
Nonlinear Torsional Wave Beams
M. S. Wochner, M. F. Hamilton, Yu. A. Ilinskii, and E. A. Zabolotskaya 
 
Citation: AIP Conference Proceedings 1022, 335 (2008); doi: 10.1063/1.2956224 
View online: http://dx.doi.org/10.1063/1.2956224 
View Table of Contents:
http://scitation.aip.org/content/aip/proceeding/aipcp/1022?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Elastic waves in periodic and non‐periodic sets of hollow cylinders 
AIP Conf. Proc. 1022, 287 (2008); 10.1063/1.2956210 
 
Nonlinear Interaction Of Normal Elastic Waves In Anisotropic Prismatic Waveguide Of
Rectangular Cross‐section With Flexible Not Extensible Coverings On Borders 
AIP Conf. Proc. 1022, 279 (2008); 10.1063/1.2956207 
 
Nonlinear evolution equations for degenerate transverse waves in anisotropic elastic solids 
AIP Conf. Proc. 1022, 259 (2008); 10.1063/1.2956202 
 
Cubic nonlinearity in shear wave beams with different polarizations 
J. Acoust. Soc. Am. 123, 2488 (2008); 10.1121/1.2890739 
 
Nonlinear Rayleigh waves in a medium with a monatomic nonlinear coating 
Low Temp. Phys. 29, 394 (2003); 10.1063/1.1542503 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions.

Downloaded to  IP:  128.83.205.78 On: Fri, 20 Mar 2015 16:44:48

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211344472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scitation.aip.org/content/aip/proceeding/aipcp?ver=pdfcov
http://scitation.aip.org/search?value1=M.+S.+Wochner&option1=author
http://scitation.aip.org/search?value1=M.+F.+Hamilton&option1=author
http://scitation.aip.org/search?value1=Yu.+A.+Ilinskii&option1=author
http://scitation.aip.org/search?value1=E.+A.+Zabolotskaya&option1=author
http://scitation.aip.org/content/aip/proceeding/aipcp?ver=pdfcov
http://dx.doi.org/10.1063/1.2956224
http://scitation.aip.org/content/aip/proceeding/aipcp/1022?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2956210?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2956207?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2956207?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2956202?ver=pdfcov
http://scitation.aip.org/content/asa/journal/jasa/123/5/10.1121/1.2890739?ver=pdfcov
http://scitation.aip.org/content/aip/journal/ltp/29/5/10.1063/1.1542503?ver=pdfcov


Nonlinear Torsional Wave Beams
M. S. Wochner, M. F. Hamilton, Yu. A. Ilinskii and E. A. Zabolotskaya

Applied Research Laboratories, The University of Texas at Austin, Austin, Texas 78713-8029, USA

Abstract. An evolution equation with cubic nonlinearity is presented for a torsional wave beam in
an isotropic elastic solid. Analytical solutions are presented for the fundamental and third harmonic
in the far field of a uniform circular source. Numerical results are presented for harmonic beam
patterns at an intermediate distance between the near and far fields, and for a torsional waveform
with shocks.
Keywords: torsional waves, diffraction, cubic nonlinearity
PACS: 43.25.Dc

INTRODUCTION

Previous theoretical investigations of cubic nonlinearity in diffracting beams apply only
to shear waves with linear polarization, [1, 2, 3] and only recently have elliptical and
circular polarizations been considered for plane nonlinear shear waves. [4] At the 19th
International Congress on Acoustics we reported on nonlinear shear wave beams with
elliptical and circular polarizations. [5] In the present work we consider azimuthal polar-
ization, whereby the beam is produced by rotational oscillation of a disk about its axis.
Although wavefront curvature introduces quadratic nonlinearity in shear waves, [1] con-
sidered here are beams of quasi-plane shear waves affected only by cubic nonlinearity.

EVOLUTION EQUATIONS

We consider a shear wave beam that propagates along the z axis in an isotropic elastic
solid. The pair of coupled evolution equations for the particle velocity components vx
and vy perpendicular to the propagation axis are found to be, in the parabolic approxi-
mation and with only cubic nonlinearity taken into account, [6]
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where β is the coefficient of nonlinearity, c = (μ/ρ)1/2 the small-signal wave speed, μ
the shear modulus, ρ the density of the material in its undeformed state, τ = t − z/c the
retarded time, and η the coefficient of shear viscosity. For an isotropic elastic solid with
its strain energy density expressed in the form [7]
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where I1, I2 and I3 are invariants of the Lagrangian strain tensor, K is the bulk modulus,
A, B and C are the third-order elastic constants of Landau and Lifshitz, [8] and E, F , G
and H are fourth-order elastic constants, the coefficient of nonlinearity is

β =
3

4μ

[
K + 4

3 μ +A+2B+2G−
(
K + 4

3 μ + 1
2A+B

)2

K + 1
3 μ

]
. (4)

For soft elastic media characterized by μ � K, the strain energy density may be ex-
pressed in the reduced form E = μI2 + 1

3AI3 +DI2
2 , [7] and the coefficient of nonlinearity

becomes β = 3
2 [1+(1

2A+D)/μ]. [4]
A torsional wave beam may be produced by rotational oscillation of a disk about

the z axis. For simplicity the source is assumed to be axisymmetric, such that in the
cylindrical coordinates (r,φ ,z) one obtains for the components of the particle velocity
vector in the plane perpendicular to the z axis vr = 0 and vφ = vφ (r,z,τ). In this case
vx = −vφ sinφ , vy = vφ cosφ , and v2

x + v2
y = v2

φ , such that Eqs. (1) and (2) yield
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Due to the term vφ /r2, the quantity under the integral is no longer a Laplacian of the
field variable. Torsional waves are often more conveniently expressed in terms of the
angular velocity in the medium, Ω = ∂φ/∂τ , for which vφ = rΩ and Eq. (5) becomes
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From this equation it is evident that nonlinearity vanishes along the axis of the beam.

ANALYTICAL RESULTS

The source condition for radiation at angular frequency ω is expressed in the form
Ω(r,0, t) = Ω0Re[ f (r)eiωt ], and the solutions for the resulting harmonics are expressed
as Ωn(r,z,τ) = Re[Wn(r,z)einωτ ]. For weak nonlinearity, one may obtain solutions of
Eq. (6) by successive approximations using the Green’s function for the nth harmonic,

gn(r,z|r′,z′) = − nkr′/r
2π(z− z′)

J1

(
nkrr′

z− z′

)
exp

[
−n2α(z− z′)− ink(r2 + r′2)
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]
, (7)

where k = ω/c is the wavenumber and α = ηω2/2ρc3 the absorption coefficient at the
source frequency, and Jn is the nth order Bessel function of the first kind. The surface
integral W1(r,z) = Ω0

∫
S f (r′)g1(r,z|r′,0)dS′ for the linear solution can be evaluated for

the Gaussian source function f (r) = exp(−r2/a2) to obtain
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(
−αz− r2/a2
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)
, (8)
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where z0 = ka2/2 is the Rayleigh distance. In the far field, the decay rate associated with
spherical spreading is z−2 rather than z−1. This is a consequence of the dipole-like nature
of the source, and therefore the entire field, because vx,y(r,φ ,z,τ) = −vx,y(r,φ +π,z,τ).
For any pair of points that are symmetric with respect to the z axis, the particle velocity
vectors in the (x,y) plane are equal in magnitude and opposite in direction.

The integral for the third harmonic does not appear to admit a closed-form solution for
a Gaussian beam. However, an analytic solution for the primary wave in the far field is
sufficient to determine the corresponding asymptotic solution for the third harmonic. We
now consider radiation from a uniform circular disk of radius a with f (r) = H(a− r),
where H(·) is the Heaviside unit step function. The solutions for the fundamental and
third harmonic in the far field are found to be

W1(θ ,z) ∼ −1
2Ω0z2

0
e−αz

z2 D(θ)exp
(−1

2 ikz tan2 θ
)

, (9)

W3(θ ,z) ∼ − iβΩ3
0z5

0
384αc2

e−3αz

z4 (ka tanθ)2D3(θ)exp
(−3

2 ikz tan2 θ
)

, (10)

where the directivity function for the primary wave,

D(θ) =
8J2(ka tanθ)
(ka tanθ)2 , (11)

is normalized to be unity on axis.
Like the linear solution for a Gaussian beam, Eq. (9) exhibits a z−2e−αz decay rate.

The factor (ka tanθ)2 multiplying D3(θ) in Eq. (10) indicates that the third harmonic
vanishes along the axis of the beam in the far field. The maximum amplitude of the third
harmonic in the far field is located at the angle θ0 where ka tanθ0 = 1.92, for which
(ka tanθ0)2D3(θ0) = 1.41.

NUMERICAL RESULTS

Equation (6) was solved with an algorithm developed for the KZK equation [9] but
without coordinate transformation, and with minor changes in the nonlinearity and
diffraction subroutines. The source is taken to be a uniform circular disk of radius a, with
f (r) = H(a− r). Diffraction is characterized by the Rayleigh distance z0, nonlinearity
by the characteristic shock formation distance zsh = c2/βka2Ω2

0, and absorption by the
length zabs = 1/α . In terms of these length scales, the two dimensionless parameters used
to characterize solutions of Eq. (6) relative to diffraction are A = z0/zabs for absorption
and N = z0/zsh for nonlinearity.

Results are presented in Fig. 1 for A = 0.01 and N = 3. Figure 1(a) shows harmonic
beam patterns at z = z0 for the source frequency and its third and fifth harmonics.
Note that the levels of the third and fifth harmonics on the beam axis are maxima, not
minima. The discrepancy with Eq. (10), which predicts zero for the amplitude of the
third harmonic along the beam axis, is because the wave is not yet in the far field. Even
though the nonlinear term in Eq. (6) is zero everywhere along the beam axis, harmonics
generated nonlinearly off axis in the near field diffract into the axial region. Figure 1(b)
shows the axial waveform at z = z0, which is seen to be symmetric.
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FIGURE 1. (a) Harmonic beam patterns and (b) axial time waveform at z = z 0 in a torsional wave beam.
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