏∏

X β
 (3.68) 

Deriving 0U  term by term for each i and k, by extracting only items involving 

0ikU , Equation (3.68) reduces to: 
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( ) ( ) ( )
0

2 2
1 0 1 0 0

0
0

exp
2 2ik

ik ik i ik ik
ik U

i

U U U a
p U

d
λ θ

υ

⎡ ⎤− − − −
∝ − −⎢ ⎥

⎢ ⎥⎣ ⎦

X βΘ   (3.69) 

This is a univariate normal distribution. Thus, similar to the posterior distribution 

calculations for β , the distribution is as follows:  

( )0

1 1
0 0 0 0,

ikik U U U UU N A b A− −�Θ       (3.70) 

where 2 1 1
0 0U iA dλ υ − −= +        (3.71) 

and ( )1 1
0 1 1 0 0U i ik i ikb U d aλυ θ− −= − − +X β .     (3.72) 

3.3.4.9 Conditional Posterior Distribution of U  

For latent variables other than the initial status, Equations (3.17), (3.29), and 

(3.32) lead to the following formulation:  

( ) ( ) ( )0, , , , ,p p π λ∝ �UU y U U U Vγ β θΘ    

( ) ( )

( )

1
1

21 1 1 1/ 2
1

1exp
2

i

S

ikt s ikt snT M s

t i k
i ikt ikt i ikt

i

y s U

U U

δ δ γ γ

υ λ θ
υ

−
=

= = = −
−

⎧ ⎫⎡ ⎤
= < <⎪ ⎪⎢ ⎥

⎣ ⎦⎪ ⎪∝ ⎨ ⎬
⎡ ⎤⎪ ⎪− − − −⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑
∏∏∏

� �

� X β
 (3.73) 

iktU  appears in the formulation for both periods t  and 1t + . Therefore, for any 

, ,i k t  observation, by extracting only items involving iktU , the posterior 

distribution for iktU  can be expressed as follows:  

( ) ( ) ( ) 1
1

1
ikt

S

ikt U ikt s ikt s i
s

p U y s Uδ δ γ γ υ −
−

=

⎧ ⎫⎡ ⎤∝ = < <⎨ ⎬⎣ ⎦⎩ ⎭
∑ � � �Θ    (3.74) 

( ) ( )2 2
1 1 1

1exp
2 ikt ikt i ikt ikt ikt i ikt

i

U U U Uλ θ λ θ
υ − + +

⎧ ⎫⎡ ⎤− − − − + − − −⎨ ⎬⎣ ⎦⎩ ⎭
X Xβ β  
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This is a truncated normal distribution. The first expression in Equation (3.74), 

( ) ( )1
1

S

ikt s ikt s
s

y s Uδ δ γ γ−
=

⎡ ⎤= < <⎣ ⎦∑ �   

indicates that if ikty s= , the distribution is truncated on the left by 1sγ −  and on the 

right by sγ . The last item in Equation (3.74), 

( ) ( )2 2
1 1 1

1exp
2 ikt ikt i ikt ikt ikt i ikt

i

U U U Uλ θ λ θ
υ − + +

⎧ ⎫⎡ ⎤− − − − + − − −⎨ ⎬⎣ ⎦⎩ ⎭
X Xβ β  

suggests that the un-truncated part is a normal distribution. This part has mean 

ikta  and variance iktb . (Readers may wish to see Appendix B for more details on 

this.)   

Here, ( ) ( ) ( )2
1 1 11 1ikt ikt ikt i ikt ikta U Uλ λ λ θ λ λ+ − +⎡ ⎤= + + − + − +⎣ ⎦X X β  (3.75) 

and ( )21ikt ib υ λ= + .        (3.76) 

Therefore, for each ,i k  and each 1,... 1t T= − , 

( ) ( ) ( )1
1

,
ikt

S

ikt U ikt ikt ikt s ikt s
s

U N a b y s Uδ δ γ γ−
=

⎡ ⎤= < <⎣ ⎦∑� � �Θ    (3.77) 

A special case is that, when t T= , ikTU  only appears in the exponential term with 

1ikTU − . That is, 

( ) ( ) ( ) 1 2
1

1
ikT

S

ikT U ikT s ikT s i
s

p U y s Uδ δ γ γ υ −
−

=

⎧ ⎫⎡ ⎤∝ = < <⎨ ⎬⎣ ⎦⎩ ⎭
∑ � � �Θ

( )2
1

1exp
2 ikT ikT i ikT

i

U Uλ θ
υ −

⎡ ⎤
− − − −⎢ ⎥
⎣ ⎦

X β    (3.78) 
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This also is a truncated normal distribution. The (un-truncated) normal 

distribution has a mean 1ikT ikT i ikTa Uλ θ−= + + X β  and variance iυ ;  and, if 

ikTy s= , the distribution is truncated on the left by 1sγ −  and on the right by sγ .  

3.3.5 Summary of Parameter Distributions 

Section 3.3.3 discussed how each parameter’s prior distribution was selected. 

Section 3.3.4 illustrated how the conditional posterior distributions were 

mathematically developed. Table 3.1 effectively summarizes the content of these 

two sections by listing all prior and posterior distributions of the parameters and 

variables. As the table suggests, most of these distributions follow standard 

distributions and can be conveniently generated using routines built in 

commercial mathematical analysis packages (such as Matlab and Gauss). The 

spatial coefficient ρ , however, follows a non-standard posterior distribution and 

has to be generated using numerical methods. The threshold parameter γ  follows 

a multidimensional truncated normal distribution and the truncations co-vary. 

Therefore, the marginal distribution of each element in γ  is also expected to look 

non-standard.  
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Table 3.1 Conditional Distributions of DSOP’s Parameters 

 Prior Distributions Conditional Posterior Distributions Hyperparameters 

β  ( ),N c H  ( )1 1,N − −� A b Aββ Θ  
1 1' − −= +A X X HΩ  
( )1 1λ− −′= − +b X U H cθΩ Δ  

θ  ( ) 12,N ρ ρσ
−⎡ ⎤′⎢ ⎥⎣ ⎦

0 B B  ( )1 1,N − −� A b Aθ θ θθ θΘ  
2 1

ρ ρσ − −′ ′= +A B Bθ Δ Ω Δ  

( )1−′= −b U Xλ
θ βΔ Ω  

λ  ( ) ( )0 , 1N Dλ δ λ <�  ( ) ( )1 , 1N A b Aλ λ λ λλ δ λ− <� �Θ  
1 1

1 1
1

T

t t
t

A Dλ
− −

− −
=

′= +∑U V U  

( )1 1
1 0

1

T

t t t
t

b Dλ λ− −
−

=

′= − − +∑U V U X Lβ θ  

ρ  1 1
min max,U ς ς− −⎡ ⎤⎣ ⎦  ( ) 2

1exp
2

p ρ ρ ρ ρρ
σ
−⎛ ⎞′ ′∝ ⎜ ⎟

⎝ ⎠
� θ θB B BΘ  (Non-standard distribution) 

2σ  ( ) 1,α τ −Γ  ( )2
2

2

2
2Mρ ρ

σ

τ
χ α

σ
′ ′ +

+�
B Bθ θ

Θ  

iυ  ( ) 12χ ϖ −  ( )21
i

T

it it
t

i
i

n Tυ

ϖ
χ ϖ

υ
=

′ +
+

∑
�

e e
Θ  

γ  ( ) ( )1 2 1, ... SN δ γ γ γ −< < <�q G  ( ) ( )inf sup
0 ,

ss r s s s s sN gγ δ γ γ γ γ< <� �Θ  { }{ }inf
1max max : ;s ikt ikt sU y sγ γ −= =  

{ }{ }sup
1min min : 1 ;s ikt ikt sU y sγ γ += = +  

0U  ( )0 0,N NN a dl I  ( )0

1 1
0 0 0 0,

ikik U U U UU N A b A− −�Θ  
2 1 1

0 0U iA dλ υ − −= +  
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1 1 11 1ikt ikt ikt i ikt ikta U Uλ λ λ θ λ λ+ − += + + − + − +X X β
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0t ≠  ( )1 ,t tN λ − + +U X L Vβ θ  

( ) ( ) ( )1
1

,
ikT

S

ikT U ikT i ikt s ikt s
s

U N a y s Uυ δ δ γ γ−
=

= < <∑� � �Θ  
1ikT ikT i ikTa Uλ θ−= + + X β  
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3.4 MCMC SAMPLING 

The MCMC sampling process begins with an initial parameter set 

( )0 0 0 0 0 0 0, , , , , ,λ ρ σ V Uβ γ , where superscripts indicate the current number of 

draws, or iteration step (for value updating.) All parameters or variables of 

interest are sampled sequentially, from the following conditional distributions.10 

Step 1. ( )0 0 0 0 0 0 0, , , , , , ,λ ρ σp V y Uβ θ γ . This is a multivariate normal 

distribution of dimension Q , which leads to a weighted average of the maximum 

likelihood estimator and prior values. With all initial values and Equation (3.43), 

the value for parameter β  can be updated to 1β . 

Step 2. ( )1 0 0 0 0 0 0, , , , , , ,λ ρ σp V y Uθ β γ . This is a multivariate normal 

distribution of dimension M . With updated value 1β  and all other, initial values, 

Equation (3.49) can be used to update the value of θ  to get 1θ .  

Step 3. ( )1 1 0 0 0 0 0, , , , , , ,λ ρ σp V y Uβ θ γ . This is a truncated univariate normal 

distribution. Equation (3.53) can be used to update its value to 1λ . 

Step 4. ( )1 1 1 0 0 0 0, , , , , , ,ρ λ σp V y Uβ θ γ . Since this is not a standard distribution, 

the method of univariate numerical integration is used to find the normalizing 

constant, and then random numbers are drawn from the numerically approximated 

distribution. 

                                                 
10  This process is coded in Matlab (Mathworks, 2006). For generating (pseudo) random 
multivariate normal and chi-square vectors, routines from LeSage (1999)’s spatial econometric 
toolbox were used. The generation of random multivariate normal vectors involves Cholesky 
decomposition, which decomposes the variance-covariance matrix.   
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Step 5. ( )1 1 1 1 0 0 0, , , , , , ,σ λ ρp V y Uβ θ γ . As Equation (3.59) indicates, this 

variable can be generated using a chi square distribution with ( )2M α+  degrees 

of freedom. Using the updated values from the above steps and other initial 

values, σ  can be updated to 1σ . 

Step 6. ( )1 1 1 1 1 0 0, , , , , , , ,υ λ ρ σ −i ip y Uβ θ υ γ . Each iυ  follows a chi square 

distribution with ir n T+  degrees of freedom. Equation (3.63) can be used to 

update these values.  

Step 7. ( )1 1 1 1 1 1 1 0, , , , , , ,λ ρ σp V y Uγ β θ . This is a set of S  univariate truncated 

normal distributions. For each sγ  ( 1, 2,...,s S= ), the truncated normal distribution 

can be normalized thanks to information on the lower and upper bounds.  

Step 8. ( )1 1 1 1 1 1 1, , , , , , ,λ ρ σp U V yβ θ γ . The updating process for latent variables 

U  contains three steps: 

Step 8.1. ( )1 1 1 1 1 1 1
0 , , , , , , ,p λ ρ σU V yβ θ γ . First, the initial utility values are 

updated, using the a set of N  univariate normal distributions, based on 

Equation (3.70).  

Step 8.2. ( )1 1 1 1 1 1 1, , , , , , ,tp λ ρ σU V yβ θ γ , 1 t T< < . These are truncated 

normal distributions. Totally ( )1N T −  values need to be updated, based on 

Equation (3.77).  

Step 8.3. ( )1 1 1 1 1 1 1, , , , , , ,Tp λ ρ σU V yβ θ γ . Equation (3.78) can be used to 

update values for latent variables at time period T . Totally N  truncated 

normal distributions are used to update the TU  values.  

After all these steps are completed, one needs to go back to Step 1 and use 

updated parameter values to replace the initial values. The whole process is 
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carried out iteratively by always using the most recent values of the parameters 

and variables, until the desired number of draws is achieved. The flowchart for 

sampling the parameters of interest is shown as Figure 3.1. 

 
Input M , ( ),y X , and initial parameter values ( )0 0 0 0 0 0 0, , , , , ,λ ρ σ V Uβ γ  

r R> ?

Parameter set with R  draws 

No

Yes

Sample 1 , , , , , , , ,r r r r r r r rρ λ σ+ V U y Xβ θ γ  with normal distribution 

Sample 1 1, , , , , , , ,r r r r r r r rρ λ σ γ+ + V U y Xθ β  with normal distribution 

Sample 1 1 1, , , , , , , ,r r r r r r r rρ λ σ γ+ + + V U y Xβ θ  with numerical integration  

Sample 1 1 1 1, , , , , , , ,r r r r r r r rλ ρ σ γ+ + + + V U y Xβ θ  with truncated normal distribution 

Sample 1 1 1 1 1, , , , , , , ,r r r r r r r rσ ρ λ γ+ + + + + V U y Xβ θ  with chi square distribution 

Sample 1 1 1 1 1 1, , , , , , , ,r r r r r r r r
iυ ρ λ σ γ+ + + + + + U y Xβ θ  with chi square distribution  

Sample 1 1 1 1 1 1 1, , , , , , , ,r r r r r r r rρ λ σ+ + + + + + +V U y Xγ β θ  with truncated normal distribution 

Sample 1 1 1 1 1 1 1 1
0 , , , , , , , ,r r r r r r r rρ λ σ+ + + + + + + +U V y Xβ θ γ  with normal distribution 

Sample 1 1 1 1 1 1 1 1, , , , , , , ,r r r r r r r r
t ρ λ σ+ + + + + + + +U V y Xβ θ γ  with truncated normal distribution 

Sample 1 1 1 1 1 1 1 1, , , , , , , ,r r r r r r r r
T ρ λ σ+ + + + + + + +U V y Xβ θ γ  with truncated normal distribution  

Store ( )1 1 1 1 1 1 1 1, , , , , , ,r r r r r r r rρ λ σ+ + + + + + + +V Uβ θ γ   

1r r= +  

 
Figure 3.1 Flowchart for the MCMC Simulation 
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3.5 DISCUSSION OF SPECIAL CASES 

Sections 3.2 through 3.4 provide details of the DSOP model’s specification and 

estimation process. As previously mentioned, this model recognizes regional 

effects, spatial heterogeneity, spatial autocorrelation, and temporal 

autocorrelation in a latent setting with ordered categorical responses. This general 

framework can reduce to several simpler forms, which may be used for cases of 

special interest. The first special case discussed below is when the dataset exhibits 

no temporal autocorrelation (i.e., individuals’ current responses do not rely on 

their previous status). The second case is that all individuals are homoskedastic. 

The third case is for when spatial dependencies directly occur among individuals 

themselves (not through regional clusters). 

3.5.1 Case of No Temporal Autocorrelation 

When the dataset is just cross-sectional, i.e., with no temporal autocorrelation, T 

equals 1 everywhere, which transforms several vectors into scalars. The subscript 

t  and the term 1tλ −− U  will be erased from all formulations. In addition, 

discussions on λ  and the special cases for iktU  when 0t =  and t T=  are now 

unnecessary. One way to use these formulations is to simply substitute the values 

for λ  and T  as 0 and 1.  

3.5.2 Homoskedastic Case 

A special (and simpler) case of the model specification is homoskedastic, when 

all individuals’ error terms have equal variances. In other words, iυ υ≡ . 

In this setting, conditional posterior distribution for iυ  can be reduced to a 

simpler form, where T r
υ
′ +e e  follows a chi-square density with r NT+  degrees 
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of freedom. It can be observed that now if the sample size is larger, T r
υ
′ +e e  

approaches a ( )2 NTχ  distribution, just as a homoskedastic Bayesian linear 

model. The distribution for iktU , ( 0,...t T= ) then reduces to a simpler version by 

changing iυ  to υ , and estimation time falls.  

3.5.3 Single Individual in Each Region 

As previously discussed, if necessary the number of regions can be set equal to 

the number of observations by making each region contain only one individual. In 

other words, when 1in ≡ , M N= . One can choose to deal with this situation 

simply by setting in  to one. Normally, however, such model specifications 

require homoskedasticity across individual error terms; otherwise, there are too 

many variances to estimate, greatly complicating estimation. For this reason, as 

mentioned in section 3.5.2, iυ  is changed a constant υ  term. Moreover, the index 

k  is removed in all formulations, as in  equals one. This converts some vectors 

into scalars. Substituting these changes into all formulations, estimates with 

“individualized” regional effects can be obtained. 

3.6 CHAPTER SUMMARY 

This chapter described the specification of the dynamic spatial ordered probit 

(DSOP) model, with which spatial heterogeneity, spatial autocorrelation and 

temporal autocorrelation are all recognized. The chapter also explained why the 

land use intensity and ozone-concentration data sets, can be reasonably analyzed 

using such a model specification. The chapter then described how the model can 

be estimated within a Bayesian framework. Prior and posterior distributions for 

all parameters and variables of interest were discussed in detail, and the overall 
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MCMC sampling process was summarized. Finally, special, simplifying cases of 

the model were discussed briefly. 
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CHAPTER 4. MODEL VALIDATION AND 

COMPARISONS 

4.1 INTRODUCTION 

Before application to empirical data (on land development intensity and ozone 

levels), the dynamic spatial ordered probit (DSOP) model developed in Chapter 3 

is tested using a simulated dataset. Because such self-generated data have known 

parameter values and controlled interactions, they are more reliable for evaluating 

performance of the model specification and the proposed estimation techniques. 

This section describes how this experimental data set was generated and how the 

DSOP model was estimated. The estimation results are compared to true values, 

and the influence of parameter magnitudes on estimation consistency is evaluated. 

Finally, performance of this DSOP model is compared to an ordinary ordered 

probit (OP) model, a dynamic (but spatially independent) ordered probit (DOP) 

model, and a spatial (but cross-sectional) ordered probit (SOP) model estimated 

using the Bayesian approach. These comparisons help illuminate the superiority 

of the DSOP model.  

4.2 SIMULATED DATASET 

In the simulated dataset, there are 30 regions, each containing 10 individuals 

observed over 8 time periods. Each individual has a response level of 1, 2, or 3. 

That is, 30M =  and 10,in i= ∀ , (so that 300N = ), 8T =  and 3S = . There are 

300 8 2400× =  observed responses in total and 3 possible levels. Figure 4.1 

shows the location of these 30 regions. The weight matrix is generated based on 

(queen) contiguity. For example, region 10 is considered contiguous with regions 

3, 4, 5, 9, 11, 15, 16 and 17. It is then row-standardized. 
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Figure 4.1 Location of Regions in Simulated Dataset 
(Region 10 and its contiguous neighbors shown in grey) 

The region-specific effect is generated using the following formulations: 

( )M ρ= −θ I W u         (4.1) 

( )20, MN σ�u I         (4.2) 

where the spatial autocorrelation coefficient ρ  is set to be 0.1, 0.6, 0.7 and 0.9 in 

different experiments. The variance 2σ  is equal to 1 so that u  for each region 

follows an iid standard normal distribution.  

The individual-specific variables are normally distributed independently and 

heteroskedastic over the regions. Assumed values of variance 1v  through 30v  are 

shown in Figure 4.2: 
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Figure 4.2 Assumed Variances of Individual Specific Effects across Regions 

The specific value of each variance is set arbitrarily, between 0.4 and 1.5. This 

range of magnitudes helps ensure that the uncertainties caused by individual 

specific errors are important but do not overwhelm/dominate latent variables’ 

effects, which is felt to be the most common case in reality. The variance for 

region 1 is fixed at its true value in estimation, which is necessary for 

identification.11  

The explanatory variables include the lagged utility (unobserved dependent 

variable) 1tU −  and four other observed values. The temporal autocorrelation 

coefficient λ (i.e., the parameter for the lagged dependent variable) is set to equal 

0.1, 0.5 and 0.9 in different experiments. The four variables are generated using a 

standard uniform distribution (bounded between 0 and 1). Their corresponding 

parameters (slope coefficients) are arbitrarily set as -1.7, 2, 1 and 0.5, respectively.  

There are S=3 ordered categories, with thresholds γ1=0 and γ2=2.1. To summarize, 

the dataset is generated using the following model assumptions: 

1 1 2 3 40.5 1.7 2 0.5t−= − + + + + +θ εU U x x x x     (4.3) 

                                                 
11 This can be inferred from Figure 21.4 in Greene (2002): in an OP model, parameters and 
variances can be scaled simultaneously (so that the normal curve becomes flatter or sharper), with 
probabilities remaining constant. In other words, it is necessary to normalize at least one of the 
parameters or variances for the purpose of identification. 
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where 1=y  if 0≤U , 2=y  if 0 2.1< ≤U , and 3=y  if 2.1>U  

and θ  is multivariate normal vector of region-specific effects with zero mean and 

variance matrix ( )M ρ−I W , where ρ  is set to equal 0.1, 0.6, 0.7 and 0.9, across 

separate experiments. As noted above, ε  is a normally distributed individual-

specific error term with zero mean and variable variance (heteroskedastic) across 

regions. (The variances of these error terms range from 0.4 to 1.5. (Figure 4.2)) 

4.3 MODEL ESTIMATION AND VALIDATION 

The simulated data samples were analyzed using the DOSP model. The resulting 

estimates are compared here to their true values, in order to appreciate the 

model’s estimation ability. However, in addition to the identification problem 

mentioned above, the use of small simulated data samples involves other potential 

problems. These problems need to be carefully handled before a robust model 

evaluation can be achieved. 

The first problem lies in the simulated sample data itself: in the process of 

random number generation, extreme values can appear.  To address this, 

researchers often use a high number of draws (to try to avoid the influence of 

extreme values). Here, however, the simulated sample data also are randomly 

generated. (As noted in Section 4.2, x  was generated from a standard uniform 

distribution, and u  andε  were generated using a standard normal distribution.) 

Unlike the number of draws used for estimation, the sample size here cannot be 

too large because a linear increase in sample size leads to an quadratic increase in 

computational burden. With 2,400 data points, the influence of extreme values is 

almost inevitable and “bad” samples are very likely to be generated. For example, 

the individual effect error term can become so large that it masks the contribution 

of explanatory variables and regional effects, leading to the conclusion that 

spatial autocorrelation or the influence of certain variables is insignificant.  
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Another example is that the values of explanatory variables and error terms may 

happen to be large for all data points, leading to a set of high latent dependent 

variable values, which means that few cells get labeled as Level 0. With such 

skewed data, the estimation may yield unreliable results. In order to neutralize 

this effect, for each parameter set, the data was re-generated 50 times, producing 

600 samples (50 replicates × 4 ρ  values × 3 λ  values = 600). The averages of 

their estimated means and standard deviations are discussed below.  

A second problem is estimation convergence. With a Bayesian approach, proof of 

convergence is a complicated issue. In this study, the estimation is assumed to 

converge when sampled parameter distributions appear to stabilize. Ideally, the 

number of draws (R) should be set as high as possible, but computational time 

and memory requirements also need to be taken into account. Especially when 

600 samples (each containing 2,400 data points with complicated interactions) are 

to be analyzed, computational efficiency is an important consideration. Several R 

values were examined first here, for a small number of samples. Their estimation 

performances and computational intensities were evaluated, and the final 

selection was R = 2,000 since, beyond this number of draws, model the results no 

longer noticeably improved. Furthermore, after 1,000 runs, the distributions of all 

parameters appear stable. Therefore, the first 1,000 runs were omitted (burn-in) 

and the mean and standard deviation are both calculated based on the final 1,000 

draws. 

As described above, 600 simulated data samples were generated and their 

parameters then estimated with diffuse priors. The averages of all parameter 

estimates’ means are shown in Table 4.1. Table 4.1 also uses root mean squared 

errors (RMSE)12 to describe estimation accuracy for each parameter set. As can 

                                                 
12 RMSE is the square root of mean squared error (MSE), which is (an estimate of) the expected 
value of the squared “error” (i.e., the difference between estimated and true values). This indicator 
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be observed, all RMSEs lie below 1. Considering the magnitudes of the parameter 

values, the estimation results are quite close to true values.  

Some interesting tendencies are apparent. As the temporal autocorrelation 

coefficient (λ ) increases, the magnitudes of coefficients and variances for both 

individual and regional specific effects tend to exhibit higher bias (as shown in 

Table 4.1 and Figure 4.3). One reason for this phenomenon is that, as λ  increases, 

the influence of temporally lagged, latent response values rises, adding 

uncertainty to the right-hand side of the model. In the estimation process, this 

uncertainty will be partially ascribed to the error terms, which leads to larger 

estimates of 2σ  and iυ , i M∀ ∈ . As mentioned in Section 4.2, this process will in 

turn produce higher β  estimates (to accommodate the increase in scale).  

An increase in the spatial autocorrelation coefficient (ρ) also leads to greater bias. 

As mentioned in Chapter 2, when positive spatial correlation exists but is not fully 

recognized, the coefficients tend to be more biased because areas with higher 

response magnitudes will have a greater impact on model estimates. 

                                                                                                                                     
is often used in assessing a forecasting model’s predictive power (Greene, 2002). It also can be 
used to evaluate estimation accuracy when true parameter values are known. A larger RMSE value 
indicates an increase in variations that the model does not account for. 
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Table 4.1 Estimation Results using Simulated Data (Averages from 50 Samples) 

True 
Value  Average of Means from Estimated Parameter Distributions 

λ  0.1 0.1 0.1 0.1 0.5 0.5 0.5 0.5 0.9 0.9 0.9 0.9 
Parameter 

ρ  0.1 0.6 0.7 0.9 0.1 0.6 0.7 0.9 0.1 0.6 0.7 0.9 
1β  -1.7 -1.701 -1.715 -1.712 -1.888 -1.727 -1.776 -1.801 -1.887 -1.841 -1.833 -1.881 -1.822

2β  2.0 1.965 1.984 2.019 2.125 2.046 2.049 2.097 2.278 2.191 2.140 2.105 2.154

3β  1.0 0.965 0.972 1.004 1.012 1.012 1.030 1.033 1.129 1.046 1.090 1.072 1.086

4β  0.5 0.519 0.519 0.543 0.551 0.542 0.518 0.554 0.646 0.561 0.545 0.539 0.647

λ  – 0.097 0.101 0.099 0.097 0.492 0.507 0.514 0.511 0.919 0.921 0.909 0.863
ρ  – 0.048 0.452 0.572 0.845 0.039 0.494 0.623 0.863 -0.001 0.498 0.616 0.855

2σ  1.0 1.054 1.091 1.117 1.832 1.158 1.217 1.302 1.768 1.290 1.232 1.307 1.498

1γ  0.0 -0.223 -0.133 -0.112 0.006 0.094 -0.333 -0.358 -0.351 -0.202 -0.330 -0.177 -0.138

2γ  2.1 1.818 1.933 2.009 2.276 2.190 1.803 1.834 2.075 2.090 1.956 2.130 2.342

Average RMSE 0.371 0.278 0.231 0.883 0.225 0.517 0.566 0.930 0.445 0.492 0.429 0.630
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Figure 4.3 Variances of Individual Specific Errors with 50 Samples 

In fact, this consistency problem is very common for nonlinear panel data models 

and dynamic models (see, e.g., Neyman and Scott, 1948) and has been studied for 

many years. A larger sample (larger N) and longer panel (larger T) may reduce 

this bias (Arellano and Hahn, 2005). Researchers have also proposed various 

approaches to reduce bias and achieve consistency with smaller N and T values 

(see, for example, Alvarez and Arellano, 2003, and Bester and Hansen, 2007). An 

efficient bias-reduction technique for the DSOP model makes an interesting topic 

for future study, but is not the focus of this dissertation and is not discussed at 

length here. In fact, such overestimation appears to be slight here: Most of the 

biases in slope parameters lie below 10%. Bias in estimates of the variances of 

individual specific errors ( iυ ) are higher. However, as can be observed in Figure 

4.3, with the exception of the extreme case (where both λ and ρ are 0.9), biases in 

all other cases lie well below 100% and their relative magnitudes appear close to 

the true pattern. 
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In summary, the DSOP model performs well with the simulated data. It 

satisfactorily detects the temporal and spatial interaction effects as well as the 

influence of different variables. 

4.4 MODEL COMPARISONS 

To further validate the DSOP model, its performance is compared to those of 

simpler models (all estimated via a Bayesian approach), using a sample that 

provides a balanced mix of the three levels of the 50 samples.13 These simpler 

models include a standard ordered probit (OP) model; a dynamic ordered probit 

(DOP) model, which still allows for spatial heterogeneity but not spatial 

autocorrelation; and a spatial ordered probit (SOP) model, which incorporates all 

spatial effects but does not consider the temporal dependency. Data statistics for 

this sample are shown in Table 4.2, and the histogram of y values (Figure 4.4) 

indicates that enough observations exist for each level.  

Table 4.2 Summary Statistics for One Sample 

Variable Mean Standard 
Deviation Minimum Maximum 

x1 0.4978 0.2873 6.579E-04 9.995E-01 
x2 0.4994 0.2893 5.842E-04 9.990E-01 
x3 0.4936 0.2901 4.174E-05 9.999E-01 
x4 0.4877 0.2895 3.049E-05 9.998E-01 

                                                 
13 In fact, model comparisons based on other samples also were performed. It was found that, as 
long as the samples appeared reasonably well balanced (across response levels) and estimators 
converged, all samples yielded quite similar results. In order to illustrate convergence patterns and 
results more clearly, only one sample’s results are presented in detail here.  
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Figure 4.4 Histogram of Dependent Variable Values 

As before, these models are run with 2,000 draws of which the first 1,000 draws 

are omitted (burn-in sample). As an example, Figure 4.5 shows the estimation 

convergence pattern for 1β . Estimates of other parameters follow a similar pattern. 

The figure suggests that after the first 1,000 draws, the estimation becomes stable 

and may be convergent.  

 
Figure 4.5 Estimation Convergence Pattern for 1β  

Table 4.3 shows the estimation results for this sample. In addition, Figure 4.6 

depicts estimates of iυ  ( i M∀ ∈ ), using the DSOP model, where lower and higher 



 

71 

bounds are defined as 1st percentile and 99th percentile values. Mean estimates lie 

quite close to true values. Considering that only 80 observations are effectively 

used to estimate each iυ , the standard deviations are understandably large. 

Table 4.3 Estimation Results using One Sample and Different Specifications  

OP DOP SOP DSOP 
Para.. True 

Value Mean Std. 
Dev. Mean Std. 

Dev. Mean Std. 
Dev. Mean Std. 

Dev. 
1β  -1.7 -0.807 0.079 -1.581 0.104 -1.621 0.117 -1.608 0.119
2β  2.0 1.727 0.078 2.201 0.112 2.150 0.128 2.166 0.128
3β  1.0 0.999 0.079 1.043 0.107 1.014 0.099 1.000 0.097
4β  0.5 0.634 0.076 0.502 0.089 0.461 0.092 0.469 0.098
λ  0.1 --- --- 0.131 0.023 --- --- 0.110 0.021
ρ  0.7 --- --- --- --- 0.769 0.098 0.751 0.098

2σ  1.0 --- --- 2.182 0.742 1.323 0.426 1.116 0.342
2γ  0.0 -0.203 0.014 -0.372 0.038 -0.226 0.084 0.081 0.057
3γ  2.1 1.264 0.009 1.811 0.029 1.980 0.032 2.261 0.013

RMSE 1.769 1.472 0.463 0.293 

DIC 4360.4 3098.0 3106.1 3070.7 
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Figure 4.6 Variances of Individual Specific Errors with One Sample 
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Table 4.3 also shows RMSE and deviance information criteria (DIC)14 values for 

each specification. As before, RMSE indicates estimator accuracy. The DIC is an 

indicator of model fit. Both suggest that the DSOP model more accurately 

estimates the underlying parameters, with high statistical significance and fit of 

the sample data. In contrast, because of the inability to detect λ  and ρ , the OP 

model’s estimates are highly unsatisfactory. As shown in Table 4.3, it returns the 

appropriate signs and relative magnitudes for β parameters, but estimates deviate 

from true values quite a bit. The performances of the DOP and SOP models lie in-

between. Though inferior to the DSOP model results, they are rated better than 

the OP model. RMSE measures suggest that the SOP model yields much more 

accurate estimates than the DOP model, which is quite understandable given the 

fact that λ  is only 0.1 and ρ  is 0.7 in this one particular sample. In other words, 

ignoring the temporal autocorrelation (i.e., restricting a 0.1 parameter to equal 0) 

should typically have less of an impact than a situation where one ignores a 

spatial autocorrelation term of 0.7  Interestingly, the DIC fit measure, suggests 

that the DOP model is very slightly preferred to the SOP model. The DOP 

model’s smaller DIC value implies that, while the DOP model is not as able to 

produce accurate parameter estimates, it still fits sample data better than the SOP 

model, because it still accounts for spatial heterogeneity.  

Table 4.4 illustrates predictive accuracy using the four methods. The standard OP 

model only correctly predicts dependent values for 47.0% of the 2,400. 

observations. The DOP model increases this percentage to 60.8%. The SOP 

                                                 
14 The deviance information criterion (DIC) is a generalization of the Akaike information criterion 
(AIC) and Bayesian information criterion (BIC). It is particularly useful for Bayesian model 
comparison and selection (see Gelman et al., 2004, and Spiegelhalter et al., 2002). However, one 
limitation of the standard DIC is that it is only valid when posterior distributions are 
approximately multivariate normal. For models involving extremely asymmetric or bimodal 
posterior distributions (which happens for the DSOP model), some modified DIC need to be used 
instead. This dissertation uses the DIC calculation method for mixture models proposed by Celeux 
et al. (2006). 
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model’s prediction rate is quite close to that of the DSOP model: 66.4%. Such a 

percentage is fairly satisfactory, given the presence of three response levels and 

considerable randomness in the sample dataset (
2σ  and iυ  in the simulated data 

have similar magnitudes as all slope parameters, causing regional-specific and 

individual-specific errors to have a similar level of influence on latent utility 

values).  

Table 4.4 Prediction Rates using Different OP Model Specifications 

Actual 

y Value
1 2 3 

Total 

% Cases 
Correctly 
Predicted(

%) 
1 55 145 100 300 
2 106 372 372 850 OP 
3 100 448 702 1250 

47.0 

1 124 154 97 375 
2 116 511 253 880 DOP 
3 21 300 824 1145 

60.8 

1 121 133 20 274 
2 124 536 249 909 SOP 
3 16 296 905 1217 

65.1 

1 121 112 17 250 
2 119 583 268 970 

Predicted 

DSOP 
3 21 270 889 1180 

66.4 

Total 261 965 1174 2400  

Such comparisons, of prediction rates, RMSE and DIC values, suggest that the 

DSOP model is superior to all the simpler models, as anticipated. It is followed 

by the SOP model, indicating the importance of recognizing the spatial 

autocorrelation in the dataset. Recognizing temporal dependency also 

significantly improves model performance, relative to a standard OP model. In 

this example study, this improvement is not as evident as recognizing the spatial 

autocorrelation, but this is partially due to the small true value of the temporal 

coefficient, λ . The OP model, though easy to specify and estimate, does not 
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adequately utilize the observed information, thus returning inaccurate parameter 

estimates and response predictions.  

Figure 4.7 illustrates the posterior distributions produced by the DSOP model for 

all parameters of primary interest. As summarized in Chapter 3’s Section 3.3.5, 

β  and λ  present normal distributions, and 2σ  presents a chi-square distribution. 

Posterior distributions for ρ  and γ  are non-standard, and γ  appears to be 

multimodal.  

 
(a) Posterior Distribution for 1β  (b) Posterior Distribution for 2β  

 
(c) Posterior Distribution for 3β  (d) Posterior Distribution for 4β  
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(e) Posterior Distribution for λ  (f) Posterior Distribution for ρ  

 
(g) Posterior Distribution for 2σ  (h) Posterior Distribution for 1γ  

 

(i) Posterior Distribution for 2γ   
Figure 4.7 Posterior Distributions for Parameters of Primary Interest 
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4.5 CHAPTER SUMMARY 

This chapter described simulation of a test dataset, and then examined the DSOP 

model’s performance using the simulated data. Estimator accuracy, model 

goodness of fit and prediction rates were compared across standard OP, DOP, 

SOP and DSOP models. As expected, model estimation, validation and 

comparison all lead to the conclusion that the DSOP model performs better than 

the other, simpler models. Finally, posterior distributions for parameters of 

primary interest were depicted, confirming the distribution formulations, as 

discussed in Chapter 3.  
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CHAPTER 5. DATA DESCRIPTION 

5.1 INTRODUCTION 

This chapter describes the two datasets used as empirical examples for the 

application of the DSOP model: land development intensity levels and ozone 

concentration levels. Section 5.2 explains how data for land development 

intensity levels was collected, processed and integrated, and Section 5.3 

introduces the ozone concentration data. Assumptions made during the data 

assembly process are discussed in detail. 

5.2 LAND DEVELOPMENT INTENSITY 

The data used for land development dynamics comes from multiple data sources, 

including satellite images, the Census of Population, City of Austin school district 

and employment data, as well as transportation and geographic data from the 

Capital Area Council of Governments (CAPCOG). The land cover information is 

used as the dependent variable, and all others serve as explanatory variables. 

These include total neighborhood population, number of workers living in the 

neighborhood, average household income and number of schools in the 

neighborhood, travel time to the nearest major highway, travel time to the 

region’s CBD, travel time to major (top 15) employers, travel time to the nearest 

airfield, average ground slope, and average elevation (of each 300m×300m grid 

cell).  

The following sections describe how these different datasets were collected, 

processed and combined over space and time.  
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5.2.1 Land Development Intensity Level 

The dependent variable, the land development intensity level, is derived from 

satellite images with 30m resolution. The following sections explain how the land 

cover information is obtained and classified based on light reflectance rates 

discerned from satellite images, how and why the 30m resolution grid cells are 

aggregated into 300m×300m grid cells, and how the original 9, unordered land 

use classes are categorized into the 4 development intensity levels. 

5.2.1.1 Land Cover Information Derived from Satellite Images 
The satellite images used for deriving land cover information come from Landsat 

4, 5 and 7 systems and cover the urban area of Austin, Texas. LandSat 4, 5 and 7 

were launched in 1982, 1984 and 1999, respectively. They all have an identical 

orbit with a cycle of 16 days. These satellites are able to take snapshots for every 

American city with a 30 m × 30 m resolution. These imaging systems collect 

reflectance of seven spectral bands. When information from all these bands is 

combined, reasonable land cover information can be derived.  

There are two basic approaches for deriving such land cover data: supervised and 

unsupervised. Both approaches require knowledge of actual land cover 

information. The basic distinction is that a supervised technique uses this 

information from the beginning, thus guiding the classification process in a more 

rigorous, mathematical fashion.15 

                                                 
15Supervised classification uses the pre-collected actual land cover information as training data. 
With a large enough sample that well represents examples of all land cover classes, supervised 
classification allows the computer to match other pixels based on statistics in the same class. 
Generally, a decent number of training pixels should be provided for each class, although the 
precise number varies with algorithms. Unsupervised techniques, in contrast, first classify grid 
cells based on similarities in their band information, forming a series of clusters (groups with 
similar band statistics). These clusters are then linked to intended land cover classifications via 
very simple comparison of clusters to actual land cover types. In most cases these “clusters” and 
the intended classification scheme no not align (for example, classification A is linked to clusters 1, 
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The image processing work that produced the land cover information used in this 

dissertation was performed by students supervised by Dr. Barbara Parmenter at 

The University of Texas of Austin in 2002. Bands 1 - 5 and 7 were used as inputs 

for the classification algorithms. A hybrid supervised/unsupervised classification 

was performed. First, supervised classification was carried out using maximum 

likelihood decision rules with training data based on visual interpretation of 

USGS topographic maps and digital orthoimagery quarter quadrangles (DOQQs). 

An ISODATA16 clustering algorithm then was used for post-classification sorting 

of over-classified classes to reduce inter-class confusion. Though more years of 

satellite images probably were available, due to the computational intensity of 

classification work, cloud cover variations, and other, seasonal effects in datasets, 

only four years of satellite images were classified by Dr. Parmenter’s team. These 

were for 1983, 1991, 1997, and 2000. Unfortunately, the time gaps between these 

years are unequal; ideally this variation in step size should be treated accordingly. 

Limited by time, this dissertation leaves this issue for future work    

For each year, the study region covers a 48.5 km x 55.8 km area, containing 

around 3 million 30 m x 30 m pixels. Each of these pixels was classified as one of 

the nine land-cover types: water, barren, forest/woodland, shrubland, herbaceous 

natural/semi-natural, herbaceous planted/cultivated, fallow, residential, or 

commercial/industrial/transportation. As an illustration, Figure 5.1 shows the 

derived land cover types for the year 1983.  

                                                                                                                                     
2, and 4, but cluster 4 also includes classification B). In such cases, certain classes will be “over-
classified” (class A in this example), requiring several rounds of cluster “busting” or combining. 
16 ISODATA stands for Iterative Self-Organizing Data Analysis Technique. It is an unsupervised 
classification approach. It is essentially a clustering technique based on minimum distances (of 
band values). Jensen (1996) provides more technical details about this approach.  
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Figure 5.1 Original Land Cover Information for Year 1983 

5.2.1.2 Uncertainty and Aggregation of Land Cover Information 
Though the classified land cover information is felt to be of high quality (i.e., to 

present true land cover types [see Frazier, 2005]), numerous factors still influence 

its accuracy. Some of these factors can be traced back to the original images. For 

example, the image distortion caused by the satellite’s motion (relative to the 

Earth) and variations in atmospheric conditions (such as humidity and shadow 

effects) play a role. However, the most influential factor is still felt to be the 

classification process.  

It is important to note that pixels were classified based on their spectral qualities 

(i.e., reflected light) rather than actual information on how humans “use” the land 

(e.g. tax appraisal records). Therefore, the terms residential and 

commercial/industrial/transportation are probably best interpreted as lands 

covered by different intensities of light-reflecting man-made materials. A visual 
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comparison of the classified data and DOQQs shows that the grid cells that are 

classified as commercial, industrial or transportation are those that are largely 

covered by cement or asphalt. Residential land is more likely to be area covered 

largely by cement but dotted with some vegetation.  

Of course, the land cover information is based on parameters calibrated using the 

training data. As with any extrapolation/prediction, there is always added 

uncertainty when the calibrated rules or parameters are used for grid cells other 

than those with precisely known training data. 

Further more, even with a 30 meter resolution (0.22 acre), one pixel can be 

composed of several land cover types. Thus, things can become confused when 

indexing each pixel as one specific type. Instead, classifying grid cells via some 

typology that can indicate mixtures of different land covers may be more 

reasonable.  

One intuitive approach to moderate the above mentioned data imperfections 

involves aggregating observations in a neighborhood. In this way, some random 

classification errors can be cancelled. Therefore, the original dataset provided by 

Dr. Parmenter was aggregated using a square window that covers 100 grid cells. 

In other words, the new dataset now has a resolution of 300m × 300m. The study 

area now contains 29,946 of these larger grid cells, and remains a large sample 

with fairly small units. Another advantage of using larger grid cells is reductions 

in computational burden: the sample size is reduced by a factor of 100. For spatial 

studies, which track inter-observational interactions, this means that 

computational load is reduced by 10,000. Then, instead of giving each grid cell a 

specific land cover type, the new classification scheme is derived based on the 

proportions of barren land, water, vegetation and man-made materials. The 

following section describes in more detail how these classes were determined.  
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5.2.1.3 Categorizing Land Development Intensity Levels 
As previously mentioned, each 300m cell’s land development intensity level was 

determined based on the mixture of different land cover types. Of course, such 

definitions of “high intensity” or “low intensity” are rather flexible: the following 

definitions can be easily modified to adapt to different settings and user needs. 

The nine land cover types were assigned different weights to indicate 

development intensity. Grid cells indexed as commercial/industrial/transportation 

are largely covered by cement or asphalt, indicating intense development activity, 

and therefore given a weight of 2. Residential cells were given a weight of 1.5. 

Grid cells classified as vegetation (shrubland, herbs, fallow, and forest) were 

given a weight of 0.5. Finally, if the surface is coded as barren or water, its 

weight is 0.17 

For the aggregated, 300m neighborhoods, a simple average of these 100 weight 

indices was computed overall to produce a single value for development intensity. 

This intensity was then categorized into four levels: averages below 0.5 were 

ranked as Level 1 (which can be interpreted as almost no development containing 

mostly vegetation, barren land or water). Between 0.5 and 0.8, the neighborhood 

was categorized as Level 2, (i.e., slightly developed with around 40% land 

covered by man-made materials). Between 0.8 and 1.2, the class is Level 3, 

meaning that this area has medium development intensity with approximately 

60% developed area. Above 1.2, the category is Level 4 (i.e., intensely developed, 

with at least 60% of its area covered by man-made materials).  

Equations (5.1) and (5.2) summarize this definition process: 

                                                 
17 Though the weight scheme is flexible, this dissertation approximates these weights based on 
percentages of man-made materials covering the land (using visual comparison to the DOQQs). 
The proportion of these percentages for the four types is around 4:3:1:0, so the weights are 
assigned accordingly. 
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where INT is the intensity index, ( )FRXN •  means the fraction of appropriate land 

cover type in the 300m x 300m neighborhood.  

1  0.5
2  0.5  0.8
3  0.8 1.2
4  1.2

y if INT
y if INT
y if INT
y if INT

= <
= ≤ <
= ≤ <
= >

       (5.2) 

where y  is the land development intensity level, the dependent variable used in 

this study. In addition to a fairly meaningful interpretation, these cut-offs also 

ensure a reasonably balanced mix of different development intensity levels. 

Figure 5.2 shows the derived land development intensity level for the study area 

in different model years. 
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Figure 5.2 Computed Land Intensity Levels across Different Years 

5.2.2 Census Data 

Three variables used in this study of land use intensity come from the U.S. 

Census of Population for years 1990 and 2000: total population, number of 

workers and median household income. To be used as explanatory variables, 

these datasets need to be organized in the same frames (spatial and temporal) as 

the land cover data. However, the census data and the land cover data have 
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1983 1991 

1 
2 
3 
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different spatial units and time points. For example, the smallest spatial unit for 

income in the census data is a block group, and the three land-cover data sets  

cover non-census years (1983, 1991, and 1997). In order to align these two 

datasets, the census data had to be spatially reorganized and off-year census data 

had to be extrapolated. The derived Census data used in this dissertation was 

processed primarily by Christopher Frazier (2004) for his Master’s thesis.  

Frazier (2004) used TransCAD’s “overlay” function (Caliper Corporation 2004) 

to allot census data to each grid cell based on how much each block group lay 

within each 300m cell: for population and workers, the variables are derived 

using an area-weighted summation. For median household income, the variable 

was derived using population-weighted average of the Census values. 

For temporal extrapolation, Frazier (2004) assumed an exponential form for 

workers and households. He calibrated the exponential model at the regional level 

and then rectified this uniform growth pattern by factors that indicate each cell’s 

deviation from the “average” behavior. For median household income, a 

correction for inflation also was made (based on the Consumer Price Index).  

It is expected that the development intensity level of a specific location depends 

not only on its own characteristics, but also on features of its neighborhood. For 

example, land owners are more likely to develop sites based on their expectation 

of the population of nearby areas. Therefore, after allotting population, workers 

and household income information to each grid cell, this dissertation calculates 

such variables for the neighborhood of each 300m grid cell. Neighborhood here is 

defined as a circle with 3km radius. This calculation is carried out in ArcMap 

(ESRI, 2005) using the “focal sum” function (and “focal mean” for income) after 

the vector map is rasterized. Figures 5.3 through 5.5 show the spatial distribution 

of these summed values (or averaged values, in the case of household income)  
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As can be observed, population in the study area is highest around downtown. 

Over the years, population has increased and expanded spatially. In general, the 

number of workers follows a very similar pattern. Even after accounting for 

inflation, the increases in household income are quite noticeable. The western 

study area exhibits higher household incomes, with peak values stay in the 

Westlake area.  

 

 

Figure 5.3 Neighborhood Populations as Shown at the level of 300m Grid 
Cells (where neighborhood is a 3km-radius circle) 

1997 2000 

1983 1991 
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Figure 5.4 Neighborhood Workers as Shown at the level of 300m Grid Cells 

(where neighborhood is a 3km-radius circle) 

1997 2000 

1983 1991 
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Figure 5.5 Average Median Household Income across Neighborhoods 

(where neighborhood is a 3km-radius circle) 

5.2.3 Transportation Access 

Development intensities can be significantly influenced by accessibility. One 

indicator of access is travel time to major highways, airports, and job sites. The 

following sections discuss how road networks and locations of major facilities 

and employers in different years were derived, and how travel times were 

calculated.  

1997 2000 

1983 1991 
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5.2.3.1 Road Networks in Different Years 
When one is interested in travel times, proper road networks can be critical. 

Though Austin street maps can be traced back 100 years, only year 2002’s map is 

digitally available (CAPCOG, 2005). It is possible to “vectorize” old street maps, 

with current techniques; this requires rather intense work and the results are 

subject to great uncertainty. Moreover, such methods remain impossible without 

hard-copy maps. This dissertation proposes a simple approach to derive road 

networks in different years based on land cover information. Though the method 

is not yet very sophisticated, the results appear quite reasonable. Moreover, this 

method provides a prototype for further study on how to use satellite data as a 

supplement to traditional data sources.  

Limited by data availability, it is first assumed that the street condition in the 

study area did not change between years 2000 and 2002. That is, the 2002 street 

map represents the 2000 network. In this way, we are able to link land cover 

information and road existence using 2000 satellite data and the assumed 2000 

network.  

A road map is normally in the form of “vectors”, i.e., links connected by nodes. 

Those vectors are first rasterized and thus transferred to grid cells with Value 1 

indicating that there is road crossing the cell and 0 otherwise. Such a 0-1 situation 

can be analyzed using a standard binary probit model: the dependent variable is 

the roads existence and explanatory variables include a constant, and local 

fractions of commercial/industrial/transportation land and residential land. Table 

5.1 provides the estimates of this simple probit model, as based on the 300m grid 

cells.  
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Table 5.1 Estimation Results for Road Existence (Binary Probit) 

Variable Mean Standard 
Deviation 

Constant -0.444 -40.54 

Fraction of 
commercial/industrial/transportation land 
(in 300m cell) 

1.622 31.82 

Fraction of residential land (in 300m cell) 2.632 63.57 

Following this calibration, the model’s parameters are used to “predict” road 

existence in each grid cell based on the fractions of different land use/land cover 

types in other years (1983, 1991 and 1997). 

The next step was to obtain a street map for each year by “trimming” links from 

the 2000 map, based on the above prediction. In ArcMap, the “join layer” (ESRI, 

2005) function matched each year’s grid cell information to the 2000 road 

network. For each year, links with a predicted value of 1 were kept and others 

were deleted, resulting a somewhat reduced road network (since the road system 

was only assumed to grow, from 1983 through 2000/2002).  

As Frazier (2002) suggests, the alignments/locations of major roads in the study 

area, including U.S. Highway 290, U.S. Highway 79, U.S. Highway 183, State 

Highway 71, Interstate 35, Loop 1, and Loop 360 did not change from 1983 to 

2000. Thus, as a final refinement, the “cut off” road network of each year is 

combined with/overlaid on major roads. Replicated sections were removed. 

Figure 5.6 shows the derived road networks in different years. 

The resulting road networks remain vectors (i.e., represented by links and nodes, 

instead of tiny points). However, after processing, using such vectors to calculate 

travel distances and/or travel times is no longer a superior option (as compared to 

using rasterized data), since some sections of road may be incorrectly cut off. As 
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can be observed in Figure 5.6, the resulting road networks contain many  small 

clusters of fragmented roads. Though the loss of these sections may be negligible 

in terms of total length, they can be critical to network connectivity.  

  

  
Figure 5.6 Estimates of Austin Road Network in Different Years  

5.2.3.2 Calculating “Travel Cost” 
Thus, when estimating travel times and distances, the vector layers were first 

rasterized to a “weighted cost” raster layer. The cell size of this raster layer is set 

1997 2000 

1983 1991 
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to be as small as 10m x 10m, so that it can better approximate the vector layer. If 

there is a road, the cell is given Value 1, and if there is “No Data” (i.e., no road 

exists), the cell is given Value 5. This 5:1 cost ratio implies that the resulting total 

cost can be used in estimating travel times simply by dividing total cost by a 

common factor. In this dissertation, after conversion, the “total cost” was 

interpreted as travel times with travel speed assumptions of 8 mile/hr off-road and 

40 mile/hr on road. Of course, if more information on road classification, capacity 

and/or congestion levels is available, the cost of each 10m cell can be more finely 

classified, to better represent different speeds under different conditions. 

The first advantage of this method is that instead of ignoring off-road distances or 

assuming that a location is inaccessible, this method reasonably accounts for the 

impedance of “off-road” travel by giving it a “cost” that is five times on road cost. 

Second, because travel time (or cost) on roads is much less than time off road, the 

shortest path calculation is attracted to roads whenever possible. This implies that 

if two sections of roads are disconnected, but the gap is small, the shortest path 

will still go through these two sections instead of taking a more circuitous route 

(or simply reporting a cell to be “inaccessible”).  

Though this overall method for deriving travel time is somewhat coarse 

(neglecting link type and issues of congestion, for example), it seems quite 

helpful when the road network expands noticeably over some years. After all, the 

“existence” of a road may be more important its travel time. 

This multi-step process for deriving estimates of travel times is summarized by 

the flowchart shown in Figure 5.7. 
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Figure 5.7 Procedure for Deriving Estimates of Travel Time  

Create grid-based 2000 street map 
(300m resolution raster file) 

y=1 if there is link in 300m cell;  
0y =  otherwise 

Binary probit model for link presence 
0 1 1 2 2*y x xβ β β= + +   

Get parameter estimates 1 2
ˆ ˆ,β β  

Generate ŷ  for 1983, 1991 & 1997 
(300m resolution raster layer) 

0 1 1 2 2
ˆ ˆ ˆˆ*y x xβ β β= + + ; ˆ 1y =  if ˆ* 0y > , ˆ 0y =  otherwise.  

Trim 2000 network to get 1983, 1991 & 1997 networks (vector) 
Link is kept if it goes through a grid cell with ˆ 1y = , deleted otherwise. 

Refine 1983, 1991 & 1997 networks (vector files) 
Merge network with major roads (highways) and remove duplicate links 

2002 (2000) CAPCOG street map 
(vector file) 

2000 satellite image 
(300m resolution raster file) 

x1= fraction of commercial/industrial/ 
       transportation land in the 300m cell 
x2= fraction of residential land in the 300m cell 

1983, 1991, & 1997 satellite images 
(300m resolution rasters) 

Obtain x1 & x2 land use fractions for each year. 

Generate “travel cost” 
Convert each year’s network to 30m resolution raster file and give each 
grid cell a “cost” value (equivalent travel length): 
z =30m if there is link, z = 150m otherwise. 

Estimate travel time (TT) 
Divide TC by by 40 mph, to obtain travel time to special attractions. 

Calculate lowest trip distance to special attractions (TC) 
Use “shortest path” function in ArcMap’s “spatial analyst”. 
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5.2.3.3 Facilities and Important Locations 
Key facilities and locations considered in this dataset include major roads, all 

airfields, the central business district (CBD), and Austin Top 15 job sites. An 

airfield is helpful for long-distance travel. The CBD and sites of major employers 

attract many activities and trips. A major road is a key facility for travel of many 

types. The distances to all these sites and facilities are considered indicators of 

each location’s attractiveness and accessibility. 

As introduced in the previous section, the locations of Austin’s major roads have 

not changed since 1983. The GIS map of these roads was obtained from 

CAPCOG’s website (CAPCOG, 2006) along with airfield information (for each 

model year). The CBD is defined as a 2.4km x 3.3km rectangular area with its 

center located at the State Capitol Building and its long edge parallel to Interstate 

35. Austin’s major employer information was provided by the City of Austin 

(2006), but only for years 2000 and 2002, and only employers with more than 500 

employees were geo-coded. There also is a 1997 Top 50 employers’ map 

available, though not geo-coded. To make the measurements consistent, this 

dissertation located the top 15 employers in each model year. For years 1983 and 

1991, the information was derived by tracing back the histories of the top 50 

employers in 1997.  

Figure 5.8 shows the locations of such attractions, including major roads, airfields, 

and top employers’ headquarters.  
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Figure 5.8 Locations of Key Sites and Highways in Different Years 

5.2.3.4 Calculating Travel Time for Each Location  
After travel cost to each 300m cell was defined as described in section 5.2.3.2 and 

the major facilities were located, travel times were calculated using the ArcMap’s 

“shortest path” routine. Each grid cell was given values indicating their travel 

time to the nearest major road, the nearest airfield, the CBD and the nearest top 

employer.  

1997 

1983 1991 

2000 
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5.2.4 School Access 

A location’s accessibility to schools can be important to its development. Here, 

the number of Kindergarten through 12th grade (K-12) schools in the 3 km-radius 

neighborhood is calculated using ArcMap’s “viewshed” function, based on the 

2001 school information provided by the City of Austin (2007). Of course, over 

time new schools emerge, particularly in peripheral regions (as populations have 

grown). However, due to the lack of such, earlier school-siting information, this 

study assumes that the number of schools in any neighborhood has remained 

constant over the four model years. Figure 5.9 shows the spatial distribution of 

this variable.  

 
Figure 5.9 Number of Schools in Each Cell’s Neighborhood 
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5.2.5 Topographic Information 

Topographic conditions can play an important role in site development. In this 

dissertation, two factors are considered: elevation and slope. These two variables 

may influence the intensity of land development because of their relationship to 

view lots, flood risk, and development costs.  

The elevation and slope information are derived from CAPCOG’s 10-foot 

resolution contour line map (CAPCOG, 2006). Elevations were calculated using 

ArcMap’s spatial interpolation function, which generates a raster layer with 

values equaling the contour line values at locations where the lines actually 

appear. For locations between the lines, the function interpolates values based on 

neighboring contour lines using an “inverse distance weighted” algorithm (ESRI, 

2006). The resulting elevations in the study area range from 186 to 1292 feet (i.e., 

62 to 430 meters) above mean sea level. However, due to errors in the original 

contour line data (some contour line sections in high-elevation area have zero 

values), the interpolation returns some unrealistic values, clearly observable in 

Figure 5.10.  
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Figure 5.10 Elevation Distribution 

Having obtained the elevation layer, slopes can be estimated using ArcMap’s 

“surface analysis” function. Because of the noise in elevation data (see Figure 

5.10), the resulting slopes also contain some unrealistic values. Fortunately, the 

locations of these imperfections are easily detected, in the maps, and can be 

avoided when selecting the data sample.  
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Figure 5.11 Slope Distribution 

5.2.6 Defining Regions and Sample Selection 

As discussed in Chapters 2 and 3, a reasonable rule for defining these is that 

observations in the same region share common features, and that these features 

differ across region boundaries. In ecological and environmental studies, 

boundaries may derive from natural spatial partitions, such as rivers and mountain 

ranges, with observations in the same region sharing vegetation and micro climate. 

For human activities, boundaries are more likely to be administrative units across 

which policies can change, such as zoning and school district scores.  

In Austin’s urban area, zoning is based on neighborhood planning areas (NPAs). 

Changes in zoning constraints often occur across these boundaries. From this 

perspective, this NPA may be an ideal unit to be used as a region. However, only 
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information for the 98 NPAs in Travis County is readily available, so such 

information is not available for about 30% of the study area.  

After careful consideration, regions in this study were defined based on zip codes, 

with several advantages. First, in the study area, a zip code area often overlaps 

with an NPA, or is a union of 2 to 4 NPAs. Second, some region boundaries also 

overlap with natural features like Austin’s river. Furthermore, such a division 

produces 57 regions, a number large enough to offer interesting regional variation 

while small enough to moderate computational burdens.  

After defining these regions, the next step was to select observations (grid cells) 

in each region. Of course, one can use all 29,946 300m grid cells as observations. 

However, there are good reasons for selecting only a subset of observations. First, 

the “boundary” of a region may be somewhat ambiguous and the differences 

between regions may be slight. If all grid cells are used, cells that are located in 

two different regions yet lie in close proximity may be more similar than grid 

cells that are far away from each other yet belong to the same region. The second 

reason is computational: 29,946 grid cells create a very large pool of observations 

with heavy computational burden for parameter estimation. A 10% sampling rate 

(∑ni = 2,995) is expected to return satisfactory estimation results with 

significantly reduced computation time and was used here.  

In order to ensure that observations in the same region are more alike than those 

in different ones, samples were selected around regional (zip code area) centroids. 

In this way, observations in the same region are spatially clustered (all contiguous) 

and thus expected to be more similar to each other than to observations in other 

regions.  

Second, in order represent the entire study area, samples should distribute as 

evenly as possible across space. If an equal number of 300m cell observations is 

selected in each region, smaller regions will get more weight (than they “deserve”) 
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in the sample. In order to spatially balance the selection, the number of 

observations in each region was set proportional to the region area.  

Finally, 224 sampled cells were removed. These included those extending into a 

neighboring region (which only occurred in very narrow regions), those along 

edges of the study area (whose neighborhood information could not be obtained), 

and those falling into the areas (as discussed in Section 5.2.5) where elevation and 

slope values are unrealistic.  

A total of 2,771 observations resulted from this processing. These observations 

are distributed across the 57 regions (zip code areas), and the number of 

observations per region ranges from 2 to 333. Figure 5.12 shows these regions 

and the sampled cells. 

 

(a) Distribution of Selected Sample (b) Detail of the Highlighted Area

Figure 5.12 Selected Sample for Development Intensity Analysis 
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5.2.7 Summary of Land Development Data 

In summary, variables for the development intensity DSOP analysis include 

elevation, slope, number of (neighborhood) schools, neighborhood population, 

and workers, average household income, travel time to top employers, travel time 

to the CBD, travel time to the nearest airfield, and travel time to the nearest major 

road. Table 5.2 summarizes definitions of all these variables, and Table 5.3 

summarizes their statistics (over the 2,771 observations in each year). Table 5.3’s 

statistics confirm the trends illustrated in Figures 5.1 through 5.7: over the years, 

development intensity levels, population, number of workers, and average 

household income have all increased. Average travel times (without considering 

congestion) to major facilities and employers have decreased because of new road 

in peripheral zones.  

Table 5.2 Data Description for Land Development Intensity Level Analysis 

Variable Description 
INTLV Development intensity level 

ELEVTN Average elevation of the 300m grid cell (km) 
SLOPE Average slope of the 300m grid cell (%) 

NSCHOOL Number of K-12 schools in the neighborhood  
POP Population (thousand) in the neighborhood  

WORKER Number of workers (thousand) living in the neighborhood  
INC Average household income (thousand dollars) in the neighborhood

EMPTT Travel time to nearest major (top 15) employer (hours) 
CBDTT Travel time to CBD (hours) 
AIRTT Travel time to nearest airfield (hours) 
RDTT Travel time to nearest highway (hours) 
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Table 5.3 Summary Statistics for Land Development Intensity Analysis 

 Variable Minimum Maximum Mean Std. Deviation
ELEVTN 0.136 0.390 0.251 0.061 
SLOPE 0.034 17.328 2.699 2.196 

Constant 
through 
Years NSCHOOL 0.000 7.000 1.208 1.377 

INTLV 0.000 3.000 0.826 0.774 
POP 0.225 37.531 4.632 7.298 

WORKER 0.121 19.997 2.408 3.918 
INC 17.330 88.941 45.368 15.109 

EMPTT 0.004 1.115 0.453 0.223 
CBDTT 0.000 0.358 0.154 0.070 
AIRTT 0.005 0.784 0.345 0.157 

1983 

RDTT 0.002 0.498 0.111 0.093 
INTLV 0.000 3.000 0.948 0.874 

POP 0.203 51.310 6.860 10.424 
WORKER 0.121 27.633 3.624 5.652 

INC 20.540 105.412 53.844 17.766 
EMPTT 0.004 0.733 0.298 0.149 
CBDTT 0.000 0.339 0.148 0.068 
AIRTT 0.004 0.630 0.259 0.120 

1991 

RDTT 0.002 0.430 0.092 0.082 
INTLV 0.000 3.000 1.300 0.827 

POP 0.389 64.873 8.007 12.615 
WORKER 0.211 35.220 4.240 6.900 

INC 23.332 119.738 61.077 20.341 
EMPTT 0.001 0.313 0.112 0.060 
CBDTT 0.000 0.308 0.142 0.065 
AIRTT 0.004 0.628 0.227 0.116 

1997 

RDTT 0.002 0.385 0.086 0.074 
INTLV 0.000 3.000 1.359 0.929 

POP 0.478 64.629 9.131 13.153 
WORKER 0.238 36.238 4.836 7.278 

INC 15.869 125.094 65.024 22.635 
EMPTT 0.001 0.182 0.070 0.037 
CBDTT 0.000 0.266 0.126 0.057 
AIRTT 0.005 0.437 0.154 0.070 

2000 

RDTT 0.002 0.251 0.054 0.044 
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5.3 OZONE CONCENTRATION LEVELS 

As discussed in Chapter 1, various factors can influence ozone concentration 

levels. Ozone concentrations are forecast based on photochemical and deposition 

processes. One example is the widely used Comprehensive Air Quality Model 

with Extensions (CAMx). The CAMx model requires many inputs, including  

several meteorological condition indicators, land cover information, and dry 

deposition algorithms. (One may see Environ (2007) for a detailed introduction.) 

This dissertation provides an alternative method for ozone concentration 

estimation, one that does not require an understanding of the details of the 

physical processes involved. This analysis seeks statistical relationships between 

various factors and ozone concentration levels. As an empirical example, it also 

illustrates application of the DSOP model in cases where each region contains 

only one individual (ni = 1 ∀ i). 

The following sections describe variables used in this analysis of ozone 

concentration levels, including temperature, street length and fractions of 

different land cover types. Section 5.3.1 describes how ozone concentration levels 

were derived from the original data; Section 5.3.2 contains the temperature 

information; and Section 5.3.3 discusses how transportation and land cover 

information was incorporated and how these variables were interacted with time-

of-day indicators.  

5.3.1 1999 Ozone Concentration Levels 

Ozone concentration levels were derived from continuous values originally 

prepared for an EPA project, and provided by Dr. Elena McDonald-Buller at the 

University of Texas at Austin (CAPCO et al., 2004). Using the CAMx model, 

many emissions inventories and a variety of behavioral assumptions, the project 
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researchers developed hourly ozone concentration estimates for a high-ozone 

episode: September 13-20, 1999. 

In the CAPCO (Capital Area Planning Council) study, there are three levels of 

spatial resolution and the finest is 4km. This 4km resolution area covers a 360 km 

x 432 km area (i.e., 90 x 108 grid cells) and includes all major urban centers 

within southern Texas and the Texas Gulf Coast. 

In this dissertation, hourly ozone concentration data over one day (September 13, 

1999) was selected. In addition, in order to make use of the transportation and 

land cover information already derived, only grid cells falling into the study area 

for development intensity analysis was used, resulting in a 44 km x 48 km area 

containing 132 such 4km x 4km grid cells. Thus, the resulting dataset is a 132 (N) 

× 24 (T) panel with values indicating ozone concentrations in parts per million 

(ppm). Each of these grid cells is treated as a region (and also as an individual).  

The rule for defining ozone concentration levels is similar to the rule defining 

development intensity levels: the rule needs to be flexible and adaptable to the 

user’s needs and every category needs to contain enough observations so that 

each is well represented. Here, the values were categorized into 5 groups: values 

below 0.035 are assigned Level 1, values between 0.035 and 0.04 are Level 2, 

those between 0.04 and 0.45 are Level 3, those between 0.045 and 0.05 are Level 

4, and those above 0.05 are categorized as Level 5.18  

Figure 5.13 illustrates the continuous ozone concentration values and their 

corresponding levels using data between 4 and 5pm on September 13, 1999 as an 

example.  

                                                 
18 An area is designated as “non-attainment” when an 8-hour ozone concentration average exceeds 
0.08 ppm. Ideally, this might constitute a key response level; however, the sample data does not 
contain any observations with such a high concentration.  
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(a) Ozone Concentration Values (ppm) (b) Coded Concentration Levels 

Legend (a) Legend (b) 

 

 

Figure 5.13 Ozone Concentration Values and Corresponding Levels (4 to 
5pm on Monday, September 13, 1999) 

Table 5.4 shows the changing trend of ozone concentration levels during the 24 

hours: the levels are higher during daytime, especially in the afternoon, and 

lowest at night and in the early morning.  
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Table 5.4 Frequency of Ozone Concentration Level through a Day 

 Number of Grid Cells with Different Ozone Concentration Levels 
Hour 1 2 3 4 5 

0 2 130 0 0 0 
1 33 99 0 0 0 
2 55 77 0 0 0 
3 68 64 0 0 0 
4 93 39 0 0 0 
5 80 52 0 0 0 
6 88 44 0 0 0 
7 115 17 0 0 0 
8 119 13 0 0 0 
9 64 65 3 0 0 
10 0 46 86 0 0 
11 0 0 32 100 0 
12 0 0 0 103 29 
13 0 0 1 110 21 
14 0 0 1 88 43 
15 0 0 0 64 68 
16 0 0 0 79 53 
17 0 0 4 58 70 
18 0 0 0 17 115 
19 0 0 0 9 123 
20 0 0 6 58 68 
21 0 7 66 36 23 
22 1 43 87 1 0 
23 7 87 38 0 0 

Total 725 783 324 723 613 

5.3.2 Temperature Distribution 

Austin’s neighborhoods’ temperature information comes from the same EPA 

project datasets, provided by Dr. McDonald-Buller. This information was derived 
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using a revised MM519 model (CAPCO et al., 2004). Table 5.5 illustrates the 

distribution and changes in temperatures over the 132 cells and 24 hours. 

Table 5.5 Frequency of Temperature through a Day 

Number of Grid Cells at a Given Temperature 
°C 15* 16 17 18 19 20 21 22 23 24 25 26 27 Hour 
°F 59.0 60.8 62.6 64.4 66.2 68.0 69.8 71.6 73.4 75.2 77.0 78.8 80.6

0 0 0 0 72 60 0 0 0 0 0 0 0 0 
1 0 0 1 111 20 0 0 0 0 0 0 0 0 
2 0 0 6 126 0 0 0 0 0 0 0 0 0 
3 0 3 121 8 0 0 0 0 0 0 0 0 0 
4 0 60 72 0 0 0 0 0 0 0 0 0 0 
5 0 111 21 0 0 0 0 0 0 0 0 0 0 
6 51 81 0 0 0 0 0 0 0 0 0 0 0 
7 7 109 16 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 94 38 0 0 0 0 0 0 0 0 
9 0 0 0 0 4 128 0 0 0 0 0 0 0 
10 0 0 0 0 0 0 0 132 0 0 0 0 0 
11 0 0 0 0 0 0 0 0 108 24 0 0 0 
12 0 0 0 0 0 0 0 0 0 0 132 0 0 
13 0 0 0 0 0 0 0 0 0 0 132 0 0 
14 0 0 0 0 0 0 0 0 0 0 0 107 25 
15 0 0 0 0 0 0 0 0 0 0 0 132 0 
16 0 0 0 0 0 0 0 0 0 0 0 132 0 
17 0 0 0 0 0 0 0 0 0 0 16 116 0 
18 0 0 0 0 0 0 0 0 0 47 85 0 0 
19 0 0 0 0 0 16 116 0 0 0 0 0 0 
20 0 0 0 0 2 130 0 0 0 0 0 0 0 
21 0 0 0 74 58 0 0 0 0 0 0 0 0 
22 0 0 0 132 0 0 0 0 0 0 0 0 0 
23 0 56 76 0 0 0 0 0 0 0 0 0 0 

Total 58 420 313 617 182 274 116 132 108 71 365 487 25 

                                                 
19 The MM5 or PSU/NCAR mesoscale model was developed by the National Center for 
Atmospheric Research at Pennsylvania State University to simulate/predict mesoscale atmospheric 
circulation. 
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5.3.3 Transportation and Land Cover Information 

As introduced in Chapter 1, local traffic levels and land cover types may 

influence local ozone concentrations. Ideally, traffic counts and VMT by hour by 

cell would be available for use. These variables were not readily available (by 

time of day or for network links that are not coded or used in the region’s TDM’s 

network assignment routine), so the total length of street centerlines is used as a 

proxy for local VMT levels.  (In reality, multi-lane facilities typically have higher 

traffic levels and so on.) 

Land cover type influences ozone concentration because it contributes to both 

ozone generation (biogenic or anthropogenic) and deposition. Residential, 

commercial, transportation and industrial land (i.e., “developed” lands) may be 

categorized together, since they mainly contribute to anthropogenic emissions and 

their land cover materials may offer similar dry-deposition rates. Treed areas, 

brush, and agricultural land all contribute biogenic emissions and are expected to 

have similar dry deposition rates, so they may be aggregated as “vegetation.” 

Barren land and water, though having quite different dry deposition rates, only 

account for a small proportion of the land in the study area, and so have been 

grouped together, as “undeveloped land”, in order to avoid possible multi-

collinearity issues. 

The land cover information comes from the year-2000 satellite data provided by 

Dr. Parmenter (with 30 meter resolution). The month and day of this satellite data 

is September 3, very close to the model day, September 13. Hence, seasonality 

differences may be ignored. Based on this satellite data, fractions of the three 

aggregate land cover types described above were calculated. Furthermore, to 

account for variations in human activities and the effect of daylight (which can be 

influential to both ozone generation and deposition) across different times of day, 

these transportation and land cover fractions were interacted with several time-of-
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day indicators. Total street length was multiplied by an indicator for peak travel 

hours (i.e., 7:00 to 10:00 and 16:00 to 19:00) and non-peak hours (any other time 

of day); developed land was interacted with working hours (i.e., 8:00 to 17:00) 

and non-work hours; and, because plant activity is strongly influenced by the 

presence of daylight, vegetated lands were interacted with a “day time” indicator 

(6:00 through 18:00) an night-time indicator (18:00 through 6:00). The fraction of 

undeveloped land was used as the base case.  

5.3.4 Summary of Ozone Model Data 

The dataset used for the ozone concentration model contains 132 individuals (or 

regions, in this case) over 24 hours, providing a total of 3,168 data points. 

Explanatory variables include temperature, street lengths interacted with 

indicators for peak/non-peak hours, percentages of developed land interacted with 

indicators for work/non-work hours, and percentages of vegetated land interacted 

with indicators for day/night time conditions. Table 5.6 summarizes definitions 

and statistics of all these variables. The mean and standard deviation of the ozone 

concentration levels imply that the dependent variable values are well balanced 

(i.e., each level has adequate observations, also shown by Table 5.4). The large 

standard deviations of all explanatory variables (as compared to the mean values)  

indicate substantial data variability. 
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Table 5.6 Data Description for Ozone Concentration Level Analysis 

Variable Description Min Max Mean Std. 
Dev.

OZONE Ozone concentration level 1.00 5.00 2.91 1.47
TEMP Temperature (Centigrade) 15.35 27.05 21.01 3.73

PEAKTRAF 
Total length of street centerline 
(km) × indicator for peak travel 
hour 

0.00 208.93 19.99 37.76

NONPTRAF Total length of street centerline 
(km) × indicator for non-peak hour 0.00 208.93 39.99 45.32

WKDEV Percentage of developed land (%) ×
indicator for work hours 0.00 93.43 14.61 22.66

NWKDEV Percentage of developed land (%) ×
indicator for non-work hours 0.00 93.43 20.46 24.48

DTVEG Percentage of vegetation (%) × 
indicator for day time 0.00 98.59 33.81 35.69

NTVEG Percentage of vegetation (%) × 
indicator for night time 0.00 98.59 28.61 35.02

UNDEV Percentage of under land (%, hold 
as base case) 0.00 30.92 2.51 5.52

5.4 CHAPTER SUMMARY 

This chapter introduced the two distinct datasets used for model application, 

based on development intensity levels and ozone concentration levels over space 

and time. Sections 5.2 through 5.4 described in detail how all variables were 

derived, why they are expected to help explain land development and air quality 

dynamics, what these variables (statistically) look like, and what the potential 

data quality problems are.  

In the next chapter, these two datasets will be analyzed using the DSOP model, 

thereby quantifying the influence of the various explanatory variables while 

illuminating the nature and level of spatial autocorrelation.  
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CHAPTER 6. RESULTS OF DATA ANALYSIS 

6.1 INTRODUCTION 

This chapter applies the DSOP model to both datasets: land development intensity 

levels and ozone concentration levels. As noted in Chapter 3, explanatory 

variables for both analyses include temporally lagged latent variables and various 

contemporaneous variables.  

The following sections discuss estimation of both models and results. Estimates 

of parameter expected values and the statistical and practical significance of each 

variable are discussed. Finally, model estimates are used to predict response 

variables’ values under hypothetical scenarios. The predictions can be visualized 

via a “most likely” result and an “uncertainty index.”  

6.2 ESTIMATION OF LAND DEVELOPMENT INTENSITY 

LEVELS 

In this section, land development intensity levels are analyzed using the DSOP 

model. First, the number of burn-in samples is determined. Estimate means, 

standard deviations, posterior distributions, and their marginal effects are then 

calculated and discussed. The performance of the DSOP model is compared to 

those from simpler models; and, finally, one-step predictions are generated and 

evaluated in terms of their relative uncertainty.  

6.2.1 Estimation Results 

As discussed in Chapter 3, one important issue in using a Bayesian approach is 

deciding when or whether the estimation converges. Rigorous proof of 

convergence is a complicated topic, so here “convergence” is based on the trace 

of variable estimates. If after a certain number of iterations, parameter estimates 
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become stable, the estimation is designated as having converged. Results of 

iterations before this turning point are omitted and all inferences are drawn based 

on the converged iterations.  

Figure 6.1 shows several typical estimation traces (convergence patterns) for 

parameters in the development intensity model. These patterns are representative, 

and the traces of other parameter estimations are all similar to them.  

The model begins with diffuse priors and iterates 10,000 times. As observed in 

Figure 6.1, different parameters start “converging” after different numbers of runs. 

However, after 6000 runs, all traces appear stable, indicating an overall model 

convergence. Hence, the first 6000 runs were omitted (as a “burn-in” sample), 

and the model uses the latter 4000 runs to estimate parameter means and standard 

deviations, as shown in Table 6.1.   

(a) Trace of AIRTTβ AIRTT (b) Trace of λ  
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(c) Trace of ρ  (d) Trace of 1γ  
Figure 6.1 Convergence Patterns of Development Intensity Level Estimation 

According to the results, neighborhood population and worker counts do not have 

statistically significant impacts on land development intensity level. Average 

household income, by contrast, appears to generally boost the development 

intensity. Distances to major employers, CBD area, and the nearest airfield all 

have statistically and practically significant effects on land development: the 

farther the cells lie from these attractions, the less likely they are to develop 

intensely. Interestingly, distance to highway is estimated to have a negative 

marginal effect on intensity, implying that (in the study area) development is 

more likely to occur at locations far from major roads. Considering that distances 

to the CBD and major employers already have been controlled for, this result can 

be interpreted as such: after access to work and the region’s core is determined, 

developers tend to choose locations some distance away from the highway (and 

its noise, pollutants and safety issues). The result also suggests that locations with 

more neighborhood schools are more likely to be intensely developed while 

elevation is not a statistically influential factor, locations with steeper slopes are 

less attractive to land development.  
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Table 6.1 Estimation Results for Model of Land Development Intensity 

Levels 

Variable Mean Std. Dev. t-stat. 
POP -0.024 0.036 -0.668 

WORKER 0.089 0.067 1.327 
INC 0.019 0.002 9.143 

EMPTT -0.232 0.130 -1.778 
CBDTT -4.365 0.851 -5.126 
AIRTT -2.867 0.248 -11.550 
RDTT 2.309 0.385 6.001 

NSCHOOL 0.039 0.017 2.305 
ELEVXN -0.239 0.696 -0.343 
SLOPE -0.034 0.010 -3.394 

λ  0.561 0.019 30.005 
ρ  0.857 0.074 11.612 

2σ  0.871 0.222 3.931 
1γ  -0.834 0.011 -77.231 
2γ  2.235 0.031 71.393 
3γ  4.361 0.034 130.167 

Unlike slope coefficients in a standard linear model, the beta estimates for this 

model involving latent variables cannot be used directly to determine the 

magnitude of their influence. In addition, as Greene (2005) explains, parameter 

signs in a model of ordered categorical response only indicate changes in 

likelihood of the two extreme outcomes (y = 1 and 4). Therefore, detailed 

discussions on the overall effects of such factors are provided in Section 6.2.2. 

Another important estimation result is the practical and statistical significance of 

both the temporal autocorrelation coefficient (λ ) and the spatial autocorrelation 

coefficient ( ρ ). These suggest that prior-period information has a very important 

influence on the (current) latent variable’s value (mean λ =0.561) and that, even 

after controlling for various neighborhood characteristics, residuals remain 
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strongly and positively correlated across space (mean ρ=0.857). These results 

support the notion that land development decisions depend heavily on 

neighboring conditions, and that spatial relationships should be reflected in model 

specification.  

As a further confirmation, the mean values of regional specific error ( iθ ) 

estimates (and their statistical significance) are shown in Figure 6.2. A clustering 

pattern (where similar values tend to co-locate, rather than lie randomly 

distributed across space) is clearly visible in this figure, so the spatial 

autocorrelation of these regional-specific error terms was tested using Moran’s I 

(Moran, 1950), in ArcMap. It should be noted that the weight matrix used in 

ArcMap is based on the inverse of distance, not the contiguity approach used in 

this dissertation. And, or course, methodologically, Moran’s I is quite different 

from a Bayesian approach. Therefore, any similarity with ρ  may be limited to 

signs and general statistical significance.  
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Statistically  
Significant  
(at a 0.05  
significance level) 

 

Mean of θ  

 
Figure 6.2 Distribution of Region-Specific Error Term Estimates (θ ) for 

Land Development Intensity Levels 
As expected, the Moran’s I test results in ArcMap indicate clustering (i.e., 

positive spatial autocorrelation) of the θ  values, across space. (The Moran’s I 

value is very high: 0.56 with Z score of 6.7).  

Figure 6.3 shows the estimation results for variances of these individual specific 

errors ( iυ ). Except for downtown regions, where only a few grid cell observations 

exist per region, all variance estimates are statistically significant. “City edges” 

(i.e., areas between Austin’s central, highly developed area and the outer, less 
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developed areas) tend to have larger variances because these are where new 

developments are most likely to occur.  

Statistically  
Significant  
(at a 0.05  
significance level) 

 

 

Mean of iυ  

 
Figure 6.3 Distribution of the Variances of Individual Specific Error Term 

Estimates (υ ) for Land Development Intensity Levels 

Figure 6.4 shows the posterior distributions of all parameters, based on the final 

4000 runs. As also summarized in Table 3.1, all exogenous control variables are 

specified to follow normal posterior distributions. As expected λ  has a truncated 

normal distribution, ρ  has a non-standard distribution, and 2σ  follows a Chi 

square distribution. The posterior distributions of threshold parameters γ  are very 

interesting. In Chapter 3, they are shown to follow a normal distribution mixed 

with a multivariate uniform distribution. According to graphs (n) through (p) in 

Figure 6.4, the resulting distributions are multimodal. Additionally, as expected, 
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the shapes of γ s present some similarity, suggesting that their values are co-

dependent. This is to be expected: based on theγ  posterior distribution (as shown 

in Table 3.1), it is clear that sγ ’s left threshold depends on 1sγ −  and its right 

threshold depends on 1sγ + . This dependency can also be explained intuitively: the 

gap between sγ  and 1sγ +  determines the probability of y s= . In order to maintain 

a generally constant gap, the values of sγ  and 1sγ +  must move together.  

(a) Posterior Distribution of POPβ  (b) Posterior Distribution of WORKERβ  

(c) Posterior Distribution of INCβ  (d) Posterior Distribution of EMPTTβ  
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(e) Posterior Distribution of CBDTTβ  (f) Posterior Distribution of AIRTTβ  

(g) Posterior Distribution of RDTTβ  (h) Posterior Distribution of NSCHOOLβ  

(i) Posterior Distribution of ELEVXNβ  (j) Posterior Distribution of SLOPEβ  



 

121 

(k) Posterior Distribution of λ  (l) Posterior Distribution of ρ  

(m) Posterior Distribution of 2σ  (n) Posterior Distribution of 1γ  

(o) Posterior Distribution of 2γ  (p) Posterior Distribution of 3γ  
Figure 6.4 Posterior Distributions of Land Development Intensity Level 

Model Parameters 
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Table 6.2 shows the sample correlations between parameters, further illuminating 

the strong relationships across γ values. These results also indicate that the slope 

parameters for the population and number of workers variables are highly 

correlated (corr. = -0.93), suggesting that analysts may do well to remove one of 

these two highly correlated variables from the model specification. This problem 

is discussed in greater detail in Chapter 7.  

6.2.2 Model Comparisons 

Similar to Section 4.4, the performance of the DSOP model is compared to a 

standard ordered probit (OP) model, a dynamic ordered probit (DOP) model, and 

a spatial ordered probit (SOP) model. All these models were run using 10,000 

draws, with the first 6,000 draws omitted (as the burn-in sample).  

Table 6.3 summarizes the DIC values and prediction rates for each of these four 

specifications. In terms of model fit, it seems that no model is significantly better 

than the others. However, the DSOP model still outperforms all others, even after 

being penalized for using more parameters. Interestingly, while the OP model is 

unable to detect any spatial and temporal relationships in the dataset, its DIC 

values suggest it still may be preferred to the SOP and DOP models, thanks to its 

simpler/more parsimonious model specification. Of course, in terms of prediction 

rates the standard OP model only correctly predicts dependent values for 42.5% 

of the observations, and the SOP model increases this percentage to 47.8%. The 

DOP and DSOP models have quite close prediction rates: 48.7 and 48.8%. These 

results imply that, while considering dynamic and spatial patterns complicates the 

model specification and estimation process, the higher predictive accuracy may 

be worth the effort.  
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Table 6.2 Correlations between Parameter Estimates 

 
POP 

WOR-
KER INC EMPTT CBDTT AIRTT RDTT 

NSCH- 
OOL 

ELE-
VXN SLOPE λ  ρ  2σ  1γ  2γ  3γ  

POP 1.000 -0.993 0.193 0.028 0.070 0.112 -0.130 -0.096 -0.061 -0.015 -0.084 -0.055 0.028 -0.008 -0.029 -0.020 
WORKER -0.993 1.000 -0.174 -0.009 -0.057 -0.114 0.126 0.091 0.043 0.017 0.043 0.039 -0.030 0.024 0.035 0.034 

INC 0.193 -0.174 1.000 0.146 -0.077 0.325 -0.078 0.034 -0.330 -0.114 -0.320 -0.040 0.115 0.014 -0.075 0.031 
EMPTT 0.028 -0.009 0.146 1.000 -0.068 -0.365 -0.137 -0.002 0.042 0.002 -0.050 -0.011 0.019 0.205 0.116 0.174 
CBDTT 0.070 -0.057 -0.077 -0.068 1.000 -0.155 -0.434 -0.040 -0.256 -0.026 0.191 -0.017 0.004 0.108 0.111 0.144 
AIRTT 0.112 -0.114 0.325 -0.365 -0.155 1.000 -0.288 0.032 -0.054 -0.117 0.070 -0.059 0.017 0.069 0.030 0.044 
RDTT -0.130 0.126 -0.078 -0.137 -0.434 -0.288 1.000 0.019 -0.019 0.066 -0.095 0.052 0.011 -0.173 -0.132 -0.168 

NSCHOOL -0.096 0.091 0.034 -0.002 -0.040 0.032 0.019 1.000 -0.059 -0.036 -0.059 -0.006 -0.016 -0.016 0.007 -0.030 
ELEVXN -0.061 0.043 -0.330 0.042 -0.256 -0.054 -0.019 -0.059 1.000 0.022 0.046 -0.107 -0.034 0.141 0.133 0.068 
SLOPE -0.015 0.017 -0.114 0.002 -0.026 -0.117 0.066 -0.036 0.022 1.000 0.092 -0.007 -0.008 -0.051 -0.028 -0.058 
λ  -0.084 0.043 -0.320 -0.050 0.191 0.070 -0.095 -0.059 0.046 0.092 1.000 0.000 -0.066 -0.031 0.026 -0.016 
ρ  -0.055 0.039 -0.040 -0.011 -0.017 -0.059 0.052 -0.006 -0.107 -0.007 0.000 1.000 -0.261 -0.037 -0.044 0.010 

2σ  0.028 -0.030 0.115 0.019 0.004 0.017 0.011 -0.016 -0.034 -0.008 -0.066 -0.261 1.000 0.025 -0.029 0.056 

1γ  -0.008 0.024 0.014 0.205 0.108 0.069 -0.173 -0.016 0.141 -0.051 -0.031 -0.037 0.025 1.000 0.789 0.823 

2γ  -0.029 0.035 -0.075 0.116 0.111 0.030 -0.132 0.007 0.133 -0.028 0.026 -0.044 -0.029 0.789 1.000 0.544 

3γ  -0.020 0.034 0.031 0.174 0.144 0.044 -0.168 -0.030 0.068 -0.058 -0.016 0.010 0.056 0.823 0.544 1.000 

 

Note: Shaded values all exceed 0.5. 
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Table 6.3 Goodness of Fit and Prediction Rates using Different OP Model 

Specifications 

Actual y Value 

Models DIC Predicted 
y Value 1 2 3 4 

% Cases 
Correctly 
Predicted 

(%) 
1 1106 1417 179 47 
2 1354 3281 767 238 
3 165 780 435 237 DSOP 22587.9 

4 41 188 258 591 

48.8 

1 1120 1379 171 40 
2 1310 3237 750 236 
3 208 841 479 279 DOP 23080.3 

4 28 209 239 558 

48.7 

1 1080 1379 187 49 
2 1294 3261 778 252 
3 235 783 417 268 SOP 23091.3 

4 57 243 257 544 

47.8 

1 992 1606 258 57 
2 1307 2913 770 324 
3 273 822 371 299 OP 22800.0 

4 94 325 240 433 

42.5 

6.2.3 Marginal Effects 

Based on Chapter 3’s model specification, the marginal effects of explanatory 

variables X  on the probabilities of each outcome level can be defined as follows: 

( )ikt

iktq

P y s
x

∂ =
∂

1 1 1s ikt ikt i s ikt ikt i
q

i i

U X U Xμ λ β θ μ λ β θφ φ β
υ υ

− − −
⎛ ⎞⎛ ⎞ ⎛ ⎞− − − − −

= − ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 (6.1) 

This marginal effect indicates the effect that a one-unit change in explanatory 

variable xiktq has on the probability of different discrete outcomes, s. As 

mentioned in Section 6.2.1, the marginal effects on intermediate probabilities are 

not obvious at first glance, since a shift in the distribution can cause the 
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probability of intermediate response types to fall or rise, depending on the 

positioning of the average response (see, e.g., Wang and Kockelman, 2005). 

As Equation (6.1) suggests, one variable’s marginal effect is related not only to its 

own coefficient, but also to the values of all other coefficients. In addition, it can 

be inferred from Equation (6.1) that for each run, each observation and each 

period, there is a unique set of marginal effect values. With MLE, the marginal 

effects are often calculated using the final parameter estimates and average 

variable values. In this dissertation, the marginal effects are calculated separately 

for every observation in each period, and for every iteration. The results are then 

averaged to acquire a single, average response estimate, for every variable. 

Results obtained in this way are more reasonable and contain more information 

than single-equation results. This is an advantage of using the Bayesian approach: 

any derived statistics can be calculated on the heels of estimation. 

Table 6.4 shows the magnitudes of “one unit” of different variables relative to 

their standard deviations, along with estimates of final (average) marginal effects. 

As shown, when the neighborhoods’ average household income increases by 

$1,000, the sample population’s average probability of intense development 

increases by a mere 0.26% and the probability that it remains undeveloped falls 

by 0.523%. In other words, considering the growth rate of household income 

(approximately $1,300/year [Figure 5.3]), its effect on land development is 

practically negligible.  

When travel time to the nearest top employer increases by 10 minutes (0.17 hour) 

in all zones, the population’s average probability of remaining undeveloped is 

estimated to increase by about 1.1%, and Level 2 through Level 4 probabilities 

are estimated to fall by 0.1%, 0.4%, and 0.6%, respectively. Again, though 

statistically significant, this factor seems to have a negligible practical effect. 
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In contrast, travel time to the region’s CBD has an impressive effect: A 10 minute 

increase is linked to a 10% decrease in the probability of Level 4 development  

across the sample.  (The probabilities of Levels 2 and 3 also fall, while the 

probability of finding undeveloped land rises by 20%.) Obviously, in the study 

area, development tends to cluster around the CBD area, so distance to the CBD is 

a key variable. As also indicated by other, existing works (e.g, Kockelman, 1997, 

and Zhou and Kockelman, 2007), this distance-to-CBD variable seems to be more 

predictive than other measures of access.  

Travel time to an airfield appears to have a moderate has impact on land 

development: A 10 minute increase is associated with a decrease in developments 

Levels 2, 3, and 4 by 1.4%, 5.1%, and 6.4%, respectively. 

Travel time to highways is predicted to have the reverse impact: once the travel 

time to major employers, CBD and airfields are given, a 10 minute increase in 

travel time to a highway is associated with 4.1% more Level 2 development (very 

likely to be residential, commercial, or industrial, dotted with vegetation) and 

5.2% more Level 3 development (densely developed residential, commercial, or 

industrial land).  

The number of schools is also practically insignificant: one more school in the 28 

km2 (3 km radius) neighboring area is associated with outcome probability 

variations of less than 1%. 

Finally, a 10-degree increase in slope is estimated to be associated with 1.0%, 

3.6%, and 4.5% decreases in the probability of Level 2 through Level 4 

development, respectively. Considering that the average slope in the samples is 

only 2.7 degrees, the impact of slope is rather insignificant in practice. 
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Table 6.4 Average Marginal Effects of Covariates on Development Intensity 

Levels over All Observations 

Marginal Effect (×10-2)  
(Change in Response Probability) Variable Ratio to Std. 

Dev. 
Level 1 Level 2 Level 3 Level 4 

POP 0.092 0.652 -0.070 -0.257 -0.324 
WORKER 0.168 -2.417 0.261 0.955 1.201 

INC* 0.053 -0.523 0.057 0.207 0.259 
EMPTT* 8.529 6.309 -0.682 -2.492 -3.135 
CBDTT* 15.39 118.6 -12.87 -46.92 -58.80 
AIRTT* 8.634 77.86 -8.467 -30.84 -38.55 
RDTT* 13.65 -62.77 6.804 24.83 31.13 

NSCHOOL* 0.726 -1.048 0.114 0.415 0.519 
ELEVTN 16.39 6.429 -0.713 -2.515 -3.202 
SLOPE* 0.455 0.912 -0.099 -0.362 -0.451 

Notes: * indicates that the variable is statistically significant at the 0.05 level. Change in 
variable is one unit (e.g., 1 hour in case of travel times (TT)). “Ratio to Std. Dev.” is the 
ratio of one unit (e.g., 1 hour) to the standard deviation observed in the data set, for each 
variable.  

In addition to Table 6.4, Table 6.5 is provided, to illustrate the marginal effects of 

such covariates when evaluating the responses of a single, “average” data point 

Since spatial/neighborhood effects are important here, the “average observation” 

refers to an actual observation with values close to the sample mean values. (This 

differs from the usual, standard OP estimates, where the [hypothetical] unit of 

study enjoys exactly the mean or median values of all explanatory variables.) 

Values of explanatory variables for this observation are shown in Table 6.5, and 

compared to the sample mean values. As can be observed, for statistically 

significant variables, the marginal effects on Level 1 development for this 

“average observation” are close to the averages over all observations (Table 6.4). 

For Levels 2, 3 and 4, however, it seems that the marginal effects are generally 

higher for Level 2, and decrease with the development level. This is quite 

reasonable for this single point because its current intensity level is 1 and the 
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probability of its developing into Levels 3 or 4 is expected to remain low, despite 

the marginal changes in control variables’ values.  

Table 6.5 Marginal Effects of Covariates on Development Intensity Levels 

(Using One Observation) 

Marginal Effect (×10-2) 
(Change in Response Probability) Variable Sample 

Mean 
Observ. 
Value 

Level 1 Level 2 Level 3 Level 4
INTLV 1.108 0.000 --- --- --- --- 

POP 7.158 6.971 0.477 -0.254 -0.156 -0.067 
WORKER 3.777 3.795 -2.618 1.340 0.868 0.410 

INC* 56.33 69.33 -0.793 0.398 0.264 0.131 
EMPTT* 0.233 0.220 13.237 -6.678 -4.397 -2.162 
CBDTT* 0.143 0.152 154.6 -77.56 -51.49 -25.54 
AIRTT* 0.246 0.173 112.2 -56.41 -37.35 -18.45 
RDTT* 0.086 0.056 -87.85 44.05 29.27 14.53 

NSCHOOL* 1.208 1.000 1.265 -0.637 -0.420 -0.208 
ELEVTN 0.251 0.306 -1.543 0.775 0.513 0.255 
SLOPE* 2.699 2.767 -0.256 0.181 0.074 0.001 
Notes: * indicates that the variable is statistically significant at the 0.05 level. Change in 

variable is one unit (e.g., 1 hour in case of travel times (TT)).  

In summary, most of the contemporaneous variables are practically insignificant. 

This suggests that when developers make decisions, past land conditions 

(represented by the lagged, latent dependent variables) are a more important 

consideration than current conditions. However, current access levels and 

transportation conditions, (especially travel time to the CBD area) are highly 

influential, and one might expect that access is also a key concern in developers’ 

minds.   

6.2.4 Development Intensity Model Prediction 

One important application of this model is prediction of development intensities 

in the near future. This dissertation predicts future intensity levels for the 2,771 

grid cells in the selected sample areas. In the prediction scenario, population 
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doubles from year 2000. To reflect possible congestion, all travel times (to major 

employers, CBD, nearest airfield, and nearest highway) were increased by 30%.  

Similar to the calculation of marginal effects via a Bayesian approach, predictions 

can be achieved alongside model estimation. Over the final 4000 runs, (estimates 

of the) latent dependent variable values for the year 2000, estimated parameter 

and error term values, and control-variables for future scenario are used to 

generate future latent dependent variables. These latent variables then are 

compared to the threshold parameter values in each run, and development 

intensity levels for each location are calculated. Thus, for each of the 4000 draws 

and for each cell, there is a predicted development intensity level. The most 

common (frequently appearing) land development intensity levels in these 4000 

runs for each sampled cell are shown in Figure 6.5 (a). As expected, more 

intensely developed land appears around the downtown area. 

Of course, this single “most likely” pattern will not occur with a high likelihood. 

There is great flexibility and uncertainty in the future of these 2,771 grid cells. To 

help planners appreciate (and visualize) such uncertainty, an entropy statistic is 

used (see, e.g., Wang and Kockelman 2006, McKay 1995 and Kotz and Johnston 

1982). That is, the uncertainty associated with the set of 4 potential land covers in 

cell i  is specified as follows: 

( )
4

1

1 ln
ln(4)i is is

s
uncertainty P P

=

−
= ∑       (6.2) 

This formulation generates a value between 0 and 1 for each cell. The higher the 

value, the more uncertain the prediction for that cell. When all four future land 

development intensity levels have equal probabilities (Pis = 0.25 ∀ s), uncertainty 

entropy equals 1, indicating maximum uncertainty. When the same land intensity 

level emerges in all 4000 simulations, this uncertainty value is 0. As illustrated in 
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Figure 6.5 (b), higher uncertainty appears around the intermediate areas of the 

study area, or the central-city’s edge. At these locations, the potential for variation 

is relatively large, resulting in a higher degree of uncertainty.  

 
(a) Predicted Level  

(b) Prediction Uncertainty 

Figure 6.5 Most Likely Development Intensity Levels Prediction and 
Uncertainty (following an assumed doubling of population) 

Table 6.6 compares these predictions to the year 2000 situation while there is 

strong similarity between land intensity levels in the two scenarios, some 

regression is apparent (i.e., changes from higher intensity to lower intensity 

levels). This is to be expected since some locations are presently more developed 

than the model would expect. Moreover, some locations may lose their attraction 

due to increases in travel time.  

1 

2 

3 

4 
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Table 6.6 Comparison of Base Year and Predicted Land Development 

Intensity Levels 

Most Likely Intensity Levels 
in Future Scenario  

1 2 3 4 
Total 

1 374 103 0 0 477 
2 11 1280 22 5 1318 
3 0 166 344 27 537 

Base Year Intensity 
Levels 

(Year 2000) 
4 0 2 71 366 439 

Total 385 1551 437 398 2771 

Model predictions, together with the previous discussion of parameter estimates 

and marginal effects, illustrate some interesting characteristics of Austin’s land 

development dynamics. The next section discusses analysis of a related but very 

different data set (ozone concentration levels), which follows a highly similar 

estimation and evaluation procedure20. 

6.3 ESTIMATION OF OZONE CONCENTRATION LEVELS 

The estimation and analysis process for ozone concentration levels is similar to 

that for the land development intensity levels. As discussed earlier, burn-in 

samples are removed, based on the traces of estimates. Remaining values are 

summarized as means and standard deviations, together with their posterior 

distributions. Marginal effects of all variables are calculated and discussed, and 

predictions are carried out for a hypothetical scenario. 

6.3.1 Estimation Results 

As discussed in Section 3.4.3, since each region in the ozone dataset contains 

only one “individual.” Thus, individual-specific effects are assumed 

homoskedastic across regions. In addition, for the reasons discussed in Section 

                                                 
20  Model comparisons (with simpler OP, DOP and SOP specifications) are omitted, along with 
calculation of single-point marginal effects. 
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4.3.1, all variances of individual-specific error terms are set to equal 1.0, so these 

errors all follow standard normal distributions. 

Like the model for land development intensity, the model for ozone concentration 

level is initiated with diffuse priors. The total number of iterations is 8,000. As 

Figure 6.6 suggests, after 4000 runs all traces become stable, indicating 

convergence. Therefore, the first 4000 runs are omitted, and all inferences are 

drawn from results in iterations 4001 to 8000.  

(a) Trace of TEMPβ  (b) Trace of λ  

(c) Trace of ρ  (d) Trace of 3γ  
Figure 6.6 Convergence Patterns of Ozone Concentration Level Parameter 

Estimation 
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Table 6.7 shows parameter estimates based on the final 4000 runs. The estimation 

suggests that temperature has a statistically significant (and positive) effect on 

ozone concentration levels, as expected.  

Interestingly, during peak travel hours, the total length of streets in the area (in 

this case equal to road density, since area is constant across grid cells) has no 

statistically significant effect. However, during non-peak hours, higher road 

density is associated with higher levels. Though this finding is consistent with 

Loibl et al. (1994)’s conclusion that time of day is influential, this phenomenon is 

somewhat counterintuitive, and may be explained by a delay in the photochemical 

process for ozone generation and deposition: the process may require several 

hours to develop.  

Two other factors to consider are the fraction of developed land and vegetation. 

The fraction of developed land has the same effect during work and non-work 

hours. Vegetated land also has nearly the same effect day and night. These results 

indicate that, while land cover has a significant role, its effect is not instantaneous, 

possibly due to the time needed for the photochemical process. More details on 

these effects are provided in Section 6.3.2.  

The estimation also shows thatλ  has a fairly high value and is statistically 

significant, indicating that the latent dependant variable of the previous period 

plays an important role. The ρ  value is close to zero and slightly negative (on 

average) and is statistically insignificant, implying that the control variables 

adequately explain and spatial clustering in ozone concentration levels. The 

insignificance of this ρ  value seems to contradict conclusions of studies by Lin 

(2007) and Hancock (1994), as previously discussed.  
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Table 6.7 Estimation Results for Model of Ozone Concentration Levels 

Variable Mean Std. Dev. t-stat. 
TEMP 3.164E-01 1.410E-02 22.44 

PEAKTRAF 1.300E-03 1.900E-03 0.68 
NONPTRAF 4.900E-03 1.900E-03 2.58 

WKDEV -7.390E-02 5.200E-03 -14.21 
NWKDEV -7.360E-02 4.800E-03 -15.33 

DTVEG -6.020E-02 3.100E-03 -19.42 
NTVEG -5.910E-02 2.700E-03 -21.89 

λ  6.583E-01 1.230E-02 53.52 
ρ  -2.700E-03 1.874E-01 -0.01 

2σ  9.550E-02 2.480E-02 3.85 
1γ  -1.219E+00 8.710E-02 -13.99 
2γ  9.792E-01 5.800E-02 16.88 
3γ  2.462E+00 7.690E-02 32.02 
4γ  4.770E+00 1.040E-01 45.86 

As in Section 6.2.1, the values of estimated regional-specific errors (θi), and their 

statistical significance (t-statistic greater than 1.64) are shown, in Figure 6.7. As 

indicated by the low ρ value returned by the model, the θ  values seem to be 

randomly distributed across space (This result is supported by a Moran’s I of -

0.05, with a Z score of just 0.4).  
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Figure 6.7 Distribution of Regional-Specific Error Term Estimates (θ ) for 
Ozone Concentration Levels 

Posterior distributions of all parameters are shown in Figure 6.8. While the 

distributions for threshold parameters are multimodal as in the case of the 

development intensity results, the overall intervals are fairly narrow, offering 

statistically significant estimates. 

(a) Posterior Distribution of TEMPβ  (b) Posterior Distribution of PEAKTRAFβ  

Statistically  
Significant  
(at a 0.05  
significance level) 

 

 

Mean of θ  
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(c) Posterior Distribution of NONPTRAFβ  (d) Posterior Distribution of WKDEVβ  

(e) Posterior Distribution of NWKDEVβ  (f) Posterior Distribution of DTVEGβ  

(g) Posterior Distribution of NTVEGβ  (h) Posterior Distribution of λ  
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(i) Posterior Distribution of ρ  (j) Posterior Distribution of 2σ  

(k) Posterior Distribution of 1γ  (l) Posterior Distribution of 2γ  

(m) Posterior Distribution of 3γ  (n) Posterior Distribution of 4γ  
Figure 6.8 Posterior Distributions of Ozone Concentration Level Model 

Parameters 
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6.3.2 Marginal Effects 

As with the results of the development intensity analysis, marginal effects were 

calculated for each observation in each time period. The average values of these 

results are summarized in Table 6.8. 

One interesting result is the switch in signs of effects across ozone classes, 

presenting a “jumpy” pattern: Levels 1 and 4 share a consistent direction of 

change that opposes all others. This example highlights the fact that marginal 

effects for intermediate levels cannot be inferred directly from parameter signs 

when multiple observational units are involved.  

Table 6.8 Marginal Effects of Covariates on Ozone Concentration Levels 

over All Observations 

 Ratio to Std. 
Dev. 

Marginal Effect (10-2) 
(Change in Response Probability) 

Variable 0.268 Level 1 Level 2 Level 3 Level 4 Level 5
TEMP 0.026 -3.806 1.175 0.562 -1.653 3.723 

PEAKTRAF 0.022 -0.016 0.005 0.002 -0.007 0.016 
NONPTRAF 0.044 -0.061 0.019 0.009 -0.026 0.059 

WDEV 0.041 0.886 -0.274 -0.131 0.385 -0.867 
NWDEV 0.028 0.885 -0.273 -0.131 0.384 -0.865 
DLVEG 0.029 0.722 -0.223 -0.107 0.314 -0.707 
NTVEG 0.268 0.710 -0.219 -0.105 0.308 -0.694 

Notes: “Ratio to Std. Dev.” is the ratio of one unit (e.g., 1 ºC) to the standard deviation 
observed in the data set, for each variable.  

Table 6.8 indicates how temperature may be expected to influence ozone 

concentration levels. By increasing temperatures one degree centigrade, the 

probabilities of Levels 1 and 4 are expected to fall by 3.8% and 1.7%, 

respectively; and probabilities of Levels 2, 3 and 4 are estimated to increase by 

1.2%, 0.6%, and 3.7%, respectively. Considering that temperature can change by 

more than 10 degrees in a day, its effect is quite impressive.  
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The effect of street length, during both peak and non-peak hours, is negligible: 

even when lengths are increased by 20 km (roughly the current average), the 

corresponding change in different levels’ probabilities is less than 1.3%. This 

result suggests that traffic local intensities (as approximated using road density) 

may not influence ozone concentrations in Austin. This conclusion is somewhat 

counterintuitive, and different from most existing studies (e.g., Niemeier et al., 

2006, Wang et al., 2005, and Friedman et al., 2001). It could be due to winds 

shifting, emissions, and downstream ozone levels – as well as the importance of 

non-road emissions sources. Alternatively, it could that without considering 

capacity or number of lanes, the street length varaible cannot very well 

approximate traffic intensities. (For example, the presence of many short and 

narrow roads may suggest high total length but proxy for residential 

neighborhoods and relatively low traffic volumes.)  

The fraction of developed land has a significant (negative) influence. If this 

fraction increases by just 1%, the two extreme probabilities are estimated to 

change by around 0.9% (when computed using a sample average). The fraction of 

vegetated land has a similar effect: an increase of 1% suggests a 0.7% increase in 

Level 1 concentrations and a 0.7% decrease in Level 5 concentrations. While 

developed and vegetated lands may be expected to contribute more to ozone 

generation, they also may assist ozone deposition. Thus, their net effect, when 

compared to barren land and water, may be to decrease ozone concentration 

levels. Though more insightful reasons for explaining the effects of land cover 

cannot be given here due to insufficient understanding of the photochemical 

process, the statistical relationships provided by the model estimation are helpful 

enough for planners to associate land cover with air quality. 
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6.3.3 Ozone Model Prediction 

In this prediction scenario, cell/region temperatures are set to those at 0:00 to 1:00 

on September 13. The fraction of developed land in each grid cell is assumed to 

be 1.2 times that of its current value, and vegetated land is 0.8 times that of its 

current value. The “previous period” is 23:00 to 24:00 on September 13, so we are 

predicting just 1 hour forward in time. 

As with development intensity, the predictions are carried out during the model 

estimation. The only difference is that now the total number of alternatives is 5, 

instead of 4, so calculation of the uncertainty index needs to be modified 

accordingly. 

Graphs (a) and (b) in Figure 6.9 show the most likely predicted ozone 

concentration levels and each cell’s uncertainty index. Ozone concentration levels 

generated by CAMx for 23:00-24:00 on September 13 and 0:00-1:00 on 

September 14 are also shown, as graphs (c) and (d), for comparison.  

The prediction suggests almost no effect of land cover, which seems to contradict 

conclusions from several studies discussed in Chapter 1 (e.g., Wiedinmyer, 1999, 

Allen, 2002, and McDonald-Buller et al., 2001). Part of the reason for this finding 

is that the effects of developed land and land with vegetation are very similar. 

Therefore, increases in one offset reductions in the other. Since the land cover 

change has a negligible effect, and temporal dependencies (of the prior latent 

dependant variables) is strong, one expects a pattern lying somewhere between 

patterns shown in Figure 6.9’s graphs (c) and (d) which is clearly the case here. 

To some extent, this comparison validates the model.  

Graph (b) shows that higher uncertainties are associated with higher levels of 

ozone, but even the highest uncertainty is only around 0.75. A closer look at the 

data shows that the uncertainty is mainly caused by confusion or ambiguity 
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between Levels 2 and 3. Given the expectation that the predicted pattern should 

lie between cases (c) and (d), which are dominated by Levels 2 and 3, such 

confusion is quite understandable.  

6.4 CHAPTER SUMMARY 

This chapter presents the results of models for levels of Austin’s land 

development and ozone concentrations, using the DSOP model in a Bayesian 

framework. Estimates of the parameters’ posterior distributions are consistent 

with the formulations listed in Table 3.1. Parameter estimates, their marginal 

effects and model predictions disclose some interesting findings, which may help 

researchers and planners better understand Austin’s land development and air 

quality dynamics.  

The next chapter summarizes findings from this chapter, while offering a brief 

review of the DSOP model’s specification and estimation, and discussing 

limitations and potential extensions of this dissertation. 
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Figure 6.9 Prediction and Comparison of Ozone Concentration Levels  

(Note: No Levels 4 and 5 at these points in time.) 

 
 

 
(a) Most Likely Ozone Concentration 

Levels  
(b) Prediction Uncertainty (Entropy) 

 
 

(c) Ozone Concentration Levels on 
September, 13, 1999 (11pm to 

midnight) 

(d) Ozone Concentration Levels on 
September, 14, 1999 (midnight to 1am)
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CHAPTER 7. CONCLUSIONS 

7.1 SUMMARY 

Many transportation and land use studies involve latent (unobserved) variables 

exhibiting underlying spatial interactions and temporal dependency patterns. 

Examples include destination and location choices, crash counts (over a network), 

and pavement deterioration levels. These examples all present two common 

features. First, the variables of interest are indicators or censored versions of 

unobserved variables. Second, they all exhibit certain degrees of temporal and 

spatial autocorrelation. Such phenomena also exist in other fields, like ecology, 

biology and anthropology. To capture these temporal and spatial patterns and 

accurately estimate the impacts of potentially influential factors, a rigorous 

statistical method for analyzing such data is needed. The dynamic spatial ordered 

probit (DSOP) model established in this dissertation meets this need.  

The DSOP model analyzes ordered response data based on latent variables 

exhibiting and spatial dependencies as well as individual heterogeneity. This 

dissertation makes three major contributions to the methodological development 

of spatial econometrics. First, the model incorporates spatial effects by allowing 

for both regional spatial interactions and heteroskedasticity across observations 

from different regions. Second, the model allows for an AR(1) process via the 

latent, lagged dependent variable, thus recognizing dynamic features. Third, when 

compared to existing spatial discrete choice models, the DSOP model is the first 

to emerge from an ordered probit model, where multiple levels of ranked 

categorical data can be analyzed.  

The models developed here were estimated in a Bayesian framework using 

MCMC sampling and data augmentation techniques (to generate the 

autocorrelated latent variables). The estimation process approximates the 
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parameter set’s joint probability using a set of conditional distributions. To 

achieve this, proper prior distributions for parameters and nuisance terms (latent 

dependent variables and variances) were assumed and their posterior distributions 

then derived. These posterior distributions include common distributions (like the 

truncated normal and chi square), mixture distributions (combining a normal and 

multivariate uniform), and nonstandard distributions (offering no closed-form 

expressions for hyperparameters). Matlab code was developed to draw from these 

distributions.  

As noted in Chapter 2, one advantage of a Bayesian approach to model estimation 

is that the program code can be conveniently adapted to other model 

specifications, if they include some conditional distributions in the same form. 

For example, the drawing method derived and programmed here can be rather 

easily modified for other latent variable models, including count data and 

continuous responses with temporal dependencies and spatial autocorrelation.  

The DSOP model specification and estimation methods were first validated (in 

Chapter 4) using 70 simulated datasets, for each of the 12 parameter sets. The 

results produced estimates that are quite close to true values. The comparison 

with a standard ordered probit model highlighted the accuracy of the DSOP 

model, while recognizing report temporal and spatial autocorrelation patterns.  

The DSOP model then was applied to two Austin, Texas datasets, one for urban 

land development and the other for air quality. The first dataset involves 

development intensity levels derived from satellite images with controls for 

socioeconomic and topographic information (derived from several other sources). 

The data integration process itself is another contribution of this dissertation, as it 

suggests how to align remotely sensed data with various traditional data sources 

across both temporal and spatial coordinates. The second dataset involves ozone 

concentration levels, with controls for transportation access and infrastructure, 
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land cover conditions, and temperature. This long panel dataset (T=24) illustrates 

how the DSOP model can be used with datasets in which spatial interaction 

occurs across all individuals ( 1in = , ∀  region i).  

Analysis of these empirical databases discloses several important findings. In the 

case of land development intensity levels, the temporal autocorrelation coefficient 

is highly practically and statistically significant. This implies that when 

developers make decisions, the existing land conditions (represented by 

temporally lagged latent dependent values), is the determining consideration. 

Other control variables have much smaller marginal effects, suggesting that an 

AR(1)-type approach with spatial lags can be key to land development prediction. 

Estimates of transportation conditions, especially travel time to the CBD area, do 

seem to have a significant impact on land development choices, highlighting the 

important role of access. Even after controlling for neighborhood characteristics 

and lagged latent response levels, estimation residuals are high in this model, and 

positively correlated across space. This statistical result confirms the common 

intuition that land development tends to cluster rather than randomly distributed 

in space. In addition, as discussed in Chapter 2, the recognition of this effect 

avoids problems such as biased estimates and overestimated precision due to 

omission of spatial effects.  

As expected, the model’s application to the ozone concentration data revealed a 

highly continuous process: levels during one period are mainly determined by the 

values from the previous period, with mean temporal lag coefficient as high as 

0.66. Temperature is another very influential factor while transportation and land 

cover were not very helpful. In addition, their mild effects are not instantaneous. 

The coefficient on the spatial error matrix was close to zero in this case, further 

implying that the temporal lagged utility and temperature adequately explain the 

changing ozone levels predicted by the CAMx model. 
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7.2 LIMITATIONS AND EXTENSIONS 

This dissertation research sought to thoughtfully incorporate temporal and spatial 

relationships in models of ordered categorical response data. Due to limitations on 

time and data, more general model specifications and several potential 

applications were not realized. Several extensions of this work exist, as described 

below. 

The most radical modification and meaningful extension of this work is a 

specification that accommodates unordered categorical response data. This 

extension may involve random utility maximization theory. Unlike the case of 

ordered data, such analysis typically requires one equation for each alternative. In 

other words, for each observation in each period, there will be a set of equations. 

This may appear similar to a seemingly unrelated regression (SUR) model of 

latent variables. It is expected that a dynamic spatial model for unordered 

categorical data will be much more complicated than the DSOP model, but its 

application will be broader. Fruhwirth-Schnatter and Wagner (2006) and Scott 

(2004) provide algorithms for calculating the multinomial logit model (MNL) 

with data augmentation techniques in a Bayesian framework. Wang and 

Kockelman (2006a) proposed a 3-step method that is methodologically similar to 

MCMC sampling21, for estimating SUR models with spatial and temporal 

dependencies. These studies may be incorporated within the existing DSOP 

model code, providing a way to analyze unordered categorical response data with 

temporal and spatial dependencies.  

Another area for enhancement recognizes that the specifications calibrated here 

relied on contiguity matrices, rather than more complex measures of inter-
                                                 
21 Wang and Kockelman (2006a) specified conditional maximum likelihood estimators (MLE) for 
different sets of parameters. These conditional distributions are iterated until convergence. From 
this perspective, the estimation procedure can be viewed as a mixture of traditional MLE and 
MCMC sampling, though their method maintains a frequentist perspective. 
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observational distances. As discussed in Chapter 2, following row-standardization 

a contiguity matrix is not inferior to a distance-decay matrix. Contiguity matrices 

still permit the autocorrelation to permeate the database (as long as all regions 

eventually touch via a series of neighbors), while allowing analysts the speed and 

convenience of sparse matrix algorithms. However, for cases where the weight 

matrix is not row-standardized (for example, when non-standardized values 

ensure stationarity of the spatial process, or the original economic/behavioral 

meaning of inter-element relationships needs to be kept), distance-decay matrices 

will clearly differ. Future study might well address the differences between these 

methods, including differences in their computational efficiencies, influence on 

the model goodness of fit, and results interpretation.   

Another issue relates to variable gaps in land use data sets. The four time data 

years are 1983, 1991, 1997, and 2000, with gaps of 8, 6, and 3 years, respectively. 

Intuitively, when the gap is longer, the temporal dependencies should be weaker. 

A more appropriate model specification would control for gaps variations in 

someway. This research ignores the difference in time gaps and uses a single 

temporal coefficient (λ ) across all periods. One possible extension of this study 

is to capitalize on time series data analysis methods for variable gap lengths, to 

try and avoid such issues. For example, one approach may be to express the 

temporal coefficient as an exponential function of the time gap. 

Another extension relates to long-term forecasting. The applications described in 

Chapter 6 predict one period forward. It will be useful to explore multi-period 

forecasts and their associated uncertainty. It may be useful to treat a large time 

gap as one long period, with adjustments to the temporal coefficient,λ . 

Alternatively, one can do one-period-forward forecasting repeatedly, until the 

desired year’s projection is achieved. Such forecasting can be carried out multiple 

times, and the associated uncertainty (across all potential, discrete responses) can 
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be evaluated using entropy statistics. Another important application relates to 

extending the data set’s cross-sectional scope: how can latent utilities for out-of-

sample observations be derived and what the associated uncertainty will be.   

In spatial analysis, a common issue is the modifiable areal unit problem (MAUP). 

This dissertation determines individual and region units based on existing zone 

structures and computational considerations. This process, though flexible and 

adaptable to user needs, is somewhat arbitrary and lacks theoretical substantiation. 

In fact, estimation with more aggregate observational units tends to indicate lower 

spatial autocorrelation. Future research may examine how the choice of spatial 

unit (e.g., 30 m cells vs. 300 m cells) influences estimation results. This may 

prove particular useful in applications of satellite information, where data quality 

and results are sensitive to resolution levels. Such research may be able to suggest 

optimal observational units, so that spatial information can be maximally 

explored and estimation results best explain reality. 

As mentioned in Chapters 3 through 6, diagnosing convergence in a Bayesian 

setting is a complicated issue. This dissertation uses traces of parameter estimates 

to ascertain convergence. Ideally, existing convergence criteria (e.g., Gelman and 

Rubin 1992, and Cowles and Carlin, 1996) should be compared and the most 

suitable one used to better ensure appropriate burn-in period.  

The DSOP model specification includes a temporal lag of the latent dependent 

variable and a spatial lag of the regional-specific error terms. A more general 

model specification could include temporal and spatial lags of both dependent 

variables and error terms. Such an extension would prove interesting and useful, 

though much more complicated. Potential difficulties include finding a proper 

formulation to combine spatial and temporal autocorrelations, ensuring parameter 

identifiability, and interpreting results. 
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The prediction scenario tested here are highly hypothetical. Alternatively, a 

prediction may be carried out for more realistic scenarios (For example, in the 

development intensity model, using year 2005’s actual explanatory variable 

values would facilitate “prediction” of year 2005’s intensity levels). The 2005 

“prediction” can be compared to the observed situation, serving as another 

method of model validation.  

The ozone dataset includes a total of 132 grid cells with 4km space resolution, 

and the estimation suggests no spatial autocorrelation. However, this n=132 

sample size may be too small to discern clustering and other patterns of spatial 

autocorrelation. More importantly, both dependent and explanatory variables in 

the ozone dataset are derived from CAMx model predictions, rather than actual 

ozone measurements across Austin. In the future, predictions for a larger-scale 

area should be tried, and if possible, observed ozone concentration data should be 

collected and used, though such sites are generally few22. The results from using 

real data should be compared to those from the CAMx model to further validate 

this statistical method. 

Data availability problems are mentioned several times in this dissertation. Of 

course, the main intent of this study is to offer new methods to assist analysis and 

policy making. To better assist in the use of the models’ empirical results, more 

policy-related factors (such as land development constraints, congestion tolls, and 

vehicle inspection/maintenance plans) should be acquired and incorporated into 

the model. Moreover, as indicated in Chapter 6, there appears to be too-high 

correlation between population and number of workers variables in the model of 

development intensity levels. To some extent, this problem compromises the 

                                                 
22 In practice, sampling sites are very scarce. For example, the study area has only two such sites 
on September 13, 1999 (and seven in June 2007) (TCEQ, 2007). For San Francisco Bay Area 
basin, the number is 23 in 1999 and 22 in 2007 (CARB, 2007). 
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validity of the estimation results, at least on these variables’ associated slope 

coefficients. Certainly, one of these two variables should probably be left out of 

the final specification.  

Data quality, especially when based on remotely sensed, reconfigured, and 

classified data is used, is another key issue to be explored. This study uses land 

cover information originally at 30 m resolution, then aggregated and re-

interpreted at 300 m resolution. Errors in the original data, as well as errors 

incurred from the aggregation and categorization process, should all be assessed. 

Implications of this process also should be discussed and justified.   

Another extension of this study is to improve the Matlab code. As discussed in 

Chapter 1, spatial data is often large-scale and memory intensive (Nelson and 

Geoghegan, 2001). The computation time with the current code is acceptable, but 

not ideal: for the development intensity analysis (N=2771, M=57, and T=8), an 

Intel 1.66GHz CPU required about 3.5 hours; for the ozone concentration level 

analysis (N=M=132 and T=24), the same computer required about 2 hours. Better 

data structure and functions can be utilized to enhance the speed. User-friendly 

interfaces also can be added. 

7.3 CONCLUDING REMARKS 

Response variables of interest often appear in the form of ordered categorical data, 

and these data may exhibit temporal and spatial dependencies. Many such 

examples can be found in transportation-related studies. This dissertation’s 

dynamic spatial ordered probit (DSOP) model captures patterns of spatial and 

temporal autocorrelations for ordered response data. The model is estimated using 

MCMC sampling in a Bayesian framework. This brand new DSOP model appears 

to successfully capture temporal and spatial patterns in distinct datasets while 
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quantifying effects of various explanatory variables. It offers a valuable 

framework for rigorously analyzing relationships in such complicated situations. 

This study also renders some general insights into the pragmatic advantages of a 

Bayesian framework over a frequentist method23. For this type of work, the 

Bayesian approach appears more straightforward and much easier to apply than 

maximum (simulated) likelihood estimation (MSLE). Especially for models 

involving complicated statistical distributions and multi-layered specifications (as 

with the DSOP model), the advantage of a Bayesian framework is evident. By 

using “conditional” distributions, the Bayesian approach decomposes the joint 

estimation of many variables into much simpler, sequential simulations. In 

contrast, maximum (simulated) likelihood estimation (MSLE) must tackle an 

intractable likelihood function (and its gradients and possibly its Hessian matrix, 

with respect to the parameter set) (see, e.g., Wang and Kockelman [2006c]). With 

a Bayesian framework, a slight change in model specification only requires 

modifying a part of the simulation procedure. With MSLE, on the other hand, the 

model estimation method may need to be completely overhauled. However, the 

Bayesian approach also has its limitations. For example, in this study, because the 

estimation involves simulating latent variables and one (multivariate) posterior 

distribution (for threshold terms) is multimodal, marginal effects and the model’s 

goodness of fit need to be calculated simultaneously with the simulation. 

Otherwise, if an indicator (such as the deviance information criterion) needs to be 

obtained afterwards, the model must be completely rerun, which can be rather 

time consuming.  

                                                 
23  Of course, much has been written (e.g., Geweke, 1993; Gelman et al., 2004; and Koop et al. 
2007) about the differences in classical and Bayesian statistical viewpoints. Much of the 
discussion is somewhat “philosophical” in nature, and “superiority” has never been conclusively 
determined (Gelman et al., 2004). 
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Finally, this dissertation demonstrates how to use satellite data meaningfully, in 

land development and air quality analysis. This provides inspiration for tapping 

the potential of satellite databases. As more frequent and accurate satellite images 

become available, this evolving data source will be used for far more extensive 

topics, such as global climate changes, loss of Amazon rainforest, Africa’s 

desertification, human migration, and even real-time traffic condition forecasting. 

It is important that transportation researchers and others begin to unleash the 

potential of these data sets, by recognizing the spatial relationships that exist and 

by exploiting their presence. 
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APPENDIX A. DERIVATION OF 

HYPERPARAMETERS FOR β’S CONDITIONAL 

POSTERIOR DISTRIBUTION 

Section 3.3.4.1 outlines the derivation of β ’s conditional posterior distribution, 

but leaves further details about calculating its hyperparameters for this appendix. 

Since the calculation of θ , λ  and U ’s hyperparameters uses a similar method, it 

is important to understand how  this step is derived (i.e., how Equation (3.42) 

leads to (3.43)). As a supplement, this appendix provides the details for the 

hyperparameters’ calculation.  

According to Equation (3.42),  

( ) ( ) ( ) ( ) ( )1 11 1exp
2 2

p λ λ− −⎡ ⎤′′∝ − − − − − − − −⎢ ⎥⎣ ⎦
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The term inside the exponential function can be simplified as following: 

( ) ( ) ( ) ( )1 11
2

λ λ− −⎡ ⎤′′− − − + − − − −⎢ ⎥⎣ ⎦
β β θ β θ βc H c U X U XΔ Ω Δ  

( )
( ) ( ) ( )
( )

1 1 1 1

1 1

1 1

1
2

λ λ λ

λ

− − − −

− −

− −

⎡ ⎤′ ′′ ′− −⎢ ⎥
⎢ ⎥⎛ ⎞′= − ⎢ ⎥′ ′− − − −⎜ ⎟⎢ ⎥+⎜ ⎟⎢ ⎥′⎜ ⎟′ ′− −⎢ ⎥⎝ ⎠⎣ ⎦

β β β β

θ θ β θ

θ β β β

H c H H c+ c H c

U U X U

U X + X X

Δ Ω Δ Ω Δ

Δ Ω Ω

  (A.1) 

Using C  to indicate all items that do not involve β  (i.e., constant terms with 

respect to β ), then Equation (A.1) can be further simplified to 
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Letting 1 1− −′A = X X + HΩ  and ( )1 1λ− −′ − θb = X U + H cΩ Δ , then Equation 

(A.2) can be expressed as follows: 
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From Equations (A.1), (A.2) and (A.3), it can be obtained that 
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which is Equation (3.43). 
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APPENDIX B. DERIVATION OF 

HYPERPARAMETERS FOR iktU ’S CONDITIONAL 

POSTERIOR DISTRIBUTION 

This appendix shows details of this calculation for iktU ( ,i k∀ , 0 t T< < ) and 

explains how Equation (3.74) leads to (3.77). 

The second item (un-truncated part) in Equation (3.74) is 
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Just as Equation (3.77) shows, this is a normal distribution with mean  
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APPENDIX C. MATLAB CODE FOR THE CORE 

COMPONENT OF THE DSOP MODEL 

This appendix provides Matlab code for the DSOP model’s main function (i.e. the 

function that achieves iterative sampling). This part of the Matlab code represents 

the major contribution of this study. Of course, the code used to complete this 

dissertation is far more extensive than this main function, but other parts of the 

code are not presented here because they are already well understood and not very 

inspiring. The un-presented code includes sub-modules for reading data, printing 

results, generating simulated sample data, calculating deviance information 

criteria (DIC), calculating parameters’ marginal effects, predicting future 

dependent variable values and generating graphs. 

The function also uses various established routines. Most of these routines are 

built in Matlab. All others can be found from LeSage’s (1999) spatial 

econometric toolbox (http://www.spatial-econometrics.com), including the 

following: 

• norm_rnd: generating random vectors from multivariate normal 

distribution. 

• chis_rnd: generating random numbers from chi-square distribution. 

• normt_rnd: generating random numbers from truncated normal 

distribution. 

• draw_rho: updating ρ  via univariate numerical integration. 

• semip_eigs: computing eigenvalues for the weight.  

• semip_parse: parsing input arguments. 



 

168 

• semip_lndet: computing the log determinant of ρB . 

The following is the main function for the DSOP model estimation, showing how 

the parameters and variables are iteratively sampled:  

 
function results=DSOP(y,x,W,T,M,mobs,nS,ndraw,nomit,prior) 
  
% Prepare prior and matrix determinant values for the range of 
rho values 
[c,H,lamda0,D,sige,alpha,tao,rval,b,G,rho,rmin,rmax,a0,d0,ldetfla
g,metflag,eflag,order,iter,detval,inform_flag]=semip_parse(prior,
n,nS,k); 
[rmin,rmax,time1]=semip_eigs(eflag,W,rmin,rmax,M); 
[detval,time2]=semip_lndet(ldetflag,W,rmin,rmax,0,order,iter); 
rv=detval(:,1); 
nr=length(rv); 
  
% Storage for draws 
bsave=zeros(ndraw-nomit,k); 
thetasave=zeros(ndraw-nomit,M); 
lamdasave=zeros(ndraw-nomit,1); 
psave=zeros(ndraw-nomit,1); 
ssave=zeros(ndraw-nomit,1); 
vsave=zeros(ndraw-nomit,M); 
gamasave=zeros(ndraw-nomit,nS+1); 
     
% Give initial values and compute commonly used terms 
L=zeros(N,M); 
cmobs=0; 
    for m=1:M 
    L(cmobs+1: cmobs+mobs(m),m)=1; 
    cmobs=cmobs+mobs(m); 
    end 
delta=kron(ones(T,1), L); 
HI=inv(H); 
HIc=HI*c; 
DI=inv(D); 
DIlamda0= DI*lamda0; 
d0I=inv(d0); 
d0Ia0=d0I*a0; 
U=y;  
U0=zeros(N,1); 
U1=[U0;U(1:(T-1)*N)]; 
invomega=ones(N*T,1); 
invV=ones(N,1); 
Bp=eye(M); 
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theta=ones(M,1); 
lamda=0; 
  
% Start sampling 
iter=1; 
          while (iter <= ndraw);  
          % Update beta    
          srtinvo=sqrt(invomega); 
          xs=kron(ones(1,k),srtinvo).*x; 
          Ainv=inv(xs'*xs + HI); 
          Ulamda=U-lamda*U1; 
          zmt=srtinvo.*(Ulamda-delta*theta);                  
          bb=xs'*zmt + HIc; 
          Ainvb=Ainv*bb; 
          bhat=norm_rnd(Ainv) + Ainvb;  
  
           % Update theta  
           delome=kron(ones(1,M),srtinvo).*delta; 
           Athetainv=inv((1/sige)*Bp'*Bp + delome'*delome); 
           ztheta=srtinvo.*(Ulamda-x*bhat); 
           btheta=delome'*ztheta ;   
           Abtheta=Athetainv*btheta  ; 
           theta=norm_rnd(Athetainv) + Abtheta ;           
  
          % Update lamda 
          Alamda=0; 
          blamda=0; 
          srtinvV=sqrt(invV); 
          Ltheta=L*theta; 
          for t=1:T 
                index=N*(t-1)+1; 
                indexN=N*t; 
                uvsrinv=srtinvV.*U1(index:indexN,:); 

zvsr=srtinvV.*(U(index:indexN,:)-
x(index:indexN,:)*bhat-Ltheta); 

                Alamda=Alamda+uvsrinv'*uvsrinv ; 
                blamda=blamda+uvsrinv'*zvsr; 
          end 
          Alamda=inv(Alamda+DI); 
          blamda=blamda+DIlamda0; 
          Alf=Alamda*blamda; 
          lamda=normt_rnd(Alf, Alamda, -1,1); 
  
          % Update rho (using univariate integration) 
          C0=theta'*theta; 
          Wtheta=W*theta; 
          C1=theta'*Wtheta; 
          C2=Wtheta'*Wtheta  ;      
          rho=draw_rho(detval,C0,C1,C2,sige,rho); 
          Bp=eye(M) - rho*W;  
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          % Update sige 
          term1=theta'*Bp'*Bp*theta + 2*tao; 
          chi=chis_rnd(1,M + 2*alpha); 
          sige=term1/chi;  
           
          % Update vi (and form invomega, invV) 
          cobs=0; 
          for i=1:M 
            obs=mobs(i,1); 
            Tee=0; 
            for t=1:T 
                index=N*(t-1)+cobs; 
                e=Ulamda(index+1:index+obs)-

x(index+1:index+obs,:)*bhat-ones(obs,1)*theta(i); 
                ee=e'*e;           
                Tee=Tee+ee; 
            end;         
            chi=chis_rnd(1,rval+obs*T); 
            vi(i,1)=(Tee + rval)/chi; 
            invV(cobs+1:cobs+obs,1)=ones(obs,1)/vi(i,1); 
            cobs=cobs+obs; 
          end           
          vi=vi/vi(1,1); 
          invV=invV*vi(1,1); 
          invomega=kron(ones(T,1), invV);        
           
          %Update gama 
          for s=2:nS 
            inds=find (y(1:N*T)==s-2); 
            inds1=find (y(1:N*T)==s-1);     
            inf=max([gamahat(s-1) max(U(inds))]); 
            sup=min([gamahat(s+1) min(U(inds1))]); 
            gamahat(s)=normt_rnd(b(s),G(s,s),inf,sup); 
          end; 
        
          %Update U0  
          cobs=0; 
           for i=1:M 
              AU0=inv(lamda^2/vi(i,1)+d0I); 
              parbu0=lamda/vi(i,1); 
              obs=mobs(i); 
              for j=1:obs 
                index=cobs+j;                 

bU0=parbu0*(U(index)-theta(i)-
x(index,:)*bhat)+d0Ia0; 

                AbU0=AU0*bU0; 
                U0(index)=norm_rnd(AU0)+AbU0;                      
              end 
             cobs=cobs+obs; 
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          end 
           
          cobs=0;          
          %Update Ut, t is 1           
          for i=1:M 
               obs=mobs(i); 
               bUt=vi(i,1)/(1+lamda^2); 
               for j=1:obs 
                  index=cobs+j; 
                  indexN=N+index; 
                  aUt=(lamda*U(indexN)+lamda*U0(index)+(1-

lamda)*theta(i,1)+(x(index,:)-
lamda*x(indexN,:))* bhat)/(1+lamda^2); 

                 for s=0:nS-1 
                    if (y(index)==s) 

U(index)=normt_rnd(aUt,bUt,gamahat(s+1),ga
mahat(s+2)); 

                    end 
                  end 
               end 
                cobs=cobs+obs; 
          end   
             
          %Update Ut, t is between (2, T-1)   
           for t=2:T-1 
               cobs=0;          
             for i=1:M                
               bUt=vi(i,1)/(1+lamda^2); 
               obs=mobs(i); 
               for j=1:obs 
                   index=cobs+j; 
                   indexN=t*N+index; 
                   indexN1=indexN-N; 
                   indexN2=indexN1-N; 
                   aUt=(lamda*U(indexN)+lamda*U(indexN2)+(1-

lamda)*theta(i,1)+(x(indexN1,:)-
lamda*x(indexN,:))* bhat)/(1+lamda^2); 

                    for s=0:nS-1 
                     if (y(indexN1)==s) 

U(indexN1)=normt_rnd(aUt,bUt,gamahat(s+1),
gamahat(s+2)); 

                     end 
                    end 
                end 
                cobs=cobs+obs;   
              end                               
           end  
                
          %Update UT 
           t=T; 
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           cobs=0; 
           for i=1:M 
               obs=mobs(i); 
               for j=1:obs 
                   index=cobs+j; 
                   indexN=t*N+index; 
                   indexN1=indexN-N; 
                   indexN2=indexN1-N; 

aUTf=(lamda*U(indexN2)+theta(i,1)+x(indexN1,:
)* bhat); 

                   for s=0:nS-1 
                    if (y(indexN1)==s) 

U(indexN1)=normt_rnd(aUTf,vi(i),gamahat(s+1
),gamahat(s+2)); 

                    end 
                   end  
                end 
            cobs=cobs+obs; 
           end  
 
       U1=[U0;U(1:(T-1)*N)];    
  
    if iter>nomit  
        bsave(iter-nomit,1:k)=bhat'; 
        thetasave(iter-nomit,1:M)=theta'; 
        lamdasave(iter-nomit,1)=lamda; 
        psave(iter-nomit,1)=rho; 
        ssave(iter-nomit,1)=sige; 
        vsave(iter-nomit,1:M)=vi'; 
        gamasave(iter-nomit,1:nS+1)=gamahat'; 
     end;  
  
    iter=iter+1;  
end; 
  
results.bdraw=bsave; 
results.thetadraw=thetasave; 
results.lamdadraw=lamdasave; 
results.pdraw=psave; 
results.sdraw=ssave; 
results.vsave=vsave; 
results.gama=gamasave; 
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