

Copyright

by

Shruthi Viswanath

2014

The Dissertation Committee for Shruthi Viswanath
Certifies that this is the approved version of the following dissertation:

Scoring Functions for Protein Docking and Drug Design

Committee:

Ron Elber, Supervisor

Daniel Miranker

Pengyu Ren

Donald Fussell

Risto Miikkulainen

SCORING FUNCTIONS FOR PROTEIN DOCKING
AND DRUG DESIGN

by

Shruthi Viswanath, B.Tech.Info.Tech.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

 in Partial Fulfillment

 of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

The University of Texas at Austin
May 2014

Dedication

To my family.

To all dedicated and inspiring teachers.

 v

Acknowledgements

Firstly, I am very grateful to have got the opportunity to work with my PhD

advisor, Prof Ron Elber. He is a wonderful and inspiring example of a scientist and

mentor. Working with him made everything seem easy. I am grateful for his faith in me,

for being patient and giving me the space to grow at my own pace. He is incredibly

helpful and generous with his time and is always available to answer any questions. His

commitment, dedication and enthusiasm for science are contagious, and they ended up

having a huge influence on me. He is a role model for life.

Thanks also to my other committee members, Prof Ren, Prof Fussell, Prof

Miranker and Prof Miikkulainen for being very accommodating, especially during the

time of my proposal exam. Special thanks to Prof Miranker for his extensive comments

on my dissertation and for being supportive since my beginning days in grad school.

I wish to thank my former supervisor Dr Chengyong Yang in the Genetic Systems

group of Thermo Fischer Scientific for teaching me several aspects of research. I am also

grateful to Prof John Straub of Boston University and members of his group, Laura

Dominguez and Leigh Foster, for collaborating with us on the membrane-docking

project. Thanks are also due to the CAPRI community of researchers who are very

encouraging of newcomers like me.

CLSB (Elber group) has been a fun place to be a graduate student. I would like to

acknowledge the help I received as a beginner, from past members of the Elber group.

Specifically, I am grateful to Ravikant for introducing me to the docking code and for

laying the intellectual foundation for the work in my thesis. I would also like to thank

Brinda Vallat, Thomas Blom and Baoqiang Cao for teaching me various aspects of

 vi

cluster computing and structure prediction. Other past and present members of CLSB

who have been great at providing comments, technical help and general discussions: Szu-

Hua Chen, Michele di Pierro, Mauro Mugnai, Juan Bello Rivas, Alfredo Cardenas, Serdal

Kirmizialtin and Peter Ryumgaart.

I am very grateful to the ICES systems support staff for providing helpful and

reliable technical support throughout the past few years. I also gratefully acknowledge

the logistic help provided by Ruth Hengst of ICES and Lydia Griffith of CS. They bailed

me out of trouble many times.

Szu-Hua and Minjung have been great friends in the 4th floor of ACES. I wish to

thank my roommates and UT and non-UT friends for fun times and discussions:

Akanksha, Subhashini, Sindhu, Aparna Roy and Srinath. My friends from undergrad

have been especially supportive at all times in my grad school life: Pallavika, Priya and

Swati. I wish to thank Archana and Mahesh for providing a home away from home in

Austin.

I wish to thank my family, specially my parents and brother for their support and

faith and my sweet in-laws for their encouragement. Finally I wish to thank my husband,

Vishvas, for his enormous patience and for being my pillar of support throughout, and

eagerly look forward to joining him after I graduate.

 vii

Scoring Functions for Protein Docking and Drug Design

Shruthi Viswanath, PhD

The University of Texas at Austin, 2014

Supervisor: Ron Elber

Predicting the structure of complexes formed by two interacting proteins is an

important problem in computation structural biology. Proteins perform many of their

functions by binding to other proteins. The structure of protein-protein complexes

provides atomic details about protein function and biochemical pathways, and can help in

designing drugs that inhibit binding. Docking computationally models the structure of

protein-protein complexes, given three-dimensional structures of the individual chains.

Protein docking methods have two phases. In the first phase, a comprehensive,

coarse search is performed for optimally docked models. In the second refinement and

reranking phase, the models from the first phase are refined and reranked, with the

expectation of extracting a small set of accurate models from the pool of thousands of

models obtained from the first phase.

In this thesis, new algorithms are developed for the refinement and reranking

phase of docking. New scoring functions, or potentials, that rank models are developed.

These potentials are learnt using large-scale machine learning methods based on

mathematical programming. The procedure for learning these potentials involves

examining hundreds of thousands of correct and incorrect models. In this thesis,

hierarchical constraints were introduced into the learning algorithm.

 viii

First, an atomic potential was developed using this learning procedure. A

refinement procedure involving side-chain remodeling and conjugate gradient-based

minimization was introduced. The refinement procedure combined with the atomic

potential was shown to improve docking accuracy significantly.

Second, a hydrogen bond potential, was developed. Molecular dynamics-based

sampling combined with the hydrogen bond potential improved docking predictions.

Third, mathematical programming compared favorably to SVMs and neural

networks in terms of accuracy, training and test time for the task of designing potentials

to rank docking models. The methods described in this thesis are implemented in the

docking package DOCK/PIERR. DOCK/PIERR was shown to be among the best

automated docking methods in community wide assessments.

Finally, DOCK/PIERR was extended to predict membrane protein complexes. A

membrane-based score was added to the reranking phase, and shown to improve the

accuracy of docking. This docking algorithm for membrane proteins was used to study

the dimers of amyloid precursor protein, implicated in Alzheimer’s disease.

 ix

Table of Contents

List of Tables ... xi	

List of Figures ... xvii	

Chapter 1. Introduction ...1	
1.1	 Protein structure prediction ..1	
1.2	 Protein-protein docking ...3	
1.3	 Scoring protein models ..5	
1.4	 Mathematical programming for developing potentials8	
1.5 Metrics for assessing protein docking models11	
1.6 Contributions of thesis ...12	

Chapter 2. Atomic potential for ranking docking models15	
2.1 Background and related work ...15	
2.2 Methods...17	
2.3 Results and discussion ..27	
2.4 Conclusions ...42	

Chapter 3. Hydrogen bond potentials: comparison of learning algorithms and tests on
soluble and membrane proteins ..44	
3.1 Introduction ...44	
3.2 Background ...45	
3.3 Methods...46	
3.4 Results and discussion ..61	
3.5 Conclusions ...86	

Chapter 4. Docking membrane proteins ...88	
4.1 Introduction ...88	
4.2 Methods...90	
4.3 Results and Discussion ...100	
4.4 Conclusions ...113	

 x

Chapter 5. Performance in CAPRI ..114	
5.1 Introduction ...114	
5.2 Overall performance of dock/pierr in capri ..115	
5.3 Performance by target ...116	
5.4 Dock/pierr server and executables ..119	

Chapter 6. Algorithms for Network Analysis of Milestoning Data121	
6.1 Background ...121	
6.2 Network representation ...125	
6.3 Definition of Pathways ...130	
6.4 Determination of maximum weight and global maximum weight paths133	
6.5 Results and Discussion ...142	
6.6 Analysis of Run Times and Benchmarks ..150	
6.7 Conclusions ...153	

Chapter 7. Conclusions and Future Work ...155	

References ..158	

 xi

List of Tables

Table 2.1 Statistics of hits in the learning set ..23	

Table 2.2 Performance with and without Modeller on 67 targets of the learning set. A

hit is a model with an interface RMSD of 4 Å or less to the native. 25	

Table 2.3 List of unbound complexes in the novel test set of 30 targets along with the

corresponding homologs used to model the receptor and ligand.29	

Table 2.4 Comparison on the ZLAB 3.0 benchmark set of 124 targets.31	

Table 2.5 Comparison of docking software on the novel set of 30 targets. Suffix of

1000 for example, means that the re-ranking was applied to top 1000

models from rigid docking. ...32	

Table 2.6 Top 10 and top 1 hits per novel set target. D/P Rigid: DOCK/PIE. D/P

PISA: DOCK/PIE with PISA. D/P CX: DOCK/PIE with combination

potential CX. ZD: ZDOCK, CL: CLUSPRO. Suffix [N] implies

reranking was applied to top N models. ZR [N]: ZDOCK+ZRANK &

ZRANK applied to top N models from ZDOCK, PF [N]:

PATHDOCK+FIBERODCK & FIBERDOCK applied on top N models

from PATHDOCK. ...34	

Table 2.7 Comparison of DOCK/PIE and DOCK/PIERR on the learning set of 640

complexes. ..35	

Table 2.8 Comparison of DOCK/PIE rigid docking and DOCK/PIERR on 460 bound

and 180 unbound complexes in the learning set.36	

 xii

Table 2.9 Approximate run-times for DOCK/PIERR for different protein sizes. All

runs were on 4 nodes of a Linux cluster with 8 cores each (32 cores

total). Each core was an Intel Xeon X5460 processor with clock speed of

3.16 GHz. The memory size was 16GB for each node.37	

Table 2.10 Comparison of different cutoffs for near-native or misdocked complexes

on the ZLAB benchmark of 124 complexes.41	

Table 2.11 Comparison of different cutoffs for near-native or misdocked complexes

on the learning set of 640 complexes. ...41	

Table 2.12 Comparison of different distance bins on the ZLAB benchmark of 124

complexes. ..42	

Table 2.13 Comparison of different distance bins on the learning set of 640

complexes. ..42	

Table 3.1 New set of 22 targets added to the independent novel test set of soluble

protein complexes. Listed are the PDB chains used as receptor and

ligand, along with the corresponding template used to obtain homology

models (unbound structures) for docking. ..48	

Table 3.2 The performance of hydrogen bond potential on two different model sets:

one without MD and one after MD is compared, on the ZLAB and novel

test sets. The numbers of hits in the top 10 and top 1 and number of

targets with at least one hit in the top 10 are reported. A hit is a model

rated acceptable according to CAPRI i.e. with an interface RMSD of 4 Å

or less. Note that the potential has 4 particle types of hydrogen and

acceptor (hyd, pol, pos, neg) and 1 distance bin [0-4 Å], and is a simpler

form of the final potential we derive. ..63	

 xiii

Table 3.3 (a) Different definitions of hydrogen and acceptor particle types, and the

corresponding number of parameters. The abbreviations are as follows:

i. residue types: hyd: hydrophobic, pol: polar, pos: positive charged, neg:

negative charged, ii. element types: N: Nitrogen, O: Oxygen, S: Sulphur

and iii. atom placement : Bkbn: backbone, Sc: side-chain. Other

abbreviations are standard 3-letter amino acid names.64	

Table 3.3 (b) The performance of hydrogen bond potentials with one distance bin [0-4

Å] and various coarse-graining types for hydrogen and acceptor atoms is

shown. The hydrogen bond potential is applied for reranking the top

1000 models from DOCK/PIERR rigid docking of each target, followed

by side chain remodeling, minimization and simulated annealing MD.

The number of hits in the top 10 and top 1 and number of targets with at

least one hit in the top 10 are reported for the ZLAB and novel test sets.

A hit is a model rated acceptable according to CAPRI i.e. with an

interface RMSD of 4 Å or less. ...66	

Table 3.4 The performance of hydrogen bond potentials with different distance bins is

shown. The number of hydrogen and acceptor atom type pairs is fixed to

16. The hydrogen bond potential is applied for reranking the top 1000

models from DOCK/PIERR rigid docking of each target, followed by

side chain remodeling, minimization and simulated annealing MD. The

number of hits in the top 10 and top 1 and number of targets with at least

one hit in the top 10 are reported for the ZLAB and novel test sets. A hit

is a model rated acceptable according to CAPRI i.e. with an interface

RMSD of 4 Å or less. ..68	

 xiv

Table 3.5 The performance of hydrogen bond potentials from different learning

algorithms is shown on ZLAB and novel test sets. A hit is a model rated

acceptable according to CAPRI i.e. with an interface RMSD of 4 Å or

less...73	

Table 3.6 The performance of hydrogen bond potentials from different learning

algorithms in combination with C3 is shown on ZLAB and novel test

sets. A hit is a model rated acceptable according to CAPRI i.e. with an

interface RMSD of 4 Å or less. ...74	

Table 3.7 The performance of hydrogen bond potentials from different learning

algorithms is shown on a test set of 30 homology modeled membrane

protein complexes. A hit is a model rated acceptable according to

CAPRI i.e. with an interface RMSD of 4 Å or less.76	

Table 3.8 The performance of hydrogen bond potentials from different learning

algorithms in combination with C3 is shown on a test set of 30

homology modeled membrane protein complexes. A hit is a model rated

acceptable according to CAPRI i.e. with an interface RMSD of 4 Å or

less...77	

Table 3.9 (a). Value of potential parameters for the short-range distance bin (0-4 Å).

The rows represent hydrogen particle types and columns represent

acceptor particle types. All potential values are multiplied by 1000.78	

Table 3.9 (b). Value of potential parameters for the long-range distance bin (4-8 Å).

The rows represent hydrogen particle types and columns represent

acceptor particle types. All potential values are multiplied by 1000.78	

Table 4.1 Targets and individual chains that formed the dataset of 30 transmembrane

proteins. ...97	

 xv

Table 4.2 Docking performance of DOCK/PIERR with C3 and C3*MTE potentials,

Gramm-X, Cluspro and ZDOCK+ZRANK on the dataset of 30 unbound

membrane protein complexes. ..102	

Table 4.3 The numbers of models with interface RMSD less than 4.0 Å in the top 10

predictions of DOCK/PIERR with C3*MTE potential, Gramm-X,

Cluspro and ZDOCK+ZRANK. ...103	

Table 4.4 Bound and unbound docking results on 50 simulation structures from

implicit solvent. The first number in the second column is the number of

MD models recovered from docking across all 50 complexes: a hit is a

model from docking that is within 1.5 Å interface RMSD to the

corresponding simulation structure. The second number is the number of

complexes for which at least one hit was found in the top ten models.104	

Table 4.5 Bound docking results on 40 Gly-side and 10 Gly-in simulation structures

from implicit solvent. The first number in the second column is the

number of docking models within 1.5 A interface RMSD from the

corresponding simulation structure, across all complexes of the given

dimer type. The second number is the number of complexes for which at

least one hit was found in the top ten models for that dimer type. .106	

Table 5.1 Overall performance of DOCK/PIERR in CAPRI assessments.115	

Table 5.2 Rank of DOCK/PIERR server per target ...116	

Table 6.1. Algorithm 1 - Modified Dijkstra’s algorithm for finding maximum weights

and bottleneck (EMW) edges from s to all other vertices in a graph G.

...135	

 xvi

Table 6.2. Algorithm 2 – Recursive Dijkstra algorithm to find the global maximum

weight path between vertices s and t, in a directed graph, based on the

modified Dijkstra algorithm for maximum weight paths.137	

Table 6.3. Summary of asymptotic time complexities of various algorithms for dense

(E ≈V 2) and sparse (E ≈V) graphs. ...150	

Table 6.4. Average runtimes in milliseconds for random graphs with 100, 1000 and

10000 vertices, for the three algorithms. ..151	

 xvii

List of Figures

Figure 1.1 (a) Complex 3hct [6], a soluble complex involving enzyme Ubc13. (b)

Complex 4ehq [7], a membrane complex involving calcium ion

transporting protein, Orai1. ...2	

Figure 1.2 Cartoon diagram of the funnel-shaped landscape of protein binding[31].

...6	

Figure 2.1 Value of u(α ,d) for 6 different pairs of atom types: A) NX (LYS-NZ) and

CO (carbon of backbone carbonyl). B) SM (MET-Sulfur) and OC

(oxygen of carbonyl groups). C) NDHS (TRP-NE1) and CH3 (terminal

aliphatic side chain carbon). D) CH2 (beta carbon) and CFH (aromatic

side chain carbon). E) OX1 (ASP-OD1, OD2, GLU-OE1, OE2) and CO

(carbonyl carbon). F) NH (amide nitrogen) and CAH (alpha carbon of

amino acids). ...20	

Figure 2.2 Contour plot showing parameter search for values of coefficients c and d

in equation 11. ...26	

Figure 2.3 Models from three docking algorithms on complexes in the novel set. A)

Native structure of 3hct (in blue) along with the best model produced for

this complex, by ZDOCK+ZRANK (in cyan). B) Native structure of

3d65 (in purple) along with the best model by Cluspro (in raspberry). C)

Native structure of 3asy (in brick red) superposed with the best model by

DOCK/PIERR (in yellow). D) Native structure of 3rd6 (in dark green)

superposed with the best model by DOCK/PIERR (in lemon yellow).33	

 xviii

Figure 2.4 Percentage of violated inequalities for 200 targets of the learning set. The

rest of targets are not shown as they have a negligible number of

violated inequalities. ...38	

Figure 2.5 Percentage of violated inequalities per learning set target plotted against

the number of contacts for the target. ...39	

Figure 2.6 Percentage of violated inequalities per learning set target plotted against

the number of contacts for the target. ...39	

Figure 2.7 Performance of atomic potential PISA on refined and unrefined models.

For each ranking method, the number of ZLAB targets with a hit with

interface RMSD less than 2.5 A, in the top 10 models is shown.

Abbreviations are: RD: Rigid Docking, U: unrefined, R: unrefined.

PISA-R-U for example, means that the re-ranking potential was PISA,

which was learnt on refined learning set models and tested on unrefined

ZLAB structures. ...40	

Figure 3.1 (a) Model selection for linear SVMs. The accuracy of each model (in terms

of number of learning set targets with a top 10 hit) is plotted as a

function of the cost parameter. The linear SVM with cost C = 29 = 512

produces maximum number of targets with a hit.70	

Figure 3.1 (b) Model selection for non-linear SVMs: sigmoid and polynomial kernels

with degrees 3,5,7 and 9. The accuracy of each model (in terms of

number of learning set targets with a top 10 hit) is plotted as a function

of the cost parameter. The polynomial SVM with degree d = 5 produces

maximum number of targets with a hit. ..71	

 xix

Figure 3.2 Model selection for neural networks. The number of hidden layer neurons

is plotted against the Mean Squared Error on the validation set during

training. The networks with one hidden layer are shown in red while the

networks with two hidden layers are shown in blue. The network with

one hidden layer and 10 neurons has least error.72	

Figure 3.3 Average training time in seconds over all models obtained by different

learning methods: Neural Networks, Pairwise Learning using Linear

Programming, Linear and Non-linear SVMs. The times were calculated

on single Intel® Xeon(® E5345 core of an 8-core machine with 8 GB

memory and 2.33GHz clock speed. ...83	

Figure 3.4 Total test time in seconds for calculating the energy of 1000 models of a

complex containing 147 and 103 residues in receptor and ligand protein.

Time obtained by different learning methods: Neural Networks, Pairwise

Learning using Linear Programming, Linear and Non-linear SVMs, on a

single Intel® Xeon(® E5345 core of an 8-core machine with 8 GB

memory and 2.33GHz clock speed is shown.84	

Figure 4.1 Example of a model oriented in the membrane, and a particular residue, i,

inside the membrane that contributes aiti to the membrane energy, where

ai is the residue exposed surface area and ti is the residue membrane

transfer energy. ...94	

Figure 4.2 Probability density of the interface RMSD of top 10 docking models for 50

bound and unbound simulation dimers. ..105	

 xx

Figure 4.3 Left: A docking model (green) in the top 10 predictions, at an interface

RMSD of 0.563 Å from the corresponding simulation structure (gray) of

Gly-side type. Right: A docking prediction (cyan) in the top 10, at an

interface RMSD of 0.632 Å from a Gly-in simulation structure (blue).

...107	

Figure 4.4 Probability distribution of PIE energy for 10 GLY-in implicit solvent

dimers and 30 GLY-in explicit solvent dimers in POPC membrane that

were bound docked. ..109	

Figure 4.5 Distribution of the smallest eigen value of the tensor moment of inertia for

10 GLY-in implicit solvent dimers and 30 GLY-in explicit solvent

dimers in POPC membrane that were bound docked.109	

Figure 4.6 Top: 10 explicit solvent dimers superposed. Bottom: 10 explicit solvent

dimers superposed. The dimers chosen were the top scoring simulation

dimers, scored according to C3*MTE. ...110	

Figure 4.7 Probability distribution of PIE energy for 30 Gly-out explicit solvent

dimers in POPC bilayer and and 30 Gly-out explicit solvent dimers in

POPC membrane that were bound docked.111	

Figure 4.8 Distribution of cosine of angle between helices for 30 Gly-out explicit

solvent dimers in POPC bilayer and 30 Gly-out explicit solvent dimers

in POPC membrane that were bound docked.112	

Figure 4.9 Left: Ten explicit solvent dimers from simulations in POPC membrane.

Right: Ten explicit solvent dimers from simulations in DPC micelle. The

ten models in each case were the top scoring dimers, as scored by

C3*MTE. ..112	

 xxi

Figure 5.1 DOCK/PIERR medium-quality prediction (in blue) superposed with the

crystal structure of T50 (in green). ...117	

Figure 5.2 DOCK/PIERR medium-quality prediction (in green) superposed with the

crystal structure of T53 (in red). ...118	

Figure 6.1 A schematic representation showing the mapping of continuous space and

MD trajectories to a network. ...123	

Figure 6.2 Conversion of a flux-space path with milestones as vertices, to a state-

space path with the corresponding anchors as vertices. The table in the

figure shows the mapping from milestone index to anchor index. .130	

Figure 6.3 (a) An example graph with multiple paths between vertices of interest, A

and D. (b) Maximum weight paths (MWP) between A and D shown in

green. (c) Global maximum weight path (GMWP) between A and D

shown in red. ...131	

Figure 6.4 Visualization of average networks for helix unfolding under a load level

30pN in (a) state-space, with 14 anchors (vertices). (b) flux-space with

125 milestones (vertices). The graphs are to illustrate the complexity of

analysis and were prepared with the Pajek program[139].143	

Figure 6.5 Global maximum weight paths using three different graph representations

for helix unfolding under 0pN stress. Bottleneck edges (EMW) are in

red. ..144	

Figure 6.6 Global maximum weight paths using three different graph representations

for helix unfolding under 30pN stress. Bottleneck edges (EMW) are in

red. ..145	

 xxii

Figure 6.7 Global maximum weight paths using three different graph representations

for helix unfolding under 70pN stress. Bottleneck edges (EMW) are in

red. ..146	

Figure 6.8 Global maximum weight paths for membrane permeation of DOPC. The

graph representations are: Path A: state-space graph with flux-based

weights. Path B: flux-space graph with flux-based weights. Path C: flux-

space graph weighted by local rate coefficients.149	

 1

Chapter 1. Introduction

1.1 PROTEIN STRUCTURE PREDICTION

Proteins are important biomolecules and integral components of the cellular

machinery. They are responsible for most cellular functions, including transport of

molecules, immunity, movement, catalysis of reactions and signaling. Proteins are a

linear chain of basic units: known as amino acids or residues. Amino acids differ from

each other in their side chains, which give them each unique physical and chemical

properties, and form the basis for the enormous diversity in protein structures.

Predicting the structure of proteins is an important problem in computational

structural biology. Given the linear sequence of amino acids of a protein, also known as

its primary sequence, one can predict its secondary structure (local patterns formed by the

sequence) and tertiary structure (three-dimensional fold) computationally. Knowledge of

the tertiary structure provides important clues about the function of a protein. The

computational method of homology modeling [1] is the most widely used method for

predicting the tertiary structure of a protein, given a) its sequence and b) another

evolutionarily related protein, known as the template, whose structure is already known.

Experimentally, protein structure is determined by the methods of X-ray crystallography

or Nuclear Magnetic Resonance (NMR). All experimentally determined structures of

proteins are added to an online database known as the Protein Data Bank.

Proteins do not exist in isolation in a cellular environment but accomplish their

function by interacting with other proteins. Each protein is postulated to interact with at

least ten other proteins during its lifetime [2-4]. Protein-protein interactions play a vital

role in cellular processes and the function of a protein can be determined by its

interactions [5]. The structure of protein chains interacting with each other is known as a

protein-protein complex, or quaternary structure. Complexes can be formed in different

 2

cellular environments: the majority are formed between proteins in water, or soluble

proteins. These proteins exist in a hydrophilic (polar) environment. Protein complexes

are also found in cell membranes, which is a hydrophobic (non-polar and water-repelling)

environment. Figure 1.1 shows two complexes in the Protein Data Bank (PDB)[6, 7].

Figure 1.1 (a) is a structure of soluble complex (PDB ID 3hct) [6], which is a structure of

Ubc13, a ubiquitin conjugating enzyme interacting with TRA6, a ubiquitin modulating

protein. Figure 1.1 (b) is a complex (PDB ID 4ehq) [7] of membrane protein Orai1, a

protein responsible for Calcium ion transport through the cell membrane, with

Calmodulin, a protein that regulates calcium levels in the cell.

 (a) (b)

Figure 1.1 (a) Complex 3hct [6], a soluble complex involving enzyme Ubc13. (b)
Complex 4ehq [7], a membrane complex involving calcium ion transporting
protein, Orai1.

The structure of protein-protein complexes is harder to predict through

experimental techniques than tertiary structure. Complexes are generally too big to be

solved by NMR techniques. There are about a thousand structures of protein-protein

complexes in the Protein Data Bank, which is much smaller than the number of deposited

tertiary folds, which is of the order of tens of thousands. One reason is that most protein

complexes are formed only transiently. Another reason is that large structures of protein

 3

complexes contain multiple domains and it is more difficult to crystallize multi-domain

proteins, as they are less stable than single domain proteins[8]. Computational methods

can be a quicker and cheaper alternative to get the structure of complexes than

experimental studies. Note that the words structure, model and conformation mean the

same thing.

1.2 PROTEIN-PROTEIN DOCKING

Protein-protein docking is a computational method that provides the atomically

detailed structure of a complex formed by two proteins, given their individual tertiary

structures. Usually the bigger of the two proteins is designated as the receptor and the

smaller one is known as the ligand. The interface of a protein in a complex is the set of

residues that are closest to, and interact with the other protein molecule.

Bound and unbound docking

The easy case of docking is known as bound docking in which we take apart the

receptor and ligand from a known complex and find the binding pose of the ligand with

respect to the receptor. This case is used to evaluate the performance of various docking

algorithms. In the more realistic case, the tertiary structures of either the receptor or

ligand or both, are not known and we need to model the 3D structures of the constituent

proteins first. These approximate structures are then used to perform the docking, and this

is known as unbound docking. Unbound docking is a harder problem since the individual

structures of constituents are known only approximately.

Stages in protein docking algorithms

Protein docking algorithms generally consist of two phases: an initial rigid

docking and coarse scoring phase, followed by a refinement and rescoring phase [9].

 4

a. Rigid docking and coarse scoring

In this first phase, the individual protein structures are kept rigid. One of the

molecules (usually the receptor) is kept fixed and a search is performed for various

possible orientations of the ligand with respect to the receptor. This is a global search in

6-dimensional space (3 dimensions for rigid translation and 3 for rigid rotation of the

ligand with respect to the receptor). There are many different search strategies that have

been used by various groups.

One of the most widely used search algorithms for docking uses Fast Fourier

Transforms (FFT) [10-13]. The interaction score between two molecules can be

represented as a convolution and hence calculated using FFTs efficiently. Geometric

Hashing[9, 14] is another search technique where instead of matching atoms or points in

a grid between the two proteins, as in the case of FFT, a higher level matching is done:

patches which denote the local shapes of a molecule are matched. Monte-Carlo searches

in rigid body space have also been used a search strategy [15-18]. FFTs, unlike the other

methods, enable an efficient exhaustive sampling of all rigid orientations (i.e. rotations

and translations) of one molecule with respect to the other.

Scoring for models of the complex in this initial phase is coarse and not very

detailed, and is usually based on the positions and types of residues (residue-based).

More details on scoring functions are provided in the next section.

b. Refinement and Rescoring

The first search phase returns hundreds of thousands of models. In the second

phase, these models are refined by local searches. Some amount of flexibility is

introduced in the models [17, 19-23]. Models are reranked using more detailed scores and

at the end of this phase, we are required to select the top few conformations of the

 5

complex. But discriminating the best models from a given set has proved to be a harder

problem than obtaining an initial large set of models containing a few good ones [24].

The changes to models are local, for example, side chain adjustments and limited

adjustments of the protein backbone. The major search strategies are conjugate gradient

[12],[25-27] and Monte-Carlo [15, 18, 28], and structures that are more chemically

reasonable are obtained from the initial rigid docked models.

These altered structures are rescored using more detailed terms than the initial

search stage, for example terms that are dependent on positions and types of atoms, as

opposed to positions and types of residues[23, 29].

1.3 SCORING PROTEIN MODELS

Scoring functions assign scores to models that are expected to quantify how good

a model is. Ranking a set of structures using a scoring function helps us find the best

models in the set. Scoring functions can be classified as coarse-grained or fine-grained

depending on whether the parameters for the potential are designed at the residue level or

at the atomic level.

Energy landscape theory

Here, we introduce the term energy or potential, as an alternative to score and

scoring function. All of these terms quantify models. The difference is that, for scores

and scoring functions, higher is better, i.e. larger the score, better the model is expected to

be. Whereas, for energy or potential, lower the energy, better the model is expected to be.

Energy usually has a physical meaning and can be used in biochemical calculationsfor

estimating stability of a protein, and other equilibrium properties. This follows from the

thermodynamic hypothesis that the true structure (also known as the native structure) is

 6

thermodynamically the most stable and hence lowest in free energy. This is depicted in

Figure 1.2 that shows the energy landscape for protein folding or protein binding [30].

The native structure of the protein complex is at the bottom of the funnel shape and has

the lowest energy. Structures that are close to the native, or near-native structures have

lower energies than structures that are far away from the native, or incorrect structures,

which are near the top of the funnel. For our purposes, the true structure is the

experimental structure with which we compare our predicted models. We note that there

can be multiple folds with the same lowest energy. However, we use the energy

landscape as a working hypothesis as it has been shown to be an accurate model in a

number of cases [30].

Figure 1.2 Cartoon diagram of the funnel-shaped landscape of protein binding[31].

Potentials are generally classified as physics based or knowledge-based,

depending on how the parameters for the potential are derived.

Physics based scoring

Physics based potentials are also known as molecular mechanics potentials. They

typically include bonded terms that measure deviations from ideal bonds (two-body),

angles (three-body) and torsions (four-body), and non-bonded terms that include longer-

!"#$%&'()"*+,)-#'./'0$.1#2"+

! 34""#56+7)-#*'#"#$%&'5)"*+,)-#'$#-$#+#"1+'17#'
/.5*2"%'-$.,#++8'

! 9)12:#'+1$4,14$#')1'17#'*##-';2"2;4;8

! <4%%#*='5.1+'./'5.,)5';2"2;)8'

>

!"#$%&'(#)*&+',#)*-#*)&

?;)%#'@.4$,#AB12"1#$"#18,.;CD;)$12"8,7)-52"C-$.1#2"E871;5

 7

range interactions such as electrostatic interactions and van der Waals interactions [32].

The van der Waals interaction is modeled by the Lennard-Jones functional form, as

shown in Eq. (1.1). These functions are continuous and differentiable in the atomic

coordinate space. The parameters of molecular mechanics potentials such as
A,B,q,kbond ,kangle,ktorsion ,kn are determined from physical properties of small molecules

[32].

Etotal = Ebonded + Enon−bonded

Ebonded = Ebonds + Eangles + Etorsions = kbond (l − leq)
2

bonds
∑ + kθ (θ −θeq)

2

angles
∑ + kn (1+ cos(n

torsions,n
∑ φ + γ))

Enon−bonded = Evdw + Eelectrostatics = (
Aij
rij
12

i, j
∑ −

Bij
rij
6) + (

qiqj
εriji, j

∑)

(1.1)

Knowledge based scoring

There is another class of potentials, which are termed as knowledge-based

potentials, since their parameters are based not on experimental data from small

molecules, but on statistical analyses of experimentally determined structures. Statistical

potentials are an example of this kind. The potentials are derived based on Eq. (1.2) [33].

The energy of the current model E(s), as a function of a geometric variable s, is given by

the log odds ratio of the probabilities of the current state and reference state, as a function

of the variable s. The numerator, pstruct(s) depends on the geometry of the current structure

and the denominator pref(s) is based on the geometry of experimental structures in a

reference database. The variable s is a geometric parameter such as a distance or torsion

in the structure. T is the temperature and k is the Boltzmann constant and kT is a constant

with a value of 0.593 kcal/mol at room temperature (300 K).

 E(s) = −kT ln p
struct (s)
pref (s)

 (1.2)

 8

Using the geometric parameter s as the distance between two particle types, where

particle types can be residue-based or atom-based, a distance-dependent version of Eq.

(1.2) is shown in Eq. (1.3). Here e(i, j,d) is the contribution to the energy when the

particle types i and j in the current model are at a distance range d. The particles can be

atoms or residues. n(i, j,d) is the number of times in the current model that particle types

i and j are found at a distance range d. The probabilities of occurrence of particle types i

and j in the reference state are assumed to be independent, and n(d) is the probability

that any pair of particle types occur at a distance d. The probabilities in the denominator

of Eq. (1.3) are calculated from a set of existing experimental structures in a database,

and the numerator is calculated from the geometry of the current model whose energy we

want to compute.

 e(i, j,d) = −kT log n(i, j,d)
n(i)n(j)n(d)

⎡
⎣⎢

⎤
⎦⎥

 (1.3)

The total statistical potential energy of a model is then the sum of all the pairwise

particle interactions, as in Eq. (1.4).

Estatistical = e(i, j,dij)

j>i
∑

i=1

N

∑ (1.4)

1.4 MATHEMATICAL PROGRAMMING FOR DEVELOPING POTENTIALS

Mathematical programming is another method for deriving knowledge-based

potentials. This approach was first proposed by Maiorov and Crippen[34] and later built

upon by others[35-38]. This method involves solving a set of inequalities that specify

that the energy of a correct structure Xcorrect should be lower than the energy of an

incorrect structure Xincorrect as in Eq. (1.5).

E(Xincorrect)− E(Xcorrect) > 0 (1.5)

 9

 The native fold (experimental fold) and the near-native models in the training set

are used as correct structures, and all other models are used as incorrect structures, or

decoys.

Using a similar distance-dependent formulation as in the case of statistical

potentials, we have u(i, j,d) representing the contribution to the energy when particle

types i and j are at a distance range d. Representing the particle pair type (i, j) by a

single parameter α , the energy of a structure can be written as the number of times,

n(α ,d) , a contact between particle pair denoted by α is observed at a distance range d,

times the weight for that contact type, u(α ,d) , as in Eq. (1.6).
E(X) = n(α ,d)u(α ,d)

α ,d
∑ (1.6)

Substituting Eq. (1.6) in Eq. (1.5) we get Eq. (1.7), which shows that the

inequalities are linear in the parameters u, that determine the potential. This enables

efficient calculation of the potential parameters through linear programming solvers like

PF3 [39, 40].
u(α ,d)

α ,d
∑ [nincorrect (α ,d)− ncorrect (α ,d)]> 0 (1.7)

Using learning sets of hundreds of thousands of correct and incorrect structures,

millions of inequalities of the type shown above are formulated and solved for the

potential parameters u.

Note that to use these knowledge-based scoring functions for docking models, we

do not consider all contacts in the model, but only contacts across the interface of the two

proteins. That is, particles i and j belong to different (interacting) proteins in the complex,

and d is the distance between them across the interface.

We note also that sampling and scoring are not independent: the potential

parameters obtained from one set of models, from a given search algorithm may not be

 10

applicable for scoring another set of models from a different docking algorithm. In this

thesis, we develop potentials for the set of models sampled from our docking package

DOCK/PIERR [13, 41].

Advantages over other knowledge-based potentials

Mathematical programming aims to produce potentials that explicitly model the

energy landscape by stating that models near the bottom of the funnel should have lower

energies than models near the top of the funnel.

In statistical potentials, statistics of negative examples i.e. incorrect structures are

included in the reference distribution [2]. But mathematical programming is a

discriminative learning technique: positive examples are separated from and explicitly

compared against negative examples.

Exhaustive large-scale explicit examination of negative examples, as done in

mathematical programming, provides potentials that have a positive distribution of

ΔE = E(Xincorrect)− E(Xcorrect) i.e. they always have higher energies for incorrect models,

compared to correct models.

Moreover, quadratic programming based approaches have provably optimal

convergence guarantees: it can be shown that for a given functional form, training set and

error bound, ε , the set of parameters obtained from mathematical programming is

optimal within the error bound [13, 42].

Another advantage over statistical potentials is that no assumption of reference

state is required, as the reference state is modeled implicitly by sampling from the

distribution of incorrect structures. Hence we do not need to assume independence of the

distribution of particle types[2].

Disadvantages

 11

The disadvantage of mathematical programming is that it requires special purpose

solvers and large memory machines if the set of inequalities is very large.

Learning using mathematical programming is also restricted to simple functional

forms, since the inequalities are linear in the parameters.

The large-scale examination of negative examples is prohibitively expensive for

cases where we deviate from rigid docking and sample using extensive rearrangements of

the structure, since the number of negative examples increases exponentially in such a

search space.

1.5 METRICS FOR ASSESSING PROTEIN DOCKING MODELS

To measure if a computationally determined structure is accurate, we compare it

to the native structure, which is the experimentally observed conformation deposited in

the Protein Data Bank. There are different metrics that compare a given model to the

reference structure or the native conformation. One popular measure is the RMSD or

Root-Mean-Square-Deviation between the structures. It is a least-squares distance

between the coordinates of the atoms in the model and reference structures after optimal

superposition of the two structures. It is given by Eq. (1.8) where the v’s and w’s are

coordinates of atoms in the reference and model structure respectively. To minimize the

distance between the two coordinate sets, the coordinates of the model, w, are

transformed by translating by T, a translation vector, and rotating by U, a unitary rotation

matrix. U and T are computed analytically from the coordinates of atoms in the two

structures[43].

D =
vi − w

'
i
'

i=1

n

∑
2

n
;w ' =U(w + T)

 (1.7)

 12

For comparing models of complexes, a couple of variants of RMSD are used. One

is the interface RMSD, which is the RMSD calculated over the interface residues.

Interface residues are defined as any residue of one of the proteins, whose atom is within

10 A distance from an atom of any residue in the other protein[44]. The interface RMSD

between model and reference is calculated for the interface residues alone. Another type

of RMSD is the ligand RMSD, where the RMSD is calculated over the ligand residues,

keeping the receptor protein fixed.

TM-score, which has been used in parts of this thesis, is a variant of RMSD [45].

It is normalized based on the length of the proteins compared, and is a score with bounds

[0,1] with a score of 1 meaning that the two structures are identical. A score of 0.5 or

higher indicates structural similarity between two compared folds.

A different metric is the fraction of native contacts[44]. A contact in a protein-

docking model is a pair of interface residues in the receptor and ligand. Interface residues

are defined as in the interface RMSD case. The fraction of native contacts is the number

of interface residue-residue contacts in the model that are also in the native or reference

structure.

1.6 CONTRIBUTIONS OF THESIS

In this thesis, algorithms for the second phase of docking, i.e. reranking are

developed, for the rigid docking code DOCK/PIE [13]. The new code is named

DOCK/PIERR (DOCK/PIE + Refinement, Reranking). Specifically, side chain

remodeling and energy minimization are introduced to the rigid docking structures, and

an atomic potential is developed and used to rerank the refined structures. The atomic

potential is developed using mathematical programming and while the learning algorithm

 13

is similar to previous work [37], its novelty lies in introduction of hierarchical constraints

to model the energy landscape. Though atomic potentials are short-range and noisy on

unbound structures, they capture a signal different from residue potentials, hence their

addition was shown to improve the accuracy of reranking. This work is discussed in

Chapter 2.

Secondly, a new hydrogen bond potential is developed in Chapter 3 for the

reranking phase, using a learning framework similar to that of the atomic potential.

Developing hydrogen bond potentials on unbound structures was challenging, as the

signal from hydrogen bonding is weak [46]. Molecular dynamics was used to amplify the

hydrogen bond signal. Comparison with other learning algorithms on soluble and

membrane protein data sets showed that mathematical programming was the best

performing algorithm, closely followed by Neural Networks. Differences in the

algorithms and their performance are discussed. Hydrogen bond potentials alone were

found to be more accurate than residue and atomic potentials on membrane proteins,

whereas their signal was weaker on soluble proteins. In soluble proteins, hydrogen bonds

between proteins have to compete with water, while this competition is not present in the

hydrophobic membrane environment. Hence hydrogen bonds performed better on

ranking models of membrane protein complexes.

Third, the docking package DOCK/PIERR was applied to predict the structure of

membrane proteins, as discussed in Chapter 4. The reranking algorithm was modified to

include an environment-based score that characterized the suitability of a docked pose for

the membrane environment. This modified prediction algorithm was shown to be

comparable to the state-of-the-art membrane complex prediction algorithms. It was then

applied to characterize the dimers of amyloid precursor protein. Docking results showed

good agreement with results from another computational method: implicit solvent

 14

simulations. Differences in structures characterized in different membrane environments

and structures characterized by different computational methods were discussed.

Fourth, comparison of DOCK/PIERR to other leading algorithms by independent

community wide assessments is shown in Chapter 5. It was ranked as the 4th best

performing automated docking method for the period 2009-2013 [47]. This was

encouraging since it is a new method, compared to most other methods in the field, which

have been around for 10+ years. The advances made in DOCK/PIERR help establish

automated docking methods as accurate methods for structure prediction and enables

departure from previous methods that rely more on human intervention.

Finally, in Chapter 6, well-known graph algorithms from Computer Science were

applied for the problem of finding reactant to product paths in computational analyses of

networks from simulation data produced using the method of Milestoning [48-51]. An

efficient path algorithm based on Dijkstra’s shortest path algorithm [52, 53] was

discussed and applied to two molecular systems. Different network representations of

Molecular Dynamics simulation data processed with Milestoning[49] were discussed, and

networks based on local information were shown to uncover incorrect reaction

mechanisms.

The contributions to this thesis from a computer science perspective are firstly,

the introduction of hierarchical constraints into the learning algorithm for developing

potentials for ranking models. And secondly, a comparison of the learning approach

based on linear programming is made to other well-known machine learning algorithms

like SVMs and neural networks, for the purpose of ranking docking models. It is shown

that the linear programming based approach compares favorably to the other algorithms,

in terms of accuracy, training and test time.

 15

Chapter 2. Atomic potential for ranking docking models

2.1 BACKGROUND AND RELATED WORK

As mentioned in Chapter 1, docking algorithms typically consist of two phases: a

rigid docking and coarse-scoring phase and a refinement and reranking phase[9]. In this

chapter, we introduce methods for the refinement and reranking phase in the docking

algorithm DOCK/PIE[13]. In the refinement and reranking phase, the structures obtained

in the first phase are usually adjusted and reranked using fine-grained energy terms. For

example, RosettaDock uses an iterative Monte-Carlo search starting from rigid docking

structures, first rebuilding side-chains of existing structures, and then minimizing the

rigid structure of the two proteins using an elaborate energy term, the Rosetta potential

[17, 18, 54]. Monte-Carlo approaches have also been used by others to incorporate rigid-

body and side chain movements in refining docked conformations [15].

Weng and co-workers developed RDOCK[23], a refinement algorithm, which

uses energy minimization and re-ranks models with a combination of electrostatics and

knowledge-based potentials representing desolvation. They later developed a faster

algorithm for the second step, ZRANK[29], that is a linear combination of a knowledge-

based atomic potential, ACE, with electrostatic and van der Waals terms. Wolfson and

co-workers developed the refinement algorithms, FIREDOCK[21], which incorporates

restricted side-chain flexibility and orientation adjustments and its improved version,

FIBERDOCK[22], which incorporates backbone flexibility using normal modes in

addition to side-chain flexibility.

GRAMM-X uses conjugate gradient minimization with a smoothed Lennard-

Jones type potential and ranks the models with a scoring function that is a combination of

residue-based and atom-based terms[12]. The Cluspro team developed a refinement

method using Monte-Carlo runs with semi-definite programming with underestimation

 16

(SDU)[11, 28]. Fernandez-Recio and co-workers use hydrogen-bond network

optimization along with energy minimization of all-atom force-fields in order to refine

docking poses[27]. Zhou and co-workers perform a short minimization and restricted re-

sampling near existing models followed by re-ranking using DFIRE and EMPIRE energy

functions[25].

Most of the methods so far address the case in which the constituents do not

undergo drastic conformational changes in the complex compared to the unbound state.

In an analysis of 178 unbound complexes in our learning set, we find the average TM

scores between the unbound and bound chains to be 0.8953 and 0.8875 for the receptor

and ligand respectively. Hence in this study too, we consider cases in which no large-

scale movements take place in the individual constituents.

The rest of this chapter discusses the methods for the refinement and reranking

phase in DOCK/PIE. This phase consists of a minimal refinement step and a fine-grained

reranking step. The minimal refinement step alters nominally, the models created in the

first phase of docking, by means of side-chain remodeling and energy minimization. The

reranking step ranks the altered models using a combination of fine-grained atomic

potential, PISA[41] and coarse-grained residue potential, PIE [13]. While PIE has been

developed previously for the coarse scoring phase, the development of PISA using

mathematical programming, is introduced in this chapter. The docking algorithm

DOCK/PIE with the added refinement phase is renamed as DOCK/PIERR (DOCK/PIE +

Refinement & Reranking), and compares favorably to other leading docking packages

like ZDOCK, Cluspro and PATCHDOCK, on the ZLAB 3.0 Benchmark and an

independent set of 30 novel complexes. We also discuss that coarse-grained potentials are

more robust than atomic potentials for unbound docking, perhaps because atomic

potentials are more sensitive to local errors. Still, it is found that atomic and residue

 17

potentials capture different signals and hence combining their scores provides a

significantly better prediction than either score alone.

2.2 METHODS

Learning and Test Sets

For optimizing the parameters of PISA, a learning set of 640 complexes

developed in previous studies[13, 38] was used. It contains 460 bound and 180 unbound

complexes. The new methods were tested on three datasets. The first dataset comprises of

124 complexes from the ZLAB Benchmark 3.0[55], a standard benchmark test set used

by the protein-protein docking community. The second dataset comprises of 640 targets

from our learning set. The third dataset is a set of 30 novel complexes that is independent

from the learning set, and details of this dataset are available in the Results section.

Rigid Docking

Given the chains of the receptor and ligand molecules, we used our previously

developed docking package DOCK/PIE[13], to generate a training set for refinement. We

retain top scoring 219=524,288 FFT-based transformations for each complex. These

transformations are then clustered using ligand RMSD and scored using the potential,

PIE[13], which consists of a pairwise residue contact term along with van der Waals

attraction and repulsion terms. Subsequently, the top scoring transformations are filtered

for clashes, and clustered again using interface RMSD.

Side chain remodeling

The top 1000 models from DOCK/PIE rigid docking were chosen for refinement

and reranking. The number of models must be large enough to include a near-native

 18

model, and small enough to make the refinement process efficient. Our choice of the

number of models was based on an examination of 22 targets in our CAPRI dataset [56].

19 of 22 targets had near-native models (acceptable by CAPRI definition) in the top

1000, while the number dropped to 16 considering the top 500 models. Out of the

remaining 3 targets that did not have near-native models in the top 1000, one target had a

near-native model at position 3500, and the other two did not have any near-natives in the

output after clustering. The choice of 1,000 candidates therefore seems reasonable.

In order to reduce the number of clashes, make the rigid docking poses chemically

sound, and improve the energies of the models, we first performed side-chain refinement

using SCWRL4[57]. SCWRL is a side-chain prediction program that uses graph-based

decomposition to identify the set of optimal rotamers for the side chains of a given

model. We used a cutoff distance of 6 Å between the two proteins to identify interface

residues and modeled the side chains of only the interface residues using SCWRL.

Minimization

After side chain remodeling, clashes were removed by 100 steps of conjugate

gradient energy minimization. The minimization was performed using the routine

mini_pwl (conjugate gradient descent with Powell restart) of the molecular dynamics

package MOIL[58] and the OPLS-AA force field. During the minimization, the receptor

and ligand molecules are modeled as rigid bodies. Minimization both in vacuum and

using implicit solvent models (GBSA) was performed: but no difference in the results

between the two procedures was observed. Therefore we decided to use minimization in

vacuum since it is more efficient. Overall the refined structures are not more similar to

the X-ray structures compared to the unrefined complexes, and distance of the refined

 19

structure in terms of RMSD from the initial structure is minute (~ 0.2 to 0.4 Å). The

refinement is nevertheless useful since it allows for better ranking.

Atomic potential

We designed a distance-dependent pairwise atomic potential (PISA) to re-rank the

top 1000 refined structures. Using the atomic potential on the refined structures, we

expect to generate more hits in the top 10 (or top 1) than the rigid docking procedure

alone. The parameters for the atomic potential were learnt using mathematical

programming from the top 1000 refined models of each complex in our learning set.

The heavy (non-hydrogen) atoms were collected into 32 types, as reported earlier

for threading potentials[37]. We employed three distance bins: 2-3.5 Å, 3.5-5 Å and 5-8

Å, the same bins as in [37] to recognize approximate structures for threading.

Knowledge-based pairwise atomic potentials are frequently modeled by a square-

well potential, i.e. designate a single value, u(i, j,d) for a distance range, r, and atom-

type pair (i, j) . For clarity we replace the pair of interaction (i, j) by a single index α of

the interaction type. If an atom of type i is found within a distance d from an atom of type

j, then the value u(α ,d) is added to the energy of the structure. The energy or score,

E(X) of a complex X, with a receptor A and ligand B, is a sum of all pairwise

interactions and is given by Eq. (2.1), where n(α,d) is the number of interactions of type

α (i.e. we use a single index to describe the interaction of particles i and j) at distance d .
E(X) = n(α ,d)u(α ,d)

α ,d
∑ (2.1)

Instead of rectangular bins, a better accuracy was obtained when a linear

interpolation was used between the bins, as shown in Figure 2.1. The three distance bins,

2-3.5 Å, 3.5-5 Å and 5-8 Å have one single parameter value in the flat regions in the

 20

middle of the distance bins. The outer one-third portion of the distance bins adjacent to

neighboring bins is modeled by a straight-line interpolation between the bins.

The corresponding equations for the geometrical factor, n(α,d) are given in Eq.

(2.2). Note that the values of n α,i() are fixed by the geometry of the structure. For every

distance bin, (i=1,2,3) we identify a different multiplicative energy term u α,i() . The

formulation above led to p = 1584 = 32(32 +1)3
2

 parameters for the potential.

Figure 2.1 Value of u(α ,d) for 6 different pairs of atom types: A) NX (LYS-NZ) and CO
(carbon of backbone carbonyl). B) SM (MET-Sulfur) and OC (oxygen of
carbonyl groups). C) NDHS (TRP-NE1) and CH3 (terminal aliphatic side
chain carbon). D) CH2 (beta carbon) and CFH (aromatic side chain carbon).
E) OX1 (ASP-OD1, OD2, GLU-OE1, OE2) and CO (carbonyl carbon). F)
NH (amide nitrogen) and CAH (alpha carbon of amino acids).

2 3 4 5 6 7 8
-5

0

5

10

15
x 10-3 A

Distance between NX and CO atoms in A

At
om

ic
 p

ot
en

tia
l p

ar
am

et
er

2 3 4 5 6 7 8
-0.01

0

0.01

0.02

0.03
B

Distance between SM and OC atoms in A

At
om

ic
 p

ot
en

tia
l p

ar
am

et
er

2 3 4 5 6 7 8
-2

0

2

4

6

8
x 10-3 C

Distance between NDHS and CH3 atoms in A

At
om

ic
 p

ot
en

tia
l p

ar
am

et
er

2 3 4 5 6 7 8
-1

0

1

2

3
x 10-3 D

Distance between CH2 and CFH atoms in A

At
om

ic
 p

ot
en

tia
l p

ar
am

et
er

2 3 4 5 6 7 8
-5

0

5

10

15
x 10-4 E

Distance between OX1 and CO atoms in A

At
om

ic
 p

ot
en

tia
l p

ar
am

et
er

2 3 4 5 6 7 8
-5

0

5

10

15
x 10-3 F

Distance between NH and CAH atoms in A

At
om

ic
 p

ot
en

tia
l p

ar
am

et
er

 21

n(α ,1) = 1.0 2A ≤ rab < 3A

n(α ,1) = 4.0 − rab
n(α ,2) = rab − 3.0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪ 3A ≤ rab < 4A

n(α ,2) = 1.0 4A ≤ rab < 4.5A

n(α ,2) = 4.0 − rab
3.0

n(α , 3) = rab
3.0

− 3.0

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

4.5A ≤ rab < 6A

n(α , 3) = 1.0 6A ≤ rab < 8A

 (2.2)

Constraints used for learning

The parameters of the atomic potential were learnt taking into account known

correctly and incorrectly docked structures. The energies of pairs of correct and incorrect

structures are used to create inequalities of the type Eincorrect -Ecorrect >0 , as described in

Chapter 1. The values of the parameters were obtained by solving the inequalities by

linear programming using the LP solver, PF3[39].

In this study, we introduce hierarchical constraints for modeling the energy

landscape of binding. More specifically the following types of inequalities are used:

a. Inequalities comparing near-native and misdocked models

 ‘Near-native’ models are those with an interface RMSD less than 2.5 Å to the

native PDB structure. We call conformations ‘misdocked’ if they have an interface

RMSD greater than 7 Å. We added the native structure to the set of near-natives for each

target in our learning set. We then require that for each target, the atomic potential have a

lower (better) energy for near-native models than for misdocked models, as shown in Eq.

(2.3). Note that the set of models we consider here is restricted to the 1000 refined

models of each complex.

 E(Xmisdocked)-E(Xnear-native)>0 (2.3)

 22

As illustrated in Chapter 1, the inequalities are linear in the parameters u(α ,d)

and hence, the inequalities can be solved efficiently by mathematical programming. In

Eq. (2.3) the solution for the parameter set is up to a multiplicative positive constant λ .

Hence, if u α ,d() is a solution so is λu α ,d() . It is therefore convenient to put the right

hand side of the equation to 1 instead of zero. This choice sets a scale for the parameter

values and makes the numerical calculation easier.

Further, we also allow for some errors in our solutions. It is not possible to satisfy

all the inequalities because the functional form is not known exactly, and its current form

is not flexible enough to solve all the constraints. On the other hand making the

functional form more complex may lead to over-learning. New targets are obviously of

more interest in practical applications and we aim for comparable performance on the

training set and other targets. Therefore we remain with the simpler functional form while

accepting some mis-classification.

The existence of mis-classifications is further amplified by the use of near-native

structures as “correct” structures, instead of actual native complexes, and docking of

unbound structures instead of bound structures of the individual chains in the complex. A

near native structure as a target and the use of unbound chains mimics better the

conditions of an actual prediction. However, it also increases the noise level and

introduces uncertainties to the classification. Rather than the strict constraint in Eq. (2.3),

we add to each inequality i a slack variable zi . Eq. (2.3) then becomes:

 E(Xmisdocked)-E(Xnear−native)>1-zi ; zi > 0 (2.4)

b. Inequalities comparing high-quality hits and good hits

In the funnel shaped energy landscape described in Chapter 1, the distances

between structures at the bottom of the funnel are smaller than distances between

structures at the bottom and structures near the top. Hence, in order to provide a more

 23

precise discrimination of the energies of near-native structures, we found it beneficial to

add a new set of inequalities comparing near native structures with interface RMSD less

than 1.5 Å compared to the native complex (call it high-quality hits) and hits with

interface RMSD between 1.5 and 2.5 Å (known as good hits). The value of the cutoff 1.5

Å was obtained based on statistics of hits in the targets of the learning set. It was chosen

such that there was an even distribution of models in the high-quality and good hit

categories and the number of additional inequalities was maximized, as shown in Table

2.1. The new inequalities require that the high-quality hits will have lower energies than

good hits.
 E(Xgood-hit)-E(Xhq-hit)>1-zi ; zi > 0 (2.5)

Table 2.1 Statistics of hits in the learning set

High-quality
hit cutoff (hc)

in Å

Number of
high quality

hits
(iRMSD < hc)

Number of good
hits

(hc<iRMS< 2.5 Å)

Number of
resulting

inequalities

1.0 993 5416 40860
1.5 2341 4068 86930
2.0 4156 2253 79535

c. Inequalities comparing pairwise adjacent hits

In the third type of inequalities, we model the energy landscape by hierarchical

inequalities. We sorted the hits (models with iRMSD less than 2.5 Å) by iRMSD, and

formulated inequalities comparing energies of neighboring hits. For example, model i has

lower iRMSD than model i+1. Therefore we expect the energy of the ith model to be

lower than the energy of the model ranked i+1. Here n hits is the total number of hits for a

target in the learning set.

 E(Xhit
i+1)-E(Xhit

i)>1-zi ; i=1,2..nhits -1; zi > 0 (2.5)

 24

We note that in principle, we could perform an all-vs-all comparison of docking

models. However, the introduction of additional constraints not only increases the

computational expense but also makes the inequality set more noisy [38]. This is because

we use RMSD for ranking models, and models at higher values of RMSD are equally

bad: a model with 10 Å RMSD is equally bad as a model with 12 Å RMSD.

Using these three types of inequalities, we had a total of 5,841,395 inequalities in

our learning set. The complete set of constraints is now combined with an objective

function that was minimized. The objective function is the sum of the parameters,

u(α,d) and slack variables, z, where γ is an empirical constant that determines the weight

of violations of the constraints relative to precise determination of the parameters.

 min u(α ,d)
α ,d
∑ + γ zi

i
∑

1
 (2.6)

Using PF3[39], we solved 92.8% of the inequalities. We call the atomic potential

PISA [Protein Interactions Scored Atomically] henceforth. We used the value of 1.0 for

γ.

For each of the complexes in the learning set we mentioned previously, we used

one thousand refined models along with the native structure for the complex to generate

the three kinds of inequalities discussed above. For 67 of the complexes in the learning

set (58 bound and 9 unbound), one or more backbone atoms in the PDB files were

missing. The missing atoms prevent us from placing side chains or minimize continuous

atomic energy using MOIL[58]. We attempted to add missing backbone atoms to the

complexes using Modeller[59]. However, Modeller tends to move the modeled structure

away from the template. We found that the results obtained by learning based on

Modeller structures were worse than the results obtained by simply using the unrefined

 25

(rigid-docking) models for complexes with missing atoms, as shown in Table 2.2. So for

these complexes, we use the unrefined models for learning and testing.

Table 2.2 Performance with and without Modeller on 67 targets of the learning set. A hit
is a model with an interface RMSD of 4 Å or less to the native.

Refinement method for targets
with missing backbone atoms

Number of hits in
top 10/top1

Number of targets
solved in top 10/top 1

Modeller for modeling missing
atoms, followed by SCWRL and

minimization

81/15 38/15

Using unrefined models in case of
missing main chain atoms

86/17 40/17

Combining atomic and residue scores for re-ranking

Though the atomic potential recognizes more hits in the top 100 than the

previously developed residue based potential, PIE[38], it is not sensitive enough to

recognize more hits in the top 10, or top 1. The reason for the lower performance of the

atomic potential at the high end of prediction may be the more significant sensitivity of

atomic interactions to structural details compared to interactions at the residue level. This

sensitivity of the algorithm is amplified by the use of unbound (approximate) complexes

rather than just bound complexes with atomically precise interactions.

Realizing that the atomic and residue potentials encapsulate different signals

(atomic potentials captures shorter range interactions), we decided to combine the two,

expecting the combined method to work better than the residue or atomic potentials

alone. We used the following combination of potentials.

a. Product

For the atomic potential, PISA, the lower the energy, the better the model.

Whereas for the residue score, PIE, higher the score, the better the model. Hence if we

 26

take the product of the scores of PISA and PIE for each model, the lower the score of the

product, the better the model should be.

C1= PISA*PIE (2.7)

b. Linear Combination

The second combination potential was a weighted linear combination of the

atomic and residue potentials. The value of coefficient a was set to -0.2 by learning on

the learning set.

 C2 = PISA + a.PIE (2.8)

c. Linear Combination with Product

Adding the individual values of the atomic and residue potentials to their product

gave yet another potential.

C3 = c.PISA + d.PIE + PISA *PIE (2.9)

Values of c and d, were found to be 0.1 and -0.8 respectively, as shown in Figure

2.2. The height represents the number of targets in the learning set with a hit (interface

RMSD < 4 Å) in the top 10, for the combination of coefficients of the potential C3. The

best values appear to be 0.1 for c, the atomic potential weight and -0.8 for d, the residue

potential weight.

Figure 2.2 Contour plot showing parameter search for values of coefficients c and d in
equation 11.

Residue potential weight

A
to

m
ic

 p
ot

en
tia

l w
ei

gh
t

Number of learning set targets with a hit in the top 10

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2

1

2

3

4

5

6

7

8

9

10

380

400

420

440

460

480

 27

Tests on other docking packages

We compared our results to the ZDOCK[60], ZDOCK+ZRANK[29],

CLUSPRO[11] and PATCHDOCK+FIBERDOCK[22] methods. For ZDOCK results on

the ZLAB dataset, we used the latest version ZDOCK-3.0.2 with 6 degree Euler angle

sampling and the results (RMSDs) as reported in the ZLAB website. For the other test

sets, we used the downloaded packages for ZDOCK version 3.0.2 and ZRANK. For

ZDOCK+ZRANK, we used the top 2000 conformations from ZDOCK as

recommended[29]. We then added polar hydrogens to the models using SCWRL4[57]

and reranked the models using ZRANK. For CLUSPRO, we used the results from the

CLUSPRO server[11] which runs CLUSPRO version 2.0. We used the downloaded

packages for PATCHDOCK and FIBERDOCK. FIBERDOCK is shown to be a

refinement and re-ranking method over the same group’s FIREDOCK. We used the top

500 models from PATCHDOCK as suggested[22] and refined the backbone and side

chains of the models using FIBERDOCK, and re-ranked models with the FIBERDOCK

energy term. The packages ZDOCK and CLUSPRO perform only rigid docking and no

refinement or rescoring, and are meant to enrich the number of hits in the top 1000 or

2000 structures. It is interesting to note that ZDOCK in our hands scores better than

ZDOCK+ZRANK.

2.3 RESULTS AND DISCUSSION

Creation of Test Sets

Performance of DOCK/PIERR (pronounced DOCK-by-PIER) was tested on three

datasets. The first dataset comprises of 124 complexes from the ZLAB Benchmark

 28

3.0[55]. The second dataset comprises of 640 targets from our learning set, described in

the Methods section and used in previous work[38].

The third dataset is a set of 30 complexes that is independent from the learning

set. These are a set of complexes that were deposited in the Protein Data Bank after

September 22, 2010. To construct this test set, we queried the Protein Data Bank for

soluble two-chain protein-protein complexes, with no DNA, RNA and free ligands in the

structure. We discarded complexes with modified residues, and chains that were shorter

than 50 residues in length. The query resulted in 126 complexes.

We then tested to see if these complexes were similar to any of the complexes in

the learning set. We used TM-Align[45] on the individual chains of the bound complex

and discarded all complexes where both chains had a TM score of 0.5 or higher with the

chains of a target in the learning set. 45 of the complexes were not similar to any in the

learning set. To perform unbound-unbound docking, we searched for homologs for the

individual chains of these 45 complexes using PSI-BLAST[61]. We discarded the

complexes with no homologs (BLAST expectation cutoff of 10e-3) for either chain.

Then we constructed a homology model for each chain, using the structure of the

homolog and the sequence of the chain from the bound complex. We used

MODELLER[62] to build the homology model and discarded complexes where the

homology models had a TM score of less than 0.8 with the chain in the bound complex.

We obtained a set of 30 complexes from this procedure, with 22 having both chains

unbound and 8 with one chain unbound. Table 2.3 contains the list of homologs used for

the unbound docking of novel complexes.

 29

Table 2.3 List of unbound complexes in the novel test set of 30 targets along with the
corresponding homologs used to model the receptor and ligand.

Target
PDB ID

Receptor Homolog
(PDB_chain) :

Target Receptor
Chain

Ligand Homolog
(PDB_chain) :
Target Ligand

Chain
2xt4 2XT2_A:B 2XT2_A:A
2xty 2XTW_A:B 2XTW_A:A
3agx 3AGZ_A:A 3AGZ_A:B
3asy 1XRJ_A:A 1XRJ_A:B
3gt6 3GLA_A:A 3GLA_A:B
3lis 3LFP_A:A 3LFP_A:B

3m7f 3B7Y_A:B 1NRV_A:A
3mxj 3MXI_B:B 3MXI_B:A
3nfy 1T8P_A:B 1T8P_A:A
3oa9 3D6R_B:A 3D6R_B:B
3p2q 3KV7_A:A 3KV7_A:B
3pc6 3PC8_A:B 3PC8_A:A
3pge 3PGE_A:A 3L0W_A:B
3pra 3PRB_A:B 3PRB_A:A
3r8c 3R20_A:A 3R20_A:B
3rd6 3Q64_A:A 3Q64_A:B
3rkc 3HAG_A:B 3HAG_A:A
3t43 3LF6_A:A 3LF6_A:B
3te8 3LR5_A:B 3LR5_A:A
3u80 2UYG_A:A 2UYG_A:B
3umz 3UN0_B:A 3UN0_B:B
3vc8 3VCB_A:B 3VCB_A:A
2wfx 3HO4_B:B 2IBG_H:A
3d65 3D65_E:E 3BTM_I:I
3di3 3DI3_B:B 3DI2_C:A
3hct 1FXT_A:B 3HCT_A:A
3jrq 2IQ1_A:A 3JRQ_B:B
3l1z 3FSH_B:A 3L1Z_B:B

3m18 3M18_A:A 1I56_A:B
3nbp 1MU2_A:A 3NBP_B:B

 30

Results on the ZLAB Benchmark

In the following tables we analyze the results by two metrics: interface RMSD

and fraction of native contacts, as defined by the CAPRI assessment[44]. A hit defined in

terms of interface RMSD, is a model with interface RMSD less than 4 Å, to the crystal

structure of the complex, which is equivalent to an “acceptable” model in the CAPRI

assessment. Similarly, a hit in terms of fraction of native contacts is a model with 10

percent or more native contacts, which is one of the criteria for an acceptable model in

CAPRI.

We show in Table 2.4, the comparison of our docking software with ZDOCK,

ZDOCK+ZRANK, CLUSPRO and PATCHDOCK+FIBERDOCK. We compare the

performance of DOCK/PIE our rigid docking package, with the new DOCK/PIERR,

which is DOCK/PIE with side chain remodeling, energy minimization and reranking.

Reranking is done in various ways, using the atomic potential PISA alone, or the

combination potentials, C1, C2 and C3, composed of the atomic and residue potentials.

In Table 2.4 and the succeeding results tables, the number of hits counts all

acceptable predictions. Some of the targets can have multiple successful predictions, and

all of these hits are counted in the entry “Number of hits”. A target is considered solved

when at least one prediction is in the top 1 or top 10 set. Only one hit per target is

counted under “Number of targets solved”.

DOCK/PIERR with C1 and C2 combination potentials performs better than the

other DOCK/PIE versions. DOCK/PIERR picks a smaller number of hits than ZDOCK

or ZDOCK+ZRANK in the top 10. However, DOCK/PIERR and its various versions are

able to solve more targets than ZDOCK. ZDOCK is able to generate a lot of reasonable

models for some targets. However, for some targets it does not generate hits at all.

DOCK/PIERR is more uniform in the generation of hits. CLUSPRO is one of the best

 31

methods, even though we include the results from the web server only, which does not

include the more expensive refinement procedure.

Table 2.4 Comparison on the ZLAB 3.0 benchmark set of 124 targets.

Method

Interface RMSD Fraction of Native Contacts
Number of
hits in top

10/top1

Number of
targets solved
in top 10/top1

Number of
hits in top

10/top1

Number of
targets solved
in top 10/top1

DOCK/PIE
Rigid Docking 73/10 38/10 144/14 59/14

DOCK/PIERR
Rerank with PISA 86/17 40/17 167/28 66/28

DOCK/PIERR
Rerank with C1 107/19 50/19 190/32 72/32

DOCK/PIERR
Rerank with C2 107/19 50/19 194/30 72/30

DOCK/PIERR
Rerank with C3 102/15 46/15 175/23 63/23

CLUSPRO 63/19 50/19 172/31 69/31
ZDOCK 143/13 29/13 276/22 45/22

ZDOCK+ZRANK 96/12 23/12 208/26 50/26
PATCHDOCK +

FIBERDOCK 21/2 15/2 56/4 33/4

Results on the novel set

Table 2.5 shows the comparison of DOCK/PIERR and other docking software on

the novel set. For ZRANK, the authors recommend it to be used on the top 2000 models

from ZDOCK. Besides applying ZRANK on the top 2000 models, we also applied

ZRANK to the top 1000 models from ZDOCK, since we use the top 1000 models from

our rigid docking procedure for reranking. We did similarly for FIBERDOCK, which is

to be applied on the top 500 models from PATCHDOCK. CLUSPRO and ZDOCK have

not been used so far for docking of homology models. Here, we are using homology

 32

modeling to mimic a “real” docking experiment in which the bound structures are not

known.

Table 2.5 Comparison of docking software on the novel set of 30 targets. Suffix of 1000
for example, means that the re-ranking was applied to top 1000 models from
rigid docking.

Method

Interface RMSD Fraction of Native Contacts
Number of
hits in top
10/top 1

Number of
targets solved
in top 10/top 1

Number of
hits in top
10/top 1

Number of
targets solved
in top 10/top 1

DOCK/PIE
Rigid Docking 37/10 16/10 69/14 20/14

DOCK/PIERR
Rerank with PISA 33/7 12/7 50/10 17/10

DOCK/PIERR
Rerank with C1 41/7 15/7 70/11 21/11

DOCK/PIERR
Rerank with C2 43/9 17/9 75/12 21/12

DOCK/PIERR
Rerank with C3 44/10 17/10 72/12 22/12

ZDOCK 39/9 11/9 52/11 14/11
ZDOCK+ZRANK-

2000 34/5 10/5 55/9 15/9

ZDOCK+ZRANK-
1000 38/5 11/5 60/8 14/8

CLUSPRO 19/8 12/8 48/9 16/9
PATCHDOCK+

FIBERDOCK-500 18/4 5/4 32/4 11/4

PATCHDOCK +
FIBERDOCK-1000 17/3 5/3 28/3 10/3

Figure 2.3 shows some of the models produced by different methods on the novel

set. Since the chains are unbound-unbound there is a slight deviation between the

receptor chains in the native and model. Table 2.6 shows the comparison of different

docking methods on individual targets in the novel set. We see that targets that are hard

for DOCK/PIE are generally also hard for the other docking packages. But there are some

targets like 3asy, 3r8c and 3rd6, where the only software that was able to produce a hit in

 33

the top 10 was DOCK/PIE (RR). For 3hct, only ZDOCK+ZRANK was able to produce a

hit. For 3d65 and 3nbp only CLUSPRO was able to produce a hit in the top 1.

Figure 2.3 Models from three docking algorithms on complexes in the novel set. A)
Native structure of 3hct (in blue) along with the best model produced for
this complex, by ZDOCK+ZRANK (in cyan). B) Native structure of 3d65
(in purple) along with the best model by Cluspro (in raspberry). C) Native
structure of 3asy (in brick red) superposed with the best model by
DOCK/PIERR (in yellow). D) Native structure of 3rd6 (in dark green)
superposed with the best model by DOCK/PIERR (in lemon yellow).

 34

Table 2.6 Top 10 and top 1 hits per novel set target. D/P Rigid: DOCK/PIE. D/P PISA:
DOCK/PIE with PISA. D/P CX: DOCK/PIE with combination potential
CX. ZD: ZDOCK, CL: CLUSPRO. Suffix [N] implies reranking was
applied to top N models. ZR [N]: ZDOCK+ZRANK & ZRANK applied to
top N models from ZDOCK, PF [N]: PATHDOCK+FIBERODCK &
FIBERDOCK applied on top N models from PATHDOCK.

Targets Number of irmsd hits in the top 10/top 1 for various docking software
D/P

Rigid
D/P

PISA
D/P
C1

D/P
C2

D/P
C3

ZD ZR
2000

ZR
1000

CL PF
500

PF
1000

2xt4 3/1 4/0 4/1 3/1 4/1 1/0 1/0 1/0 1/0 0/0 0/0
2xty 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
3agx 3/1 3/1 3/1 3/1 3/1 7/1 6/1 7/1 1/1 4/1 4/1
3asy 2/0 3/1 4/0 3/0 3/0 0/0 0/0 0/0 0/0 0/0 0/0
3gt6 1/0 2/1 2/0 2/0 1/0 2/1 4/1 4/1 1/0 0/0 0/0
3lis 4/1 5/1 5/1 4/1 4/1 4/1 8/1 9/1 3/1 6/1 5/1

3m7f 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
3mxj 1/0 0/0 1/1 1/0 1/1 0/0 1/1 1/1 2/1 0/0 0/0
3nfy 3/1 3/1 3/0 3/1 4/1 7/1 6/1 6/1 2/1 1/1 1/0
3oa9 1/1 4/0 3/1 2/1 2/1 7/1 2/0 3/0 1/1 0/0 0/0
3p2q 1/1 1/1 1/1 1/1 1/1 4/1 3/0 3/0 2/1 6/1 6/1
3pc6 2/1 1/0 1/0 2/1 2/1 1/1 0/0 0/0 0/0 0/0 0/0
3pge 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
3pra 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
3r8c 1/1 0/0 0/0 1/0 1/0 0/0 0/0 0/0 0/0 0/0 0/0
3rd6 3/1 3/1 3/1 3/1 3/1 0/0 0/0 0/0 0/0 0/0 0/0
3rkc 2/0 1/0 3/0 3/1 3/1 1/0 1/0 1/0 1/0 1/0 0/0
3t43 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
3te8 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
3u80 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
3umz 6/0 3/0 5/0 6/0 6/0 1/1 2/0 2/0 1/0 0/0 0/0
3vc8 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
2wfx 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
3d65 2/0 0/0 1/0 2/0 2/0 0/0 0/0 0/0 3/1 0/0 0/0
3di3 2/1 0/0 2/0 3/0 3/0 4/1 0/0 0/0 0/0 0/0 1/0
3hct 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/0 0/0 0/0 0/0
3jrq 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
3l1z 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

3m18 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
3nbp 0/0 0/0 0/0 1/0 1/0 0/0 0/0 0/0 1/1 0/0 0/0

 35

On the novel set, DOCK/PIE with the residue potential seems to perform better

than DOCK/PIERR with the atomic potential. DOCK/PIE rigid docking and

DOCK/PIERR with potential C3 performs better than all other docking methods. Again,

performance of ZDOCK is superior to ZDOCK+ZRANK. Also, ZRANK applied to top

1000 models seems to be better than the authors’ recommendations of applying it on the

top 2000 models. For FIBERDOCK, the author recommendation of applying it on the top

500 models seems to work better.

Results on the learning set

We report in Table 2.7, the performance of DOCK/PIE and various flavors of

DOCK/PIERR on the learning set of 640 complexes.

Table 2.7 Comparison of DOCK/PIE and DOCK/PIERR on the learning set of 640
complexes.

Method

Interface RMSD Fraction of Native Contacts
Number of
hits in top

10/top1

Number of
targets solved
in top 10/top1

Number of
hits in top

10/top1

Number of
targets solved
in top 10/top1

DOCK/PIE
Rigid Docking 1646/376 466/376 2152/400 503/400

DOCK/PIERR
Rerank with PISA 1764/334 459/334 2197/365 494/365

DOCK/PIERR
Rerank with C1 2028/410 482/410 2486/433 508/433

DOCK/PIERR
Rerank with C2 2024/411 477/411 2483/435 507/435

DOCK/PIERR
Rerank with C3 2003/413 487/413 2487/430 520/430

The combination potentials generally perform better than the atomic potential,

PISA alone, on all three datasets. Besides, Table 2.7 suggests that the atomic potential

PISA seems to recover more hits in the top 10 than the residue potential in DOCK/PIE.

But it is not as sensitive as the residue potential in DOCK/PIE when it comes to solving

 36

more targets in the top ten, or top one. In other words, the atomic potential developed

here is more useful for enriching the hit candidates than for sensitive prediction of hits

from a small set of models.

Atomic potentials may be more sensitive to noise in the learning set. One source

of noise in learning is the use of unbound complexes. In order to test this hypothesis that

atomic potentials perform better on bound complexes than unbound, we compared the

performance of DOCK/PIE rigid docking with the PIE potential, which includes residue

based and van der Waals terms, with DOCK/PIERR reranking with the atomic potential.

The results in Table 2.8 show that this hypothesis is not supported, since the atomic

potential PISA has a higher percentage of solved targets for the unbound complexes than

for the bound complexes. The atomic potential is also better than the residue potential on

the unbound complexes. Hence we still do not know what makes atomic potentials less

sensitive.

Table 2.8 Comparison of DOCK/PIE rigid docking and DOCK/PIERR on 460 bound and
180 unbound complexes in the learning set.

Type of
complexes in

dataset

Docking Method

Interface RMSD
Number of
hits in top

10/top1

Percentage of
targets solved in

top 10/top1
Bound DOCK/PIE Rigid Docking 957/278 74.1/60.4
Bound DOCK/PIERR with PISA 915/228 69.5/49.5

Unbound DOCK/PIE Rigid Docking 689/98 71/55.6
Unbound DOCK/PIERR with PISA 849/106 78.9/60.2

Residue potentials are possibly more robust and are better able to capture enough

of the overall structural features to recognize near-natives from a small set of models.

Hence we use potentials that combine atomic and residue scores, hoping that they will be

more robust, correlate well with RMSD, and enrich hits in the model set.

 37

Run times

Approximate run times for DOCK/PIERR for different protein sizes are shown in

Table 2.9. We estimate that other software packages we compared to in the present study

are faster than DOCK/PIERR by a factor of about 10. So far we have focused our

attention on getting higher accuracy and we did not focus on speed. ZDOCK is using

essentially the same rigid docking algorithm as DOCK/PIERR (FFT) so we are hopeful

that appropriate optimizations could be found. For example, DOCK/PIERR uses at

present, double precision floating-point number in FFT calculations while ZDOCK uses

only single precision numbers.

Table 2.9 Approximate run-times for DOCK/PIERR for different protein sizes. All runs
were on 4 nodes of a Linux cluster with 8 cores each (32 cores total). Each
core was an Intel Xeon X5460 processor with clock speed of 3.16 GHz. The
memory size was 16GB for each node.

Receptor Length
(number of residues)

Ligand Length
(number of residues) Approximate run time in hours

105 105 1.25
202 200 1.5
418 152 4.75
272 174 5.75
554 400 9

Analysis of the new atomic potential

On solving the inequalities generated from the learning set, we can calculate for

each target in the learning set, the percentage of inequalities of that target that were not

satisfied by the linear programming solution. Figure 2.4 shows the distribution of

violations among targets in the learning set. We observe that there are a relatively small

number of targets that contribute a large number of violated constraints.

 38

Figure 2.4 Percentage of violated inequalities for 200 targets of the learning set. The rest
of targets are not shown as they have a negligible number of violated
inequalities.

Some targets can be hard to dock if they have a very small number of native

interface contacts. We show in Figure 2.5, the correlation between the number of native

contacts in the target and the percentage of inequalities that were violated for that target.

It is observed that the targets with low number of contacts have a high percentage of

violated inequalities.

To assess the extent of redundancy among the inequalities in the linear program,

we calculated the cosine of the angle between any two inequality vectors (the vectors are

a function of α and d and of the form [nmisdocked (α,d)− nnear−native(α,d)]) and obtained the

distribution of the cosine values. We did this for three different samples of inequality

vector pairs sampled at random from the inequalities in our linear program: 1500, 2500

and 3500 pairs of inequalities. Figure 2.6 shows the distribution of cosine values, peaked

around 0.0, which shows that a significant percentage of inequalities were orthogonal to

each other. This suggests that most of the constraints offer new information and are

independent of each other.

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Target index

Pe
rc

en
ta

ge
 o

f v
io

la
te

d
in

eq
ua

lit
ie

s
fr

om
 ta

rg
et

 39

Figure 2.5 Percentage of violated inequalities per learning set target plotted against the
number of contacts for the target.

Figure 2.6 Percentage of violated inequalities per learning set target plotted against the
number of contacts for the target.

Atomic and Residue Potentials on Refined and Unrefined Models

Here we explore the performance of atomic potentials on rigid docking models, as

opposed to refined models. If we could obtain the same performance of atomic potentials

on rigid docking models as on refined models, then the extra computational expense of

side chain refinement and minimization can be avoided.

Figure 2.7 shows that the atomic potential works best when the parameters of the

potential are learnt and applied to refined models. It has a better recognition capacity if

trained and tested on refined models, compared to training and testing on the rigid

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of contacts in target

Pe
rc

en
ta

ge
 o

f v
io

la
te

d
in

eq
ua

lit
ie

s
fro

m
 ta

rg
et

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Cosine theta between a pair of inequalities

Pr
ob

ab
ili

ty
 o

f c
os

in
e

th
et

a

1500 samples
2500 samples
3500 samples

 40

docking models. Interestingly, the potential trained and tested on unrefined structures is

much worse than residue based rigid docking. Finally, the coarse-grained potential, PIE,

performs worse when tested on refined structures, than when tested on unrefined

structures. This is probably because it was trained on unrefined structures.

Figure 2.7 Performance of atomic potential PISA on refined and unrefined models. For
each ranking method, the number of ZLAB targets with a hit with interface
RMSD less than 2.5 A, in the top 10 models is shown. Abbreviations are:
RD: Rigid Docking, U: unrefined, R: unrefined. PISA-R-U for example,
means that the re-ranking potential was PISA, which was learnt on refined
learning set models and tested on unrefined ZLAB structures.

Examining hit cutoffs and distance bins for the atomic potential

Tables 2.11-2.14 show numerical experiments on different definitions of near-

native and misdocked conformations and different distance bins for the ZLAB

benchmark and the training set. All these different variations of the atomic potential were

learnt on the training set and tested for performance on the ZLAB set. The best

performing definition on the ZLAB set was chosen for the actual potential, PISA.

Models were classified as near-native if they had interface RMSDs lower than the

hit cutoff and were classified as misdocked models if they had an RMSD higher than the

RD PISA R-R PISA R-U PISA U-U PIE U-R
0

5

10

15

20

25

30

Potential used, training and test sets

N
um

be
r o

f Z
LA

B
 ta

rg
et

s
w

ith
 a

 to
p

10
 h

it

 41

misdocked model cutoff. Near-native cutoffs of 4 A and 2.5 A were tried and misdocked

model cutoff of 5.0, 6.0 and 7.0 A were tried and we chose near-native cutoff of 2.5 A

and misdocked model cutoff of 7 A.

We also experimented with different distance bins for the pairwise atomic

potential, PISA. We show that the distance bin 2-3.5; 3.5-5; 5-8A works best.

Incidentally these are also the distance bins used for detecting approximate structures for

threading[37].

Table 2.10 Comparison of different cutoffs for near-native or misdocked complexes on
the ZLAB benchmark of 124 complexes.

Cutoff for near-natives and
misdocked models Interface RMSD

Near-native
cutoff in A

Misdocked model
cutoff in A

Number of
hits in top

10/top1

Number of
targets solved
in top 10/top1

2.5 7.0 86/17 40/17
4.0 7.0 81/15 39/15
2.5 6.0 86/16 39/16
2.5 5.0 82/15 38/15

Table 2.11 Comparison of different cutoffs for near-native or misdocked complexes on
the learning set of 640 complexes.

Cutoff for near-natives and
misdocked models Interface RMSD

Near-native
cutoff in A

Misdocked model
cutoff in A

Number of
hits in top

10/top1

Number of
targets solved
in top 10/top1

2.5 7.0 1764/334 459/334
4.0 7.0 1424/255 305/255
2.5 6.0 1510/280 414/280
2.5 5.0 1627/292 393/292

 42

Table 2.12 Comparison of different distance bins on the ZLAB benchmark of 124
complexes.

Distance bins used

Interface RMSD
Number of
hits in top

10/top1

Number of
targets solved
in top 10/top1

2-3.5; 3.5-5; 5-8 A 86/17 40/17
3.5-5; 5-6.5; 6.5-8 A 86/13 39/13
2-4.5; 4.5-6; 6-8 A 85/13 38/13
2-3; 3-4; 4-5; 5-8 A 83/16 36/16

2-3.5; 3.5-5; 5-8; 8-10 A 84/18 38/18

Table 2.13 Comparison of different distance bins on the learning set of 640 complexes.

Distance bins used

Interface RMSD
Number of
hits in top

10/top1

Number of
targets solved
in top 10/top1

2-3.5; 3.5-5; 5-8 A 1764/334 459/334
3.5-5; 5-6.5; 6.5-8 A 1310/278 367/278
2-4.5; 4.5-6; 6-8 A 1468/295 389/295
2-3; 3-4; 4-5; 5-8 A 1548/272 361/272

2-3.5; 3.5-5; 5-8; 8-10 A 1630/310 404/310

2.4 CONCLUSIONS

We have introduced an improvement to docking algorithms by introducing a new

atomic potential and refinement and ranking algorithms. The refinement is small (~0.2 Å

RMSD) and does not result in significant changes to the structure, however it makes the

structures more chemically reasonable and improves the quality of the obtained potential.

We show by extensive tests on three datasets of complexes that our methods outperform

slightly, other state-of-the-art docking packages. We also observe that coarse-grained

potentials are more robust to inaccurate structures produced by unbound docking.

Nevertheless, we show that atomic and residue potentials capture different signals, and

hence their combination works better than either of them individually. However, the

 43

success rate of docking software even after refinement and improved reranking functions

is still between 30 and 50%. One could envision designing multi-body potentials,

orientation based potentials and potentials that are based on hydrogen bond interactions

to capture more structural features that may lead to more accurate scoring functions and

improve the success of computational docking procedures. We investigate one of these

avenues, i.e. hydrogen bonding interactions, in the next chapter.

 44

Chapter 3. Hydrogen bond potentials: comparison of learning
algorithms and tests on soluble and membrane proteins

3.1 INTRODUCTION

In this chapter, we develop potentials describing hydrogen bond interactions in

protein docking models [63]. The parameters of the potential are developed using

different learning algorithms: pairwise learning using linear programming, linear and

non-linear SVMs and neural networks. The same method referred to as linear

programming in the previous chapter is called pairwise learning using linear

programming, in this chapter, to distinguish it from linear SVMs. The distinction is

explained in the section on comparison of learning algorithms.

We show that pairwise learning using mathematical programming has the best

overall performance in terms of accuracy and training and test times, followed closely by

neural networks. To see if the new hydrogen bond potentials improve the accuracy of

reranking docking models, we additionally combine the hydrogen bond potentials from

different learning methods with the residue and atomic contact potentials discussed in

Chapter 2.

In chapter 2, the learning and test sets involved water-soluble protein complexes,

or protein complexes formed in the aqueous solution in cells. In this chapter, we test also

on protein complexes formed in a different environment. Transmembrane complexes are

formed in the cell membrane, which is a hydrophobic environment.

For soluble complexes, hydrogen bond potentials alone possess a weaker signal

for reranking, compared to interface atomic and residue potentials. However for

transmembrane complexes, hydrogen bond potentials alone provide a better recognition

capacity than residue and atomic potentials. We surmise that the weak nature of the

hydrogen bond potentials for soluble proteins is possibly due to competition of interfacial

 45

hydrogen bonds with water. Whereas in transmembrane proteins, the signal from

hydrogen bonding is stronger possibly owing to the hydrophobic membrane core and lack

of competition with water molecules.

Nevertheless, the addition of hydrogen bond potentials to atomic and residue

potentials is shown to boost their reranking accuracy, for both soluble and membrane

protein complexes.

3.2 BACKGROUND

A hydrogen bond is a non-covalent short-range electrostatic interaction between

an electro-negative atom (called acceptor) and a polar hydrogen atom covalently bonded

to another electro-negative atom (called donor). Here we examine hydrogen bonds

formed across protein interfaces i.e. when the hydrogen and donor are from one protein

and the acceptor is from the interacting protein. Hydrogen bonds formed at the interfaces

of interacting proteins in biologically active complexes can play a role in stabilizing the

interaction further, and also influence the choice of binding partner protein[46, 64]. A

statistical examination of experimentally determined complexes revealed that the average

protein-protein interface has around 10 hydrogen bonds [65, 66], [46]. However the role

of hydrogen bonding in protein interactions is unclear.

The question we seek to answer is whether hydrogen bonding constitutes useful

signal for model discrimination in protein docking. In [64], the authors find encouraging

improvement in model discrimination for protein docking by using a hydrogen bond

potential for ranking models. However their approach was tested on the easier case of

bound docking and it is not known whether the results would be as good in the more

realistic case of unbound docking. [66, 67] on the other hand report that the number of

 46

intermolecular hydrogen bonds was not a very good predictor of a near-native model. We

wish to know whether hydrogen bonding can enhance the signal of traditional atomic and

residue potentials for reranking protein-protein docking models, and if so, by how much.

In protein-protein docking algorithms, hydrogen bonding is usually optimized as

part of short-range electrostatic interactions. Examples are ZRANK[29], DOT[68], and

FTDOCK [69]. However, a couple of docking algorithms use separate hydrogen bond

potentials. Rosettadock [16, 17] uses a hydrogen bond potential [64, 70] that is based on

propensities of hydrogen bonds observed in interfaces of experimental complexes. This

potential contains both distance dependent and angle-based terms, and the coordinates of

three atoms are considered: the polar hydrogen, donor atom that the polar hydrogen is

covalently bonded to, and the electro-negative acceptor atom across the interface that the

polar-hydrogen hydrogen bonds with [64, 70]. [71, 72] model the hydrogen bonding

energy with spherical Gaussians centered at putative donor and acceptor positions. The

optimization of hydrogen bond networks combined with all-atom force fields was also

used to improve ranking of docking models [27].

In this work, we develop hydrogen bond potentials for unbound docking. Here,

we formulate hydrogen bond potentials using several learning algorithms, and test their

accuracy in improving reranking docking models of soluble and membrane protein

complexes.

3.3 METHODS

Datasets of protein complexes

We use the same learning set used in Chapter 2, a set of 640 PDB complexes used

in prior work [38], comprising of mostly soluble protein complexes and a small

 47

percentage (5%) of membrane protein complexes. For soluble protein complexes, two

test sets were used. One was the ZLAB 4.0 Benchmark set [41, 73] of 176 complexes: an

extended version of the ZLAB 3.0 Benchmark used in Chapter 2. The other was an

extended version of the novel test set described in Chapter 2. In this study, it was

extended from 30 to 52 unbound complexes. The datasets are not large; however, they

are representative of the non-redundant complexes available in the PDB today.

The additional 22 targets in the novel set were selected in a manner similar to the

first 30. The PDB was queried for new protein-protein complexes (not membrane-based,

not containing DNA/RNA) released between Feb 2012 and Aug 2013. A 70% sequence

identity cutoff was used and 181 targets were identified. Of these, complexes containing

peptides (monomer length less than 60 residues) were discarded and 126 complexes

remained. These complexes were then tested for similarity to complexes in the learning

set. The test for similarity was performed by comparing the receptor and ligand

monomers of a new complex to the receptor and ligand monomers respectively, of every

learning set complex, using TM-score [45]. For only 50 of the 126 complexes, both the

receptor and ligand monomers were dissimilar (TM score less than 0.5) to the monomers

of complexes in the learning set. PSIBLAST [61, 62] was then used to obtain homologs

in the PDB for the individual monomers of those 50 complexes. 35 complexes had

homologs (e-value greater than 0.001) for at least one monomer. Modeller [62] was then

used to obtain homology models for the monomers, given the template from PSIBLAST.

Homology models from Modeller that were dissimilar (TM score less than 0.8) to the

bound structure of the monomer were discarded. For 22 targets, Modeller produced a

model close to the bound structure, (TM score greater than 0.8), for both receptor and

ligand. These 22 complexes were the set of additional targets added to the novel set, of

which 10 are homodimers and 12 heterodimers. They are summarized in Table 3.1.

 48

For membrane protein complexes, a test set of 30 unbound membrane protein

complexes that was created in another study was used: this study on membrane proteins

is described in Chapter 4. The hydrogen bonds for membrane complexes included those

in the residues inside the hydrophobic core of the membrane as well.

Table 3.1 New set of 22 targets added to the independent novel test set of soluble protein
complexes. Listed are the PDB chains used as receptor and ligand, along
with the corresponding template used to obtain homology models (unbound
structures) for docking.

Target PDB ID Receptor chain:
Homolog

Ligand chain:
Homolog

2LYJ A:1UTX_A B:1UTX_A
2M0G A:2M0G_A B:1OPI_A
2Y9P A:2Y9M_A B:2Y9M_B
2YML A:2NO4_A B:2NO4_A
3TG1 A:1YW2_A B:2OUC_A
3TZN A:1AJ0_A B:1AJ0_A
3VQL B:3AAB_A A:3AAB_A
3VVW B:3ECI_A A:3VVW_A
3VX7 A:3VH2_A B:3VX7_B
4A5U A:4A5U_A B:2QOU_O
4B8A B:1UOC_A A:4B8A_A
4DHI B:2ZFY_A D:3HCT_B
4DUL A:1UT4_A B:1UT4_A
4EM8 A:3PH4_A B:3HE8_A
4F4I B:2CCJ_A A:2CCJ_A

4GQX A:3URR_A B:3URR_A
4H6J B:3F1N_B A:3F1N_A
4H7A A:2ZCA_A B:2ZCA_A
4HYE A:3B2N_A B:3B2N_A
4ILH B:3SBT_B A:3SBT_A
4IP3 A:4IP3_A B:3HCT_B
4JAK A:3N4J_A B:3N4J_A

 49

Hydrogen bond potentials for reranking

As described in Chapter 2, the models from DOCK/PIERR rigid docking and

minimal refinement are reranked using a combination of atomic and residue potentials

[41]. In this study, we develop hydrogen bond potentials to be used in the last reranking

phase along with the residue and atomic potentials.

Building polar hydrogens into docking models

Models of most complexes do not contain polar hydrogen atoms: polar hydrogens

coordinates are not available from protein structures obtained by X-ray crystallography.

Hence polar hydrogens needed to be added to each of the one thousand docking models

for every complex in the learning and test sets. They were also required in the native

(experimental) structures, for complexes in the learning set that did not contain hydrogen

atoms. Only 68 of the 640 complexes in the learning set were NMR structures that

already had hydrogens in the experimental structure. All polar hydrogens were built using

the ready_pdb script of the MOIL MD package [58]. For 4 targets each in the learning

and ZLAB sets, where MOIL hydrogen placement failed, due to missing residues in the

PDB files, the HAAD program [74] was extended to multiple chains and used to add

hydrogens. A small number of targets (8 targets in the learning set and 4 targets in the

ZLAB set) for which both MOIL and HAAD failed to insert hydrogens were excluded

from our analyses: the PDB files had several missing heavy atoms in these cases. Overall,

we had 628 targets from the learning set, 165 targets from the ZLAB set and 52 from the

novel set. These three formed the set of soluble protein complexes. Additionally, we used

another test set of 30 unbound membrane protein complexes, described in the next

chapter.

 50

Enhancement of hydrogen bond signal using Molecular Dynamics

The number of hydrogen bonds in the interfaces of the protein-protein models is

quite small; the order of magnitude is in the tens, even for an interface hydrogen to

acceptor atom distance of 4 Å. We note that this distance is more permissive than the

traditional hydrogen-acceptor distance in a typical hydrogen bond, which is around 2 Å.

The longer distance range is to account for the additional error in unbound docking. In

order to amplify this weak signal from hydrogen bonding, we ran a short simulated

annealing molecular dynamics trajectory for each model (and also for the native

structures in the learning set) and use the final structure at the end of the dynamics run,

instead of the initial model, to calculate the hydrogen bonds. The inaccuracies of

unbound docking models mean that some hydrogen bonds are not close enough in the

original model to be captured within the cutoff. Hence the simulated annealing

accumulates signal from additional nearby hydrogen bonds, increasing the number of

hydrogen bonds within a distance of 4 Å by an order of magnitude, to hundreds. We

show in the Results section, that this increase in the signal from hydrogen bonding leads

to improved ranking using the resulting hydrogen bond potential.

The MD protocol was as follows: first, an initial short MD run: 50 steps of

dynamics with 1 femtosecond time step at 300K, with the nbfi option in MOIL. The nbfi

option replaces the hard Lennard-Jones repulsion potential with a softer Gaussian

repulsion, and this reduces the number of hard collisions in the structures. Second, a short

10-step minimization using conjugate gradient descent implemented in the mini_pwl

routine in MOIL: to make the structures at the start of the longer dynamics run more

chemically reasonable. And third, a 10 ps simulated annealing dynamics run with 1

femtosecond time step and linear temperature cooling from 600K to 10K. The annealing

(cooling) procedure resulted in a hydrogen bonding potential that was more accurate at

 51

reranking docking models (improved the number of hits recovered), compared to MD

with no annealing. All MD runs were performed in vacuum for simplicity.

Note that the three step short MD procedure is not intended as a refinement

procedure as the changes to interface RMSD of the resulting models are small: within 1

Å. The structure from dynamics is used merely to calculate the hydrogen bond geometry,

as it leads to a better set of hydrogen bonds. We also note that for a small number of

models for each target for which dynamics failed to converge, the interface hydrogen

bonds were simply calculated from the original model.

Functional form of the potential

We developed the functional form for the pairwise learning using linear

programming approach first, and then extend the form to non-linear learning approaches

like SVM and Neural Networks.

For the linear programming case, we formulated a simple distance dependent,

double-binned hydrogen bond potential based on the coordinates of the polar hydrogen

atom and acceptor atom at protein interfaces. The functional form of the potential is as in

Eq. (3.1). This formulation is similar to that of the atomic potential in Chapter 2.

Ehbond (X) = n(α ,d)u(α ,d)
α ,d
∑ (3.1)

The energy of a complex, X, E(X) is dependent on the coarse-grained particle

types of the polar hydrogens, h, and electronegative acceptor atoms, a, at the interface,

and the distance d between them. Note that the polar hydrogen and acceptor atoms can

come from either of the two interacting proteins in the complex. We denote the

interacting particle pair type (h,a) by a single parameter, α henceforth. n(α ,d) is the

number of times a hydrogen acceptor particle pair of type α is at an interface distance

range, d. The value of the vector n depends on the geometry of the docking model.

 52

u(α ,d) is the corresponding parameter in the potential associated with the particular

pairwise interaction type of (α ,d) . The energy is linear in the parameters, u, that define

the potential.

For the particle types of polar hydrogen and acceptor, the coarse-graining

classification that resulted in the best accuracy with the minimum number of potential

parameters, was based on the residue types of the polar hydrogen and acceptor. Residues

were classified into four types: Hydrophobic (ALA, VAL, ILE, LEU, PRO, TRP, PHE,

MET), Polar (SER, THR, CYS, ASN, GLN, TYR, GLY), Positive charged (ARG, LYS,

HIS) and Negative charged (ASP, GLU). Polar hydrogens and electronegative acceptor

atoms were accordingly classified into four different particle types based on their residue

type. These are denoted as hyd, pol, pos ,neg{ } in Eq. (3.1). Various other types of

coarse-graining were attempted and are compared in the Results and Discussion section,

under Development of the Potential. Note that the potential here is directional and not

symmetric in the particle types, h and a, unlike traditional residue or atomic pairwise

potentials. The total number of particle type pairs is hence 4 *4 = 16 .

To model the distance between hydrogen and acceptor atoms, we used two

distance bins [0-4, 4-8 Å]. While the usual interface hydrogen bond distance is around

2.5 Å [46], increasing the first distance bin to 4 Å from 2.5 Å led to an increase in

accuracy of 15.8% in the ZLAB unbound docking test sets (accuracy was based on the

number of targets with an acceptable model in the top 10 models). Using a smaller cutoff

of 2.5 Å was found to be useful for bound docking but not for models from realistic

unbound docking, where the monomer structures themselves are inexact by 1 Å or more.

The addition of a second distance bin from 4-8 Å further increased the accuracy of the

hydrogen bond potential in reranking. The data for this is shown in the Results section

under Development of the Potential. The longer-range interactions might carry additional

 53

signal possibly from water-mediated hydrogen bonding interactions. Others [75, 76] have

previously shown that coarse-grained potentials for protein interaction are more accurate

when a second well representing water-mediated interactions is added. It is also likely

that unbound docking models are lower in accuracy by more than 2 Å, and hence long-

range interactions are essential to describe the interactions in inexact models. For

example, the ZLAB Benchmark 4.0 contains 21% of targets with unbound to bound

interface RMSD greater than 2 Å.

The 2 distance bins and 16 atom type pairs result in a total of 32 parameters for

the hydrogen bond potential. We note that the potential is purely distance-dependent and

not angle dependent. Using a constraint on the hydrogen bond angle (angle between the

donor-to-polar hydrogen and polar hydrogen-to-acceptor) to be between 1200 and 1800

decreased the accuracy of the hydrogen bond potential by 36.4% when reranking our

models in the ZLAB unbound docking test set (accuracy again based on the number of

targets with an acceptable model in the top 10 models). Hence we think that the angle

dependence is more appropriate when using high-resolution bound docking models and is

not suitable for the relatively imprecise unbound docking models.

Learning Algorithm 1: Pairwise Learning using Linear Programming (PLLP)

In pairwise learning for linear programming, a pair of energies, E, of correct (

Xcorrect) and incorrect (Xincorrect) models is compared to obtain a set of inequalities of the

type E(Xincorrect) > E(Xcorrect) . These inequalities are solved to obtain the parameters of the

potential, u in Eq. (3.1). The set of inequalities is linear in the parameters u , as noted in

Chapter 2. Note that our definition of correct model (interface RMSD less than 2.5 Å)

and incorrect model (interface RMSD greater than 7 Å) is the same as in Chapter 2.

 54

The inequalities we solve are also the same set of inequalities as in Chapter 2.

They are shown again in Eq. (3.2). The first inequality compares correct and incorrect

models. The second and third inequalities help shape the binding funnel more precisely at

the bottom of the funnel. The second inequality stipulates that the energy of high-quality

hits or near-native models (with interface RMSD less than 1.5 Å) should be lower than

that of good hits (with interface RMSD between 1.5 and 2.5 Å). The last inequality is

based on a sorting based on iRMSD of hits within 2.5 Å interface RMSD for each

learning set complex. The energy of a hit i, which is ranked just above the hit i+1, should

be lower than the energy of hit i+1. These inequalities compare all nhits pairwise adjacent

hits of a target. zi is the slack variable which is the error in satisfying each constraint.

E(Xincorrect − Xcorrect) >1− zi ;zi > 0

E(Xgood _ hit − Xhigh − quality _ hit) >1− zi ;zi > 0

E(Xhit
i+1 − Xhit

i) >1− zi;i = 1,2,....nhits −1 ;zi > 0

 (3.2)

The objective function coupled with the constraints, during learning is shown in

Eq. (3.3). The sum of errors in each constraint zi is minimized along with the sum of

parameter values, u. The constant γ = 1 .

min u(α ,d)
α ,d
∑ + γ zi

i
∑

1

 (3.3)

The three sets of inequalities in Eq. (3.2) coupled with the objective function in

Eq. (3.3) form the linear program for the hydrogen bond potential, which was solved to

obtain the parameters u. The top 1000 models of all the 628 targets in the learning set

along with the native structure for these targets were used to formulate the inequalities.

The simulated annealing MD procedure described earlier was performed on all the

models and native structures, in order to enhance the number of interface hydrogen

bonds. The total number of inequalities for the hydrogen bond potential was 5,820,745

 55

and the number of parameters to be determined was 32. The linear program was solved

using PF3 [39, 40], a parallelized linear programming solver designed for development of

protein folding potentials. It is an extension of standard interior point solvers for the

special case of protein folding problems where the number of inequalities (millions) is

much higher than the number of parameters (~100’s), which enables efficient

parallelization of the constraint matrix.

Learning Algorithm 2: Support Vector Machines

Support vector machines are a class of learning algorithms which, when given a

set of positive and negative examples, learn a model that maximizes the separation or

margin between the positive and negative distributions [77]. Assume we are given a set
of Ntrain training examples, xi ≡ xi,1, xi,2xi,n , yi();i = 1,2....Ntrain{ } , where each example

is an input xi an n -dimensional vector with a corresponding output yi ∈{−1,+1}

denoting the distribution (positive or negative) that the example belong to. Assuming the

two distributions can be linearly separated with an n-dimensional hyperplane, SVMs seek

to find the hyperplane that maximize the margin between the nearest examples of the two

distributions. The optimization problem solved by the so-called soft margin SVM

classifier [77, 78] is shown in Eq. (3.4).

min
w,b

w 2 +C zi
i
∑ subject to

yi
w ⋅ xi + b() >1− zi zi > 0

 (3.4)

It is called a soft-margin classifier, as the positive and negative examples need not

be strictly well-separated. Misclassification of examples is allowed, and is denoted by the

slack variable zi , for each example, which represents the extent of deviation of the

misclassified example from the hyperplane. w is the n-dimensional vector normal to the

hyperplane we are looking for, and b is a bias constant. These two parameters determine

 56

the SVM hyperplane, and their values are found by solving the quadratic program in Eq.

(3.4), with one constraint per training example, and an optimization condition that

requires minimizing the square of the vector w and the sum of non-negative errors, zi . C

is the cost parameter that controls the tradeoff between training error and margin. Larger

the value of C, greater the penalty term so the margin for misclassification is smaller

[77].

To model the hydrogen bond potential using SVMs, we used a variant of the

binary classifier SVM, for regression, i.e. the output is not one of two classes as shown

above, but a floating point value representing the hydrogen bond energy. Each model and

native structure in the learning set was used as one training example: there were 625729

examples in all. The input features, or xi
→

, in Eq. (3.4) was the set of 32 geometric

contacts for a model, relevant to hydrogen bonding, depicted by n(α ,d) in the section on

linear programming. These feature values were scaled between -1 and 1 for numerical

stability and to prevent the features with the largest fluctuation from dominating. The

output, or yi in Eq. (3.4), represents the hydrogen bond energy. The energy value used in

training was the interface RMSD of the model to its native structure. A desirable property

of a good potential is positive correlation with the interface RMSD, i.e. lower the RMSD,

lower the energy and better the model. Hence interface RMSD was used as the training

output.

Further, SVMs also allow for non-linear separation of distributions. This is done

by mapping the input data to higher dimensions using kernel functions: the rationale is

that it might be easier to linearly separate the data in higher dimensional space, compared

to the original space. Kernel functions are defined on pairs of inputs and typical choices
used are the polynomial kernel K(xi , x j) = s(xi ⋅ x j)+ c()d where s, c, d are constants with

d representing the degree of the polynomial; radial basis or Gaussian kernel

 57

K(xi , x j) = e
−γ xi −x j

2

where γ is a constant to be tuned and sigmoid kernel

K(xi , x j) = tanh(s(xi ⋅ x j)+ c) where s and c are constants [79]. The constant parameters

in these kernels define the SVM potentials, and they need to be tuned while training.

SVMLight [79] was the package used for training and testing. The optimization

problem in Eq. (3.4) is solved in SVMLight by a fast heuristic that involves stochastic

sampling of the set of inequalities, and breaking them down into smaller quadratic

problems that are solved at each step. Linear and non-linear SVMs were used to model

the hydrogen bond potential. For linear SVMs, the cost parameter, C, was varied in
powers of 2 C ∈ 2−5,2−3,2−1,2 ,23,25,27,29,211{ } to obtain different potentials. The

potential with the best performance in ranking models on the learning set was chosen as

the representative linear SVM potential. Similarly for the non-linear sigmoid kernel, the

cost parameter was varied as above, while other parameters were kept fixed. The same

was the case for the polynomial kernel, where in addition to the cost parameter, the

degree of the polynomial was varied d ∈ 3,5,7,9{ } . Radial basis function kernel was

omitted as the training time was too long (3+ days). One representative non-linear

potential was chosen among the polynomial and sigmoid kernel potentials, according to

the best ranking performance on the learning set.

We note that we also tried binary classification using SVMs to label model into

one of two classes: correctly docked or misdocked structure, using an interface RMSD

less than 4 Å to define correct structure. The idea was to see if this prediction could help

fish out near-native structures from the set of models. However docking datasets are

highly imbalanced: i.e. the number of negative examples is much higher than the number

of positive examples. In these cases, binary SVM classifiers behave more like a majority

classifier: classifying almost all examples as negative. SVMs allow for tuning of the cost

 58

parameter for imbalanced datasets, such that different cost values C are used for positive

and negative examples [80]. In our case, C+ >>>C− i.e. the cost for misclassifying a

positive example is much higher than the cost for misclassifying a negative example.

However the models learnt using this fix in cost penalties did not turn out to be different

and in general, classification was found to be not useful for reranking.

Learning Algorithm 3: Neural Networks

Artificial neural networks are another class of machine learning algorithms that

seek to model the outputs of a problem as a non-linear function of the features or inputs.

The non-linear model is that of a network with one input layer, one output layer and one

or more hidden layers connecting the input and output layers. Each layer i contains a

fixed number of neurons, which receive the input from all the neurons of the previous

layer, i-1, and transform them by a some non-linear function (called activation function)

on the inputs. Outputs from the neurons in layer i are propagated to neurons in layer i+1.

Eq. (3.5) is the Eq. for ym
n , the output of the mth neuron in the nth layer[81, 82].

It is a non-linear function, f, of yk
n−1 , the outputs of all neurons indexed k = 1,2,...Nn−1 in

the n-1th layer. The outputs are each scaled by a weight rk ,m
n−1,n , which is the weight of the

connection between the kth neuron in the n-1th layer and the mth neuron in the nth layer.

Also a bias constant b is added to the weighted linear combination of the previous layer

outputs. The function f is usually the sigmoidal function, f (x) = 1
1+ e− x

, or the hyperbolic

tangent f (x) = tanh(x) or Gaussian function f (x) = e−ax
2

. The resulting potential is

continuous and differentiable in coordinate space.

 ym
n = fm

n bm
n + rk ,m

n−1,nyk
n−1

k=1

Nn−1

∑⎛
⎝⎜

⎞
⎠⎟ (3.5)

 59

For the hydrogen bond potential, we used 1 and 2 hidden layers. The output of the

single neuron of the output layer y1
3 (for one hidden layer and 3 layers in all) and y1

4 (for

two hidden layers and 4 layers in all), represents the hydrogen bond energy as predicted

by the Neural Network. The inputs to the neural network i.e. neurons of the first layer,
yi
1;i = 1,2...32{ } are the 32 geometrical features of hydrogen bonding for a model,

represented byn(α ,d) , in the section on linear programming and SVMs.

The weights r and bias b completely determine the network. They are determined

by iterative gradient descent on a training set. The objective function minimized during

training is the Mean-Squared Error (MSE) between the current predicted outputs from the

network and the correct outputs for the training set examples. The MSE at the kth

iteration is shown in Eq. (3.6), where Ntrain is the number of training examples, yi
NN ,k is

the output of the neural network in the kth iteration for the ith training example and

yi
correct is the correct output for that training example. We are assuming here that this

neural network produces only a single output (hydrogen bond energy in our case).

MSEk =
1

Ntrain

y
i

NN ,k − y
i

correct()2
i=1

Ntrain

∑ (3.6)

The algorithm used for updating the weights was Rprop [83], as it consistently

produced networks with lower MSE than other weight update algorithms like Quickprop,

Backpropagation and Batch Update [84]. In Backpropagation, the weights of the network

are updated every time a new training example is seen, which means that they are

updated multiple times per training iteration. Batch Update and Quickprop are advanced

Backpropagation algorithms where weights are updated once all the training examples

are seen i.e. only once per iteration. The above algorithms require one to tune additional

parameters such as the step size or learning rate. In contrast, Rprop is one of the widely

 60

preferred advanced update algorithms, and uses a dynamic step size for every step,

updating the weights once per iteration. We used Rprop for training since it produced

networks with lower MSE values than the other training algorithms for our case.

Different stopping conditions are used to terminate training in neural networks.

They can be based on the number of iterations (train till a maximum number of iterations

is reached), or a threshold on the training error (train till the MSE is less than ε , a small

number) or a threshold on the training progress (train till improvement in MSE over the

last T iterations is no more than ε) [85]. The disadvantage of the above approaches is

that it is possible to overfit the network to the training set. Instead, we follow the

common protocol of splitting the training set into an 80% set for training and 20% set for

validation. The stopping conditions used were the following: Train until a maximum of

T = 500 cycles (usually never reached). In each cycle, we train for 10 iterations. In each

iteration, all the training samples in the 80% set are seen and weights of the network are

updated. At the end of each cycle, we test the network on the 20% validation set and get

the MSE on the validation set (validation error) as well as MSE on the training set

(training error). If the percentage improvement in the validation error over the last 15

cycles was found to be less than 0.01%, then training was halted. Additionally if the

improvement in the training error was found to be less than e-05 over the past 15 cycles,

training was stopped.

The C-based neural network package, Fast Artificial Neural Networks (FANN)

[84] was used for training and testing the networks. Fully connected networks were used,

and inputs and outputs were scaled to [-1, 1]. The set of inputs, outputs and the training

examples were exactly the same as that used for SVMs. Inputs were the 32 geometric

features describing the hydrogen bond potential, output used to model the hydrogen bond

 61

potential energy was the interface RMSD of the model to its native structure. In all,

625729 training samples were used.

Multiple architectures i.e. different number of hidden layers and neurons were

experimented with, to obtain different models of the hydrogen bond potential. Also

different hidden layer non-linear functions and output layer functions were explored.

Linear and symmetric sigmoid functions were used for the output layer and networks

with sigmoid outputs produced lower validation MSE. For the hidden layer, Gaussian and

sigmoid functions were tried and networks with hidden layer sigmoid functions produced

lower validation MSE. Fixing the training algorithm and hidden and output layer

functions, different architectures of the network were tried and the final network selected

was the one with the smallest validation MSE, as shown in the Results section.

We note that we also tried to perform classification instead of regression for

neural networks, as in the case of SVMs. However due to the imbalance in the docking

datasets: number of negative examples is much higher than the number of positive

examples, the neural network behaved similar to the SVM and classified almost all

models as negative examples, rendering the output to be uninformative for ranking.

3.4 RESULTS AND DISCUSSION

In this study, we first test the reranking performance of the newly developed

hydrogen bonding potentials, by reranking the top 1000 models in the last step using the

hydrogen bonding potentials alone, without C3. We then combine the best performing

hydrogen bond potentials with C3, to improve the quality of final reranking.

The hydrogen bond potential is first developed in the linear programming

framework, and various types of coarse-graining for atom types and distance bins are

 62

systematically considered. Once the best performing coarse-graining is known from the

linear programming results, the same functional form for the potential is used for the two

other learning algorithms. This enables us to compare the performance of different

learning algorithms. The results of the ranking performance of hydrogen bond potentials

from different learning methods, alone and in combination with C3, are compared, on

datasets of soluble and transmembrane complexes.

Development of the Hydrogen Bond Potential and Results from Pairwise Learning
using Linear Programming

In this section we explore various types of coarse-graining models for the

hydrogen bond potential derived using pairwise learning from linear programming

(PLLP).

a. Using Molecular Dynamics improves the hydrogen bond signal

In Table 3.2, two different sets of models are used for calculating the hydrogen

bond energy. These sets of models are compared based on their ability to produce

accurate hydrogen bond potentials for reranking. In the first case, the hydrogen bond

potential is derived from, and applied to, DOCK/PIERR models before the simulated

annealing MD procedure described in this paper. These are models from rigid FFT

docking which have previously undergone side chain remodeling and energy

minimization [41]. In the second case, the learning and testing of the hydrogen bond

potential is done on models that have undergone the simulated annealing MD procedure,

in addition to the previous side chain remodeling and energy minimization. The results

shown are for a simple hydrogen bond potential with 4 particle types each, for hydrogen

and acceptor atoms, based on the residues they belong to (hydrophobic, polar, positive

charged and negative charged) and a single distance bin from 0-4 Å. This resulted in 16

parameters in all, the values of which were obtained from linear programming using the

 63

learning set models, as described previously in the Methods section. The number of near-

native models or hits i.e. models within 4 Å interface RMSD of the experimental

structure, within the top 10 and top 1 structures, are reported for the ZLAB and novel test

sets. These final models are obtained by ranking the top 1000 models from

DOCK/PIERR rigid docking using the hydrogen bond potential. Table 3.2 shows that the

hydrogen bond potential has a better accuracy when simulated annealing is used to

enhance the number of interface hydrogen bonds. So here onwards, we report results

from potentials applied to models derived from the simulated annealing MD procedure.

Table 3.2 The performance of hydrogen bond potential on two different model sets: one
without MD and one after MD is compared, on the ZLAB and novel test
sets. The numbers of hits in the top 10 and top 1 and number of targets with
at least one hit in the top 10 are reported. A hit is a model rated acceptable
according to CAPRI i.e. with an interface RMSD of 4 Å or less. Note that
the potential has 4 particle types of hydrogen and acceptor (hyd, pol, pos,
neg) and 1 distance bin [0-4 Å], and is a simpler form of the final potential
we derive.

Models used to
derive and
calculate

hydrogen bond
potential

ZLAB test set (165 targets) Novel test set (52 targets)

Number of hits
in the top

10/Number of
targets with a hit

in the top 10

Number of
targets with a
hit in the top

1

Number of
hits in the top
10/Number of
targets with a
hit in the top

10

Number of
targets with a
hit in the top

1

Before
simulated

annealing MD
27/21 2 9/6 1

After simulated
annealing MD 41/20 5 18/11 3

b. Exploration of particle types

Various types of coarse-graining were attempted for the particle types of

hydrogen and acceptor. These ranged from the simple element level classification based

 64

on the element types of the atoms; to the more complicated classifications that depend on

the residue type, placement in the side-chain or backbone and hybridization of the atoms.

Table 3.3 shows the number of parameters for each type of coarse-graining and the

accuracy of the resulting hydrogen bond potential derived from linear programming.

Table 3.3 (a) Different definitions of hydrogen and acceptor particle types, and the
corresponding number of parameters. The abbreviations are as follows: i.
residue types: hyd: hydrophobic, pol: polar, pos: positive charged, neg:
negative charged, ii. element types: N: Nitrogen, O: Oxygen, S: Sulphur and
iii. atom placement : Bkbn: backbone, Sc: side-chain. Other abbreviations
are standard 3-letter amino acid names.

Basis of
classification

Listing of hydrogen
atom types

Listing of acceptor
 atom types

Number of
parameters

in the
potential

Element types of
donor atom bonded

covalently to
hydrogen and
acceptor atom

1. N
2. O
3. S

1. N
2. O
3. S

9

Residue type of
hydrogen and
acceptor atom

1. hyd
2. pol
3. pos
4. neg

1. hyd
2. pol
3. pos
4. neg

16

Element type as well
as residue type of
donor bonded to
hydrogen, and
acceptor atom

1. N: hyd
2. N: pol
3. N: pos
4. N: neg
5. O: pol i.e.

SER/THR/TYR
6. S: pol i.e. CYS

1. O: hyd
2. O: pol
3. O: pos
4. O: neg
5. N: pos i.e.

HIS
6. S: pol i.e.

CYS

36

Table 3.3 (a) continues on the next page.

 65

Basis of
classification

Listing of hydrogen
1. atom types

Listing of acceptor
1. atom types

Number of
parameters

in the
potential

Residue type,
element type, side-

chain/backbone
placement of donor
bonded to hydrogen,
and acceptor atom

2. Bkbn N: hyd
3. Bkbn N: pol
4. Bkbn N: pos
5. Bkbn N: neg
6. Sc N: hyd i.e.

TRP
7. Sc N: pol i.e

ASN/GLN
8. Sc N: pos i.e.

ARG/LYS/HIS
9. Sc O: pol i.e.

SER/THR/TYR
10. Sc S: pol i.e.

CYS

2. Bkbn O: hyd
3. Bkbn O: pol
4. Bkbn O: pos
5. Bkbn O: neg
6. Sc O: pol i.e.

SER/THR/TY
R/ASN/GLN

7. Sc O: neg i.e.
ASP/GLU

8. Sc N: pos i.e.
HIS

9. Sc S: pol i.e.
CYS

72

Residue type,
element type, side-

chain/backbone
placement and

chemical similarity
(e.g. hybridization) of

donor bonded to
hydrogen, and
acceptor atom

1. Bkbn N: hyd
2. Bkbn N: pol
3. Bkbn N: pos
4. Bkbn N: neg
5. Sc N: TRP
6. Sc N: ASN/GLN
7. Sc N: ARG-NE
8. Sc N: ARG-

NH1/NH2
9. Sc N: LYS
10. Sc N: HIS
11. Sc O:

SER/THR/TYR
12. Sc S: CYS

1. Bkbn O: hyd
2. Bkbn O: pol
3. Bkbn O: pos
4. Bkbn O: neg
5. Sc O:

SER/THR/TY
R

6. Sc O:
ASN/GLN

7. Sc O:
ASP/GLU

8. Sc N: HIS
9. Sc S: CYS

108

In Table 3.3 (a), various types of coarse graining of hydrogen and acceptor

particle types are shown along with the corresponding number of parameters in the

resulting potential. Table 3.3 (b) shows the effect of different types of coarse graining of

atom types, on the accuracy of the hydrogen bond potential for reranking.

 66

Table 3.3 (b) The performance of hydrogen bond potentials with one distance bin [0-4 Å]
and various coarse-graining types for hydrogen and acceptor atoms is
shown. The hydrogen bond potential is applied for reranking the top 1000
models from DOCK/PIERR rigid docking of each target, followed by side
chain remodeling, minimization and simulated annealing MD. The number
of hits in the top 10 and top 1 and number of targets with at least one hit in
the top 10 are reported for the ZLAB and novel test sets. A hit is a model
rated acceptable according to CAPRI i.e. with an interface RMSD of 4 Å or
less.

Number of
potential

parameters
based on
atom type

coarse-
graining in
Table 3 (a)

ZLAB test set
(165 targets)

Novel test set
(52 targets)

Number of
hits in the

top
10/Number
of targets
with a hit
in the top

10

Number
of

targets
with a
hit in

the top
1

Number of
hits in the

top
10/Number
of targets
with a hit
in the top

10

Number
of

targets
with a
hit in

the top
1

9 18/14 2 8/6 1
16 41/20 5 18/11 3
36 28/19 4 12/8 1
72 33/20 4 14/9 1
108 35/24 5 17/10 2

The number of distance bins is fixed to one [0-4 Å]. The hydrogen bond potential

is applied for reranking the top 1000 models from DOCK/PIERR rigid docking followed

by side chain remodeling, minimization and simulated annealing MD. We first start with

the smallest number of parameters (9 parameters), based on just the element types of the

acceptor and donor atom, which is covalently bonded to the polar hydrogen atom. Next

we explore the classification based on the residue type of the hydrogen and acceptor (16

parameters). We then incrementally add complexity to the coarse-graining by including

the residue type along with element type (36 parameters), adding backbone/side-chain

distinction (72 parameters) and coarse-graining finally based on chemical similarity

(hybridization for instance, 108 parameters).

 67

In Table 3.3 (b), we note that coarse-graining according to residue types (potential

with 16 parameters) is better than the coarse-graining according to element type,

indicating that protein-protein interactions seem to be residue-specific. Additional

complexity, with potentials with more than 16 parameters, does not lead to significantly

improved performance on both the test sets. Hence we chose to retain the simple potential

with 16 parameters for further calculations. In order not to over-fit the potential by

including too many parameters, we further did not consider potentials with 200 and more

parameters for atom types. We note again that the above calculation corresponds to a

single distance bin, and in the succeeding section we explore the effect of adding distance

bins, and consequently additional parameters related to that.

Exploration of distance bins

In Table 3.4, we show the effect of additional distance bins longer than the initial

[0-4 Å] bin. We add a second distance bin for interactions in the range [4-8 Å] and even a

third one in the range [8-12 Å]. As explained in the section on Functional form, the

longer-range interactions represent signal possibly from water-mediated hydrogen

bonding interactions, or from interactions in unbound docking models that are imprecise.

The number of atom type pairs is fixed to 16, as per the results of the previous section. It

is seen that the second distance bin [4-8 Å] provides additional signal over the first one.

However, the [8-12 Å] distance bin representing long-range electrostatic interactions

does not carry additional signal over the previous 2 bins. Hence we use the version with 2

distance bins.

 68

Table 3.4 The performance of hydrogen bond potentials with different distance bins is
shown. The number of hydrogen and acceptor atom type pairs is fixed to 16.
The hydrogen bond potential is applied for reranking the top 1000 models
from DOCK/PIERR rigid docking of each target, followed by side chain
remodeling, minimization and simulated annealing MD. The number of hits
in the top 10 and top 1 and number of targets with at least one hit in the top
10 are reported for the ZLAB and novel test sets. A hit is a model rated
acceptable according to CAPRI i.e. with an interface RMSD of 4 Å or less.

Distance bins
used in Å

ZLAB test set
(165 targets)

Novel test set
(52 targets)

Number of
hits in the

top
10/Number
of targets
with a hit
in the top

10

Number
of

targets
with a
hit in

the top
1

Number of
hits in the

top
10/Number
of targets
with a hit
in the top

10

Number
of

targets
with a
hit in

the top 1

[0-4] 41/20 5 18/11 3
[0-4,4-8] 50/25 5 28/15 3

[0-4,4-8,8-12] 49/23 7 28/15 5

This leads to a hydrogen bond potential with 16 atom type pairs and 2 distance

bins, a total of 32 parameters. Solving for the parameters of the potential using linear

programming, we obtain a solution with 71.4% of the inequalities satisfied on the

learning set. We note that this percentage is significantly less than that of previously

developed atomic and residue potentials [41]. One reason for could be the number of

parameters; the number of parameters in the previously developed atomic potential was 2

orders of magnitude larger (1584 parameters) and the residue potential was an order of

magnitude larger (252 parameters). The other reason could be that traditional

residue/atomic interactions are more specific than hydrogen bonding interactions in

soluble protein interfaces; possibly because of the competition of protein-protein

hydrogen bonds with water.

 69

For final reranking of the top 1000 models from DOCK/PIERR, we combine the

hydrogen bond potential along with the potential C3 [41], a previously developed

combination of interface residue and atomic potentials. We first calculate the C3 term

from the rigid docking models that are refined i.e. subject to side chain remodeling and

energy minimization [41]. Then the hydrogen bond term is calculated on the models after

the additional simulated annealing MD procedure described in this paper. A linear

combination of C3 with the hydrogen bonding term is used for reranking the top 1000

models, as shown in Eq. (3.7). Weight of the hydrogen bonding term is derived from the

performance on the learning set targets, to be 4.0. The performance of the hydrogen bond

potential from linear programming is further discussed in Table 3.5 for soluble proteins

and Table 3.7 for membrane proteins. The performance of the linear combination of the

hydrogen bond term with C3 is shown in Table 3.6 for soluble protein datasets and Table

3.8 for membrane protein datasets.

Etotal = C3+w.Ehbond (3.7)

Results from SVM potentials

SVM regression potentials were derived for three different kernel choices: linear,

sigmoidal and polynomial kernels, and various choices of cost parameters and degree of

polynomial, as mentioned in the Methods section. For the linear and sigmoidal kernels,

each value of cost parameter produced a new SVM potential. For the polynomial kernel,

each combination of cost parameter and degree of polynomial produced a new SVM

potential. One linear and one non-linear SVM potential were chosen; the potentials were

chosen based on the performance of the resulting potential in reranking the top 1000

models of targets in the learning set. In particular, the linear kernel with cost

C = 29 = 512 was chosen, as it produced the highest number of learning set targets with a

 70

hit in the top 10, as shown in Figure 3.1 (a). Similarly among non-linear kernels, the

polynomial kernel with degree d = 5 and cost C = 0.12 was chosen for the same reason.

In this case, multiple cost values for polynomial kernel d = 5 performed equally well, as

shown in Figure 3.1 (b). Hence we chose the potential with the smallest C value, or

widest (most general) margin between correctly and incorrectly docked models.

Table 3.5 shows the performance of the chosen non-linear and linear regression

SVM hydrogen bond potentials alone, without C3, for reranking docking models on the

soluble protein test sets. Performance of the non-linear SVM potential is not better than

that of the linear SVM potential. This indicates that the set of models is linearly separable

and use of non-linear functions should be avoided as this can lead to overfitting. Further,

linear combinations of the SVM linear potential with C3 and SVM non-linear potential

with C3 were obtained separately, as in Eq. (3.7). The weight, i.e. the parameter w in Eq.

(3.7) was fixed to be 0.008 for the linear SVM and 0.005 for the non-linear SVM, using

the linear combination with the best ranking performance on the learning set. The

performance of the two linear combination potentials is discussed in Table 3.6 for soluble

protein datasets and Table 3.8 for membrane protein datasets.

Figure 3.1 (a) Model selection for linear SVMs. The accuracy of each model (in terms of
number of learning set targets with a top 10 hit) is plotted as a function of
the cost parameter. The linear SVM with cost C = 29 = 512 produces
maximum number of targets with a hit.

-6 -4 -2 0 2 4 6 8 10 12
0

20

40

60

80

100

120

140

160

180

200

220

Value of cost parameter as a power of 2

Nu
m

be
r o

f l
ea

rn
in

g
se

t t
ar

ge
ts

 w
ith

 a
 to

p
10

 h
it

Performance of different linear SVM models

 71

Figure 3.1 (b) Model selection for non-linear SVMs: sigmoid and polynomial kernels
with degrees 3,5,7 and 9. The accuracy of each model (in terms of number
of learning set targets with a top 10 hit) is plotted as a function of the cost
parameter. The polynomial SVM with degree d = 5 produces maximum
number of targets with a hit.

Results from Neural Network potentials

Different network architectures were attempted for modeling the hydrogen bond

potential with neural networks: one hidden layer with 2, 5, 10, 15, 20, 32, 40 and 50

neurons and 2 layers with 2, 5 and 7 neurons. We did not increase the number of neurons

or layers further, as the mean-squared error at the end of training was not higher for the

larger networks compared to the networks we report here. Figure 3.2 shows the behavior

of MSE as a function of the number of network layers and neurons. The network with

one hidden layer and 10 neurons was chosen as it had the lowest MSE. The neural

network hydrogen bond potential was combined with atomic and residue potentials in C3

for reranking, as in Eq. (3.7), fixing the weight w to be 3.3 based on ranking performance

on the learning set. The performance of the neural network hydrogen bond potential alone

is in Table 3.5 for soluble proteins and Table 3.7 for membrane proteins, while the

performance of the linear combination with C3 is in Tables 3.6 and 3.8.

-5 0 5 10
0

20

40

60

80

100

120

140

160

180

200

220

Value of cost parameter as a power of 2

N
um

be
r o

f l
ea

rn
in

g
se

t t
ar

ge
ts

 w
ith

 a
 to

p
10

 h
it

Performance of different non-linear SVM models

Sigmoid
Poly:d=3
Poly:d=5
Poly:d=7
Poly:d=9

 72

Figure 3.2 Model selection for neural networks. The number of hidden layer neurons is
plotted against the Mean Squared Error on the validation set during training.
The networks with one hidden layer are shown in red while the networks
with two hidden layers are shown in blue. The network with one hidden
layer and 10 neurons has least error.

Performance of Hydrogen Bond Potentials on Soluble Protein Complexes

The hydrogen bond potential developed by pairwise learning using linear

programming performs the best while the neural network potential performs next best.

Also, as discussed before, the non-linear SVM is not necessarily better than the linear

SVM. Table 3.6 shows the performance of the hydrogen bond potentials in combination

with C3.

In combination with C3, the neural network potential performs best overall,

followed by the linear programming potential. Addition of the neural networks hydrogen

bond potential results in a 16.94% increase in the number of targets with a top 10 hit in

the ZLAB set increases, while the number of targets solved in the novel set is about the

same. But the number of top 10 hits is enriched for both the ZLAB and novel sets, by

14.39% and 20.63 % respectively.

0 10 20 30 40 50

0.0105

0.0106

0.0106

0.0107

0.0107

0.0108

0.0108

0.0109

Number of hidden layer neurons

M
SE

 o
n

va
lid

at
io

n
se

t

MSE on the validation set of different NN architectures

One hidden layer
Two hidden layers

 73

Table 3.5 The performance of hydrogen bond potentials from different learning
algorithms is shown on ZLAB and novel test sets. A hit is a model rated
acceptable according to CAPRI i.e. with an interface RMSD of 4 Å or less.

Learning
method for
generating

hydrogen bond
potential

ZLAB test set
(165 targets)

Novel test set
(52 targets)

Number of
hits in the

top
10/Number
of targets

with a hit in
the top 10

Number
of

targets
with a
hit in

the top
1

Number of
hits in the

top
10/Number
of targets
with a hit
in the top

10

Number
of

targets
with a

hit in the
top 1

Pairwise
Learning using

Linear
Programming

50/25 5 28/15 3

Linear SVM,
c=512 17/12 1 17/8 3

Non-linear SVM,
Polynomial

kernel,
c=0.12, d=5

 17/9 1 11/10 1

Neural Network
1 hidden layer

with 10 neurons
40/24 3 23/10 4

We note that the hydrogen bond potential that works best in combination with C3

(neural networks) is not the one that works best alone. This discrepancy maybe because

the atomic potential in C3 and the hydrogen bond potential used the same set of

inequalities for learning and there is the possibility of overlapping in learning leading to

some redundancy in the linear combination signal. This suggests that using different

learning algorithms for different reranking potentials might be useful to capture

heterogeneous signal. SVM potentials perform the worst and do not seem to add much

signal to the atomic and residue potentials already present in C3. We also note that the

 74

ZLAB and novel test sets behave slightly differently. This is because of the nature of

difficulty of the datasets: in the novel set all targets chosen were such that monomer

unbound to bound distance was within 1-2 Å, while in the ZLAB test set, 21% of the

targets had monomer unbound to unbound distance greater than 2 Å.

Table 3.6 The performance of hydrogen bond potentials from different learning
algorithms in combination with C3 is shown on ZLAB and novel test sets. A
hit is a model rated acceptable according to CAPRI i.e. with an interface
RMSD of 4 Å or less.

Learning
method used
to derive the

hydrogen
bond

potential

Potential used
for reranking

ZLAB test set
(165 targets)

Novel test set
(52 targets)

Number of
hits in the

top
10/Number
of targets

with a hit in
the top 10

Number
of

targets
with a
hit in

the top
1

Number of
hits in the

top
10/Number
of targets
with a hit
in the top

10

Numbe
r of

targets
with a
hit in

the top
1

NA C3 132/59 19 63/26 13
Pairwise
Learning

using Linear
Programming

Linear
combination with

C3
 142/60 25 71/29 13

Linear SVM,
c=512

Linear
combination with

C3
135/61 18 63/27 12

Non-linear
SVM,

Polynomial
kernel,

c=0.12, d=5

Linear
combination with

C3
136/61 22 66/26 13

Neural
Network

1 hidden layer
with 10
neurons

Linear
combination with

C3
151/69 21 76/27 14

 75

We also observe that the signal for reranking obtained from hydrogen bond

potentials alone is weaker than the signal obtained from atomic and residue potentials.

Indeed, while the average interface is stipulated to have around 10 hydrogen bonds [86],

[46], an analysis of the set of native structures in our learning set suggested that a

significant fraction 105/628 did not have any hydrogen bonds within a distance of 4 Å. It

is possible that the hydrogen bonds between protein interfaces have to compete with

those between water and protein, and this results in the hydrogen bond signal being weak.

The competition with water is not present in hydrogen bonds in membrane protein

interfaces, which we discuss next.

Hydrogen Bond Potentials for Transmembrane Complexes

Till now, the discussion has centered on protein complexes in aqueous solution.

However, protein complexes integral to the cell membrane form another important class

of complexes: they perform critical functions like cell signaling and transport, and their

misfolding and aggregation results in diseases like Alzheimer’s and Parkinson’s [87].

Hence we examine the performance of docking potentials on membrane proteins too. Due

to the abundance of experimental data for soluble proteins, the potentials used in docking

algorithms are based on soluble protein complexes. However, recent studies have shown

that these algorithms and potentials can be applied to predict membrane complexes with

reasonable accuracy [87]. Here we explore the performance of the developed hydrogen

bond potentials on test sets of membrane proteins.

For transmembrane complexes, hydrogen bond potentials alone seem to be more

accurate than the atomic and residue potentials in C3, as Table 3.7 suggests. The

increased signal in this case could be because of lack of competition with water for

hydrogen bond formation. The SVM potentials, which did not perform well in the soluble

 76

protein case, perform better here. The linear programming potential performs next best in

reranking membrane protein models.

In a previous study of extension of DOCK/PIERR to membrane protein docking,

it was found that adding an energy term (MTE) that mimics the membrane environment

was beneficial in ranking (see Chapter 4). In Table 3.8 we show the linear combination of

C3 with the hydrogen bonding term from different learning algorithms combined with

MTE. It is shown that the use of the hydrogen bond potential can also contribute slightly

to improved ranking of membrane protein models.

Table 3.7 The performance of hydrogen bond potentials from different learning
algorithms is shown on a test set of 30 homology modeled membrane
protein complexes. A hit is a model rated acceptable according to CAPRI
i.e. with an interface RMSD of 4 Å or less.

Learning method for
generating hydrogen bond

potential

Unbound membrane proteins
set

(30 targets)
Number of
hits in the

top
10/Number
of targets
with a hit
in the top

10

Number of
targets with a hit

in the top 1

C3
(No hydrogen bond

potential)
2/2 0

Pairwise Learning using
Linear Programming 12/7 3

Linear SVM, c=512 8/6 3
Non-linear SVM,

Polynomial kernel,
c=0.12, d=5

 15/11 4

Neural Network
1 hidden layer with 10

neurons
5/5 1

 77

Table 3.8 The performance of hydrogen bond potentials from different learning
algorithms in combination with C3 is shown on a test set of 30 homology
modeled membrane protein complexes. A hit is a model rated acceptable
according to CAPRI i.e. with an interface RMSD of 4 Å or less.

Learning
method used to

derive the
hydrogen bond

potential

Potential used for
reranking

Unbound membrane
proteins set
(30 targets)

Number of
hits in the

top
10/Number
of targets
with a hit
in the top

10

Number
of

targets
with a

hit in the
top 1

NA C3*MTE 14/11 7
Pairwise

Learning using
Linear

Programming

(C3+w.Ehb).MTE 17/11 8

Linear SVM,
c=512 (C3+w.Ehb).MTE 16/11 7

Non-linear
SVM,

Polynomial
kernel,

c=0.12, d=5

(C3+w.Ehb).MTE 16/11 7

Neural Network
1 hidden layer

with 10 neurons
(C3+w.Ehb).MTE 15/11 6

Analysis of hydrogen bond potential

In general, pairwise linear programming performs well as a learning algorithm

overall on soluble and membrane protein datasets. It is also the learning method whose

parameters are easier to interpret biochemically. In Tables 3.9 (a) and 3.9(b) we show the

potential parameters from linear programming for the first (0-4 Å) and second (4-8 Å)

distance bins respectively. We note that the most significant parameter values are in the

 78

short-range distance bin. In particular, hydrogen bonding between backbone atoms seems

to influence the statistics more than side-chain interactions. Particularly favorable

interactions are found between backbone-backbone hydrogen bonds in hydrophobic-

hydrophobic and hydrophobic-charged residue interactions. Unfavorable interactions are

significant for negative-charged residues at the interface, which suggests that they may

like to form hydrogen bonds with water.

Table 3.9 (a). Value of potential parameters for the short-range distance bin (0-4 Å). The
rows represent hydrogen particle types and columns represent acceptor
particle types. All potential values are multiplied by 1000.

Hydrogen
residue type ⇓

Acceptor
residue type ⇒

Hydrophobic Polar Positive-
charged

Negative -
charged

Hydrophobic -2.712378 -1.988873 -3.209258 -3.227944
Polar 0.863366 -0.382273 -0.379366 -0.332003

Positive-
charged

0.764617 0.091558 0.127956 -1.083882

Negative-
charged

3.096665 2.101862 2.158442 -1.898721

Table 3.9 (b). Value of potential parameters for the long-range distance bin (4-8 Å). The
rows represent hydrogen particle types and columns represent acceptor
particle types. All potential values are multiplied by 1000.

Hydrogen
residue type ⇓

Acceptor
residue type ⇒

Hydrophobic Polar Positive-
charged

Negative -
charged

Hydrophobic -0.346644 -0.305750 -0.178341 0.367602
Polar -0.088703 -0.088758 -0.054776 0.115549

Positive-
charged

-0.024214 0.180884 0.212524 -0.498265

Negative-
charged

-0.299279 -0.565140 0.540539 2.069571

 79

Comparison of different learning algorithms

a. Differences in theory and implementation of methods

The first distinction we make is between neural networks and the other two

methods. Methods like SVMs and pairwise learning using linear programming (or linear

programming, in short) are based on solving a set of inequalities (linear or quadratic

programs) to obtain the parameters of the potential, while neural networks use gradient

descent based minimization of error on the training set.

The next distinction is between the theory of SVMs and linear programming. The

linear programming method finds a set of parameters, u, defining a hyperplane, such that

for each pair of (correct and incorrect) structures, the resulting energy is higher for the

incorrect structure. Whereas SVMs find a set of parameters w, defining a hyperplane,

such that the margin between the correct and incorrect structures (defined by the

hyperplane) is maximized. In linear programming, inequalities comparing pairs of models

are solved in order to get the potential parameters. The inequalities solved in linear SVMs

are similar: the difference is that the constraints are formulated per model and not per pair

of models.

We also distinguish between the implementation of methods to solve the

optimization problems in linear programming and linear SVMs. The set of inequalities

arising in both linear programming [39] and SVMs [79] can be implemented in principle

using the same optimization method, for example interior point methods. However the

underlying implementations in typical SVM packages are different from those in linear

programming solvers. Firstly, the linear programming solver PF3 that we use, solves the

entire set of inequalities at once. The size of the matrix involved in the optimization

problem is Ntrain *ndim where Ntrain is the number of training examples and ndim is the

dimensionality i.e. number of features [39]. The highly asymmetric matrix sizes for

 80

problems in protein structure prediction (Ntrain >> ndim) i.e. millions of constraints and

hundreds of parameters, leads to efficient parallelization schemes for interior point

algorithms [39, 40] in which the constraint matrix solved at each step is a square matrix

of dimension ndim . As a result, the entire set of inequalities can be solved efficiently. In

contrast, in SVMs the matrix size of the dual problem solved is Ntrain *Ntrain [79]. This set

of inequalities is solved by heuristics that use stochastic sampling, to solve a subset of

inequalities at a time. The advantage of stochastic sampling is that it ensures that the

problem is solved with reasonable memory resources [79]. However in practice,

convergence can take longer for stochastic sampling based methods, and sampling

subsets of inequalities can be less accurate than learning methods that solve all

inequalities at once.

The second difference in implementation between the SVM and linear

programming packages we used, is the underlying method to solve the set of inequalities.

The linear programming solver PF3 [39, 40] uses Newton’s method while the SVM

software SVMlight [79] uses a quadratic programming solver based on Gauss- Seidel’s

method for solving the set of inequalities.

We note that we have used off-the-shelf software for comparisons on SVMs and

neural networks. A better comparison would have been to implement non-linear SVMs

and linear SVMs in the same package, so that the same underlying algorithms are used

for solving the optimization problems. However, this comparison can still be useful in

practice since off-the-shelf tools are blindly used, and the various packages have been

optimized for performance over the years.

As an aside, we also note that the optimization problem in linear programming

method is also similar to ranking SVMs [88], which is a much more computationally

expensive learning method, where all-versus-all inequalities are formulated and solved.

 81

For example, if we want to find a set of parameters such that the input examples

{A1,A2,A3,A4} are ranked in the order y(A1) > y(A2) > y(A3) > y(A4) , where y is the

SVM output, inequalities that compare A1 to A2, A3 and A4, A2 to A3 and A4 and A3 to

A4 are formulated. This is an all-versus-all set of inequalities, which results in a large

mathematical program (number of inequalities is Ntrain *(Ntrain −1)
2

 where Ntrain is the

size of the learning set). In our approach, we solve a subset of these all-versus-all

inequalities. In particular, we use cutoffs to define a correct model (e.g. interface RMSD

less than 2.5 Å) and incorrect model (e.g. interface RMSD greater than 7 Å) and the

linear program only includes inequalities that compare correct and incorrect models. This

procedure is not only less computationally expensive but also found to be less noisy for

ranking docking models than an all-versus-all comparison[38]. One reason for this is that

our ranking is based on RMSD[41], which is not meaningful at large values. For example

models with RMSD of 10 and 11 Å are equally bad and ordering them is not helpful.

Linear SVMs are equivalent to neural networks with no hidden layers and multi-

layer NNs can be expressed in terms of non-linear SVMs [89].

b. Accuracy

Pairwise learning using linear programming, seems to be one of the most accurate

learning methods, with neural network regression performing second best. This is based

on the ability of the hydrogen bond potential alone to rerank models on the soluble

protein sets (Table 3.5). SVM regression potentials, in our experience perform much

worse than these two.

As mentioned in the section on differences in algorithms, linear programming

solvers like PF3 [39] solve the comprehensive set of inequalities all at once. While SVM

packages like SVMLight [79] use heuristics for stochastic sampling of a subset of

 82

inequalities, a few at a time. Using learning methods that solve the whole problem,

without sampling subsets at a time seems to result in faster and better solutions.

c. Training time

Figure 3.3 shows that the linear programming method is fastest for training. For

larger training set size and higher dimensionality of the problem (i.e. greater number of

potential parameters), it will still be very efficient since the method is highly parallelized.

One can get quick convergence on neural networks to a reasonable solution too, though

convergence of neural networks is not very well-defined, and involves various stopping

criteria to prevent overfitting [85].

The convergence of SVMs with stochastic sampling of inequalities is much

slower. Note that in SVMs, the (dual) quadratic problem of dimension Ntrain *Ntrain needs

to be solved, while in our approach to learning which is based on linear programming, the

dimension of the complete constraint matrix is much smaller and is Ntrain *ndim where

Ntrain is the number of training examples and ndim is the dimensionality i.e. number of

features [39]. PF3 further exploits this structure by splitting the matrices to dimension

ndim *ndim and solving each subset using Newton Raphson methods[39].

 83

Figure 3.3 Average training time in seconds over all models obtained by different
learning methods: Neural Networks, Pairwise Learning using Linear
Programming, Linear and Non-linear SVMs. The times were calculated on
single Intel® Xeon(® E5345 core of an 8-core machine with 8 GB memory
and 2.33GHz clock speed.

d. Test time

Figure 3.4 shows the test time, i.e. time taken to obtain the hydrogen bond energy

from various potentials, for 1000 models of a complex. Linear programming is the most

efficient since it involves only the computation of a dot product, n(α ,d).u(α ,d) for a

given model.

The time taken by neural networks for predicting the energy is almost as small as

the time taken by linear programming to predict the energy. This is interesting as neural

network prediction is usually more expensive than SVM prediction, since it involves

successive matrix multiplications while SVM prediction depends only on the number of

support vectors. We note that the package FANN [84] used for neural network training

and testing was optimized for good testing performance, to be used in real-time systems.

In practice, neural network output calculation involves nl −1 successive matrix

multiplications, where nl is the total number of layers. The ith multiplication involves a

matrix of dimension Ni *Ni−1 where Ni and Ni−1 are the number of neurons in layer i and

Neural Nets Linear Prog Linear SVM Nonlinear SVM
0

200

400

600

800

1000

1200

1400
Training times for different learning methods

Learning method

Tr
ain

in
g

tim
e i

n
se

co
nd

s

 84

i-1 respectively. In our case, the maximum size of the matrix is still quite small, and is

32*10 for the hidden layer neurons, with 32 input features and 10 neurons in the hidden

layer.

On the other hand, SVM output prediction is linear in the number of support

vectors used to describe the hyperplane. The support vectors are the training examples

that lie on the margin. In our case, we had 6097 support vectors for the linear SVM and

1279 for the non-linear SVM. For linear SVMs, even though the energy (output) can be

computed efficiently as a dot product like in the case of linear programming, practical

implementations in SVM packages treat the linear case like the non-linear case, and use

the set of support vectors to compute the output. Hence SVM predictions take longer.

Figure 3.4 Total test time in seconds for calculating the energy of 1000 models of a
complex containing 147 and 103 residues in receptor and ligand protein.
Time obtained by different learning methods: Neural Networks, Pairwise
Learning using Linear Programming, Linear and Non-linear SVMs, on a
single Intel® Xeon(® E5345 core of an 8-core machine with 8 GB memory
and 2.33GHz clock speed is shown.

Neural Nets Linear Prog Linear SVM Nonlinear SVM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Test times for different learning methods

Learning method

Te
st

 ti
m

e
in

 s
ec

on
ds

 85

e. Advantages and disadvantages

As mentioned before, the accuracy and training/test times of algorithms is in the

order Pairwise Learning using Linear Programming > Neural Networks > SVMs. If a

linear fit is good enough to obtain a potential, pairwise learning using linear

programming seems to be the method of choice, while neural network regression can be

used as the best option if a non-linear fit is desired

SVMs and Linear Programming both lends themselves to a geometric

interpretation of the problem. Also, they both lead to sparse solutions in Rn where n is

the number of features (dimension): this is ensured by the objective functions that

minimize the sum (or sum of squares) of the parameters. Furthermore, the problems

solved in these two cases are convex optimization problems, which when solved exactly,

converge to a unique global minimum. On the other hand, neural networks rely on

heuristics like gradient descent, that converge to a local minimum.

Linear programming and linear SVMs have the additional advantage that the

parameters are readily amenable to physical interpretation. For example, the parameters

u(α ,d) in the hydrogen bond potential represent the weight of a contact between particle

type pair α at a distance d. The non-linear SVM and neural network potentials are more

complex and harder to interpret.

Further, SVMs and Neural Networks require the tuning of additional meta

parameters during training, such as the cost parameter for SVM, degree of polynomial

etc. for SVM, and the hidden and output activation functions for neural networks.

Comparatively, the number of such parameters is very low in linear programming and

their effect on the quality of solution is small.

Classification (not regression) using neural networks and SVMs is especially error

prone for docking data, since the datasets have a much larger number of negative

 86

examples than positive examples. Since classifiers are sensitive to imbalances in the

training set, almost all models end up being classified as negative [80]. Hence it is better

to use regression instead of classification for the purpose of ranking docking models.

Neural Networks are simpler to understand and implement, but more prone to

overfitting [85]. However, by proper use of a validation set, this problem can be

eliminated. Recently deep learning networks, or sophisticated networks with a large

number of hidden layers and thousands of parameters, have been shown to outperform

existing learning methods on a wide range of tasks [90]. The learning procedures are

highly computationally intensive but can be parallelized using GPUs. Using deep

learning for obtaining docking potential is expected to enhance the quality of the ranking

further.

3.5 CONCLUSIONS

Using hydrogen bonding to distinguish between correct and incorrect binding for

soluble proteins is hard as the net free energy gain upon binding is small [46]. This could

be perhaps due to competition with water for interface hydrogen bonds. We see that

hydrogen bond potentials carry much less signal than atomic and residue potentials for

soluble protein complexes. In contrast, hydrogen bonding information is much more

informative than traditional atomic and residue potentials in the context of membrane

proteins, since their hydrophobic environment lacks competition from water.

Nevertheless, the addition of hydrogen bonding potentials to atomic and residue

potentials improves the accuracy of reranking in both soluble and membrane proteins.

An assessment of various learning algorithms for learning potential functions for

protein docking is presented: this is the first such assessment of learning methods for

reranking docking models, to the best of our knowledge. We show that pairwise learning

 87

using linear programming performs best in terms of accuracy, training and testing time,

followed by neural networks and SVMs. Future work could include obtaining potentials

using recent machine learning methods such as deep networks.

 88

Chapter 4. Docking membrane proteins

4.1 INTRODUCTION

In this chapter, we apply our docking package, DOCK/PIERR for predicting the

structure of membrane protein complexes[91]. We introduce novel adjustments to the

docking algorithm, to improve the accuracy of prediction for membrane proteins. We

show that this membrane version of DOCK/PIERR, DOCK/PIERR-Membrane performs

comparably to other leading docking packages. We further employ DOCK/PIERR-

Membrane for predicting dimers of the amyloid precursor protein, an important

membrane protein involved in the pathogenesis of Alzheimer’s disease. Docking results

are shown to agree well with results from implicit solvent MD simulation, another

computational method that allows for significant protein movements. Finally, some

interesting differences are uncovered between structures obtained by different

computational methods (implicit and explicit solvent simulations) and structures from

different membrane models (bilayer and micelle).

Membrane proteins are critical for transport of material across cell boundaries and

for transmitting signals into and out of cells. Several diseases and aggregation

phenomena have been associated with peptide interactions in membranes. Over 50% of

current pharmaceutical drugs target G-Protein Coupled Receptors, a class of membrane

proteins[87, 92]. Hence the study of membrane proteins and their aggregation is of

general biomedical importance.

Rigid docking can be a useful computational tool for deducing membrane protein

structure. Firstly, it can sample exhaustively, the set of all possible rigid conformations of

the complex, on a lattice. This sampling is more comprehensive than the sampling

obtained from equilibrium MD simulations. Second, docking, if established to be

accurate, can be an efficient means of sampling higher order conformations of the peptide

 89

(oligomers), hence providing atomic detail into the structure of aggregates, as a quicker

computational alternative to MD simulations[92]. Finally, the potentials used in a

docking algorithm such as DOCK/PIERR are based on contacts observed in protein

interfaces and incorporate a different kind of information from the force fields used in

simulation.

Docking algorithms like Cluspro[11] and Haddock[93] have been used previously

to study the structures of several membrane complexes [94-97] . In a recent study [87], a

comparison was made between different docking algorithms for predicting membrane

protein complexes. Though docking algorithms have been designed primarily for aqueous

solution, they are shown to be useful in predicting transmembrane complexes with only

minor adjustments. However, docking methods have some drawbacks such as limited

conformational flexibility, and not accounting for the membrane environment[92].

In this study we address the latter drawback by incorporating an additional energy

term corresponding to the membrane environment. The membrane environment is known

to influence the structure and function of proteins [98]. The energy term is a simple one-

body term obtained by others to quantify the transfer energies of different molecules from

aqueous solutions to membrane[99]. We show that by adding this simple energy term and

retaining the rest of our docking algorithm, we are able to improve the accuracy of

DOCK/PIERR in predicting transmembrane protein complexes. Earlier, others have used

a membrane term in filtering rigid docking solutions from ZDOCK [97]. However, they

only consider filtering based on orientation of monomers in the membrane. Here in

addition to orienting the docking models in the membrane, we compute a novel

membrane energy term using transfer free energies from simulation. Also, rather than

patching algorithms of other groups, we refine our own method, which gives us easy

access to the code and deeper understanding of the algorithm function.

 90

DOCK/PIERR-membrane is applied to predict dimers formed by the 23-55

fragment of the amyloid precursor protein, APP-C99. The C99 amyloid precursor is a

transmembrane fragment of 99 residues cleaved from the C-terminal end of the longer

(600+ residues long) amyloid precursor protein. C99 is further cleaved by enzyme γ -

secretase, to form the amyloid β peptide of length ranging between 38 and 43 residues,

of which the peptides of length 40 and 42 residues are the most pathogenic. The

aggregation of these peptides in the cell membrane results in formation of fibrils and ion

channels, resulting in cell death[100].

Here we study the dimerization of the 23-55 fragment of the amyloid precursor

C99 fragment. The 23-55 fragment includes the cleavage site for γ -secretase. By

studying its dimer structure, we hope to elucidate factors affecting the stability of the

dimer. The stability of the dimer affects the amount of amyloid β peptide released into

the membrane, and hence affects the pathogenesis[101].

In this study, we dock the monomers of amyloid precursor (APP) obtained from

simulation, and compare the results of simulation and rigid docking. Others have

performed comparisons of rigid docking and simulation for dimers of Glycophorin-A and

its mutants, and concluded that results from implicit solvent simulation match well with

that from rigid docking. Here, we discover the same for the amyloid precursor protein,

and additionally we discuss differences in structures obtained from different

computational methods.

4.2 METHODS

In this section, we first describe the membrane score added to DOCK/PIERR to

mimic the membrane environment. Second, we describe the dataset of unbound

 91

membrane protein complexes, used for establishing performance of various docking

algorithms, along with a brief note about the docking algorithms whose performance we

compared. Finally we explain the approach used to dock the APP monomers obtained

from simulation.

Docking Algorithm

The docking algorithm, DOCK/PIERR [13, 41] is used as in Chapter 2, to dock

membrane proteins. In the first phase, an exhaustive set of structures is sampled using

Fast Fourier Transforms and the residue-based potential, PIE with a van der Waals term.

These structures are then clustered using ligand RMSD and interface RMSD to remove

very similar structures, and additionally structures with too many clashes are eliminated.

Refer [13] for details on this phase. In the second phase, the top 1000 models from the

first phase are adjusted using side chain remodeling and minimization and reranked using

the combination potential C3, a combination of interface residue potential PIE and

interface atomic potential PISA.

Membrane potential for reranking docking models

The docking algorithm described above, only examines the interface contacts of

the models and does not incorporate information about the environment surrounding the

complex. The potentials PISA and PIE used for scoring interface contacts are derived

empirically from datasets of experimental and model structures of globular protein

complexes (their training set includes only 7 membrane proteins of a total of 640) [38].

Nevertheless, it is tempting to keep the designed potentials “as are” and look for

an additional term to score the effects of the membrane. This will make the potential

more modular, transferable and general. We add such a term that includes residue-

specific information about membrane solvation, and show that it enhances prediction

 92

accuracy in membrane complexes. This term is used along with C3 in ranking the top

1000 refined structures, in the last step of the docking procedure described above. We

note it is also possible to add such a term in the coarse scoring step, but we added it in the

last reranking step for convenience. We next describe how to compute this additional

term.

a. Calculating membrane energy

Rather than design a membrane environment potential from scratch, we adopted a

function that was developed by other investigators. Previous results from MD simulations

by Tieleman and co-workers consider transfer free energy from aqueous solution to the

center-of-membrane for each amino acid residue [102]. Their detailed and comprehensive

simulations provided us with singe body adjustments that measure the costs (and

rewards) of transferring each amino acid between the two environments. The underlying

physical assumption is that the one-body term captures the environment effect and that

the impact of the membrane on the two body interactions is significantly smaller and

neglected. The drawback of our choice is that the atomically detailed simulations and our

machine learning procedure are not necessarily compatible and some double counting of

the same effect may occur. On the other hand, the combination of our potential with the

Tieleman’s energy does not include free parameters, making it relatively simple to verify

the impact and the significance of the combination. We observe a large enhancement in

prediction capacity, which suggests that the environment potential indeed captures a

useful signal.

The membrane energy was calculated from these transfer energies using the

following steps. First, each docking model was inserted into the membrane, by placing its

center of mass at the center of the membrane, and by orienting the eigenvector

corresponding to the smallest eigenvalue of the tensor of inertia of the model of the

 93

protein complex along the membrane normal. This orientation is appropriate for elongate

trans-membrane proteins such as helical proteins, which are our prime targets in the study

of amyloid peptides. For wide proteins, a different orientation procedure will have to be

used, since the eigenvector with the smallest eigenvalue is not necessarily in the direction

normal to the membrane. Second, for each docking model, the relative solvent

accessibility of every residue was calculated with the program DSSP [103]. Finally, the

membrane energy was calculated as follows: each residue whose side chain center of

mass was within a specified membrane width contributed to the membrane energy. The

contribution from such a residue, i, was equal to the membrane transfer energy for that

residue, ti, weighted by its relative solvent (lipid) accessibility, ai. As shown in Eq. (4.1),

the membrane transfer energy, or MTE, for a model, is the sum of the transfer energy

contributions from all residues i, within the membrane width.
MTE = ai

i
∑ ti (4.1)

We note that Tieleman and co-workers also provided water-to-hydrophilic

membrane interface transfer energies, apart from water-to-center of membrane transfer

energies. The addition of these extra parameters did not contribute to improved accuracy

in ranking and hence they are not included in our docking algorithm for membrane

complexes.

b. Membrane widths

The membrane half-width along the Z-axis is, important for our calculations since

it determines the degree of exposure of different amino acid side chains to the membrane

environment or to aqueous solution. However, membrane widths are not strictly fixed and

can vary among different membrane proteins [104]. For experimentally determined

structures the width is known; however, for model complexes and variable composition

 94

of lipids it is not. Servers like TMDET [104] and databases like the PDBTM database

[105] store pre-calculated widths for membrane proteins whose experimental structure

has been determined. But these are difficult to use when ranking hundreds of thousands

of models, with different effective membrane widths, and when studying complexes for

which the experimental data is limited. To pick up a width which is consistent and

optimal within our model, we use the following procedure: for each docking model,

membrane transfer energies were calculated for a range of half-widths: 16 Å +/- 3 Å, in

steps of 0.5 Å i.e. for 13.0, 13.5, 14.0, 14.5…16.0, 16.5, 17...19 Å respectively. For each

width, only protein residues whose centers of mass are within the membrane boundaries

are scored according to Eq. (4.1) and contribute to the membrane energy for that width.

The lowest (best) membrane transfer energy over the range of widths was taken as the

score for the docking model. Figure 4.1 shows an example of a model oriented in the

membrane, and a particular residue, i, inside the membrane that contributes to the

membrane energy.

Figure 4.1 Example of a model oriented in the membrane, and a particular residue, i,
inside the membrane that contributes aiti to the membrane energy, where ai
is the residue exposed surface area and ti is the residue membrane transfer
energy.

 95

c. Bilayer versus micelle membrane environments

For docking membrane proteins characterized in a micelle environment, instead

of the regular linear membrane model, a spherical membrane model with radius of 16 Å

+/- 3 Å is used to calculate the membrane energy.

d. Combining membrane energy with docking scores

The membrane energy (henceforth known as MTE) was combined with C3 in a

parameter-free fashion by using the product of C3 with MTE. The product energy in this

study was formulated as k *C3*MTE where k = 1.0 if both C3 and MTE have positive

values and k = −1.0 otherwise. This ensures that the product energy is negative when

both energies are negative (favorable) and positive otherwise. We henceforth refer to the

product energy as C3*MTE.

Other docking algorithms

The performance of DOCK/PIERR was compared to Cluspro [12, 28], GRAMM-

X [12] and ZDOCK+ZRANK [29, 60]. We have compared our algorithm to these

approaches in the past for the case of protein complexes in aqueous solution and it

therefore makes sense to extend our comparison to membrane proteins. Previous

comparative docking studies have shown that these algorithms were among the best

performing algorithms for membrane protein docking [87, 106]. Results were obtained

from the servers in case of Cluspro and GRAMM-X. For ZDOCK+ZRANK, the ZDOCK

3.0.2 package was downloaded and docking jobs were run locally. The top 2000 models

from ZDOCK were rescored using the ZRANK scoring function.

Creation of unbound membrane protein complexes dataset

A data set of 30 transmembrane protein complexes was extracted from MPStruc

[106], a database of membrane proteins from the White laboratory. Representative

 96

structures were chosen from each of the classes to ensure functional and structural

diversity. The membrane span of the selected proteins was checked using the PDBTM

database [105], a database of transmembrane proteins in the PDB. Proteins selected from

the MPStruc database, that had no entry in the PDBTM database, were discarded.

Proteins classified as membrane proteins often do not span the entire length of the

membrane and can interact with just one small region of it, e.g. peripheral membrane

proteins. The PDBTM database was therefore used to determine the extent to which each

protein was embedded in the membrane. Integral membrane proteins where the majority

of the structure to be docked, lay in the transmembrane region were chosen.

We obtained 18 complexes for docking two separate protein chains. To increase

the number of experimental models that we can study, we also considered single-chain

multi-pass trans-membrane proteins (e.g. GPCRs) that we broke to two complementing

fragments, at an extramembranous loop region, and re-assembled. We obtained 12

complexes this way. For each chosen GPCR, multiple independent splits were made, and

each split produced two chains to be docked. Each independent split was taken as a

separate target for unbound docking. Table 4.1 shows that we obtained 12 targets from

the GPCRs 1C3W, 1H68, 1M0K and 2BRD, 3 per GPCR, in this manner. Finally, we

also discarded transmembrane chains where the binding between the chains was intricate,

i.e. one of the chains twisted around the other. For each protein complex chosen, Table

4.1 shows how we obtained the individual components to dock. The entry labels

correspond to the PDB IDs.

 97

Table 4.1 Targets and individual chains that formed the dataset of 30 transmembrane
proteins.

Target Original
PDB

Receptor chain Ligand chain

Chain:
start

residue

Chain:
end

residue

Chain:
start

residue

Chain:
end

residue
1A91 1A91 A:1 A:42 B:43 B:79
1BL8 1BL8 A:23 A:119 B:23 B:119
1C17 1C17 A:1 A:79 B:1 B:79

1C3W0 1C3W A:75 A:231 A:5 A:74
1C3W1 1C3W A:102 A:231 A:5 A:101
1C3W2 1C3W A:5 A:129 A:130 A:231
1EHK 1EHK B:3 B:168 C:2 C:34
1H2S 1H2S A:1 A:225 B:23 B:82
1H680 1H68 A:94 A:219 A:2 A:93
1H681 1H68 A:2 A:119 A:120 A:219
1H682 1H68 A:2 A:150 A:151 A:219
1JVM 1JVM B:24 B:123 C:24 C:120
1LGH 1LGH A:1 A:56 D:1 D:56

1M0K0 1M0K A:73 A:231 A:5 A:72
1M0K1 1M0K A:106 A:231 A:5 A:105
1M0K2 1M0K A:5 A:128 A:129 A:231
1M56 1M56 C:2 C:266 D:10 D:51
2BHW 2BHW A:10 A:232 B:10 B:232
2BRD0 2BRD A:66 A:228 A:7 A:65
2BRD1 2BRD A:103 A:228 A:7 A:102
2BRD2 2BRD A:7 A:129 A:130 A:228
2IRV 2IRV B:93 B:271 A:92 A:273
2KSE 2KSE A:1 A:40 A:150 A:186
2NRF 2NRF A:91 A:272 B:91 B:272
2VT4 2VT4 A:40 A:358 B:39 B:359
2WIE 2WIE A:2 A:82 B:2 B:82
3B45 3B45 A:169 A:270 A:91 A:168
3B4R 3B4R A:3 A:220 B:3 B:218

3DWW 3DWW A:11 A:152 C:11 C:152
3KCU 3KCU A:29 A:280 B:29 B:280

 98

Modeling unbound chains by homology and creating distorted structures by
Molecular Dynamics

First, for each receptor and ligand sequence in the set of 30 transmembrane

complexes, a search for homologs in the PDB was performed using PSI-BLAST [61]. For

complexes for which homologs (E-value lower than 0.001 i.e. expectation that the two

sequences are evolutionarily related by chance is less than 0.001) were found for receptor

and/or ligand chains, Modeller [59, 62] was used to create a structure of the unbound

receptor and ligand using the homolog as template. The TM score [45] of the bound to

unbound structure was measured for each homology-modeled receptor and ligand chains.

Unbound (modeled) conformations that were too different (i.e. TM score lower than

0.85) from the PDB (bound) conformation were discarded.

In all, we were able to successfully produce homologous unbound conformations

for both chains in 19 of 30 complexes. Apart from these 19, 4 complexes had one

unbound chain (receptor or ligand) with TM score lower than 0.85 to the bound structure,

and the other chain with a TM score higher than 0.85 to the bound structure. For these 4

complexes, the unbound structures with TM scores lower than 0.85 were replaced with

the bound (PDB) conformation and bound-unbound docking was performed. 4 other

complexes had both receptor and ligand unbound conformations quite different (TM

score lower than 0.85) from the bound conformations. And for 3 complexes, homologs

were not found in the first step of PSI-BLAST. Hence the latter 7 complexes were treated

separately and molecular dynamics was used to obtain the unbound conformations in

these 7 cases, as is described next.

For the seven complexes for which homology modeling was unsuccessful,

unbound conformations of the receptor and ligand were obtained from short Molecular

Dynamics MD runs on the original PDB receptor and ligand structures. The receptor and

 99

ligand were separately minimized in vacuum for 100 steps using mini_pwl, an energy

minimization routine in the MD package MOIL [58] in order to remove high-energy

contacts and clashes in the structures before the dynamics run. Then the minimized

structures (receptor and ligand separately) were subject to a very short simulation of 0.1

ps at 300K (1000 steps with a time step of 0.0001 ps). The conformations obtained after

the dynamics run were used as the unbound structures. These perturbed conformations

had an average RMSD of 0.717 A to the original PDB structures, and a range of RMSDs

between 0.618 A and 0.859 A. These RMSD values are smaller than typical homology

models, however, MD under the above conditions distorts significantly, the structures of

the proteins and therefore we did not push the simulations to produce higher RMSDs.

Approach for docking APP structures from simulation

A set of 50 dimers of the 23-55 segment monomer of APP-C99 corresponding to

the lowest energy (based on the MD molecular mechanics energy) structures obtained

from 100 ns equilibrium implicit solvent MD simulations at 300 K with the Martini force

field in CHARMM [101], were used to test the performance of docking. Implicit solvent

simulations represent the solvent e.g. water or membrane by a continuum model, while in

explicit solvent simulations, the solvent is represented by discrete solvent molecules.

Explicit solvent simulations are thus more computationally expensive, but also more

accurate.

Both bound and unbound docking was performed on each set of simulation

structures. In bound docking, the monomers i.e. individual helices of each simulated

dimer were separated and docked, producing ten top scoring models from docking, for

each simulation complex. For unbound docking, a simulation structure (say A) was

chosen at random and its receptor (one of the helices in the simulation dimer) was docked

 100

with a ligand (the other helix in the dimer) taken from another simulation structure (say

B) in the same dataset. The models produced by docking A’s receptor to B’s ligand, were

compared to the complex A. About 50 (or 30, depending on the number of complexes in

the bound dataset) non-repeating A-B receptor-ligand pairs were docked. Since the

monomer conformations themselves can be quite different (greater than 1 Å RMSD) from

each other in simulations, the selection of complex B each time was constrained to those

complexes where the ligand was within 1 Å RMSD from the ligand in complex A.

Additionally, as a final post-processing step for docking APP structures and

comparing rigid docking procedure to simulations of peptide dimerization in membrane,

anti-parallel dimer poses were filtered out from the final set of docking models, by

making use of the additional information that the dimers found in the MD simulation are

never anti-parallel. The last observation may reflect kinetic barrier and not necessarily

thermodynamic preference, however, for comparison purposes the above filtering was

found useful.

A cutoff of 1.5 Å interface RMSD was used as definition of “hit” or near-native

structure, while evaluating docking methods on the APP dimers, since the monomer

helices are short and only 33 residues long. This is in contrast to the usual cutoff, which

is 4 Å for an acceptable model and 2.5 Å for a high-quality model in protein-protein

docking assessments such as CAPRI [44, 56].

4.3 RESULTS AND DISCUSSION

In this section, we first discuss results on prediction of membrane protein

complexes. Second, we discuss the results from docking implicit solvent APP simulation

dimers. Third, we discuss differences between dimers obtained from implicit and explicit

 101

solvent simulations. Fourth, we touch upon differences in structures obtained from

micelle and bilayer membrane environments.

Structure prediction of membrane protein interactions

a. Membrane protein interfaces can be predicted by solvated protein docking algorithms

We find that interfaces of membrane and water-soluble protein complexes are

quite similar [87] and can be predicted with reasonable accuracy by current state-of-the-

art protein-protein docking algorithms. This implies that protein-docking algorithms can

be used as an additional and a reliable source of information for structural studies of

membrane proteins. We note that protein docking algorithms use potentials that have

been trained on datasets that are primarily composed of soluble proteins; for example,

Cluspro and Gramm-X use the training set in [107] which consists of 621 protein

complexes out of which only 6 are membrane proteins, DOCK/PIERR is trained on a

dataset of 640 complexes with a similar percentage of membrane proteins, and ZDOCK’s

interface contact potentials are trained on a dataset [108] of 89 complexes with one

membrane protein.

In spite of being trained on interfaces of soluble proteins, these docking

algorithms succeed in predicting a near-native structure in the top ten models with

reasonable accuracy. Table 4.2 shows the performance of 4 different docking algorithms

on the dataset of 30 unbound transmembrane protein complexes. The measure of

performance that we use here is the interface RMSD. Interface RMSD [44, 56] is a

widely used measure of accuracy for docking predictions, and is the RMSD measured

along the interface residues of the experimental complex. The second column in Table

4.2 shows the number of hits (near-native structures i.e. docking models that are within 4

Å interface RMSD from the bound structure) in the top ten models cumulative across all

 102

30 complexes, followed by number of complexes for which at least one such hit was

found in the top ten models. Depending on the algorithm, accuracy varies between 30-

56.57% for unbound docking. Gramm-X performs the best in this study and is able to

obtain a near-native structure in the top ten about 56.67% of the time in unbound

docking. This is in agreement with an earlier study [87] that showed Gramm-X to have

the best performance in docking membrane proteins.

Table 4.2 Docking performance of DOCK/PIERR with C3 and C3*MTE potentials,
Gramm-X, Cluspro and ZDOCK+ZRANK on the dataset of 30 unbound
membrane protein complexes.

Docking
algorithm

Top 10
Number of hits within 4

Å iRMSD/Number of
targets with atleast one

hit
DOCK/PIERR
Rerank with C3

2/2

DOCK/PIERR
Rerank with C3*MTE

14/11

ZDOCK+ZRANK 10/9
Cluspro 17/14

Gramm-X 20/17

Table 4.3 shows the performance of docking algorithms in terms of number of top

ten hits, split by target. DOCK/PIERR with the membrane score is able to dock complex

1H2S, which the other docking algorithms are not able to solve. Similarly,

ZDOCK+ZRANK is able to solve uniquely 1JVM and 3DWW. Gramm-X is the only

docking algorithm able to solve 3B4R.

b. Membrane energy contributes to improved recognition

As shown in Table 4.2, the inclusion of the membrane energy, significantly

improves the recognition of the combination of atomic and residue potentials, C3.

 103

DOCK/PIERR is able to obtain a near-native structure in the top ten in 36.67% of

complexes.

Table 4.3 The numbers of models with interface RMSD less than 4.0 Å in the top 10
predictions of DOCK/PIERR with C3*MTE potential, Gramm-X, Cluspro
and ZDOCK+ZRANK.

Target DOCK/PIERR
with membrane

score

ZDOCK+
ZRANK

CLUSPRO GRAMM-X

1A91 1 1 2 1
1BL8 0 0 0 0
1C17 0 0 1 1

1C3W0 1 0 1 1
1C3W1 1 0 1 1
1C3W2 0 1 1 1
1EHK 0 0 0 0
1H2S 3 0 0 0
1H680 0 0 1 1
1H681 0 0 0 0
1H682 0 0 2 2
1JVM 0 1 0 0
1LGH 0 0 0 0

1M0K0 1 0 1 1
1M0K1 1 1 1 1
1M0K2 0 1 1 2
1M56 0 0 0 0
2BHW 0 0 0 0
2BRD0 1 0 0 1
2BRD1 0 0 1 1
2BRD2 2 0 2 1
2IRV 1 1 0 0
2KSE 0 1 0 2
2NRF 0 0 0 0
2VT4 0 0 0 0
2WIE 1 2 1 1
3B45 1 0 1 1
3B4R 0 0 0 1

3DWW 0 1 0 0
3KCU 0 0 0 0

 104

Docking and implicit solvent MD simulations agree on structures of APP dimers

In this section, we explore the structure of the dimer formed by the 23-55 segment

of the APP-C99 protein using docking and implicit solvent MD simulations. Table 4.4

shows the performance of DOCK/PIERR for bound and unbound docking of 50 implicit

solvent dimers from simulation. The docking performance was evaluated based on the

number of models matching the corresponding MD structure within 1.5 Å interface

RMSD. Table 4.4 reports the number of models in the top ten that matched the

corresponding MD complex, across all 50 complexes. Also reported is the number of

complexes out of 50, for which at least one model in the top ten matched the

corresponding simulation structure. Docking and MD simulation show a good agreement

with 42 out of 50 dimers from bound docking matching the corresponding MD structure,

and 26 out of 50 dimers from unbound docking matching the MD structure. The accuracy

of unbound docking is lower than that of bound docking, which is to be expected, as the

interfaces of monomers from unbound docking do not match precisely.

Table 4.4 Bound and unbound docking results on 50 simulation structures from implicit
solvent. The first number in the second column is the number of MD models
recovered from docking across all 50 complexes: a hit is a model from
docking that is within 1.5 Å interface RMSD to the corresponding
simulation structure. The second number is the number of complexes for
which at least one hit was found in the top ten models.

Docking type Top 10
Number of hits within 1.5

Å iRMSD to MD
structure/Number of

complexes with atleast one
hit matching MD

structure
Bound 43/42

Unbound 26/26

 105

Figure 4.2 shows the probability distribution of interface RMSDs for the top 10

docking models from bound and unbound docking of the 50 simulation dimers. In other

words, this is a distribution across a set of 500 bound and 500 unbound docking models.

Note that since we filter out anti-parallel orientations, the interface RMSD distribution

stops at 10 Å (x-axis). There is a prominent tail near 1 Å, especially for bound docking

indicating a significant number of near-native structures in the set of top 10 models.

Another measure of confidence in docking predictions is the z-score. The average z-score

of the C3*MTE energy across the 5 best docking models (best in terms of interface

RMSD) was -4.2646 among the 500 bound docking models and -3.5062 among the 500

unbound docking models. More negative z-scores indicate that the potential can

distinguish near-native structures more accurately.

Figure 4.2 Probability density of the interface RMSD of top 10 docking models for 50
bound and unbound simulation dimers.

Further, APP dimers can be described by an order parameter based on the distance

between the GLY-29 in the two helices[101]. If the distance is within 5 Å, the dimer is

said to be in Gly-in conformation, if the distance is between 5 and 10 Å, the dimer is in

Gly-side conformation and if the distance is above 10 Å, the dimer is in Gly-out

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 2 3 4 5 6 7 8 9 10

P
r
o
b
a
b
i
l
i
t
y

IRMSD of top 10 models

Bound
Unbound

 106

conformation. Based on this characterization, out of the 50 lowest energy simulation

dimers from implicit solvent, 40 were of Gly-side type and 10 were of Gly-in type. There

were no Gly-out structures in the 300 K MD ensemble. Table 5 shows the performance of

docking in recovering the order parameters measured in the MD simulations for bound

docking. The agreement between docking and simulation dimers is high (9/10) for Gly-in

type structures and good (33/40) for Gly-side structures.

Table 4.5 Bound docking results on 40 Gly-side and 10 Gly-in simulation structures from
implicit solvent. The first number in the second column is the number of
docking models within 1.5 A interface RMSD from the corresponding
simulation structure, across all complexes of the given dimer type. The
second number is the number of complexes for which at least one hit was
found in the top ten models for that dimer type.

Simulation dimer
type

[Number of
simulation

dimers]

Top 10
Number of hits within 1.5

Å iRMSD to MD
structure/Number of

complexes with atleast one
hit matching MD

structure
Gly-side [40] 34/33
Gly-in [10] 9/9

Figure 4.3 shows a couple of accurate docking predictions among the top ten

models, superposed with the simulation structure they were assembled from. The Gly-

side model was within an interface RMSD of 0.563Å from the simulation structure while

the Gly-in model was within 0.632Å from the simulation structure. The figure shows that

the backbones essentially overlap while the side-chains show minor differences.

 107

Figure 4.3 Left: A docking model (green) in the top 10 predictions, at an interface RMSD
of 0.563 Å from the corresponding simulation structure (gray) of Gly-side
type. Right: A docking prediction (cyan) in the top 10, at an interface
RMSD of 0.632 Å from a Gly-in simulation structure (blue).

Structural differences between the results of explicit and implicit solvent methods to
predict complexes of amyloid peptides

As Table 4.5 shows, DOCK/PIERR docking is reasonably accurate for Gly-in

complexes generated by implicit solvent simulations in bilayer. However, when applied

to dock 30 Gly-in complexes from explicit solvent POPC bilayer, it was observed that

DOCK/PIERR fails to produce a single hit in the top ten models for any of the 30

complexes. These differences in docking performance hint at structural differences in the

dimers from implicit and explicit solvation. The differences were investigated using the

residue score PIE, which is represented as an energy here by inverting its sign (lower the

energy, better the model).

 108

Figure 4.4 is a distribution of the PIE energy for the implicit and explicit

simulation dimers. The PIE energy is much lower for the implicit solvent dimers. This

suggests that the number of inter-helical residue-residue contacts is higher for the implicit

solvent dimers, leading to more favorable (lower) PIE energies for the latter. The contact

based potentials in DOCK/PIERR favor the higher number of contacts in implicit solvent

models, due to which docking models agree more with implicit solvent dimers than with

explicit solvent dimers.

The compactness of helices in the dimers seems to be reason for different number

of contacts in implicit and explicit solvent. This is seen in Figure 4.5, which is a

distribution of the smallest eigen value of the tensor moment of inertia for each

simulation structure. The smallest eigen value corresponds to the long axis and is hence a

measure of how close the helices are to each other. The figure suggests that the implicit

solvent dimer helices are closer than the explicit solvent dimers. In implicit solvent, the

hydrophobic residues in the dimers form more contacts with each other, whereas in

explicit solvent the residues form more contacts with the membrane. This leads to more

compact dimers in implicit solvent. In explicit solvent models, perhaps protein-protein

contacts are more easily replaced by protein-water contacts. In implicit solvent models,

the protein contacts are not replaced.

Figure 4.6 illustrates that the implicit solvent models have helices closer to each

other at the C-terminal (right hand side) end, whereas in explicit solvent models, the

helices are further apart. This suggests that interactions formed by discrete water

molecules are not fully captured by continuum models.

 109

Figure 4.4 Probability distribution of PIE energy for 10 GLY-in implicit solvent dimers
and 30 GLY-in explicit solvent dimers in POPC membrane that were bound
docked.

Figure 4.5 Distribution of the smallest eigen value of the tensor moment of inertia for 10
GLY-in implicit solvent dimers and 30 GLY-in explicit solvent dimers in
POPC membrane that were bound docked.

 0

 0.2

 0.4

 0.6

 0.8

 1

−2 −1.9 −1.8 −1.7 −1.6 −1.5 −1.4 −1.3 −1.2 −1.1

P
r
o
b
a
b
i
l
i
t
y

PIE energy

Implicit
Explicit

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.89 1.98 2.07 2.16 2.25 2.34 2.43 2.52 2.61 2.7 2.79

P
r
o
b
a
b
i
l
i
t
y

Eigen value x 1e5

Implicit
Explicit

 110

Figure 4.6 Top: 10 explicit solvent dimers superposed. Bottom: 10 explicit solvent dimers
superposed. The dimers chosen were the top scoring simulation dimers,
scored according to C3*MTE.

Differences between structures from micelle and bilayer environments

Further, we noticed that DOCK/PIERR is able to bound dock 17/30 simulation

dimers from POPC bilayer membrane (i.e. a model within 1.5 A interface RMSD was

found in the top ten models for 17 of 30 dimers) in Gly-out conformation. But the same

experiment repeated on the Gly-out dimers in DPC micelle results in no hits in the top ten

for any of the 30 dimers from micelle. Again the differences between the two docking

accuracies hint at structural differences between dimers in different membrane

environments. Differences between membrane protein structures characterized in micelle

and bilayer environments have also been observed experimentally[98].

 111

These differences were explored using PIE energy, and as Figure 4.7 shows, the

PIE energy for bilayer and micelle simulation models is different. The PIE energy is

more favorable for the bilayer models, due to higher number of inter-helical contacts in

the dimers in bilayer.

Figure 4.8 shows that the angle between the helices in the simulation dimers is the

reason for differences in number of contacts. It is a plot of the absolute value of the

cosine of the angle between the helical long axes in the simulation structures. The dimers

in bilayer have cosine values closer to 1, indicating that the helices are more parallel in

bilayer. In contrast, the helices in micelle have a wider range of angles and favor non-

parallel orientations, which are more “X”-like, with one helix making an angle with

respect to the other.

Figure 4.7 Probability distribution of PIE energy for 30 Gly-out explicit solvent dimers in
POPC bilayer and and 30 Gly-out explicit solvent dimers in POPC
membrane that were bound docked.

This is also illustrated in Figure 4.9, which shows the 30 bilayer models with

parallel helices and 30 micelle models with “X”-shaped helical angles. The reason why

helices in micelle environment adopt an “X”-shaped orientation maybe related to the

entropic effect. A titled configuration allows for more entropy in the micelle than the

parallel configuration.

 0

 0.2

 0.4

 0.6

 0.8

 1

−1.82 −1.69 −1.56 −1.43 −1.3 −1.17 −1.04 −0.91 −0.78 −0.65 −0.52

Pr
ob
ab
il
it
y

PIE energy

POPC bilayer
DPC micelle

 112

Structures elucidated in micelle environments may differ from those elucidated in

membrane environment. Hence this difference raises questions about the applicability of

using micelle environments to substitute for membrane bilayers in membrane protein

structure determination.

Figure 4.8 Distribution of cosine of angle between helices for 30 Gly-out explicit solvent
dimers in POPC bilayer and 30 Gly-out explicit solvent dimers in POPC
membrane that were bound docked.

Figure 4.9 Left: Ten explicit solvent dimers from simulations in POPC membrane. Right:
Ten explicit solvent dimers from simulations in DPC micelle. The ten
models in each case were the top scoring dimers, as scored by C3*MTE.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.14 0.28 0.42 0.56 0.7 0.84 0.98

P
r
o
b
a
b
i
l
i
t
y

Cosine of angle between helices

POPC bilayer
DPC micelle

 113

4.4 CONCLUSIONS

In this chapter, we present the first comparative study of protein docking

algorithms for docking unbound membrane proteins. It is also the largest comparison,

including all comparative studies on bound and unbound membrane protein complexes.

We show that including information about the membrane environment as an additional

one-body residue-based energy term improves the prediction capacity of our docking

algorithm, DOCK/PIERR, significantly. We use this method to study the dimerization of

amyloid precursor protein. The results from docking match well with results from

implicit solvent simulation. However, explicit solvent structures behave differently:

explicit solvent structures have more protein-membrane contacts and implicit solvent

structures have more protein-protein contacts. This difference shows that implicit solvent

models and our docking procedure are not able to reproduce the contacts formed by

discrete solvent molecules. Further, structures characterized in different membrane

environments such as bilayer and micelle show significant differences. The dimers in

bilayer have parallel helices while the dimers in micelle are more “X”-shaped, with

helices oriented at an angle. This preference for “X”-shape can be explained on the basis

of entropy i.e. rotational freedom of the dimers in micelle.

Predicting the structure of higher order amyloid aggregates and developing

additional potentials trained on membrane protein interfaces represent some of the

promising avenues for future work in the area of membrane complex prediction.

 114

Chapter 5. Performance in CAPRI

5.1 INTRODUCTION

In this chapter, we discuss the performance of DOCK/PIERR in community-wide

assessment of methods for protein docking. CAPRI (Critical Assessment of Predicted

Interactions) [56] is an independent evaluation of current protein docking methods.

Before the experimental structure of a newly discovered protein-protein complex is

released online, information about its monomers is made available to the protein docking

groups, and they submit their predictions of the structure of the complex.

These predictions are then evaluated by an independent assessment team, which

decides the quality of the top ten predictions by each team based on criteria like interface

RMSD (backbone RMSD of the residues in the interface of the reference complex;

residues are in the interface if any atom of one residue is within 10 Å of an atom in the

other protein), ligand RMSD (RMSD between the ligand molecule of predicted model

and reference) and fraction of native contacts (percentage of residue-residue contacts in

the reference structure that are also in the interface of the predicted model). Models are

classified as high-quality, medium, acceptable and incorrect based on certain cutoffs of

the evaluation metrics[44]. For example, a high-quality model needs to have an interface

RMSD less than 1 Å or ligand RMSD less than 1 Å and fraction of native contacts

greater than 50%.

There are different categories of participation: i) server prediction category,

which is an assessment of automated docking methods and has a short prediction

deadline of 24 hours, ii) human prediction category, which is a prediction competition

with a longer deadline of 1-2 weeks allowing for manual correction of automated docking

results using available literature information and iii) scoring category, where instead of

 115

prediction, teams need to simply score the available models. There are generally about 1-

3 rounds per year.

5.2 OVERALL PERFORMANCE OF DOCK/PIERR IN CAPRI

Table 5.1 shows the performance of DOCK/PIERR listed by target [41]. Only

targets we participated in are shown. Hits refer to models that are of acceptable quality or

better. “–“ denotes no participation for that target, while 0 indicates no acceptable models

were found for that target. Overall, we predicted a hit in the top 10 successfully for 4 out

of 8 targets in the server category and 6 out of 9 targets in the scoring category. This is

consistent with our results on the training set and benchmarks.

Table 5.1 Overall performance of DOCK/PIERR in CAPRI assessments.

Target

Total
number of
predictor

groups

Number of
predictor

groups with
hits

Total
number
of scorer
groups

Number of
scorer
groups

with hits

Server:
number
of top 10

hits

Scorer:
number
of top
10 hits

40 38 30 15 10 - 8
41 33 26 13 12 - 1
46 40 2 16 8 0 1
48 32 15 - - 1 -
49 33 15 13 8 1 0
50 40 18 17 12 3 2
51 46 3 13 5 0 0
53 42 20 13 11 0 5
54 41 4 13 0 0 0
59 40 12 24 8 2 1

Table 5.2 shows the rank of DOCK/PIERR server and its earlier version,

DOCK/PIE, in comparison with other automated servers. Rank of a server was

determined based on both model quality and number of models. A server that submits

high-quality/medium models is ranked higher than a server that submits acceptable

 116

models. For servers that submit the same quality of models (e.g. acceptable), the number

of acceptable models is chosen to determine the rank. In cases where we submitted all 10

incorrect predictions, the rank is not shown.

Table 5.2 Rank of DOCK/PIERR server per target

Target we
participated in,

as server

Number of
acceptable or
better models
submitted by

the server

Rank in server
category

Number of
servers

participating
for this target

Number of
servers that
submitted

acceptable or
better models

for this
target

T46 0 - 8 1
T48 1 2 6 2
T49 1 3 6 3
T50 3 1 6 2
T51 0 - 3 0
T53 0 - 8 4
T54 0 - 8 1
T59 2 2 8 3

Table 5.2 shows that for the four out of eight targets for which we submitted a

correct model, the rank of the server was within the top three servers. Based on the above

performance, DOCK/PIERR was ranked as the fourth most successful docking method in

the automated server category of the CAPRI assessment of 2013 [47] .

5.3 PERFORMANCE BY TARGET

A target-wise discussion is presented in this section. The targets discussed are the

ones that the author participated in. For a discussion of the performance of early versions

of DOCK/PIERR on previous targets, refer [2].

 117

T50

This complex, PDB 3R2X, is a protein interaction designed by the Baker lab, and

is the structure formed by a hypothetical (designed) protein bound to the HA1 and HA2

domains of hemagglutinin in the influenza A virus [109]. The structure of hemagglutinin

was provided. The sequence of the designed protein was provided along with a template

structure. The structure of the designed protein was obtained by homology modeling

using [59] . DOCK/PIERR obtained 3 acceptable or better hits in the server prediction

round, including two medium hits and 2 hits in the scoring round. Figure 5.1 shows a

medium quality model with interface RMSD of 1.487 Å superposed with the crystal

structure of T59.

Figure 5.1 DOCK/PIERR medium-quality prediction (in blue) superposed with the
crystal structure of T50 (in green).

T51

Target T51, PDB 4BXG, was a multi-domain target that involved assembly of the

penta-modular cellulosomal arabinoxylanase structure [110]. The five domains that

needed to be assembled were: GH5-CBM6-CBM13-Fn3-CBM62. An unpublished crystal

structure was provided for GH5-CBM6, CMB13 was to be homology modeled, Fn3 had a

 118

separate crystal structure deposited and CBM62 was free in the complex and could be

ignored. This was solved by the assembly algorithm outlined in [2]. Three separate

interface assessments were performed: between CBM13 and Fn3, between GH5-CBM6

and CBM13 and between and GH5-CBM6 and CBM13-Fn3. We did not obtain any hit in

the scoring or prediction rounds. This was a hard target and only 3 of 35 prediction

groups and 5 of 13 scorer groups got an acceptable model for this target.

T53

T53, PDB 4JW2, was a protein-protein complex between artificial alpha repeat

proteins REP4 and REP2[111]. The structure of REP4 was available while that of REP2

needed to be modeled. DOCK/PIERR scoring produced 5 hits for this target while no

correct predictions were made in the prediction round. Figure 5.2 shows one of the

successful scoring predictions with interface RMSD of 1.21 Å from the crystal structure.

Figure 5.2 DOCK/PIERR medium-quality prediction (in green) superposed with the
crystal structure of T53 (in red).

 119

T54

T54, PDB 4JW3, was a complex between engineered neocarzinostatin and

another alpha repeat protein, REP16 [111]. The structure of neocarzinostatin was

available while the structure of REP16 was modeled from the sequence. We did not

produce any hits in the prediction or scoring round here. This target was also found to be

a hard target by other groups, since no group was able to get an acceptable or better

model in the scoring round for T54, and only 4 out of 41 groups got an acceptable model

in the prediction round.

T59

T59 was a complex between the EDC3 antibody domain (PDB 4A53) and

RPS28B, an RNA decapping protein, whose sequence was provided. DOCK/PIERR

successfully predicted 2 models in the server round and one model in the scoring round.

A figure of the successful models is not provided, as the crystal structure coordinates are

as yet unpublished.

5.4 DOCK/PIERR SERVER AND EXECUTABLES

Source code and Linux executables of the scoring functions developed in this

thesis are found at http://clsb.ices.utexas.edu/web/dock_details.html. These scoring

functions were recognized as some of the best scoring functions by researchers in the

community [112]. All the methods described in this thesis are implemented in the

DOCK/PIERR server [113] at http://clsb.ices.utexas.edu/web/dock.html. As of the time

of this writing (March 2014) the server has 50+ users and 200+ submitted docking jobs.

Apart from the application studies in this thesis, it has been used by a few others in their

studies. DOCK/PIERR was used to suggest oligomeric conformations of a four-domain

 120

orange-fluorescent protein (Ember) [114]. It was also used as one of the docking methods

for predicting the complex between cytoplasmic dynein and pilin [115], to explore

pathogenesis caused by bacterium pseudomonas aeruginosa.

The advances made in DOCK/PIERR help establish automated docking methods

as accurate methods for structure prediction and enables departure from previous

methods that rely more on human intuition. With more and more protein sequences and

monomer structures being made available, automated docking methods such as

DOCK/PIERR are slated to play an important role in large-scale prediction of complexes

in the proteome.

 121

Chapter 6. Algorithms for Network Analysis of Milestoning Data

6.1 BACKGROUND

Networks in Molecular Biology

Network analysis is becoming increasingly popular in computational molecular

biology. For example, proteins interact with tens of other proteins during their lifetime to

carry out their function. This web of interactions is represented by a protein-protein

interaction network [3, 4]. Gene expression networks, analogous to protein interaction

networks, provide insights into co-expression of genes. Other types of networks include

gene regulatory networks, signaling networks and metabolic networks. The networks in

molecular biology are massive and can be composed of millions of nodes and edges.

They clearly require sophisticated computational tools to analyze them.

Networks from Molecular Dynamics Simulations

In this chapter, we discuss algorithms [116] for analyzing networks of molecular

data gathered from molecular dynamics (MD) simulations. Molecular dynamics is a

sampling technique where the time evolution of phase space points (space of coordinates

and velocities) of the system is explored by solving Newton’s laws of motion at each

step. This sampling produces trajectories from an initial state (e.g. unfolded state of a

protein) to a final state (e.g. folded state). Network analysis helps in mapping the

continuous phase space trajectories from MD simulations, into a relatively small number

of discrete states; this is useful in visualization of the data and in dissecting complex

dynamics to concrete mechanisms. However, molecular networks from MD are getting

increasingly complex, due to the growth in computer power that allows us to generate

longer trajectories for larger systems. This increased complexity of the resultant networks

makes simple interpretation and qualitative insight of the molecular systems more

 122

difficult to achieve, necessitating the use of efficient and scalable algorithms for network

analysis.

Milestoning

The algorithms discussed in this chapter are applied to data from the advanced

MD sampling technique of Milestoning. Advanced MD techniques like Directional

Milestoning[51], Markov State Models (MSM) [117-119], and Transition Path Theory

(TPT) [120] are used to study the kinetics (mechanism and rates) of a long time scale

cellular event in atomic detail, like the process of unfolding of a protein, or the binding of

a small molecule to a protein. Long-time scale biological events (which take hours in real

time) cannot be computed using straightforward MD simulations. Milestoning[49-51] is a

theory and algorithm in which the overall trajectory of long time-scale events can be

studied in a computationally efficient manner by breaking them down into shorter

trajectories that can be run independently, in parallel, and then combined to get the

overall chemistry (kinetics and thermodynamics). The parallel nature of the algorithm

allows for efficient computation of long time-scale events even for large systems[121-

123].

In Milestoning, the phase space (set of positions and momenta of the system) is

divided into a set of anchors, or phase space points {Xα}α=1
N , which provide coarse

coverage of the phase space[121]. Milestones are then defined as interfaces, I j{ } j=1
J

,

separating phase space volumes that are associated with the anchors, as in Figure 6.1.

Henceforth, we use the indices {α ,β,γ ..} to denote the anchors and indices {i, j,k...} to

denote milestones.

 123

Figure 6.1 A schematic representation showing the mapping of continuous space and MD
trajectories to a network.

The milestone, Ii between anchors Xα and Xβ is a hyperplane, Y, in a coarse-

grained space given by Eq. (6.1).
Ii (α → β) = Y | d(Y ,Yβ)

2 = d(Y ,Yα)
2 + Δ2 &∀kd(Y ,Yβ) ≤ d(Y ,Yk){ } (6.1)

The flux at milestone Ii (the number of molecules that pass per unit time the i-th

milestone) is denoted by qi . The basic Milestoning equation[49] is of conservation of

flux,

qi t() = 2 ⋅ηiδ t() + Kij t − t '()qj t '()dt '

0

t

∫
j
∑ ∀i (6.2)

where qi t() is the flux through milestone Ii at time t, ηi is initial condition (the

probability that the last milestone that passed before or at time zero is Ii), Kij (t) is the

transition probability that a trajectory that starts at milestone Ii will pass through

milestone I j exactly after time t. Hence Eq. (6.2) keeps track of the number of

trajectories and ensures that the flux is conserved.

For network calculations it is convenient to consider a stationary flux or steady

state condition in which the flux, qi , is time independent. The stationary matrix is K. It is

Xγ

X
α

Xβ I
j

I
i

X
δ X

ε

I
l

I
k

I
m

δ

β

γ

α

ε

i

I
n

j

n

m
k

l

 124

the time integrated transition matrix Kij ≡ Kij t()dt
0

∞

∫
⎛

⎝⎜
⎞

⎠⎟
which gives the probability that a

trajectory initiated at milestone Ii will hit (and terminate at) another milestone I j before

any other milestone. We obtain a stationary flux by setting cyclic boundary conditions.

The final milestone f is set to return all the flux that arrives to it, to the first milestone.
Hence the matrix element K fi is set to one if milestone Ii is the first milestone and is set

to zero otherwise. The above adjustment of K and the requirement of stationary flux /

steady state results in a remarkably simple equation for the stationary flux [48].

q Id − K() = 0 K fi=
1 i = 1
0 i ≠ 1

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

 (6.3)

where q is the vector of all stationary fluxes. Id is the identity matrix. As

discussed extensively in earlier papers about Milestoning[49, 124] K is computed from
atomically detailed trajectories as K ≈ nij ni where ni is the number of trajectories

initiated at milestone Ii and nij is the number of trajectories that started at Ii and the first

milestone they reach (which is different from Ii) is milestone I j . The length of the

vector q is J and the dimensionality of K is JxJ, where J is the number of milestones.

In short, the only quantities needed to be estimated from short trajectories are the

elements of the transition kernel, K. The flux can be derived from it by using Eq. (6.3).

Trajectories between milestones are assumed independent, which allows us to calculate

the trajectories in parallel. Moreover, because milestones are close to each other, the time

scale of trajectories between two milestones is much smaller than the overall time scale

of the biological process [121].

Contributions of this chapter

The questions we seek to answer are the following: “In what ways can we

represent Milestoning data in terms of networks?”, “What are the important edges and

 125

paths in these networks and how do we find them?” and “Are there bottlenecks in the

networks?”. Bottlenecks are edges of low flux in the network, that require significant

efforts to pass through, and they must be crossed on the way from the initial (reactant) to

the final (product) state. The information about pathways and bottlenecks is useful for

qualitative analysis of the process and to gain more insight into the behavior of the

system.

We propose Global Maximum Weight Pathways as a useful tool for analyzing

molecular mechanism in Milestoning networks. A closely related definition was made in

the context of Transition Path Theory [120]. We consider three algorithms to find these

pathways: Recursive Dijkstra’s, Edge-Elimination, and Edge-List Bisection. The

asymptotic efficiency of the algorithms is analyzed and numerical tests show that Edge-

List Bisection and Recursive Dijkstra’s algorithms are most efficient for sparse and dense

networks respectively. Pathways are illustrated for two examples: helix unfolding and

membrane permeation. Finally, we illustrate that networks based on local kinetic

information can lead to incorrect interpretation of molecular mechanisms.

6.2 NETWORK REPRESENTATION

The molecular process is represented as a weighted, directed graph G = (V ,E) ,

where V is the set of vertices and E is the set of edges in G. An edge from vertex u to

vertex v is represented as (u,v) and has a weight, w(u,v) . Note that the edges are

directed, i.e. edge (u,v) is not the same as (v,u) . The edge weights may have different

physical realizations. For example, edge weights and states may be defined by the

physical distance between two vertices (as is done by geometric clustering), the phase

space flux between nodes, or the rate constant of transitions between the nodes.

 126

The representation of directional milestoning data using networks has been

previously described in[48, 51]. As Figure 6.1 shows, two types of network

representation are possible for Milestoning data. One type of network is where metastable

(stable intermediate) states are identified and are mapped to vertices (nodes). Transitions

between the states are modeled by edges between the vertices. We have five cells in
phase space denoted by Xα ,Xβ ,Xγ ,Xδ ,Xε . Each cell can be mapped to a network vertex

and the edges would be between vertices, e.g. α ,β() and β,γ() . Sometimes the cells are

represented by specific conformations (anchors) that are illustrated in the figure by the

blue ellipses.

In an alternate network representation, the vertices can be interfaces or milestones

denoted on the figure by dashed red lines, which indicate the boundary between domains.

There are six milestones in the above figure, Ii − In . Continuous trajectories are mapped

to the network either by their location in phase space, or by the last milestone that they

have passed (color coded curves in the figure). On the right side of the figure we show

network representations. Top figure is an anchor-based network and the lower figure is

based on the milestones.

The dual representation, by anchors and milestones, makes it possible to visualize

more than one network for the same process. Depending on the choice of nodes, as (i)

anchors or (ii) milestones, we have two types of networks: (i) state-space network where

the nodes are anchors or phase space volumes, and (ii) a flux-space network, where the

nodes are milestones. There are more milestones than anchors and hence the picture

obtained by the flux-space graph is more detailed and potentially includes more

information than the state-space graph. But the state-space graph is simpler, and for

interpretation purposes it can be beneficial to look at the system at the anchor level. We

therefore convert the flux-space paths to state-space for visualization purposes.

 127

For choice of edge weights between the nodes, we choose the flux, as flux

between two nodes is the most informative quantity in Milestoning, that we can attach to

an edge, as is done in Transition Path Theory[125] and the max flux formulations of

optimal pathways[48, 126-128]. Below, we discuss how edge weights are obtained from

fluxes for both state-space and flux-space graphs. We also discuss another graph

representation based on rate coefficients instead of fluxes. For the flux-space graphs, we

additionally explain how to convert the paths to state-space.

State-space (anchor-based) graphs with flux-based edge weights

We create a graph with one vertex per anchor. Consider two anchors α and β,
which are associated in directional milestoning, with two fluxes, qαβ and qβα

corresponding to the interfaces (milestones) α → β and β →α . The weight of the edge

is the net flux w α ,β() = qαβ − qβα . The direction of the edge is decided according to the

larger flux. Hence, if qαβ > qβα the direction of the edge is from α to β and vice versa.

The main advantage of using graphs in anchor space, apart from the ease of

interpretation, is that the size of graphs is smaller and hence calculating pathways is less

expensive than the flux-space graphs. In directional milestoning for instance, the number

of nodes i.e. milestones of a flux-space graph, J, is much larger than the number of

anchors N, and J can be as large as N(N −1) . However anchor space graphs are more

likely to be dense graphs.

Flux-space (milestone-based) graphs with flux-based edge weights

We have one vertex per milestone in this graph. The probability matrix Kij

sampled in Milestoning, determines the presence of edges between milestones [116]. An

edge from milestone i to milestone j exists if the corresponding matrix entry is positive, (
Kij > 0). But determining edge weights is not obvious from first sight since the flux

 128

information is for individual milestones, while the edge weights represent information

between two connecting milestones. The following simple transformation converts

vertex-based (milestone-based) weights to edge weights between pairs of milestones. For
milestone pair i and j, the edge weight for edge i, j() is w i, j() = qj i.e. the flux

associated with the second milestone.

On the path from start state s to end state t, the only milestone on the path whose

flux we do not encounter as an edge weight on the path, is the starting milestone, since

we consider only the flux of the latter milestone, j, for every edge i, j() . This is fixed by

adding an extra (dummy) milestone, s ' before the first vertex, with an edge from s ' to s

whose weight is w(s ', s) = qs i.e. weight of the edge is equal to flux of the starting

milestone. The pathway calculations are then performed from s ' to t instead of s to t.

Note that, for a fixed milestone j, all the edges leading to milestone j in such a
graph will have the same weight. In other words,w i, j() = qj ∀i, s.t.Kij > 0 . Hence

many edges have the same weight (same flux in this case) and this can result in

degenerate paths.

For visualization, we convert the resulting paths from milestone space to anchor

space. For every milestone i in the milestone-based path, associated with anchors α and

β , we add to the anchor-based path, an edge α ,β() between anchors α and β , with

edge weight w(α ,β) = qi i.e. edge weight is the flux associated with the corresponding

milestone. Note that adjacent milestones always share an anchor. For example, path

i, j,k in milestoning space corresponds to path α ,β,γ ,δ in anchor space, assuming

milestone i corresponds to anchor pair α ,β() , milestone j corresponds to anchor pair

β,γ() and milestone k corresponds to (γ ,δ) .

 129

Flux-space (milestone-based) graph based on rate coefficients

An easier alternative to the flux based approach for getting edge weights is to

weigh the edges of the graph with rate coefficients or energy barriers[129, 130]. This

weighting is local and does not take into account global topology and local information

can be misleading and point to less relevant portions of the graph. For example, using

rate coefficients, it is possible to weigh some edges highly if they have a fast local

transition. But at the same time, these edges may be off the main pathway receiving little

reactive flux.

The rate coefficients of a Master equation between milestones can be computed

directly using the Milestoning transition matrix K and the vector τ , the average lifetimes

of the milestones [50, 131]. The rate coefficient for a transition between a milestone pair

(i, j) (and the edge weight) is given by

w(i, j) =
Kij

τ i
 (6.4)

Converting paths based on rate coefficients in flux-space (milestone-space) to

state-space (anchor-space) is performed as follows. For every milestone i (a milestone

between anchors α and β) on the path in flux-space, we add an edge in state-space

between the anchors α and β . Each pair of milestones (i, j) is associated with three

anchors, (α ,β,γ) with milestone i associated with anchor pair α ,β() and milestone j

associated with anchor pair β,γ() . Hence edge weight between a pair of milestones (i, j)

in the path in milestone space is shared equally between anchor-based edges α ,β() and

β,γ() . Edge weights from flux-space to anchor-space are converted as shown in Figure

6.2. Note that each milestone edge contributes to weights on two anchor edges and each

anchor edge can get a contribution to its weight from two milestone edges (except the

edges at the ends of the path).

 130

Figure 6.2 Conversion of a flux-space path with milestones as vertices, to a state-space
path with the corresponding anchors as vertices. The table in the figure
shows the mapping from milestone index to anchor index.

6.3 DEFINITION OF PATHWAYS

Maximum Weight Path (MWP)

Given a start vertex, s, and end vertex, t, we seek a path between s and t in which

has the maximum possible weight (of all paths between s and t) for the minimum weight

edge on the path. Each of the paths from s to t paths has a bottleneck, that is the edge

with the minimum weight (EMW) along the path. The s-t path with an EMW, which is

larger than the EMW of all other s-t paths, is the maximum weight path between s and t.

This has also been referred to as a dominant reaction pathway in Transition Path

Theory[120]. The edge weights in the graph can also be referred to as capacities, and the

maximum weight path is known as the maximum capacity path [132-135].

An example graph is illustrated in Figure 6.3 (a), which displays start and end

vertices A and D respectively, and capacities (edge weights) marked along the edges. A

path from vertex A to vertex D, passing through vertices B and C is written as

A,B,C,D . There are multiple paths between A and D, A,B,D , A,C,D and

 131

A,B,D . Of these three paths, the maximum weight paths are A,B,D and A,B,D ,

shown in green in Figure 6.3 (b), since the edge with minimum weight (EMW) on both

these paths is the highest possible for an A to D path, and equal to 8, which is greater

than 5, the minimum weight edge on path A,C,D .

Figure 6.3 (a) An example graph with multiple paths between vertices of interest, A and
D. (b) Maximum weight paths (MWP) between A and D shown in green. (c)
Global maximum weight path (GMWP) between A and D shown in red.

Global Maximum Weight Path (GMWP)

The definition of maximum weight path stated above relies on just one edge in the

path, i.e. the EMW. More than one path can share the same EMW as shown in the above

example. In order to have a unique solution to the path determination problem, we define

the global maximum weight path (GMWP), which is an optimal maximum weight path

that is as close as possible to being unique. The global maximum weight path is referred

to as the representative dominant reaction pathway in Transition Path Theory[120].

Let a path, m, be a maximum weight path between s and t. If for every pair of

vertices on m, the subpath on m between those vertices is a maximum weight path, then m

is a global maximum weight path (GMWP). The GMWP for a given pair of vertices is

unique up to the degeneracy of paths branching from the same vertex in the graph.

GMWP is analogous to a minimum energy path in continuous space, and the EMW is

 132

analogous to a transition state. In previous studies, we defined a discrete version of the

max flux path for a network as a GMWP[48, 136, 137].

In the example shown in Figure 6.3, both A,B,C,D and A,B,D are

maximum weight paths, with the same EMW, (A,B) . But the maximum weight path

between B and D is B,C,D with minimum edge weight 10, and not B,D , which has

a minimum edge weight 9. Hence the global maximum weight path between A and D,

shown in red in Figure 6.3 (c), is A,B,C,D since all its subpaths are also maximum

weight paths.

More formally we define W (s,t, p) , weight of a path, p, from vertex s to t, as
W (s,t, p) = min

(u ,v)∈p
w(u,v) (6.5)

In Eq. (6.5), (u,v) represents an edge from vertex u to vertex v, and w(u,v) is the

weight or capacity of the edge (u,v) . Eq. (6.5) states that the weight of a path p is equal

to the weight of the edge with minimum weight (EMW) on the path. We define a path µ

to be a maximum weight path between vertices s and t if µ satisfies Eq. (6.6).
W s,t,µ() ≥W s,t, p() ∀p (6.6)

That is, the weight of path µ , from vertex s to t, is greater than the weight of all

other paths p from s to t. Or, the EMW on path µ has a higher weight than the EMW of

all other paths p. We also represent the EMW of the maximum weight path, µ , between s

and t as M (s,t) ≡W (s,t,µ) .

We then define m as a GMWP from s to t,m = s,v1,v2....vi ,vj ...t , if it satisfies

 W ν i ,ν j ,m() ≥W ν i ,ν j , p() ∀p ∀ν i ,ν j ∈m, i < j (6.7)

Eq. (6.7) states that, for any two vertices, vi and vj on the path m, with vi

appearing before vj on the path, the path between vi and vj that has the maximum

weight, among all paths p from vi to vj is exactly the path through m. We now develop

the algorithms for obtaining the MWP and GMWP.

 133

6.4 DETERMINATION OF MAXIMUM WEIGHT AND GLOBAL MAXIMUM WEIGHT PATHS

Recursive Dijkstra’s Algorithm for Global Maximum Weight Path

a. Modification to Dijkstra’s Shortest Path Algorithm for Calculating the Maximum

Weight Path

Dijkstra’s algorithm[138] provides the base for efficient calculation of the GMWP

using the Recursive Dijkstra’s algorithm. Dijkstra’s single-source shortest path algorithm

finds the shortest paths and shortest path lengths from a single vertex of interest, s, to all

other vertices, in a graph G, where a non-negative weight of an edge representing

distance, d u,v() , is associated with each edge u,v() . The length of the path, L , is

determined by the sum of the edge distances.

Dijkstra’s shortest path algorithm can be easily modified to obtain an algorithm to

find a maximum weight path from a given vertex s to all other vertices. The two key

points in the modification are that first, the minimization problem (shortest path length)

in the previous case is converted to a maximization problem (maximum EMW or

maximum capacity). Second, instead of using the length metric as the sum of distances in

a path, we use the metric of the weight of the EMW along the path.

The algorithm for maximum weight path calculation finds at each step, the vertex,

u, with the maximum weight (or maximum EMW) from s and updates the maximum

weights of the vertices neighboring u. In other words, suppose we know the maximum

weight of u, and say u is connected to v through edge (u,v) . We can then update the

maximum weight from s to v, if the weight of the path to v passing through u is higher

than the current estimate of the maximum weight from s to v.

We arrive at the equality in Eq. (6.8) for each vertex v adjacent to vertex u, where

M u() and M v() represent the current known maximum weight from the source vertex

to u and v respectively, and w(u,v) is the weight of the u-v edge. This is a slight

 134

modification of the equality in the shortest path algorithm where the sum in the inner

bracket is changed to a minimum of two edges and the min condition in the outer bracket

is changed to max condition.
 M v() = max M v(),min M u(),w u,v()()() (6.8)

The algorithm to calculate maximum weight paths from a given source vertex s to

all other vertices in a directed graph G is outlined in Table 6.1. The variable M keeps

track of the weight of the bottleneck edge or EMW, on the maximum weight path from s

to a particular vertex. The array Q is the priority queue in the shortest path algorithm

which enables efficient extraction of the vertex with maximum weight at each step. The

data structure Adj is an adjacency list representation of the graph. The EXTRACT_MAX

operation extracts the current (unprocessed) vertex with the maximum weight from s.

An extra array called bottleneck is used here to store the actual vertices

corresponding to the EMW (bottleneck edge) in the maximum weight path for a given

vertex. This data structure is not required for calculating maximum weight paths, but is

required later on, when we use this maximum weight path algorithm to calculate the

global maximum weight path.

When the algorithm terminates, the maximum weight among all paths from s to a

particular vertex, i, is retained in array element M[i] and the EMW for a particular vertex

is in array bottleneck[i] (line 17). The proof of this algorithm is exactly analogous to

Dijkstra’s shortest path algorithm.

 135

Table 6.1 Algorithm 1 - Modified Dijkstra’s algorithm for finding maximum weights and
bottleneck (EMW) edges from s to all other vertices in a graph G.

procedure MaxWeightPath(G,s)
for each v in G 1
 M(v) = -1 2
 3
M(s) = ∞ 4
Q = V // Add all the vertices in G 5
 6
while Q ≠ NULL 7
 u = EXTRACT_MAX(Q) 8
 for each v in Adj(u) 9
 if M(v) < min(M(u),w(u,v)) // M(v)=max
(M(v),min(M(u),w(u,v)))

10

 M(v) = min(M(u),w(u,v)) 11
 12
 if M(u) < w(u,v) 13
 bottleneck(v) = bottleneck(u) 14
 Else 15
 bottleneck(v) = (u,v) 16
return bottleneck,M 17

The efficiency of the algorithm is the same as that of the shortest path algorithm.

For a graph with V vertices and E edges, the best-known theoretical complexity of this

algorithm is O(V logV + E) , using Fibonacci heaps for efficiently extracting the next

vertex with the smallest distance from s in O(logV) time, and adjacency lists for

efficiently finding the neighbors of a vertex in O(E) time across all vertices. For sparse

graphs (i.e. V ≈ E) the time complexity becomes O(V logV) . For dense graphs, (where

E ≈V 2), the time complexity is O(V 2) . For a simpler implementation of graphs with

priority queue implemented using arrays and graphs implemented as adjacency matrices,

the complexity is again O(V 2) for this algorithm.

The maximum weight path is a path from the start to end state containing the

transition edge, EMW, which is similar to the transition state of chemical reactions. The

EMW is a good descriptor for processes dominated by a single and large free energy

 136

barrier, in which case, the location of the transition edge is much more critical than the

rest of the GMWP, and the algorithm outlined above can be used to compute this path

efficiently. However, when the EMW is not dramatically lower in weight compared to

other weights along the path, the location of the entire pathway matters, which brings us

next to the calculation of Global Minimum Weight Path (GMWP).

b. Recursive Dijkstra’s Algorithm for GMWP Calculation

We note that the GMWP is a special maximum weight path between s and t. It is a

path where all subpaths between pairs of vertices on the same path are maximum weight

paths. We now introduce a new algorithm, the Recursive Dijkstra’s algorithm, that uses

the maximum weight path algorithm (Algorithm 1) repeatedly to calculate the global

maximum weight path. Given a pair of vertices s and t, we first use Algorithm 1, the

maximum weight path algorithm, to get the EMW (u,v) between s and t. Note that

Algorithm 1 returns the EMW from s to all other vertices, but we only need that piece of

information for vertex t. Since w(u,v) is the maximum weight that can pass between s

and t, (u,v) is an edge common to all maximum weight paths between s and t and hence

it exists also in the GMWP between s and t. We then have two subpaths to be determined

in the GMWP, p1 = s...u and p2 = v...t . We use the above technique recursively to

find the EMW (bottleneck edge) edge between s and u, and between v and t. We note that

once an EMW (u,v) is known, between s and t, the remaining subpaths p1 and p2 of the

GMWP can be computed independently, since the edges on the subpaths will always be

of higher weight than the EMW.

Thus each call to Algorithm 1 provides us with one edge on the GMWP. Once all

subpaths are uniquely determined, we have the complete GMWP between s and t. Given

vertices s and t, Algorithm 2 in Table 6.2 finds the global maximum weight path between

them in a directed graph G.

 137

There can be multiple maximum weight paths, all of them having the same EMW,

but the GMWP is defined to be unique up to the possible accidental degeneracy of edge

weights of alternate paths. If there are degenerate edges in the graph, there can be more

than one GMWP, and hence it is recommended to compute the first path, remove the

bottleneck edge and recompute the path, repeating this procedure till no more unique

paths are found. This process guarantees that we get a complete picture of the reaction

pathways.

Table 6.2 Algorithm 2 – Recursive Dijkstra algorithm to find the global maximum weight
path between vertices s and t, in a directed graph, based on the modified
Dijkstra algorithm for maximum weight paths.

procedure GlobalMaxWeightPath(G,s,t)
 // base case, return empty path 1
 if s = t 2
 return <> 3
 4
 // call algorithm 2 to find bottleneck edge 5
 (bottleneck,M) = MaxWeightPath(G,s) 6
 (u,v) = bottleneck(t) 7
 8
 // find subpaths by recursion 9
 = GlobalMaxWeightPath(G,s,u) 10

 = GlobalMaxWeightPath(G,v,t) 11
 12
 // concatenate the subpaths 13

 return
14

Each call to Algorithm 2 fixes one edge on the GMWP. With V vertices and E

edges in the graph, the maximum length of a GMWP is of the order of V, so Algorithm 1

is called a maximum of V times from Algorithm 2. Note that Algorithm 1 itself takes

O(V logV) for sparse graphs (with priority queue implemented using Fibonacci heaps and

graphs implemented as adjacency lists) and O(V 2) for dense graphs and for simple

p1
p2

p1,(u,v), p2

 138

implementations of sparse graphs. Hence Algorithm 1 takes O(V 2 logV) time for sparse

graphs and O(V 3) for dense graphs and for simple implementations of sparse graphs.

We note that we are doing some extra computations in Algorithm 2 that can be

avoided. For example, we first call Algorithm 1 on the source vertex, s to get the EMW

(bottleneck) of the destination vertex t from s. Then while computing the subpath from s

to u, in the recursive step, we again call Algorithm 1 on s to get the EMW of u from s.

But, Algorithm 1 calculates the EMWs for all vertices from s, and not just for one

particular destination vertex, t. Hence we can just run Algorithm 1 once on each vertex,

and store the EMWs of all other vertices from this vertex. This can be done by making

bottleneck a 2D array i.e, bottleneck(i,j) will give the EMW for the maximum weight

path from vertex i to vertex j. Each time we need the EMW from Algorithm 1 between

two vertices i and j, we check whether Algorithm 1 has been already computed on vertex

I, and only run Algorithm 1 when it has not been run on i.

The optimized procedure does not improve our bounds on the asymptotic time

complexities outlined in the Efficiency section. In the worst case, the EMW between two

vertices is always the first edge on the path between the two, in which case Algorithm 2

needs to be run on every vertex in the GMWP and optimization cannot be performed.

Nevertheless, the optimization improves the runtime in the average case, and is useful in

practice.

Comparison to Edge-Elimination based MaxFlux Algorithm

Previously, an approximate algorithm has been described for finding maximum

flux path in the context of Directional Milestoning in [48]. Here we call it the “Edge-

Elimination” Maxflux algorithm. The steps in the algorithm are:

 139

1. Sort all the edges in the graph G based on their weight, into a list, Lw .

2. Initialize path p, between vertices s and t to an empty path. p on exit will be the
GMWP.

3. While the vertices s and t are not connected in p, repeat the following steps.
4. Proceed to the next edge, (u,v) in Lw with the smallest weight.

5. Check if removal of (u,v) from G disconnects s from t.

6. If it does, then this is an edge that is critical to the GMWP, and hence it is added
to p.

7. If not, then simply remove this edge from G, and proceed to the next edge in Lw .

Given a graph with E edges and V vertices, the time for sorting the edges is

O(E logE) . Checking if two vertices are connected in a graph can be done efficiently

using graph traversal algorithms like breadth first search or depth first search [7], which

take O(V + E) if adjacency lists are used, or O(V 2) if adjacency matrices are used to

represent the graph. The maximum number of iterations we need is E (one per edge), so

the time complexity becomes O(E logE + EV 2)when using a matrix representation of the

graph and O(E logE + E(V + E)) when using the adjacency list representation.

For dense graphs, where E ≈V 2 , both the matrix and list representations yield a

complexity of O(V 4) , whereas for sparse graphs where E ≈V , the matrix representation

takes O(V 3) while the list representation is faster and takes O(V 2) . Hence, the scaling

behavior of the Edge-Elimination algorithm is worse than the Recursive Dijkstra

algorithm.

Comparison to the Edge-List Bisection Algorithm

The approach for determining MWP and GMWP paths that we discussed is

closely related to that of Metzner et al[120]. In [120] the network was based on

Transition Path Theory (TPT) while our approaches use the formulation of Milestoning.

 140

Here, we call the path algorithm given in[120] as the Edge-List Bisection algorithm and

describe it below.

The overall approach used to identify Global Maximum Weight Paths in this

algorithm, is identical to the Recursive Dijkstra’s algorithm for GMWP calculation

(Algorithm 3 in this chapter). That means, a bottleneck edge (u,v) is computed between

vertices s and t first, and then the path between s...u and v...t is recursively identified.

But the underlying algorithm to calculate a bottleneck each time (which in the Recursive

Dijkstra’s algorithm is a modification of the Dijkstra’s algorithm) is a variant of the

Edge-Elimination algorithm. The following steps describe how the bottleneck edge

between two vertices s and t is selected each time.

1. Sort all the edges in the graph G based on their weight, into a list,

Lw = e1,e2....e|E|[] . The edges are stored in ascending order as in the Edge-
Elimination algorithm.

2. If the last edge in Lw , e|E| is an edge between s and t, return the last edge as the
bottleneck edge.

3. Go to the edge in the middle of the current sorted list, em . Let the weight of this
edge be wm .

i) If s and t are still connected by removing all edges with weight less
than wm , then the bottleneck edge has a weight higher than wm . Hence
it is located in the second half of the edge list between em+1....e|E| ,
which is the part of the edge list we need to explore next.

ii) Else if removing edges with weight less than wm results in s being
disconnected from t, then the bottleneck has a weight lower than wm
and is located in the first half of the edge list between e1....em .

Note that we obtain from step 4, a sublist to be explored, and this sublist is half

the size of the original sorted list. We then repeat steps 3 and 4, exploring the middle

edge of the new sublist and using it to halve the edge list each time. These steps are

 141

repeated till the final edge list consists of just one edge. This edge is the bottleneck edge

returned by the algorithm.

Unlike the Edge-Elimination algorithm, where we go through each edge in the

edge list one by one, here we traverse the edge-list in a bisected search manner, bisecting

the edge list till we are left with a single edge. The overall algorithm runs in an identical

manner to the Recursive Dijkstra’s algorithm in terms of identifying the bottlenecks and

reconstructing the path.

In contrast to the previous two algorithms the Edge-List bisection algorithm

makes the following assumptions: (i) the graph has no edge degeneracy, (ii) the set of all

the MWPs includes all the edges of the graphs, and (iii) there are no cycles in the graph.

Assumption (ii) requires, for example, that the graph does not include dead-end branches.

Hence some pre-processing of the graphs may be required.

To find a single bottleneck edge, the bisected edge list search examines O(logE)

edges. And for each edge, one connectivity test is performed using Breadth-first Search

or Depth-First Search, which takes O(V + E) or O(V 2)depending on whether the graph

representation is in terms of the adjacency list or adjacency matrix. Hence the search for a

single bottleneck edge takes O(V 2 logE) for the matrix representation, and O(E logE)

for the list representation. Since there are atmost O(V) edges on the GMWP, the overall

algorithm takes O(V 3 logE) for the matrix representation and O(VE logE) for the list

representation. Hence the complexity is O(V 3 logV) for all networks in the matrix

representation and for dense matrices in the list representation, and becomes O(V 2 logV)

for sparse networks in the list representation.

Note that the paths returned by all three algorithms above are identical.

 142

6.5 RESULTS AND DISCUSSION

We considered two systems to demonstrate the paths: unfolding of a helix under

stress and membrane permeation of DOPC. Below is a description of the systems and the

paths we obtained in both.

Helix Unfolding under Stress

Alpha helices are prime secondary structure elements that are found in proteins.

Their stability and folding/unfolding pathways are therefore of considerable interest. A

recent study[136, 137] simulated a single molecule experiment of a ~100 amino acid

helix, in which both terminals were pulled by an external force and unfolding events were

recorded. For each of 10 load levels from 0pN to 100pN, 500 transition kernel matrices,

K and milestone lifetimes, τ were sampled, from which fluxes were calculated using the

Milestoning equation [136, 137]. We calculated paths (GMWP) on the average kernel

matrices, lifetimes and fluxes, averaged over the 500 samples for each load level.

In this system the number of anchors was 14. For the different load levels, the

number of milestones found were 129, 125, and 109 for 0, 30 and 70pN respectively. For

path calculations, the starting anchor corresponded to the state alpha3, the fully folded α-

helix state, with three hydrogen bonds wrapping an amino acid. The ending anchor

corresponded to the unfolded state of the helix, in which no hydrogen bonds are formed

and the dihedral angle is in the extended chain configuration, with psi > 90 .

In milestone space, these start and end anchors corresponded to one start

milestone and four end milestones, since there were multiple ways to reach the last

anchor (unfolded state). All paths were converted to anchor space for visualization.

Figure 6.4 demonstrates the complexity of the state-space and flux-space networks for the

intermediate load level of 30pN.

 143

Figure 6.4 Visualization of average networks for helix unfolding under a load level 30pN
in (a) state-space, with 14 anchors (vertices). (b) flux-space with 125
milestones (vertices). The graphs are to illustrate the complexity of analysis
and were prepared with the Pajek program[139].

Figures 6.5-6.7 depict the global maximum weight pathways obtained from the

three different graph representations: state-space graph, flux-space graph with flux-based

weights and flux-space graph with rate coefficients, for three different load levels: 0pN,

30pN and 70pN. Intermediate vertices on the paths represent partially folded states like

alpha2 and alpha1 with 2 and 1 hydrogen bonds remaining respectively, misfolded states

like 310, representing the 310 helix, or nearly unfolded states, like 90 < psi < 0 .

 144

Figure 6.5 Global maximum weight paths using three different graph representations for
helix unfolding under 0pN stress. Bottleneck edges (EMW) are in red.

 145

Figure 6.6 Global maximum weight paths using three different graph representations for
helix unfolding under 30pN stress. Bottleneck edges (EMW) are in red.

 146

Figure 6.7 Global maximum weight paths using three different graph representations for
helix unfolding under 70pN stress. Bottleneck edges (EMW) are in red.

 147

When examining the state-based pathways, we notice that the position of the

EMW or the transition state is different for different loads. For example, the state-based

path for 0pN path is direct and moves from the three-hydrogen-bond state to a state with

one hydrogen bond and then to a state with positive backbone dihedral, psi. Finally the

system transitions to the unfolded state, where no hydrogen bonds are present. The

bottleneck is at the break of the first two hydrogen bonds. A similar path is followed at

30pN load, with the addition of one more (unlabeled) intermediate state with no hydrogen

bonds. The dihedral angles of the unlabeled state are still in the folded region.

Interestingly, the bottleneck at 30pN is different from the 0pN case, is shifted to a

backbone conformational transition, and is not at the dissociation of a hydrogen bond.

The 70pN path illustrates another twist in which a new intermediate hydrogen bond (310)

is formed before the system unfolds. The bottleneck is shifted to the last state in which

the psi dihedral completes the rotation to domains greater than 90 degrees. This is

consistent with the application of additional load, since the 310 helix is more extended

than the α helix and it is preferred at the high load limit, compared to the random chain

less-extended conformation (the unlabeled state) of the 30pN load.

The most complex paths are obtained at intermediate load level (30pN). One can

understand this by considering the two limits of low and high loads. At low (zero) loads

the system does not have sufficient energy to explore the energy landscape and is

restricted to a few dominant and low energy reaction coordinates. At high load level, the

large external force dominates the energy landscape. The external force washes out many

of the molecular details and induces the system to fold in more direct and straightforward

pathways. At intermediate load level, the external force is sufficient to reduce the free

energy barrier to the extent that new states can be found and explored but it is not too

strong to overwhelm the features of the energy landscape. This is also consistent with the

 148

earlier observation[136, 137] that the mean first passage time through the system is

longer for intermediate load levels.

We also explore different graph resolutions. The state-space graph is of the lowest

resolution and the paths from this graph have the lowest level of details. A higher level of

resolution is provided by the milestone-space graph. Milestones are the interfaces

between states and obviously there are more interfaces than states. The last

representation, which is based on rate coefficients between milestones, is not only more

complex but also approximate. The significant differences from the kinetically exact

MaxFlux path suggests that it is mechanistically incorrect.

Membrane Permeation of DOPC

Phospholipid membranes such as DOPC efficiently separate two aqueous

solutions and support concentration gradients of different solutes that are necessary for

life processes. However, the membrane barrier is not absolute and passive permeation is

possible. It is an intriguing question whether basic ingredients of biological

macromolecules (such as amino acids and sugar molecules) can permeate through

membranes without the active assistance of transporters. Recently an investigation was

initiated to accurately simulate the permeation of complex molecules through

membranes[121, 140]. In particular, the translocation of a blocked tryptophan was

simulated with Milestoning. A network was built that takes into account not only the

center of mass of the permeant, but also the orientation of the molecule with respect to

the membrane axis. The number of anchors here was 217 and the number of milestones

was 1204. The start anchor (and milestone) corresponded to the permeant at the left of the

membrane and the end anchor (and milestone) corresponded to the permeant in solution

at the right side of the membrane.

 149

The global maximum weight paths obtained using various graph representations

for this system are shown in Figure 6.8. The paths based on fluxes, in both the flux-space

and state-space graphs, are quite similar. But the path based on local rate coefficients is

quite different and samples a different part of the conformation space. This example too

suggests that the mechanisms obtained from local kinetic information can be different

from those based on the exact kinetics. Nevertheless, the alternative path based on local

kinetics is found at somewhat lower scoring GMWPs of flux-based graphs. Hence it is

still a sensible choice with acceptable weight. For dense and degenerate graphs, multiple

pathways of similar scores can be obtained, and this may be the case also here. The path

based on rate coefficients is less “committed” to the low free energy minima shown in

gray on the upper left side and lower right side of the plot in Figure 6.8.

Figure 6.8 Global maximum weight paths for membrane permeation of DOPC. The graph
representations are: Path A: state-space graph with flux-based weights. Path
B: flux-space graph with flux-based weights. Path C: flux-space graph
weighted by local rate coefficients.

Membrane axis (in Angstroms)

O
rie

nt
at

io
n

an
gl

e
(in

 d
eg

re
es

)

-30 -20 -10 0 10 20 30
0

20

40

60

80

100

120

140

160

180
Free energy
Path A
Path B
Path C

 150

6.6 ANALYSIS OF RUN TIMES AND BENCHMARKS

Table 6.3 summarizes the worst-case time complexities for dense and sparse

graphs for various implementations of the path algorithms. G: List means the graph is

implemented using adjacency lists, G: Matrix means the graph is implemented using

adjacency matrices, Q: Array means the priority queue in Dijkstra’s algorithm is

implemented using arrays and Q: Heap means the priority queue is implemented using

Fibonacci heaps. These scaling factors have been derived in the Efficiency section of

each algorithm.

Note that the Edge-Elimination algorithm shows a marked difference in

complexity between dense and sparse graphs. It is particularly inefficient for dense

graphs and works best for sparse graphs when the number of edges is small. For dense

graphs, the Recursive Dijkstra’s algorithm shows the most favorable asymptotic time

complexity. The Edge-List Bisection algorithm possesses complexities comparable to

that of the Recursive Dijkstra’s algorithm. Generally, state-space graphs maybe dense

while flux-space graphs are usually sparse.

Table 6.3 Summary of asymptotic time complexities of various algorithms for dense
(E ≈V 2) and sparse (E ≈V) graphs.

Dense graphs
Recursive Dijkstra Edge-List

Bisection
Edge Elimination

G: List
Q: Heap

G: Matrix
Q: Array

G: List G: Matrix G: List G: Matrix

O(V 3) O(V 3) O(V 3 logV) O(V 3 logV) O(V 4) O(V 4)
Sparse graphs

Recursive
Dijkstra

Edge-List
Bisection

Edge Elimination

G: List
Q: Heap

G: Matrix
Q: Array

G: List G:Matrix G: List G:Matrix

O(V 2 logV) O(V 3) O(V 2 logV) O(V 3 logV) O(V 2) O(V 3)

 151

Table 6.4 Average runtimes in milliseconds for random graphs with 100, 1000 and 10000
vertices, for the three algorithms.

Dense graphs
Graph
size

(nodes)

Number of
edges

Recursive
Dijkstra’s

Edge-List
Bisection

Edge
Elimination

100 9,500 0.31 2.93 258.61
1000 600,000 98.70 404.06 1.56e+06
10000 60,000,000 49,045.3 117,248.62 -

Sparse graphs
Graph
size

(nodes)

Number of
edges

Recursive
Dijkstra’s

Edge-List
Bisection

Edge
Elimination

100 1,000 0.23 0.54 13.83
1000 10,000 47.81 36.18 7554.45
10000 100,000 11,188.2 7,228.17 -

To obtain a consistent and unbiased measure of the algorithm efficiency in

practice, we recorded the runtimes of the two algorithms on random graphs. We

generated several sparse and dense random graphs and runtimes were estimated by

averaging the results over different random graphs and different start and end nodes.

Simple implementations were used for both algorithms i.e. graphs were implemented

using matrices and queues were implemented using arrays, since the asymptotic

complexity is about the same for the simple versus the more sophisticated

implementations, for either algorithm.

Table 6.4 shows the performance of the two algorithms on random graphs.

Runtimes were calculated on a single core of an 8 core Linux Intel Xeon X5460

processor with clock speed of 3.16 GHz and 16GB memory shared among 8 cores.

Runtimes were not calculated for the Edge-Elimination algorithm for 10000 vertices

since the estimated runtime was too long. Also shown is the number of edges for each

size of random graphs.

 152

The Edge-Elimination algorithm is much slower than the other algorithms for all

graph sizes, and its performance degrades significantly when transitioning from sparse to

dense networks. The Recursive Dijkstra’s algorithm, on the other hand, requires

approximately the same order of magnitude of runtimes in both dense and sparse cases.

The runtimes of the Edge-list Bisection algorithm are comparable to that of the Recursive

Dijkstra’s algorithm. We note that the Edge-List Bisection algorithm is most efficient for

sparse graphs while the Recursive Dijkstra algorithm is most efficient for dense graphs.

We see that though the worst-case complexities of the algorithms are not very

different, there is a wide difference in runtimes on the benchmark. Let us consider for

example, the asymptotic complexities of the algorithms in Table 6.3 for sparse graphs

using matrix representations of graph. For the Edge-Elimination algorithm, one needs to

traverse through the list of sorted edges, checking for each edge, if its removal

disconnects the two end vertices (an operation that takes O(V 2) in this case), terminating

only when the set of edges on the path is complete. In practice, this leads to a large

number of edges being explored before we recover the complete path. So the average

time complexity is closer to the worst-case time complexity for the Edge-Elimination

algorithm.

In contrast, for the Recursive Dijkstra’s algorithm and the Edge-list Bisection

algorithm, we run the underlying bottleneck identification algorithms (which are the
modified Dijkstra’s algorithm which takes O V 2() , or the bisection-based algorithm

which takes O(V 2 logV) respectively in this case) only once per edge in the global

maximum weight path. These means we only need to run these underlying bottleneck
identification algorithms, Ep times, where Ep is the number of edges on the global

maximum weight path. In practice, Ep can be far less than the number of vertices, which

in turn is much less than the number of edges. Hence the average runtime for these

 153

algorithms can be much smaller than the time predicted by the asymptotic analysis and is

smaller than the time taken by Edge-Elimination.

6.7 CONCLUSIONS

Network representations are emerging from a number of enhanced sampling

techniques for molecular kinetics using methods like Milestoning, TPT, MSM, and more.

The push to longer time scales is obtained by calculation of local kinetic information by

MD (e.g. local rate coefficients) and using the data in coarser equations such as in

Milestoning. Networks offer a natural way for coarse-graining without losing too much

in spatial resolution, while being able to push temporal scales to significantly longer

domains (from nanoseconds to hours[121]). We expect the use of networks as well as the

complexity of the networks (number of edges and vertices) to increase significantly in the

future. This increase in network complexity is necessary to capture more details of

chemical processes, allowing for the interactions of multiple coarse variables and going

beyond one-dimensional reaction coordinates. However, the complexity of networks

makes them harder to interpret and obtain qualitative insight, compared to lower

dimensionality modeling. To obtain such qualitative interpretation, we identify in the

network, dominant edges and paths that carry significant fluxes or trajectories and hence

are more important than others. Maximum flux or global maximum weight pathways are

discussed at length in the present paper as a natural choice for these analyses. Recursive

Dijkstra’s and Edge-List Bisection algorithms are proposed as efficient and scalable

approaches to identify them. We also discussed the interpretation of molecular

mechanisms using networks for analysis. We argue that using local kinetic information

 154

(such as rate coefficients) instead of exact solution of the kinetic equations may lead to

incorrect dominant pathways.

Code for calculating optimal pathways in networks is available as part of the

analysis module of the molecular dynamics program MOIL[141]. It can be downloaded

from http://clsb.ices.utexas.edu/web/moil.html

 155

Chapter 7. Conclusions and Future Work

In this thesis, algorithms for improving protein-protein complex prediction were

outlined. Large-scale machine learning methods like pairwise learning using linear

programming were used to derive new potentials, or scoring functions. The training

involved examination of hundreds of thousands of models, which included both correct

and incorrect structures. This learning algorithm models the funnel energy landscape of

protein complexes using constraints that stipulate that the energy of a correct model

should be lower than the energy of an incorrect model. The contributions of this thesis

from a computer science perspective are the introduction of hierarchical constraints into

the learning algorithm, and a comparison to other well-known machine learning

algorithms like SVMs and neural networks. Pairwise learning using linear programming

compared favorably to the other algorithms, in terms of accuracy, training and test time.

From the perspective of structure prediction of protein complexes, new methods

for reranking models were introduced. These methods were implemented in the docking

package DOCK/PIERR [13, 41, 113]. Specifically, a new atomic potential [41] and a new

hydrogen bond based potential [63] were developed. These potentials were combined

with side chain remodeling, energy minimization and molecular dynamics-based

sampling procedures to obtain more chemically reasonable structures starting from rigid

docking models. The docking algorithm was shown to be comparable to the best docking

algorithms in community wide assessments and benchmarks [47]. These advances help

establish automated docking methods as accurate methods for structure prediction and

enable departure from previous methods that rely more on human intervention.

The docking algorithm was extended to study membrane proteins [91], where a

new membrane-based environment potential was introduced and shown to improve the

 156

quality of predictions. Applications for docking of the amyloid precursor protein were

studied. Finally, algorithms for calculating pathways in networks obtained from

molecular dynamics simulations were discussed [116].

Protein-protein docking is an exciting field and there is lots of scope for

improving structure predictions. Current methods can predict complexes correctly, in the

top 10, about 40-60% of the time. We note that until this point, in DOCK/PIERR, we

have only modeled rigid docking structures with minimal alterations to the structures,

mostly in the side chains. A challenging next step is to model larger conformational

change, by using algorithms that introduce backbone flexibility combined with side chain

flexibility. Recent refinement algorithms based on unrestrained molecular dynamics with

hybrid atomic and residue level modeling were found to improve the quality of docking

solutions [19].

We note the deficiencies of our method identified in chapters 2 and 4: namely,

that docking is inaccurate when the number of contacts in the native structure is low. This

can be fixed by adding these low-contact native structures to the training, or training a

separate potential for low-contact structures, which can be used when we have apriori

knowledge that the number of contacts in the predicted model should be low.

Apart from sampling, scoring functions can also be improved in many ways.

Recent developments that include entropic information about the model, have shown to

improve scoring function accuracy. The size of clusters of models and stability of clusters

was shown to aid in removing false positives during reranking [142]. Another successful

method [143, 144] based on entropy involves kinetics-based approaches that used time-

homogeneous Markov chain models, to determine transition probabilities between

models, and selected models based on their equilibrium population. Graph-based

approaches that represent the binding interfaces as networks, and use subgraph mining to

 157

identify common motifs have also been recently popularized [145, 146]. Finally, another

recently successful direction was the use of evolutionary information in developing

multi-body potentials for ranking [144, 145].

The prediction of binding affinity from docking based potentials has been

unsuccessful so far [145, 147, 148]. But new affinity benchmarks [149] have been

recently, and machine-learning methods of the type described in this thesis can be used

for developing potentials that can predict binding affinity, which quantifies the strength

of the interaction, and can be used on the scale of proteomes to predict whether two

proteins interact. This can help classify proteins whose functions are not yet known.

Membrane proteins are yet another relatively unexplored area for docking, where

there are lots of important and open problems. The advantage of computational docking

methods is that rigid docking is sufficient for a large number of membrane proteins [98].

Ensemble methods that combine the predictions from different sources like different

docking algorithms, molecular dynamics simulations and experimental data, can provide

more coverage of structural data about membrane proteins.

Further, scaling docking algorithms to predict higher order complexes, involving

three, four and higher number of proteins, i.e. combinatorial assembly of proteins is a

computationally challenging problem. It has been approached in the past by branch and

bound techniques to eliminate a large number of intermediate solutions [2, 150] and

graph-theoretical techniques [151].

On the machine learning front, developing new potentials based on recently

popular methods like deep learning, and extending our linear programming based

approach to non-linear kernels seem like promising future directions.

 158

References

1. Baker D, Sali A. Protein structure prediction and structural genomics. Science

2001,294:93-96.
2. Ravikant D. Learning to Dock Proteins. Ithaca NY: Cornell University; 2011.
3. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, et al. A

comprehensive analysis of protein-protein interactions in Saccharomyces
cerevisiae. Nature 2000,403:623-627.

4. Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, et al. A protein
interaction map of Drosophila melanogaster. Science 2003,302:1727-1736.

5. Janin J, Bahadur RP, Chakrabarti P. Protein-protein interaction and quaternary
structure. Quarterly Reviews of Biophysics 2008,41:133-180.

6. PDB RCSB. Crystal structure of TRAF6 in complex with Ubc13 in the P1 space
group. 2012.

7. PDB RCSB. Crystal structure of calmodulin binding domain of orai1 in complex
with Ca2+ calmodulin displays a unique binding mode. 2012.

8. Dale GE, Oefner C, D'Arcy A. The protein as a variable in protein crystallization.
J Struct Biol 2003,142:88-97.

9. Smith GR, Sternberg MJE. Prediction of protein-protein interactions by docking
methods. Current Opinion in Structural Biology 2002,12:28-35.

10. Chen R, Weng ZP. Docking unbound proteins using shape complementarity,
desolvation, and electrostatics. Proteins-Structure Function and Genetics
2002,47:281-294.

11. Comeau SR, Gatchell DW, Vajda S, Camacho CJ. ClusPro: a fully automated
algorithm for protein-protein docking. Nucleic Acids Research 2004,32:W96-
W99.

12. Tovchigrechko A, Vakser IA. Development and testing of an automated approach
to protein docking. Proteins-Structure Function and Bioinformatics 2005,60:296-
301.

13. Ravikant DVS, Elber R. Energy design for protein-protein interactions. Journal of
Chemical Physics 2011,135.

14. Duhovny D, Nussinov R, Wolfson HJ. Efficient unbound docking of rigid
molecules. Algorithms in Bioinformatics, Proceedings 2002,2452:185-200.

 159

15. Lorenzen S, Zhang Y. Monte Carlo refinement of rigid-body protein docking
structures with backbone displacement and side-chain optimization. Protein
Science 2007,16:2716-2725.

16. Gray JJ, Moughon S, Wang C, Schueler-Furman O, Kuhlman B, Rohl CA, et al.
Protein-protein docking with simultaneous optimization of rigid-body
displacement and side-chain conformations. Journal of Molecular Biology
2003,331:281-299.

17. Wang C, Bradley P, Baker D. Protein-protein docking with backbone flexibility.
Journal of Molecular Biology 2007,373:503-519.

18. Wang C, Schueler-Furman O, Baker D. Improved side-chain modeling for
protein-protein docking. Protein Science 2005,14:1328-1339.

19. Zacharias M. Combining coarse-grained nonbonded and atomistic bonded
interactions for protein modeling. Proteins-Structure Function and Bioinformatics
2013,81:81-92.

20. Bonvin AM. Flexible protein-protein docking. Current Opinion in Structural
Biology 2006,16:194-200.

21. Andrusier N, Nussinov R, Wolfson HJ. FireDock: Fast interaction refinement in
molecular docking. Proteins-Structure Function and Bioinformatics 2007,69:139-
159.

22. Mashiach E, Nussinov R, Wolfson HJ. Fiber Dock: Flexible induced-fit backbone
refinement in molecular docking. Proteins-Structure Function and Bioinformatics
2010,78:1503-1519.

23. Li L, Chen R, Weng ZP. RDOCK: Refinement of rigid-body protein docking
predictions. Proteins-Structure Function and Genetics 2003,53:693-707.

24. Halperin I, Ma BY, Wolfson H, Nussinov R. Principles of docking: An overview
of search algorithms and a guide to scoring functions. Proteins-Structure
Function and Genetics 2002,47:409-443.

25. Liang SD, Wang GC, Zhou YQ. Refining near-native protein-protein docking
decoys by local resampling and energy minimization. Proteins-Structure Function
and Bioinformatics 2009,76:309-316.

26. Pierce B, Weng ZP. A combination of rescoring and refinement significantly
improves protein docking performance. Proteins-Structure Function and
Bioinformatics 2008,72:270-279.

27. Masone D, de Vaca IC, Pons C, Recio JF, Guallar V. H-bond network
optimization in protein-protein complexes: Are all-atom force field scores
enough? Proteins-Structure Function and Bioinformatics 2012,80:818-824.

 160

28. Kozakov D, Hall DR, Beglov D, Brenke R, Comeau SR, Shen Y, et al. Achieving
reliability and high accuracy in automated protein docking: ClusPro, PIPER,
SOU, and stability analysis in CAPRI rounds 13-19. Proteins-Structure Function
and Bioinformatics 2010,78:3124-3130.

29. Pierce B, Weng ZP. ZRANK: Reranking protein docking predictions with an
optimized energy function. Proteins-Structure Function and Bioinformatics
2007,67:1078-1086.

30. Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG. Funnels, Pathways, and the
Energy Landscape of Protein-Folding - a Synthesis. Proteins-Structure Function
and Genetics 1995,21:167-195.

31. Chaplin M. The folding energy landscape in the presence of low hydration. In;
2012.

32. Jorgensen WL, Tiradorives J. The Opls Potential Functions for Proteins - Energy
Minimizations for Crystals of Cyclic-Peptides and Crambin. Journal of the
American Chemical Society 1988,110:1657-1666.

33. Schwede T, Peitsch MC. Computational structural biology : methods and
applications. N.J.: World Scientific; 2008.

34. Maiorov VN, Crippen GM. Contact Potential That Recognizes the Correct
Folding of Globular-Proteins. Journal of Molecular Biology 1992,227:876-888.

35. Tobi D, Elber R. Distance-dependent, pair potential for protein folding: Results
from linear optimization. Proteins-Structure Function and Genetics 2000,41:40-
46.

36. Rajgaria R, McAllister SR, Floudas CA. A novel high resolution C-alpha-C-alpha
distance dependent force field based on a high quality decoy set. Proteins-
Structure Function and Bioinformatics 2006,65:726-741.

37. Qiu J, Elber R. Atomically detailed potentials to recognize native and
approximate protein structures. Proteins-Structure Function and Bioinformatics
2005,61:44-55.

38. Ravikant DVS, Elber R. PIE-efficient filters and coarse grained potentials for
unbound protein-protein docking. Proteins-Structure Function and Bioinformatics
2010,78:400-419.

39. Wagner M, Meller J, Elber R. Large-scale linear programming techniques for the
design of protein folding potentials. Mathematical Programming 2004,101:301-
318.

40. Meller J, Wagner M, Elber R. Maximum feasibility guideline in the design and
analysis of protein folding potentials. Journal of Computational Chemistry
2002,23:111-118.

 161

41. Viswanath S, Ravikant DVS, Elber R. Improving ranking of models for protein
complexes with side chain modeling and atomic potentials. Proteins-Structure
Function and Bioinformatics 2013,81:592-606.

42. Joachims T. Structured output prediction with Support Vector Machines.
Structural, Syntactic, and Statistical Pattern Recognition, Proceedings
2006,4109:1-7.

43. Kabsch W. Solution for Best Rotation to Relate 2 Sets of Vectors. Acta
Crystallographica Section A 1976,32:922-923.

44. Mendez R, Leplae R, De Maria L, Wodak SJ. Assessment of blind predictions of
protein-protein interactions: Current status of docking methods. Proteins-
Structure Function and Bioinformatics 2003,52:51-67.

45. Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on
the TM-score. Nucleic Acids Research 2005,33:2302-2309.

46. Xu D, Tsai CJ, Nussinov R. Hydrogen bonds and salt bridges across protein-
protein interfaces. Protein Engineering 1997,10:999-1012.

47. Lensink MF, Wodak SJ. Docking, scoring, and affinity prediction in CAPRI.
Proteins-Structure Function and Bioinformatics 2013,81:2082-2095.

48. Kirmizialtin S, Elber R. Revisiting and Computing Reaction Coordinates with
Directional Milestoning. Journal of Physical Chemistry A 2011,115:6137-6148.

49. Faradjian AK, Elber R. Computing time scales from reaction coordinates by
milestoning. Journal of Chemical Physics 2004,120:10880-10889.

50. West AMA, Elber R, Shalloway D. Extending molecular dynamics time scales
with milestoning: Example of complex kinetics in a solvated peptide. Journal of
Chemical Physics 2007,126.

51. Majek P, Elber R. Milestoning without a Reaction Coordinate. Journal of
Chemical Theory and Computation 2010,6:1805-1817.

52. Cormen T, Leiserson C, Rivest R. Introduction to Algorithms, MIT Press, 1992.
53. Dijkstra EW. A note on two problems in connexion with graphs. Numerische

mathematik 1959,1:269-271.
54. Gray JJ. High-resolution protein-protein docking. Current Opinion in Structural

Biology 2006,16:183-193.
55. Hwang H, Pierce B, Mintseris J, Janin J, Weng ZP. Protein-protein docking

benchmark version 3.0. Proteins-Structure Function and Bioinformatics
2008,73:705-709.

56. Janin J. Assessing predictions of protein-protein interaction: the CAPRI
experiment. Protein Science 2005,14:278-283.

 162

57. Krivov GG, Shapovalov MV, Dunbrack RL. Improved prediction of protein side-
chain conformations with SCWRL4. Proteins-Structure Function and
Bioinformatics 2009,77:778-795.

58. Elber R, Roitberg A, Simmerling C, Goldstein R, Li HY, Verkhivker G, et al.
Moil - a Program for Simulations of Macromolecules. Computer Physics
Communications 1995,91:159-189.

59. Sali A, Blundell TL. Comparative Protein Modeling by Satisfaction of Spatial
Restraints. Journal of Molecular Biology 1993,234:779-815.

60. Chen R, Li L, Weng ZP. ZDOCK: An initial-stage protein-docking algorithm.
Proteins-Structure Function and Genetics 2003,52:80-87.

61. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, et al.
Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Research 1997,25:3389-3402.

62. Eswar N, John B, Mirkovic N, Fiser A, Ilyin VA, Pieper U, et al. Tools for
comparative protein structure modeling and analysis. Nucleic Acids Research
2003,31:3375-3380.

63. Viswanath S, Elber R. A hydrogen bond potential for docking water-soluble and
transmembrane protein complexes. in preparation 2014.

64. Kortemme T, Morozov AV, Baker D. An orientation-dependent hydrogen
bonding potential improves prediction of specificity and structure for proteins and
protein-protein complexes. Journal of Molecular Biology 2003,326:1239-1259.

65. Lo Conte L, Chothia C, Janin J. The atomic structure of protein-protein
recognition sites. Journal of Molecular Biology 1999,285:2177-2198.

66. Norel R, Sheinerman F, Petrey D, Honig B. Efficient docking for antibody-
antigen complexes. Biophysical Journal 2000,78:38A-38A.

67. Norel R, Sheinerman F, Petrey D, Honig B. Electrostatic contributions to protein-
protein interactions: Fast energetic filters for docking and their physical basis.
Protein Science 2001,10:2147-2161.

68. Mandell JG, Roberts VA, Pique ME, Kotlovyi V, Mitchell JC, Nelson E, et al.
Protein docking using continuum electrostatics and geometric fit. Protein
Engineering 2001,14:105-113.

69. Jackson RM, Sternberg MJE. A Continuum Model for Protein-Protein
Interactions - Application to the Docking Problem. Journal of Molecular Biology
1995,250:258-275.

70. Morozov AV, Kortemme T. Potential functions for hydrogen bonds in protein
structure prediction and design. Advances in protein chemistry 2005,72:1-38.

 163

71. Fernandez-Recio J, Totrov M, Abagyan R. Soft protein-protein docking in
internal coordinates. Protein science : a publication of the Protein Society
2002,11:280-291.

72. Fernandez-Recio J, Totrov M, Abagyan R. Screened charge electrostatic model in
protein-protein docking simulations. Pacific Symposium on Biocomputing. Pacific
Symposium on Biocomputing 2002:552-563.

73. Hwang H, Vreven T, Janin J, Weng ZP. Protein-protein docking benchmark
version 4.0. Proteins-Structure Function and Bioinformatics 2010,78:3111-3114.

74. Li YQ, Roy A, Zhang Y. HAAD: A Quick Algorithm for Accurate Prediction of
Hydrogen Atoms in Protein Structures. PLoS One 2009,4.

75. Papoian GA, Ulander J, Wolynes PG. Role of water mediated interactions in
protein-protein recognition landscapes. Journal of the American Chemical Society
2003,125:9170-9178.

76. Papoian GA, Wolynes PG. The physics and Bioinformatics of binding and folding
- An energy landscape perspective. Biopolymers 2003,68:333-349.

77. Ben-Hur A, Weston J. A user's guide to support vector machines. Methods in
molecular biology 2010,609:223-239.

78. Cortes C, Vapnik V. Support-Vector Networks. Machine Learning 1995,20:273-
297.

79. Joachims T. Making large-Scale SVM Learning Practical. In: Advances in Kernel
Methods - Support Vector Learning. Edited by Smola BSaCBaA: MIT Press;
1999.

80. Morik K, Brockhausen P, Joachims T. Combining statistical learning with a
knowledge-based approach - A case study in intensive care monitoring. Machine
Learning, Proceedings 1999:268-277.

81. Morawietz T, Sharma V, Behler J. A neural network potential-energy surface for
the water dimer based on environment-dependent atomic energies and charges.
Journal of Chemical Physics 2012,136.

82. Jose KVJ, Artrith N, Behler J. Construction of high-dimensional neural network
potentials using environment-dependent atom pairs. Journal of Chemical Physics
2012,136.

83. Riedmiller M, Braun H. A Direct Adaptive Method for Faster Backpropagation
Learning - the Rprop Algorithm. 1993 Ieee International Conference on Neural
Networks, Vols 1-3 1993:586-591.

84. Nissen S. Implementation of a Fast Artificial Neural Network Library (fann). In:
Department of Computer Science University of Copenhagen (DIKU); 2003.

 164

85. Prechelt L. Early Stopping - but when? In: Chapter 2, Neural Networks: Tricks of
the Trade; 1997.

86. Sheinerman FB, Norel R, Honig B. Electrostatic aspects of protein-protein
interactions. Current Opinion in Structural Biology 2000,10:153-159.

87. Kaczor AA, Selent J, Sanz F, Pastor M. Modeling Complexes of Transmembrane
Proteins: Systematic Analysis of ProteinProtein Docking Tools. Molecular
Informatics 2013,32:717-733.

88. Joachims T. Training linear SVMs in linear time. In: ACM Conference on
Knowledge Discovery and Data Mining (KDD); 2006. pp. 217-226.

89. Collobert R, Bengio S. Links between perceptrons, MLPs and SVMs. In:
Proceedings of the twenty-first international conference on Machine learning:
ACM; 2004. pp. 23.

90. Bengio Y, LeCun Y. Scaling learning algorithms towards AI. Large-Scale Kernel
Machines 2007,34:1-41.

91. Viswanath S, Dominguez L, Foster LS, Straub JE, Elber R. An extension of a
docking algorithm to membranes and applications to dimers of amyloid precursor
protein. in preparation 2014.

92. Selent J, Kaczor AA. Oligomerization of G Protein-Coupled Receptors:
Computational Methods. Current Medicinal Chemistry 2011,18:4588-4605.

93. Dominguez C, Boelens R, Bonvin AMJJ. HADDOCK: A protein-protein docking
approach based on biochemical or biophysical information. Journal of the
American Chemical Society 2003,125:1731-1737.

94. Comeau SR, Camacho CJ. Predicting oligomeric assemblies: N-mers a primer.
Journal of Structural Biology 2005,150:233-244.

95. Cosconati S, Marinelli L, Lavecchia A, Novellino E. Characterizing the 1,4-
dihydropyridines binding interactions in the L-type Ca2+ channel: Model
construction and docking calculations. Journal of Medicinal Chemistry
2007,50:1504-1513.

96. Simon AC, Simpson PJ, Goldstone RM, Krysztofinska EM, Murray JW, High S,
et al. Structure of the Sgt2/Get5 complex provides insights into GET-mediated
targeting of tail-anchored membrane proteins. Proceedings of the National
Academy of Sciences of the United States of America 2013,110:1327-1332.

97. Casciari D, Seeber M, Fanelli F. Quaternary structure predictions of
transmembrane proteins starting from the monomer: a docking-based approach.
BMC bioinformatics 2006,7:340.

98. Miao YM, Cross TA. Solid state NMR and protein-protein interactions in
membranes. Current Opinion in Structural Biology 2013,23:919-928.

 165

99. MacCallum JL, Bennett WFD, Tieleman DP. Partitioning of amino acid side
chains into lipid bilayers: Results from computer simulations and comparison to
experiment. Journal of General Physiology 2007,129:371-377.

100. Miyashita N, Straub JE, Thirumalai D, Sugita Y. Transmembrane structures of
amyloid precursor protein dimer predicted by replica-exchange molecular
dynamics simulations. J Am Chem Soc 2009,131:3438-3439.

101. Dominguez L, Meredith SC, Straub JE, Thirumalai D. Transmembrane Fragment
Structures of Amyloid Precursor Protein Depend on Membrane Surface
Curvature. Journal of the American Chemical Society 2014,136:854-857.

102. MacCallum JL, Bennett WF, Tieleman DP. Partitioning of amino acid side chains
into lipid bilayers: results from computer simulations and comparison to
experiment. J Gen Physiol 2007,129:371-377.

103. Kabsch W, Sander C. Dictionary of Protein Secondary Structure - Pattern-
Recognition of Hydrogen-Bonded and Geometrical Features. Biopolymers
1983,22:2577-2637.

104. Tusnady GE, Dosztanyi Z, Simon I. TMDET: web server for detecting
transmembrane regions of proteins by using their 3D coordinates. Bioinformatics
2005,21:1276-1277.

105. Tusnady GE, Dosztanyi Z, Simon I. PDB_TM: selection and membrane
localization of transmembrane proteins in the protein data bank. Nucleic Acids
Research 2005,33:D275-D278.

106. Jayasinghe S, Hristova K, White SH. MPtopo: A database of membrane protein
topology. Protein Science 2001,10:455-458.

107. Glaser F, Steinberg DM, Vakser IA, Ben-Tal N. Residue frequencies and pairing
preferences at protein-protein interfaces. Proteins-Structure Function and
Genetics 2001,43:89-102.

108. Zhang C, Vasmatzis G, Cornette JL, DeLisi C. Determination of atomic
desolvation energies from the structures of crystallized proteins. Journal of
Molecular Biology 1997,267:707-726.

109. Fleishman SJ, Whitehead TA, Ekiert DC, Dreyfus C, Corn JE, Strauch EM, et al.
Computational design of proteins targeting the conserved stem region of influenza
hemagglutinin. Science 2011,332:816-821.

110. Bras JLA, Correia MAS, Romao MJ, Prates JAM, Fontes CMGA, Najmudin S.
Purification, crystallization and preliminary X-ray characterization of the
pentamodular arabinoxylanase CtXyl5A from Clostridium thermocellum. Acta
Crystallographica Section F-Structural Biology and Crystallization
Communications 2011,67:833-836.

 166

111. Guellouz A, Valerio-Lepiniec M, Urvoas A, Chevrel A, Graille M, Fourati-
Kammoun Z, et al. Selection of Specific Protein Binders for Pre-Defined Targets
from an Optimized Library of Artificial Helicoidal Repeat Proteins (alphaRep).
PLoS One 2013,8.

112. Rodrigues JP, Bonvin AM. Integrative computational modeling of protein
interactions. The FEBS journal 2014.

113. Viswanath S, Ravikant DV, Elber R. DOCK/PIERR: Web Server for Structure
Prediction of Protein-Protein Complexes. Methods in molecular biology
2014,1137:199-207.

114. Hunt ME, Modi CK, Aglyamova GV, Ravikant DV, Meyer E, Matz MV. Multi-
domain GFP-like proteins from two species of marine hydrozoans. Photochem
Photobiol Sci 2012,11:637-644.

115. Kausar S, Asif M, Bibi N, Rashid S. Comparative Molecular Docking Analysis of
Cytoplasmic Dynein Light Chain DYNLL1 with Pilin to Explore the Molecular
Mechanism of Pathogenesis Caused by Pseudomonas aeruginosa PAO. PLoS One
2013,8.

116. Viswanath S, Kreuzer SM, Cardenas AE, Elber R. Analyzing milestoning
networks for molecular kinetics: Definitions, algorithms, and examples. Journal
of Chemical Physics 2013,139.

117. Chodera JD, Singhal N, Pande VS, Dill KA, Swope WC. Automatic discovery of
metastable states for the construction of Markov models of macromolecular
conformational dynamics. Journal of Chemical Physics 2007,126.

118. Schutte C, Noe F, Lu JF, Sarich M, Vanden-Eijnden E. Markov state models
based on milestoning. Journal of Chemical Physics 2011,134.

119. Berezhkovskii A, Hummer G, Szabo A. Reactive flux and folding pathways in
network models of coarse-grained protein dynamics. Journal of Chemical Physics
2009,130.

120. Metzner P, Schutte C, Vanden-Eijnden E. Transition Path Theory for Markov
Jump Processes. Multiscale Modeling & Simulation 2009,7:1192-1219.

121. Cardenas AE, Jas GS, DeLeon KY, Hegefeld WA, Kuczera K, Elber R.
Unassisted Transport of N-Acetyl-L-tryptophanamide through Membrane:
Experiment and Simulation of Kinetics. Journal of Physical Chemistry B
2012,116:2739-2750.

122. Elber R. A milestoning study of the kinetics of an allosteric transition: Atomically
detailed simulations of deoxy Scapharca hemoglobin. Biophysical Journal
2007,92:L85-L87.

 167

123. Elber R, West A. Atomically detailed simulation of the recovery stroke in myosin
by Milestoning. Proceedings of the National Academy of Sciences of the United
States of America 2010,107:5001-5005.

124. West AMA, Elber R, Shalloway D. Extending molecular dynamics time scales
with milestoning: Example of complex kinetics in a solvated peptide. Journal of
Chemical Physics 2007,126:145104.

125. E WN, Vanden-Eijnden E. Transition-Path Theory and Path-Finding Algorithms
for the Study of Rare Events. In: Annual Review of Physical Chemistry, Vol 61;
2010. pp. 391-420.

126. Berkowitz M, Morgan JD, Mccammon JA, Northrup SH. Diffusion-Controlled
Reactions - a Variational Formula for the Optimum Reaction Coordinate. Journal
of Chemical Physics 1983,79:5563-5565.

127. Huo SH, Straub JE. The MaxFlux algorithm for calculating variationally
optimized reaction paths for conformational transitions in many body systems at
finite temperature. Journal of Chemical Physics 1997,107:5000-5006.

128. Zhao RJ, Shen JF, Skeel RD. Maximum Flux Transition Paths of Conformational
Change. Journal of Chemical Theory and Computation 2010,6:2411-2423.

129. Czerminski R, Elber R. Reaction path study of confomrational transitions in
flexible systems - applications to peptides. Journal of Chemical Physics
1990,92:5580-5601.

130. Czerminski R, Elber R. Reaction-path study of conformational transitions and
helix formation in a tetrapeptide. Proceedings of the National Academy of
Sciences of the United States of America 1989,86:6963-6967.

131. Shalloway D, Faradjian AK. Efficient computation of the first passage time
distribution of the generalized master equation by steady-state relaxation. Journal
of Chemical Physics 2006,124.

132. Hu TC. The Maximum Capacity Route Problem. Operations Research
1961,9:898-900.

133. Pollack M. The Maximum Capacity through a Network. Operations Research
1960,8:733-736.

134. Vassilevska V. Nondecreasing Paths in a Weighted Graph or: How to Optimally
Read a Train Schedule. Proceedings of the Nineteenth Annual Acm-Siam
Symposium on Discrete Algorithms 2008:465-472.

135. Vassilevska V, Williams R, Yuster R. All-Pairs Bottleneck Paths For General
Graphs in Truly Sub-Cubic Time. Stoc 07: Proceedings of the 39th Annual Acm
Symposium on Theory of Computing 2007:585-589.

 168

136. Kreuzer S, Elber R. Catch bond-like kineics of helix cracking: Network analysis
by molecular dynamics and milestoning. Journal of Chemical Physics 2013,139.

137. Kreuzer SM, Elber R, Moon TJ. Early Events in Helix Unfolding under External
Forces: A Milestoning Analysis. Journal of Physical Chemistry B 2012,116:8662-
8691.

138. Dijkstra EW. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik 1959,1:3.

139. Batagelj V, Mrvar A. Pajek: Program for Large Network Analysis. Connections
1998,21:47-57.

140. Cardenas AE, Elber R. Computational study of peptide permeation through
membrane: searching for hidden slow variables. Molecular Physics
2013,111:3565-3578.

141. Elber R, Roitberg A, Simmerling C, Goldstein R, Li HY, Verkhivker G, et al.
Moil a program for simulations of macrmolecules. Computer Physics
Communications 1995,91:159-189.

142. Kozakov D, Schueler-Furman O, Vajda S. Discrimination of near-native
structures in protein-protein docking by testing the stability of local minima.
Proteins-Structure Function and Bioinformatics 2008,72:993-1004.

143. Torchala M, Moal IH, Chaleil RAG, Agius R, Bates PA. A Markov-chain model
description of binding funnels to enhance the ranking of docked solutions.
Proteins-Structure Function and Bioinformatics 2013,81:2143-2149.

144. Andreani J, Faure G, Guerois R. InterEvScore: a novel coarse-grained interface
scoring function using a multi-body statistical potential coupled to evolution.
Bioinformatics 2013,29:1742-1749.

145. Moal IH, Moretti R, Baker D, Fernandez-Recio J. Scoring functions for protein-
protein interactions. Current Opinion in Structural Biology 2013,23:862-867.

146. Khashan R, Zheng WF, Tropsha A. Scoring protein interaction decoys using
exposed residues (SPIDER): A novel multibody interaction scoring function
based on frequent geometric patterns of interfacial residues. Proteins-Structure
Function and Bioinformatics 2012,80:2207-2217.

147. Kastritis PL, Bonvin AMJJ. Molecular origins of binding affinity: seeking the
Archimedean point. Current Opinion in Structural Biology 2013,23:868-877.

148. Kastritis PL, Bonvin AMJJ. Are Scoring Functions in Protein-Protein Docking
Ready to Predict Interactomes? Clues from a Novel Binding Affinity Benchmark
(vol 9, pg 2216, 2010). Journal of Proteome Research 2011,10:921-922.

 169

149. Kastritis PL, Moal IH, Hwang H, Weng ZP, Bates PA, Bonvin AMJJ, et al. A
structure-based benchmark for protein-protein binding affinity. Protein Science
2011,20:482-491.

150. Popov P, Ritchie DW, Grudinin S. DockTrina: Docking triangular protein trimers.
Proteins-Structure Function and Bioinformatics 2014,82:34-44.

151. Inbar Y, Benyamini H, Nussinov R, Wolfson HJ. Protein structure prediction via
combinatorial assembly of sub-structural units. Bioinformatics 2003,19:i158-i168.

