
 

 

 

 

 

 

 

 

 

Copyright 

by 

Shruthi Viswanath 

2014 

 

 

  



The Dissertation Committee for Shruthi Viswanath  
Certifies that this is the approved version of the following dissertation: 

 

 

Scoring Functions for Protein Docking and Drug Design 

 

 

 

 

 
Committee: 
 

Ron Elber, Supervisor 

Daniel Miranker 

Pengyu Ren 

Donald Fussell 

Risto Miikkulainen 



SCORING FUNCTIONS FOR PROTEIN DOCKING  
AND DRUG DESIGN 

 

 

by 

Shruthi Viswanath, B.Tech.Info.Tech. 

 

 

 

Dissertation  

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

 in Partial Fulfillment  

 of the Requirements 

for the Degree of  

 

DOCTOR OF PHILOSOPHY  

 

 

The University of Texas at Austin 
May 2014 

  



Dedication 

 

To my family. 

To all dedicated and inspiring teachers. 

 

 



 v 

Acknowledgements 

 

Firstly, I am very grateful to have got the opportunity to work with my PhD 

advisor, Prof Ron Elber. He is a wonderful and inspiring example of a scientist and 

mentor. Working with him made everything seem easy. I am grateful for his faith in me, 

for being patient and giving me the space to grow at my own pace. He is incredibly 

helpful and generous with his time and is always available to answer any questions. His 

commitment, dedication and enthusiasm for science are contagious, and they ended up 

having a huge influence on me.  He is a role model for life.  

Thanks also to my other committee members, Prof Ren, Prof Fussell, Prof 

Miranker and Prof Miikkulainen for being very accommodating, especially during the 

time of my proposal exam. Special thanks to Prof Miranker for his extensive comments 

on my dissertation and for being supportive since my beginning days in grad school.  

I wish to thank my former supervisor Dr Chengyong Yang in the Genetic Systems 

group of Thermo Fischer Scientific for teaching me several aspects of research. I am also 

grateful to Prof John Straub of Boston University and members of his group, Laura 

Dominguez and Leigh Foster, for collaborating with us on the membrane-docking 

project. Thanks are also due to the CAPRI community of researchers who are very 

encouraging of newcomers like me.  

CLSB (Elber group) has been a fun place to be a graduate student. I would like to 

acknowledge the help I received as a beginner, from past members of the Elber group. 

Specifically, I am grateful to Ravikant for introducing me to the docking code and for 

laying the intellectual foundation for the work in my thesis. I would also like to thank 

Brinda Vallat, Thomas Blom and Baoqiang Cao for teaching me various aspects of 



 vi 

cluster computing and structure prediction. Other past and present members of CLSB 

who have been great at providing comments, technical help and general discussions: Szu-

Hua Chen, Michele di Pierro, Mauro Mugnai, Juan Bello Rivas, Alfredo Cardenas, Serdal 

Kirmizialtin and Peter Ryumgaart.    

I am very grateful to the ICES systems support staff for providing helpful and 

reliable technical support throughout the past few years. I also gratefully acknowledge 

the logistic help provided by Ruth Hengst of ICES and Lydia Griffith of CS. They bailed 

me out of trouble many times.  

Szu-Hua and Minjung have been great friends in the 4th floor of ACES. I wish to 

thank my roommates and UT and non-UT friends for fun times and discussions: 

Akanksha, Subhashini, Sindhu, Aparna Roy and Srinath. My friends from undergrad 

have been especially supportive at all times in my grad school life: Pallavika, Priya and 

Swati. I wish to thank Archana and Mahesh for providing a home away from home in 

Austin.  

I wish to thank my family, specially my parents and brother for their support and 

faith and my sweet in-laws for their encouragement. Finally I wish to thank my husband, 

Vishvas, for his enormous patience and for being my pillar of support throughout, and 

eagerly look forward to joining him after I graduate.   

 

 

 

 

 



 vii 

Scoring Functions for Protein Docking and Drug Design 
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Supervisor:  Ron Elber 

 

Predicting the structure of complexes formed by two interacting proteins is an 

important problem in computation structural biology. Proteins perform many of their 

functions by binding to other proteins. The structure of protein-protein complexes 

provides atomic details about protein function and biochemical pathways, and can help in 

designing drugs that inhibit binding. Docking computationally models the structure of 

protein-protein complexes, given three-dimensional structures of the individual chains.   

Protein docking methods have two phases. In the first phase, a comprehensive, 

coarse search is performed for optimally docked models. In the second refinement and 

reranking phase, the models from the first phase are refined and reranked, with the 

expectation of extracting a small set of accurate models from the pool of thousands of 

models obtained from the first phase.  

In this thesis, new algorithms are developed for the refinement and reranking 

phase of docking. New scoring functions, or potentials, that rank models are developed. 

These potentials are learnt using large-scale machine learning methods based on 

mathematical programming. The procedure for learning these potentials involves 

examining hundreds of thousands of correct and incorrect models. In this thesis, 

hierarchical constraints were introduced into the learning algorithm. 
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First, an atomic potential was developed using this learning procedure. A 

refinement procedure involving side-chain remodeling and conjugate gradient-based 

minimization was introduced. The refinement procedure combined with the atomic 

potential was shown to improve docking accuracy significantly.  

Second, a hydrogen bond potential, was developed. Molecular dynamics-based 

sampling combined with the hydrogen bond potential improved docking predictions.  

Third, mathematical programming compared favorably to SVMs and neural 

networks in terms of accuracy, training and test time for the task of designing potentials 

to rank docking models. The methods described in this thesis are implemented in the 

docking package DOCK/PIERR. DOCK/PIERR was shown to be among the best 

automated docking methods in community wide assessments.  

Finally, DOCK/PIERR was extended to predict membrane protein complexes.  A 

membrane-based score was added to the reranking phase, and shown to improve the 

accuracy of docking. This docking algorithm for membrane proteins was used to study 

the dimers of amyloid precursor protein, implicated in Alzheimer’s disease.  
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Chapter 1.  Introduction 

1.1 PROTEIN STRUCTURE PREDICTION 

Proteins are important biomolecules and integral components of the cellular 

machinery. They are responsible for most cellular functions, including transport of 

molecules, immunity, movement, catalysis of reactions and signaling. Proteins are a 

linear chain of basic units: known as amino acids or residues. Amino acids differ from 

each other in their side chains, which give them each unique physical and chemical 

properties, and form the basis for the enormous diversity in protein structures. 

Predicting the structure of proteins is an important problem in computational 

structural biology. Given the linear sequence of amino acids of a protein, also known as 

its primary sequence, one can predict its secondary structure (local patterns formed by the 

sequence) and tertiary structure (three-dimensional fold) computationally. Knowledge of 

the tertiary structure provides important clues about the function of a protein. The 

computational method of homology modeling [1] is the most widely used method for 

predicting the tertiary structure of a protein, given a) its sequence and b) another 

evolutionarily related protein, known as the template, whose structure is already known. 

Experimentally, protein structure is determined by the methods of X-ray crystallography 

or Nuclear Magnetic Resonance (NMR). All experimentally determined structures of 

proteins are added to an online database known as the Protein Data Bank. 

Proteins do not exist in isolation in a cellular environment but accomplish their 

function by interacting with other proteins. Each protein is postulated to interact with at 

least ten other proteins during its lifetime [2-4]. Protein-protein interactions play a vital 

role in cellular processes and the function of a protein can be determined by its 

interactions [5].  The structure of protein chains interacting with each other is known as a 

protein-protein complex, or quaternary structure. Complexes can be formed in different 
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cellular environments: the majority are formed between proteins in water, or soluble 

proteins. These proteins exist in a hydrophilic (polar) environment. Protein complexes 

are also found in cell membranes, which is a hydrophobic (non-polar and water-repelling) 

environment. Figure 1.1 shows two complexes in the Protein Data Bank (PDB)[6, 7]. 

Figure 1.1 (a) is a structure of soluble complex  (PDB ID 3hct) [6], which is a structure of 

Ubc13, a ubiquitin conjugating enzyme interacting with TRA6, a ubiquitin modulating 

protein. Figure 1.1 (b) is a complex (PDB ID 4ehq) [7] of membrane protein Orai1, a 

protein responsible for Calcium ion transport through the cell membrane, with 

Calmodulin, a protein that regulates calcium levels in the cell.  

            

            (a)                        (b) 

Figure 1.1 (a) Complex 3hct [6], a soluble complex involving enzyme Ubc13. (b) 
Complex 4ehq [7], a membrane complex involving calcium ion transporting 
protein, Orai1.  

The structure of protein-protein complexes is harder to predict through 

experimental techniques than tertiary structure. Complexes are generally too big to be 

solved by NMR techniques. There are about a thousand structures of protein-protein 

complexes in the Protein Data Bank, which is much smaller than the number of deposited 

tertiary folds, which is of the order of tens of thousands. One reason is that most protein 

complexes are formed only transiently. Another reason is that large structures of protein 
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complexes contain multiple domains and it is more difficult to crystallize multi-domain 

proteins, as they are less stable than single domain proteins[8]. Computational methods 

can be a quicker and cheaper alternative to get the structure of complexes than 

experimental studies. Note that the words structure, model and conformation mean the 

same thing.  

 

1.2 PROTEIN-PROTEIN DOCKING 

Protein-protein docking is a computational method that provides the atomically 

detailed structure of a complex formed by two proteins, given their individual tertiary 

structures. Usually the bigger of the two proteins is designated as the receptor and the 

smaller one is known as the ligand. The interface of a protein in a complex is the set of 

residues that are closest to, and interact with the other protein molecule. 

Bound and unbound docking 

The easy case of docking is known as bound docking in which we take apart the 

receptor and ligand from a known complex and find the binding pose of the ligand with 

respect to the receptor. This case is used to evaluate the performance of various docking 

algorithms. In the more realistic case, the tertiary structures of either the receptor or 

ligand or both, are not known and we need to model the 3D structures of the constituent 

proteins first. These approximate structures are then used to perform the docking, and this 

is known as unbound docking. Unbound docking is a harder problem since the individual 

structures of constituents are known only approximately. 

Stages in protein docking algorithms 

Protein docking algorithms generally consist of two phases: an initial rigid 

docking and coarse scoring phase, followed by a refinement and rescoring phase [9].  



 4 

a. Rigid docking and coarse scoring 

In this first phase, the individual protein structures are kept rigid. One of the 

molecules (usually the receptor) is kept fixed and a search is performed for various 

possible orientations of the ligand with respect to the receptor. This is a global search in 

6-dimensional space (3 dimensions for rigid translation and 3 for rigid rotation of the 

ligand with respect to the receptor). There are many different search strategies that have 

been used by various groups.  

One of the most widely used search algorithms for docking uses Fast Fourier 

Transforms (FFT) [10-13]. The interaction score between two molecules can be 

represented as a convolution and hence calculated using FFTs efficiently. Geometric 

Hashing[9, 14] is another search technique where instead of matching atoms or points in 

a grid between the two proteins, as in the case of FFT, a higher level matching is done: 

patches which denote the local shapes of a molecule are matched. Monte-Carlo searches 

in rigid body space have also been used a search strategy [15-18]. FFTs, unlike the other 

methods, enable an efficient exhaustive sampling of all rigid orientations (i.e. rotations 

and translations) of one molecule with respect to the other.  

Scoring for models of the complex in this initial phase is coarse and not very 

detailed, and is usually based on the positions and types of residues (residue-based). 

More details on scoring functions are provided in the next section.  

b. Refinement and Rescoring 

The first search phase returns hundreds of thousands of models.  In the second 

phase, these models are refined by local searches. Some amount of flexibility is 

introduced in the models [17, 19-23]. Models are reranked using more detailed scores and 

at the end of this phase, we are required to select the top few conformations of the 
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complex. But discriminating the best models from a given set has proved to be a harder 

problem than obtaining an initial large set of models containing a few good ones [24].  

The changes to models are local, for example, side chain adjustments and limited 

adjustments of the protein backbone. The major search strategies are conjugate gradient 

[12],[25-27] and Monte-Carlo [15, 18, 28], and structures that are more chemically 

reasonable are obtained from the initial rigid docked models.  

These altered structures are rescored using more detailed terms than the initial 

search stage, for example terms that are dependent on positions and types of atoms, as 

opposed to positions and types of residues[23, 29].  

 

1.3 SCORING PROTEIN MODELS 

Scoring functions assign scores to models that are expected to quantify how good 

a model is. Ranking a set of structures using a scoring function helps us find the best 

models in the set. Scoring functions can be classified as coarse-grained or fine-grained 

depending on whether the parameters for the potential are designed at the residue level or 

at the atomic level. 

Energy landscape theory 

Here, we introduce the term energy or potential, as an alternative to score and 

scoring function. All of these terms quantify models. The difference is that, for scores 

and scoring functions, higher is better, i.e. larger the score, better the model is expected to 

be. Whereas, for energy or potential, lower the energy, better the model is expected to be. 

Energy usually has a physical meaning and can be used in biochemical calculationsfor 

estimating stability of a protein, and other equilibrium properties. This follows from the 

thermodynamic hypothesis that the true structure (also known as the native structure) is 
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thermodynamically the most stable and hence lowest in free energy. This is depicted in 

Figure 1.2 that shows the energy landscape for protein folding or protein binding [30]. 

The native structure of the protein complex is at the bottom of the funnel shape and has 

the lowest energy. Structures that are close to the native, or near-native structures have 

lower energies than structures that are far away from the native, or incorrect structures, 

which are near the top of the funnel. For our purposes, the true structure is the 

experimental structure with which we compare our predicted models. We note that there 

can be multiple folds with the same lowest energy. However, we use the energy 

landscape as a working hypothesis as it has been shown to be an accurate model in a 

number of cases [30].  
 
 

 

Figure 1.2 Cartoon diagram of the funnel-shaped landscape of protein binding[31]. 

Potentials are generally classified as physics based or knowledge-based, 

depending on how the parameters for the potential are derived. 

Physics based scoring 

Physics based potentials are also known as molecular mechanics potentials. They 

typically include bonded terms that measure deviations from ideal bonds (two-body), 

angles (three-body) and torsions (four-body), and non-bonded terms that include longer-
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range interactions such as electrostatic interactions and van der Waals interactions [32]. 

The van der Waals interaction is modeled by the Lennard-Jones functional form, as 

shown in Eq. (1.1). These functions are continuous and differentiable in the atomic 

coordinate space. The parameters of molecular mechanics potentials such as 
A,B,q,kbond ,kangle,ktorsion ,kn  are determined from physical properties of small molecules 

[32].  
 
Etotal = Ebonded + Enon−bonded

Ebonded = Ebonds + Eangles + Etorsions = kbond (l − leq )
2

bonds
∑ + kθ (θ −θeq )

2

angles
∑ + kn (1+ cos(n

torsions,n
∑ φ + γ ))

Enon−bonded = Evdw + Eelectrostatics = (
Aij
rij
12

i, j
∑ −

Bij
rij
6 ) + (

qiqj
εriji, j

∑ )

  
(1.1) 

Knowledge based scoring 

There is another class of potentials, which are termed as knowledge-based 

potentials, since their parameters are based not on experimental data from small 

molecules, but on statistical analyses of experimentally determined structures. Statistical 

potentials are an example of this kind.  The potentials are derived based on Eq. (1.2) [33]. 

The energy of the current model E(s), as a function of a geometric variable s, is given by 

the log odds ratio of the probabilities of the current state and reference state, as a function 

of the variable s. The numerator, pstruct(s) depends on the geometry of the current structure 

and the denominator pref(s) is based on the geometry of experimental structures in a 

reference database. The variable s is a geometric parameter such as a distance or torsion 

in the structure.  T is the temperature and k is the Boltzmann constant and kT is a constant 

with a value of 0.593 kcal/mol at room temperature (300 K).   

              E(s) = −kT ln p
struct (s)
pref (s)

       (1.2) 
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Using the geometric parameter s as the distance between two particle types, where 

particle types can be residue-based or atom-based, a distance-dependent version of Eq. 

(1.2) is shown in Eq. (1.3). Here e(i, j,d)  is the contribution to the energy when the 

particle types i and j in the current model are at a distance range d. The particles can be 

atoms or residues. n(i, j,d)  is the number of times in the current model that particle types 

i and j are found at a distance range d. The probabilities of occurrence of particle types i 

and j in the reference state are assumed to be independent, and n(d)  is the probability 

that any pair of particle types occur at a distance d. The probabilities in the denominator 

of Eq. (1.3) are calculated from a set of existing experimental structures in a database, 

and the numerator is calculated from the geometry of the current model whose energy we 

want to compute.  
  

    e(i, j,d) = −kT log n(i, j,d)
n(i)n( j)n(d)

⎡
⎣⎢

⎤
⎦⎥

          (1.3) 

  

The total statistical potential energy of a model is then the sum of all the pairwise 

particle interactions, as in Eq. (1.4).      

     
Estatistical = e(i, j,dij )

j>i
∑

i=1

N

∑           (1.4) 

 

1.4 MATHEMATICAL PROGRAMMING FOR DEVELOPING POTENTIALS 

Mathematical programming is another method for deriving knowledge-based 

potentials. This approach was first proposed by Maiorov and Crippen[34] and later built 

upon by others[35-38].  This method involves solving a set of inequalities that specify 

that the energy of a correct structure Xcorrect  should be lower than the energy of an 

incorrect structure Xincorrect as in Eq. (1.5). 

E(Xincorrect )− E(Xcorrect ) > 0      (1.5) 
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  The native fold (experimental fold) and the near-native models in the training set 

are used as correct structures, and all other models are used as incorrect structures, or 

decoys.   

Using a similar distance-dependent formulation as in the case of statistical 

potentials, we have u(i, j,d)  representing the contribution to the energy when particle 

types i and j are at a distance range d.  Representing the particle pair type (i, j)  by a 

single parameter α , the energy of a structure can be written as the number of times, 

n(α ,d) , a contact between particle pair denoted by α  is observed at a distance range d, 

times the weight for that contact type, u(α ,d) , as in Eq. (1.6).  
E(X) = n(α ,d)u(α ,d)

α ,d
∑             (1.6) 

Substituting Eq. (1.6) in Eq. (1.5) we get Eq. (1.7), which shows that the 

inequalities are linear in the parameters u, that determine the potential. This enables 

efficient calculation of the potential parameters through linear programming solvers like 

PF3 [39, 40].  
u(α ,d)

α ,d
∑ [nincorrect (α ,d)− ncorrect (α ,d)]> 0         (1.7) 

Using learning sets of hundreds of thousands of correct and incorrect structures, 

millions of inequalities of the type shown above are formulated and solved for the 

potential parameters u.  

Note that to use these knowledge-based scoring functions for docking models, we 

do not consider all contacts in the model, but only contacts across the interface of the two 

proteins. That is, particles i and j belong to different (interacting) proteins in the complex, 

and d is the distance between them across the interface.   

We note also that sampling and scoring are not independent: the potential 

parameters obtained from one set of models, from a given search algorithm may not be 



 10 

applicable for scoring another set of models from a different docking algorithm. In this 

thesis, we develop potentials for the set of models sampled from our docking package 

DOCK/PIERR [13, 41].  

Advantages over other knowledge-based potentials 

Mathematical programming aims to produce potentials that explicitly model the 

energy landscape by stating that models near the bottom of the funnel should have lower 

energies than models near the top of the funnel.  

In statistical potentials, statistics of negative examples i.e. incorrect structures are 

included in the reference distribution [2]. But mathematical programming is a 

discriminative learning technique: positive examples are separated from and explicitly 

compared against negative examples.  

Exhaustive large-scale explicit examination of negative examples, as done in 

mathematical programming, provides potentials that have a positive distribution of 

ΔE = E(Xincorrect )− E(Xcorrect )  i.e. they always have higher energies for incorrect models, 

compared to correct models.  

Moreover, quadratic programming based approaches have provably optimal 

convergence guarantees: it can be shown that for a given functional form, training set and 

error bound, ε , the set of parameters obtained from mathematical programming is 

optimal within the error bound [13, 42].  

Another advantage over statistical potentials is that no assumption of reference 

state is required, as the reference state is modeled implicitly by sampling from the 

distribution of incorrect structures. Hence we do not need to assume independence of the 

distribution of particle types[2].   
 
Disadvantages 
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The disadvantage of mathematical programming is that it requires special purpose 

solvers and large memory machines if the set of inequalities is very large.  

Learning using mathematical programming is also restricted to simple functional 

forms, since the inequalities are linear in the parameters.  

The large-scale examination of negative examples is prohibitively expensive for 

cases where we deviate from rigid docking and sample using extensive rearrangements of 

the structure, since the number of negative examples increases exponentially in such a 

search space. 

 

1.5 METRICS FOR ASSESSING PROTEIN DOCKING MODELS  

To measure if a computationally determined structure is accurate, we compare it 

to the native structure, which is the experimentally observed conformation deposited in 

the Protein Data Bank. There are different metrics that compare a given model to the 

reference structure or the native conformation. One popular measure is the RMSD or 

Root-Mean-Square-Deviation between the structures. It is a least-squares distance 

between the coordinates of the atoms in the model and reference structures after optimal 

superposition of the two structures. It is given by Eq. (1.8) where the v’s and w’s are 

coordinates of atoms in the reference and model structure respectively. To minimize the 

distance between the two coordinate sets, the coordinates of the model, w, are 

transformed by translating by T, a translation vector, and rotating by U, a unitary rotation 

matrix. U and T are computed analytically from the coordinates of atoms in the two 

structures[43].  

D =
vi − w

'
i
'

i=1

n

∑
2

n
;w ' =U(w + T )

 

           (1.7) 
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For comparing models of complexes, a couple of variants of RMSD are used. One 

is the interface RMSD, which is the RMSD calculated over the interface residues. 

Interface residues are defined as any residue of one of the proteins, whose atom is within 

10 A distance from an atom of any residue in the other protein[44]. The interface RMSD 

between model and reference is calculated for the interface residues alone. Another type 

of RMSD is the ligand RMSD, where the RMSD is calculated over the ligand residues, 

keeping the receptor protein fixed. 

TM-score, which has been used in parts of this thesis, is a variant of RMSD [45]. 

It is normalized based on the length of the proteins compared, and is a score with bounds 

[0,1] with a score of 1 meaning that the two structures are identical. A score of 0.5 or 

higher indicates structural similarity between two compared folds.  

A different metric is the fraction of native contacts[44]. A contact in a protein-

docking model is a pair of interface residues in the receptor and ligand. Interface residues 

are defined as in the interface RMSD case. The fraction of native contacts is the number 

of interface residue-residue contacts in the model that are also in the native or reference 

structure.  

 

1.6  CONTRIBUTIONS OF THESIS 

In this thesis, algorithms for the second phase of docking, i.e. reranking are 

developed, for the rigid docking code DOCK/PIE [13]. The new code is named 

DOCK/PIERR (DOCK/PIE + Refinement, Reranking). Specifically, side chain 

remodeling and energy minimization are introduced to the rigid docking structures, and 

an atomic potential is developed and used to rerank the refined structures. The atomic 

potential is developed using mathematical programming and while the learning algorithm 
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is similar to previous work [37], its novelty lies in introduction of hierarchical constraints 

to model the energy landscape.  Though atomic potentials are short-range and noisy on 

unbound structures, they capture a signal different from residue potentials, hence their 

addition was shown to improve the accuracy of reranking. This work is discussed in 

Chapter 2.  

Secondly, a new hydrogen bond potential is developed in Chapter 3 for the 

reranking phase, using a learning framework similar to that of the atomic potential.  

Developing hydrogen bond potentials on unbound structures was challenging, as the 

signal from hydrogen bonding is weak [46]. Molecular dynamics was used to amplify the 

hydrogen bond signal. Comparison with other learning algorithms on soluble and 

membrane protein data sets showed that mathematical programming was the best 

performing algorithm, closely followed by Neural Networks. Differences in the 

algorithms and their performance are discussed. Hydrogen bond potentials alone were 

found to be more accurate than residue and atomic potentials on membrane proteins, 

whereas their signal was weaker on soluble proteins. In soluble proteins, hydrogen bonds 

between proteins have to compete with water, while this competition is not present in the 

hydrophobic membrane environment. Hence hydrogen bonds performed better on 

ranking models of membrane protein complexes.   

Third, the docking package DOCK/PIERR was applied to predict the structure of 

membrane proteins, as discussed in Chapter 4. The reranking algorithm was modified to 

include an environment-based score that characterized the suitability of a docked pose for 

the membrane environment. This modified prediction algorithm was shown to be 

comparable to the state-of-the-art membrane complex prediction algorithms. It was then 

applied to characterize the dimers of amyloid precursor protein. Docking results showed 

good agreement with results from another computational method: implicit solvent 
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simulations. Differences in structures characterized in different membrane environments 

and structures characterized by different computational methods were discussed. 

Fourth, comparison of DOCK/PIERR to other leading algorithms by independent 

community wide assessments is shown in Chapter 5. It was ranked as the 4th best 

performing automated docking method for the period 2009-2013 [47]. This was 

encouraging since it is a new method, compared to most other methods in the field, which 

have been around for 10+ years. The advances made in DOCK/PIERR help establish 

automated docking methods as accurate methods for structure prediction and enables 

departure from previous methods that rely more on human intervention.  

Finally, in Chapter 6, well-known graph algorithms from Computer Science were 

applied for the problem of finding reactant to product paths in computational analyses of 

networks from simulation data produced using the method of Milestoning [48-51]. An 

efficient path algorithm based on Dijkstra’s shortest path algorithm [52, 53] was 

discussed and applied to two molecular systems. Different network representations of 

Molecular Dynamics simulation data processed with Milestoning[49] were discussed, and 

networks based on local information were shown to uncover incorrect reaction 

mechanisms.  

The contributions to this thesis from a computer science perspective are firstly, 

the introduction of hierarchical constraints into the learning algorithm for developing 

potentials for ranking models. And secondly, a comparison of the learning approach 

based on linear programming is made to other well-known machine learning algorithms 

like SVMs and neural networks, for the purpose of ranking docking models. It is shown 

that the linear programming based approach compares favorably to the other algorithms, 

in terms of accuracy, training and test time. 
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Chapter 2.  Atomic potential for ranking docking models 

2.1 BACKGROUND AND RELATED WORK 

As mentioned in Chapter 1, docking algorithms typically consist of two phases: a 

rigid docking and coarse-scoring phase and a refinement and reranking phase[9]. In this 

chapter, we introduce methods for the refinement and reranking phase in the docking 

algorithm DOCK/PIE[13].  In the refinement and reranking phase, the structures obtained 

in the first phase are usually adjusted and reranked using fine-grained energy terms. For 

example, RosettaDock uses an iterative Monte-Carlo search starting from rigid docking 

structures, first rebuilding side-chains of existing structures, and then minimizing the 

rigid structure of the two proteins using an elaborate energy term, the Rosetta potential 

[17, 18, 54]. Monte-Carlo approaches have also been used by others to incorporate rigid-

body and side chain movements in refining docked conformations [15].  

Weng and co-workers developed RDOCK[23], a refinement algorithm, which 

uses energy minimization and re-ranks models with a combination of electrostatics and 

knowledge-based potentials representing desolvation. They later developed a faster 

algorithm for the second step, ZRANK[29], that is a linear combination of a knowledge-

based atomic potential, ACE, with electrostatic and van der Waals terms.  Wolfson and 

co-workers developed the refinement algorithms, FIREDOCK[21], which incorporates 

restricted side-chain flexibility and orientation adjustments and its improved version, 

FIBERDOCK[22], which incorporates backbone flexibility using normal modes in 

addition to side-chain flexibility.  

GRAMM-X uses conjugate gradient minimization with a smoothed Lennard-

Jones type potential and ranks the models with a scoring function that is a combination of 

residue-based and atom-based terms[12].  The Cluspro team developed a refinement 

method using Monte-Carlo runs with semi-definite programming with underestimation 
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(SDU)[11, 28]. Fernandez-Recio and co-workers use hydrogen-bond network 

optimization along with energy minimization of all-atom force-fields in order to refine 

docking poses[27]. Zhou and co-workers perform a short minimization and restricted re-

sampling near existing models followed by re-ranking using DFIRE and EMPIRE energy 

functions[25].  

Most of the methods so far address the case in which the constituents do not 

undergo drastic conformational changes in the complex compared to the unbound state. 

In an analysis of 178 unbound complexes in our learning set, we find the average TM 

scores between the unbound and bound chains to be 0.8953 and 0.8875 for the receptor 

and ligand respectively. Hence in this study too, we consider cases in which no large-

scale movements take place in the individual constituents.  

The rest of this chapter discusses the methods for the refinement and reranking 

phase in DOCK/PIE. This phase consists of a minimal refinement step and a fine-grained 

reranking step. The minimal refinement step alters nominally, the models created in the 

first phase of docking, by means of side-chain remodeling and energy minimization. The 

reranking step ranks the altered models using a combination of fine-grained atomic 

potential, PISA[41] and coarse-grained residue potential, PIE [13]. While PIE has been 

developed previously for the coarse scoring phase, the development of PISA using 

mathematical programming, is introduced in this chapter. The docking algorithm 

DOCK/PIE with the added refinement phase is renamed as DOCK/PIERR (DOCK/PIE + 

Refinement & Reranking), and compares favorably to other leading docking packages 

like ZDOCK, Cluspro and PATCHDOCK, on the ZLAB 3.0 Benchmark and an 

independent set of 30 novel complexes. We also discuss that coarse-grained potentials are 

more robust than atomic potentials for unbound docking, perhaps because atomic 

potentials are more sensitive to local errors. Still, it is found that atomic and residue 
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potentials capture different signals and hence combining their scores provides a 

significantly better prediction than either score alone.   

 

2.2 METHODS 

Learning and Test Sets 

For optimizing the parameters of PISA, a learning set of 640 complexes 

developed in previous studies[13, 38] was used. It contains 460 bound and 180 unbound 

complexes. The new methods were tested on three datasets. The first dataset comprises of 

124 complexes from the ZLAB Benchmark 3.0[55], a standard benchmark test set used 

by the protein-protein docking community. The second dataset comprises of 640 targets 

from our learning set. The third dataset is a set of 30 novel complexes that is independent 

from the learning set, and details of this dataset are available in the Results section. 

Rigid Docking 

Given the chains of the receptor and ligand molecules, we used our previously 

developed docking package DOCK/PIE[13], to generate a training set for refinement. We 

retain top scoring 219=524,288 FFT-based transformations for each complex. These 

transformations are then clustered using ligand RMSD and scored using the potential, 

PIE[13], which consists of a pairwise residue contact term along with van der Waals 

attraction and repulsion terms.  Subsequently, the top scoring transformations are filtered 

for clashes, and clustered again using interface RMSD.  

Side chain remodeling 

The top 1000 models from DOCK/PIE rigid docking were chosen for refinement 

and reranking. The number of models must be large enough to include a near-native 
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model, and small enough to make the refinement process efficient. Our choice of the 

number of models was based on an examination of 22 targets in our CAPRI dataset [56]. 

19 of 22 targets had near-native models (acceptable by CAPRI definition) in the top 

1000, while the number dropped to 16 considering the top 500 models. Out of the 

remaining 3 targets that did not have near-native models in the top 1000, one target had a 

near-native model at position 3500, and the other two did not have any near-natives in the 

output after clustering. The choice of 1,000 candidates therefore seems reasonable.  

In order to reduce the number of clashes, make the rigid docking poses chemically 

sound, and improve the energies of the models, we first performed side-chain refinement 

using SCWRL4[57]. SCWRL is a side-chain prediction program that uses graph-based 

decomposition to identify the set of optimal rotamers for the side chains of a given 

model. We used a cutoff distance of 6 Å between the two proteins to identify interface 

residues and modeled the side chains of only the interface residues using SCWRL.    

Minimization 

After side chain remodeling, clashes were removed by 100 steps of conjugate 

gradient energy minimization. The minimization was performed using the routine 

mini_pwl (conjugate gradient descent with Powell restart) of the molecular dynamics 

package MOIL[58] and the OPLS-AA force field. During the minimization, the receptor 

and ligand molecules are modeled as rigid bodies. Minimization both in vacuum and 

using implicit solvent models (GBSA) was performed: but no difference in the results 

between the two procedures was observed. Therefore we decided to use minimization in 

vacuum since it is more efficient. Overall the refined structures are not more similar to 

the X-ray structures compared to the unrefined complexes, and distance of the refined 
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structure in terms of RMSD from the initial structure is minute (~ 0.2 to 0.4 Å). The 

refinement is nevertheless useful since it allows for better ranking. 

Atomic potential 

We designed a distance-dependent pairwise atomic potential (PISA) to re-rank the 

top 1000 refined structures. Using the atomic potential on the refined structures, we 

expect to generate more hits in the top 10 (or top 1) than the rigid docking procedure 

alone. The parameters for the atomic potential were learnt using mathematical 

programming from the top 1000 refined models of each complex in our learning set.   

The heavy (non-hydrogen) atoms were collected into 32 types, as reported earlier 

for threading potentials[37]. We employed three distance bins: 2-3.5 Å, 3.5-5 Å and 5-8 

Å, the same bins as in [37] to recognize approximate structures for threading.  

Knowledge-based pairwise atomic potentials are frequently modeled by a square-

well potential, i.e. designate a single value, u(i, j,d)  for a distance range, r, and atom-

type pair (i, j) . For clarity we replace the pair of interaction (i, j)  by a single index α of 

the interaction type. If an atom of type i is found within a distance d from an atom of type 

j, then the value u(α ,d)  is added to the energy of the structure. The energy or score, 

E(X)  of a complex X, with a receptor A and ligand B, is a sum of all pairwise 

interactions and is given by Eq. (2.1), where n(α,d)  is the number of interactions of type 

α  (i.e. we use a single index to describe the interaction of particles i and j) at distance d . 
E(X) = n(α ,d)u(α ,d)

α ,d
∑                         (2.1) 

Instead of rectangular bins, a better accuracy was obtained when a linear 

interpolation was used between the bins, as shown in Figure 2.1. The three distance bins, 

2-3.5 Å, 3.5-5 Å and 5-8 Å have one single parameter value in the flat regions in the 



 20 

middle of the distance bins. The outer one-third portion of the distance bins adjacent to 

neighboring bins is modeled by a straight-line interpolation between the bins. 

The corresponding equations for the geometrical factor, n(α,d) are given in Eq. 

(2.2). Note that the values of n α,i( )  are fixed by the geometry of the structure. For every 

distance bin, (i=1,2,3) we identify a different multiplicative energy term u α,i( ) . The 

formulation above led to p = 1584 =  32(32 +1)3
2

 parameters for the potential. 

 

Figure 2.1 Value of u(α ,d)  for 6 different pairs of atom types: A) NX (LYS-NZ) and CO 
(carbon of backbone carbonyl). B) SM (MET-Sulfur) and OC (oxygen of 
carbonyl groups). C) NDHS (TRP-NE1) and CH3 (terminal aliphatic side 
chain carbon). D) CH2 (beta carbon) and CFH (aromatic side chain carbon). 
E) OX1 (ASP-OD1, OD2, GLU-OE1, OE2) and CO (carbonyl carbon). F) 
NH (amide nitrogen) and CAH (alpha carbon of amino acids). 
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n(α ,1) = 1.0 2A ≤ rab < 3A

n(α ,1) = 4.0 − rab
n(α ,2) = rab − 3.0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪ 3A ≤ rab < 4A

n(α ,2) = 1.0 4A ≤ rab < 4.5A

n(α ,2) = 4.0 − rab
3.0

n(α , 3) = rab
3.0

− 3.0

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

4.5A ≤ rab < 6A

n(α , 3) = 1.0 6A ≤ rab < 8A

                          (2.2) 

Constraints used for learning 

The parameters of the atomic potential were learnt taking into account known 

correctly and incorrectly docked structures. The energies of pairs of correct and incorrect 

structures are used to create inequalities of the type Eincorrect -Ecorrect >0 , as described in 

Chapter 1. The values of the parameters were obtained by solving the inequalities by 

linear programming using the LP solver, PF3[39].  

In this study, we introduce hierarchical constraints for modeling the energy 

landscape of binding. More specifically the following types of inequalities are used: 

a. Inequalities comparing near-native and misdocked models  

 ‘Near-native’ models are those with an interface RMSD less than 2.5 Å to the 

native PDB structure. We call conformations ‘misdocked’ if they have an interface 

RMSD greater than 7 Å.  We added the native structure to the set of near-natives for each 

target in our learning set. We then require that for each target, the atomic potential have a 

lower (better) energy for near-native models than for misdocked models, as shown in Eq. 

(2.3). Note that the set of models we consider here is restricted to the 1000 refined 

models of each complex.  

   E(Xmisdocked )-E(Xnear-native )>0                                 (2.3) 
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As illustrated in Chapter 1, the inequalities are linear in the parameters u(α ,d)  

and hence, the inequalities can be solved efficiently by mathematical programming. In 

Eq. (2.3) the solution for the parameter set is up to a multiplicative positive constant λ . 

Hence, if u α ,d( )  is a solution so is λu α ,d( ) . It is therefore convenient to put the right 

hand side of the equation to 1 instead of zero. This choice sets a scale for the parameter 

values and makes the numerical calculation easier.  

Further, we also allow for some errors in our solutions. It is not possible to satisfy 

all the inequalities because the functional form is not known exactly, and its current form 

is not flexible enough to solve all the constraints. On the other hand making the 

functional form more complex may lead to over-learning. New targets are obviously of 

more interest in practical applications and we aim for comparable performance on the 

training set and other targets. Therefore we remain with the simpler functional form while 

accepting some mis-classification. 

The existence of mis-classifications is further amplified by the use of near-native 

structures as “correct” structures, instead of actual native complexes, and docking of 

unbound structures instead of bound structures of the individual chains in the complex. A 

near native structure as a target and the use of unbound chains mimics better the 

conditions of an actual prediction. However, it also increases the noise level and 

introduces uncertainties to the classification. Rather than the strict constraint in Eq. (2.3), 

we add to each inequality i a slack variable zi .  Eq. (2.3) then becomes: 

                        E(Xmisdocked )-E(Xnear−native )>1-zi  ; zi > 0                          (2.4) 

b. Inequalities comparing high-quality hits and good hits 

In the funnel shaped energy landscape described in Chapter 1, the distances 

between structures at the bottom of the funnel are smaller than distances between 

structures at the bottom and structures near the top. Hence, in order to provide a more 
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precise discrimination of the energies of near-native structures,  we found it beneficial to 

add a new set of inequalities comparing near native structures with interface RMSD less 

than 1.5 Å compared to the native complex (call it high-quality hits) and hits with 

interface RMSD between 1.5 and 2.5 Å (known as good hits). The value of the cutoff 1.5 

Å was obtained based on statistics of hits in the targets of the learning set. It was chosen 

such that there was an even distribution of models in the high-quality and good hit 

categories and the number of additional inequalities was maximized, as shown in Table 

2.1. The new inequalities require that the high-quality hits will have lower energies than 

good hits. 
 E(Xgood-hit )-E(Xhq-hit )>1-zi  ; zi > 0       (2.5) 

Table 2.1 Statistics of hits in the learning set 

High-quality 
hit cutoff (hc) 

in Å 

Number of 
high quality 

hits 
(iRMSD < hc) 

Number of good 
hits 

(hc<iRMS< 2.5 Å) 
 

Number of 
resulting 

inequalities 

1.0 993 5416 40860 
1.5 2341 4068 86930 
2.0 4156 2253 79535 

c. Inequalities comparing pairwise adjacent hits 

In the third type of inequalities, we model the energy landscape by hierarchical 

inequalities. We sorted the hits (models with iRMSD less than 2.5 Å) by iRMSD, and 

formulated inequalities comparing energies of neighboring hits. For example, model i has 

lower iRMSD than model i+1. Therefore we expect the energy of the ith model to be 

lower than the energy of the model ranked i+1. Here n hits  is the total number of hits for a 

target in the learning set.    

                  E(Xhit
i+1)-E(Xhit

i )>1-zi   ; i=1,2..nhits -1; zi > 0    (2.5) 
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We note that in principle, we could perform an all-vs-all comparison of docking 

models. However, the introduction of additional constraints not only increases the 

computational expense but also makes the inequality set more noisy [38]. This is because 

we use RMSD for ranking models, and models at higher values of RMSD are equally 

bad: a model with 10 Å RMSD is equally bad as a model with 12 Å RMSD.  

Using these three types of inequalities, we had a total of 5,841,395 inequalities in 

our learning set. The complete set of constraints is now combined with an objective 

function that was minimized. The objective function is the sum of the parameters, 

u(α,d)  and slack variables, z, where γ is an empirical constant that determines the weight 

of violations of the constraints relative to precise determination of the parameters.  

                               min u(α ,d)
α ,d
∑ + γ zi

i
∑

1
                         (2.6) 

Using PF3[39], we solved 92.8% of the inequalities. We call the atomic potential 

PISA [Protein Interactions Scored Atomically] henceforth. We used the value of 1.0 for 

γ. 

For each of the complexes in the learning set we mentioned previously, we used 

one thousand refined models along with the native structure for the complex to generate 

the three kinds of inequalities discussed above. For 67 of the complexes in the learning 

set (58 bound and 9 unbound), one or more backbone atoms in the PDB files were 

missing. The missing atoms prevent us from placing side chains or minimize continuous 

atomic energy using MOIL[58]. We attempted to add missing backbone atoms to the 

complexes using Modeller[59]. However, Modeller tends to move the modeled structure 

away from the template. We found that the results obtained by learning based on 

Modeller structures were worse than the results obtained by simply using the unrefined 
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(rigid-docking) models for complexes with missing atoms, as shown in Table 2.2. So for 

these complexes, we use the unrefined models for learning and testing. 

Table 2.2 Performance with and without Modeller on 67 targets of the learning set. A hit 
is a model with an interface RMSD of 4 Å or less to the native. 

Refinement method for targets 
with missing backbone atoms 

Number of hits in 
top 10/top1 

Number of targets 
solved in top 10/top 1 

Modeller for modeling missing 
atoms, followed by SCWRL and 

minimization 

81/15 38/15 

Using unrefined models in case of 
missing main chain atoms 

86/17 40/17 

Combining atomic and residue scores for re-ranking 

Though the atomic potential recognizes more hits in the top 100 than the 

previously developed residue based potential, PIE[38], it is not sensitive enough to 

recognize more hits in the top 10, or top 1. The reason for the lower performance of the 

atomic potential at the high end of prediction may be the more significant sensitivity of 

atomic interactions to structural details compared to interactions at the residue level. This 

sensitivity of the algorithm is amplified by the use of unbound (approximate) complexes 

rather than just bound complexes with atomically precise interactions.   

Realizing that the atomic and residue potentials encapsulate different signals 

(atomic potentials captures shorter range interactions), we decided to combine the two, 

expecting the combined method to work better than the residue or atomic potentials 

alone. We used the following combination of potentials.  

a. Product 

For the atomic potential, PISA, the lower the energy, the better the model. 

Whereas for the residue score, PIE, higher the score, the better the model. Hence if we 
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take the product of the scores of PISA and PIE for each model, the lower the score of the 

product, the better the model should be.  

C1= PISA*PIE                     (2.7) 

b. Linear Combination  

The second combination potential was a weighted linear combination of the 

atomic and residue potentials. The value of coefficient a was set to -0.2 by learning on 

the learning set.  

                      C2 = PISA + a.PIE                   (2.8) 

c. Linear Combination with Product  

Adding the individual values of the atomic and residue potentials to their product 

gave yet another potential.  

C3 = c.PISA + d.PIE + PISA *PIE                    (2.9) 

Values of c and d, were found to be 0.1 and -0.8 respectively, as shown in Figure 

2.2. The height represents the number of targets in the learning set with a hit (interface 

RMSD < 4 Å) in the top 10, for the combination of coefficients of the potential C3. The 

best values appear to be 0.1 for c, the atomic potential weight and -0.8 for d, the residue 

potential weight. 

 

Figure 2.2 Contour plot showing parameter search for values of coefficients c and d in 
equation 11. 
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Tests on other docking packages 

We compared our results to the ZDOCK[60], ZDOCK+ZRANK[29], 

CLUSPRO[11] and PATCHDOCK+FIBERDOCK[22] methods. For ZDOCK results on 

the ZLAB dataset, we used the latest version ZDOCK-3.0.2 with 6 degree Euler angle 

sampling and the results (RMSDs) as reported in the ZLAB website.  For the other test 

sets, we used the downloaded packages for ZDOCK version 3.0.2 and ZRANK. For 

ZDOCK+ZRANK, we used the top 2000 conformations from ZDOCK as 

recommended[29].  We then added polar hydrogens to the models using SCWRL4[57] 

and reranked the models using ZRANK.  For CLUSPRO, we used the results from the 

CLUSPRO server[11] which runs CLUSPRO version 2.0.  We used the downloaded 

packages for PATCHDOCK and FIBERDOCK. FIBERDOCK is shown to be a 

refinement and re-ranking method over the same group’s FIREDOCK. We used the top 

500 models from PATCHDOCK as suggested[22] and refined the backbone and side 

chains of the models using FIBERDOCK, and re-ranked models with the FIBERDOCK 

energy term. The packages ZDOCK and CLUSPRO perform only rigid docking and no 

refinement or rescoring, and are meant to enrich the number of hits in the top 1000 or 

2000 structures. It is interesting to note that ZDOCK in our hands scores better than 

ZDOCK+ZRANK.  

 

2.3 RESULTS AND DISCUSSION 

Creation of Test Sets 

Performance of DOCK/PIERR (pronounced DOCK-by-PIER) was tested on three 

datasets. The first dataset comprises of 124 complexes from the ZLAB Benchmark 



 28 

3.0[55]. The second dataset comprises of 640 targets from our learning set, described in 

the Methods section and used in previous work[38]. 

The third dataset is a set of 30 complexes that is independent from the learning 

set. These are a set of complexes that were deposited in the Protein Data Bank after 

September 22, 2010. To construct this test set, we queried the Protein Data Bank for 

soluble two-chain protein-protein complexes, with no DNA, RNA and free ligands in the 

structure. We discarded complexes with modified residues, and chains that were shorter 

than 50 residues in length. The query resulted in 126 complexes.  

We then tested to see if these complexes were similar to any of the complexes in 

the learning set. We used TM-Align[45] on the individual chains of the bound complex 

and discarded all complexes where both chains had a TM score of 0.5 or higher with the 

chains of a target in the learning set. 45 of the complexes were not similar to any in the 

learning set. To perform unbound-unbound docking, we searched for homologs for the 

individual chains of these 45 complexes using PSI-BLAST[61]. We discarded the 

complexes with no homologs (BLAST expectation cutoff of 10e-3) for either chain.  

Then we constructed a homology model for each chain, using the structure of the 

homolog and the sequence of the chain from the bound complex. We used 

MODELLER[62] to build the homology model and discarded complexes where the 

homology models had a TM score of less than 0.8 with the chain in the bound complex. 

We obtained a set of 30 complexes from this procedure, with 22 having both chains 

unbound and 8 with one chain unbound. Table 2.3 contains the list of homologs used for 

the unbound docking of novel complexes.  
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Table 2.3 List of unbound complexes in the novel test set of 30 targets along with the 
corresponding homologs used to model the receptor and ligand. 

Target 
PDB ID 

Receptor Homolog 
(PDB_chain) : 

Target Receptor 
Chain 

Ligand Homolog 
(PDB_chain) : 
Target Ligand 

Chain 
2xt4 2XT2_A:B 2XT2_A:A 
2xty 2XTW_A:B 2XTW_A:A 
3agx 3AGZ_A:A 3AGZ_A:B 
3asy 1XRJ_A:A 1XRJ_A:B 
3gt6 3GLA_A:A 3GLA_A:B 
3lis 3LFP_A:A 3LFP_A:B 

3m7f 3B7Y_A:B 1NRV_A:A 
3mxj 3MXI_B:B 3MXI_B:A 
3nfy 1T8P_A:B 1T8P_A:A 
3oa9 3D6R_B:A 3D6R_B:B 
3p2q 3KV7_A:A 3KV7_A:B 
3pc6 3PC8_A:B 3PC8_A:A 
3pge 3PGE_A:A 3L0W_A:B 
3pra 3PRB_A:B 3PRB_A:A 
3r8c 3R20_A:A 3R20_A:B 
3rd6 3Q64_A:A 3Q64_A:B 
3rkc 3HAG_A:B 3HAG_A:A 
3t43 3LF6_A:A 3LF6_A:B 
3te8 3LR5_A:B 3LR5_A:A 
3u80 2UYG_A:A 2UYG_A:B 
3umz 3UN0_B:A 3UN0_B:B 
3vc8 3VCB_A:B 3VCB_A:A 
2wfx 3HO4_B:B 2IBG_H:A 
3d65 3D65_E:E 3BTM_I:I 
3di3 3DI3_B:B 3DI2_C:A 
3hct 1FXT_A:B 3HCT_A:A 
3jrq 2IQ1_A:A 3JRQ_B:B 
3l1z 3FSH_B:A 3L1Z_B:B 

3m18 3M18_A:A 1I56_A:B 
3nbp 1MU2_A:A 3NBP_B:B 
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Results on the ZLAB Benchmark 

In the following tables we analyze the results by two metrics: interface RMSD 

and fraction of native contacts, as defined by the CAPRI assessment[44]. A hit defined in 

terms of interface RMSD, is a model with interface RMSD less than 4 Å, to the crystal 

structure of the complex, which is equivalent to an “acceptable” model in the CAPRI 

assessment. Similarly, a hit in terms of fraction of native contacts is a model with 10 

percent or more native contacts, which is one of the criteria for an acceptable model in 

CAPRI.  

We show in Table 2.4, the comparison of our docking software with ZDOCK, 

ZDOCK+ZRANK, CLUSPRO and PATCHDOCK+FIBERDOCK. We compare the 

performance of DOCK/PIE our rigid docking package, with the new DOCK/PIERR, 

which is DOCK/PIE with side chain remodeling, energy minimization and reranking. 

Reranking is done in various ways, using the atomic potential PISA alone, or the 

combination potentials, C1, C2 and C3, composed of the atomic and residue potentials.  

In Table 2.4 and the succeeding results tables, the number of hits counts all 

acceptable predictions. Some of the targets can have multiple successful predictions, and 

all of these hits are counted in the entry “Number of hits”. A target is considered solved 

when at least one prediction is in the top 1 or top 10 set. Only one hit per target is 

counted under “Number of targets solved”. 

DOCK/PIERR with C1 and C2 combination potentials performs better than the 

other DOCK/PIE versions. DOCK/PIERR picks a smaller number of hits than ZDOCK 

or ZDOCK+ZRANK in the top 10. However, DOCK/PIERR and its various versions are 

able to solve more targets than ZDOCK. ZDOCK is able to generate a lot of reasonable 

models for some targets. However, for some targets it does not generate hits at all. 

DOCK/PIERR is more uniform in the generation of hits. CLUSPRO is one of the best 
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methods, even though we include the results from the web server only, which does not 

include the more expensive refinement procedure.  

Table 2.4 Comparison on the ZLAB 3.0 benchmark set of 124 targets. 

Method 

Interface RMSD Fraction of Native Contacts 
Number of 
hits in top 

10/top1 

Number of 
targets solved 
in top 10/top1 

Number of 
hits in top 

10/top1 

Number of 
targets solved 
in top 10/top1 

DOCK/PIE 
Rigid Docking 73/10 38/10 144/14 59/14 

DOCK/PIERR 
Rerank with PISA 86/17 40/17 167/28 66/28 

DOCK/PIERR 
Rerank with C1 107/19 50/19 190/32 72/32 

DOCK/PIERR 
Rerank with C2 107/19 50/19 194/30 72/30 

DOCK/PIERR 
Rerank with C3 102/15 46/15 175/23 63/23 

CLUSPRO 63/19 50/19 172/31 69/31 
ZDOCK 143/13 29/13 276/22 45/22 

ZDOCK+ZRANK 96/12 23/12 208/26 50/26 
PATCHDOCK + 

FIBERDOCK 21/2 15/2 56/4 33/4 

Results on the novel set 

Table 2.5 shows the comparison of DOCK/PIERR and other docking software on 

the novel set. For ZRANK, the authors recommend it to be used on the top 2000 models 

from ZDOCK. Besides applying ZRANK on the top 2000 models, we also applied 

ZRANK to the top 1000 models from ZDOCK, since we use the top 1000 models from 

our rigid docking procedure for reranking. We did similarly for FIBERDOCK, which is 

to be applied on the top 500 models from PATCHDOCK. CLUSPRO and ZDOCK have 

not been used so far for docking of homology models. Here, we are using homology 
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modeling to mimic a “real” docking experiment in which the bound structures are not 

known. 

Table 2.5 Comparison of docking software on the novel set of 30 targets. Suffix of 1000 
for example, means that the re-ranking was applied to top 1000 models from 
rigid docking. 

Method 

Interface RMSD Fraction of Native Contacts 
Number of 
hits in top 
10/top 1 

Number of 
targets solved 
in top 10/top 1 

Number of 
hits in top 
10/top 1 

Number of 
targets solved 
in top 10/top 1 

DOCK/PIE 
Rigid Docking 37/10 16/10 69/14 20/14 

DOCK/PIERR 
Rerank with PISA 33/7 12/7 50/10 17/10 

DOCK/PIERR 
Rerank with C1 41/7 15/7 70/11 21/11 

DOCK/PIERR 
Rerank with C2 43/9 17/9 75/12 21/12 

DOCK/PIERR 
Rerank with C3 44/10 17/10 72/12 22/12 

ZDOCK 39/9 11/9 52/11 14/11 
ZDOCK+ZRANK-

2000 34/5 10/5 55/9 15/9 

ZDOCK+ZRANK-
1000 38/5 11/5 60/8 14/8 

CLUSPRO 19/8 12/8 48/9 16/9 
PATCHDOCK+ 

FIBERDOCK-500 18/4 5/4 32/4 11/4 

PATCHDOCK + 
FIBERDOCK-1000 17/3 5/3 28/3 10/3 

Figure 2.3 shows some of the models produced by different methods on the novel 

set. Since the chains are unbound-unbound there is a slight deviation between the 

receptor chains in the native and model. Table 2.6 shows the comparison of different 

docking methods on individual targets in the novel set. We see that targets that are hard 

for DOCK/PIE are generally also hard for the other docking packages. But there are some 

targets like 3asy, 3r8c and 3rd6, where the only software that was able to produce a hit in 
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the top 10 was DOCK/PIE (RR). For 3hct, only ZDOCK+ZRANK was able to produce a 

hit. For 3d65 and 3nbp only CLUSPRO was able to produce a hit in the top 1.  

 

 

Figure 2.3 Models from three docking algorithms on complexes in the novel set. A) 
Native structure of 3hct (in blue) along with the best model produced for 
this complex, by ZDOCK+ZRANK (in cyan). B) Native structure of 3d65 
(in purple) along with the best model by Cluspro (in raspberry). C) Native 
structure of 3asy (in brick red) superposed with the best model by 
DOCK/PIERR (in yellow). D) Native structure of 3rd6 (in dark green) 
superposed with the best model by DOCK/PIERR (in lemon yellow). 
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Table 2.6 Top 10 and top 1 hits per novel set target. D/P Rigid: DOCK/PIE. D/P PISA: 
DOCK/PIE with PISA. D/P CX: DOCK/PIE with combination potential 
CX. ZD: ZDOCK, CL: CLUSPRO. Suffix [N] implies reranking was 
applied to top N models. ZR [N]: ZDOCK+ZRANK & ZRANK applied to 
top N models from ZDOCK, PF [N]: PATHDOCK+FIBERODCK & 
FIBERDOCK applied on top N models from PATHDOCK. 

Targets Number of irmsd hits in the top 10/top 1 for various docking software 
D/P 

Rigid 
D/P 

PISA 
D/P 
C1 

D/P 
C2 

D/P 
C3 

ZD ZR 
2000 

ZR 
1000 

CL PF 
500 

PF 
1000 

2xt4 3/1 4/0 4/1 3/1 4/1 1/0 1/0 1/0 1/0 0/0 0/0 
2xty 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 
3agx 3/1 3/1 3/1 3/1 3/1 7/1 6/1 7/1 1/1 4/1 4/1 
3asy 2/0 3/1 4/0 3/0 3/0 0/0 0/0 0/0 0/0 0/0 0/0 
3gt6 1/0 2/1 2/0 2/0 1/0 2/1 4/1 4/1 1/0 0/0 0/0 
3lis 4/1 5/1 5/1 4/1 4/1 4/1 8/1 9/1 3/1 6/1 5/1 

3m7f 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 
3mxj 1/0 0/0 1/1 1/0 1/1 0/0 1/1 1/1 2/1 0/0 0/0 
3nfy 3/1 3/1 3/0 3/1 4/1 7/1 6/1 6/1 2/1 1/1 1/0 
3oa9 1/1 4/0 3/1 2/1 2/1 7/1 2/0 3/0 1/1 0/0 0/0 
3p2q 1/1 1/1 1/1 1/1 1/1 4/1 3/0 3/0 2/1 6/1 6/1 
3pc6 2/1 1/0 1/0 2/1 2/1 1/1 0/0 0/0 0/0 0/0 0/0 
3pge 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 
3pra 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 
3r8c 1/1 0/0 0/0 1/0 1/0 0/0 0/0 0/0 0/0 0/0 0/0 
3rd6 3/1 3/1 3/1 3/1 3/1 0/0 0/0 0/0 0/0 0/0 0/0 
3rkc 2/0 1/0 3/0 3/1 3/1 1/0 1/0 1/0 1/0 1/0 0/0 
3t43 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 
3te8 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 
3u80 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 
3umz 6/0 3/0 5/0 6/0 6/0 1/1 2/0 2/0 1/0 0/0 0/0 
3vc8 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 
2wfx 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 
3d65 2/0 0/0 1/0 2/0 2/0 0/0 0/0 0/0 3/1 0/0 0/0 
3di3 2/1 0/0 2/0 3/0 3/0 4/1 0/0 0/0 0/0 0/0 1/0 
3hct 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/0 0/0 0/0 0/0 
3jrq 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 
3l1z 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 

3m18 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 
3nbp 0/0 0/0 0/0 1/0 1/0 0/0 0/0 0/0 1/1 0/0 0/0 
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On the novel set, DOCK/PIE with the residue potential seems to perform better 

than DOCK/PIERR with the atomic potential. DOCK/PIE rigid docking and 

DOCK/PIERR with potential C3 performs better than all other docking methods. Again, 

performance of ZDOCK is superior to ZDOCK+ZRANK. Also, ZRANK applied to top 

1000 models seems to be better than the authors’ recommendations of applying it on the 

top 2000 models. For FIBERDOCK, the author recommendation of applying it on the top 

500 models seems to work better.  

Results on the learning set 

We report in Table 2.7, the performance of DOCK/PIE and various flavors of 

DOCK/PIERR on the learning set of 640 complexes.  

Table 2.7 Comparison of DOCK/PIE and DOCK/PIERR on the learning set of 640 
complexes. 

Method 

Interface RMSD Fraction of Native Contacts 
Number of 
hits in top 

10/top1 

Number of 
targets solved 
in top 10/top1 

Number of 
hits in top 

10/top1 

Number of 
targets solved 
in top 10/top1 

DOCK/PIE 
Rigid Docking 1646/376 466/376 2152/400 503/400 

DOCK/PIERR 
Rerank with PISA 1764/334 459/334 2197/365 494/365 

DOCK/PIERR 
Rerank with C1 2028/410 482/410 2486/433 508/433 

DOCK/PIERR 
Rerank with C2 2024/411 477/411 2483/435 507/435 

DOCK/PIERR 
Rerank with C3 2003/413 487/413 2487/430 520/430 

The combination potentials generally perform better than the atomic potential, 

PISA alone, on all three datasets. Besides, Table 2.7 suggests that the atomic potential 

PISA seems to recover more hits in the top 10 than the residue potential in DOCK/PIE. 

But it is not as sensitive as the residue potential in DOCK/PIE when it comes to solving 
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more targets in the top ten, or top one. In other words, the atomic potential developed 

here is more useful for enriching the hit candidates than for sensitive prediction of hits 

from a small set of models.   

Atomic potentials may be more sensitive to noise in the learning set. One source 

of noise in learning is the use of unbound complexes. In order to test this hypothesis that 

atomic potentials perform better on bound complexes than unbound, we compared the 

performance of DOCK/PIE rigid docking with the PIE potential, which includes residue 

based and van der Waals terms, with DOCK/PIERR reranking with the atomic potential. 

The results in Table 2.8 show that this hypothesis is not supported, since the atomic 

potential PISA has a higher percentage of solved targets for the unbound complexes than 

for the bound complexes. The atomic potential is also better than the residue potential on 

the unbound complexes.  Hence we still do not know what makes atomic potentials less 

sensitive.  

Table 2.8 Comparison of DOCK/PIE rigid docking and DOCK/PIERR on 460 bound and 
180 unbound complexes in the learning set. 

Type of 
complexes in 

dataset 

Docking Method 
 

Interface RMSD 
Number of 
hits in top 

10/top1 

Percentage of 
targets solved in 

top 10/top1 
Bound DOCK/PIE Rigid Docking 957/278 74.1/60.4 
Bound DOCK/PIERR with PISA 915/228 69.5/49.5 

Unbound DOCK/PIE Rigid Docking 689/98 71/55.6 
Unbound DOCK/PIERR with PISA 849/106 78.9/60.2 

Residue potentials are possibly more robust and are better able to capture enough 

of the overall structural features to recognize near-natives from a small set of models. 

Hence we use potentials that combine atomic and residue scores, hoping that they will be 

more robust, correlate well with RMSD, and enrich hits in the model set.   
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Run times 

Approximate run times for DOCK/PIERR for different protein sizes are shown in 

Table 2.9. We estimate that other software packages we compared to in the present study 

are faster than DOCK/PIERR by a factor of about 10. So far we have focused our 

attention on getting higher accuracy and we did not focus on speed. ZDOCK is using 

essentially the same rigid docking algorithm as DOCK/PIERR (FFT) so we are hopeful 

that appropriate optimizations could be found. For example, DOCK/PIERR uses at 

present, double precision floating-point number in FFT calculations while ZDOCK uses 

only single precision numbers.  

Table 2.9 Approximate run-times for DOCK/PIERR for different protein sizes. All runs 
were on 4 nodes of a Linux cluster with 8 cores each (32 cores total). Each 
core was an Intel Xeon X5460 processor with clock speed of 3.16 GHz. The 
memory size was 16GB for each node. 

Receptor Length 
(number of residues) 

Ligand Length 
(number of residues) Approximate run time in hours 

105 105 1.25 
202 200 1.5 
418 152 4.75 
272 174 5.75 
554 400 9 

Analysis of the new atomic potential  

On solving the inequalities generated from the learning set, we can calculate for 

each target in the learning set, the percentage of inequalities of that target that were not 

satisfied by the linear programming solution. Figure 2.4 shows the distribution of 

violations among targets in the learning set. We observe that there are a relatively small 

number of targets that contribute a large number of violated constraints.  
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Figure 2.4 Percentage of violated inequalities for 200 targets of the learning set. The rest 
of targets are not shown as they have a negligible number of violated 
inequalities. 

Some targets can be hard to dock if they have a very small number of native 

interface contacts. We show in Figure 2.5, the correlation between the number of native 

contacts in the target and the percentage of inequalities that were violated for that target.  

It is observed that the targets with low number of contacts have a high percentage of 

violated inequalities.  

To assess the extent of redundancy among the inequalities in the linear program, 

we calculated the cosine of the angle between any two inequality vectors (the vectors are 

a function of α and d and of the form [nmisdocked (α,d)− nnear−native(α,d)] ) and obtained the 

distribution of the cosine values.  We did this for three different samples of inequality 

vector pairs sampled at random from the inequalities in our linear program: 1500, 2500 

and 3500 pairs of inequalities.  Figure 2.6 shows the distribution of cosine values, peaked 

around 0.0, which shows that a significant percentage of inequalities were orthogonal to 

each other. This suggests that most of the constraints offer new information and are 

independent of each other. 
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Figure 2.5 Percentage of violated inequalities per learning set target plotted against the 
number of contacts for the target. 

 

Figure 2.6 Percentage of violated inequalities per learning set target plotted against the 
number of contacts for the target. 

Atomic and Residue Potentials on Refined and Unrefined Models 

Here we explore the performance of atomic potentials on rigid docking models, as 

opposed to refined models. If we could obtain the same performance of atomic potentials 

on rigid docking models as on refined models, then the extra computational expense of 

side chain refinement and minimization can be avoided.   

Figure 2.7 shows that the atomic potential works best when the parameters of the 

potential are learnt and applied to refined models. It has a better recognition capacity if 

trained and tested on refined models, compared to training and testing on the rigid 
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docking models. Interestingly, the potential trained and tested on unrefined structures is 

much worse than residue based rigid docking. Finally, the coarse-grained potential, PIE, 

performs worse when tested on refined structures, than when tested on unrefined 

structures. This is probably because it was trained on unrefined structures.  

 

 

 

 

 

Figure 2.7 Performance of atomic potential PISA on refined and unrefined models. For 
each ranking method, the number of ZLAB targets with a hit with interface 
RMSD less than 2.5 A, in the top 10 models is shown.  Abbreviations are: 
RD: Rigid Docking, U: unrefined, R: unrefined. PISA-R-U for example, 
means that the re-ranking potential was PISA, which was learnt on refined 
learning set models and tested on unrefined ZLAB structures. 

Examining hit cutoffs and distance bins for the atomic potential 

Tables 2.11-2.14 show numerical experiments on different definitions of near-

native and misdocked conformations and different distance bins for the ZLAB 

benchmark and the training set. All these different variations of the atomic potential were 

learnt on the training set and tested for performance on the ZLAB set. The best 

performing definition on the ZLAB set was chosen for the actual potential, PISA.  

Models were classified as near-native if they had interface RMSDs lower than the 

hit cutoff and were classified as misdocked models if they had an RMSD higher than the 
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misdocked model cutoff. Near-native cutoffs of 4 A and 2.5 A were tried and misdocked 

model cutoff of 5.0, 6.0 and 7.0 A were tried and we chose near-native cutoff of 2.5 A 

and misdocked model cutoff of 7 A.  

We also experimented with different distance bins for the pairwise atomic 

potential, PISA. We show that the distance bin 2-3.5; 3.5-5; 5-8A works best. 

Incidentally these are also the distance bins used for detecting approximate structures for 

threading[37].  

Table 2.10 Comparison of different cutoffs for near-native or misdocked complexes on 
the ZLAB benchmark of 124 complexes. 

Cutoff for near-natives and 
misdocked models Interface RMSD 

Near-native 
cutoff in A 

Misdocked model 
cutoff in A 

Number of 
hits in top 

10/top1 

Number of 
targets solved 
in top 10/top1 

2.5 7.0 86/17 40/17 
4.0 7.0 81/15 39/15 
2.5 6.0 86/16 39/16 
2.5 5.0 82/15 38/15 

Table 2.11 Comparison of different cutoffs for near-native or misdocked complexes on 
the learning set of 640 complexes. 

Cutoff for near-natives and 
misdocked models Interface RMSD 

Near-native 
cutoff in A 

Misdocked model 
cutoff in A 

Number of 
hits in top 

10/top1 

Number of 
targets solved 
in top 10/top1 

2.5  7.0 1764/334 459/334 
4.0 7.0 1424/255 305/255 
2.5 6.0 1510/280 414/280 
2.5 5.0 1627/292 393/292 
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Table 2.12 Comparison of different distance bins on the ZLAB benchmark of 124 
complexes. 

Distance bins used 

Interface RMSD 
Number of 
hits in top 

10/top1 

Number of 
targets solved 
in top 10/top1 

2-3.5; 3.5-5; 5-8 A 86/17 40/17 
3.5-5; 5-6.5; 6.5-8 A 86/13 39/13 
2-4.5; 4.5-6; 6-8 A 85/13 38/13 
2-3; 3-4; 4-5; 5-8 A 83/16 36/16 

2-3.5; 3.5-5; 5-8; 8-10 A 84/18 38/18 

Table 2.13 Comparison of different distance bins on the learning set of 640 complexes. 

Distance bins used 

Interface RMSD 
Number of 
hits in top 

10/top1 

Number of 
targets solved 
in top 10/top1 

2-3.5; 3.5-5; 5-8 A 1764/334 459/334 
3.5-5; 5-6.5; 6.5-8 A 1310/278 367/278 
2-4.5; 4.5-6; 6-8 A 1468/295 389/295 
2-3; 3-4; 4-5; 5-8 A 1548/272 361/272 

2-3.5; 3.5-5; 5-8; 8-10 A 1630/310 404/310 

2.4 CONCLUSIONS 

We have introduced an improvement to docking algorithms by introducing a new 

atomic potential and refinement and ranking algorithms.  The refinement is small (~0.2 Å 

RMSD) and does not result in significant changes to the structure, however it makes the 

structures more chemically reasonable and improves the quality of the obtained potential.  

We show by extensive tests on three datasets of complexes that our methods outperform 

slightly, other state-of-the-art docking packages. We also observe that coarse-grained 

potentials are more robust to inaccurate structures produced by unbound docking. 

Nevertheless, we show that atomic and residue potentials capture different signals, and 

hence their combination works better than either of them individually. However, the 
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success rate of docking software even after refinement and improved reranking functions 

is still between 30 and 50%. One could envision designing multi-body potentials, 

orientation based potentials and potentials that are based on hydrogen bond interactions 

to capture more structural features that may lead to more accurate scoring functions and 

improve the success of computational docking procedures. We investigate one of these 

avenues, i.e. hydrogen bonding interactions, in the next chapter.  
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Chapter 3.  Hydrogen bond potentials: comparison of learning 
algorithms and tests on soluble and membrane proteins  

3.1 INTRODUCTION 

In this chapter, we develop potentials describing hydrogen bond interactions in 

protein docking models [63]. The parameters of the potential are developed using 

different learning algorithms: pairwise learning using linear programming, linear and 

non-linear SVMs and neural networks. The same method referred to as linear 

programming in the previous chapter is called pairwise learning using linear 

programming, in this chapter, to distinguish it from linear SVMs. The distinction is 

explained in the section on comparison of learning algorithms.  

We show that pairwise learning using mathematical programming has the best 

overall performance in terms of accuracy and training and test times, followed closely by 

neural networks. To see if the new hydrogen bond potentials improve the accuracy of 

reranking docking models, we additionally combine the hydrogen bond potentials from 

different learning methods with the residue and atomic contact potentials discussed in 

Chapter 2.  

In chapter 2, the learning and test sets involved water-soluble protein complexes, 

or protein complexes formed in the aqueous solution in cells. In this chapter, we test also 

on protein complexes formed in a different environment. Transmembrane complexes are 

formed in the cell membrane, which is a hydrophobic environment.  

For soluble complexes, hydrogen bond potentials alone possess a weaker signal 

for reranking, compared to interface atomic and residue potentials. However for 

transmembrane complexes, hydrogen bond potentials alone provide a better recognition 

capacity than residue and atomic potentials. We surmise that the weak nature of the 

hydrogen bond potentials for soluble proteins is possibly due to competition of interfacial 
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hydrogen bonds with water. Whereas in transmembrane proteins, the signal from 

hydrogen bonding is stronger possibly owing to the hydrophobic membrane core and lack 

of competition with water molecules. 

Nevertheless, the addition of hydrogen bond potentials to atomic and residue 

potentials is shown to boost their reranking accuracy, for both soluble and membrane 

protein complexes. 

 

3.2 BACKGROUND 

A hydrogen bond is a non-covalent short-range electrostatic interaction between 

an electro-negative atom (called acceptor) and a polar hydrogen atom covalently bonded 

to another electro-negative atom (called donor). Here we examine hydrogen bonds 

formed across protein interfaces i.e. when the hydrogen and donor are from one protein 

and the acceptor is from the interacting protein.  Hydrogen bonds formed at the interfaces 

of interacting proteins in biologically active complexes can play a role in stabilizing the 

interaction further, and also influence the choice of binding partner protein[46, 64]. A 

statistical examination of experimentally determined complexes revealed that the average 

protein-protein interface has around 10 hydrogen bonds [65, 66], [46]. However the role 

of hydrogen bonding in protein interactions is unclear.  

The question we seek to answer is whether hydrogen bonding constitutes useful 

signal for model discrimination in protein docking. In [64], the authors find encouraging 

improvement in model discrimination for protein docking by using a hydrogen bond 

potential for ranking models. However their approach was tested on the easier case of 

bound docking and it is not known whether the results would be as good in the more 

realistic case of unbound docking. [66, 67] on the other hand report that the number of 
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intermolecular hydrogen bonds was not a very good predictor of a near-native model. We 

wish to know whether hydrogen bonding can enhance the signal of traditional atomic and 

residue potentials for reranking protein-protein docking models, and if so, by how much.  

In protein-protein docking algorithms, hydrogen bonding is usually optimized as 

part of short-range electrostatic interactions. Examples are ZRANK[29], DOT[68], and 

FTDOCK [69]. However, a couple of docking algorithms use separate hydrogen bond 

potentials. Rosettadock [16, 17] uses a hydrogen bond potential [64, 70] that is based on 

propensities of hydrogen bonds observed in interfaces of experimental complexes. This 

potential contains both distance dependent and angle-based terms, and the coordinates of 

three atoms are considered: the polar hydrogen, donor atom that the polar hydrogen is 

covalently bonded to, and the electro-negative acceptor atom across the interface that the 

polar-hydrogen hydrogen bonds with [64, 70]. [71, 72] model the hydrogen bonding 

energy with spherical Gaussians centered at putative donor and acceptor positions. The 

optimization of hydrogen bond networks combined with all-atom force fields was also 

used to improve ranking of docking models [27].  

In this work, we develop hydrogen bond potentials for unbound docking. Here, 

we formulate hydrogen bond potentials using several learning algorithms, and test their 

accuracy in improving reranking docking models of soluble and membrane protein 

complexes.   

 

3.3 METHODS 

Datasets of protein complexes 

We use the same learning set used in Chapter 2, a set of 640 PDB complexes used 

in prior work [38], comprising of mostly soluble protein complexes and a small 
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percentage (5%) of membrane protein complexes. For soluble protein complexes, two 

test sets were used.  One was the ZLAB 4.0 Benchmark set [41, 73] of 176 complexes: an 

extended version of the ZLAB 3.0 Benchmark used in Chapter 2. The other was an 

extended version of the novel test set described in Chapter 2. In this study, it was 

extended from 30 to 52 unbound complexes.  The datasets are not large; however, they 

are representative of the non-redundant complexes available in the PDB today.  

The additional 22 targets in the novel set were selected in a manner similar to the 

first 30. The PDB was queried for new protein-protein complexes (not membrane-based, 

not containing DNA/RNA) released between Feb 2012 and Aug 2013.  A 70% sequence 

identity cutoff was used and 181 targets were identified. Of these, complexes containing 

peptides (monomer length less than 60 residues) were discarded and 126 complexes 

remained. These complexes were then tested for similarity to complexes in the learning 

set. The test for similarity was performed by comparing the receptor and ligand 

monomers of a new complex to the receptor and ligand monomers respectively, of every 

learning set complex, using TM-score [45]. For only 50 of the 126 complexes, both the 

receptor and ligand monomers were dissimilar (TM score less than 0.5) to the monomers 

of complexes in the learning set. PSIBLAST [61, 62] was then used to obtain homologs 

in the PDB for the individual monomers of those 50 complexes. 35 complexes had 

homologs (e-value greater than 0.001) for at least one monomer. Modeller [62] was then 

used to obtain homology models for the monomers, given the template from PSIBLAST. 

Homology models from Modeller that were dissimilar (TM score less than 0.8) to the 

bound structure of the monomer were discarded. For 22 targets, Modeller produced a 

model close to the bound structure, (TM score greater than 0.8), for both receptor and 

ligand. These 22 complexes were the set of additional targets added to the novel set, of 

which 10 are homodimers and 12 heterodimers. They are summarized in Table 3.1.  
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For membrane protein complexes, a test set of 30 unbound membrane protein 

complexes that was created in another study was used: this study on membrane proteins 

is described in Chapter 4.  The hydrogen bonds for membrane complexes included those 

in the residues inside the hydrophobic core of the membrane as well.  

Table 3.1 New set of 22 targets added to the independent novel test set of soluble protein 
complexes. Listed are the PDB chains used as receptor and ligand, along 
with the corresponding template used to obtain homology models (unbound 
structures) for docking. 

Target PDB ID Receptor chain: 
Homolog 

Ligand chain: 
Homolog 

2LYJ A:1UTX_A B:1UTX_A 
2M0G A:2M0G_A B:1OPI_A 
2Y9P A:2Y9M_A B:2Y9M_B 
2YML A:2NO4_A B:2NO4_A 
3TG1 A:1YW2_A B:2OUC_A 
3TZN A:1AJ0_A B:1AJ0_A 
3VQL B:3AAB_A A:3AAB_A 
3VVW B:3ECI_A A:3VVW_A 
3VX7 A:3VH2_A B:3VX7_B 
4A5U A:4A5U_A B:2QOU_O 
4B8A B:1UOC_A A:4B8A_A 
4DHI B:2ZFY_A D:3HCT_B 
4DUL A:1UT4_A B:1UT4_A 
4EM8 A:3PH4_A B:3HE8_A 
4F4I B:2CCJ_A A:2CCJ_A 

4GQX A:3URR_A B:3URR_A 
4H6J B:3F1N_B A:3F1N_A 
4H7A A:2ZCA_A B:2ZCA_A 
4HYE A:3B2N_A B:3B2N_A 
4ILH B:3SBT_B A:3SBT_A 
4IP3 A:4IP3_A B:3HCT_B 
4JAK A:3N4J_A B:3N4J_A 
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Hydrogen bond potentials for reranking 

As described in Chapter 2, the models from DOCK/PIERR rigid docking and 

minimal refinement are reranked using a combination of atomic and residue potentials 

[41]. In this study, we develop hydrogen bond potentials to be used in the last reranking 

phase along with the residue and atomic potentials.  

Building polar hydrogens into docking models 

Models of most complexes do not contain polar hydrogen atoms: polar hydrogens 

coordinates are not available from protein structures obtained by X-ray crystallography. 

Hence polar hydrogens needed to be added to each of the one thousand docking models 

for every complex in the learning and test sets. They were also required in the native 

(experimental) structures, for complexes in the learning set that did not contain hydrogen 

atoms. Only 68 of the 640 complexes in the learning set were NMR structures that 

already had hydrogens in the experimental structure. All polar hydrogens were built using 

the ready_pdb script of the MOIL MD package [58]. For 4 targets each in the learning 

and ZLAB sets, where MOIL hydrogen placement failed, due to missing residues in the 

PDB files, the HAAD program [74] was extended to multiple chains and used to add 

hydrogens. A small number of targets (8 targets in the learning set and 4 targets in the 

ZLAB set) for which both MOIL and HAAD failed to insert hydrogens were excluded 

from our analyses: the PDB files had several missing heavy atoms in these cases. Overall, 

we had 628 targets from the learning set, 165 targets from the ZLAB set and 52 from the 

novel set. These three formed the set of soluble protein complexes. Additionally, we used 

another test set of 30 unbound membrane protein complexes, described in the next 

chapter. 
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Enhancement of hydrogen bond signal using Molecular Dynamics 

The number of hydrogen bonds in the interfaces of the protein-protein models is 

quite small; the order of magnitude is in the tens, even for an interface hydrogen to 

acceptor atom distance of 4 Å. We note that this distance is more permissive than the 

traditional hydrogen-acceptor distance in a typical hydrogen bond, which is around 2 Å. 

The longer distance range is to account for the additional error in unbound docking. In 

order to amplify this weak signal from hydrogen bonding, we ran a short simulated 

annealing molecular dynamics trajectory for each model (and also for the native 

structures in the learning set) and use the final structure at the end of the dynamics run, 

instead of the initial model, to calculate the hydrogen bonds. The inaccuracies of 

unbound docking models mean that some hydrogen bonds are not close enough in the 

original model to be captured within the cutoff. Hence the simulated annealing 

accumulates signal from additional nearby hydrogen bonds, increasing the number of 

hydrogen bonds within a distance of 4 Å by an order of magnitude, to hundreds. We 

show in the Results section, that this increase in the signal from hydrogen bonding leads 

to improved ranking using the resulting hydrogen bond potential.  

The MD protocol was as follows: first, an initial short MD run: 50 steps of 

dynamics with 1 femtosecond time step at 300K, with the nbfi option in MOIL. The nbfi 

option replaces the hard Lennard-Jones repulsion potential with a softer Gaussian 

repulsion, and this reduces the number of hard collisions in the structures. Second, a short 

10-step minimization using conjugate gradient descent implemented in the mini_pwl 

routine in MOIL: to make the structures at the start of the longer dynamics run more 

chemically reasonable. And third, a 10 ps simulated annealing dynamics run with 1 

femtosecond time step and linear temperature cooling from 600K to 10K. The annealing 

(cooling) procedure resulted in a hydrogen bonding potential that was more accurate at 
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reranking docking models (improved the number of hits recovered), compared to MD 

with no annealing. All MD runs were performed in vacuum for simplicity.  

Note that the three step short MD procedure is not intended as a refinement 

procedure as the changes to interface RMSD of the resulting models are small: within 1 

Å. The structure from dynamics is used merely to calculate the hydrogen bond geometry, 

as it leads to a better set of hydrogen bonds. We also note that for a small number of 

models for each target for which dynamics failed to converge, the interface hydrogen 

bonds were simply calculated from the original model. 

Functional form of the potential 

We developed the functional form for the pairwise learning using linear 

programming approach first, and then extend the form to non-linear learning approaches 

like SVM and Neural Networks.  

For the linear programming case, we formulated a simple distance dependent, 

double-binned hydrogen bond potential based on the coordinates of the polar hydrogen 

atom and acceptor atom at protein interfaces. The functional form of the potential is as in 

Eq. (3.1). This formulation is similar to that of the atomic potential in Chapter 2.  

Ehbond (X) = n(α ,d)u(α ,d)
α ,d
∑         (3.1) 

The energy of a complex, X, E(X)  is dependent on the coarse-grained particle 

types of the polar hydrogens, h, and electronegative acceptor atoms, a, at the interface, 

and the distance d between them. Note that the polar hydrogen and acceptor atoms can 

come from either of the two interacting proteins in the complex. We denote the 

interacting particle pair type (h,a)  by a single parameter, α henceforth. n(α ,d)  is the 

number of times a hydrogen acceptor particle pair of type α  is at an interface distance 

range, d. The value of the vector n depends on the geometry of the docking model. 
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u(α ,d)  is the corresponding parameter in the potential associated with the particular 

pairwise interaction type of (α ,d) . The energy is linear in the parameters, u, that define 

the potential.  

For the particle types of polar hydrogen and acceptor, the coarse-graining 

classification that resulted in the best accuracy with the minimum number of potential 

parameters, was based on the residue types of the polar hydrogen and acceptor. Residues 

were classified into four types:  Hydrophobic (ALA, VAL, ILE, LEU, PRO, TRP, PHE, 

MET), Polar (SER, THR, CYS, ASN, GLN, TYR, GLY), Positive charged (ARG, LYS, 

HIS) and Negative charged (ASP, GLU). Polar hydrogens and electronegative acceptor 

atoms were accordingly classified into four different particle types based on their residue 

type. These are denoted as hyd, pol, pos ,neg{ }  in Eq. (3.1). Various other types of 

coarse-graining were attempted and are compared in the Results and Discussion section, 

under Development of the Potential. Note that the potential here is directional and not 

symmetric in the particle types, h and a, unlike traditional residue or atomic pairwise 

potentials. The total number of particle type pairs is hence 4 *4 = 16 .  

To model the distance between hydrogen and acceptor atoms, we used two 

distance bins [0-4, 4-8 Å]. While the usual interface hydrogen bond distance is around 

2.5 Å [46], increasing the first distance bin to 4 Å from 2.5 Å led to an increase in 

accuracy of 15.8% in the ZLAB unbound docking test sets (accuracy was based on the 

number of targets with an acceptable model in the top 10 models).  Using a smaller cutoff 

of 2.5 Å was found to be useful for bound docking but not for models from realistic 

unbound docking, where the monomer structures themselves are inexact by 1 Å or more. 

The addition of a second distance bin from 4-8 Å further increased the accuracy of the 

hydrogen bond potential in reranking. The data for this is shown in the Results section 

under Development of the Potential. The longer-range interactions might carry additional 
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signal possibly from water-mediated hydrogen bonding interactions. Others [75, 76] have 

previously shown that coarse-grained potentials for protein interaction are more accurate 

when a second well representing water-mediated interactions is added. It is also likely 

that unbound docking models are lower in accuracy by more than 2 Å, and hence long-

range interactions are essential to describe the interactions in inexact models. For 

example, the ZLAB Benchmark 4.0 contains 21% of targets with unbound to bound 

interface RMSD greater than 2 Å.  

The 2 distance bins and 16 atom type pairs result in a total of 32 parameters for 

the hydrogen bond potential. We note that the potential is purely distance-dependent and 

not angle dependent. Using a constraint on the hydrogen bond angle (angle between the 

donor-to-polar hydrogen and polar hydrogen-to-acceptor) to be between 1200 and 1800 

decreased the accuracy of the hydrogen bond potential by 36.4% when reranking our 

models in the ZLAB unbound docking test set (accuracy again based on the number of 

targets with an acceptable model in the top 10 models). Hence we think that the angle 

dependence is more appropriate when using high-resolution bound docking models and is 

not suitable for the relatively imprecise unbound docking models.  

Learning Algorithm 1: Pairwise Learning using Linear Programming (PLLP) 

In pairwise learning for linear programming, a pair of energies, E, of correct (

Xcorrect ) and incorrect ( Xincorrect ) models is compared to obtain a set of inequalities of the 

type E(Xincorrect ) > E(Xcorrect ) . These inequalities are solved to obtain the parameters of the 

potential, u in Eq. (3.1). The set of inequalities is linear in the parameters u , as noted in 

Chapter 2. Note that our definition of correct model (interface RMSD less than 2.5 Å) 

and incorrect model (interface RMSD greater than 7 Å) is the same as in Chapter 2.  
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The inequalities we solve are also the same set of inequalities as in Chapter 2. 

They are shown again in Eq. (3.2). The first inequality compares correct and incorrect 

models. The second and third inequalities help shape the binding funnel more precisely at 

the bottom of the funnel. The second inequality stipulates that the energy of high-quality 

hits or near-native models (with interface RMSD less than 1.5 Å) should be lower than 

that of good hits (with interface RMSD between 1.5 and 2.5 Å). The last inequality is 

based on a sorting based on iRMSD of hits within 2.5 Å interface RMSD for each 

learning set complex. The energy of a hit i, which is ranked just above the hit i+1, should 

be lower than the energy of hit i+1. These inequalities compare all nhits  pairwise adjacent 

hits of a target. zi is the slack variable which is the error in satisfying each constraint.  

E(Xincorrect − Xcorrect ) >1− zi ;zi > 0

E(Xgood _ hit − Xhigh − quality _ hit) >1− zi ;zi > 0

E(Xhit
i+1 − Xhit

i ) >1− zi;i = 1,2,....nhits −1 ;zi > 0

           (3.2) 

The objective function coupled with the constraints, during learning is shown in 

Eq. (3.3).  The sum of errors in each constraint zi is minimized along with the sum of 

parameter values, u.  The constant γ = 1 . 

min u(α ,d)
α ,d
∑ + γ zi

i
∑

1

                     (3.3) 

The three sets of inequalities in Eq. (3.2) coupled with the objective function in 

Eq. (3.3) form the linear program for the hydrogen bond potential, which was solved to 

obtain the parameters u. The top 1000 models of all the 628 targets in the learning set 

along with the native structure for these targets were used to formulate the inequalities. 

The simulated annealing MD procedure described earlier was performed on all the 

models and native structures, in order to enhance the number of interface hydrogen 

bonds. The total number of inequalities for the hydrogen bond potential was 5,820,745 
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and the number of parameters to be determined was 32. The linear program was solved 

using PF3 [39, 40], a parallelized linear programming solver designed for development of 

protein folding potentials. It is an extension of standard interior point solvers for the 

special case of protein folding problems where the number of inequalities (millions) is 

much higher than the number of parameters (~100’s), which enables efficient 

parallelization of the constraint matrix.  

Learning Algorithm 2: Support Vector Machines 

Support vector machines are a class of learning algorithms which, when given a 

set of positive and negative examples, learn a model that maximizes the separation or 

margin between the positive and negative distributions [77]. Assume we are given a set 
of Ntrain  training examples, xi ≡ xi,1, xi,2 ....xi,n , yi( );i = 1,2....Ntrain{ } , where each example 

is an input xi  an n -dimensional vector with a corresponding output yi ∈{−1,+1}  

denoting the distribution (positive or negative) that the example belong to. Assuming the 

two distributions can be linearly separated with an n-dimensional hyperplane, SVMs seek 

to find the hyperplane that maximize the margin between the nearest examples of the two 

distributions. The optimization problem solved by the so-called soft margin SVM 

classifier [77, 78] is shown in Eq. (3.4).  

   

 

min
w,b

w 2 +C zi
i
∑ subject to

yi
w ⋅ xi + b( ) >1− zi zi > 0

                             (3.4) 

It is called a soft-margin classifier, as the positive and negative examples need not 

be strictly well-separated. Misclassification of examples is allowed, and is denoted by the 

slack variable zi , for each example, which represents the extent of deviation of the 

misclassified example from the hyperplane. w  is the n-dimensional vector normal to the 

hyperplane we are looking for, and b is a bias constant. These two parameters determine 
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the SVM hyperplane, and their values are found by solving the quadratic program in Eq. 

(3.4), with one constraint per training example, and an optimization condition that 

requires minimizing the square of the vector w and the sum of non-negative errors, zi . C 

is the cost parameter that controls the tradeoff between training error and margin. Larger 

the value of C, greater the penalty term so the margin for misclassification is smaller 

[77]. 

To model the hydrogen bond potential using SVMs, we used a variant of the 

binary classifier SVM, for regression, i.e. the output is not one of two classes as shown 

above, but a floating point value representing the hydrogen bond energy. Each model and 

native structure in the learning set was used as one training example: there were 625729 

examples in all. The input features, or xi
→

, in Eq. (3.4) was the set of 32 geometric 

contacts for a model, relevant to hydrogen bonding, depicted by n(α ,d)  in the section on 

linear programming. These feature values were scaled between -1 and 1 for numerical 

stability and to prevent the features with the largest fluctuation from dominating. The 

output, or yi  in Eq. (3.4), represents the hydrogen bond energy. The energy value used in 

training was the interface RMSD of the model to its native structure. A desirable property 

of a good potential is positive correlation with the interface RMSD, i.e. lower the RMSD, 

lower the energy and better the model. Hence interface RMSD was used as the training 

output.  

Further, SVMs also allow for non-linear separation of distributions. This is done 

by mapping the input data to higher dimensions using kernel functions: the rationale is 

that it might be easier to linearly separate the data in higher dimensional space, compared 

to the original space. Kernel functions are defined on pairs of inputs and typical choices 
used are the polynomial kernel K(xi , x j ) = s(xi ⋅ x j )+ c( )d  where s, c, d are constants with 

d representing the degree of the polynomial; radial basis or Gaussian kernel 
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K(xi , x j ) = e
−γ xi −x j

2

where γ  is a constant to be tuned and sigmoid kernel 

K(xi , x j ) = tanh(s(xi ⋅ x j )+ c)  where s and c are constants [79]. The constant parameters 

in these kernels define the SVM potentials, and they need to be tuned while training.  

SVMLight [79] was the package used for training and testing. The optimization 

problem in Eq. (3.4) is solved in SVMLight by a fast heuristic that involves stochastic 

sampling of the set of inequalities, and breaking them down into smaller quadratic 

problems that are solved at each step. Linear and non-linear SVMs were used to model 

the hydrogen bond potential. For linear SVMs, the cost parameter, C, was varied in 
powers of 2 C ∈ 2−5,2−3,2−1,2 ,23,25,27,29,211{ }  to obtain different potentials. The 

potential with the best performance in ranking models on the learning set was chosen as 

the representative linear SVM potential. Similarly for the non-linear sigmoid kernel, the 

cost parameter was varied as above, while other parameters were kept fixed. The same 

was the case for the polynomial kernel, where in addition to the cost parameter, the 

degree of the polynomial was varied d ∈ 3,5,7,9{ } . Radial basis function kernel was 

omitted as the training time was too long (3+ days). One representative non-linear 

potential was chosen among the polynomial and sigmoid kernel potentials, according to 

the best ranking performance on the learning set.  

We note that we also tried binary classification using SVMs to label model into 

one of two classes: correctly docked or misdocked structure, using an interface RMSD 

less than 4 Å to define correct structure. The idea was to see if this prediction could help 

fish out near-native structures from the set of models. However docking datasets are 

highly imbalanced: i.e. the number of negative examples is much higher than the number 

of positive examples. In these cases, binary SVM classifiers behave more like a majority 

classifier: classifying almost all examples as negative. SVMs allow for tuning of the cost 
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parameter for imbalanced datasets, such that different cost values C are used for positive 

and negative examples [80]. In our case, C+ >>>C−  i.e. the cost for misclassifying a 

positive example is much higher than the cost for misclassifying a negative example.  

However the models learnt using this fix in cost penalties did not turn out to be different 

and in general, classification was found to be not useful for reranking.  

Learning Algorithm 3: Neural Networks  

Artificial neural networks are another class of machine learning algorithms that 

seek to model the outputs of a problem as a non-linear function of the features or inputs.  

The non-linear model is that of a network with one input layer, one output layer and one 

or more hidden layers connecting the input and output layers. Each layer i contains a 

fixed number of neurons, which receive the input from all the neurons of the previous 

layer, i-1, and transform them by a some non-linear function (called activation function) 

on the inputs. Outputs from the neurons in layer i are propagated to neurons in layer i+1.  

Eq. (3.5) is the Eq. for ym
n , the output of the mth neuron in the nth layer[81, 82].  

It is a non-linear function, f, of yk
n−1 , the outputs of all neurons indexed k = 1,2,...Nn−1  in 

the n-1th layer. The outputs are each scaled by a weight rk ,m
n−1,n , which is the weight of the 

connection between the kth neuron in the n-1th layer and the mth neuron in the nth layer.  

Also a bias constant b is added to the weighted linear combination of the previous layer 

outputs. The function f is usually the sigmoidal function, f (x) = 1
1+ e− x

, or the hyperbolic 

tangent f (x) = tanh(x)  or Gaussian function f (x) = e−ax
2

. The resulting potential is 

continuous and differentiable in coordinate space.  

              ym
n = fm

n bm
n + rk ,m

n−1,nyk
n−1

k=1

Nn−1

∑⎛
⎝⎜

⎞
⎠⎟                                       (3.5) 
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For the hydrogen bond potential, we used 1 and 2 hidden layers. The output of the 

single neuron of the output layer y1
3  (for one hidden layer and 3 layers in all) and y1

4  (for 

two hidden layers and 4 layers in all), represents the hydrogen bond energy as predicted 

by the Neural Network. The inputs to the neural network i.e. neurons of the first layer, 
yi
1;i = 1,2...32{ }  are the 32 geometrical features of hydrogen bonding for a model, 

represented byn(α ,d) , in the section on linear programming and SVMs.  

The weights r and bias b completely determine the network. They are determined 

by iterative gradient descent on a training set. The objective function minimized during 

training is the Mean-Squared Error (MSE) between the current predicted outputs from the 

network and the correct outputs for the training set examples. The MSE at the kth 

iteration is shown in Eq. (3.6), where Ntrain  is the number of training examples, yi
NN ,k  is 

the output of the neural network in the kth iteration for the ith training example and 

yi
correct  is the correct output for that training example. We are assuming here that this 

neural network produces only a single output (hydrogen bond energy in our case).  
 

MSEk =
1

Ntrain

y
i

NN ,k − y
i

correct( )2
i=1

Ntrain

∑                     (3.6) 

The algorithm used for updating the weights was Rprop [83], as it consistently 

produced networks with lower MSE than other weight update algorithms like Quickprop, 

Backpropagation and Batch Update [84]. In Backpropagation, the weights of the network 

are updated every time a new training example is seen, which means that they are 

updated multiple times per training iteration. Batch Update and Quickprop are advanced 

Backpropagation algorithms where weights are updated once all the training examples 

are seen i.e. only once per iteration. The above algorithms require one to tune additional 

parameters such as the step size or learning rate. In contrast, Rprop is one of the widely 
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preferred advanced update algorithms, and uses a dynamic step size for every step, 

updating the weights once per iteration. We used Rprop for training since it produced 

networks with lower MSE values than the other training algorithms for our case. 

Different stopping conditions are used to terminate training in neural networks. 

They can be based on the number of iterations (train till a maximum number of iterations 

is reached), or a threshold on the training error (train till the MSE is less than ε , a small 

number) or a threshold on the training progress (train till improvement in MSE over the 

last T iterations is no more than ε ) [85]. The disadvantage of the above approaches is 

that it is possible to overfit the network to the training set. Instead, we follow the 

common protocol of splitting the training set into an 80% set for training and 20% set for 

validation. The stopping conditions used were the following:  Train until a maximum of 

T = 500  cycles (usually never reached). In each cycle, we train for 10 iterations.  In each 

iteration, all the training samples in the 80% set are seen and weights of the network are 

updated.  At the end of each cycle, we test the network on the 20% validation set and get 

the MSE on the validation set (validation error) as well as MSE on the training set 

(training error). If the percentage improvement in the validation error over the last 15 

cycles was found to be less than 0.01%, then training was halted. Additionally if the 

improvement in the training error was found to be less than e-05 over the past 15 cycles, 

training was stopped.    

The C-based neural network package, Fast Artificial Neural Networks (FANN) 

[84] was used for training and testing the networks. Fully connected networks were used, 

and inputs and outputs were scaled to [-1, 1]. The set of inputs, outputs and the training 

examples were exactly the same as that used for SVMs. Inputs were the 32 geometric 

features describing the hydrogen bond potential, output used to model the hydrogen bond 
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potential energy was the interface RMSD of the model to its native structure. In all, 

625729 training samples were used.   

Multiple architectures i.e. different number of hidden layers and neurons were 

experimented with, to obtain different models of the hydrogen bond potential. Also 

different hidden layer non-linear functions and output layer functions were explored.  

Linear and symmetric sigmoid functions were used for the output layer and networks 

with sigmoid outputs produced lower validation MSE. For the hidden layer, Gaussian and 

sigmoid functions were tried and networks with hidden layer sigmoid functions produced 

lower validation MSE. Fixing the training algorithm and hidden and output layer 

functions, different architectures of the network were tried and the final network selected 

was the one with the smallest validation MSE, as shown in the Results section.  

We note that we also tried to perform classification instead of regression for 

neural networks, as in the case of SVMs. However due to the imbalance in the docking 

datasets: number of negative examples is much higher than the number of positive 

examples, the neural network behaved similar to the SVM and classified almost all 

models as negative examples, rendering the output to be uninformative for ranking.  

 

3.4 RESULTS AND DISCUSSION  

In this study, we first test the reranking performance of the newly developed 

hydrogen bonding potentials, by reranking the top 1000 models in the last step using the 

hydrogen bonding potentials alone, without C3. We then combine the best performing 

hydrogen bond potentials with C3, to improve the quality of final reranking.  

The hydrogen bond potential is first developed in the linear programming 

framework, and various types of coarse-graining for atom types and distance bins are 



 62 

systematically considered. Once the best performing coarse-graining is known from the 

linear programming results, the same functional form for the potential is used for the two 

other learning algorithms. This enables us to compare the performance of different 

learning algorithms. The results of the ranking performance of hydrogen bond potentials 

from different learning methods, alone and in combination with C3, are compared, on 

datasets of soluble and transmembrane complexes. 

Development of the Hydrogen Bond Potential and Results from Pairwise Learning 
using Linear Programming 

In this section we explore various types of coarse-graining models for the 

hydrogen bond potential derived using pairwise learning from linear programming 

(PLLP).  

a. Using Molecular Dynamics improves the hydrogen bond signal  

In Table 3.2, two different sets of models are used for calculating the hydrogen 

bond energy. These sets of models are compared based on their ability to produce 

accurate hydrogen bond potentials for reranking.  In the first case, the hydrogen bond 

potential is derived from, and applied to, DOCK/PIERR models before the simulated 

annealing MD procedure described in this paper. These are models from rigid FFT 

docking which have previously undergone side chain remodeling and energy 

minimization [41]. In the second case, the learning and testing of the hydrogen bond 

potential is done on models that have undergone the simulated annealing MD procedure, 

in addition to the previous side chain remodeling and energy minimization. The results 

shown are for a simple hydrogen bond potential with 4 particle types each, for hydrogen 

and acceptor atoms, based on the residues they belong to (hydrophobic, polar, positive 

charged and negative charged) and a single distance bin from 0-4 Å. This resulted in 16 

parameters in all, the values of which were obtained from linear programming using the 
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learning set models, as described previously in the Methods section. The number of near-

native models or hits i.e. models within 4 Å interface RMSD of the experimental 

structure, within the top 10 and top 1 structures, are reported for the ZLAB and novel test 

sets. These final models are obtained by ranking the top 1000 models from 

DOCK/PIERR rigid docking using the hydrogen bond potential. Table 3.2 shows that the 

hydrogen bond potential has a better accuracy when simulated annealing is used to 

enhance the number of interface hydrogen bonds. So here onwards, we report results 

from potentials applied to models derived from the simulated annealing MD procedure.  

Table 3.2 The performance of hydrogen bond potential on two different model sets: one 
without MD and one after MD is compared, on the ZLAB and novel test 
sets. The numbers of hits in the top 10 and top 1 and number of targets with 
at least one hit in the top 10 are reported. A hit is a model rated acceptable 
according to CAPRI i.e. with an interface RMSD of 4 Å or less.  Note that 
the potential has 4 particle types of hydrogen and acceptor (hyd, pol, pos, 
neg) and 1 distance bin [0-4 Å], and is a simpler form of the final potential 
we derive.  

Models used to 
derive and 
calculate 

hydrogen bond 
potential 

ZLAB test set (165 targets) Novel test set (52 targets) 

Number of hits 
in the top 

10/Number of 
targets with a hit 

in the top 10 

Number of 
targets with a 
hit in the top 

1 

Number of 
hits in the top 
10/Number of 
targets with a 
hit in the top 

10 

Number of 
targets with a 
hit in the top 

1 

Before 
simulated 

annealing MD 
27/21 2 9/6 1 

After simulated 
annealing MD 41/20 5 18/11 3 

b. Exploration of particle types 

Various types of coarse-graining were attempted for the particle types of 

hydrogen and acceptor. These ranged from the simple element level classification based 
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on the element types of the atoms; to the more complicated classifications that depend on 

the residue type, placement in the side-chain or backbone and hybridization of the atoms. 

Table 3.3 shows the number of parameters for each type of coarse-graining and the 

accuracy of the resulting hydrogen bond potential derived from linear programming.  

Table 3.3 (a) Different definitions of hydrogen and acceptor particle types, and the 
corresponding number of parameters. The abbreviations are as follows: i. 
residue types: hyd: hydrophobic, pol: polar, pos: positive charged, neg: 
negative charged, ii. element types: N: Nitrogen, O: Oxygen, S: Sulphur and 
iii. atom placement : Bkbn: backbone, Sc: side-chain. Other abbreviations 
are standard 3-letter amino acid names. 

Basis of 
classification 

Listing of hydrogen 
atom types 

Listing of acceptor 
 atom types 

Number of 
parameters 

in the 
potential 

Element types of 
donor atom bonded 

covalently to 
hydrogen and 
acceptor atom 

1. N 
2. O 
3. S 

1. N 
2. O 
3. S 

9 

Residue type of 
hydrogen and 
acceptor atom 

 

1. hyd 
2. pol 
3. pos 
4. neg 

1. hyd 
2. pol 
3. pos 
4. neg 

16 

Element type as well 
as residue type of 
donor bonded to 
hydrogen, and 
acceptor atom   

 

1. N: hyd 
2. N: pol 
3. N: pos 
4. N: neg 
5. O: pol i.e. 

SER/THR/TYR 
6. S: pol i.e. CYS 

1. O: hyd 
2. O: pol 
3. O: pos 
4. O: neg 
5. N: pos i.e. 

HIS 
6. S: pol i.e. 

CYS 
 

36 

 
Table 3.3 (a) continues on the next page.  
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Basis of 
classification 

Listing of hydrogen 
1. atom types 

Listing of acceptor 
1.  atom types 

Number of 
parameters 

in the 
potential 

Residue type, 
element type, side-

chain/backbone 
placement of donor 
bonded to hydrogen, 
and acceptor atom  

2. Bkbn N: hyd 
3. Bkbn N: pol 
4. Bkbn N: pos 
5. Bkbn N: neg 
6. Sc N: hyd i.e. 

TRP 
7. Sc N: pol i.e 

ASN/GLN 
8. Sc N: pos i.e. 

ARG/LYS/HIS 
9. Sc O: pol i.e. 

SER/THR/TYR 
10. Sc S: pol i.e. 

CYS 

2. Bkbn O: hyd 
3. Bkbn O: pol 
4. Bkbn O: pos 
5. Bkbn O: neg 
6. Sc O: pol i.e. 

SER/THR/TY
R/ASN/GLN 

7. Sc O: neg i.e. 
ASP/GLU 

8. Sc N: pos i.e. 
HIS 

9. Sc S: pol i.e. 
CYS 

72 

Residue type, 
element type, side-

chain/backbone 
placement and 

chemical similarity 
(e.g. hybridization) of 

donor bonded to 
hydrogen, and 
acceptor atom 

1. Bkbn N: hyd 
2. Bkbn N: pol 
3. Bkbn N: pos 
4. Bkbn N: neg 
5. Sc N: TRP 
6. Sc N: ASN/GLN 
7. Sc N: ARG-NE 
8. Sc N: ARG-

NH1/NH2 
9. Sc N: LYS 
10. Sc N: HIS 
11. Sc O: 

SER/THR/TYR 
12. Sc S: CYS 

1. Bkbn O: hyd 
2. Bkbn O: pol 
3. Bkbn O: pos 
4. Bkbn O: neg 
5. Sc O: 

SER/THR/TY
R 

6. Sc O: 
ASN/GLN 

7. Sc O: 
ASP/GLU 

8. Sc N:  HIS 
9. Sc S:  CYS 

108 

In Table 3.3 (a), various types of coarse graining of hydrogen and acceptor 

particle types are shown along with the corresponding number of parameters in the 

resulting potential. Table 3.3 (b) shows the effect of different types of coarse graining of 

atom types, on the accuracy of the hydrogen bond potential for reranking.  



 66 

Table 3.3 (b) The performance of hydrogen bond potentials with one distance bin [0-4 Å] 
and various coarse-graining types for hydrogen and acceptor atoms is 
shown. The hydrogen bond potential is applied for reranking the top 1000 
models from DOCK/PIERR rigid docking of each target, followed by side 
chain remodeling, minimization and simulated annealing MD. The number 
of hits in the top 10 and top 1 and number of targets with at least one hit in 
the top 10 are reported for the ZLAB and novel test sets. A hit is a model 
rated acceptable according to CAPRI i.e. with an interface RMSD of 4 Å or 
less. 

Number of 
potential 

parameters 
based on 
atom type 

coarse-
graining in 
Table 3 (a) 

ZLAB test set  
(165 targets) 

Novel test set  
(52 targets) 

Number of 
hits in the 

top 
10/Number 
of targets 
with a hit 
in the top 

10 

Number 
of 

targets 
with a 
hit in 

the top 
1 

Number of 
hits in the 

top 
10/Number 
of targets 
with a hit 
in the top 

10 

Number 
of 

targets 
with a 
hit in 

the top 
1 

9 18/14 2 8/6 1 
16 41/20 5 18/11 3 
36 28/19 4 12/8 1 
72 33/20 4 14/9 1 
108 35/24 5 17/10 2 

The number of distance bins is fixed to one [0-4 Å].  The hydrogen bond potential 

is applied for reranking the top 1000 models from DOCK/PIERR rigid docking followed 

by side chain remodeling, minimization and simulated annealing MD. We first start with 

the smallest number of parameters (9 parameters), based on just the element types of the 

acceptor and donor atom, which is covalently bonded to the polar hydrogen atom.  Next 

we explore the classification based on the residue type of the hydrogen and acceptor (16 

parameters). We then incrementally add complexity to the coarse-graining by including 

the residue type along with element type (36 parameters), adding backbone/side-chain 

distinction (72 parameters) and coarse-graining finally based on chemical similarity 

(hybridization for instance, 108 parameters).  
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In Table 3.3 (b), we note that coarse-graining according to residue types (potential 

with 16 parameters) is better than the coarse-graining according to element type, 

indicating that protein-protein interactions seem to be residue-specific. Additional 

complexity, with potentials with more than 16 parameters, does not lead to significantly 

improved performance on both the test sets. Hence we chose to retain the simple potential 

with 16 parameters for further calculations. In order not to over-fit the potential by 

including too many parameters, we further did not consider potentials with 200 and more 

parameters for atom types. We note again that the above calculation corresponds to a 

single distance bin, and in the succeeding section we explore the effect of adding distance 

bins, and consequently additional parameters related to that. 

Exploration of distance bins 

In Table 3.4, we show the effect of additional distance bins longer than the initial 

[0-4 Å] bin. We add a second distance bin for interactions in the range [4-8 Å] and even a 

third one in the range [8-12 Å]. As explained in the section on Functional form, the 

longer-range interactions represent signal possibly from water-mediated hydrogen 

bonding interactions, or from interactions in unbound docking models that are imprecise. 

The number of atom type pairs is fixed to 16, as per the results of the previous section.  It 

is seen that the second distance bin [4-8 Å] provides additional signal over the first one. 

However, the [8-12 Å] distance bin representing long-range electrostatic interactions 

does not carry additional signal over the previous 2 bins. Hence we use the version with 2 

distance bins. 
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Table 3.4 The performance of hydrogen bond potentials with different distance bins is 
shown. The number of hydrogen and acceptor atom type pairs is fixed to 16. 
The hydrogen bond potential is applied for reranking the top 1000 models 
from DOCK/PIERR rigid docking of each target, followed by side chain 
remodeling, minimization and simulated annealing MD. The number of hits 
in the top 10 and top 1 and number of targets with at least one hit in the top 
10 are reported for the ZLAB and novel test sets. A hit is a model rated 
acceptable according to CAPRI i.e. with an interface RMSD of 4 Å or less. 

Distance bins 
used in Å 

ZLAB test set  
(165 targets) 

Novel test set  
(52 targets) 

Number of 
hits in the 

top 
10/Number 
of targets 
with a hit 
in the top 

10 

Number 
of 

targets 
with a 
hit in 

the top 
1 

Number of 
hits in the 

top 
10/Number 
of targets 
with a hit 
in the top 

10 

Number 
of 

targets 
with a 
hit in 

the top 1 

[0-4] 41/20 5 18/11 3 
[0-4,4-8] 50/25 5 28/15 3 

[0-4,4-8,8-12]  49/23  7 28/15  5 
 

This leads to a hydrogen bond potential with 16 atom type pairs and 2 distance 

bins, a total of 32 parameters. Solving for the parameters of the potential using linear 

programming, we obtain a solution with 71.4% of the inequalities satisfied on the 

learning set. We note that this percentage is significantly less than that of previously 

developed atomic and residue potentials [41]. One reason for could be the number of 

parameters; the number of parameters in the previously developed atomic potential was 2 

orders of magnitude larger (1584 parameters) and the residue potential was an order of 

magnitude larger (252 parameters).  The other reason could be that traditional 

residue/atomic interactions are more specific than hydrogen bonding interactions in 

soluble protein interfaces; possibly because of the competition of protein-protein 

hydrogen bonds with water.  
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For final reranking of the top 1000 models from DOCK/PIERR, we combine the 

hydrogen bond potential along with the potential C3 [41], a previously developed 

combination of interface residue and atomic potentials. We first calculate the C3 term 

from the rigid docking models that are refined i.e. subject to side chain remodeling and 

energy minimization [41]. Then the hydrogen bond term is calculated on the models after 

the additional simulated annealing MD procedure described in this paper. A linear 

combination of C3 with the hydrogen bonding term is used for reranking the top 1000 

models, as shown in Eq. (3.7). Weight of the hydrogen bonding term is derived from the 

performance on the learning set targets, to be 4.0. The performance of the hydrogen bond 

potential from linear programming is further discussed in Table 3.5 for soluble proteins 

and Table 3.7 for membrane proteins. The performance of the linear combination of the 

hydrogen bond term with C3 is shown in Table 3.6 for soluble protein datasets and Table 

3.8 for membrane protein datasets.  

Etotal = C3+w.Ehbond            (3.7) 

Results from SVM potentials 

SVM regression potentials were derived for three different kernel choices: linear, 

sigmoidal and polynomial kernels, and various choices of cost parameters and degree of 

polynomial, as mentioned in the Methods section. For the linear and sigmoidal kernels, 

each value of cost parameter produced a new SVM potential. For the polynomial kernel, 

each combination of cost parameter and degree of polynomial produced a new SVM 

potential. One linear and one non-linear SVM potential were chosen; the potentials were 

chosen based on the performance of the resulting potential in reranking the top 1000 

models of targets in the learning set. In particular, the linear kernel with cost 

C = 29 = 512  was chosen, as it produced the highest number of learning set targets with a 
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hit in the top 10, as shown in Figure 3.1 (a).  Similarly among non-linear kernels, the 

polynomial kernel with degree d = 5  and cost C = 0.12  was chosen for the same reason. 

In this case, multiple cost values for polynomial kernel d = 5  performed equally well, as 

shown in Figure 3.1 (b). Hence we chose the potential with the smallest C value, or 

widest (most general) margin between correctly and incorrectly docked models.  

Table 3.5 shows the performance of the chosen non-linear and linear regression 

SVM hydrogen bond potentials alone, without C3, for reranking docking models on the 

soluble protein test sets. Performance of the non-linear SVM potential is not better than 

that of the linear SVM potential. This indicates that the set of models is linearly separable 

and use of non-linear functions should be avoided as this can lead to overfitting. Further, 

linear combinations of the SVM linear potential with C3 and SVM non-linear potential 

with C3 were obtained separately, as in Eq. (3.7). The weight, i.e. the parameter w in Eq. 

(3.7) was fixed to be 0.008 for the linear SVM and 0.005 for the non-linear SVM, using 

the linear combination with the best ranking performance on the learning set. The 

performance of the two linear combination potentials is discussed in Table 3.6 for soluble 

protein datasets and Table 3.8 for membrane protein datasets. 

 

Figure 3.1 (a) Model selection for linear SVMs. The accuracy of each model (in terms of 
number of learning set targets with a top 10 hit) is plotted as a function of 
the cost parameter. The linear SVM with cost C = 29 = 512 produces 
maximum number of targets with a hit. 
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Figure 3.1 (b) Model selection for non-linear SVMs: sigmoid and polynomial kernels 
with degrees 3,5,7 and 9. The accuracy of each model (in terms of number 
of learning set targets with a top 10 hit) is plotted as a function of the cost 
parameter. The polynomial SVM with degree d = 5 produces maximum 
number of targets with a hit. 

Results from Neural Network potentials 

Different network architectures were attempted for modeling the hydrogen bond 

potential with neural networks: one hidden layer with 2, 5, 10, 15, 20, 32, 40 and 50 

neurons and 2 layers with 2, 5 and 7 neurons. We did not increase the number of neurons 

or layers further, as the mean-squared error at the end of training was not higher for the 

larger networks compared to the networks we report here. Figure 3.2 shows the behavior 

of MSE as a function of the number of network layers and neurons. The network with 

one hidden layer and 10 neurons was chosen as it had the lowest MSE. The neural 

network hydrogen bond potential was combined with atomic and residue potentials in C3 

for reranking, as in Eq. (3.7), fixing the weight w to be 3.3 based on ranking performance 

on the learning set. The performance of the neural network hydrogen bond potential alone 

is in Table 3.5 for soluble proteins and Table 3.7 for membrane proteins, while the 

performance of the linear combination with C3 is in Tables 3.6 and 3.8.   
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Figure 3.2 Model selection for neural networks. The number of hidden layer neurons is 
plotted against the Mean Squared Error on the validation set during training. 
The networks with one hidden layer are shown in red while the networks 
with two hidden layers are shown in blue. The network with one hidden 
layer and 10 neurons has least error.  

Performance of Hydrogen Bond Potentials on Soluble Protein Complexes 

The hydrogen bond potential developed by pairwise learning using linear 

programming performs the best while the neural network potential performs next best. 

Also, as discussed before, the non-linear SVM is not necessarily better than the linear 

SVM. Table 3.6 shows the performance of the hydrogen bond potentials in combination 

with C3.  

In combination with C3, the neural network potential performs best overall, 

followed by the linear programming potential. Addition of the neural networks hydrogen 

bond potential results in a 16.94% increase in the number of targets with a top 10 hit in 

the ZLAB set increases, while the number of targets solved in the novel set is about the 

same. But the number of top 10 hits is enriched for both the ZLAB and novel sets, by 

14.39% and 20.63 % respectively.  
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Table 3.5 The performance of hydrogen bond potentials from different learning 
algorithms is shown on ZLAB and novel test sets. A hit is a model rated 
acceptable according to CAPRI i.e. with an interface RMSD of 4 Å or less. 

Learning 
method for 
generating 

hydrogen bond 
potential 

ZLAB test set  
(165 targets) 

Novel test set  
(52 targets) 

Number of 
hits in the 

top 
10/Number 
of targets 

with a hit in 
the top 10 

Number 
of 

targets 
with a 
hit in 

the top 
1 

Number of 
hits in the 

top 
10/Number 
of targets 
with a hit 
in the top 

10 

Number 
of 

targets 
with a 

hit in the 
top 1 

Pairwise 
Learning using 

Linear 
Programming 

50/25 5 28/15 3 

Linear SVM, 
c=512  17/12  1 17/8  3  

Non-linear SVM, 
Polynomial 

kernel, 
c=0.12, d=5 

 17/9 1   11/10 1  

Neural Network  
1 hidden layer 

with 10 neurons  
40/24 3 23/10 4 

 

We note that the hydrogen bond potential that works best in combination with C3 

(neural networks) is not the one that works best alone. This discrepancy maybe because 

the atomic potential in C3 and the hydrogen bond potential used the same set of 

inequalities for learning and there is the possibility of overlapping in learning leading to 

some redundancy in the linear combination signal. This suggests that using different 

learning algorithms for different reranking potentials might be useful to capture 

heterogeneous signal.  SVM potentials perform the worst and do not seem to add much 

signal to the atomic and residue potentials already present in C3.  We also note that the 
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ZLAB and novel test sets behave slightly differently. This is because of the nature of 

difficulty of the datasets: in the novel set all targets chosen were such that monomer 

unbound to bound distance was within 1-2 Å, while in the ZLAB test set, 21% of the 

targets had monomer unbound to unbound distance greater than 2 Å.  

Table 3.6 The performance of hydrogen bond potentials from different learning 
algorithms in combination with C3 is shown on ZLAB and novel test sets. A 
hit is a model rated acceptable according to CAPRI i.e. with an interface 
RMSD of 4 Å or less. 

Learning 
method used 
to derive the 

hydrogen 
bond 

potential 

Potential used 
for reranking 

ZLAB test set  
(165 targets) 

Novel test set  
(52 targets) 

Number of 
hits in the 

top 
10/Number 
of targets 

with a hit in 
the top 10 

Number 
of 

targets 
with a 
hit in 

the top 
1 

Number of 
hits in the 

top 
10/Number 
of targets 
with a hit 
in the top 

10 

Numbe
r of 

targets 
with a 
hit in 

the top 
1 

NA C3 132/59 19 63/26 13 
Pairwise 
Learning 

using Linear 
Programming 

Linear 
combination with 

C3  
 142/60 25 71/29 13 

Linear SVM, 
c=512 

Linear 
combination with 

C3 
135/61  18 63/27  12  

Non-linear 
SVM, 

Polynomial 
kernel, 

c=0.12, d=5 

Linear 
combination with 

C3 
136/61 22  66/26 13 

Neural 
Network  

1 hidden layer 
with 10 
neurons  

Linear 
combination with 

C3  
151/69 21 76/27 14 
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We also observe that the signal for reranking obtained from hydrogen bond 

potentials alone is weaker than the signal obtained from atomic and residue potentials. 

Indeed, while the average interface is stipulated to have around 10 hydrogen bonds [86], 

[46], an analysis of the set of native structures in our learning set suggested that a 

significant fraction 105/628 did not have any hydrogen bonds within a distance of 4 Å. It 

is possible that the hydrogen bonds between protein interfaces have to compete with 

those between water and protein, and this results in the hydrogen bond signal being weak. 

The competition with water is not present in hydrogen bonds in membrane protein 

interfaces, which we discuss next. 

Hydrogen Bond Potentials for Transmembrane Complexes 

Till now, the discussion has centered on protein complexes in aqueous solution. 

However, protein complexes integral to the cell membrane form another important class 

of complexes: they perform critical functions like cell signaling and transport, and their 

misfolding and aggregation results in diseases like Alzheimer’s and Parkinson’s [87]. 

Hence we examine the performance of docking potentials on membrane proteins too. Due 

to the abundance of experimental data for soluble proteins, the potentials used in docking 

algorithms are based on soluble protein complexes. However, recent studies have shown 

that these algorithms and potentials can be applied to predict membrane complexes with 

reasonable accuracy [87]. Here we explore the performance of the developed hydrogen 

bond potentials on test sets of membrane proteins. 

For transmembrane complexes, hydrogen bond potentials alone seem to be more 

accurate than the atomic and residue potentials in C3, as Table 3.7 suggests. The 

increased signal in this case could be because of lack of competition with water for 

hydrogen bond formation. The SVM potentials, which did not perform well in the soluble 
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protein case, perform better here. The linear programming potential performs next best in 

reranking membrane protein models.  

In a previous study of extension of DOCK/PIERR to membrane protein docking, 

it was found that adding an energy term (MTE) that mimics the membrane environment 

was beneficial in ranking (see Chapter 4). In Table 3.8 we show the linear combination of 

C3 with the hydrogen bonding term from different learning algorithms combined with 

MTE. It is shown that the use of the hydrogen bond potential can also contribute slightly 

to improved ranking of membrane protein models.  

Table 3.7 The performance of hydrogen bond potentials from different learning 
algorithms is shown on a test set of 30 homology modeled membrane 
protein complexes. A hit is a model rated acceptable according to CAPRI 
i.e. with an interface RMSD of 4 Å or less. 

Learning method for 
generating hydrogen bond 

potential 

Unbound membrane proteins 
set 

(30 targets) 
Number of 
hits in the 

top 
10/Number 
of targets 
with a hit 
in the top 

10 

Number of 
targets with a hit 

in the top 1 

C3 
(No hydrogen bond 

potential) 
2/2 0 

Pairwise Learning using 
Linear Programming 12/7 3 

Linear SVM, c=512  8/6 3  
Non-linear SVM, 

Polynomial kernel, 
c=0.12, d=5 

 15/11 4  

Neural Network  
1 hidden layer with 10 

neurons  
5/5 1 
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Table 3.8 The performance of hydrogen bond potentials from different learning 
algorithms in combination with C3 is shown on a test set of 30 homology 
modeled membrane protein complexes. A hit is a model rated acceptable 
according to CAPRI i.e. with an interface RMSD of 4 Å or less. 

Learning 
method used to 

derive the 
hydrogen bond 

potential 

Potential used for 
reranking 

Unbound membrane 
proteins set 
(30 targets) 

Number of 
hits in the 

top 
10/Number 
of targets 
with a hit 
in the top 

10 

Number 
of 

targets 
with a 

hit in the 
top 1 

NA C3*MTE 14/11 7  
Pairwise 

Learning using 
Linear 

Programming 

(C3+w.Ehb ).MTE   17/11  8 

Linear SVM, 
c=512 (C3+w.Ehb ).MTE   16/11 7  

Non-linear 
SVM, 

Polynomial 
kernel, 

c=0.12, d=5 

(C3+w.Ehb ).MTE   16/11  7 

Neural Network  
1 hidden layer 

with 10 neurons  
(C3+w.Ehb ).MTE    15/11  6 

Analysis of hydrogen bond potential 

In general, pairwise linear programming performs well as a learning algorithm 

overall on soluble and membrane protein datasets. It is also the learning method whose 

parameters are easier to interpret biochemically. In Tables 3.9 (a) and 3.9(b) we show the 

potential parameters from linear programming for the first (0-4 Å) and second (4-8 Å) 

distance bins respectively. We note that the most significant parameter values are in the 
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short-range distance bin. In particular, hydrogen bonding between backbone atoms seems 

to influence the statistics more than side-chain interactions. Particularly favorable 

interactions are found between backbone-backbone hydrogen bonds in hydrophobic-

hydrophobic and hydrophobic-charged residue interactions. Unfavorable interactions are 

significant for negative-charged residues at the interface, which suggests that they may 

like to form hydrogen bonds with water.  

Table 3.9 (a). Value of potential parameters for the short-range distance bin (0-4 Å). The 
rows represent hydrogen particle types and columns represent acceptor 
particle types. All potential values are multiplied by 1000. 

Hydrogen 
residue type ⇓  

Acceptor 
residue type ⇒   

Hydrophobic Polar Positive-
charged 

Negative -
charged 

Hydrophobic -2.712378 -1.988873 -3.209258 -3.227944 
Polar 0.863366 -0.382273 -0.379366 -0.332003 

Positive-
charged 

0.764617 0.091558 0.127956 -1.083882 

Negative-
charged 

3.096665 2.101862 2.158442 -1.898721 

Table 3.9 (b). Value of potential parameters for the long-range distance bin (4-8 Å). The 
rows represent hydrogen particle types and columns represent acceptor 
particle types. All potential values are multiplied by 1000. 

Hydrogen 
residue type ⇓  

Acceptor 
residue type ⇒  

Hydrophobic Polar Positive-
charged 

Negative -
charged 

Hydrophobic -0.346644 -0.305750 -0.178341 0.367602 
Polar -0.088703 -0.088758 -0.054776 0.115549 

Positive-
charged 

-0.024214 0.180884 0.212524 -0.498265 

Negative-
charged 

-0.299279 -0.565140 0.540539 2.069571 
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Comparison of different learning algorithms  

a. Differences in theory and implementation of methods 

The first distinction we make is between neural networks and the other two 

methods. Methods like SVMs and pairwise learning using linear programming (or linear 

programming, in short) are based on solving a set of inequalities (linear or quadratic 

programs) to obtain the parameters of the potential, while neural networks use gradient 

descent based minimization of error on the training set.  

The next distinction is between the theory of SVMs and linear programming. The 

linear programming method finds a set of parameters, u, defining a hyperplane, such that 

for each pair of (correct and incorrect) structures, the resulting energy is higher for the 

incorrect structure. Whereas SVMs find a set of parameters w, defining a hyperplane, 

such that the margin between the correct and incorrect structures (defined by the 

hyperplane) is maximized. In linear programming, inequalities comparing pairs of models 

are solved in order to get the potential parameters. The inequalities solved in linear SVMs 

are similar: the difference is that the constraints are formulated per model and not per pair 

of models. 

We also distinguish between the implementation of methods to solve the 

optimization problems in linear programming and linear SVMs. The set of inequalities 

arising in both linear programming [39] and SVMs [79] can be implemented in principle 

using the same optimization method, for example interior point methods. However the 

underlying implementations in typical SVM packages are different from those in linear 

programming solvers. Firstly, the linear programming solver PF3 that we use, solves the 

entire set of inequalities at once. The size of the matrix involved in the optimization 

problem is Ntrain *ndim  where Ntrain  is the number of training examples and ndim  is the 

dimensionality i.e. number of features [39]. The highly asymmetric matrix sizes for 
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problems in protein structure prediction (Ntrain >> ndim ) i.e. millions of constraints and 

hundreds of parameters, leads to efficient parallelization schemes for interior point 

algorithms [39, 40] in which the constraint matrix solved at each step is a square matrix 

of dimension ndim  . As a result, the entire set of inequalities can be solved efficiently. In 

contrast, in SVMs the matrix size of the dual problem solved is Ntrain *Ntrain [79]. This set 

of inequalities is solved by heuristics that use stochastic sampling, to solve a subset of 

inequalities at a time. The advantage of stochastic sampling is that it ensures that the 

problem is solved with reasonable memory resources [79]. However in practice, 

convergence can take longer for stochastic sampling based methods, and sampling 

subsets of inequalities can be less accurate than learning methods that solve all 

inequalities at once.  

The second difference in implementation between the SVM and linear 

programming packages we used, is the underlying method to solve the set of inequalities. 

The linear programming solver PF3 [39, 40] uses Newton’s method while the SVM 

software SVMlight [79] uses a quadratic programming solver based on Gauss- Seidel’s 

method  for solving the set of inequalities.  

We note that we have used off-the-shelf software for comparisons on SVMs and 

neural networks. A better comparison would have been to implement non-linear SVMs 

and linear SVMs in the same package, so that the same underlying algorithms are used 

for solving the optimization problems. However, this comparison can still be useful in 

practice since off-the-shelf tools are blindly used, and the various packages have been 

optimized for performance over the years. 

As an aside, we also note that the optimization problem in linear programming 

method is also similar to ranking SVMs [88], which is a much more computationally 

expensive learning method, where all-versus-all inequalities are formulated and solved. 
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For example, if we want to find a set of parameters such that the input examples 

{A1,A2,A3,A4}  are ranked in the order y(A1) > y(A2) > y(A3) > y(A4) , where y is the 

SVM output, inequalities that compare A1 to A2, A3 and A4, A2 to A3 and A4 and A3 to 

A4 are formulated. This is an all-versus-all set of inequalities, which results in a large 

mathematical program (number of inequalities is Ntrain *(Ntrain −1)
2

 where Ntrain  is the 

size of the learning set). In our approach, we solve a subset of these all-versus-all 

inequalities. In particular, we use cutoffs to define a correct model (e.g. interface RMSD 

less than 2.5 Å) and incorrect model (e.g. interface RMSD greater than 7 Å) and the 

linear program only includes inequalities that compare correct and incorrect models. This 

procedure is not only less computationally expensive but also found to be less noisy for 

ranking docking models than an all-versus-all comparison[38]. One reason for this is that 

our ranking is based on RMSD[41], which is not meaningful at large values. For example 

models with RMSD of 10 and 11 Å are equally bad and ordering them is not helpful.  

Linear SVMs are equivalent to neural networks with no hidden layers and multi-

layer NNs can be expressed in terms of non-linear SVMs [89].  

b. Accuracy 

Pairwise learning using linear programming, seems to be one of the most accurate 

learning methods, with neural network regression performing second best. This is based 

on the ability of the hydrogen bond potential alone to rerank models on the soluble 

protein sets (Table 3.5). SVM regression potentials, in our experience perform much 

worse than these two.  

As mentioned in the section on differences in algorithms, linear programming 

solvers like PF3 [39] solve the comprehensive set of inequalities all at once. While SVM 

packages like SVMLight [79] use heuristics for stochastic sampling of a subset of 
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inequalities, a few at a time. Using learning methods that solve the whole problem, 

without sampling subsets at a time seems to result in faster and better solutions.   

c. Training time 

Figure 3.3 shows that the linear programming method is fastest for training. For 

larger training set size and higher dimensionality of the problem (i.e. greater number of 

potential parameters), it will still be very efficient since the method is highly parallelized. 

One can get quick convergence on neural networks to a reasonable solution too, though 

convergence of neural networks is not very well-defined, and involves various stopping 

criteria to prevent overfitting [85].  

The convergence of SVMs with stochastic sampling of inequalities is much 

slower. Note that in SVMs, the (dual) quadratic problem of dimension Ntrain *Ntrain  needs 

to be solved, while in our approach to learning which is based on linear programming, the 

dimension of the complete constraint matrix is much smaller and is Ntrain *ndim  where 

Ntrain  is the number of training examples and ndim  is the dimensionality i.e. number of 

features [39]. PF3 further exploits this structure by splitting the matrices to dimension 

ndim *ndim  and solving each subset using Newton Raphson methods[39]. 
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Figure 3.3 Average training time in seconds over all models obtained by different 
learning methods: Neural Networks, Pairwise Learning using Linear 
Programming, Linear and Non-linear SVMs. The times were calculated on 
single Intel® Xeon(® E5345 core of an 8-core machine with 8 GB memory 
and 2.33GHz  clock speed.  

d. Test time 

Figure 3.4 shows the test time, i.e. time taken to obtain the hydrogen bond energy 

from various potentials, for 1000 models of a complex. Linear programming is the most 

efficient since it involves only the computation of a dot product, n(α ,d).u(α ,d)  for a 

given model.  

The time taken by neural networks for predicting the energy is almost as small as 

the time taken by linear programming to predict the energy. This is interesting as neural 

network prediction is usually more expensive than SVM prediction, since it involves 

successive matrix multiplications while SVM prediction depends only on the number of 

support vectors. We note that the package FANN [84] used for neural network training 

and testing was optimized for good testing performance, to be used in real-time systems. 

In practice, neural network output calculation involves nl −1  successive matrix 

multiplications, where nl  is the total number of layers. The ith multiplication involves a 

matrix of dimension Ni *Ni−1  where Ni and Ni−1  are the number of neurons in layer i and 
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i-1 respectively. In our case, the maximum size of the matrix is still quite small, and is 

32*10 for the hidden layer neurons, with 32 input features and 10 neurons in the hidden 

layer.  

On the other hand, SVM output prediction is linear in the number of support 

vectors used to describe the hyperplane. The support vectors are the training examples 

that lie on the margin. In our case, we had 6097 support vectors for the linear SVM and 

1279 for the non-linear SVM. For linear SVMs, even though the energy (output) can be 

computed efficiently as a dot product like in the case of linear programming, practical 

implementations in SVM packages treat the linear case like the non-linear case, and use 

the set of support vectors to compute the output. Hence SVM predictions take longer.  

 

Figure 3.4 Total test time in seconds for calculating the energy of 1000 models of a 
complex containing 147 and 103 residues in receptor and ligand protein. 
Time obtained by different learning methods: Neural Networks, Pairwise 
Learning using Linear Programming, Linear and Non-linear SVMs, on a 
single Intel® Xeon(® E5345 core of an 8-core machine with 8 GB memory 
and 2.33GHz  clock speed is shown. 
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e. Advantages and disadvantages  

As mentioned before, the accuracy and training/test times of algorithms is in the 

order Pairwise Learning using Linear Programming > Neural Networks > SVMs. If a 

linear fit is good enough to obtain a potential, pairwise learning using linear 

programming seems to be the method of choice, while neural network regression can be 

used as the best option if a non-linear fit is desired 

SVMs and Linear Programming both lends themselves to a geometric 

interpretation of the problem. Also, they both lead to sparse solutions in Rn  where n is 

the number of features (dimension): this is ensured by the objective functions that 

minimize the sum (or sum of squares) of the parameters. Furthermore, the problems 

solved in these two cases are convex optimization problems, which when solved exactly, 

converge to a unique global minimum. On the other hand, neural networks rely on 

heuristics like gradient descent, that converge to a local minimum.  

Linear programming and linear SVMs have the additional advantage that the 

parameters are readily amenable to physical interpretation. For example, the parameters 

u(α ,d)  in the hydrogen bond potential represent the weight of a contact between particle 

type pair α  at a distance d. The non-linear SVM and neural network potentials are more 

complex and harder to interpret.  

Further, SVMs and Neural Networks require the tuning of additional meta 

parameters during training, such as the cost parameter for SVM, degree of polynomial 

etc. for SVM, and the hidden and output activation functions for neural networks. 

Comparatively, the number of such parameters is very low in linear programming and 

their effect on the quality of solution is small.  

Classification (not regression) using neural networks and SVMs is especially error 

prone for docking data, since the datasets have a much larger number of negative 
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examples than positive examples. Since classifiers are sensitive to imbalances in the 

training set, almost all models end up being classified as negative [80]. Hence it is better 

to use regression instead of classification for the purpose of ranking docking models. 

Neural Networks are simpler to understand and implement, but more prone to 

overfitting [85]. However, by proper use of a validation set, this problem can be 

eliminated. Recently deep learning networks, or sophisticated networks with a large 

number of hidden layers and thousands of parameters, have been shown to outperform 

existing learning methods on a wide range of tasks [90]. The learning procedures are 

highly computationally intensive but can be parallelized using GPUs. Using deep 

learning for obtaining docking potential is expected to enhance the quality of the ranking 

further.  
 

3.5 CONCLUSIONS 

Using hydrogen bonding to distinguish between correct and incorrect binding for 

soluble proteins is hard as the net free energy gain upon binding is small [46]. This could 

be perhaps due to competition with water for interface hydrogen bonds. We see that 

hydrogen bond potentials carry much less signal than atomic and residue potentials for 

soluble protein complexes. In contrast, hydrogen bonding information is much more 

informative than traditional atomic and residue potentials in the context of membrane 

proteins, since their hydrophobic environment lacks competition from water. 

Nevertheless, the addition of hydrogen bonding potentials to atomic and residue 

potentials improves the accuracy of reranking in both soluble and membrane proteins.  

An assessment of various learning algorithms for learning potential functions for 

protein docking is presented: this is the first such assessment of learning methods for 

reranking docking models, to the best of our knowledge. We show that pairwise learning 
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using linear programming performs best in terms of accuracy, training and testing time, 

followed by neural networks and SVMs. Future work could include obtaining potentials 

using recent machine learning methods such as deep networks.  
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Chapter 4.  Docking membrane proteins  

4.1 INTRODUCTION 

In this chapter, we apply our docking package, DOCK/PIERR for predicting the 

structure of membrane protein complexes[91]. We introduce novel adjustments to the 

docking algorithm, to improve the accuracy of prediction for membrane proteins. We 

show that this membrane version of DOCK/PIERR, DOCK/PIERR-Membrane performs 

comparably to other leading docking packages. We further employ DOCK/PIERR-

Membrane for predicting dimers of the amyloid precursor protein, an important 

membrane protein involved in the pathogenesis of Alzheimer’s disease. Docking results 

are shown to agree well with results from implicit solvent MD simulation, another 

computational method that allows for significant protein movements. Finally, some 

interesting differences are uncovered between structures obtained by different 

computational methods (implicit and explicit solvent simulations) and structures from 

different membrane models (bilayer and micelle).  

Membrane proteins are critical for transport of material across cell boundaries and 

for transmitting signals into and out of cells. Several diseases and aggregation 

phenomena have been associated with peptide interactions in membranes. Over 50% of 

current pharmaceutical drugs target G-Protein Coupled Receptors, a class of membrane 

proteins[87, 92]. Hence the study of membrane proteins and their aggregation is of 

general biomedical importance. 

Rigid docking can be a useful computational tool for deducing membrane protein 

structure. Firstly, it can sample exhaustively, the set of all possible rigid conformations of 

the complex, on a lattice. This sampling is more comprehensive than the sampling 

obtained from equilibrium MD simulations. Second, docking, if established to be 

accurate, can be an efficient means of sampling higher order conformations of the peptide 
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(oligomers), hence providing atomic detail into the structure of aggregates, as a quicker 

computational alternative to MD simulations[92]. Finally, the potentials used in a 

docking algorithm such as DOCK/PIERR are based on contacts observed in protein 

interfaces and incorporate a different kind of information from the force fields used in 

simulation.  

Docking algorithms like Cluspro[11] and Haddock[93] have been used previously 

to study the structures of several membrane complexes [94-97] . In a recent study [87], a 

comparison was made between different docking algorithms for predicting membrane 

protein complexes. Though docking algorithms have been designed primarily for aqueous 

solution, they are shown to be useful in predicting transmembrane complexes with only 

minor adjustments. However, docking methods have some drawbacks such as limited 

conformational flexibility, and not accounting for the membrane environment[92].   

In this study we address the latter drawback by incorporating an additional energy 

term corresponding to the membrane environment. The membrane environment is known 

to influence the structure and function of proteins [98]. The energy term is a simple one-

body term obtained by others to quantify the transfer energies of different molecules from 

aqueous solutions to membrane[99]. We show that by adding this simple energy term and 

retaining the rest of our docking algorithm, we are able to improve the accuracy of 

DOCK/PIERR in predicting transmembrane protein complexes. Earlier, others have used 

a membrane term in filtering rigid docking solutions from ZDOCK [97]. However, they 

only consider filtering based on orientation of monomers in the membrane. Here in 

addition to orienting the docking models in the membrane, we compute a novel 

membrane energy term using transfer free energies from simulation.  Also, rather than 

patching algorithms of other groups, we refine our own method, which gives us easy 

access to the code and deeper understanding of the algorithm function.  
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DOCK/PIERR-membrane is applied to predict dimers formed by the 23-55 

fragment of the amyloid precursor protein, APP-C99. The C99 amyloid precursor is a 

transmembrane fragment of 99 residues cleaved from the C-terminal end of the longer 

(600+ residues long) amyloid precursor protein. C99 is further cleaved by enzyme γ -

secretase, to form the amyloid β  peptide of length ranging between 38 and 43 residues, 

of which the peptides of length 40 and 42 residues are the most pathogenic. The 

aggregation of these peptides in the cell membrane results in formation of fibrils and ion 

channels, resulting in cell death[100].  

Here we study the dimerization of the 23-55 fragment of the amyloid precursor 

C99 fragment. The 23-55 fragment includes the cleavage site for γ -secretase. By 

studying its dimer structure, we hope to elucidate factors affecting the stability of the 

dimer. The stability of the dimer affects the amount of amyloid β  peptide released into 

the membrane, and hence affects the pathogenesis[101].   

In this study, we dock the monomers of amyloid precursor (APP) obtained from 

simulation, and compare the results of simulation and rigid docking. Others have 

performed comparisons of rigid docking and simulation for dimers of Glycophorin-A and 

its mutants, and concluded that results from implicit solvent simulation match well with 

that from rigid docking. Here, we discover the same for the amyloid precursor protein, 

and additionally we discuss differences in structures obtained from different 

computational methods. 

 

4.2 METHODS 

In this section, we first describe the membrane score added to DOCK/PIERR to 

mimic the membrane environment. Second, we describe the dataset of unbound 
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membrane protein complexes, used for establishing performance of various docking 

algorithms, along with a brief note about the docking algorithms whose performance we 

compared. Finally we explain the approach used to dock the APP monomers obtained 

from simulation. 

Docking Algorithm 

The docking algorithm, DOCK/PIERR [13, 41] is used as in Chapter 2, to dock 

membrane proteins. In the first phase, an exhaustive set of structures is sampled using 

Fast Fourier Transforms and the residue-based potential, PIE with a van der Waals term. 

These structures are then clustered using ligand RMSD and interface RMSD to remove 

very similar structures, and additionally structures with too many clashes are eliminated. 

Refer [13] for details on this phase. In the second phase, the top 1000 models from the 

first phase are adjusted using side chain remodeling and minimization and reranked using 

the combination potential C3, a combination of interface residue potential PIE and 

interface atomic potential PISA.  

Membrane potential for reranking docking models  

The docking algorithm described above, only examines the interface contacts of 

the models and does not incorporate information about the environment surrounding the 

complex. The potentials PISA and PIE used for scoring interface contacts are derived 

empirically from datasets of experimental and model structures of globular protein 

complexes (their training set includes only 7 membrane proteins of a total of 640) [38].  

Nevertheless, it is tempting to keep the designed potentials “as are” and look for 

an additional term to score the effects of the membrane. This will make the potential 

more modular, transferable and general. We add such a term that includes residue-

specific information about membrane solvation, and show that it enhances prediction 
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accuracy in membrane complexes. This term is used along with C3 in ranking the top 

1000 refined structures, in the last step of the docking procedure described above. We 

note it is also possible to add such a term in the coarse scoring step, but we added it in the 

last reranking step for convenience. We next describe how to compute this additional 

term.  

a. Calculating membrane energy 

Rather than design a membrane environment potential from scratch, we adopted a 

function that was developed by other investigators. Previous results from MD simulations 

by Tieleman and co-workers consider transfer free energy from aqueous solution to the 

center-of-membrane for each amino acid residue [102]. Their detailed and comprehensive 

simulations provided us with singe body adjustments that measure the costs (and 

rewards) of transferring each amino acid between the two environments. The underlying 

physical assumption is that the one-body term captures the environment effect and that 

the impact of the membrane on the two body interactions is significantly smaller and 

neglected. The drawback of our choice is that the atomically detailed simulations and our 

machine learning procedure are not necessarily compatible and some double counting of 

the same effect may occur. On the other hand, the combination of our potential with the 

Tieleman’s energy does not include free parameters, making it relatively simple to verify 

the impact and the significance of the combination. We observe a large enhancement in 

prediction capacity, which suggests that the environment potential indeed captures a 

useful signal. 

The membrane energy was calculated from these transfer energies using the 

following steps. First, each docking model was inserted into the membrane, by placing its 

center of mass at the center of the membrane, and by orienting the eigenvector 

corresponding to the smallest eigenvalue of the tensor of inertia of the model of the 
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protein complex along the membrane normal. This orientation is appropriate for elongate 

trans-membrane proteins such as helical proteins, which are our prime targets in the study 

of amyloid peptides. For wide proteins, a different orientation procedure will have to be 

used, since the eigenvector with the smallest eigenvalue is not necessarily in the direction 

normal to the membrane. Second, for each docking model, the relative solvent 

accessibility of every residue was calculated with the program DSSP [103]. Finally, the 

membrane energy was calculated as follows: each residue whose side chain center of 

mass was within a specified membrane width contributed to the membrane energy. The 

contribution from such a residue, i, was equal to the membrane transfer energy for that 

residue, ti, weighted by its relative solvent (lipid) accessibility, ai. As shown in Eq. (4.1), 

the membrane transfer energy, or MTE, for a model, is the sum of the transfer energy 

contributions from all residues i, within the membrane width.   
MTE = ai

i
∑ ti             (4.1) 

We note that Tieleman and co-workers also provided water-to-hydrophilic 

membrane interface transfer energies, apart from water-to-center of membrane transfer 

energies. The addition of these extra parameters did not contribute to improved accuracy 

in ranking and hence they are not included in our docking algorithm for membrane 

complexes. 
                                               

b. Membrane widths                                                  

The membrane half-width along the Z-axis is, important for our calculations since 

it determines the degree of exposure of different amino acid side chains to the membrane 

environment or to aqueous solution. However, membrane widths are not strictly fixed and 

can vary among different membrane proteins [104]. For experimentally determined 

structures the width is known; however, for model complexes and variable composition 
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of lipids it is not. Servers like TMDET [104] and databases like the PDBTM database 

[105] store pre-calculated widths for membrane proteins whose experimental structure 

has been determined. But these are difficult to use when ranking hundreds of thousands 

of models, with different effective membrane widths, and when studying complexes for 

which the experimental data is limited. To pick up a width which is consistent and 

optimal within our model, we use the following procedure: for each docking model, 

membrane transfer energies were calculated for a range of half-widths: 16 Å +/- 3 Å, in 

steps of 0.5 Å i.e. for 13.0, 13.5, 14.0, 14.5…16.0, 16.5, 17...19 Å respectively. For each 

width, only protein residues whose centers of mass are within the membrane boundaries 

are scored according to Eq. (4.1) and contribute to the membrane energy for that width. 

The lowest (best) membrane transfer energy over the range of widths was taken as the 

score for the docking model.  Figure 4.1 shows an example of a model oriented in the 

membrane, and a particular residue, i, inside the membrane that contributes to the 

membrane energy. 

 

 

 

Figure 4.1 Example of a model oriented in the membrane, and a particular residue, i, 
inside the membrane that contributes aiti to the membrane energy, where ai 
is the residue exposed surface area and ti is the residue membrane transfer 
energy.  
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c. Bilayer versus micelle membrane environments 

For docking membrane proteins characterized in a micelle environment, instead 

of the regular linear membrane model, a spherical membrane model with radius of 16 Å 

+/- 3 Å is used to calculate the membrane energy.   

d. Combining membrane energy with docking scores 

The membrane energy (henceforth known as MTE) was combined with C3 in a 

parameter-free fashion by using the product of C3 with MTE. The product energy in this 

study was formulated as k *C3*MTE  where k = 1.0  if both C3 and MTE have positive 

values and k = −1.0  otherwise. This ensures that the product energy is negative when 

both energies are negative (favorable) and positive otherwise. We henceforth refer to the 

product energy as C3*MTE.  

Other docking algorithms 

The performance of DOCK/PIERR was compared to Cluspro [12, 28], GRAMM-

X [12] and ZDOCK+ZRANK [29, 60]. We have compared our algorithm to these 

approaches in the past for the case of protein complexes in aqueous solution and it 

therefore makes sense to extend our comparison to membrane proteins. Previous 

comparative docking studies have shown that these algorithms were among the best 

performing algorithms for membrane protein docking [87, 106]. Results were obtained 

from the servers in case of Cluspro and GRAMM-X. For ZDOCK+ZRANK, the ZDOCK 

3.0.2 package was downloaded and docking jobs were run locally. The top 2000 models 

from ZDOCK were rescored using the ZRANK scoring function.  

Creation of unbound membrane protein complexes dataset 

A data set of 30 transmembrane protein complexes was extracted from MPStruc 

[106], a database of membrane proteins from the White laboratory. Representative 



 96 

structures were chosen from each of the classes to ensure functional and structural 

diversity. The membrane span of the selected proteins was checked using the PDBTM 

database [105], a database of transmembrane proteins in the PDB. Proteins selected from 

the MPStruc database, that had no entry in the PDBTM database, were discarded. 

Proteins classified as membrane proteins often do not span the entire length of the 

membrane and can interact with just one small region of it, e.g. peripheral membrane 

proteins. The PDBTM database was therefore used to determine the extent to which each 

protein was embedded in the membrane. Integral membrane proteins where the majority 

of the structure to be docked, lay in the transmembrane region were chosen.  

We obtained 18 complexes for docking two separate protein chains. To increase 

the number of experimental models that we can study, we also considered single-chain 

multi-pass trans-membrane proteins (e.g. GPCRs) that we broke to two complementing 

fragments, at an extramembranous loop region, and re-assembled. We obtained 12 

complexes this way. For each chosen GPCR, multiple independent splits were made, and 

each split produced two chains to be docked. Each independent split was taken as a 

separate target for unbound docking. Table 4.1 shows that we obtained 12 targets from 

the GPCRs 1C3W, 1H68, 1M0K and 2BRD, 3 per GPCR, in this manner. Finally, we 

also discarded transmembrane chains where the binding between the chains was intricate, 

i.e. one of the chains twisted around the other. For each protein complex chosen, Table 

4.1 shows how we obtained the individual components to dock. The entry labels 

correspond to the PDB IDs.  
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Table 4.1 Targets and individual chains that formed the dataset of 30 transmembrane 
proteins.  

Target Original 
PDB 

Receptor chain Ligand chain 
 

Chain: 
start 

residue 

Chain: 
end 

residue 

Chain: 
start 

residue 

Chain: 
end 

residue 
1A91 1A91 A:1 A:42 B:43 B:79 
1BL8 1BL8 A:23 A:119 B:23 B:119 
1C17 1C17 A:1 A:79 B:1 B:79 

1C3W0 1C3W A:75 A:231 A:5 A:74 
1C3W1 1C3W A:102 A:231 A:5 A:101 
1C3W2 1C3W A:5 A:129 A:130 A:231 
1EHK 1EHK B:3 B:168 C:2 C:34 
1H2S 1H2S A:1 A:225 B:23 B:82 
1H680 1H68 A:94 A:219 A:2 A:93 
1H681 1H68 A:2 A:119 A:120 A:219 
1H682 1H68 A:2 A:150 A:151 A:219 
1JVM 1JVM B:24 B:123 C:24 C:120 
1LGH 1LGH A:1 A:56 D:1 D:56 

1M0K0 1M0K A:73 A:231 A:5 A:72 
1M0K1 1M0K A:106 A:231 A:5 A:105 
1M0K2 1M0K A:5 A:128 A:129 A:231 
1M56 1M56 C:2 C:266 D:10 D:51 
2BHW 2BHW A:10 A:232 B:10 B:232 
2BRD0 2BRD A:66 A:228 A:7 A:65 
2BRD1 2BRD A:103 A:228 A:7 A:102 
2BRD2 2BRD A:7 A:129 A:130 A:228 
2IRV 2IRV B:93 B:271 A:92 A:273 
2KSE 2KSE A:1 A:40 A:150 A:186 
2NRF 2NRF A:91 A:272 B:91 B:272 
2VT4 2VT4 A:40 A:358 B:39 B:359 
2WIE 2WIE A:2 A:82 B:2 B:82 
3B45 3B45 A:169 A:270 A:91 A:168 
3B4R 3B4R A:3 A:220 B:3 B:218 

3DWW 3DWW A:11 A:152 C:11 C:152 
3KCU 3KCU A:29 A:280 B:29 B:280 
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Modeling unbound chains by homology and creating distorted structures by 
Molecular Dynamics 

First, for each receptor and ligand sequence in the set of 30 transmembrane 

complexes, a search for homologs in the PDB was performed using PSI-BLAST [61]. For 

complexes for which homologs (E-value lower than 0.001 i.e. expectation that the two 

sequences are evolutionarily related by chance is less than 0.001) were found for receptor 

and/or ligand chains, Modeller [59, 62] was used to create a structure of the unbound 

receptor and ligand using the homolog as template. The TM score [45] of the bound to 

unbound structure was measured for each homology-modeled receptor and ligand chains. 

Unbound (modeled) conformations that were too different (i.e. TM score lower than 

0.85) from the PDB (bound) conformation were discarded.  

In all, we were able to successfully produce homologous unbound conformations 

for both chains in 19 of 30 complexes. Apart from these 19, 4 complexes had one 

unbound chain (receptor or ligand) with TM score lower than 0.85 to the bound structure, 

and the other chain with a TM score higher than 0.85 to the bound structure. For these 4 

complexes, the unbound structures with TM scores lower than 0.85 were replaced with 

the bound (PDB) conformation and bound-unbound docking was performed. 4 other 

complexes had both receptor and ligand unbound conformations quite different (TM 

score lower than 0.85) from the bound conformations. And for 3 complexes, homologs 

were not found in the first step of PSI-BLAST. Hence the latter 7 complexes were treated 

separately and molecular dynamics was used to obtain the unbound conformations in 

these 7 cases, as is described next.  

For the seven complexes for which homology modeling was unsuccessful, 

unbound conformations of the receptor and ligand were obtained from short Molecular 

Dynamics MD runs on the original PDB receptor and ligand structures. The receptor and 
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ligand were separately minimized in vacuum for 100 steps using mini_pwl, an energy 

minimization routine in the MD package MOIL [58] in order to remove high-energy 

contacts and clashes in the structures before the dynamics run. Then the minimized 

structures (receptor and ligand separately) were subject to a very short simulation of 0.1 

ps at 300K (1000 steps with a time step of 0.0001 ps). The conformations obtained after 

the dynamics run were used as the unbound structures. These perturbed conformations 

had an average RMSD of 0.717 A to the original PDB structures, and a range of RMSDs 

between 0.618 A and 0.859 A.  These RMSD values are smaller than typical homology 

models, however, MD under the above conditions distorts significantly, the structures of 

the proteins and therefore we did not push the simulations to produce higher RMSDs. 

Approach for docking APP structures from simulation 

A set of 50 dimers of the 23-55 segment monomer of APP-C99 corresponding to 

the lowest energy (based on the MD molecular mechanics energy) structures obtained 

from 100 ns equilibrium implicit solvent MD simulations at 300 K with the Martini force 

field in CHARMM [101], were used to test the performance of docking. Implicit solvent 

simulations represent the solvent e.g. water or membrane by a continuum model, while in 

explicit solvent simulations, the solvent is represented by discrete solvent molecules. 

Explicit solvent simulations are thus more computationally expensive, but also more 

accurate.  

Both bound and unbound docking was performed on each set of simulation 

structures. In bound docking, the monomers i.e. individual helices of each simulated 

dimer were separated and docked, producing ten top scoring models from docking, for 

each simulation complex. For unbound docking, a simulation structure (say A) was 

chosen at random and its receptor (one of the helices in the simulation dimer) was docked 
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with a ligand (the other helix in the dimer) taken from another simulation structure (say 

B) in the same dataset. The models produced by docking A’s receptor to B’s ligand, were 

compared to the complex A. About 50 (or 30, depending on the number of complexes in 

the bound dataset) non-repeating A-B receptor-ligand pairs were docked. Since the 

monomer conformations themselves can be quite different (greater than 1 Å RMSD) from 

each other in simulations, the selection of complex B each time was constrained to those 

complexes where the ligand was within 1 Å RMSD from the ligand in complex A.  

Additionally, as a final post-processing step for docking APP structures and 

comparing rigid docking procedure to simulations of peptide dimerization in membrane, 

anti-parallel dimer poses were filtered out from the final set of docking models, by 

making use of the additional information that the dimers found in the MD simulation are 

never anti-parallel. The last observation may reflect kinetic barrier and not necessarily 

thermodynamic preference, however, for comparison purposes the above filtering was 

found useful. 

A cutoff of 1.5 Å interface RMSD was used as definition of “hit” or near-native 

structure, while evaluating docking methods on the APP dimers, since the monomer 

helices are short and only 33 residues long. This is in contrast to the usual cutoff, which 

is 4 Å for an acceptable model and 2.5 Å for a high-quality model in protein-protein 

docking assessments such as CAPRI [44, 56].  

 

4.3 RESULTS AND DISCUSSION 

In this section, we first discuss results on prediction of membrane protein 

complexes. Second, we discuss the results from docking implicit solvent APP simulation 

dimers. Third, we discuss differences between dimers obtained from implicit and explicit 
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solvent simulations. Fourth, we touch upon differences in structures obtained from 

micelle and bilayer membrane environments.  

Structure prediction of membrane protein interactions 

a. Membrane protein interfaces can be predicted by solvated protein docking algorithms 

We find that interfaces of membrane and water-soluble protein complexes are 

quite similar [87] and can be predicted with reasonable accuracy by current state-of-the-

art protein-protein docking algorithms. This implies that protein-docking algorithms can 

be used as an additional and a reliable source of information for structural studies of 

membrane proteins. We note that protein docking algorithms use potentials that have 

been trained on datasets that are primarily composed of soluble proteins; for example, 

Cluspro and Gramm-X use the training set in [107] which consists of 621 protein 

complexes out of which only 6 are membrane proteins, DOCK/PIERR is trained on a 

dataset of 640 complexes with a similar percentage of membrane proteins, and ZDOCK’s 

interface contact potentials are trained on a dataset [108] of 89 complexes with one 

membrane protein.  

In spite of being trained on interfaces of soluble proteins, these docking 

algorithms succeed in predicting a near-native structure in the top ten models with 

reasonable accuracy. Table 4.2 shows the performance of 4 different docking algorithms 

on the dataset of 30 unbound transmembrane protein complexes. The measure of 

performance that we use here is the interface RMSD. Interface RMSD [44, 56] is a 

widely used measure of accuracy for docking predictions, and is the RMSD measured 

along the interface residues of the experimental complex. The second column in Table 

4.2 shows the number of hits (near-native structures i.e. docking models that are within 4 

Å interface RMSD from the bound structure) in the top ten models cumulative across all 
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30 complexes, followed by number of complexes for which at least one such hit was 

found in the top ten models. Depending on the algorithm, accuracy varies between 30-

56.57% for unbound docking. Gramm-X performs the best in this study and is able to 

obtain a near-native structure in the top ten about 56.67% of the time in unbound 

docking.  This is in agreement with an earlier study [87] that showed Gramm-X to have 

the best performance in docking membrane proteins.  

Table 4.2 Docking performance of DOCK/PIERR with C3 and C3*MTE potentials, 
Gramm-X, Cluspro and ZDOCK+ZRANK on the dataset of 30 unbound 
membrane protein complexes.  

Docking 
algorithm 

Top 10 
Number of hits within 4 

Å iRMSD/Number of 
targets with atleast one 

hit 
DOCK/PIERR 
Rerank with C3 

2/2 

DOCK/PIERR 
Rerank with C3*MTE 

14/11 

ZDOCK+ZRANK 10/9 
Cluspro 17/14 

Gramm-X 20/17 

Table 4.3 shows the performance of docking algorithms in terms of number of top 

ten hits, split by target. DOCK/PIERR with the membrane score is able to dock complex 

1H2S, which the other docking algorithms are not able to solve. Similarly, 

ZDOCK+ZRANK is able to solve uniquely 1JVM and 3DWW. Gramm-X is the only 

docking algorithm able to solve 3B4R.  

b. Membrane energy contributes to improved recognition  

As shown in Table 4.2, the inclusion of the membrane energy, significantly 

improves the recognition of the combination of atomic and residue potentials, C3. 
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DOCK/PIERR is able to obtain a near-native structure in the top ten in 36.67% of 

complexes.   

Table 4.3 The numbers of models with interface RMSD less than 4.0 Å in the top 10 
predictions of DOCK/PIERR with C3*MTE potential, Gramm-X, Cluspro 
and ZDOCK+ZRANK. 

Target DOCK/PIERR 
with membrane 

score 

ZDOCK+
ZRANK 

CLUSPRO GRAMM-X 

1A91 1 1 2 1 
1BL8 0 0 0 0 
1C17 0 0 1 1 

1C3W0 1 0 1 1 
1C3W1 1 0 1 1 
1C3W2 0 1 1 1 
1EHK 0 0 0 0 
1H2S 3 0 0 0 
1H680 0 0 1 1 
1H681 0 0 0 0 
1H682 0 0 2 2 
1JVM 0 1 0 0 
1LGH 0 0 0 0 

1M0K0 1 0 1 1 
1M0K1 1 1 1 1 
1M0K2 0 1 1 2 
1M56 0 0 0 0 
2BHW 0 0 0 0 
2BRD0 1 0 0 1 
2BRD1 0 0 1 1 
2BRD2 2 0 2 1 
2IRV 1 1 0 0 
2KSE 0 1 0 2 
2NRF 0 0 0 0 
2VT4 0 0 0 0 
2WIE 1 2 1 1 
3B45 1 0 1 1 
3B4R 0 0 0 1 

3DWW 0 1 0 0 
3KCU 0 0 0 0 
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Docking and implicit solvent MD simulations agree on structures of APP dimers 

In this section, we explore the structure of the dimer formed by the 23-55 segment 

of the APP-C99 protein using docking and implicit solvent MD simulations. Table 4.4 

shows the performance of DOCK/PIERR for bound and unbound docking of 50 implicit 

solvent dimers from simulation. The docking performance was evaluated based on the 

number of models matching the corresponding MD structure within 1.5 Å interface 

RMSD. Table 4.4 reports the number of models in the top ten that matched the 

corresponding MD complex, across all 50 complexes. Also reported is the number of 

complexes out of 50, for which at least one model in the top ten matched the 

corresponding simulation structure. Docking and MD simulation show a good agreement 

with 42 out of 50 dimers from bound docking matching the corresponding MD structure, 

and 26 out of 50 dimers from unbound docking matching the MD structure. The accuracy 

of unbound docking is lower than that of bound docking, which is to be expected, as the 

interfaces of monomers from unbound docking do not match precisely. 

Table 4.4 Bound and unbound docking results on 50 simulation structures from implicit 
solvent. The first number in the second column is the number of MD models 
recovered from docking across all 50 complexes: a hit is a model from 
docking that is within 1.5 Å interface RMSD to the corresponding 
simulation structure. The second number is the number of complexes for 
which at least one hit was found in the top ten models. 

Docking type Top 10 
Number of hits within 1.5 

Å iRMSD to MD 
structure/Number of 

complexes with atleast one 
hit matching MD 

structure 
Bound 43/42 

Unbound 26/26 
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Figure 4.2 shows the probability distribution of interface RMSDs for the top 10 

docking models from bound and unbound docking of the 50 simulation dimers. In other 

words, this is a distribution across a set of 500 bound and 500 unbound docking models. 

Note that since we filter out anti-parallel orientations, the interface RMSD distribution 

stops at 10 Å (x-axis). There is a prominent tail near 1 Å, especially for bound docking 

indicating a significant number of near-native structures in the set of top 10 models. 

Another measure of confidence in docking predictions is the z-score. The average z-score 

of the C3*MTE energy across the 5 best docking models (best in terms of interface 

RMSD) was -4.2646 among the 500 bound docking models and -3.5062 among the 500 

unbound docking models. More negative z-scores indicate that the potential can 

distinguish near-native structures more accurately.  
 

 

Figure 4.2 Probability density of the interface RMSD of top 10 docking models for 50 
bound and unbound simulation dimers. 

Further, APP dimers can be described by an order parameter based on the distance 

between the GLY-29 in the two helices[101]. If the distance is within 5 Å, the dimer is 

said to be in Gly-in conformation, if the distance is between 5 and 10 Å, the dimer is in 

Gly-side conformation and if the distance is above 10 Å, the dimer is in Gly-out 
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conformation.  Based on this characterization, out of the 50 lowest energy simulation 

dimers from implicit solvent, 40 were of Gly-side type and 10 were of Gly-in type. There 

were no Gly-out structures in the 300 K MD ensemble. Table 5 shows the performance of 

docking in recovering the order parameters measured in the MD simulations for bound 

docking. The agreement between docking and simulation dimers is high (9/10) for Gly-in 

type structures and good (33/40) for Gly-side structures.  

Table 4.5 Bound docking results on 40 Gly-side and 10 Gly-in simulation structures from 
implicit solvent. The first number in the second column is the number of 
docking models within 1.5 A interface RMSD from the corresponding 
simulation structure, across all complexes of the given dimer type. The 
second number is the number of complexes for which at least one hit was 
found in the top ten models for that dimer type.  

Simulation dimer 
type 

[Number of 
simulation 

dimers] 

Top 10 
Number of hits within 1.5 

Å iRMSD to MD 
structure/Number of 

complexes with atleast one 
hit matching MD 

structure 
Gly-side [40] 34/33 
Gly-in [10] 9/9 

Figure 4.3 shows a couple of accurate docking predictions among the top ten 

models, superposed with the simulation structure they were assembled from. The Gly-

side model was within an interface RMSD of 0.563Å from the simulation structure while 

the Gly-in model was within 0.632Å from the simulation structure. The figure shows that 

the backbones essentially overlap while the side-chains show minor differences.  
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Figure 4.3 Left: A docking model (green) in the top 10 predictions, at an interface RMSD 
of 0.563 Å from the corresponding simulation structure (gray) of Gly-side 
type. Right: A docking prediction (cyan) in the top 10, at an interface 
RMSD of 0.632 Å from a Gly-in simulation structure (blue). 

Structural differences between the results of explicit and implicit solvent methods to 
predict complexes of amyloid peptides 

As Table 4.5 shows, DOCK/PIERR docking is reasonably accurate for Gly-in 

complexes generated by implicit solvent simulations in bilayer.  However, when applied 

to dock 30 Gly-in complexes from explicit solvent POPC bilayer, it was observed that 

DOCK/PIERR fails to produce a single hit in the top ten models for any of the 30 

complexes. These differences in docking performance hint at structural differences in the 

dimers from implicit and explicit solvation. The differences were investigated using the 

residue score PIE, which is represented as an energy here by inverting its sign (lower the 

energy, better the model).  
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Figure 4.4 is a distribution of the PIE energy for the implicit and explicit 

simulation dimers. The PIE energy is much lower for the implicit solvent dimers. This 

suggests that the number of inter-helical residue-residue contacts is higher for the implicit 

solvent dimers, leading to more favorable (lower) PIE energies for the latter. The contact 

based potentials in DOCK/PIERR favor the higher number of contacts in implicit solvent 

models, due to which docking models agree more with implicit solvent dimers than with 

explicit solvent dimers.  

The compactness of helices in the dimers seems to be reason for different number 

of contacts in implicit and explicit solvent. This is seen in Figure 4.5, which is a 

distribution of the smallest eigen value of the tensor moment of inertia for each 

simulation structure. The smallest eigen value corresponds to the long axis and is hence a 

measure of how close the helices are to each other. The figure suggests that the implicit 

solvent dimer helices are closer than the explicit solvent dimers. In implicit solvent, the 

hydrophobic residues in the dimers form more contacts with each other, whereas in 

explicit solvent the residues form more contacts with the membrane. This leads to more 

compact dimers in implicit solvent. In explicit solvent models, perhaps protein-protein 

contacts are more easily replaced by protein-water contacts. In implicit solvent models, 

the protein contacts are not replaced.  

Figure 4.6 illustrates that the implicit solvent models have helices closer to each 

other at the C-terminal (right hand side) end, whereas in explicit solvent models, the 

helices are further apart. This suggests that interactions formed by discrete water 

molecules are not fully captured by continuum models.   
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Figure 4.4 Probability distribution of PIE energy for 10 GLY-in implicit solvent dimers 
and 30 GLY-in explicit solvent dimers in POPC membrane that were bound 
docked. 

 

Figure 4.5 Distribution of the smallest eigen value of the tensor moment of inertia for 10 
GLY-in implicit solvent dimers and 30 GLY-in explicit solvent dimers in 
POPC membrane that were bound docked. 

 

 0

 0.2

 0.4

 0.6

 0.8

 1

−2 −1.9 −1.8 −1.7 −1.6 −1.5 −1.4 −1.3 −1.2 −1.1

P
r
o
b
a
b
i
l
i
t
y

PIE energy

Implicit
Explicit

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.89  1.98  2.07  2.16  2.25  2.34  2.43  2.52  2.61  2.7  2.79

P
r
o
b
a
b
i
l
i
t
y

Eigen value x 1e5

Implicit
Explicit



 110 

 

Figure 4.6 Top: 10 explicit solvent dimers superposed. Bottom: 10 explicit solvent dimers 
superposed. The dimers chosen were the top scoring simulation dimers, 
scored according to C3*MTE.  

 

Differences between structures from micelle and bilayer environments  

Further, we noticed that DOCK/PIERR is able to bound dock 17/30 simulation 

dimers from POPC bilayer membrane (i.e. a model within 1.5 A interface RMSD was 

found in the top ten models for 17 of 30 dimers) in Gly-out conformation. But the same 

experiment repeated on the Gly-out dimers in DPC micelle results in no hits in the top ten 

for any of the 30 dimers from micelle. Again the differences between the two docking 

accuracies hint at structural differences between dimers in different membrane 

environments. Differences between membrane protein structures characterized in micelle 

and bilayer environments have also been observed experimentally[98].    
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These differences were explored using PIE energy, and as Figure 4.7 shows, the 

PIE energy for bilayer and micelle simulation models is different. The PIE energy is 

more favorable for the bilayer models, due to higher number of inter-helical contacts in 

the dimers in bilayer.  

Figure 4.8 shows that the angle between the helices in the simulation dimers is the 

reason for differences in number of contacts. It is a plot of the absolute value of the 

cosine of the angle between the helical long axes in the simulation structures. The dimers 

in bilayer have cosine values closer to 1, indicating that the helices are more parallel in 

bilayer. In contrast, the helices in micelle have a wider range of angles and favor non-

parallel orientations, which are more “X”-like,  with one helix making an angle with 

respect to the other.  

 

Figure 4.7 Probability distribution of PIE energy for 30 Gly-out explicit solvent dimers in 
POPC bilayer and and 30 Gly-out explicit solvent dimers in POPC 
membrane that were bound docked.  

This is also illustrated in Figure 4.9, which shows the 30 bilayer models with 

parallel helices and 30 micelle models with “X”-shaped helical angles. The reason why 

helices in micelle environment adopt an “X”-shaped orientation maybe related to the 

entropic effect. A titled configuration allows for more entropy in the micelle than the 

parallel configuration.  
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Structures elucidated in micelle environments may differ from those elucidated in 

membrane environment. Hence this difference raises questions about the applicability of 

using micelle environments to substitute for membrane bilayers in membrane protein 

structure determination.   

 

Figure 4.8 Distribution of cosine of angle between helices for 30 Gly-out explicit solvent 
dimers in POPC bilayer and 30 Gly-out explicit solvent dimers in POPC 
membrane that were bound docked. 

 

Figure 4.9 Left: Ten explicit solvent dimers from simulations in POPC membrane. Right: 
Ten explicit solvent dimers from simulations in DPC micelle. The ten 
models in each case were the top scoring dimers, as scored by C3*MTE.  
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4.4 CONCLUSIONS 

In this chapter, we present the first comparative study of protein docking 

algorithms for docking unbound membrane proteins. It is also the largest comparison, 

including all comparative studies on bound and unbound membrane protein complexes. 

We show that including information about the membrane environment as an additional 

one-body residue-based energy term improves the prediction capacity of our docking 

algorithm, DOCK/PIERR, significantly. We use this method to study the dimerization of 

amyloid precursor protein. The results from docking match well with results from 

implicit solvent simulation. However, explicit solvent structures behave differently: 

explicit solvent structures have more protein-membrane contacts and implicit solvent 

structures have more protein-protein contacts. This difference shows that implicit solvent 

models and our docking procedure are not able to reproduce the contacts formed by 

discrete solvent molecules. Further, structures characterized in different membrane 

environments such as bilayer and micelle show significant differences. The dimers in 

bilayer have parallel helices while the dimers in micelle are more “X”-shaped, with 

helices oriented at an angle. This preference for “X”-shape can be explained on the basis 

of entropy i.e. rotational freedom of the dimers in micelle.  

Predicting the structure of higher order amyloid aggregates and developing 

additional potentials trained on membrane protein interfaces represent some of the 

promising avenues for future work in the area of membrane complex prediction.  
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Chapter 5.  Performance in CAPRI 

5.1 INTRODUCTION 

In this chapter, we discuss the performance of DOCK/PIERR in community-wide 

assessment of methods for protein docking. CAPRI (Critical Assessment of Predicted 

Interactions) [56] is an independent evaluation of current protein docking methods. 

Before the experimental structure of a newly discovered protein-protein complex is 

released online, information about its monomers is made available to the protein docking 

groups, and they submit their predictions of the structure of the complex.  

These predictions are then evaluated by an independent assessment team, which 

decides the quality of the top ten predictions by each team based on criteria like interface 

RMSD (backbone RMSD of the residues in the interface of the reference complex; 

residues are in the interface if any atom of one residue is within 10 Å of an atom in the 

other protein), ligand RMSD (RMSD between the ligand molecule of predicted model 

and reference) and fraction of native contacts (percentage of residue-residue contacts in 

the reference structure that are also in the interface of the predicted model). Models are 

classified as high-quality, medium, acceptable and incorrect based on certain cutoffs of 

the evaluation metrics[44]. For example, a high-quality model needs to have an interface 

RMSD less than 1 Å or ligand RMSD less than 1 Å and fraction of native contacts 

greater than 50%.   

There are different categories of participation: i) server prediction category, 

which is an assessment of automated docking methods and has a short prediction 

deadline of 24 hours, ii) human prediction category, which is a prediction competition 

with a longer deadline of 1-2 weeks allowing for manual correction of automated docking 

results using available literature information and iii) scoring category, where instead of 
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prediction, teams need to simply score the available models. There are generally about 1-

3 rounds per year.  

 

5.2 OVERALL PERFORMANCE OF DOCK/PIERR IN CAPRI 

Table 5.1 shows the performance of DOCK/PIERR listed by target [41]. Only 

targets we participated in are shown. Hits refer to models that are of acceptable quality or 

better. “–“ denotes no participation for that target, while 0 indicates no acceptable models 

were found for that target. Overall, we predicted a hit in the top 10 successfully for 4 out 

of 8 targets in the server category and 6 out of 9 targets in the scoring category. This is 

consistent with our results on the training set and benchmarks.  

Table 5.1 Overall performance of DOCK/PIERR in CAPRI assessments. 

Target 

Total 
number of 
predictor 

groups 

Number of 
predictor 

groups with 
hits 

Total 
number 
of scorer 
groups 

Number of 
scorer 
groups 

with hits 

Server: 
number 
of top 10 

hits 

Scorer: 
number 
of top 
10 hits 

40 38 30 15 10 - 8   
41 33 26 13 12 - 1   
46 40 2 16 8 0 1   
48 32 15 - - 1   - 
49 33 15 13 8 1   0 
50 40 18 17 12 3   2   
51 46 3 13 5 0 0 
53 42 20 13 11 0 5   
54 41 4 13 0 0 0 
59 40 12 24 8 2 1   

Table 5.2 shows the rank of DOCK/PIERR server and its earlier version, 

DOCK/PIE, in comparison with other automated servers. Rank of a server was 

determined based on both model quality and number of models. A server that submits 

high-quality/medium models is ranked higher than a server that submits acceptable 
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models. For servers that submit the same quality of models (e.g. acceptable), the number 

of acceptable models is chosen to determine the rank. In cases where we submitted all 10 

incorrect predictions, the rank is not shown.  

Table 5.2 Rank of DOCK/PIERR server per target 

Target we 
participated in, 

as server 

Number of 
acceptable or 
better models 
submitted by 

the server 

Rank in server 
category 

 

Number of 
servers 

participating 
for this target 

Number of 
servers that 
submitted 

acceptable or 
better models 

for this 
target 

T46 0 - 8 1 
T48 1 2 6 2 
T49 1 3 6 3 
T50 3 1 6 2 
T51 0 - 3 0 
T53 0 - 8 4 
T54 0 - 8 1 
T59 2 2 8 3 

Table 5.2 shows that for the four out of eight targets for which we submitted a 

correct model, the rank of the server was within the top three servers. Based on the above 

performance, DOCK/PIERR was ranked as the fourth most successful docking method in 

the automated server category of the CAPRI assessment of 2013 [47] . 

 

5.3 PERFORMANCE BY TARGET 

A target-wise discussion is presented in this section. The targets discussed are the 

ones that the author participated in. For a discussion of the performance of early versions 

of DOCK/PIERR on previous targets, refer [2]. 
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T50 

This complex, PDB 3R2X, is a protein interaction designed by the Baker lab, and 

is the structure formed by a hypothetical (designed) protein bound to the HA1 and HA2 

domains of hemagglutinin in the influenza A virus [109]. The structure of hemagglutinin 

was provided. The sequence of the designed protein was provided along with a template 

structure. The structure of the designed protein was obtained by homology modeling 

using [59]  .  DOCK/PIERR obtained 3 acceptable or better hits in the server prediction 

round, including two medium hits and 2 hits in the scoring round. Figure 5.1 shows a 

medium quality model with interface RMSD of 1.487 Å superposed with the crystal 

structure of T59.   

 

Figure 5.1 DOCK/PIERR medium-quality prediction (in blue) superposed with the 
crystal structure of T50 (in green).   

T51 

Target T51, PDB 4BXG, was a multi-domain target that involved assembly of the 

penta-modular cellulosomal arabinoxylanase structure [110]. The five domains that 

needed to be assembled were: GH5-CBM6-CBM13-Fn3-CBM62. An unpublished crystal 

structure was provided for GH5-CBM6, CMB13 was to be homology modeled, Fn3 had a 



 118 

separate crystal structure deposited and CBM62 was free in the complex and could be 

ignored. This was solved by the assembly algorithm outlined in [2]. Three separate 

interface assessments were performed: between CBM13 and Fn3, between GH5-CBM6 

and CBM13 and between and GH5-CBM6 and CBM13-Fn3. We did not obtain any hit in 

the scoring or prediction rounds. This was a hard target and only 3 of 35 prediction 

groups and 5 of 13 scorer groups got an acceptable model for this target. 

T53 

T53, PDB 4JW2, was a protein-protein complex between artificial alpha repeat 

proteins REP4 and REP2[111]. The structure of REP4 was available while that of REP2 

needed to be modeled. DOCK/PIERR scoring produced 5 hits for this target while no 

correct predictions were made in the prediction round. Figure 5.2 shows one of the 

successful scoring predictions with interface RMSD of 1.21 Å from the crystal structure.  

 

Figure 5.2 DOCK/PIERR medium-quality prediction (in green) superposed with the 
crystal structure of T53 (in red).   
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T54 

T54, PDB 4JW3, was a complex between engineered neocarzinostatin and 

another alpha repeat protein, REP16 [111]. The structure of neocarzinostatin was 

available while the structure of REP16 was modeled from the sequence. We did not 

produce any hits in the prediction or scoring round here. This target was also found to be 

a hard target by other groups, since no group was able to get an acceptable or better 

model in the scoring round for T54, and only 4 out of 41 groups got an acceptable model 

in the prediction round.  

T59 

T59 was a complex between the EDC3 antibody domain (PDB 4A53) and 

RPS28B, an RNA decapping protein, whose sequence was provided. DOCK/PIERR 

successfully predicted 2 models in the server round and one model in the scoring round. 

A figure of the successful models is not provided, as the crystal structure coordinates are 

as yet unpublished.  

 

5.4 DOCK/PIERR SERVER AND EXECUTABLES 

Source code and Linux executables of the scoring functions developed in this 

thesis are found at http://clsb.ices.utexas.edu/web/dock_details.html. These scoring 

functions were recognized as some of the best scoring functions by researchers in the 

community [112]. All the methods described in this thesis are implemented in the 

DOCK/PIERR server [113] at http://clsb.ices.utexas.edu/web/dock.html. As of the time 

of this writing (March 2014) the server has 50+ users and 200+ submitted docking jobs. 

Apart from the application studies in this thesis, it has been used by a few others in their 

studies. DOCK/PIERR was used to suggest oligomeric conformations of a four-domain 
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orange-fluorescent protein (Ember) [114]. It was also used as one of the docking methods 

for predicting the complex between cytoplasmic dynein and pilin [115], to explore 

pathogenesis caused by bacterium pseudomonas aeruginosa.  

The advances made in DOCK/PIERR help establish automated docking methods 

as accurate methods for structure prediction and enables departure from previous 

methods that rely more on human intuition. With more and more protein sequences and 

monomer structures being made available, automated docking methods such as 

DOCK/PIERR are slated to play an important role in large-scale prediction of complexes 

in the proteome.  
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Chapter 6.  Algorithms for Network Analysis of Milestoning Data 

6.1 BACKGROUND 

Networks in Molecular Biology 

Network analysis is becoming increasingly popular in computational molecular 

biology. For example, proteins interact with tens of other proteins during their lifetime to 

carry out their function. This web of interactions is represented by a protein-protein 

interaction network [3, 4]. Gene expression networks, analogous to protein interaction 

networks, provide insights into co-expression of genes. Other types of networks include 

gene regulatory networks, signaling networks and metabolic networks. The networks in 

molecular biology are massive and can be composed of millions of nodes and edges. 

They clearly require sophisticated computational tools to analyze them. 

Networks from Molecular Dynamics Simulations 

In this chapter, we discuss algorithms [116] for analyzing networks of molecular 

data gathered from molecular dynamics (MD) simulations. Molecular dynamics is a 

sampling technique where the time evolution of phase space points (space of coordinates 

and velocities) of the system is explored by solving Newton’s laws of motion at each 

step. This sampling produces trajectories from an initial state (e.g. unfolded state of a 

protein) to a final state (e.g. folded state). Network analysis helps in mapping the 

continuous phase space trajectories from MD simulations, into a relatively small number 

of discrete states; this is useful in visualization of the data and in dissecting complex 

dynamics to concrete mechanisms. However, molecular networks from MD are getting 

increasingly complex, due to the growth in computer power that allows us to generate 

longer trajectories for larger systems. This increased complexity of the resultant networks 

makes simple interpretation and qualitative insight of the molecular systems more 
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difficult to achieve, necessitating the use of efficient and scalable algorithms for network 

analysis. 

Milestoning 

The algorithms discussed in this chapter are applied to data from the advanced 

MD sampling technique of Milestoning. Advanced MD techniques like Directional 

Milestoning[51], Markov State Models (MSM) [117-119], and Transition Path Theory 

(TPT) [120] are used to study the kinetics (mechanism and rates) of a long time scale 

cellular event in atomic detail, like the process of unfolding of a protein, or the binding of 

a small molecule to a protein. Long-time scale biological events (which take hours in real 

time) cannot be computed using straightforward MD simulations. Milestoning[49-51] is a 

theory and algorithm in which the overall trajectory of long time-scale events can be 

studied in a computationally efficient manner by breaking them down into shorter 

trajectories that can be run independently, in parallel, and then combined to get the 

overall chemistry (kinetics and thermodynamics). The parallel nature of the algorithm 

allows for efficient computation of long time-scale events even for large systems[121-

123]. 

In Milestoning, the phase space (set of positions and momenta of the system) is 

divided into a set of anchors, or phase space points {Xα}α=1
N , which provide coarse 

coverage of the phase space[121]. Milestones are then defined as interfaces, I j{ } j=1
J

, 

separating phase space volumes that are associated with the anchors, as in Figure 6.1. 

Henceforth, we use the indices {α ,β,γ ..}  to denote the anchors and indices {i, j,k...}  to 

denote milestones. 
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Figure 6.1 A schematic representation showing the mapping of continuous space and MD 
trajectories to a network. 

The milestone, Ii  between anchors Xα  and Xβ  is a hyperplane, Y, in a coarse-

grained space given by Eq. (6.1).  
Ii (α → β ) = Y | d(Y ,Yβ )

2 = d(Y ,Yα )
2 + Δ2 &∀kd(Y ,Yβ ) ≤ d(Y ,Yk ){ }                 (6.1) 

The flux at milestone Ii  (the number of molecules that pass per unit time the i-th 

milestone) is denoted by qi . The basic Milestoning equation[49] is of conservation of 

flux, 

       
qi t( ) = 2 ⋅ηiδ t( ) + Kij t − t '( )qj t '( )dt '

0

t

∫
j
∑      ∀i                                          (6.2) 

where qi t( )  is the flux through milestone Ii  at time t, ηi is initial condition (the 

probability that the last milestone that passed before or at time zero is Ii ), Kij (t)  is the 

transition probability that a trajectory that starts at milestone Ii  will pass through 

milestone I j  exactly after time t. Hence Eq. (6.2) keeps track of the number of 

trajectories and ensures that the flux is conserved.  

For network calculations it is convenient to consider a stationary flux or steady 

state condition in which the flux, qi , is time independent. The stationary matrix is K. It is 
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the time integrated transition matrix Kij ≡ Kij t( )dt
0

∞

∫
⎛

⎝⎜
⎞

⎠⎟
which gives the probability that a 

trajectory initiated at milestone Ii  will hit (and terminate at) another milestone I j  before 

any other milestone. We obtain a stationary flux by setting cyclic boundary conditions. 

The final milestone f is set to return all the flux that arrives to it, to the first milestone. 
Hence the matrix element K fi  is set to one if milestone Ii  is the first milestone and is set 

to zero otherwise. The above adjustment of K and the requirement of stationary flux / 

steady state results in a remarkably simple equation for the stationary flux [48].  

q Id − K( ) = 0        K fi=
1 i = 1
0 i ≠ 1

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

                          (6.3) 

where q is the vector of all stationary fluxes. Id is the identity matrix. As 

discussed extensively in earlier papers about Milestoning[49, 124] K is computed from 
atomically detailed trajectories as K ≈ nij ni  where ni  is the number of trajectories 

initiated at milestone Ii  and nij  is the number of trajectories that started at Ii  and the first 

milestone they reach (which is different from Ii ) is milestone I j . The length of the 

vector q is J and the dimensionality of K is JxJ, where J is the number of milestones.  

In short, the only quantities needed to be estimated from short trajectories are the 

elements of the transition kernel, K. The flux can be derived from it by using Eq. (6.3). 

Trajectories between milestones are assumed independent, which allows us to calculate 

the trajectories in parallel. Moreover, because milestones are close to each other, the time 

scale of trajectories between two milestones is much smaller than the overall time scale 

of the biological process [121].  

Contributions of this chapter 

The questions we seek to answer are the following: “In what ways can we 

represent Milestoning data in terms of networks?”, “What are the important edges and 
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paths in these networks and how do we find them?” and “Are there bottlenecks in the 

networks?”. Bottlenecks are edges of low flux in the network, that require significant 

efforts to pass through, and they must be crossed on the way from the initial (reactant) to 

the final (product) state. The information about pathways and bottlenecks is useful for 

qualitative analysis of the process and to gain more insight into the behavior of the 

system. 

We propose Global Maximum Weight Pathways as a useful tool for analyzing 

molecular mechanism in Milestoning networks. A closely related definition was made in 

the context of Transition Path Theory [120]. We consider three algorithms to find these 

pathways: Recursive Dijkstra’s, Edge-Elimination, and Edge-List Bisection. The 

asymptotic efficiency of the algorithms is analyzed and numerical tests show that Edge-

List Bisection and Recursive Dijkstra’s algorithms are most efficient for sparse and dense 

networks respectively. Pathways are illustrated for two examples: helix unfolding and 

membrane permeation. Finally, we illustrate that networks based on local kinetic 

information can lead to incorrect interpretation of molecular mechanisms.  
 

6.2 NETWORK REPRESENTATION 

The molecular process is represented as a weighted, directed graph G = (V ,E) , 

where V is the set of vertices and E is the set of edges in G. An edge from vertex u to 

vertex v is represented as (u,v)  and has a weight, w(u,v) . Note that the edges are 

directed, i.e. edge (u,v)  is not the same as (v,u) . The edge weights may have different 

physical realizations. For example, edge weights and states may be defined by the 

physical distance between two vertices (as is done by geometric clustering), the phase 

space flux between nodes, or the rate constant of transitions between the nodes.  
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The representation of directional milestoning data using networks has been 

previously described in[48, 51]. As Figure 6.1 shows, two types of network 

representation are possible for Milestoning data. One type of network is where metastable 

(stable intermediate) states are identified and are mapped to vertices (nodes). Transitions 

between the states are modeled by edges between the vertices. We have five cells in 
phase space denoted by Xα ,Xβ ,Xγ ,Xδ ,Xε . Each cell can be mapped to a network vertex 

and the edges would be between vertices, e.g. α ,β( )  and β,γ( ) . Sometimes the cells are 

represented by specific conformations (anchors) that are illustrated in the figure by the 

blue ellipses.  

In an alternate network representation, the vertices can be interfaces or milestones 

denoted on the figure by dashed red lines, which indicate the boundary between domains. 

There are six milestones in the above figure, Ii − In . Continuous trajectories are mapped 

to the network either by their location in phase space, or by the last milestone that they 

have passed (color coded curves in the figure). On the right side of the figure we show 

network representations. Top figure is an anchor-based network and the lower figure is 

based on the milestones. 

The dual representation, by anchors and milestones, makes it possible to visualize 

more than one network for the same process. Depending on the choice of nodes, as (i) 

anchors or (ii) milestones, we have two types of networks: (i) state-space network where 

the nodes are anchors or phase space volumes, and (ii) a flux-space network, where the 

nodes are milestones. There are more milestones than anchors and hence the picture 

obtained by the flux-space graph is more detailed and potentially includes more 

information than the state-space graph. But the state-space graph is simpler, and for 

interpretation purposes it can be beneficial to look at the system at the anchor level. We 

therefore convert the flux-space paths to state-space for visualization purposes. 
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For choice of edge weights between the nodes, we choose the flux, as flux 

between two nodes is the most informative quantity in Milestoning, that we can attach to 

an edge, as is done in Transition Path Theory[125] and the max flux formulations of 

optimal pathways[48, 126-128]. Below, we discuss how edge weights are obtained from 

fluxes for both state-space and flux-space graphs. We also discuss another graph 

representation based on rate coefficients instead of fluxes. For the flux-space graphs, we 

additionally explain how to convert the paths to state-space.  

State-space (anchor-based) graphs with flux-based edge weights 

We create a graph with one vertex per anchor. Consider two anchors α and β, 
which are associated in directional milestoning, with two fluxes, qαβ  and qβα  

corresponding to the interfaces (milestones) α → β  and β →α . The weight of the edge 

is the net flux w α ,β( ) = qαβ − qβα . The direction of the edge is decided according to the 

larger flux. Hence, if qαβ > qβα  the direction of the edge is from α to β and vice versa. 

The main advantage of using graphs in anchor space, apart from the ease of 

interpretation, is that the size of graphs is smaller and hence calculating pathways is less 

expensive than the flux-space graphs. In directional milestoning for instance, the number 

of nodes i.e. milestones of a flux-space graph, J, is much larger than the number of 

anchors N, and J can be as large as N(N −1) . However anchor space graphs are more 

likely to be dense graphs.  

Flux-space (milestone-based) graphs with flux-based edge weights 

We have one vertex per milestone in this graph. The probability matrix Kij 

sampled in Milestoning, determines the presence of edges between milestones [116]. An 

edge from milestone i to milestone j exists if the corresponding matrix entry is positive, (
Kij > 0 ). But determining edge weights is not obvious from first sight since the flux 
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information is for individual milestones, while the edge weights represent information 

between two connecting milestones. The following simple transformation converts 

vertex-based (milestone-based) weights to edge weights between pairs of milestones. For 
milestone pair i and j, the edge weight for edge i, j( )  is w i, j( ) = qj i.e. the flux 

associated with the second milestone.  

On the path from start state s to end state t, the only milestone on the path whose 

flux we do not encounter as an edge weight on the path, is the starting milestone, since 

we consider only the flux of the latter milestone, j, for every edge i, j( ) . This is fixed by 

adding an extra (dummy) milestone, s '  before the first vertex, with an edge from s '  to s 

whose weight is w(s ', s) = qs  i.e. weight of the edge is equal to flux of the starting 

milestone. The pathway calculations are then performed from s ' to t instead of s to t. 

Note that, for a fixed milestone j, all the edges leading to milestone j in such a 
graph will have the same weight. In other words,w i, j( ) = qj    ∀i, s.t.Kij > 0  . Hence 

many edges have the same weight (same flux in this case) and this can result in 

degenerate paths. 

For visualization, we convert the resulting paths from milestone space to anchor 

space. For every milestone i in the milestone-based path, associated with anchors α  and 

β , we add to the anchor-based path, an edge α ,β( )  between anchors α and β , with 

edge weight w(α ,β ) = qi  i.e. edge weight is the flux associated with the corresponding 

milestone. Note that adjacent milestones always share an anchor. For example, path 

i, j,k  in milestoning space corresponds to path α ,β,γ ,δ  in anchor space, assuming 

milestone i corresponds to anchor pair α ,β( ) , milestone j corresponds to anchor pair 

β,γ( )  and milestone k corresponds to (γ ,δ ) .  
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Flux-space (milestone-based) graph based on rate coefficients 

An easier alternative to the flux based approach for getting edge weights is to 

weigh the edges of the graph with rate coefficients or energy barriers[129, 130]. This 

weighting is local and does not take into account global topology and local information 

can be misleading and point to less relevant portions of the graph. For example, using 

rate coefficients, it is possible to weigh some edges highly if they have a fast local 

transition. But at the same time, these edges may be off the main pathway receiving little 

reactive flux.  

The rate coefficients of a Master equation between milestones can be computed 

directly using the Milestoning transition matrix K and the vector τ , the average lifetimes 

of the milestones [50, 131]. The rate coefficient for a transition between a milestone pair 

(i, j)   (and the edge weight) is given by   

w(i, j) =
Kij

τ i
        (6.4) 

Converting paths based on rate coefficients in flux-space (milestone-space) to 

state-space (anchor-space) is performed as follows. For every milestone i (a milestone 

between anchors α  and β ) on the path in flux-space, we add an edge in state-space 

between the anchors α and β . Each pair of milestones (i, j) is associated with three 

anchors, (α ,β,γ )  with milestone i associated with anchor pair α ,β( )  and milestone j 

associated with anchor pair β,γ( ) . Hence edge weight between a pair of milestones (i, j)  

in the path in milestone space is shared equally between anchor-based edges α ,β( )  and 

β,γ( ) . Edge weights from flux-space to anchor-space are converted as shown in Figure 

6.2. Note that each milestone edge contributes to weights on two anchor edges and each 

anchor edge can get a contribution to its weight from two milestone edges  (except the 

edges at the ends of the path).  
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Figure 6.2  Conversion of a flux-space path with milestones as vertices, to a state-space 
path with the corresponding anchors as vertices. The table in the figure 
shows the mapping from milestone index to anchor index.  

6.3 DEFINITION OF PATHWAYS 

Maximum Weight Path (MWP)  

Given a start vertex, s, and end vertex, t, we seek a path between s and t in which 

has the maximum possible weight (of all paths between s and t) for the minimum weight 

edge on the path.  Each of the paths from s to t paths has a bottleneck, that is the edge 

with the minimum weight (EMW) along the path. The s-t path with an EMW, which is 

larger than the EMW of all other s-t paths, is the maximum weight path between s and t. 

This has also been referred to as a dominant reaction pathway in Transition Path 

Theory[120]. The edge weights in the graph can also be referred to as capacities, and the 

maximum weight path is known as the maximum capacity path [132-135].  

An example graph is illustrated in Figure 6.3 (a), which displays start and end 

vertices A and D respectively, and capacities (edge weights) marked along the edges. A 

path from vertex A to vertex D, passing through vertices B and C is written as 

A,B,C,D . There are multiple paths between A and D, A,B,D , A,C,D  and 



 131 

A,B,D . Of these three paths, the maximum weight paths are A,B,D  and A,B,D , 

shown in green in Figure 6.3 (b), since the edge with minimum weight (EMW) on both 

these paths is the highest possible for an A to D path, and equal to 8, which is greater 

than 5, the minimum weight edge on path A,C,D . 

 

Figure 6.3 (a) An example graph with multiple paths between vertices of interest, A and 
D. (b) Maximum weight paths (MWP) between A and D shown in green. (c) 
Global maximum weight path (GMWP) between A and D shown in red. 

Global Maximum Weight Path (GMWP) 

The definition of maximum weight path stated above relies on just one edge in the 

path, i.e. the EMW. More than one path can share the same EMW as shown in the above 

example. In order to have a unique solution to the path determination problem, we define 

the global maximum weight path (GMWP), which is an optimal maximum weight path 

that is as close as possible to being unique. The global maximum weight path is referred 

to as the representative dominant reaction pathway in Transition Path Theory[120].  

Let a path, m, be a maximum weight path between s and t. If for every pair of 

vertices on m, the subpath on m between those vertices is a maximum weight path, then m 

is a global maximum weight path (GMWP). The GMWP for a given pair of vertices is 

unique up to the degeneracy of paths branching from the same vertex in the graph. 

GMWP is analogous to a minimum energy path in continuous space, and the EMW is 
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analogous to a transition state. In previous studies, we defined a discrete version of the 

max flux path for a network as a GMWP[48, 136, 137].  

In the example shown in Figure 6.3, both A,B,C,D  and A,B,D  are 

maximum weight paths, with the same EMW, (A,B) . But the maximum weight path 

between B and D is B,C,D  with minimum edge weight 10, and not B,D , which has 

a minimum edge weight 9. Hence the global maximum weight path between A and D, 

shown in red in Figure 6.3 (c), is A,B,C,D  since all its subpaths are also maximum 

weight paths.  

More formally we define W (s,t, p) , weight of a path, p, from vertex s to t, as  
W (s,t, p) = min

(u ,v)∈p
w(u,v)             (6.5) 

In Eq. (6.5), (u,v)  represents an edge from vertex u to vertex v, and w(u,v)  is the 

weight or capacity of the edge (u,v) . Eq. (6.5) states that the weight of a path p is equal 

to the weight of the edge with minimum weight (EMW) on the path.  We define a path µ  

to be a maximum weight path between vertices s and t if µ  satisfies Eq. (6.6). 
W s,t,µ( ) ≥W s,t, p( )    ∀p          (6.6) 

That is, the weight of path µ , from vertex s to t, is greater than the weight of all 

other paths p from s to t. Or, the EMW on path µ  has a higher weight than the EMW of 

all other paths p. We also represent the EMW of the maximum weight path, µ , between s 

and t as M (s,t) ≡W (s,t,µ) .  

We then define m as a GMWP from s to t,m = s,v1,v2....vi ,vj ...t , if it satisfies  

 W ν i ,ν j ,m( ) ≥W ν i ,ν j , p( )    ∀p   ∀ν i ,ν j ∈m,  i < j        (6.7) 

Eq. (6.7) states that, for any two vertices, vi  and vj  on the path m, with vi  

appearing before vj  on the path, the path between vi  and vj  that has the maximum 

weight, among all paths p from vi  to vj  is exactly the path through m. We now develop 

the algorithms for obtaining the MWP and GMWP.  
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6.4 DETERMINATION OF MAXIMUM WEIGHT AND GLOBAL MAXIMUM WEIGHT PATHS 

Recursive Dijkstra’s Algorithm for Global Maximum Weight Path 

a. Modification to Dijkstra’s Shortest Path Algorithm for Calculating the Maximum 

Weight Path  

Dijkstra’s algorithm[138] provides the base for efficient calculation of the GMWP 

using the Recursive Dijkstra’s algorithm. Dijkstra’s single-source shortest path algorithm 

finds the shortest paths and shortest path lengths from a single vertex of interest, s, to all 

other vertices, in a graph G, where a non-negative weight of an edge representing 

distance, d u,v( ) , is associated with each edge u,v( ) . The length of the path, L , is 

determined by the sum of the edge distances.  

Dijkstra’s shortest path algorithm can be easily modified to obtain an algorithm to 

find a maximum weight path from a given vertex s to all other vertices. The two key 

points in the modification are that first, the minimization problem (shortest path length) 

in the previous case is converted to a maximization problem (maximum EMW or 

maximum capacity). Second, instead of using the length metric as the sum of distances in 

a path, we use the metric of the weight of the EMW along the path.  

The algorithm for maximum weight path calculation finds at each step, the vertex, 

u, with the maximum weight (or maximum EMW) from s and updates the maximum 

weights of the vertices neighboring u. In other words, suppose we know the maximum 

weight of u, and say u is connected to v through edge (u,v) . We can then update the 

maximum weight from s to v, if the weight of the path to v passing through u is higher 

than the current estimate of the maximum weight from s to v. 

We arrive at the equality in Eq. (6.8) for each vertex v adjacent to vertex u, where 

M u( )  and M v( )  represent the current known maximum weight from the source vertex 

to u and v respectively, and w(u,v)  is the weight of the u-v edge. This is a slight 



 134 

modification of the equality in the shortest path algorithm where the sum in the inner 

bracket is changed to a minimum of two edges and the min condition in the outer bracket 

is changed to max condition.  
  M v( ) = max M v( ),min M u( ),w u,v( )( )( )       (6.8) 

The algorithm to calculate maximum weight paths from a given source vertex s to 

all other vertices in a directed graph G is outlined in Table 6.1. The variable M keeps 

track of the weight of the bottleneck edge or EMW, on the maximum weight path from s 

to a particular vertex. The array Q is the priority queue in the shortest path algorithm 

which enables efficient extraction of the vertex with maximum weight at each step. The 

data structure Adj is an adjacency list representation of the graph. The EXTRACT_MAX 

operation extracts the current (unprocessed) vertex with the maximum weight from s.  

An extra array called bottleneck is used here to store the actual vertices 

corresponding to the EMW (bottleneck edge) in the maximum weight path for a given 

vertex. This data structure is not required for calculating maximum weight paths, but is 

required later on, when we use this maximum weight path algorithm to calculate the 

global maximum weight path.  

When the algorithm terminates, the maximum weight among all paths from s to a 

particular vertex, i, is retained in array element M[i] and the EMW for a particular vertex 

is in array bottleneck[i] (line 17). The proof of this algorithm is exactly analogous to 

Dijkstra’s shortest path algorithm.  
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Table 6.1 Algorithm 1 - Modified Dijkstra’s algorithm for finding maximum weights and 
bottleneck (EMW) edges from s to all other vertices in a graph G.  

procedure MaxWeightPath(G,s)   
for each v in G 1 
 M(v) = -1 2 
             3 
M(s) = ∞ 4 
Q = V     // Add all the vertices in G  5 
 6 
while Q ≠ NULL 7 
 u = EXTRACT_MAX(Q) 8 
 for each v in Adj(u) 9 
  if M(v) < min(M(u),w(u,v))        // M(v)=max 
(M(v),min(M(u),w(u,v))) 

10 

   M(v) = min(M(u),w(u,v)) 11 
 12 
                                            if M(u) < w(u,v) 13 
                                                      bottleneck(v) = bottleneck(u) 14 
                                            Else 15 
                                                     bottleneck(v) = (u,v) 16 
return bottleneck,M  17 

The efficiency of the algorithm is the same as that of the shortest path algorithm. 

For a graph with V vertices and E edges, the best-known theoretical complexity of this 

algorithm is O(V logV + E) , using Fibonacci heaps for efficiently extracting the next 

vertex with the smallest distance from s in O(logV )  time, and adjacency lists for 

efficiently finding the neighbors of a vertex in O(E)  time across all vertices. For sparse 

graphs (i.e. V ≈ E ) the time complexity becomes O(V logV ) .  For dense graphs, (where 

E ≈V 2 ), the time complexity is O(V 2 ) .  For a simpler implementation of graphs with 

priority queue implemented using arrays and graphs implemented as adjacency matrices, 

the complexity is again O(V 2 )  for this algorithm.  

The maximum weight path is a path from the start to end state containing the 

transition edge, EMW, which is similar to the transition state of chemical reactions. The 

EMW is a good descriptor for processes dominated by a single and large free energy 
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barrier, in which case, the location of the transition edge is much more critical than the 

rest of the GMWP, and the algorithm outlined above can be used to compute this path 

efficiently. However, when the EMW is not dramatically lower in weight compared to 

other weights along the path, the location of the entire pathway matters, which brings us 

next to the calculation of Global Minimum Weight Path (GMWP). 

b. Recursive Dijkstra’s Algorithm for GMWP Calculation 

We note that the GMWP is a special maximum weight path between s and t. It is a 

path where all subpaths between pairs of vertices on the same path are maximum weight 

paths. We now introduce a new algorithm, the Recursive Dijkstra’s algorithm, that uses 

the maximum weight path algorithm (Algorithm 1) repeatedly to calculate the global 

maximum weight path. Given a pair of vertices s and t, we first use Algorithm 1, the 

maximum weight path algorithm, to get the EMW (u,v)  between s and t. Note that 

Algorithm 1 returns the EMW from s to all other vertices, but we only need that piece of 

information for vertex t. Since w(u,v)  is the maximum weight that can pass between s 

and t, (u,v)  is an edge common to all maximum weight paths between s and t and hence 

it exists also in the GMWP between s and t. We then have two subpaths to be determined 

in the GMWP, p1 = s...u  and p2 = v...t . We use the above technique recursively to 

find the EMW (bottleneck edge) edge between s and u, and between v and t. We note that 

once an EMW (u,v)  is known, between s and t, the remaining subpaths p1  and p2 of the 

GMWP can be computed independently, since the edges on the subpaths will always be 

of higher weight than the EMW. 

Thus each call to Algorithm 1 provides us with one edge on the GMWP. Once all 

subpaths are uniquely determined, we have the complete GMWP between s and t.  Given 

vertices s and t, Algorithm 2 in Table 6.2 finds the global maximum weight path between 

them in a directed graph G.  
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There can be multiple maximum weight paths, all of them having the same EMW, 

but the GMWP is defined to be unique up to the possible accidental degeneracy of edge 

weights of alternate paths. If there are degenerate edges in the graph, there can be more 

than one GMWP, and hence it is recommended to compute the first path, remove the 

bottleneck edge and recompute the path, repeating this procedure till no more unique 

paths are found. This process guarantees that we get a complete picture of the reaction 

pathways.  

Table 6.2 Algorithm 2 – Recursive Dijkstra algorithm to find the global maximum weight 
path between vertices s and t, in a directed graph, based on the modified 
Dijkstra algorithm for maximum weight paths. 

procedure GlobalMaxWeightPath(G,s,t)  
    // base case, return empty path 1 
     if s = t 2 
        return <>  3 
     4 
   // call algorithm 2 to find bottleneck edge 5 
   (bottleneck,M) = MaxWeightPath(G,s) 6 
   (u,v) = bottleneck(t) 7 
   8 
   // find subpaths by recursion 9 
  = GlobalMaxWeightPath(G,s,u) 10 

 = GlobalMaxWeightPath(G,v,t) 11 
 12 
  // concatenate the subpaths  13 

  return  
14 

Each call to Algorithm 2 fixes one edge on the GMWP. With V vertices and E 

edges in the graph, the maximum length of a GMWP is of the order of V, so Algorithm 1 

is called a maximum of V times from Algorithm 2. Note that Algorithm 1 itself takes 

O(V logV ) for sparse graphs (with priority queue implemented using Fibonacci heaps and 

graphs implemented as adjacency lists) and O(V 2 ) for dense graphs and for simple 

p1
p2

p1,(u,v), p2
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implementations of sparse graphs. Hence Algorithm 1 takes O(V 2 logV )  time for sparse 

graphs and O(V 3)  for dense graphs and for simple implementations of sparse graphs. 

We note that we are doing some extra computations in Algorithm 2 that can be 

avoided. For example, we first call Algorithm 1 on the source vertex, s to get the EMW 

(bottleneck) of the destination vertex t from s. Then while computing the subpath from s 

to u, in the recursive step, we again call Algorithm 1 on s to get the EMW of u from s. 

But, Algorithm 1 calculates the EMWs for all vertices from s, and not just for one 

particular destination vertex, t. Hence we can just run Algorithm 1 once on each vertex, 

and store the EMWs of all other vertices from this vertex. This can be done by making 

bottleneck a 2D array i.e, bottleneck(i,j) will give the EMW for the maximum weight 

path from vertex i to vertex j. Each time we need the EMW from Algorithm 1 between 

two vertices i and j, we check whether Algorithm 1 has been already computed on vertex 

I, and only run Algorithm 1 when it has not been run on i. 

The optimized procedure does not improve our bounds on the asymptotic time 

complexities outlined in the Efficiency section. In the worst case, the EMW between two 

vertices is always the first edge on the path between the two, in which case Algorithm 2 

needs to be run on every vertex in the GMWP and optimization cannot be performed. 

Nevertheless, the optimization improves the runtime in the average case, and is useful in 

practice.   

Comparison to Edge-Elimination based MaxFlux Algorithm 

Previously, an approximate algorithm has been described for finding maximum 

flux path in the context of Directional Milestoning in [48]. Here we call it the “Edge-

Elimination” Maxflux algorithm. The steps in the algorithm are:  
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1. Sort all the edges in the graph G based on their weight, into a list, Lw .  

2. Initialize path p, between vertices s and t to an empty path. p on exit will be the 
GMWP.  

3. While the vertices s and t are not connected in p, repeat the following steps.  
4. Proceed to the next edge, (u,v)  in Lw  with the smallest weight.  

5. Check if removal of (u,v)  from G disconnects s from t.  

6. If it does, then this is an edge that is critical to the GMWP, and hence it is added 
to p.  

7. If not, then simply remove this edge from G, and proceed to the next edge in Lw .  

Given a graph with E edges and V vertices, the time for sorting the edges is 

O(E logE) . Checking if two vertices are connected in a graph can be done efficiently 

using graph traversal algorithms like breadth first search or depth first search [7], which 

take O(V + E)  if adjacency lists are used, or O(V 2 )  if adjacency matrices are used to 

represent the graph. The maximum number of iterations we need is E (one per edge), so 

the time complexity becomes O(E logE + EV 2 )when using a matrix representation of the 

graph and O(E logE + E(V + E))  when using the adjacency list representation.  

For dense graphs, where E ≈V 2 , both the matrix and list representations yield a 

complexity of O(V 4 ) , whereas for sparse graphs where E ≈V , the matrix representation 

takes O(V 3)  while the list representation is faster and takes O(V 2 ) . Hence, the scaling 

behavior of the Edge-Elimination algorithm is worse than the Recursive Dijkstra 

algorithm.  

Comparison to the Edge-List Bisection Algorithm  

The approach for determining MWP and GMWP paths that we discussed is 

closely related to that of Metzner et al[120]. In [120] the network was based on 

Transition Path Theory (TPT) while our approaches use the formulation of Milestoning. 
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Here, we call the path algorithm given in[120] as the Edge-List Bisection algorithm and 

describe it below. 

The overall approach used to identify Global Maximum Weight Paths in this 

algorithm, is identical to the Recursive Dijkstra’s algorithm for GMWP calculation 

(Algorithm 3 in this chapter). That means, a bottleneck edge (u,v)  is computed between 

vertices s and t first, and then the path between s...u and v...t is recursively identified. 

But the underlying algorithm to calculate a bottleneck each time (which in the Recursive 

Dijkstra’s algorithm is a modification of the Dijkstra’s algorithm) is a variant of the 

Edge-Elimination algorithm. The following steps describe how the bottleneck edge 

between two vertices s and t is selected each time.  

 
1. Sort all the edges in the graph G based on their weight, into a list, 

Lw = e1,e2....e|E|[ ] . The edges are stored in ascending order as in the Edge-
Elimination algorithm.  

2. If the last edge in Lw , e|E| is an edge between s and t, return the last edge as the 
bottleneck edge. 

3. Go to the edge in the middle of the current sorted list, em . Let the weight of this 
edge be wm .  

i) If s and t are still connected by removing all edges with weight less 
than wm , then the bottleneck edge has a weight higher than wm . Hence 
it is located in the second half of the edge list between em+1....e|E| , 
which is the part of the edge list we need to explore next.   

ii) Else if removing edges with weight less than wm  results in s  being 
disconnected from t, then the bottleneck has a weight lower than wm
and is located in the first half of the edge list between e1....em .  

Note that we obtain from step 4, a sublist to be explored, and this sublist is half 

the size of the original sorted list. We then repeat steps 3 and 4, exploring the middle 

edge of the new sublist and using it to halve the edge list each time. These steps are 
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repeated till the final edge list consists of just one edge. This edge is the bottleneck edge 

returned by the algorithm.  

Unlike the Edge-Elimination algorithm, where we go through each edge in the 

edge list one by one, here we traverse the edge-list in a bisected search manner, bisecting 

the edge list till we are left with a single edge.  The overall algorithm runs in an identical 

manner to the Recursive Dijkstra’s algorithm in terms of identifying the bottlenecks and 

reconstructing the path.  

In contrast to the previous two algorithms the Edge-List bisection algorithm 

makes the following assumptions: (i) the graph has no edge degeneracy, (ii) the set of all 

the MWPs includes all the edges of the graphs, and (iii) there are no cycles in the graph. 

Assumption (ii) requires, for example, that the graph does not include dead-end branches. 

Hence some pre-processing of the graphs may be required. 

To find a single bottleneck edge, the bisected edge list search examines O(logE)

edges. And for each edge, one connectivity test is performed using Breadth-first Search 

or Depth-First Search, which takes O(V + E)  or O(V 2 )depending on whether the graph 

representation is in terms of the adjacency list or adjacency matrix. Hence the search for a 

single bottleneck edge takes O(V 2 logE)  for the matrix representation, and O(E logE)

for the list representation. Since there are atmost O(V )  edges on the GMWP, the overall 

algorithm takes O(V 3 logE) for the matrix representation and O(VE logE) for the list 

representation. Hence the complexity is O(V 3 logV ) for all networks in the matrix 

representation and for dense matrices in the list representation, and becomes O(V 2 logV )

for sparse networks in the list representation.  

Note that the paths returned by all three algorithms above are identical.   
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6.5 RESULTS AND DISCUSSION 

We considered two systems to demonstrate the paths: unfolding of a helix under 

stress and membrane permeation of DOPC. Below is a description of the systems and the 

paths we obtained in both.   

Helix Unfolding under Stress 

Alpha helices are prime secondary structure elements that are found in proteins. 

Their stability and folding/unfolding pathways are therefore of considerable interest. A 

recent study[136, 137] simulated a single molecule experiment of a ~100 amino acid 

helix, in which both terminals were pulled by an external force and unfolding events were 

recorded. For each of 10 load levels from 0pN to 100pN, 500 transition kernel matrices, 

K and milestone lifetimes, τ  were sampled, from which fluxes were calculated using the 

Milestoning equation [136, 137]. We calculated paths (GMWP) on the average kernel 

matrices, lifetimes and fluxes, averaged over the 500 samples for each load level.  

In this system the number of anchors was 14. For the different load levels, the 

number of milestones found were 129, 125, and 109 for 0, 30 and 70pN respectively. For 

path calculations, the starting anchor corresponded to the state alpha3, the fully folded α-

helix state, with three hydrogen bonds wrapping an amino acid. The ending anchor 

corresponded to the unfolded state of the helix, in which no hydrogen bonds are formed 

and the dihedral angle is in the extended chain configuration, with psi > 90  .  

In milestone space, these start and end anchors corresponded to one start 

milestone and four end milestones, since there were multiple ways to reach the last 

anchor (unfolded state). All paths were converted to anchor space for visualization. 

Figure 6.4 demonstrates the complexity of the state-space and flux-space networks for the 

intermediate load level of 30pN.  
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Figure 6.4  Visualization of average networks for helix unfolding under a load level 30pN 
in (a) state-space, with 14 anchors (vertices). (b) flux-space with 125 
milestones (vertices). The graphs are to illustrate the complexity of analysis 
and were prepared with the Pajek program[139]. 

Figures 6.5-6.7 depict the global maximum weight pathways obtained from the 

three different graph representations: state-space graph, flux-space graph with flux-based 

weights and flux-space graph with rate coefficients, for three different load levels: 0pN, 

30pN and 70pN. Intermediate vertices on the paths represent partially folded states like 

alpha2 and alpha1 with 2 and 1 hydrogen bonds remaining respectively, misfolded states 

like 310, representing the 310 helix, or nearly unfolded states, like 90 < psi < 0 .  
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Figure 6.5 Global maximum weight paths using three different graph representations for 
helix unfolding under 0pN stress. Bottleneck edges (EMW) are in red.  
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Figure 6.6  Global maximum weight paths using three different graph representations for 
helix unfolding under 30pN stress. Bottleneck edges (EMW) are in red. 
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Figure 6.7  Global maximum weight paths using three different graph representations for 
helix unfolding under 70pN stress. Bottleneck edges (EMW) are in red. 
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When examining the state-based pathways, we notice that the position of the 

EMW or the transition state is different for different loads. For example, the state-based 

path for 0pN path is direct and moves from the three-hydrogen-bond state to a state with 

one hydrogen bond and then to a state with positive backbone dihedral, psi. Finally the 

system transitions to the unfolded state, where no hydrogen bonds are present. The 

bottleneck is at the break of the first two hydrogen bonds. A similar path is followed at 

30pN load, with the addition of one more (unlabeled) intermediate state with no hydrogen 

bonds. The dihedral angles of the unlabeled state are still in the folded region. 

Interestingly, the bottleneck at 30pN is different from the 0pN case, is shifted to a 

backbone conformational transition, and is not at the dissociation of a hydrogen bond. 

The 70pN path illustrates another twist in which a new intermediate hydrogen bond (310) 

is formed before the system unfolds. The bottleneck is shifted to the last state in which 

the psi dihedral completes the rotation to domains greater than 90 degrees. This is 

consistent with the application of additional load, since the 310 helix is more extended 

than the α  helix and it is preferred at the high load limit, compared to the random chain 

less-extended conformation (the unlabeled state) of the 30pN load.  

The most complex paths are obtained at intermediate load level (30pN). One can 

understand this by considering the two limits of low and high loads. At low (zero) loads 

the system does not have sufficient energy to explore the energy landscape and is 

restricted to a few dominant and low energy reaction coordinates. At high load level, the 

large external force dominates the energy landscape. The external force washes out many 

of the molecular details and induces the system to fold in more direct and straightforward 

pathways. At intermediate load level, the external force is sufficient to reduce the free 

energy barrier to the extent that new states can be found and explored but it is not too 

strong to overwhelm the features of the energy landscape. This is also consistent with the 
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earlier observation[136, 137] that the mean first passage time through the system is 

longer for intermediate load levels. 

We also explore different graph resolutions. The state-space graph is of the lowest 

resolution and the paths from this graph have the lowest level of details. A higher level of 

resolution is provided by the milestone-space graph. Milestones are the interfaces 

between states and obviously there are more interfaces than states. The last 

representation, which is based on rate coefficients between milestones, is not only more 

complex but also approximate. The significant differences from the kinetically exact 

MaxFlux path suggests that it is mechanistically incorrect. 

Membrane Permeation of DOPC 

Phospholipid membranes such as DOPC efficiently separate two aqueous 

solutions and support concentration gradients of different solutes that are necessary for 

life processes. However, the membrane barrier is not absolute and passive permeation is 

possible. It is an intriguing question whether basic ingredients of biological 

macromolecules (such as amino acids and sugar molecules) can permeate through 

membranes without the active assistance of transporters. Recently an investigation was 

initiated to accurately simulate the permeation of complex molecules through 

membranes[121, 140]. In particular, the translocation of a blocked tryptophan was 

simulated with Milestoning. A network was built that takes into account not only the 

center of mass of the permeant, but also the orientation of the molecule with respect to 

the membrane axis. The number of anchors here was 217 and the number of milestones 

was 1204. The start anchor (and milestone) corresponded to the permeant at the left of the 

membrane and the end anchor (and milestone) corresponded to the permeant in solution 

at the right side of the membrane.  
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The global maximum weight paths obtained using various graph representations 

for this system are shown in Figure 6.8. The paths based on fluxes, in both the flux-space 

and state-space graphs, are quite similar. But the path based on local rate coefficients is 

quite different and samples a different part of the conformation space. This example too 

suggests that the mechanisms obtained from local kinetic information can be different 

from those based on the exact kinetics. Nevertheless, the alternative path based on local 

kinetics is found at somewhat lower scoring GMWPs of flux-based graphs. Hence it is 

still a sensible choice with acceptable weight. For dense and degenerate graphs, multiple 

pathways of similar scores can be obtained, and this may be the case also here. The path 

based on rate coefficients is less “committed” to the low free energy minima shown in 

gray on the upper left side and lower right side of the plot in Figure 6.8.  

 

Figure 6.8 Global maximum weight paths for membrane permeation of DOPC. The graph 
representations are: Path A: state-space graph with flux-based weights. Path 
B: flux-space graph with flux-based weights. Path C: flux-space graph 
weighted by local rate coefficients. 
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6.6 ANALYSIS OF RUN TIMES AND BENCHMARKS  

Table 6.3 summarizes the worst-case time complexities for dense and sparse 

graphs for various implementations of the path algorithms. G: List means the graph is 

implemented using adjacency lists, G: Matrix means the graph is implemented using 

adjacency matrices, Q: Array means the priority queue in Dijkstra’s algorithm is 

implemented using arrays and Q: Heap means the priority queue is implemented using 

Fibonacci heaps. These scaling factors have been derived in the Efficiency section of 

each algorithm.  

Note that the Edge-Elimination algorithm shows a marked difference in 

complexity between dense and sparse graphs. It is particularly inefficient for dense 

graphs and works best for sparse graphs when the number of edges is small. For dense 

graphs, the Recursive Dijkstra’s algorithm shows the most favorable asymptotic time 

complexity. The Edge-List Bisection algorithm possesses complexities comparable to 

that of the Recursive Dijkstra’s algorithm. Generally, state-space graphs maybe dense 

while flux-space graphs are usually sparse. 

Table 6.3 Summary of asymptotic time complexities of various algorithms for dense 
(E ≈V 2 )  and sparse (E ≈V )  graphs.  

Dense graphs 
Recursive Dijkstra Edge-List 

Bisection 
Edge Elimination 

G: List 
Q: Heap 

G: Matrix 
Q: Array 

G: List G: Matrix G: List G: Matrix 

O(V 3)  O(V 3)  O(V 3 logV )  O(V 3 logV )  O(V 4 )  O(V 4 )  
Sparse graphs 

Recursive 
Dijkstra 

Edge-List 
Bisection 

Edge Elimination 

G: List 
Q: Heap 

G: Matrix 
Q: Array 

G: List G:Matrix G: List G:Matrix 

O(V 2 logV )  O(V 3)  O(V 2 logV )  O(V 3 logV )  O(V 2 )  O(V 3)  
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Table 6.4 Average runtimes in milliseconds for random graphs with 100, 1000 and 10000 
vertices, for the three algorithms. 

Dense graphs 
Graph 
size 

(nodes) 

Number of 
edges 

Recursive 
Dijkstra’s 

Edge-List 
Bisection 

Edge 
Elimination 

 
100 9,500 0.31 2.93 258.61 
1000 600,000 98.70 404.06 1.56e+06 
10000 60,000,000 49,045.3 117,248.62 - 

Sparse graphs 
Graph 
size 

(nodes) 

Number of 
edges 

Recursive 
Dijkstra’s 

Edge-List 
Bisection 

Edge 
Elimination 

 
100 1,000 0.23 0.54 13.83 
1000 10,000 47.81 36.18 7554.45 
10000 100,000 11,188.2 7,228.17 - 

To obtain a consistent and unbiased measure of the algorithm efficiency in 

practice, we recorded the runtimes of the two algorithms on random graphs. We 

generated several sparse and dense random graphs and runtimes were estimated by 

averaging the results over different random graphs and different start and end nodes. 

Simple implementations were used for both algorithms i.e. graphs were implemented 

using matrices and queues were implemented using arrays, since the asymptotic 

complexity is about the same for the simple versus the more sophisticated 

implementations, for either algorithm.  

Table 6.4 shows the performance of the two algorithms on random graphs. 

Runtimes were calculated on a single core of an 8 core Linux Intel Xeon X5460 

processor with clock speed of 3.16 GHz and 16GB memory shared among 8 cores. 

Runtimes were not calculated for the Edge-Elimination algorithm for 10000 vertices 

since the estimated runtime was too long. Also shown is the number of edges for each 

size of random graphs. 
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The Edge-Elimination algorithm is much slower than the other algorithms for all 

graph sizes, and its performance degrades significantly when transitioning from sparse to 

dense networks. The Recursive Dijkstra’s algorithm, on the other hand, requires 

approximately the same order of magnitude of runtimes in both dense and sparse cases. 

The runtimes of the Edge-list Bisection algorithm are comparable to that of the Recursive 

Dijkstra’s algorithm. We note that the Edge-List Bisection algorithm is most efficient for 

sparse graphs while the Recursive Dijkstra algorithm is most efficient for dense graphs. 

We see that though the worst-case complexities of the algorithms are not very 

different, there is a wide difference in runtimes on the benchmark. Let us consider for 

example, the asymptotic complexities of the algorithms in Table 6.3 for sparse graphs 

using matrix representations of graph. For the Edge-Elimination algorithm, one needs to 

traverse through the list of sorted edges, checking for each edge, if its removal 

disconnects the two end vertices (an operation that takes O(V 2 )  in this case), terminating 

only when the set of edges on the path is complete. In practice, this leads to a large 

number of edges being explored before we recover the complete path. So the average 

time complexity is closer to the worst-case time complexity for the Edge-Elimination 

algorithm.  

In contrast, for the Recursive Dijkstra’s algorithm and the Edge-list Bisection 

algorithm, we run the underlying bottleneck identification algorithms (which are the 
modified Dijkstra’s algorithm which takes O V 2( ) , or the bisection-based algorithm 

which takes O(V 2 logV )  respectively in this case) only once per edge in the global 

maximum weight path. These means we only need to run these underlying bottleneck 
identification algorithms, Ep  times, where Ep  is the number of edges on the global 

maximum weight path. In practice, Ep  can be far less than the number of vertices, which 

in turn is much less than the number of edges. Hence the average runtime for these 
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algorithms can be much smaller than the time predicted by the asymptotic analysis and is 

smaller than the time taken by Edge-Elimination. 

 

6.7 CONCLUSIONS 

Network representations are emerging from a number of enhanced sampling 

techniques for molecular kinetics using methods like Milestoning, TPT, MSM, and more. 

The push to longer time scales is obtained by calculation of local kinetic information by 

MD (e.g. local rate coefficients) and using the data in coarser equations such as in 

Milestoning.  Networks offer a natural way for coarse-graining without losing too much 

in spatial resolution, while being able to push temporal scales to significantly longer 

domains (from nanoseconds to hours[121]). We expect the use of networks as well as the 

complexity of the networks (number of edges and vertices) to increase significantly in the 

future. This increase in network complexity is necessary to capture more details of 

chemical processes, allowing for the interactions of multiple coarse variables and going 

beyond one-dimensional reaction coordinates. However, the complexity of networks 

makes them harder to interpret and obtain qualitative insight, compared to lower 

dimensionality modeling. To obtain such qualitative interpretation, we identify in the 

network, dominant edges and paths that carry significant fluxes or trajectories and hence 

are more important than others. Maximum flux or global maximum weight pathways are 

discussed at length in the present paper as a natural choice for these analyses. Recursive 

Dijkstra’s and Edge-List Bisection algorithms are proposed as efficient and scalable 

approaches to identify them. We also discussed the interpretation of molecular 

mechanisms using networks for analysis. We argue that using local kinetic information 
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(such as rate coefficients) instead of exact solution of the kinetic equations may lead to 

incorrect dominant pathways. 

Code for calculating optimal pathways in networks is available as part of the 

analysis module of the molecular dynamics program MOIL[141]. It can be downloaded 

from http://clsb.ices.utexas.edu/web/moil.html 
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Chapter 7.  Conclusions and Future Work 

In this thesis, algorithms for improving protein-protein complex prediction were 

outlined. Large-scale machine learning methods like pairwise learning using linear 

programming were used to derive new potentials, or scoring functions. The training 

involved examination of hundreds of thousands of models, which included both correct 

and incorrect structures. This learning algorithm models the funnel energy landscape of 

protein complexes using constraints that stipulate that the energy of a correct model 

should be lower than the energy of an incorrect model. The contributions of this thesis 

from a computer science perspective are the introduction of hierarchical constraints into 

the learning algorithm, and a comparison to other well-known machine learning 

algorithms like SVMs and neural networks. Pairwise learning using linear programming 

compared favorably to the other algorithms, in terms of accuracy, training and test time.  

From the perspective of structure prediction of protein complexes, new methods 

for reranking models were introduced. These methods were implemented in the docking 

package DOCK/PIERR [13, 41, 113]. Specifically, a new atomic potential [41] and a new 

hydrogen bond based potential [63] were developed. These potentials were combined 

with side chain remodeling, energy minimization and molecular dynamics-based 

sampling procedures to obtain more chemically reasonable structures starting from rigid 

docking models. The docking algorithm was shown to be comparable to the best docking 

algorithms in community wide assessments and benchmarks [47]. These advances help 

establish automated docking methods as accurate methods for structure prediction and 

enable departure from previous methods that rely more on human intervention.  

The docking algorithm was extended to study membrane proteins [91], where a 

new membrane-based environment potential was introduced and shown to improve the 
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quality of predictions.  Applications for docking of the amyloid precursor protein were 

studied. Finally, algorithms for calculating pathways in networks obtained from 

molecular dynamics simulations were discussed [116].  

Protein-protein docking is an exciting field and there is lots of scope for 

improving structure predictions. Current methods can predict complexes correctly, in the 

top 10, about 40-60% of the time. We note that until this point, in DOCK/PIERR, we 

have only modeled rigid docking structures with minimal alterations to the structures, 

mostly in the side chains. A challenging next step is to model larger conformational 

change, by using algorithms that introduce backbone flexibility combined with side chain 

flexibility. Recent refinement algorithms based on unrestrained molecular dynamics with 

hybrid atomic and residue level modeling were found to improve the quality of docking 

solutions [19].   

We note the deficiencies of our method identified in chapters 2 and 4: namely, 

that docking is inaccurate when the number of contacts in the native structure is low. This 

can be fixed by adding these low-contact native structures to the training, or training a 

separate potential for low-contact structures, which can be used when we have apriori 

knowledge that the number of contacts in the predicted model should be low.  

Apart from sampling, scoring functions can also be improved in many ways. 

Recent developments that include entropic information about the model, have shown to 

improve scoring function accuracy. The size of clusters of models and stability of clusters 

was shown to aid in removing false positives during reranking [142]. Another successful 

method [143, 144] based on entropy involves kinetics-based approaches that used time-

homogeneous Markov chain models, to determine transition probabilities between 

models, and selected models based on their equilibrium population. Graph-based 

approaches that represent the binding interfaces as networks, and use subgraph mining to 
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identify common motifs have also been recently popularized [145, 146]. Finally, another 

recently successful direction was the use of evolutionary information in developing 

multi-body potentials for ranking [144, 145].  

The prediction of binding affinity from docking based potentials has been 

unsuccessful so far [145, 147, 148]. But new affinity benchmarks [149] have been 

recently, and machine-learning methods of the type described in this thesis can be used 

for developing potentials that can predict binding affinity, which quantifies the strength 

of the interaction, and can be used on the scale of proteomes to predict whether two 

proteins interact. This can help classify proteins whose functions are not yet known.  

Membrane proteins are yet another relatively unexplored area for docking, where 

there are lots of important and open problems. The advantage of computational docking 

methods is that rigid docking is sufficient for a large number of membrane proteins [98]. 

Ensemble methods that combine the predictions from different sources like different 

docking algorithms, molecular dynamics simulations and experimental data, can provide 

more coverage of structural data about membrane proteins.  

Further, scaling docking algorithms to predict higher order complexes, involving 

three, four and higher number of proteins, i.e. combinatorial assembly of proteins is a 

computationally challenging problem. It has been approached in the past by branch and 

bound techniques to eliminate a large number of intermediate solutions [2, 150] and 

graph-theoretical techniques [151].   

On the machine learning front, developing new potentials based on recently 

popular methods like deep learning, and extending our linear programming based 

approach to non-linear kernels seem like promising future directions.  
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