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Abstract 

 

Clustering Pavement Aggregate Particles Based on Shape and Texture 

Properties 

 

Sareh Kouchaki, M.S. Stat 

The University of Texas at Austin, 2017 

 

Supervisor: Peter Mueller  

 

Aggregates are the major component of pavements. Physical characteristics of aggregates 

significantly affect the properties of pavements. Different pavement construction projects 

may require different characteristics of aggregate. Proper selection of aggregate with 

consistent shape properties ensures high performance of pavements. The available test 

methods for evaluating the aggregate physical properties and classifying them are 

laborious, time-consuming, and subjective. This study presents the development of an 

objective system which evaluates the shape properties of aggregate particles and classifies 

them into distinct groups regarding their sphericity, form, angularity and texture features. 

By using this system, the heterogeneity in an aggregate sample based on a given feature 

could be assessed. This system includes a laser scanner developed at the University of 

Texas at Austin to scan aggregate particles. Total of 1398 aggregate particles, from eight 

different quarries in the state of Texas, were scanned. The scanned data were analyzed 

using a MATLAB algorithm for measuring the sphericity, form, angularity, and texture of 
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particles. All the measurements were stored in an Excel file and were imported to another 

algorithm developed in R software and OpenBUGS package to cluster the aggregate 

particles. Several methods of clustering were reviewed and finally, model-based clustering 

approach was selected. The model-based cluster analysis was applied to the measurements 

aiming to detect subclasses in aggregate particles based on each feature. This study shows 

how to use this clustering approach to group the particles based on their sphericity, form, 

angularity, and texture features. 
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INTRODUCTION 

Aggregate is a key component in asphalt and concrete pavements. Asphalt and 

concrete pavements consist of about 80% and 90% of aggregate, accordingly. Therefore, 

it is very important that the engineer takes careful consideration of the properties of the 

aggregates.  From a pavement engineering point of view, the parameters of shape and 

surface of aggregates play a significant role on the performance of concrete and asphalt 

pavements because of the way they affect the interactions and bonds between aggregates 

and binder (Sun 2014).  

Literature have shown that different pavement mixtures require aggregates with 

various physical characteristics (Herrin et al. 1954, Field 1958, Meininger 1998). For 

instance, in order to increase the fatigue life and stiffness of the thick pavements, it is 

recommended to use the rough textured aggregates. On the other hand, for thin pavements, 

it is recommended to use smooth textured aggregates to have a less stiff mixture to increase 

the fatigue life (Monismith 1970). It is very important to use aggregate particles with 

desirable properties in a pavement project. Poorly selected aggregates can cause early 

deteriorations of pavement structure. However, selecting proper aggregate will ensure the 

pavement performance.  

For pavement construction, it is desired to use the local materials due to the 

economical and logistical considerations. But, one should consider that all the produced 

materials out of one quarry might not be consistent in terms of shape and texture properties. 

Therefore, more attention is needed when evaluating the materials extracted from a quarry. 

Currently, transportation agencies use different methods, such as ASTM D4791 and ASTM 

D5821, to evaluate the aggregate shape characteristics to select desirable ones for a project; 

however, these methods are subjective, laborious, and time-consuming. An improved 
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methodology being consistent, repeatable, and objective in evaluating the aggregates based 

on shape and texture properties can benefit transportation agencies and industries. A 

classification system is required which puts aggregate particles in distinct clusters based 

on the shape and texture properties. One of the advantages of a classification system is that 

the uniformity of the aggregates in a pavement project could be controlled with respect to 

a desired feature. In addition, this system can help engineers to select the appropriate type 

of aggregate for different applications to improve the pavement performance and decrease 

the maintenance cost.  
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GOAL AND OBJECTIVES 

The goal of this study is to develop a classification framework by using the 

statistical clustering analysis that can evaluate a sample of aggregate particles based on 

their shape and texture properties. To develop this framework, an automated measurement 

system of aggregate shape properties is required.  In recent years, studies have turned to 

laser and image technologies to measure the aggregate shape properties more accurately 

and quickly. These studies showed that these new technologies could provide reliable and 

precise measurements. Accordingly, this study uses a laser scanning tool developed at the 

University of Texas at Austin. The following steps were accomplished to fulfill the purpose 

of this study. First, a literature review on aggregate shape evaluation methodologies was 

conducted. Then, samples of aggregate particles in varied sizes from different sources were 

selected and scanned to collect data. A computer algorithm was developed to measure the 

aggregate particles features followed by studying different common clustering methods 

and choosing the appropriate method to group the scanned aggregates based on the shape 

and surface features. 
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BACKGROUND 

Characterization of Aggregate Shape Properties  

Researchers have defined three different geometric properties of aggregate. These 

properties are independent and are able to describe the physical characteristics of a particle 

sufficiently. The properties are including the shape (or form), angularity (or roundness), 

and surface texture (Barrett 1980). Figure 1 shows these properties on a particle 

schematically. The disparities in the proportion of aggregate particles are represented by 

the shape factor. The variations on the particle corners are reflected by the factor of 

Angularity. The small-scale surface irregularities, that do not affect the shape of the 

particle, are reflected by surface texture.  

 

Figure 1: Schematic of the Aggregate Properties: Shape, Angularity, and Texture 

(Masad et al. 2003). 

Recent advances in image-based analysis and laser scanning techniques have led to 

feasible and cost-effective methods for measuring aggregate shape properties. In an effort, 

Masad developed the Aggregate Imaging System (AIMS), which is capable of analyzing 
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the shape properties of coarse and fine aggregates. He developed several indices for 

measuring form, sphericity, and angularity of aggregate particles. In this study, the shape 

indices developed by Masad in 2003 were used. To characterize the texture of aggregate 

particles the index provided by ASME B46 was considered. These indices are explained 

further in the following:  

SPHERICITY INDEX 

Masad in 2003 proposed the computation of sphericity factor using the Equation 

1. Sphericity is a parameter based on the three-dimensional analysis which describes the 

overall form of an aggregate particle (Masad 2003).  

 

Sphericity = √
𝑑𝑠.𝑑𝐼

𝑑𝐿
2

3
                                                                                       Eq.1 

 Where: 

𝑑𝐿 = The Longest dimension of an aggregate particle; 

𝑑𝐼 = The Intermediate dimension of an aggregate particles, and 

𝑑𝑠 = The Shortest dimension of an aggregate particle.  

 

Equation 1 shows that, as the form of an aggregate particle becomes spherical, the 

sphericity number reaches 1, whereas the sphericity of flat particles reaches 0.  

 

FORM INDEX 

This index (defined in Equation 2) was developed based on the two-dimensional 

measurement (2D image) of an aggregate. The form of an aggregate is calculated using the 
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sum of incremental change in the aggregate particle radius (Masad 2003). The graphical 

representations of the form computations are illustrated in Figure 2. 

 

Form Index = ∑
|𝑅𝜃+5−𝑅𝜃|

𝑅𝜃

360−5
𝜃=0                                                                        Eq.2 

Where: 

R = Radius of an aggregate particle at a given direction; 

𝜃 = Directional angle. 

 

From the Equation 2 for round aggregates, the form index becomes zero since there 

is no change in radius.  

ANGULARITY INDEX 

Masad (2001) proposed a method based on the two-dimensional analysis to 

measure the angularity of an aggregate. In this method the difference between the radius 

of the particle at a given angle and that of an equivalent ellipse is calculated and summed 

over different angles. The mathematical computation of this index is provided in Equation 

3. The graphical representations of the form and angularity computations are illustrated in 

Figure 2. It is to be noted that the equivalent ellipse has the same major and minor axes as 

the particle, but has no angularity. 

 

𝐴𝐼 =  ∑
𝑅𝜃− 𝑅𝐸𝐸𝜃

𝑅𝐸𝐸𝜃

355
𝜃=0                                                                                            Eq.3 

Where: 

AI: Angularity Index 

𝑅𝜃: Radius of the particle at an angle of θ 

𝑅𝐸𝐸𝜃: Radius of the equivalent ellipse at an angle of θ  
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According to the angularity index, particles with angular corners must have higher 

values of angularity index compared to well-rounded particles (Masad 2003). 

 

 

Figure2: Illustration of the radius of the particle and equivalent ellipse used in the 

Form and Angularity computation (Masad et al. 2003). 

TEXTURE INDEX 

Advanced technologies such as non-contact laser scanners allow direct 

measurement of the texture profiles with higher resolution. In a research study conducted 

by Kouchaki et al. it was reported that the developed LLS prototype showed promising 

results regarding scanning the surface texture of aggregates (Kouchaki et al. 2017). The 

collected data from the developed LLS prototype can be used to compute various profile 

statistics, such as slope variance (𝑆𝑉). Equation 4 represents the slope variance calculation 

method (Mora 2003). This index shows how the height values change along a profile. As 

shown in Figure 3, a profile that fluctuates widely results in the high value of 𝑆𝑉 and a 

profile which amplitudes change slowly regarding space gives a low value of 𝑆𝑉 (ASME 

B46.1). The 𝑆𝑉 can be computed for several profiles on the surface of an aggregate and 

subsequently, the mean of them could provide a criterion to compare the texture of 

aggregate particles.  
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Figure 3: Example of profiles with low SV and high SV.  

 

 𝑆𝑉 =  √
1

𝑁−1
(∑ (𝑆𝑖)2 −

1

𝑛
(∑ 𝑆𝑖)

𝑁−1
𝑖=

2𝑁−1
𝑖=1                                                                  Eq.4     

Where: 

SV: Slope Variance 

N: Number of points on height profile 

𝑆𝑖: Slope between i+1th and ith points 
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METHODOLOGY 

Based on the literature, the aggregate shape features are significant factors affecting 

the pavement performance. In this study, attempts were made to develop a reliable 

framework to measure aggregate shape features and classify them based on those features. 

Several steps were considered for establishing this framework. First, aggregate particles 

from different quarries and various sizes were collected. In the second step, a laser scanner 

prototype developed at the University of Texas at Austin was used to scan the aggregate 

particles. This is followed by developing a MATLAB algorithm to measure the aggregate 

shape features from the collected scan data. As the last step, a clustering algorithm was 

created to group aggregate particles upon the extracted features. These steps are explained 

in more details in the following sections. 

Data Collection 

In this study, the aggregate of eight quarries which are commonly being used for 

asphalt mixtures in Texas were selected. These aggregates were provided by Texas 

Department of Transportation (TxDOT) Construction Division in Austin, TX. Total of 

1398 particles, including two hundred particles in different range of sizes (greater than 2 

mm) from each quarry, were randomly selected and prepared for examination. The 

aggregates were first washed in order to remove any dust and undesirable particles. Then, 

the aggregate particles were oven-heated to 160°C for 24 hours followed by four hours of 

regulated air temperature and humidity to reach air-dry condition.  

A 3-D laser scanner prototype (Figure 4), called LLS, was utilized to scan the 

selected aggregates. As shown in Figure 4, this prototype constitutes a line laser scanner 

(LLS) and a motion controller with which the LLS can move over an aggregate particle 
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and scan it. This device is a non-contact laser sensor that projects blue light in a horizontal 

line. The blue light is emitted from a source in the LLS and then the reflection of the light 

from the surface of aggregate is captured by a detector. If the angles between the projected 

light and the reflection are known then, by using triangulation, the system can calculate the 

height profile of the surface relative to the system’s reference line. Small changes in the 

height due to the texture irregularities can be captured using this scanner system 

(KEYENCE 2017). Since the mechanism of the laser is based on projecting a light and 

capturing its reflection, all tests were performed in a laboratory with constant light 

condition to avoid any noise associated to the light variation. Along with the light, the room 

temperature and humidity were also kept constant during the experiments. The LLS is 

connected to a computer and the scanned data are collected in the computer in Excel. The 

collected data is used as an input to another algorithm to measure the aggregate features.  

 

 

  

Figure 4: Left) The LLS prototype including the frame and the mounted laser, Right) 

the laser lane and an aggregate particle in the scanning area. 

 



 

 

11 

Feature Extraction  

The data collected by the LLS prototype were analyzed in the MATLAB software 

to extract the shape features of the particles. Before extracting the shape features, the 

collected data were examined for noise or missing values. As mentioned previously, the 

LLS scanned the particles based on the triangulation system. Due to this system of scanning 

(which is shown in Figure 5) the reflection of the laser line from some areas around the 

edge of aggregate particles cannot be seen by the camera and the data are missed. Before 

extracting the aggregate features, these missing data (the white areas in Figure 5) must be 

taken care of. In this case, linear interpolation was used to substitute missing data. Then, 

the scanned data were pre-processed such that in each scan data, data associated with the 

aggregate particles were separated from the background and prepared for feature analysis.  

 

 

 

Figure5: Left) The triangulation system, Right) Scan result of an aggregate particle 

including the missing area. 

Regarding the Equations, 1 through 3, three dimensions, length, width, and 

thickness of an aggregate particle are required to calculate the shape indices. At this step, 

a MATLAB algorithm was developed to measure the particles dimensions and calculates 
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the four features All the features data were collected in an excel sheet and used for 

clustering the aggregate particles. 

Clustering Analysis 

Clustering analysis divides data into distinct groups such that quite similar 

observations are placed in one group, while different observations are placed in separate 

groups. Therefore, the structure of clusters is a set of groups of observations with high-

within-group similarity and low-between-group-similarity. It should be noted that this 

segmentation is only based on the information found in data and there are no given labeled 

classes (James et al. 2013).  

CLUSTERING ANALYSIS METHODS 

Clustering analysis is popular in different areas such as biology, medicine, business, 

marketing, etc. Researchers are usually curious about finding subgroups in their 

observations to better understand the heterogeneity in their data. Because of this popularity, 

different methods have been developed to do the clustering. For example, hierarchical 

clustering is a widely used approach. This method starts with considering each observation 

as one cluster. Then it merges similar observations to reduce the number of clusters (James 

et al. 2013, Tan 2005). For example, Euclidean distance concept is used to seek the 

similarity among observations. This measurement of the similarity is defined in the 

Equation 5. The smaller the value of Dij, the closer the observations i and j.  

 

𝐷𝑖𝑗  =  √∑ (𝑋𝑞𝑖 −  𝑋𝑞𝑗)2𝑄
𝑞=1                                                                                           Eq.5 

Where 
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𝐷𝑖𝑗 : distance between observation i and j  

𝑄: Number of features in multi-dimensional observations  

𝑋𝑞𝑖 : value of feature q for observation i 

𝑋𝑞𝑗 : value of feature q for observation j 

 

In the next step, hierarchical clustering locates similar clusters to combine them. 

To do so, the similarity between two clusters needs to be defined. Three similarity criteria 

can be considered: single linkage, average linkage, or complete linkage. These three criteria 

are graphically depicted in Figure 6. Pairwise Euclidean distance, which is the distance 

between every member of clusters, is the basis of these three criteria. In the single-linkage, 

the minimum pairwise Euclidean distance is considered for merging. In the average 

linkage, the average of all computed pairwise distances is the factor to determine the 

similarity. For the complete linkage, the maximum pairwise distance indicates the 

similarity between two clusters (James et al. 2013, Tan 2005).  

 

 

 

Figure 6: Left: single linkage, middle: average linkage, and right: complete linkage.  

(Saxena 2017). 

The result of hierarchical clustering can be displayed as a tree and is called 

dendrogram (James et al. 2013, Tan 2005). An example of the dendrogram resulted from 
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clustering of nine observations is provided in Figure 7. In the first level, all nine 

observations were separate clusters. In the next level, the hierarchical approach found out 

that X9 and X4 are similar to each other and merged those together. In parallel, X3 and X5 

were combined because of their high similarity. In the next step, the cluster X1 was 

identified similar to the cluster resulted from the combination of X9 and X4. This process 

was continued to finally all observations combined in one cluster. Note that the clusters 

those are merged at a lower level of the dendrogram are much more similar than those are 

merged at higher levels. Using the dendrogram and based on the level of similarity, one 

can decide on the number of clusters in a dataset.  

 

Figure 7: An example of dendrogram from hierarchically clustering of nine 

observations.  

Ward’s clustering is another type of hierarchical clustering methods. The difference 

between Ward’s method and other hierarchical clustering methods is in their similarity 

criteria. Rather than using the Euclidean distance to merge the clusters, Ward’s approach 

uses the within-cluster sum of squares to combine two clusters (Shalizi 2009). For example, 

as shown in Equation 6, to combine two clusters A and B, the within-cluster sum of squares 
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of each cluster individually and the within-cluster sum of squares of their combination are 

required. This method combines those two clusters with the minimum 𝑊𝐴,𝐵. 

 

𝑊𝐴,𝐵  =  ∑ (𝑥𝑖  −  𝐶𝐴)2
𝑥𝑖∈𝐴 + ∑ (𝑥𝑖  − 𝐶𝐵)2

𝑥𝑖∈𝐵  −  ∑ (𝑥𝑖  −  𝐶𝐴𝐵)2
𝑥𝑖∈𝐴𝐵         Eq.6  

Where 

𝑊𝐴,𝐵: Ward’s criteria 

𝑥𝑖: ith observation 

𝐶𝐴: centroid of cluster A 

𝐶𝐵: centroid of cluster B 

𝐶𝐴𝐵: centroid of cluster AB 

* The centroid is the vector of feature means in a cluster.  

K-mean clustering is another commonly used method that divides a dataset into k 

different and non-overlapped clusters. In contrast with hierarchical approaches, the number 

of clusters (k) must be specified at the beginning of analysis (James et al. 2013). Figure 8 

graphically represents the steps of K-mean clustering algorithm. In the first step, the 

observations are randomly assigned to k clusters. In the next step, the centroid of each 

cluster is computed. The centroid of each cluster is a vector of the feature means of the 

multidimensional observations in that cluster. In step 3, each observation is reassigned to 

a cluster with the closest centroid (based on Euclidean distance) and the centroid of clusters 

is updated. These four steps are repeated until a steady result is obtained.   
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Figure 8: Graphically illustration of the K-mean clustering steps for k=3 (James et al. 

2013). 

DETERMINISTIC ALGORITHMS VS. PROBABILITY MODEL BASED CLUSTERING 

Hierarchical and K-mean clustering techniques are deterministic algorithms. The 

uncertainty of clustering cannot be evaluated through these algorithms. A model-based 

approach is a suitable alternative way. This clustering method employs statistical concepts 

and views the observations as random variables generated from a probability distribution. 

Next section explains this clustering approach in more details (Chamroukhia 2015, 

Faranzen 2006). 



 

 

17 

MODEL-BASED CLUSTERING 

Assume 𝑦 =  {𝑦1, 𝑦2, . . . , 𝑦𝑛} is a sample of observations of size n, where 

𝑦𝑖 (𝑓𝑜𝑟 𝑖 = 1,2, . . . , 𝑛) is a q-dimensional variable. Model-based clustering assumes that 

each observation is drawn from a probability distribution. The density of data is a mixture 

of those probability distributions with possible random number of term K. Based on this 

analysis, the probability distribution of observations is expressed as the Equation 7:  

𝑓(𝑦|𝜓)  =  ∑ 𝑤𝑘𝑓𝑘(𝑦|𝜃𝑘)𝐾
𝑘=1                    𝑖 = 1,2, . . . , 𝑛                                      Eq.7 

Where  

𝑦: q-dimensional observations 

𝜓: mixture model parameter, 𝜓 =  (𝜃1, 𝜃2, . . . , 𝜃𝑘 , 𝑤1, 𝑤2, . . . , 𝑤𝑘) 

𝑤𝑘: mixing proportion or weight of each distribution such that 0 < 𝑤𝑘< 1 and 

∑ 𝑤𝑘
𝐾
𝑘=1  = 1 

𝑓𝑘(𝑦|𝜃𝑘): mixture components 

𝐾: number of components 

𝜃𝑘: parameter vector associated to 𝑓𝑘  

 

Most often, normal distributions are used as the mixture components. Each normal 

distribution has its own mean (𝜇) and variance (𝜀).  Accordingly, in the Equation 7, the 

parameter vector 𝜃𝑘 represents a vector of the mean (𝜇𝑘) and variance (𝜀𝑘). It is to be noted 

that each distribution represents a cluster of data where the centers of these clusters are 

defined by 𝜇𝑘, and their shapes and sizes are described by 𝜀𝑘. The 𝜀𝑘 can be considered 

either the same, or different across all components (Zhihui 2010, Faranzen 2008, Schafer 

2015, Fraley 2007). 
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The Equation 7 can alternatively be written as a hierarchical model: 

 

{
𝑦𝑖|𝜓 , 𝑐𝑖 = 𝑘   ~  𝑓𝑘(𝑦|𝜃𝑘)

𝑝(𝑐𝑖 = 𝑘|𝑤) = 𝑤𝑘
                                            Eq.8  

 

Equation 8 implicitly defines a random variable of  𝑐𝑖 = 𝑘 to the parameters as the 

cluster membership indicator where 𝑐𝑖 = 𝑘 implies that the observation 𝑦𝑖 is classified into 

cluster k. Therefore, the probability that 𝑦𝑖 is in cluster k is equal to the mixing weight of 

that cluster,  𝑝(𝑐 = 𝑘) = 𝑤𝑘 (Diebolt 1994). 

The complete collection of all parameters 𝜇𝑘, 𝜀𝑘, and 𝑤𝑘 is presented by 𝜓. This 

parameter vector is required to be estimated. Different methods have been developed to 

estimate these parameters. For instance, the method of the moments is one of the earliest 

methods that was used in this regard. Nowadays, maximum likelihood estimator (MLE) 

and Bayesian estimator are common methods. The MLE considers the unknown 

parameters as fixed variables and finds their point estimates by maximizing the log 

likelihood function of parameters. The MLE is not necessarily a good estimator for 

parameters since it might capture the local maximum instead of the global maximum. In 

addition, this method only provides point-estimates of parameters without any estimation 

about the uncertainty of the parameters. However, Bayesian estimator views the unknown 

parameters as random. This estimator generates a probability distribution for each 

unknown parameter through which not only a point-estimate is obtained but also the 

uncertainty of the estimation could be studied (Faranzen 2008, Hoff 2009).  
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BAYESIAN INFERENCE 

Bayesian estimation is implemented based on the Bayes theorem (as shown in 

Equation 9). According to this theorem, there is an initial guess on the probability 

distribution of the parameter 𝜓 which is called prior distribution, 𝑝(𝜓). The prior reflects 

our knowledge of the parameter before observing the data. This prior distribution is 

updated after observing the data and turns into a new probability distribution which is 

called posterior distribution, 𝑝(𝜓|𝑦) (Faranzen 2008, Heller 2007).  

 

𝑝(𝜓|𝑦)  =  
𝑝(𝜓)𝑝(𝑦|𝜓)

𝑝(𝑦)
                                                                                                            Eq.9 

Where  

𝑝(𝜓): prior probability of 𝜓  

𝑝(𝑦|𝜓): likelihood function of the parameters 

𝑝(𝑦): marginal distribution of data which can be calculated as ∑ 𝑝(𝜓)𝑝(𝑦|𝜃) when 

𝜓 is discrete or ∫ 𝑝(𝜓)𝑝(𝑦|𝜓)𝑑𝜓 when 𝜓 is continuous.  

𝑝(𝜓|𝑦): posterior distribution of 𝜓  

 

The selection of the prior distribution is critical due to its impact on the posterior 

distribution. However, in some cases, like cluster analysis based on mixture models, where 

the number of clusters and the parameters of the model are unknown, the prior should have 

minor impact on the posterior and data primarily identify the posterior distribution. These 

priors are called vague or objective priors. In these cases, using conjugate priors in which 

the prior, likelihood function and therefore the posterior follow the same probability 

families is a suitable solution (Everitt 2011). 
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The goal of Bayesian inference is to maintain a full posterior probability 

distribution over the set of unknown parameters. Any features of that posterior distribution 

such as moments, quantiles, etc. are of interest to get an efficient summary of posterior 

distribution. However, for high-dimensional posterior distributions, finding these features 

provides no simple solution and the computation process is complex. Therefore, a method 

is required to approximate these quantities. In such cases, the Markov chain Monte Carlo 

(MCMC) algorithm is a possible solution to compute those posterior quantities of interest. 

Commonly used MCMC samplers for finite mixture models are the Gibbs sampler. 

A possible problem in inference for mixture models is label switching. To get a 

better understanding of this problem, let’s consider a mixture model of two components A 

and B which is shown in Equation 10. The mixture model is invariant under the permutation 

of the components label. Therefore, the same mixture model (shown in Equation 9) could 

be developed by switching the label of two components A and B.  

 

Mixture Model 1 =  𝑤𝐴 +  (1 − 𝑤)𝐵                                                                Eq.10 

Mixture Model 2 =  𝑤𝐵 +  (1 − 𝑤)𝐴  

 

The likelihood function and the posterior distribution of these two mixture models 

are also invariant under the permutation of the labels. For a k-component mixture model, 

there is K! mixture models over which the likelihood and therefore the posterior 

distribution are identical. This label switching might occur in different iterations of the 

MCMC sampling and lead to a problem in identifying the parameters of the components. 

In the Bayesian analysis of finite mixture models, the label switching problem must be 

considered and one common solution is to impose constrain on the components parameters 
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like mean of components. For example, we can say that, 𝜇1 < 𝜇2 < . . . < 𝜇𝑘 (Everitt 2011, 

Jasra 2005). 
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RESULTS AND DISCUSSIONS 

In this section, first, the results of aggregate features extraction are provided. This 

is followed by the results of the mixture-modeled clustering of aggregates along with the 

implementation of the Bayesian inference.   

Preliminary Evaluation 

Table 1 shows the results of the feature analysis for six different aggregate particles. 

These particles which are visually different in shape were selected to evaluate the capability 

of the new system in measuring the shape features of particles and differentiating them. By 

visual inspection, we found out that the characteristic feature of the particle # 1 is its 

angularity and it should have the highest value of angularity compared to the others. As 

can be seen in Table 1, the angularity results of feature analysis indicate that particle #1 

has the highest angularity. Accordingly, the system was able to discriminate this aggregate 

from the others based on its angularity. Particle #2 and particle #3 were selected from flat 

and elongated samples respectively. Based on the defined form and sphericity indices, 

lower values of sphericity along with higher values of form indicate that a particle is 

flat/elongated. The results of this analysis (as provided in Table 1) show that the sphericity 

values of particle 1 and particle 2 are small compared to sphericity values of other particles. 

In addition, the form values of these two particles are the biggest. 
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Sample 

# 
Picture Sphericity Form Angularity 

1 

 

0.824 4.687 10.982 

2 

 

0.459 5.115 2.626 

3 

 

0.515 6.386 7.598 

4 

 

0.716 4.037 1.993 

5 

 

0.881 3.679 3.943 

6 

 

0.748 3.321 2.640 

 

Table 1: Preliminary evaluation results. 
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The texture index which was considered in this study was only applied to the 

aggregates with sizes greater than 9.5 mm. To evaluate the texture index, a sample of five 

coarse aggregate particles was selected and first evaluated using the sense of touch. The 

particles 1 and 2 were selected from completely rounded particles and were found to be 

smoother than others. However, by using the sense of touch, it is difficult to determine how 

rough the surface of an aggregate is. Therefore, the SV index was used in this study as a 

mean to discriminate the texture of aggregate particles. The second column of Table 2 

shows the mean of SV calculated for 100 height profiles on the surface of aggregate 

particles. The third column presents the standard deviation of the SV values of 100 profiles. 

The outcomes of the texture analysis were found to be consistent with our observations. 

The results show that particle 4 has the highest value of SV. 

 

 

Sample # Mean SD 

1 0.2597 0.0088 

2 0.2416 0.0151 

3 0.5215 0.0203 

4 1.2788 0.3096 

5 0.5361 0.0578 

Table 2: Results of Texture analysis. 

 

Clustering Analysis Results 

The feature data of 1398 aggregate particles were used for this analysis. As the first 

step in this study, the aggregate particles were clustered based on one feature at each time. 

This means that each observation is a one-dimensional variable. The Histogram of 

observations for each dataset with a kernel density plots are shown in Figure 9. The 
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apparent skewness in the plot suggested that each dataset could be fit with a mixture of 

several univariate normal distributions. Note that for the mixture model, data are 

standardized by subtracting the mean and dividing by the standard deviation.  

 

 

  

   

Figure 9: Histogram of observations.  

To start the clustering analysis, it was decided to fit three normal distributions with 

different means and variances to these observations. To estimate the unknown parameters 

in the mixture model and perform Bayesian inference, following conjugate priors were 

given to the parameters 𝑐, 𝑤𝑘, and 𝜇𝑘, 𝜀𝑘. 

1. The latent variable (c) has the categorical distribution. c ~ Cat [W] 
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2. The prior distribution of vector W is a Dirichlet distribution 

(𝑤1, 𝑤2, . . . , 𝑤𝑘) ~ 𝐷(𝛼1, 𝛼2, . . . , 𝛼𝑘). 

***    The Dirichlet distribution is a multivariate probability distribution that describes 

x1, x2, . . . , xn where n ≥ 2 and each xi ∈  (0,1) and ∑ xi = 1n
i=1  . It is 

parameterized byvector parameters α = (α1, …, αn) which are positive real numbers. 

We will use a symmetric Dirichlet distribution with α1= α2 = … = αk 

3. The prior distribution for 𝜇𝑘 is the normal distribution with mean of zero and fixed 

variance. 

 𝜇𝑘 ~ 𝑁(0, 𝛽). 

***    To avoid the label switching problem, the means of clusters were restricted in the 

following way: 

              𝜇1~𝑁(0, 𝛽) 

𝜇2  =  𝜇1  +  𝜉1    where 𝜉1 is a positive random variable following 𝑁(0, 𝛽). 

𝜇3  =  𝜇1  +  𝜉1 + 𝜉2    where 𝜉2 is a positive random variable following 𝑁(0, 𝛽) 

The parametrization with the positive 𝜉𝑘 avoids problems related to the label 

switching (shown in Figure 10). 

4. The gamma distribution with a fixed shape parameter (a) and a fixed scale 

parameter (b) is the prior distribution of 𝜀𝑘
−1(precision). 

 𝜀𝑘
−1 ~ 𝑔𝑎𝑚𝑚𝑎(𝑎, 𝑏) 
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Figure 10: Restricting 𝜉𝑘 ≥  0 rules out any issue of switching labels of cluster means. 

Different packages such as OpenBUGS, WinBUGS are available to perform the 

Bayesian inference using Gibbs Sampling. In this study, OpenBUGS was used. In 

OpenBUGS, a statistical model including the relationship between variables and prior 

distribution of those variables need to be coded. The simulation began by providing initial 

values of the parameters to the model. By choosing initial values of the parameters closer 

to their target values, the MCMC would converge faster. Hierarchical clustering with 

complete linkage could be an effective way to generate a subset of initial values for the 

parameters 𝜇k and 𝑤k. The initial values of 𝜇k were obtained from the mean of clusters 

created by hierarchical clustering and the initial values of 𝑤k were calculated by dividing 

the number of observations labeled as cluster k to the total number of observations. The 

difference between 𝜇k values provides initial values of 𝜉1 and 𝜉2. Table 3 provides the 

results of hierarchical clustering for each dataset. The number of observations within each 
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cluster indicates that the clusters have different variances. Hence, 𝜀𝑘 was considered 

different across the clusters.  

 

 

Dataset 𝝁𝟏 𝝁𝟐 𝝁𝟑 𝒘𝟏 𝒘𝟐 𝒘𝟑 

Sphericity -0.3377 0.5907 0.8638 785/1398 = 0.56 494/1398 = 0.35 119/1398 = 0.09 

Table3: Initial values based on hierarchical clustering. 

The described model was coded in the OpenBugs as follows. This model is only 

for the sphericity of the particles. The same model was developed for the other features.  

 
model; 
 
constant  
N = 1398;                  # Number of Observations 
K= 3;                      # Number of clusters 
 
Variables 
Sphericity[N],             # Observations 
C[N],                      # The cluster attribution for each observation  
lambda[C[i]],              # Mean of cluster 
M,                         # Scaled positive shift between mean of clusters 
lambdaTau[C[i]],           # Precision of clusters 
sigma,                     # Standard deviation of clusters (1/tau) 
W[];                       # mixing weight    
       
 
{ 

for(i in 1 : N) { 
Sphericity[i] ~ dnorm(mu[i], tau[i])     # distribution of observations 
 
mu[i] <- lambda[C[i]] 
 
tau[i] <- lambdaTau[C[i]] 
 
C[i] ~ dcat(W[])   

 
} 
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W[1:3] ~ ddirch(alpha[])                # Dirichlet distribution 
                     
alpha[1] <- 10                         # prior parameter for mixing weights 
alpha[2] <- 10  
alpha[3] <- 10  
 
lambda[1] <-z 
 
z ~ dnorm(0.0, 1.0E-6)                  # hyperparameters for means 
lambda[2] <- z + M1 
lambda[3] <- z + M1 + M2 
M1 ~ dnorm(0.0, 1.0E-6)I(0, )       # theta1 is a positive number 
M2 ~ dnorm(0.0, 1.0E-6)I(0, )       # theta2 is a positive number 
 
 
lambdaTau[1] ~ dgamma(0.01, 0.01)        # hyperparameters for precision 
lambdaTau[2] ~ dgamma(0.01, 0.01) 
lambdaTau[3] ~ dgamma(0.01, 0.01) 
 
 
sigma[1] <- 1 / sqrt(lambdaTau[1])       # standard deviation of Normal dist 
sigma[2] <- 1 / sqrt(lambdaTau[2]) 
sigma[3] <- 1 / sqrt(lambdaTau[3]) 
 
} 

 

#initials 

list(z = -0.338, theta=c(0.929, 0.273), W =c(0.56,0.35,0.09), lambdaTau = 

c(100,100,100)) 

 

The process of sampling using the MCMC algorithm should be repeated for a large 

enough number of times. At each time, one sample is drawn.  At the early iterations, the 

samples may not be drawn from the actual posterior distribution, but the MCMC algorithm 

guarantees that after a number of iterations the distribution approaches the stationary 

situation which is the actual posterior distribution. So, for an inadequate number of 

iterations, the simulations might be unrepresentative of the posterior distribution. In 

addition, the early iterations must be discarded from the analysis since they are influenced 

mainly by the initial values rather than the posterior distribution. These discarded samples 
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are known as “burn-in” period. To determine the number of iterations and burn-in, for each 

dataset different numbers were tried, and the convergence of the sampling was evaluated.  

Convergence is assumed when the sampling of all parameters seems to have 

reached the stationary regime. Based on the history plot of Markov chain for parameters, 

one can judge practical convergence of the chain. A Markov chain which has the 

appearance of a “fat hairy caterpillar” presents a stationary situation.  

In the following, the Bayesian mixture model results for the sphericity data are 

provided. The same procedure was performed for the other datasets and the results are 

available in the appendix. For this study, 100000 iterations were used, and 10000 samples 

were discarded. Figures 11 and 12 provide the history plots of the parameters after the 

burn-in period. It is to be noted that in the OpenBUGS model, lambda[1], lambda[2], and 

lambda[3] represent the mean of three clusters and sigma[1], sigma[2], and sigma[3] 

represent the standard deviation of three clusters. The histories of the weights, means, and 

standard deviations look like hairy caterpillars. Hence, there is an evidence for convergence 

of the chains to the associated posterior distribution. 
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Figure 11: History pot of mixing weights. 
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Figure 12: Left) History plots of means and right) standard deviations. 

 

The Bayesian estimations of the parameters based on MCMC simulations are 

provided in Table 4. The results show that the weights are nearly identical for three groups. 

In addition, the results indicate that the standard deviations are slightly different over the 

clusters. For any parameter, the MCMC error in estimation is less than 5% of the sample 

standard deviation (sd) for that parameter. This confirms that the MCMC sampling used in 

this study was enough for this model. 

  

 

  



 

 

33 

Parameter Mean Sd MCMC-error Lower 2.5% Upper 2.5% Sample 

W[1] 0.3733 0.0928 0.004 0.197 0.556 90000 

W[2] 0.3263 0.0897 0.0035 0.1648 0.5121 90000 

W[3] 0.3004 0.0835 0.0037 0.1575 0.4766 90000 

lambda[1] -0.7363 0.1897 0.0087 -1.112 -0.384 90000 

lambda[2] -0.0019 0.2313 0.011 -0.4686 0.4087 90000 

lambda[3] 0.9340 0.19 0.0086 0.5769 1.295 90000 

sigma[1] 0.8163 0.0804 0.003 0.6699 0.9826 90000 

sigma[2] 0.6892 0.1626 0.0073 0.4165 1.005 90000 

sigma[3] 0.5956 0.08 0.0033 0.4414 0.7456 90000 

Table4: Estimation of parameters based on MCMC simulation. 

Figure 13 shows the three fitted normal distributions, 𝑝(𝑦𝑖|𝑐𝑖 = 𝑘, 𝜇𝑘̂ , 𝜀𝑘̂), along 

with the posterior distribution of cluster means 𝑝(𝜇1|𝑦). As seen in the sphericity plot, the 

first cluster, with the mean value of -0.74 models the flat particles which have low values 

of sphericity. About 37% of the particles belong to this cluster. The second cluster with the 

mean value of -0.002 includes around 33% of the particles with moderate sphericity. The 

third cluster with almost 30% of particles includes the particles with high values of 

sphericity.  

Regarding the form of particles, as seen in the plot of form, three clusters with 

means of -0.48, 0.04, and 0.45 and mixing weights of 0.33, 0.33, and o.34 were found in 

the observations. These three clusters represent round, semi-round, and elongated particles, 

respectively. Three subgroups also were found in the angularity observations where the 

observations in the first group have the lowest values of angularity. The particles in the 

second group have moderate values of angularity. The third group represents angular 

particles. In terms of the texture of aggregates, as mentioned previously only the coarse 

aggregate of 1398 scanned particles were evaluated. Three clusters representing smooth, 

moderate rough, and rough particles were obtained in the observations.  
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Figure 13: Plot of fitted models. 
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Model Checking 

In our model, the parameter 𝛼 of Dirichlet distribution, and the number K of clusters 

were fixed. This following analysis was performed to understand how the changes in 𝛼 and 

k affect the results. This analysis was performed in two parts. First, we examined different 

numbers of 𝛼 and choose the best model. For the second part, the focus was on the number 

of clusters. Four different values of 𝛼 and k were tested, 𝛼 =  {0.5,1,10,100} and 𝑘 =

 {2,3,4,5}. In Bayesian analysis, the deviance information criterion (DIC) is a common 

method to check the goodness of fit and the complexity of models. However, OpenBUGS 

does not calculate DIC if the parameter set contains a discrete parameter. In this case, rather 

than DIC, the deviance statistic was calculated and compared between models.  The 

deviance is defined by Equation 11. As seen in Equation 11, the deviance is a function of 

the unknown parameter and using the MCMC sampling of its posterior distribution can be 

generated. The posterior mean of the deviance could be used to measure the overall 

goodness of fit for a given model. 

 

𝐷(𝜓)  =  −2𝑙𝑜𝑔[𝑝(𝑦|𝜓)]                             Eq.11 

 

Where  

𝐷(𝜓): deviance 

𝑝(𝑦|𝜓): likelihood function 

 

Let 𝐷̅ denote the posterior mean of  𝐷(𝜓). We note that the reported 𝐷̅ can easily 

be mapped to the DIC by subtracting 𝐷(𝜓̅) where 𝜓̅ are the posterior mean point estimates 

(Spiegelhalter et al. 2002). Table 5 provides the deviance of different models. In the first 



 

 

36 

part of the analysis, the model with 𝑘=3 and 𝛼=10 has the lowest deviance. In the second 

part, 𝛼 was kept fixed at 10 and the deviance was calculated for different numbers of 𝑘. As 

seen in Table 5, the model with 𝑘=5 and 𝛼=10 has the lowest deviance.  

 

𝑘 𝛼 Deviance 

First Part 

3 0.5 3398 

3 1 3355 

3 10 2990 

3 100 3032 

Second Part 

2 10 3320 

3 10 2990 

4 10 2800 

5 10 2666 

Table5: Results of Model Checking.  

The same analysis was performed for other features. The results of analysis are 

provided in the appendix. It was found for form observations that the model with 𝑘=5 and 

𝛼=10 has the lowest deviance. Regarding the angularity observations, the model with 𝑘=5 

and 𝛼=100 has the lowest deviance. In addition, the results showed that a model with 𝑘=5 

and 𝛼=10 fits better to texture observations. It is to be noted that by changing from 𝑘=3 to 

𝑘=4 and 5, the deviance decreases slightly.  
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SUMMARY AND FURTHER DEVELOPMENT 

Since we know each feature of aggregate (sphericity, form, angularity and texture) 

affect significantly on pavement performance, we can use cluster analysis to put aggregates 

in separate groups regarding their features and then for each application select those which 

lead to high-performance pavements. Accordingly, this study aimed to develop a 

classification system of aggregate particles based on four features, sphericity, form, 

angularity, and texture. This study was undertaken using a laser scanning tool (known as 

LLS) developed at the University of Texas at Austin. Several samples of aggregate 

particles obtained from different quarries in Texas were prepared and scanned. a MATLAB 

algorithm was developed which uses the data collected by the LLS as an input and delivers 

the measurement of sphericity, form, angularity, and texture. The measurements of scanned 

aggregates were used in another algorithm (developed using R software and the 

OpenBUGS package) to find clusters in the scanned aggregate particles regarding each 

feature. To cluster aggregate particles, mixture model-based clustering approach using 

Bayesian inference was used. This study reviewed the mixture model approach and showed 

the implementation of the Bayesian mixture model in order to find subgroups in aggregate 

particles. 

This study is a part of an ongoing project. The extension to this study would be 

developing a clustering algorithm which considers a mixture of multivariate normal 

distributions in order to cluster particles based on all features simultaneously.  In addition, 

in the next step, the clustering approach will be used to develop a classification table with 

specific levels for the aggregate features.  

  



 

 

38 

Appendix 

 

Results of hierarchical clustering for 𝒌 = 𝟐 

Dataset 𝝁𝟏 𝝁𝟐 𝒘𝟏 𝒘𝟐 

Sphericity -1.085 0.593 494/1398 = 0.35 904/1398 = 0.65 

Form -0.3408 1.5574 1147/1398 = 0.82 251/1398 = 0.18 

Angularity -0.3790 1.6590 1138/1398 =0.81 260/1398 = 0.19 

Texture -0.0502 4.7154 564/570 = 0.99 6/570 = 0.01 

 

 

 

Results of hierarchical clustering for 𝒌 = 𝟑 

Dataset 𝝁𝟏 𝝁𝟐 𝝁𝟑 𝒘𝟏 𝒘𝟐 𝒘𝟑 

Sphericity -0.3377 0.5907 0.8638 785/1398 = 0.56 494/1398 = 0.35 119/1398 = 0.09 

Form -1.8398 -0.2329 1.5574 77/1398 = 0.05 1070/1398 = 0.77 251/1398 = 0.18 

Angularity -0.3790 1.5967 4.8408 1138/1398 =0.81 255/1398 = 0.18 5/1398 = 0.01 

Texture -0.5532 0.9559 4.7154 376/570 = 0.66 188/570 = 0.33 6/570 = 0.01 

 

 

 

Results of hierarchical clustering for 𝒌 = 𝟒 

Dataset 𝝁𝟏 𝝁𝟐 𝝁𝟑 𝝁𝟒 𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 

Sphericity -2.3742 -0.9988 0.4253 1.6993 0.02 0.33 0.56 0.09 

Form -1.8398 -0.2329 1.3882 2.7585 0.06 0.76 0.16 0.02 

Angularity -0.3790 1.2735 2.6243 4.8408 0.81 0.14 0.04 0.01 

Texture -0.5532 0.8597 2.8702 4.7154 0.66 0.31 0.02 0.01 

 

 

 

Results of hierarchical clustering for 𝒌 = 𝟓 

Dataset 𝝁𝟏 𝝁𝟐 𝝁𝟑 𝝁𝟒 𝝁𝟓 𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒘𝟓 

Sphericity -2.3742 -0.9988 0.1565 0.9971 1.6993 0.02 0.33 0.38 0.18 0.09 

Form -1.8398 -0.6919 0.2982 1.3882 2.7585 0.06 0.41 0.35 0.16 0.02 

Angularity -1.0363 -0.1208 1.2735 2.6243 4.8408 0.23 0.58 0.14 0.04 0.01 

Texture -0.5532 0.5357 1.6299 2.8702 4.7154 0.66 0.22 0.09 0.02 0.01 

 

 

 

 

 



 

 

39 

Results of Model Checking – Form 

𝑘 𝛼 Deviance 

First Part 

3 0.5 3602 

3 1 3605 

3 10 3497 

3 100 3497 

Second Part 

2 10 3615 

3 10 3497 

4 10 3385 

5 10 3248 

 

Results of Model Checking – Angularity 

𝑘 𝛼 Deviance 

First Part 

3 0.5 2387 

3 1 2391 

3 10 2501 

3 100 2310 

Second Part 

2 100 2826 

3 100 2310 

4 100 1989 

5 100 1725 

 

Results of Model Checking – Texture 

𝑘 𝛼 Deviance 

First Part 

3 0.5 940.7 

3 1 941.7 

3 10 929.3 

3 100 967.9 

Second Part 

2 10 1117 

3 10 929.3 

4 10 877.5 

5 10 829.8 
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