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Fractures have significant impact on hydrocarbon production planning and

management. Their properties directly determine the well location selection, drilling

design and oil/gas productivity. The goal of this research is twofold. The first part is

to explore and find an efficient modeling method that can describe fractures explicitly

embedded in elastic media under for wave propagation modeling. The second part is

to establish correlations between fracture properties and seismic response quantita-

tively using the modeling results. The results will provide essential information for

developing a systematic characterization procedures for fractures.

In the first part, the discontinuous Galerkin method (DG) is first explored

for fracture modeling. Within this method, the displacement discontinuity is incor-

porated by using a jump function included within the shape functions commonly

used in the finite element method. A single fracture model is explored using the

vii



DG method. The results are compared with the analytical solutions and found to

be in close agreement. From the displacement fields, it is observed that the wave

scattering is the main effect of fractures observed in seismic data. However, the ex-

pensive computational effort gives rise to challenges in conducting parametric study

for several realistic models using DG methods. This poses problems in systematically

understanding the effect of fractures on seismic waves.

In the second part, an integral based method is implemented for the para-

metric studies to investigate the effect of fractures on seismic waves in elastic media.

This integral based method ensures accuracy at the nodes of the elements and has

greater computational efficiency. Using this algorithm, the effects of fracture spacing,

density, and azimuth are investigated in a three-dimensional setting. The scattering

index is used to evaluate the extent of wave scattering induced by fractures. The

quantitative relationships between fracture spacing, azimuth and scattering index are

established. These results provide valuable information for future fracture character-

ization procedures.

viii



Table of Contents

Acknowledgments v

Abstract vii

List of Tables xi

List of Figures xii

Chapter 1. Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Seismic anisotropy in seismic fracture characterization . . . . . . . . . 5

1.2.1 Velocity/traveltime method . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Amplitude method . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.3 Fracture scales and seismic resolution . . . . . . . . . . . . . . 9

1.3 Review of simulation algorithms of elastic wave propagation in frac-
tured media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Linear Slip Model . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 Modeling of Linear Slip Model with finite difference . . . . . . 14

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 2. Application of DGM in simulating elastic wave propaga-
tion in fractured media 20

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 DG formulation of the elastic wave propagation . . . . . . . . . 21

2.1.2 Advantages of DG on simulating displacement discontinuity . . 25

2.2 Model validation and calibration in 2D . . . . . . . . . . . . . . . . . 26

2.3 Effect of fracture properties: Numerical investigation . . . . . . . . . 33

2.4 Limitations on 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

ix



Chapter 3. Seismic modeling in 3D fractured media with Integral for-
mulation 48

3.1 Integral formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 Point source and explosive source . . . . . . . . . . . . . . . . . 55

3.1.2 Numerical implementation . . . . . . . . . . . . . . . . . . . . 56

3.2 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Numerical examples on different fracture properties . . . . . . . . . . 63

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Chapter 4. Effect of fracture properties on wave scattering 84

4.1 Scattering index method . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Effect of fracture spacing, density, height . . . . . . . . . . . . . . . . 86

4.3 Azimuthal effects of fractures . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Effect of incident angles on single fractures . . . . . . . . . . . 92

4.3.2 Effect of incident angles on multiple parallel aligned fractures . 98

4.3.3 Effect of incident angles on intersecting fractures . . . . . . . . 100

4.3.4 Effect of incident angles on multiple intersecting fractures . . . 105

4.4 Correlating fracture properties, incident angles, and scattering index
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Chapter 5. Conclusions and future studies 118

Bibliography 122

Vita 129

x



List of Tables

2.1 Parameters for a one-layer model . . . . . . . . . . . . . . . . . . . . 39

2.2 Parameters for a three-layer model . . . . . . . . . . . . . . . . . . . 43

4.1 Average weighted SI and theta for four types of fracture model: a single
fracture model, multiple fractures model, single intersecting fractures
model, and multiple intersecting fractures model. . . . . . . . . . . . 116

xi



List of Figures

2.1 Schematic of an simple mesh with third order Gauss-Lobatto-Legendre
(GLL) element. The left element and right element have a shared
boundary. The non-uniform distribution of integration points within
both left and right GLL element. . . . . . . . . . . . . . . . . . . . . 27

2.2 Schematic of element boundaries for the Continuous Galerkin method
and Discontinuous Galerkin method. Across the element boundary, the
values are continuous for the Continuous Galerkin while discontinuous
for the Discontinuous Galerkin method. . . . . . . . . . . . . . . . . . 28

2.3 a). Normal Incident compressional wave field. b). Reflection and
transmission wave field across the fracture. The dashed line denotes
the fracture location. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 a). Incident wave and reflected wave recorded from the receiver above
the fracture. b) Transmitted wave recorded from the receiver below
the fracture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 a). Blue line denotes the analytical solution of a reflected waveform
derived from the linear slip condition. Red line denotes the DG simu-
lated reflected waveform across the fracture represented by the linear
slip boundary condition. b). Blue line denotes the analytical solu-
tion of transmitted waveform derived from the linear slip condition.
Red line denotes the DG simulated transmitted waveform across the
fracture represented by the linear slip boundary condition. . . . . . . 34

2.6 Correlation coefficients of DG solutions with different number of ele-
ment in the 2km2 region and analytical solutions. . . . . . . . . . . . 35

2.7 a) The blue line denotes the incidence wave and reflection wave for frac-
ture compliance at 1.8× 10−9m/Pa; the red line denotes the incidence
wave and reflection wave for fracture compliance at 1.8× 10−10m/Pa.
b). The blue line denotes the transmission wave for fracture compli-
ance at 1.8 × 10−9m/Pa; the red line denotes the transmission wave
for fracture compliance at 1.8× 10−10m/Pa. . . . . . . . . . . . . . . 36

2.8 (Left) The snapshot of the wavefield for an isotropic medium. (Mid-
dle) The wavefield for vertical aligned fractures (fractures modeled as
linear-slip discontinuities) with spacing on the order of a seismic wave-
length. (Right) The wavefield for vertical aligned fractures (fractures
modeled as linear-slip discontinuities) with spacing smaller than the
seismic resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xii



2.9 Z component for three planes (X-Z, Y-Z, X-Y plane) extracted from
the 3D wavefield of a one-layer fractured medium. The P and S- wave
scattering energy is obvious in the wavefield. . . . . . . . . . . . . . . 40

2.10 3D displacement fields of z component in a one-layer model containing
vertical fractures. a). Displacement field in X-Z plane, b). displace-
ment field in Y-Z plane, and c). displacement field in X-Y plane. . . . 41

2.11 Geometry of the 3D DG-FEM model. The layer velocities and densities
are shown in Table 2, the source is located in the center top front
(triangle symbol), and the receivers are spread out in a cross shape,
2km in the x direction and 2km in the y-direction. The receiver spacing
is 10m in each direction. . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.12 The left shot record is from the model without any fractures. The
middle and right shot records are from the model with a 200m frac-
ture interface spacing acquired normal and parallel to the fractures,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Local mesh surrounding a pair of nodes on a 2D non-planar fracture.
The non-planar surfaces ABCDO and A’B’C’D’O’ denote upper and
lower surfaces of the fracture. The displacement components are de-
fined at the nodes of tetrahedrons, as nodes O, A, B. The stress compo-
nents are defined at the centers of tetrahedrons. The distance between
the upper surface and lower surface is created for visualization purpose
only. The fracture is assumed to have a vanishing width. A pair of
nodes, such as O and O’, is defined at the same position on the frac-
ture, but each has a different displacement corresponding to the upper
or lower surface of the fracture. Hence, displacement discontinuity can
be described from the difference between the pair of nodes (from Zhang
and Gao, 2009). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Schematic of implementing explosive source in the integral method.
If an explosive source is placed at the centroid of an tetrahedron cell
CBEH, nodes A, B, C, D, E, F, G, H are distributed on a spherical
surface with same radius. . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 The wavefields generated by a point force and an explosive source. The
top wavefield is generated by a point force in z direction. The bottom
wavefield is generated by an explosive source. . . . . . . . . . . . . . 58

3.4 Model used for validation: the red plane denotes a 2D horizontal frac-
ture inserted at a depth of 1km. The black arrows denote the plane
wave source applied on the top surface. The two red triangles denote
the receivers placed 200m above and below the fracture. . . . . . . . 61

xiii



3.5 a) The red line denotes the analytical solution of a reflected wave-
form derived from the linear slip condition. The dashed black line
denotes the integral method simulated waveform reflected from the
fracture represented by the linear slip boundary condition. b) The
red line denotes the analytical solution of a transmitted waveform de-
rived from the linear slip condition. The dashed black line denotes the
integral method simulated transmitted waveform across the fracture
represented by the linear slip boundary condition. . . . . . . . . . . . 62

3.6 a) Reflection Comparison: η = 1.8 ∗ 10−9 (blue), 9.0 ∗ 10−10 (red),
1.8∗10−10 (green). b) Transmission Comparison: η = 1.8∗10−9 (blue),
9.0 ∗ 10−10 (red), 1.8 ∗ 10−10 (green). . . . . . . . . . . . . . . . . . . 64

3.7 2D slices of the wavefield snapshot of the vertical component of the
displacement for a vertical rectangular fracture inside a homogeneous
background medium at 0.558s. Each axis has the same length of 4km.
The fracture is a 2D rectangular plane, with a height of 400m and
length of 400m, positioned 500m away from the source on the right
side. The slices from the left to the right are, respectively, related to
the XZ-plane that coincides with the fracture (the white rectangular
symbol highlights the fracture position), YZ-plane and XY plane that
pass through the center of the fracture. The transmitted and reflected
waves from the fracture, diffracted waves from the fracture edges and
tips, and fracture surface waves can be seen clearly. . . . . . . . . . . 65

3.8 2D slices of the snapshot the multi-component displacement field of
the YZ plane at 0.558s. Three slices are, respectively, x, y and z
components. The transmitted and reflected waves from the fracture,
diffracted waves from the fracture edges and tips, and fracture surface
waves can be clearly seen from each components. . . . . . . . . . . . 66

3.9 Four models used for generating synthetic seismograms: a) Reference
fracture model with equal length, spacing, and density; fractures are
normal to the X-axis. The fracture length is 400m, spacing is 5m,
and fracture density is 1.2e− 5. b) Fractures with length of 400m for
the near X-offset (0m 400m), 800m for mid X-offset (400m 1200m),
40m for far X-offset (1200m 2000m), spacing of 5m, and fracture
density of 1.2e−5 normal to the X-axis. c) Factures with equal length,
spacing, and density are normal to the X-axis. The fracture length is
1000m and fracture density is 1.2e−5. I change the fracture spacing to
5m. d) fractures vary laterally along the X-axis, with fracture density
of 1.2e − 5 and 2.4e − 5 alternatively occurring for six times. The
fracture length is 1000m. Fracture spacing is 5m when fracture density
is 1.2e− 5. Fracture spacing is 10m when fracture density is 2.4e− 5.
The source (triangle symbol) is located in the center top front, and the
receivers (black dots) are spread out in a cross shape. The domain is
4km in both X- and Y- direction, and 2km in the Z-direction. . . . . 68

xiv



3.10 Shot records acquired from the reference fracture model along the Y-
and X- axes, i.e., the gathers acquired parallel (left) and normal (right)
to fractures respectively. Scattered energy is within 0-1500m in X- and
Y-offset, during the time period between 0.6-1.2s. . . . . . . . . . . . 69

3.11 Shot records acquired from the fracture model with varying lengths
along the Y- and X- axes, respectively, i.e., the gathers acquired parallel
(left) and normal (right) to fractures, respectively. Scattering is present
within 0-1500m in X- and Y-offset, during the time period between 0.6-
1.2s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.12 Shot records acquired from fracture model with varying spacing along
the Y- and X- axes, respectively, i.e., the gathers acquired parallel (left)
and normal (right) to fractures, respectively. Scattering is present
within 0-1500m in X- and Y-offset, during the time period between
0.6-1.2s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.13 Shot records acquired from fracture model with varying fracture den-
sity along the Y- and X- axes, respectively, i.e., the gathers acquired
parallel (left) and normal (right) to fractures respectively. Scattering
is present within 0-1500m in X- and Y-offset, during the time period
between 0.6-1.2s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.14 Shot gather comparison between the reference model and the model
with varied fracture length: (a) geometrical details. S1 denotes zero-
X-offset slice; S2 denotes 300m-X-offset slice; S3 denotes 500m-X-offset
slice; (b) shot gather at zero-X-offset slice (S1) for the reference model;
(c) shot gather at zero-X-offset slice (S1) for the model with varied
fracture length; (d) shot gathers at 500m-X-offset (S3) for the reference
model; (e) shot gathers at 500m-X-offset (S3) for the model with varied
fracture length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.15 Waveform comparisons between the reference model and the model
with varying fracture length at near zero-Y-offset of selected sections:
(a) S1 in the reference model; (b) S1 in the model with varied fracture
length; (c) S3 in the reference model; (d) S3 in the model with varied
fracture length. The blue arrow indicates the time range within which
the scattering occurs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.16 Shot gathers and waveforms of selected sections for the model with
varied fracture length: (a) shot gather at zero-X-offset slice (S1); (b)
shot gather at 300m-X-offset slice (S2); (c) shot gather at 500m-X-
offset slice (S3); (d) waveforms near zero-Y-offset of S1 (location of
traces are also highlighted by dashed line in (a)); (e) waveforms near
zero-Y-offset of S2 (location of traces are also highlighted by dashed
line in (b)); (f) waveforms near zero-Y-offset of S3 (location of traces
are also highlighted by dashed line in (c)). The blue arrow indicates
the time range within which the scattering occurs. . . . . . . . . . . . 79

xv



3.17 Shot gather and waveform comparisons between the reference model
and the model with varied fracture spacing: (a) geometric details; (b)
shot gather at zero-X-offset slice (S1) for the reference model; (c) shot
gather at zero-X-offset slice (S1) for the model with varied fracture
spacing; (d) waveforms near-Y-zero offset of S1 in the reference model
(location of traces are also highlighted by dashed line in (b)); (e) wave-
forms near zero-Y-offset of S1 in the model with varied fracture spacing
(location of traces are also highlighted by dashed line in (e)). The blue
arrow indicates the time range within which the scattering occurs. . . 80

3.18 Shot gather comparison between the reference model and the model
with varied fracture density: (a) geometric details; (b) shot gather at
zero-X-offset slice (S1) for the reference model; (c) shot gather at zero-
X-offset slice (S1) for the model with varied fracture density; (d) shot
gathers at 500m-X-offset (S3) for the reference model; (e) shot gathers
at 500m-X-offset (S3) for the model with varied fracture density. . . 81

3.19 Waveform comparisons between the reference model and the model
with varying fracture density at near zero-Y-offset of selected sections:
(a) S1 in the reference model; (b) S1 in the model with varying fracture
density; (c) S3 in the reference model; (d) S3 in the model with varying
fracture density. The blue arrow indicates the time range within which
the scattering occurs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1 a) model details, b) contour plot of SI on top surface for frequency of
7.5Hz (quarter view). . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Shot gathers for different frequencies recorded at zero Y-offset. Hori-
zontal axes are X-offset in meters. Vertical axes are time in seconds.
From a)-i), I varied the ratio between fracture spacing and wavelength
by fixing the fracture spacing at 40m while varying frequency from 5Hz
to 25Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Contour plots for different ratio between fracture spacing and wave-
length by fixing the fracture spacing at 40m while varying frequency
from 5Hz to 25Hz. The color in each plot indicates the normalized SI
value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 SI vs. ratio between fracture spacing and wavelength. . . . . . . . . . 91

4.5 A single fracture model containing a vertical fracture with 200m height
located at the center, which is indicated by the black bar. The red stars
denote the source location at seven incident angles. The sources are
500m away from the fracture center for all seven angles. The source
to the left of fracture is the 0◦ incident angle. The source above the
fracture corresponds to the 90◦ incident angle. . . . . . . . . . . . . 93

xvi



4.6 Wavefields for a single fracture with source to fracture azimuth varying
from 0 to 90 degrees. The source-to-fracture azimuths are labeled on
the upper right corner of each wavefield. The red stars indicate the
source location. The blue boxes indicate the area selected for scattering
analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.7 SI contour plots for a single fracture with source to fracture azimuth
varying from 0 to 90 degrees. The source-to-fracture azimuths are
labeled on the upper right corner of each contour plot. The red circles
indicate the full receiver azimuth 500m away from the center of fracture. 96

4.8 SI polar plot for a single fracture with source-to-fracture azimuth vary-
ing from 0 to 90 degrees. The SI values are obtained from the full
receiver azimuth 500m away from the center of fracture. . . . . . . . 97

4.9 a) SI polar plot for a single fracture from seven source to fracture
azimuths vary from 0 to 90 degrees. b) average SI and weighted θ in a
quadratic polar plot. c) average SI and weighted θ in complete source
to fracture azimuth vary from 0 to 360 degrees. . . . . . . . . . . . . 99

4.10 Wavefields for multiple fractures with source-to-fracture azimuths vary-
ing from 0 to 90 degrees. The source-to-fracture azimuths are labeled
on the upper right corner of each wavefield. The red stars indicate the
source location. The blue boxes indicate the area selected for scattering
analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.11 SI contour plots for multiple fractures with source-to-fracture azimuths
varying from 0 to 90 degrees. The source-to-fracture azimuths are
labeled on the upper right corner of each contour plot. The red circles
indicate the full receiver azimuth 500m away from the center of fracture.102

4.12 SI polar plot for multiple fractures with source-to-fracture azimuths
varying from 0 to 90 degrees. The SI values are obtained from the full
receiver azimuth 500m away from the center of fracture. . . . . . . . 103

4.13 a) SI polar plot for multiple fractures from seven source-to-fracture az-
imuths varying from 0 to 90 degrees. b) average SI and weighted theta
in a quadratic polar plot. c) average SI and weighted θ in complete
source-to-fracture azimuths varying from 0 to 360 degrees. . . . . . . 104

4.14 Wavefields for a single intersecting fractures with source to fracture
azimuth vary from 0 to 90 degree. The source-to-fracture azimuth are
labeled on the upper right corner of each wavefield. The red stars
indicate the source location. The blue boxes indicate the area selected
for scattering analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.15 SI contour plots for a single intersecting fractures with source-to-fracture
azimuths varying from 0 to 90 degrees. The source-to-fracture azimuths
are labeled on the upper right corner of each contour plot. The red
circles indicate the full receiver azimuths 500m away from the center
of fracture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xvii



4.16 SI polar plot for a single intersecting fractures with source-to-fracture
azimuths varying from 0 to 90 degrees. The SI values are obtained
from the full receiver azimuths 500m away from the center of fracture. 108

4.17 a) SI polar plot for a single intersecting fractures from seven source-
to-fracture azimuths varying from 0 to 90 degrees. b) average SI and
weighted theta in a quadratic polar plot. c) average SI and weighted
theta in complete source-to-fracture azimuths varying from 0 to 360
degrees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.18 Wavefields for multiple intersecting fractures with source-to-fracture
azimuths varying from 0 to 90 degrees. The source-to-fracture azimuths
are labeled on the upper right corner of each wavefield. The red stars
indicate the source location. The blue boxes indicate the area selected
for scattering analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.19 SI contour plots for multiple intersecting fractures with source-to-fracture
azimuths varying from 0 to 90 degrees. The source-to-fracture azimuths
are labeled on the upper right corner of each contour plot. The red
circles indicate the full receiver azimuths 500m away from the center
of fracture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.20 SI polar plot for multiple intersecting fractures with source-to-fracture
azimuths varying from 0 to 90 degrees. The SI values are obtained
from the full receiver azimuths 500m away from the center of fracture. 113

4.21 a) SI polar plot for multiple intersecting fractures from seven source-
to-fracture azimuths varying from 0 to 90 degrees. b) average SI and
weighted theta in a quadratic polar plot. c) average SI and weighted
theta in complete source-to-fracture azimuths varying from 0 to 360
degrees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.22 Average weighted SI and theta for a single fracture model, multiple
fractures model, single intersecting fractures model, and multiple in-
tersecting fractures model. The radius represents the value of SI. The
angle represents the θ angle corresponding to the average SI. . . . . . 115

xviii



Chapter 1

Introduction

1.1 Motivation

Subsurface fracture detection has been an active area of research in geophysics

during the past 30 years. This is because, first, fractures are the most abundant visible

structural features in Earth′s upper crust. Second, precise identification of fracture

properties (such as orientations, length, height and filling material) is crucial for new

oil/gas reservoir discoveries, oil/gas productivity, well design and risk assessment.

Fractures can play an important role in hydrocarbon fluid transportation within the

reservoir and heavy drilling mud leakage loss. However, precise identification of frac-

ture properties is extremely challenging due to their complexity and heterogeneity.

In this chapter, a few fracture characterization methods will be described briefly and

compared. Fractures can be characterized from cores, boreholes, outcrops and seis-

mic data. Fracture investigations of surface outcrops can help to understand the

geological processes and evolution history within the whole region, but these studies

are also subject to large uncertainty when used as analogs for subsurface formations.

Borehole imaging provides a direct description of fractures that intersect the bore-

hole wall but is valid only in the vicinity of the well. Seismic data provides the only

way to characterize the spatial variation of fractures in the subsurface but at lower

resolution.
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We can identify two major trends in the previous work on fracture chatac-

terization. One involves the development of improved equivalent medium theories

for anisotropic homogeneous media, which account for a wider range of properties

of fractured rocks and their effects on seismic waves. The other focuses on inversion

algorithm development and applications, being applied to invert for fracture parame-

ters from subsurface seismic data. Although several efforts have been made to reveal

the mechanisms and principles in fractured reservoir exploration and characterization,

many problems still remain unsolved.

The way fractures affect seismic wave propagation depends on the fracture′s

geometrical and mechanical properties, such as fracture height, length, orientation,

spacing, density, compliance and infill fluid. The conventional seismic fracture char-

acterization methods, such as velocity anisotropy and amplitude variation of offset

and azimuth angle (AVOAZ), can only be a proxy for detecting fracture orientation

and density. On the other hand, with current technological improvement in seis-

mic acquisition, such as wide-azimuth, full-azimuth, multicomponent, ocean bottom

nodes, and in seismic data processing, such as reverse time migration and full wave-

form inversion, we need better methods that are capable of detecting more fracture

properties from seismic data.

Seismic modeling is a procedure to simulate the seismic response from an earth

model with given parameters. The objective is to predict seismic responses that a set

of sensors would record, given an assumed geological model of the subsurface and the

physics included in the wave propagation algorithm. Seismic modeling is an effective

way to study the seismic responses of a fracture system and to compare with real data
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acquired in the field (such as 3D images of oil and gas reservoirs). Seismic modeling

can be used to generate seismic responses in various fractured media which can be

used to validate existing fracture inversion schemes. It can be used recursively to

evaluate the medium parameters during inversion of real field data.

For general seismic modeling, many approaches are available, which are clas-

sified into three categories: direct methods, integration methods, and ray tracing.

Carcione et al. (2002) gave a detailed review of these three methods. Integration

methods (Cruse and Rizzo, 1968; Carcione et al., 2002) are based on integral repre-

sentations of the wavefield in terms of waves originating from point sources. These

methods are efficient and accurate for specific geometries, such as a bounded object

in a homogeneous background. However, they involve high computational cost for

complex geometries. Ray tracing methods are based on high frequency asymptotic

solutions to the wave equation; therefore, they do not take the complete wavefield

into account.

Direct methods solve the wave equation at a finite number of nodes by dis-

cretizing the geological model to a numerical mesh. It does not have restrictions on

the material variability and can be very accurate when a sufficiently fine grid is used.

Direct methods are most commonly used in full wavefield simulation because they

are able to handle many complex constitutive equations that cannot be solved by

integration methods or ray tracing without simplifying assumptions. However, direct

methods are certainly computationally costly than the other two methods.

There are many implementation algorithms of direct methods, such as finite

difference (Saenger and Shapiro, 2002), pseudo-spectral (Fornberg, 1998; Vlastos et
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al., 2003) and finite element (Lysmer and Drake, 1972) methods. However, very few

techniques have been applied to 3D fracture modeling due to various limitations. In

3D cases, high computation more expensive is the main reason.

In 2D seismic modeling, discrete fractures are simulated as finite segments

(horizontal, vertical or dipping) with vanishing thickness (Vlastos, 2005; Rao and

Wang, 2009), whilst in 3D cases, fractures behave as 3D planes, which makes it possi-

ble to characterize individual fractures or fractured media at different azimuths (Xu,

2011). Understanding seismic responses from realistic 3D fracture models would help

to extract more useful information from seismic data acquired from fractured targets.

Attempting 3D implementation, Willis et al. (2006) and Xu (2011) used finite differ-

ence modeling of regularly spaced, discrete vertical fractures systems. However, there

are two major problems associated with the finite difference method. The first one

is applying the finite difference method to a differential equation involves replacing

all derivatives with difference formulas on the mesh. Therefore, when the geometry

becomes complicated, a particular mesh scheme is needed to deal with boundary con-

ditions. Another problem is the finite differences are generally implemented using

regular grid cells. The regular grid cells give rise to difficulties in incorporating frac-

tures with arbitrary geometries. Staircase approximations introduce artificial diffrac-

tions. To avoid this problem, the finite element method is used instead of the finite

difference method (DeBasabe et al., 2008). The discontinuous Galerkin finite element

method (DGM) overcomes the key disadvantages of finite difference and deals with

arbitrary shapes more easily with improved accuracy (Cockburn et al., 2000). How-

ever, the finite element method is computationally expensive, especially in 3D cases.
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In this work, we implemented a 3D explicit interface scheme with a geometrically

irregular mesh following Zhang and Gao (2009). Arbitrarily shaped fractures can

be accurately modeled with this discretization. This approach can provide detailed

wave propagation phenomena resulting from spatially heterogeneous fractures. The

2D fractures are modeled using discretization with tetrahedral grid cells. Arbitrarily

shaped 2D non-planar fractures can then be represented in the numerical mesh.

Throughout this work, we seek a better understanding of scattering from dif-

ferent types of fractures with different geometrical properties from synthetic seismo-

grams generated with an accurate numerical simulation of elastic wave propagation.

Scattering effects will be analyzed using transfer functions and a scattering index.

The procedure developed for the research lays the foundation for future inversion

algorithms to quantify fracture properties.

1.2 Seismic anisotropy in seismic fracture characterization

Anisotropy is variation of a physical property depending on the direction in

which it is measured (Sheriff, 2002). Seismic anisotropy, especially, refers to the

seismic wave responses varying with propagation angle. The most common seismic

responses include velocity and amplitude of seismic waves. The angle refers to the

direction including polar or incident angle (offset) and source-receiver azimuth.

Seismic anisotropy may be caused by several factors, such as (1) fine layering

of sedimentary rocks, (2) shale lithology, (3) preferred orientations of cracks, fractures

or faults, (4) intrinsic preferential alignment of mineral or crystals or grains.
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The most popular methods of seismic fracture characterization make uses of

azimuthal variation of velocity and amplitude, caused by fracture networks. If major

subsurface fractures are mainly aligned vertically, we expect the velocity and ampli-

tude to vary with source-receiver azimuth.

Thomsen (1986) analyzed explicit expressions for velocities in weak anisotropic

models. Of all the categories, two types of seismic anisotropy are most common:

transverse isotropy with a vertical symmetric axis (VTI), and transverse isotropy

with a horizontal symmetric axis (HTI). A fine layered sedimentary sequence in the

Earth′s upper crust may cause layer-induced anisotropy, which has the same behavior

as that of an equivalent homogeneous VTI medium when the seismic wavelength is

larger than the thickness of each sequential fine layer. This concept has been widely

used in application of estimating seismic velocity (Backus, 1962).

Small fractures or cracks at the reservoir depth, tend to align in a vertical

orientation, causing a fracture induced azimuthal anisotropy (Champin, 1981, 1983,

and 1985). As a result, the periodic azimuthal variation of seismic attributes, such as

NMO velocity, traveltime, reflected wave amplitude, attenuation and scattering. can

all be used to describe certain fracture properties.

1.2.1 Velocity/traveltime method

Normal moveout correction (NMO) is a basic seismic data processing step that

corrects for the offset (source-receiver distance) dependent effect by stretching travel

time variation in all seismograms to align with the zero-offset trace. For a constant
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velocity medium and a flat reflector, the NMO equation is given by,

t2 = t20 +
x2

v2
, (1.1)

where t0 is two way traveltime at zero-offset, x is offset, v is NMO velocity.

Based on the moveout analysis, Grechka and Tsvankin (1998) and Grechka

et al. (1999) showed that the azimuthal variation in the P wave NMO velocity for

arbitrary anisotropic and heterogeneous media can be generally described as an ellipse

in the horizontal plane. Li (1999) and Wang and Li (2006) further proved that, in

anisotropic media, the P wave normal moveout (NMO) equation can be generally

written in following form:

t2(φ, x) = t20 + x2((
cos(φ− φ0)

Vfast
)2 + (

sin(φ− φ0)

Vslow
)2), (1.2)

where t0 is zero-offset two way traveltime, x is the offset (source-receiver distance), φ

is the source receiver azimuth, φ0 is the azimuth of the major axis of the NMO velocity

ellipse, Vfast is the fastest NMO velocity and Vslow is the slowest NMO velocity.

The seismic response of vertically aligned fractured media behave the same

as in a homogeneous HTI medium. This concept can be used to approximately link

the fast NMO velocity direction in an HTI medium to the fracture strike orientation,

while the slow NMO velocity direction in HTI medium points to the fracture normal

direction. The fracture density, under the HTI medium concept, is related to the

degree of anisotropy, which is the ratio between the fast velocity and slow velocity.
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1.2.2 Amplitude method

The angle-dependent reflection coefficient from an interface contains valuable

information on the local properties of the layers in an isotropic medium (Shuey,

1985). Therefore, an Amplitude Versus Offset (AVO) analysis is commonly used in

seismic reservoir characterization. The amplitudes are also influenced by the elastic

properties averaged on the scale of a seismic wavelength. In isotropic media, the P

wave reflection coefficient R as a function of incidence angle θ is approximated as

R(θ) ≈ A+Bsin2θ + Csin2θtan2θ, (1.3)

where A, B, C are AVO intercept, gradient, and curvature, respectively, and they

are related to the velocities and densities of the two sides of the interface. For small

incidence angles, we may ignore the third term in equation 1.3. The small angle P

wave reflection coefficient can then be expressed as

R(θ) ≈ A+Bsin2θ. (1.4)

The AVO analysis measures local properties on the interface between two half spaces.

In anisotropic media, amplitude variations are observed not only as a function of

incidence angle but also as a function of source receiver azimuth. These observations

are used in AVOAZ analysis. For AVOAZ, the AVO parameters B and C are functions

of velocities and densities of the two sides of the interface, as well as azimuth. The

two-term P wave reflection coefficient can by approximated by

R(θ, φ) ≈ A+B(φ)sin2θ. (1.5)
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where φ refers to azimuth. The AVO gradient B(φ) can, in general, be written

as B(φ) = B0 + B1cos
2(φ − φ0), where B0 is the conventional AVO gradient in

isotropic media, B1 is the anisotropic AVO gradient, and φ0 is the angle between

the chosen zero-azimuth direction and the symmetry axis plane. An AVO analysis

on the interface of an equivalent fracture-induced anisotrpic medium (HTI medium)

normally displays an elliptical variation with azimuth, which can also be used to

determine the fracture strike orientation and fracture density (Rüger, 1997; Xia et

al., 2006; Varela et al., 2007). It is worth noting that there exist a 90◦ ambiguity in

determining fracture orientation. For a class I AVO, such as a shale formation above

a fractured reservoir, the trough in equation of B(φ) corresponds to the fracture

parallel orientation, while the peak corresponds to the fracture normal orientation.

On the contrary, for a class III AVO, such as a fractured reservoir above the shale

formation, the peak corresponds to the fracture parallel orientation and the trough

corresponds to the fracture normal orientation. However, this 90◦ ambiguity does

not exist in the aforementioned velocity/traveltime method. Therefore, Rüger (2002)

and Holmes and Thomsen (2002) suggested that combined AVOAZ and azimuthal

NMO velocity or interval traveltimes should resolve this ambiguity. Hall and Kendall

(2003) suggested that synthetic AVO modeling may resolve this ambiguity.

1.2.3 Fracture scales and seismic resolution

There is an assumption used in the current NMO velocity/traveltime and

AVOAZ methods that the fracture media is equivalent to an anisotropic medium. In-

deed, seismic anisotropy provides an opportunity to extract fracture properties that
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are below seismic resolution. There is another concept to consider when defining a

geophysical model-heterogeneity, which is closely related to anisotropy. A medium

is anisotropic if a property measured at the same location varies with orientation.

A medium is heterogeneous if a property measured along one direction varies with

location (Winterstein, 1990). A heterogeneous material can be treated as a homo-

geneous, anisotropic or not, material when the wavelength of the seismic wave prop-

agating through it is much larger than the scale of heterogeneity. For example, a

model consisting of many thin horizontal homogeneous layers with varying properties,

is heterogeneous when the wavelength is comparable or smaller than the thickness;

however, it may be considered homogeneous and anisotropic when the wavelength is

much larger than the thickness.

Similarly, whether a seismic wave ”sees” a fractured medium and a seismic

wave ”sees” a fractured medium depends on the scale of fractures and the seismic

wavelength. If the scale of fracture that we would like to detect is a large scale fault,

it can show up as an abrupt lateral discontinuity on seismic gathers. If the fractures

of interest are those in a shale formation, which are smaller than a seismic wavelength

and aligned in specific orientations, we can treat the overall population of the fractures

in a reservoir as an equivalent homogeneous and anisotropic medium. Methods with

homogeneous and anisotropic synthetic modeling, NMO velocity/traveltime, AVOAZ

are commonly used in fracture characterization for this scale. However, the technique

for discrete fracture detection with scales comparable to the seismic wavelength are

still under-development.
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1.3 Review of simulation algorithms of elastic wave propa-
gation in fractured media

Studying seismic wave propagation in fractured media has been of great in-

terest in seismology and exploration geophysics. Simulation in 3D is necessary for

comprehensive understanding of azimuth-dependent seismic wave propagation across

fractures. When the fracture size and spacing are substantially smaller than the seis-

mic wavelength, wave propagation in such fractured media can be described in terms

of an equivalent anisotropic medium. Various equivalent medium theories (e.g., Hud-

son 1980, 1981; Schoenberg 1980; Thomsen 1995; Liu et al. 2000) are available for

estimating the parameters of physical fracture properties. However, fracture swarms

with varying fracture parameters cannot be represented by any equivalent medium

theory. This is because the equivalent medium theories consider the general effects of

all the small fractures. Therefore, in order to obtain detailed seismic characteristics,

fractures should be modeled as local inclusions.

Numerical schemes that treat the fractures as discrete localizations have been

developed. Examples of these include (1) local effective-medium scheme, (2) weak-

inclusion scheme, (3) and explicit-interface scheme. The local effective-medium scheme

(Coates and Schoenberg, 1995; Vlastos et al., 2003) expresses the effective compliance

of a fractured layer with the sum of compliances from each fracture and the host rock

(background medium) within each discretized cell. This results in a local fractured

medium that has a smaller velocity than the background medium. Thus, small grid

spacing and time-sampling intervals are required (Zhu and Snieder, 2003) to sat-

isfy the stability condition. The weak-inclusion scheme (Saenger and Bohlen, 2004)
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describes fractures/cracks as low-velocity and low-density ellipsoidal inclusions. How-

ever, this scheme requires much smaller grid spacing than the local effective-medium

scheme in order to adequately model the thickness of cracks. The explicit schemes

directly treat fractures as displacement discontinuities using the linear slip model

(Schoenberg and Douma, 1988; Slawinski and Krebes, 2002; Zhu and Snieder, 2003).

In this scheme, fractures are non-welded interfaces with vanishing widths. Therefore,

no low-velocity medium or small-size grid spacing is introduced. This significantly re-

duces the computational cost and memory requirements, especially in 3D simulation

compared to the local effective medium scheme and weak inclusion scheme.

1.3.1 Linear Slip Model

In accordance with the linear slip model of Schoenberg (1980), fractures are

considered as interfaces with negligible mass and thickness relative to the seismic

wavelength. With the linear slip model, we can simulate seismic wave behavior across

an unwelded contact or slip interface, representing a fracture. Across a slip interface

the particle displacement is considered to be discontinuous whereas the stress field is

continuous, and the discontinuity is assumed to be linearly related to the local stress

traction by the fracture compliance:

∆u = ηtn, (1.6)

where ∆u is the jump of the displacement field at the discontinuous fracture interface,

and t is the traction vector at the fracture interface, tn={T1, T2, T3}T with T3 pointing

in the downward verical direction, η is the fracture compliance matrix, given by
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Schoenberg and Sayers (1995) as,

ηij = ηNninj + nT (δij − ninj), (1.7)

where ηN and ηT are the normal and tangential compliances respectively, n is the

component of a vector normal to the fracture, and δij is the Kronecker delta. For a

rotationally invariant fracture normal to the x2 axis, the fracture compliance matrix

is diagonal and is given by (Schoenberg, 1980)

η =

ηT 0 0
0 ηT 0
0 0 ηN

 . (1.8)

The linear slip model has been validated by experiments reported in Hsu and

Schoenberg (1993). It describes the applicability of the linear slip assumption in

modeling long and small wavelengths.

The ∆u in Equation 1.3 denotes the jump of the displacement vector across

an interface in a Cartesian coordinate system (x1, x2, x3) with the x3-axis pointing

vertically downward. If a fracture has an arbitrary geometry, then the x3-axis is not

consistent with the downward vertical direction. Accordingly, the linear slip model

in Equation 1.3 can be expressed as

T∆u = ηtn, (1.9)

where T denotes the transform matrix for the Cartesian system (x1, x2, x3) to a system

that has one axis pointing to the normal n direction. For a fracture with horizontal
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symmetry and rotational symmetry about the normal, η is diagonal and characterized

in terms of ηN and ηT (Haugen and Schoenberg, 2000). The matrix T can be expressed

using directional cosines of the normal vecter n as:

T =


n3n1√
n2
1+n2

2

n3n2√
n2
1+n2

2

−
√
n2

1 + n2
2

− n2√
n2
1+n2

2

− n1√
n2
1+n2

2

0

n1 n2 n3

 , (1.10)

1.3.2 Modeling of Linear Slip Model with finite difference

The procedure for implementing the linear slip model with a finite difference

algorithm is to model the seismic response of single or multiple fractures or faults was

proposed by Coates and Schoenberg (1995). They assume a horizontal fracture with

a length of ∆l enclosed in a 2D cell with an area of ∆A. Based on the group theory

mentioned in Schoenberg and Muir (1989), when fracture thickness is close to zero,

the effective compliance for the cell surrounding the fracture S is

S = Sb + Sf = Sb +
∆l

∆A


0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0

 ¯
Z

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 , (1.11)

where Sb is the compliance matrix for the unfractured background medium, Sf is the

fracture compliance matrix. The S matrix is a 6x6 matrix. The inverse of the overall

effective compliance matrix S is the stiffness matrix that can be used for a finite

difference algorithm. In this case, the thickness of the fracture at least equals the
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size of the unit grid. The fracture thickness used in Willis et al. (2006) is 5 meters,

and 10 meters by Xu (2011). These are much larger than realistic fracture thickness.

This is caused by the nature of the finite differences that computes the derivatives of

displacement using the differences among surrounding unit grids. Therefore, the ex-

plicit displacement discontinuity across the slip interface cannot be resolved. Instead,

the inverse of the local effective compliance matrix is needed for a finite difference

algorithm to treat a discrete fracture.

1.4 Objectives

Fracture reservoir characterization becomes more and more challenging and

difficult as we march into unknown frontiers. Comprehensive understanding and new

technology applications have proved to indispensable for new discoveries and suc-

cessful production. Among the technologies we heavily rely on, seismic inversion is

indisputably a critical constituent that we must advance with the best of our efforts.

One vital step of a successful seismic inversion relies on our profound understand-

ing of wave propagation in the Earth and, therefore, an accurate and efficient wave

propagation method is the key. In this dissertation, I will show two forward mod-

eling algorithms for wave propagation in fractured media. One is a finite element

based Discontinuous Galerkin method, the other one is a finite element based inte-

gral method. I will further explain their advantages in the following chapters. The

main objective of this dissertation is to assess the effects of fracture properties on

seismic wave propagation and to build relationship between fracture properties and

seismic data for inversion purposes.
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In Chapter 1, I review the literature on popular fracture characterization meth-

ods. Based on the review, it is clear that the existing methods can only be used as a

proxy for detecting fracture orientation and fracture density distributions. The com-

monly used equivalent medium theories are not applicable in heterogeneous fractured

media. More detailed fracture properties that we are interested in, require a novel

approach to characterize. I then justify the importance of forward modeling in under-

standing the basic principles of wave propagation and a powerful tool to tackle the

challenging inverse problems we are facing. The review of current popular numerical

modeling algorithms on simulating fractures reveals that the finite element method is

more flexible and efficient for simulating complex fracture geometries. I provide de-

tail descriptions of special configurations of the finite element method, Discontinuous

Galerkin method and integral method in Chapters 2 and 3.

In Chapter 2, I first introduce the finite element based Discontinuous Galerkin

(DG) method for seismic modeling, including DG formulation of elastic wave equa-

tion and the advantages of DG on simulation of displacement discontinuity. For a

simple plane wave propagation across a horizontal fracture, the analytical solutions

for reflection and transmission coefficients are available. I then compare the 2D DG

numerical solutions to the analytical solutions. I use a series of fracture compliance

values to compare the amplitude and phase of reflected and transmitted signals. How-

ever, applying DG in 3D requires high memory cost because of large number of degree

of freedoms required in DG algorithm.

In Chapter 3, I first introduce the integral formulations, linear slip model and

numerical implementation of the integral method. I describe the implementation
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of point source and explosive source in the integral method. I perform the model

validation and report a few case studies on different fracture properties. The results

show different scattering patterns for different fracture geometries.

In Chapter 4, I focus on studying the effect of fracture properties on wave scat-

tering. I introduce the scattering index method as a way of quantifying the extent

of scattering. To study the effect of fracture spacing, density and height, I keep the

incident angle constant and study the effect of fracture properties on the scattering

index. I also investigate the effect of incident angles on different types of fractures

including a single fracture, multiple parallel aligned fractures, single intersecting frac-

ture, and multiple intersecting fractures. The effect of incidence angle is evaluated

using the scattering index. l correlate the fracture properties and incident angles with

the scattering index to provide sufficient information for future inversion research.

In Chapter 5, I summarize this dissertation and discuss future research direc-

tions.

1.5 Contributions

The main contributions of this dissertation are summarized as follows:

• I investigated the effect of fractures on seismic wave scattering using the

Discontinuous Galerkin method. DG can achieve a much higher accuracy

in simulating displacement field discontinuity in an elastic medium with a

high computational cost due to the high degree of freedom. (Chapter 2)

• I implemented the integral based method in 3D to explicitly simulate elas-
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tic wave propagation in fracture media. The integral method can achieve

high accuracy and much lower computational cost than DG. The code is

written using C language and parallelized using MPI (Message Passing

Interface). The numerical mesh is assembled by tetrahedral elements. Dis-

crete fractures can be modeled on any facet of the tetrahedral element. I

explicitly model the displacement discontinuity across a fracture using a

pair of nodes assigned at the position along the fracture interface. (Chapter

3)

• I investigated the effect of fracture properties, including fracture spacing,

densities, and height variations, on seismic wave propagation in elastic

media. The analyses cover shot gather results for both azimuthal variation

and lateral variation. (Chapter 3 and 4)

• I investigated the effect of both azimuth and source to fracture center az-

imuth of four types of fractures, including single fracture, multiple paral-

lel aligned fractures, single intersecting fracture, and multiple intersecting

fractures. (Chapter 4)

• I applied scattering index methods to quantify the effect of fracture prop-

erties on seismic wave scattering. This may contribute to better under-

standing of fracture-induced scattering. (Chapter 4)

• I provided an insight in the correlation between fractures and seismic wave

scattering, which, in turn, lays the foundation for future inversion algo-
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rithm to quantify fracture properties from real surface seismic data. (Chap-

ter 4)
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Chapter 2

Application of DGM in simulating elastic wave

propagation in fractured media

2.1 Introduction

Seismic modeling is a procedure to simulate the seismic response from an earth

model with given parameters. It can be used recursively to evaluate the medium

parameters during inversion of real field data. I perform numerical simulations of

elastic wave propagation in models with realistic fractures using the discontinuous

Galerkin method (DGM). Compared to finite difference methods, the main advantages

of DGM are its flexibility to handle discontinuities and complicated geometries in

fractured reservoir models. It also involves an extremely simple treatment of the

boundary conditions to achieve high-order accuracy. Therefore, DGM is particularly

well suited to incorporate fractures because these are simulated as discontinuities in

the displacement field (De Basabe et al., 2011, 2016). A practical representation

of a discrete fracture is the fracture corridors (Singh et al., 2008). The linear slip

model, also called the discrete fracture model, represents the fracture by assuming

the displacements caused by a seismic wave are discontinuous while the tractions

remain continuous. Coates and Schoenberg (1995) introduced the linear slip model

in a finite difference algorithm.
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In this chapter, I validate the 1D linear slip condition by comparing phase shift

and amplitude of reflection and transmission waveforms between DG numerical results

and the analytical solution. Because DG is a numerical method, its accuracy is highly

dependent on mesh size in this simulation. One can keep decreasing the size of the

element to approach the analytical solution; however, it may not be computationally

efficient. Therefore, one needs to validate the DG method in solving the wave equation

by comparing it with an analytical solution when certain accuracy has been achieved

in the one-dimensional problem, it can be assumed to be accurate within the same

level of tolerance in higher dimensional problems (such as 2D and 3D). Following

this, I perform 3D elastic wave propagation in a one-layer model with a set of vertical

aligned fractures, and I analyze the effects of multiple slip conditions to represent a

fracture network in three dimensions. I also simulate wave propagation in a three-

layer model with a set of vertical aligned fractures inserted in the middle layer and

analyze the reflection response of the fractured layer.

2.1.1 DG formulation of the elastic wave propagation

The elastic wave equation describes the propagation of compressional and

shear waves. The elastic form of the wave equation is an accurate approximation to

the propagation of waves in the earth. However, it is also difficult to solve and is

computationally expensive because it needs to be solved for the displacement, which

is a vector field. Different versions of the elastic wave equation exist for isotropic,

anisotropic, homogeneous, and heterogeneous media.

Wave propagation phenomena are modeled by the equation of motion, which
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is given by

ρ∂ttui = ∂iσij + fi in Ω× (0, T ) i, j = 1, ..., d, (2.1)

where d is the number of physical dimensions (2 or 3), Ω ⊂ Rd is the physical domain,

(0, t) is the time domain, ui is the displacement vector, σij is the stress tensor, and

the source is described by the force vector fi. The stress tensor can be written as a

function of the displacement using the generalized Hooke′s Law, also known as the

stress-strain relation. In an elastic medium, the stress (σ) is linearly related to the

strain (ε) and the stiffness tensor (Cijkl):

σij(uuu) = Cijklεkl. (2.2)

The elastic wave equation in an isotropic heterogeneous medium is obtained

by substituting Hooke′s Law in the equation of motion and is given by

ρ∂ttui − ∂iλ∂juj − ∂jµ(∂jui + ∂iuj) = fi in Ω. (2.3)

However, using elastic theory to study seismic waves cannot fully explain all

the physical mechanisms during wave propagation, e.g., attenuation. In real seismic

data, seismic waves attenuate when they propagate through the Earth. The fluctuat-

ing stresses in a rock caused by a passing seismic wave can induce global flow of filled

fluid in the rock (Biots mechanism) or local flow between connected pores (squirt

flow) (Mavko et al., 2009). Patchy saturation may also dissipate energy due to a
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passing wave when part of the energy leads to oscillatory liquid cross-flow between

fully liquid-saturated patches and the surrounding rock with gas. The attenuation

effects are not included in this research.

The discontinuous Galerkin finite element method (DGM) provides a numeri-

cal solution to simulate elastic wave propagation in models with fractures (De Basabe

et al., 2011). The DGM considers a subdivision of Ω, Ωh = E1, E2, ..., ENh, where

Ei is an element partitioned in the discretized mesh. In a finite element partition of

the domain Ωh, Γh denotes the set of all the faces between the elements in Ωh. The

weak form of the elastic wave equation is obtained by multiplying a test function v,

summing over an arbitrary element Ei and using the Gauss divergence theorem. The

weak form is given as (De Basabe et al., 2008; De Basabe and Sen, 2009; 2010)

∑
E∈Ωh

(ρ∂ttuuu,vvv)E +
∑
E∈Ωh

BE(uuu,vvv) +
∑
γ∈Γh

Jγ(uuu,vvv;S,R) =
∑
E∈Ωh

(fff,vvv)E, (2.4)

where uuu ∈ XXXD = {ϕ|ϕ ∈HHH1(E) ∀ E ∈ Ωh, ϕ = 0 on ΓD}, such that for vector

test function vvv ∈XXXD,

(u, v)E =

∫
E

uuu · vvvdxdz, (2.5)

BE(u, v) =

∫
E

(
λ5 ·u5 ·v + µ(5u+5uT ) : 5v

)
dxdz, (2.6)

23



Jγ(uuu,vvv;S,R) = −
∫
γ

{τi(uuu)} [vi] dγ+

S

∫
γ

{τi(vvv)} [ui] dγ +R

∫
γ

{λ+ 2µ} [uuu] · [vvv] dγ,

(2.7)

and τi is the traction vector, given in the isotropic case by

τi(u) = σij(u)nj = λuk,kni + µ(ui,j + uj,i)nj, (2.8)

and nj is a unit vector normal to the element edge γ. Let γ be the edge between

element E1 and E2, then the average of a vector function uuu on can be expressed as

{uuu} =
1

2
(uuu|E1 + uuu|E2) . (2.9)

The jump function can be expressed as

[uuu] = uuu|E1 + uuu|E2. (2.10)

The weak form of the wave equation is called weak because the solution is no

longer required to have second order derivatives, so only first order space derivatives

appear (De Basabe and Sen, 2009). The weak form indicates that the integrals are

only performed element wise. In the DGM, each element in the physical domain is

mapped into a master element coordinate with interval [-1, 1] (Carcione et al., 2002).

The nodal basis function defines the master element by a set of Legendre polynomials

on [-1, 1]. The basis function determines the interpolation over a set of nodes inside

a given interval.
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For a rotationally invariant fracture normal to x2 axis, the fracture compliance

matrix is diagonal and is given in Equation 1.8. In order to properly simulate the

discontinuity, it is assumed that fractures are located at the element interface in the

discretized mesh. Therefore, the additional linear slip model boundary condition can

be imposed at the element-wise surface integral Jfγ term. The weak form of the wave

equation including a fracture represented by the linear slip model is:

∑
E∈Ωh

((ρ∂ttuuu,vvv)E +BE(uuu,vvv)) +
∑
γ∈Γc

J cγ(uuu,vvv) +
∑
γ∈Γf

Jfγ (uuu,vvv) =
∑
E∈Ωh

(fff,vvv)E, (2.11)

where

Jfγ (uuu,vvv) =

∫
γ

Z−1
ij [uj] [vi] dγ, (2.12)

Z represents the previously mentioned fracture compliance matrix, which includes

the normal and tangential compliances for a rotationally invariant fracture.

2.1.2 Advantages of DG on simulating displacement discontinuity

In DG, the integrals are performed element-wise on the Gauss-Lobatto-Legendre

(GLL) element with shape functions. The shape functions include a series of Legen-

dre polynomials that are a set of orthogonal functions on [−1, 1]. The nonuniform

distribution of integration points within a GLL element provides an accurate solution

at each discretized grid. Figure 2.1 shows schematic of simple mesh. The left element

and right element have a shared boundary. Let us assume the fracture is placed on

the shared boundary. In DG, the left element and right element do not share the

degree of freedom, which means they can have different values. This satisfies the
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element discontinuity at the fracture interface. The reason for this comes from when

using divergence theorem where the surface integral of the weak equation is equal

to zero, which satisfying the element continuity for CG (Figure 2.2). For DG, the

surface integral is not equal to zero (Figure 2.2), and this term gives us the jump

function shown in Equation 2.10 to handle the element discontinuity at the fracture

interface. Both the non uniform distribution of integration points with GLL elements

and discontinuity across element boundary are the key advantages for using DG on

simulation of displacement discontinuity.

2.2 Model validation and calibration in 2D

The analytical solution of the linear slip condition for a single fracture inserted

into a medium is derived by Schoenberg (1980). The fracture cuts the entire medium

into medium 1 and medium 2. I assume all displacements of coupled P-SV waves lie

in the (x1, x2) plane. The incident P wave field in medium 1 is

[
u1

u2

]
=

[
sinθ1

cosθ1

]
eiwx2cosθ1/α1 . (2.13)

The reflected field in medium 1 is

[
u1

u2

]
= RP

[
sinθ1

−cosθ1

]
e−iwx2cosθ1/α1 +RS

[
cosφ1

sinφ1

]
e−iwx2cosφ1/β1 (2.14)

and the transmitted field in medium 2 is
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Figure 2.1: Schematic of an simple mesh with third order Gauss-Lobatto-Legendre
(GLL) element. The left element and right element have a shared boundary. The
non-uniform distribution of integration points within both left and right GLL element.
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Figure 2.2: Schematic of element boundaries for the Continuous Galerkin method
and Discontinuous Galerkin method. Across the element boundary, the values are
continuous for the Continuous Galerkin while discontinuous for the Discontinuous
Galerkin method.
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[
u1

u2

]
= TP

[
sinθ2

cosθ2

]
eiwx2cosθ2/α2 +RS

[
−cosφ2

sinφ2

]
e−iwx2cosφ2/β2 , (2.15)

where RP , RS, TP , TS denote the reflection and transmission coefficients of P

and SV waves; θ and φ represent the angles of P and SV waves and their subscripts 1,

2 indicate the medium 1 and 2. α, β, and ρ denote compressional wave velocity, shear

wave velocity and density. Equations (2.14) and (2.15) show that the displacements

at the fracture interface between medium 1 and 2 are different. However, the stresses

τ22 and τ21 are continuous across the interface and are given by

τ22 = ρ

[
α2

(
∂u1

∂x1

+
∂u2

∂x2

)
− 2β2∂u1

∂x1

]
, (2.16)

τ21 = ρβ2

(
∂u1

∂x2

+
∂u2

∂x1

)
. (2.17)

With the linear slip boundary condition, the reflection and transmission coef-

ficients can be expressed as

R = −Z1 − Z2 − iwηZ1Z2

Z1 + Z2 − iwηZ1Z2

, (2.18)

T = − 2Z1

Z1 + Z2 − iwηZ1Z2

, (2.19)

where Zi = ρiαi and η = ηN for a normal incidence compressional wave.

To examine the effect of DGM on modeling the seismic response of fractures,

validation of reflection and transmission coefficients across the linear slip boundary
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condition is necessary. I simulate a wave field in a homogeneous, isotropic, linear

elastic space containing a single horizontal fracture denoted by x2 = 1km. The

elastic medium, with density 2200g/cm3, compressional wave velocity 3000m/s, and

shear wave velocity 1765m/s, occupies the entire region. The normal and tangential

compliances for the single fracture are both 1.8× 10−9m/Pa. The normal incidence

compressional wave propagates towards the fracture. The 2D wave fields are shown

in Figure 2.3a, 2.3b. The dashed lines denote the fracture location.

A receiver was placed 200m above and one at 200m below the fracture at

x = 1000m. Figure 2.4a shows the waveforms extracted from the receiver above

the fracture. The first waveform indicates the incident wave, and the second wave-

form indicates the reflected waveform. Figure 2.4b shows the transmitted waveform

extracted from the receiver below the fracture.

I convolved the incident wave with the analytical reflection and transmission

coefficients calculated from Equations 2.18 and 2.19. The convolved reflection re-

sponse and the DG simulated reflection response are shown in Figure 2.5a. The

convolved transmission response and the DG simulated response are shown in Fig-

ure 2.5b. The DG numerical response is consistent with the analytical responses on

phase and amplitude. The inconsistent response of the DG result in the left side of

Figure 2.5a comes from the incident wave. However, the analytical result shows the

reflection response only and shows zero amplitude elsewhere. On the other hand,

the discretization achieved by DG yields progressively more accurate solutions as the

mesh size becomes finer. Therefore a perfect match of the DG solution and analytical

solution can be obtained by decreasing the element size. I reduce the element size by
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Figure 2.3: a). Normal Incident compressional wave field. b). Reflection and trans-
mission wave field across the fracture. The dashed line denotes the fracture location.
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Figure 2.4: a). Incident wave and reflected wave recorded from the receiver above
the fracture. b) Transmitted wave recorded from the receiver below the fracture.
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increasing the number of elements in the 2km2 region. The correlation coefficients of

different DG solutions with different element size and analytical solution are shown

in Figure 2.6. The correlation coefficient curve begins as flat and approaches 1 if the

number of elements greater is than 20. The comparisons of DG results and analytical

solutions demonstrate the accuracy of the DGM. The linear slip condition describes

a non-welded interface consistent with the reflection and transmission coefficients at

the fracture interface.

I also compare the reflection and transmission coefficients with different frac-

ture compliance values. In Figure 2.7a, the blue line denotes the incident wave and

reflected wave for a fracture compliance of 1.8× 10−9m/Pa, and the red line denotes

the incident wave and reflected wave for fracture compliance of 1.8× 10−10m/Pa. In

Figure 2.7b, the blue line denotes the transmitted wave for a fracture with compliance

of 1.8 × 10−9m/Pa; the red line denotes the corresponding transmitted wave. The

phases and amplitudes of the two incident waves are exactly overlapped. However,

reducing the fracture compliance causes a decrease in the reflection coefficient and

increase in the transmission coefficient. This DGM simulation illustrated that the re-

flection and transmission coefficients depend on the fracture compliance value. Thus,

I validated the wave equation solution in 1D using the DG method.

2.3 Effect of fracture properties: Numerical investigation

Travel times and scattering patterns are two main azimuthal attributes of the

reflected and scattered seismic waves often used to characterize discrete systems of

vertical fractures. These seismic attributes could imply directional dependence of
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Figure 2.5: a). Blue line denotes the analytical solution of a reflected waveform
derived from the linear slip condition. Red line denotes the DG simulated reflected
waveform across the fracture represented by the linear slip boundary condition. b).
Blue line denotes the analytical solution of transmitted waveform derived from the
linear slip condition. Red line denotes the DG simulated transmitted waveform across
the fracture represented by the linear slip boundary condition.
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Figure 2.6: Correlation coefficients of DG solutions with different number of element
in the 2km2 region and analytical solutions.
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Figure 2.7: a) The blue line denotes the incidence wave and reflection wave for fracture
compliance at 1.8×10−9m/Pa; the red line denotes the incidence wave and reflection
wave for fracture compliance at 1.8 × 10−10m/Pa. b). The blue line denotes the
transmission wave for fracture compliance at 1.8 × 10−9m/Pa; the red line denotes
the transmission wave for fracture compliance at 1.8× 10−10m/Pa.
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fracture-induced anisotropy (Tsvankin et al., 2010). Therefore, they are valuable

attributes associated with natural fracture systems.

Fracture-induced azimuthal anisotropy results in elliptical variations of the

P- wavefront relative to the fracture strike direction. This is because the vertical

fractures do not affect the P-wave along the fracture strike but do reduce the velocity

perpendicular to the strike (Xu, 2011). The snapshots of wavefields explain the change

of the wavefronts with regard to the fracture orientation (Figure 2.8). In an isotropic

medium, the wavefront is circular with the source at the center because the wave

travels in every direction with the same velocity (Figure 2.8, left). In the fracture-

induced anisotropic medium, the wavefront has a non-circular shape. The shape of

wavefront also depends on the fracture spacing (Figure 2.8, middle and right).

Fractures can scatter the P- and converted S- wave energy causing complex,

reverberating seismic signatures (Figure 2.8, middle) when the fracture spacing is

close in size to the seismic wavelength (Fang et al., 2014). This scattered seismic

signature varies as a function of azimuth (Willis et al., 2006). Analytical solutions

for scattering from realistic fractures are not available. Scattering from a system of

fractures involves the scattering from individual fractures and the interaction of the

scattered wavefield with other fractures in the system. Here, I study the scattering

pattern in three planes perpendicular to each other in a 3D model.

To simulate the azimuthal effects of a wavefield using DGM in a 3D vertical

fractured medium, a one-layer model with 2km×2km×2km dimensions and a set of

parallel fractures are used. Because the fractures are modeled by the linear slip model

boundary condition, the fracture is massless with zero opening. Fractures are chosen
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Figure 2.8: (Left) The snapshot of the wavefield for an isotropic medium. (Middle)
The wavefield for vertical aligned fractures (fractures modeled as linear-slip discon-
tinuities) with spacing on the order of a seismic wavelength. (Right) The wavefield
for vertical aligned fractures (fractures modeled as linear-slip discontinuities) with
spacing smaller than the seismic resolution.
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Layer Thickness (m) VP (m/s) VS(m/s) Density(g/cm3) Fracture spacing (m)
1 2000 3000 1765 2200 200

Table 2.1: Parameters for a one-layer model

to be in vertical planes normal to the Y direction. I use a Ricker wavelet source

with a peak frequency of 15Hz and causal time delay of 0.1s. The point source is

located at the center of the cubic model and polarized in the z direction. The normal

and tangential compliances are set as 1.8 × 10−10m/Pa. The model geometry and

parameters used are shown in Table 1. Three planes (Figure 2.9, X-Z, Y-Z, X-Y

plane) are extracted from the 3D wavefield. I obtained obvious scattering energy

within the P wavefront and the S wavefront. These scattering effects are caused by

the interaction of the reflected and transmitted waves among the fractures represented

by the linear slip condition.

To observe detailed scattering effects, Figure 2.10 shows the z component for

each plane. Figure 2.10a shows the X-Z plane, which is in the plane with fractures;

and Figure 2.10b shows the Y-Z plane, which is orthogonal to all the fractures. For

Figures 2.10a and 2.10b, the outer circles with small amplitude are the P wavefronts;

the inner circles with large amplitude are the S wavefronts. The opposite phases

indicate the reversed particle motions. The X-Y plane intersects the center of the

model, and the particle motions of the P wave are in the X-Y plane. Therefore, the z

component in the X-Y plane (Figure 2.10c) does not record the P wavefront; however,

the scattered P waves still can be observed outside of S wavefront.

When I examine the X-Z plane, the scattered waves appear to be in spherical.
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Figure 2.9: Z component for three planes (X-Z, Y-Z, X-Y plane) extracted from the
3D wavefield of a one-layer fractured medium. The P and S- wave scattering energy
is obvious in the wavefield.
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Figure 2.10: 3D displacement fields of z component in a one-layer model containing
vertical fractures. a). Displacement field in X-Z plane, b). displacement field in Y-Z
plane, and c). displacement field in X-Y plane.41



Conversely, when I look into the Y-Z and X-Y planes, the scattered waves appear

oriented in one direction. The wavefronts with positive and negative phases interacted

due to the phase shift effects. In this case, the fracture spacing and the wavelength

are both 200m. The fracture network significantly scattered the P and S wavefields.

However, the scattering pattern varies in different planes, as well as with azimuth.

The differences come from the incident angle of the spherical wave when the incident

wave reaches the fracture interface. The travel time difference between each axis is

difficult to see because of the fracture spacing being large in this case.

A simple reservoir was modeled using a 3D isotropic, elastic discontinuous

Galerkin finite element method, which employed 3D 4th order Lagrange polynomials

and Gauss nodes. The Gauss basis function is used in this study because it leads to

a diagonal mass matrix, and the Gauss nodes are always within the element, which

leads to a discontinuity at the element interface. Two adjacent elements are allowed

to have different values at the element boundary, and these characteristics satisfy

the discontinuous wavefield. The model geometry (Figure 2.11) consists of three

horizontal layers, with parameters listed in Table 2. All layers except the middle layer

are homogeneous, isotropic, and elastic. The background medium for the middle layer

is isotropic and homogeneous. A periodic series of parallel and vertical fractures are

inserted into this layer simulated using the linear slip model.

The normal and tangential fracture compliance values were set of 1.8×10−10m/Pa

to represent gas-filled fractures. The fracture interfaces are located at grid cell bound-

ary; the fracture openings are assumed to be zero, and the vertical fracture planes

are as thick as the middle layer thickness (100m), which run the entire width of the
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Layer Thickness (m) VP (m/s) VS(m/s) Density(g/cm3) Fracture spacing (m)
1 400 3000 1765 2200 NA
2 600 4000 2353 2300 200m
3 1000 3000 1765 2200 NA

Table 2.2: Parameters for a three-layer model

model (i.e., parallel to y=0). I built a model with 200m-fracture-spacing and used a

Ricker wavelet source with a peak frequency of 8Hz and a causal time delay of 0.2s.

The left side of Figure 2.12 shows the shot record for the model without frac-

tures. The middle and right sides of Figure 2.12 show the shot records for the 200m

fracture spacing case acquired in the direction normal and parallel to the fractures,

respectively. The P-wave reflections off the top and bottom of the middle fractured

layer arrive at zero offset times of about 0.46s (black dashed) and 0.76s (red dashed),

respectively. The arrival at 0.56s (green dashed) at zero offset is the converted PS

wave reflected off the top of layer 2. The shot record normal to the fracture net-

work shows high amplitude of the PP reflection off the top and bottom of the middle

fractured layer, and the PS reflection off the top of the middle fractured layer.

The effect of using the linear slip condition model to represent a fracture de-

pends on the fracture compliance matrix. The numerical results confirm the reflection

and transmission coefficients with the theoretical elastic wave behavior across linear

slip interfaces. If the compliance value approaches zero, the fracture is equivalent

to a perfectly bonded interface. However, if the compliance value tends to infinity,

it will result in extremely small transmission coefficients from the fracture interface.

I validated that the discontinuous Galerkin method provides good agreement with
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Figure 2.11: Geometry of the 3D DG-FEM model. The layer velocities and densities
are shown in Table 2, the source is located in the center top front (triangle symbol),
and the receivers are spread out in a cross shape, 2km in the x direction and 2km in
the y-direction. The receiver spacing is 10m in each direction.
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Figure 2.12: The left shot record is from the model without any fractures. The
middle and right shot records are from the model with a 200m fracture interface
spacing acquired normal and parallel to the fractures, respectively.
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analytical solutions of the linear slip condition represented fracture. The amplitude

and the phase are consistent with analytical results for both reflected and transmitted

waves.

2.4 Limitations on 3D

For the model with a set of parallel-aligned fractures inserted into the mid-

dle layer, the scattered waves caused by the reflected and transmitted waves arrive

immediately after the reflection off the top of middle layer (Figure 2.12). However,

the scattered energy has small amplitude (Figure 2.12) due to the fracture spacing

being large relative to the wavelength. Increasing the fracture density requires a finer

mesh size, which will increase computational cost. In addition to that, DGM re-

quires high degrees of freedom for a given sampling ratio, especially in 3D. In 3D, the

computational cost grows significantly, which makes it much more time consuming.

2.5 Conclusions

In this chapter, I demonstrate that the discontinuous Galerkin method pro-

vides good agreement with analytical solutions for a fracture with the linear slip

condition. 3D layer models containing both individual fractures and series of frac-

tures were simulated using discontinuous Galerkin method. The results reveal the

significance of effects of fractures on the elastic wave field. The variations of re-

flected and transmitted waves are highly dependent on compliance parameters. The

fracture spacing also has significant influence, which will be investigated in chapter

3. These preliminary results also demonstrate the possibility of using the scattering
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index function to characterize and quantify fracture attributes.
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Chapter 3

Seismic modeling in 3D fractured media with

Integral formulation

In this work, I implement a 3D explicit interface scheme with a geometri-

cally irregular mesh following Zhang and Gao (2009). Arbitrarily shaped fractures

can be accurately modeled with this discretization. This approach can provide de-

tailed wave-propagation phenomena resulting from spatially heterogeneous fractures.

The fractures in this scheme follow the linear slip displacement-discontinuity model

(Schoenberg, 1980) by assuming tractions to be continuous while displacements have

jumps that are proportional to the local tractions across the 2D fractures. The 2D

fractures are modeled using a discretization with tetrahedral grid cells. Arbitrarily

shaped 2D non-planar fractures can then be represented in the numerical mesh.

The integral approach used here is derived from the basic ideas of the finite

element and finite difference methods. It is flexible in modeling irregular interfaces

and surface topography. The memory requirements and computational costs are

approximately equivalent to a second order staggered grid scheme (Virieux, 1986).

However, unlike the conventional staggered grid scheme (Virieux, 1986), in a 3D

case, I only need three displacements and three velocities instead of three velocities

and six stresses in each time step.
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Parallel computation is necessary to accommodate realistic 3D models. Owing

to the numerical algorithm of the integral approach, small data exchanges between

the subdomains are needed. The data exchanged between processors are the wavefield

on the grids at the contacting boundaries of subdomains. I show several numerical

results demonstrating the effect of varying fracture attributes in 3D models.

The compliance of the fractures affects seismic wave propagation primarily

in terms of phase shifts and time delays (e.g., Schoenberg, 1980; Schoenberg and

Sayers, 1995; DeBasabe et al., 2016). Both reflected and transmitted waves are

commonly observed when waves encounter fractures. The phase shift is induced by

the discontinuity at the fracture, which is directly affected by the fracture compliance.

Higher fracture compliance will introduce larger a phase shift. However, when the

fracture compliance reduces, approaching the effective stiffness of the surrounding

matrix, the amount of transmitted energy increases. Usually, fractures appear in

arrays or groups. This could lead to interference of reflected waves and transmitted

waves. The complexity of this interference is directly determined by fracture spacing,

orientation as well as compliance. Therefore, it is relatively simple to investigate

wave propagation through an array of parallel fractures. In this work, I investigate

the effect of fractures on wave propagation with varying fracture properties such as

length, spacing, and density while aligning the fractures in the same orientation.
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3.1 Integral formulations

The elastic wave equation to describe the propagation of compressional and

shear waves in a 3D heterogeneous medium can be expressed in terms of displacements

and stress as

∂2ui
∂t2

=
1

ρ

(
∂σij
∂xj

)
, (3.1)

σij =
1

2
Cijkl

(
∂uk
∂xl

+
∂ul
∂xk

)
, (3.2)

where i, j, k, l = 1, 2, 3, and I follow the Einstein summation convention; here, ρ is the

density, xi are the Cartesian coordinate components with x3 pointing downward, ui

are the components of the displacement, σij are the Cartesian components of the stress

tensor and Cijkl represents the fourth-order elastic stiffness tensor. The stiffness tensor

can contain up to 21 independent parameters. However, for an isotropic medium, only

two Lamé coefficients λ and µ are needed to determine the stiffness tensor.

Many numerical algorithms are available for solving the above elastic wave

equation in a heterogeneous medium. Examples include finite difference (Virieux,

1986), spectral element (Tromp et al., 2008) and discontinuous Galerkin (De Basabe

et al., 2008). Following Zhang and Gao (2009), I aim to simulate explicitly arbitrarily

shaped discrete fractures in one medium; therefore, special efforts are needed to

incorporate the linear slip model with the elastic wave equation under a discretization

of 3D tetrahedral grid cells.
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Figure 3.1: Local mesh surrounding a pair of nodes on a 2D non-planar fracture. The
non-planar surfaces ABCDO and A’B’C’D’O’ denote upper and lower surfaces of the
fracture. The displacement components are defined at the nodes of tetrahedrons, as
nodes O, A, B. The stress components are defined at the centers of tetrahedrons.
The distance between the upper surface and lower surface is created for visualization
purpose only. The fracture is assumed to have a vanishing width. A pair of nodes,
such as O and O’, is defined at the same position on the fracture, but each has a
different displacement corresponding to the upper or lower surface of the fracture.
Hence, displacement discontinuity can be described from the difference between the
pair of nodes (from Zhang and Gao, 2009).
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The integral formulation of the 3D elastic wave equations, including the linear

slip (LS) model, is derived under the assumption of tetrahedral grid cells. Zhang and

Gao (2009) proposed an explicit scheme for solving the elastic wave equation using

tetrahedrons. Here I describe their method briefly, for completeness. The problem

is formulated in terms of displacements at the nodes and stresses at the center of

each tetrahedral grid cell; a pair of nodes instead of a single node is defined at the

grid point on the explicit fractures. Figure 3.1 shows an example of local numerical

mesh of a 2D non-planar fracture. The local mesh contains six tetrahedral cells that

surround a pair of nodes OO′ on a fracture. The non-planar interface ABCDO and

A′B′C ′D′O′ denotes upper and lower surfaces of the fracture. In the linear slip model,

the fractures have vanishing width. This implies that every pair of nodes, such as

O and O′, is defined at the same grid point on the fracture and share the same

coordinates.

Following the divergence theorem, I integrate both sides of Equation 3.1 over

the volume inside the polyhedron V leading to

∫∫∫
V

ρ
∂2ui
∂t2

dV =

∮ ∫
S

(
3∑
j=1

σijnj

)
ds ≈

m∑
l=1

3∑
j=1

σlij
(
cOj
)
l
+

∫∫
Ω

3∑
j=1

σijnjds, (3.3)

where nj are directional cosines of the outward normal to the surface S, m is the

number of grid cells above the surface of the fracture around node O, σlij denote

the stress components at the center of the lth grid cell, Ω is the region of the sum

of 1/3 region from each facet on the upper surface of the fracture,
(
cOj
)
l

denotes

the geometrical coefficients of the lth grid cell, that is
∫∫

nlj ds. For example, the
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coefficients in cell OCED can be expressed as

(
cO1
)
l
=

1

6

∣∣∣∣∣∣
1 xC2 xC3
1 xE2 xE3
1 xD2 xD3

∣∣∣∣∣∣ , (cO2 )l =
1

6

∣∣∣∣∣∣
xC1 1 xC3
xE1 1 xE3
xD1 1 xD3

∣∣∣∣∣∣ , (cO3 )l =
1

6

∣∣∣∣∣∣
xC1 xC2 1
xE1 xE2 1
xD1 xD2 1

∣∣∣∣∣∣ , (3.4)

where xCj , xEj , xDj , for j=1, 2, 3 are the coordinates of the three nodes of the lth grid

cell.

By applying the lumped mass model to the discretized system, which is lump-

ing the mass of the region that is enclosed by a grid cell at its nodes and setting

the density (ρ) to zero out of nodes, the left hand side of Equation 3.3 becomes

MO(∂2ui/∂t
2)O. MO is a quarter of the sum of the masses of the grid cells above

the surface of the fracture around node O. (∂2ui/∂t
2)O are the second order time

derivatives of the displacement components at node O.

Substituting the LS model of Equation 1.9 into the second term on the right-

hand side of Equation 3.3 yields the integral formulation of the 3D elastic momentum

equations as

MO(∂2ui/∂t
2)O =

m∑
l=1

3∑
j=1

σlij
(
cOj
)
l
+

3∑
k=1

[
3∑
j=1

TjkTij

(ηjj)O

]
GO (∆Uk)O , (3.5)

where Tij ,ηjj and ∆Uk denote the components of T , Z, and ∆U that are prescribed

in Equations 1.8-1.10, and GO is given by

GO =

√√√√ 3∑
k=1

[
mf∑
l=1

(cEk )l

]2

. (3.6)
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Heremf denotes the number of the grid cells that have one facet on the fracture

and a node at O.

Similarly, by integrating both sides of Equation 3.1 over the volume V ′, which

is a quarter of the volume of all the cells below the surface of fracture, I obtain

MO′(∂2ui/∂t
2)O′ =

m′∑
l=1

3∑
j=1

σlij

(
cO

′

j

)
l
−

3∑
k=1

[
3∑
j=1

TjkTij

(ηjj)O

]
GO (∆Uk)O , (3.7)

where m′ denotes the number of grid cells below the surface of fracture around node

O′, and MO′ is a quarter of the sum of the masses of grid cells below the surface of

fracture around node O′. The explicit fracture is expressed in the second term on the

right-hand side of Equations 3.5 and 3.7 using continuity of tractions. In a medium

where fractures do not exist, the integral formulation in the absence of the LS model

is

(MO +MO′) (∂2ui/∂t
2)O =

m+m′∑
l=1

3∑
j=1

σlij
(
cOj
)
l
. (3.8)

I use Equation 3.8 when computing the displacement field in the background

medium. I use Equations 3.5 and 3.7 when computing the displacement field on the

fractures. When the normal and tangential fracture compliances η tend to zero, which

implies the fracture is perfectly welded, the displacement discontinuity ∆U vanishes,

and the combination of Equations 3.5 and 3.7 yield the same as Equation 3.8.
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3.1.1 Point source and explosive source

Elastic body waves can be classified into compressional (P) wave and shear

(S) wave. The P wave is defined as the particles in the solid vibrating along the

axis of propagation. The S wave is defined as the particles in the solid vibrating

perpendicular to the axis of propagation.

The simplest possible source of elastic waves is a point force. It can be easily

implemented on a grid point by adding a source function. The commonly used source

function in seismic modeling is a Ricker wavelet. The point source is unidirectional;

therefore, it can generate both P and S waves from the source location. The amplitude

of both P and S waves vary with azimuth. Figure 3.2 (a) shows the wavefield of both P

and S wave in Z component that generated by a vector point source placed in vertical

downward direction. Because the vector point source is directional, when one side of

the source is under compressional stress, the other side is under tensional stress in

reversed direction of the compressional stress. This is why, in Z component, the top

half of the wavefield on Figure 3.2 (a) has a different polarity with the bottom half.

On the contrary, an explosive source generates equal pressure in all directions

in isotropic media. The implementation of this source is achieved by assigning equal

displacements at the nearest nodes distributed on the spherical surface. The direction

of each assigned displacement follows the vectorial direction between the source and

the node. For example, in Figure 3.2, if I assume an explosive source is placed at the

centroid of an tetrahedron cell CBEH, nodes A, B, C, D, E, F, G, H are distributed

on a spherical surface with the same radius. Equal displacements will be assigned at

nodes A, B, C, D, E, F, G, H with direction points outward from source location. The
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wavefield comparison between point source and explosive source is shown in Figure

3.3. Similarly to point source, when I plot only the Z component of the wavefield,

there is a polarity reverse from the bottom half to the top half in it.

3.1.2 Numerical implementation

I implemented the 3D explicit interface scheme on grid cells consisting of tetra-

hedral elements. The implementation workflow is flexible to accurately model arbi-

trarily shaped fractures in the numerical discretization. The displacement field at

time t + ∆t is updated by using the displacement field at time t and t − ∆t. The

procedure contains two main loops. The first one loops over all the grid cells in the

background medium in the absence of fractures. During this loop, I use the displace-

ment components on each node at time step t. However, the stress components are

intermediate variables, so they do not need to be stored in the loop. This leads to a

reduction of memory cost. The second one only loops through the node pairs on the

fractures and computes ∆U components and the force components caused by the ∆U .

I then add the force back to the corresponding pair of nodes. After completing the

first two loops, I have finished the computation of the right-hand side of Equations

10, 12 and 13 for all nodes in the domain. This implies that I have obtained the

second-order time derivatives of the displacement components for all nodes at time

t. The update of the displacement field at time t + ∆t can then be obtained using

central finite differences.

Fractures are implemented on the facets of the grid cells. The space interval

controls the fracture spacing and density. The smallest space interval in the mesh
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Figure 3.2: Schematic of implementing explosive source in the integral method. If an
explosive source is placed at the centroid of an tetrahedron cell CBEH, nodes A, B,
C, D, E, F, G, H are distributed on a spherical surface with same radius.
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Figure 3.3: The wavefields generated by a point force and an explosive source. The
top wavefield is generated by a point force in z direction. The bottom wavefield is
generated by an explosive source.
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determines the smallest fracture spacing and density. For congruent tetrahedral grid

cells in the domain, I only need to store one volume and 12 geometric coefficients

based on Equation 9. The nature of arbitrary facets in a tetrahedral grid cell makes

it flexible in modeling subsurface fractures in any direction. A transform matrix of

the coordinate system is needed for fractures with a normal direction not pointing to

the x1- , x2-, or x3-axis.

The parallel implementation of the calculation scheme can be completed by

using small additional exchange operations. Because exchanges occur only between

the nodes on the contacting boundaries without any internal nodes, this reduces the

memory cost during the exchange procedure and can achieve a high speed-up rate.

The parallel implementation scheme is achieved by spatial division in combination

with the exchange operations. The computing domain is first divided into subdomains

with fractures as natural boundaries. The seismic modeling is conducted in parallel

within each subdomain. The nodal displacements are exchanged at each subdomain

boundary during each time step. In this way, the computational efficiency is increased

significantly.

3.2 Model validation

To examine the effect of the integral formula on modeling the seismic response

of fractures, validation is necessary of reflection and transmission coefficients across

the linear slip boundary condition. The analytical solution of the linear slip condition

for a single fracture inserted into the medium is derived by Schoenberg (1980). With

the linear slip boundary condition, the reflection and transmission coefficients can be
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expressed as

R = −Z1 − Z2 − iwηZ1Z2

Z1 + Z2 − iwηZ1Z2

, (3.9)

T = − 2Z1

Z1 + Z2 − iwηZ1Z2

, (3.10)

where Zi = ρiαi, αi for compressional wave velocity, w for frequency, and η = ηN for

a normal incidence compressional wave.

I simulate a wave field in a 2km3 homogeneous, isotropic, linear-elastic space

containing a single horizontal fracture located at a depth of 1km. The model geometry

used in the simulation is shown in Figure 3.4. The elastic medium occupies the entire

region, with density 2200g/cm3, compressional wave velocity 3000m/s, and shear

wave velocity 1765m/s. The normal and tangential compliance for the single fracture

are both 1.8 ∗ 10−9m/Pa . The normal incidence compressional wave propagates

towards the fracture.

A receiver was placed 200m above and below the fracture. I convolved the

incident wave with the analytical reflection and transmission coefficients calculated

from Equations 14 and 15. The comparison between the analytical solution and

integral solution for reflection and transmission responses are shown in Figure 3.5.

The reflection and transmission responses are consistent with the analytical solutions.

I conducted an additional parametric study by varying the fracture compliance.

The reflected and transmitted waveforms are compared in Figure 3.6. The reduction

in compliance causes the increase in the magnitude of the transmitted wave. However,
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Figure 3.4: Model used for validation: the red plane denotes a 2D horizontal fracture
inserted at a depth of 1km. The black arrows denote the plane wave source applied
on the top surface. The two red triangles denote the receivers placed 200m above and
below the fracture.
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Figure 3.5: a) The red line denotes the analytical solution of a reflected waveform
derived from the linear slip condition. The dashed black line denotes the integral
method simulated waveform reflected from the fracture represented by the linear slip
boundary condition. b) The red line denotes the analytical solution of a transmitted
waveform derived from the linear slip condition. The dashed black line denotes the
integral method simulated transmitted waveform across the fracture represented by
the linear slip boundary condition.
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the magnitude of the reflected wave drastically reduces as the compliance decreases.

Similar results were reported in Carcione et al. (2012) and Liu et al. (2016).

3.3 Numerical examples on different fracture properties

Single fracture model

A vertical rectangular fracture in the YZ plane, with a height of 400m and

length of 400m, is positioned 500m away from the source on the right side in a 3D

homogeneous medium. The homogeneous background medium has a P-wave velocity

of 3km/s, S-wave velocity of 1.765km/s, and density of 2200kg/m3. A Ricker wavelet

point source with a peak frequency of 15Hz is used. For the purpose of highlighting

the scattered waves, the fracture compliances are chosen to be 1.0 ∗ 10−7mPa−1

for ηN and ηT , which is higher than natural fractures. This numerical model uses

400∗400∗400 discretized grid points with an even spatial spacing of 10m. The time

step is 2ms. The numerical mesh is made up of tetrahedral grid cells.

Figure 3.7 shows 2D slices of the wavefield snapshots of the vertical component

of the displacement at 0.558s. Three panels display three spatial directions. The

transmitted and reflected waves from the fracture and diffracted waves from the

fracture edges and tips can be observed clearly in Figure 3.7.

Figure 3.8 shows the 2D slices of the snapshot for the multi-component dis-

placement field of the YZ plane at 0.558s. The transmitted and reflected waves from

the fracture, diffracted waves from the fracture edges and tips, and fracture surface

waves (secondary surface wave induced by the fracture) can be clearly seen on each

component.
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Figure 3.6: a) Reflection Comparison: η = 1.8 ∗ 10−9 (blue), 9.0 ∗ 10−10 (red), 1.8 ∗
10−10 (green). b) Transmission Comparison: η = 1.8 ∗ 10−9 (blue), 9.0 ∗ 10−10 (red),
1.8 ∗ 10−10 (green).
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Figure 3.7: 2D slices of the wavefield snapshot of the vertical component of the
displacement for a vertical rectangular fracture inside a homogeneous background
medium at 0.558s. Each axis has the same length of 4km. The fracture is a 2D
rectangular plane, with a height of 400m and length of 400m, positioned 500m away
from the source on the right side. The slices from the left to the right are, respectively,
related to the XZ-plane that coincides with the fracture (the white rectangular symbol
highlights the fracture position), YZ-plane and XY plane that pass through the center
of the fracture. The transmitted and reflected waves from the fracture, diffracted
waves from the fracture edges and tips, and fracture surface waves can be seen clearly.
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Figure 3.8: 2D slices of the snapshot the multi-component displacement field of the
YZ plane at 0.558s. Three slices are, respectively, x, y and z components. The
transmitted and reflected waves from the fracture, diffracted waves from the fracture
edges and tips, and fracture surface waves can be clearly seen from each components.
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Fracture set models

In this numerical modeling, I study the effects of fracture length, spacing,

and density on the seismic responses. I consider the medium to be homogeneous,

isotropic, and elastic. I assign fractures with compliance ηN and ηT both equal to

1.0 ∗ 10−10mPa−1, which represent gas-filled fractures (Sayers et al., 2009). Here and

after, fracture compliance means both fracture normal and tangential compliances.

Different sets of parallel fractures are inserted into the layer. The background medium

for the fractured domain is isotropic and homogeneous. The model geometries are

shown in Figure 3.9. I show results for four different scenarios: (1) fixed fracture

length, spacing, and density, (2) varying fracture length, fixed fracture spacing and

density, (3) fixed fracture length, spacing, and density, but smaller fracture spacing

than scenario (1), (4) varying fracture density, fixed fracture length and spacing.

In the reference fracture model, fractures with equal length, spacing, and den-

sity are normal to the X-axis. The fracture length is 1000m, spacing is 5m, and

fracture density is 1.2e − 5. Figure 3.10 shows examples of shot records acquired

along the Y- and X- axes, parallel and normal to fractures, respectively. Although I

see some boundary effect near the right boundary after 0.8s, these results were not

used to show the effects of fractures here or in later analysis.

From the shot gather, I found most of the scattering occurred in the range

within the X-offset and Y-offset between 0 to 1500m. More significant scattering was

found in the X-offset plane than in the Y-offset plane. As the fracture spacing was

uniform, I observe that the scattering pattern seems to be regular and with uniform

spacing. This clear pattern indicates similar phase shifts in transmitted and reflected
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Figure 3.9: Four models used for generating synthetic seismograms: a) Reference
fracture model with equal length, spacing, and density; fractures are normal to the
X-axis. The fracture length is 400m, spacing is 5m, and fracture density is 1.2e− 5.
b) Fractures with length of 400m for the near X-offset (0m 400m), 800m for mid
X-offset (400m 1200m), 40m for far X-offset (1200m 2000m), spacing of 5m, and
fracture density of 1.2e − 5 normal to the X-axis. c) Factures with equal length,
spacing, and density are normal to the X-axis. The fracture length is 1000m and
fracture density is 1.2e − 5. I change the fracture spacing to 5m. d) fractures vary
laterally along the X-axis, with fracture density of 1.2e− 5 and 2.4e− 5 alternatively
occurring for six times. The fracture length is 1000m. Fracture spacing is 5m when
fracture density is 1.2e−5. Fracture spacing is 10m when fracture density is 2.4e−5.
The source (triangle symbol) is located in the center top front, and the receivers
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Figure 3.10: Shot records acquired from the reference fracture model along the Y-
and X- axes, i.e., the gathers acquired parallel (left) and normal (right) to fractures
respectively. Scattered energy is within 0-1500m in X- and Y-offset, during the time
period between 0.6-1.2s.
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waves due to the equal fracture spacing.

By varying the fracture length, the sources of the scattering change as well.

This will disturb the regular pattern in the scattered waves seen previously. In the

second model, fractures with length 1000m for the near X-offset (0m − 400m), 800m

for the mid X-offset (400m − 1200m), 400m for the far X-offset (1200m − 2000m),

spacing of 5m, and fracture density of 1.2e− 5 are normal to the X-axis. Figure 3.11

shows examples of shot records acquired parallel and normal to fractures.

The shot gather from the second model shows that the scattering mainly occurs

in the X-offset plane, which is perpendicular to the fracture plane. However, the

scattering pattern is quite blurry. This is caused by the changes in the locations

of the scattering sources (which are mainly at the edges of the fractures), which in

turn reduces the chances of having constructive or destructive interference from the

reflected and transmitted waves.

Similar to the reference model, in the third fracture model, fractures are normal

to the X-axis, with equal length, spacing, and density. The fracture length is 1000m,

and fracture density is 1.2e − 5. I change the fracture spacing to 5m. Figure 3.12

shows examples of shot records acquired parallel and normal to fractures. As the

fracture spacing reduces, the fracture compliance in this region increases. With higher

compliance, I have more significant phase shifts. Significant disturbance was found by

the scattered wave passing through the individual fracture within each array. These

cause the reduction in wave interference, which causes the blurry pattern in the shot

gather.

70



Figure 3.11: Shot records acquired from the fracture model with varying lengths
along the Y- and X- axes, respectively, i.e., the gathers acquired parallel (left) and
normal (right) to fractures, respectively. Scattering is present within 0-1500m in X-
and Y-offset, during the time period between 0.6-1.2s.
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Figure 3.12: Shot records acquired from fracture model with varying spacing along
the Y- and X- axes, respectively, i.e., the gathers acquired parallel (left) and normal
(right) to fractures, respectively. Scattering is present within 0-1500m in X- and
Y-offset, during the time period between 0.6-1.2s.
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From the above results, I found that the equally spaced fractures give us

regular patterns due to the constructive and destructive interference. The fracture

length variation reduced this interference and tended to eliminate clear scattering

patterns. Therefore, I changed the fracture distribution into arrays of fractures with

different lengths. In this model, fractures are varied laterally along the X-axis, with

fracture density of 1.2e−5 and 2.4e−5 alternatively occurring six times. The fracture

length is 100m. Fracture spacing is 5m when fracture density is 1.2e − 5. Fracture

spacing is 10m when fracture density is 2.4e− 5. Figure 3.13 shows examples of shot

records acquired parallel and normal to fractures. The shot gather from this model

shows combined results from both equally spaced fractures and fractures with different

spacing. Although I can conclude from the results that equally spaced fractures gives

us a clear pattern in scattering, it does not indicate that the total scattering is more

in this case compared to the other cases. More detailed discussions are presented in

the following section.

3.4 Discussion

The geometrical details of the reference model with equal spacing and the

model with varying fracture length are shown in Figure 3.14a. The shot gathers

were collected at slices shown in the geometrical details. I selected the zero-X-offset

slice (S1) and 500m-X-offset slice (S3) to investigate the effect of fracture spacing,

respectively. Figure 3.14b and 3.14c show the shot gather at zero-X-offset for the

reference model and the model with varied fracture length. The comparison indicates
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Figure 3.13: Shot records acquired from fracture model with varying fracture density
along the Y- and X- axes, respectively, i.e., the gathers acquired parallel (left) and
normal (right) to fractures respectively. Scattering is present within 0-1500m in X-
and Y-offset, during the time period between 0.6-1.2s.
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that the scattered wavelength is shorter for the reference with equal fracture spacing.

The shot gathers at 500m-X-offset for the reference model and the model with varied

fracture length are shown in Figure 3.14d and 3.14e, respectively. I observe that

the magnitude of the scattered energy is larger in the case of the reference model. I

compare the results in detail as follows. As shown in Figure 3.15a and 3.15b, there is

less scattering for the model with varying fracture length compared to the reference

model. This is most likely due to the interference between reflected waves from long

and short fractures. For receivers located away from the middle plane, less interference

compared to the reference model is observed as expected because the difference in

fracture length reduces. Therefore, wave interference reduces, which leads to a similar

amount of scattering as observed in the reference model as shown in Figure 3.15c and

3.15d.

Figure 3.16 shows the shot gather for slices of zero (S1), 300 m (S2), and 500 m

(S3) away from the center in the x-direction indicated in the schematics as shown in

Figure 3.14. Because the receiver location is away from the source, less scattering was

observed as the difference in fracture length reduces. Overall, the effect of fracture

length was observed in terms of wave interference. With the presence of different

lengths of fractures, the constructive/destructive interference reduces scattering in

comparison with the case with constant fracture length.

In Figure 3.17, I show the comparison between results from the model with

5m fracture spacing and those from the reference model. In Figure 3.17b and 3.17c,

I find little scattering after reducing fracture spacing. This is due to the fact that

the reduced fracture spacing is much smaller than the seismic wavelength. In this
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Figure 3.14: Shot gather comparison between the reference model and the model
with varied fracture length: (a) geometrical details. S1 denotes zero-X-offset slice;
S2 denotes 300m-X-offset slice; S3 denotes 500m-X-offset slice; (b) shot gather at
zero-X-offset slice (S1) for the reference model; (c) shot gather at zero-X-offset slice
(S1) for the model with varied fracture length; (d) shot gathers at 500m-X-offset (S3)

76

for the reference model; (e) shot gathers at 500m-X-offset (S3) for the model with
varied fracture length.



Figure 3.15: Waveform comparisons between the reference model and the model
with varying fracture length at near zero-Y-offset of selected sections: (a) S1 in the
reference model; (b) S1 in the model with varied fracture length; (c) S3 in the reference
model; (d) S3 in the model with varied fracture length. The blue arrow indicates the
time range within which the scattering occurs.
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case, the fractured medium is equivalent to a horizontal transverse isotropic (HTI)

medium. The reduction in compliance perpendicular to the fracture direction causes

significant phase shifts in S-waves, which contributes to the change in amplitude as

shown at the time range indicated by the blue arrows in Figure 3.17d and 3.17e.

I also compare the results from the reference model and the model with varying

fracture density as follows. The geometrical details are shown in Figure 3.18a. I show

the shot gather at zero-X-offset and 500m-X-offset in Figure 3.18b - 3.18e for both

models. The shot gathers indicate that the wavelength of the scattered wave is longer

than that for the reference model. This is possibly due to the constructive/destructive

interference caused by the fracture density variation. From receivers located on the

zero-X-offset slice, most of the reflected waves have effects on the recorded waveforms

that amplify the interference effect as shown in Figure 3.19a and 3.19b. In the 500m-

X-offset slice, the scattering is less significant than at zero-X-offset as shown in Figure

3.19c and 3.19d.

3.5 Conclusions

I have implemented an explicit interface scheme for modeling elastic wave

propagation in 3D fractured media. The scheme explicitly treats each 2D non-planar

fracture without using equivalent medium theories. The fractures are assumed to

have vanishing width, and Schoenberg′s linear slip displacement-discontinuity model

is used to describe the wave behavior across them. Because of the discretization of

tetrahedrons, arbitrarily shaped 2D non-planar fractures can be accurately incorpo-

rated into the numerical mesh.
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Figure 3.16: Shot gathers and waveforms of selected sections for the model with
varied fracture length: (a) shot gather at zero-X-offset slice (S1); (b) shot gather at
300m-X-offset slice (S2); (c) shot gather at 500m-X-offset slice (S3); (d) waveforms
near zero-Y-offset of S1 (location of traces are also highlighted by dashed line in
(a)); (e) waveforms near zero-Y-offset of S2 (location of traces are also highlighted by
dashed line in (b)); (f) waveforms near zero-Y-offset of S3 (location of traces are also
highlighted by dashed line in (c)). The blue arrow indicates the time range within
which the scattering occurs.

79



Figure 3.17: Shot gather and waveform comparisons between the reference model and
the model with varied fracture spacing: (a) geometric details; (b) shot gather at zero-
X-offset slice (S1) for the reference model; (c) shot gather at zero-X-offset slice (S1)
for the model with varied fracture spacing; (d) waveforms near-Y-zero offset of S1 in
the reference model (location of traces are also highlighted by dashed line in (b)); (e)
waveforms near zero-Y-offset of S1 in the model with varied fracture spacing (location
of traces are also highlighted by dashed line in (e)). The blue arrow indicates the
time range within which the scattering occurs.
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Figure 3.18: Shot gather comparison between the reference model and the model
with varied fracture density: (a) geometric details; (b) shot gather at zero-X-offset
slice (S1) for the reference model; (c) shot gather at zero-X-offset slice (S1) for the
model with varied fracture density; (d) shot gathers at 500m-X-offset (S3) for the
reference model; (e) shot gathers at 500m-X-offset (S3) for the model with varied
fracture density. 81



Figure 3.19: Waveform comparisons between the reference model and the model
with varying fracture density at near zero-Y-offset of selected sections: (a) S1 in the
reference model; (b) S1 in the model with varying fracture density; (c) S3 in the
reference model; (d) S3 in the model with varying fracture density. The blue arrow
indicates the time range within which the scattering occurs.
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The implemented integral approach is flexible for incorporating fractures us-

ing only a small number of additional nodes (equivalent to the number of discretized

grid points on the fractures). I compared the shot records corresponding to changes

in the fracture length, spacing and density in the fracture models. From the verti-

cal displacement data, I found that the tangential compliance of the fractures have

significant effects on wave propagation. With non-uniform distributions of fracture

length and density, strong interference is often observed. Constant fracture length

and spacing tend to reduce such interference and lead to significant scattering effects.

The scattering is the results of combined effects of reflection and interference. Hence,

it is difficult to evaluate its extent. Therefore, I need a method to quantify this extent.

In the next chapter, I will use the scattering index method to quantify the degree of

scattering for different fracture distributions.
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Chapter 4

Effect of fracture properties on wave scattering

The integral-based numerical method offers an explicit way to model fractures

in elastic media. The algorithm has been described in detail in Chapter 3. Here

I demonstrate an application of the algorithm and study the effect of variation of

fracture properties on seismic data. A quantification method is necessary to describe

the extent of wave scattering. I apply the scattering index proposed by Willis (2006)

for this purpose. In this Chapter, I show a variety of synthetic seismograms for varying

fracture properties attempt to quantify the effect of fracture spacing, patterns, and

azimuth using the scattering index (SI) method. Using this I establish a relationship

between fracture parameters and the induced wave scattering. I hope that these

results will provide a basis for future inversion algorithms for fracture characterization.

4.1 Scattering index method

Although the results reported in chapter 3 demonstrate the effects of differ-

ent fracture patterns qualitatively, it is still difficult to quantify those using single

shot gathers. Willis et al. (2006) first proposed the scattering index (SI) method to

describe the effect of fracture spacing on scattering. In their method, the SI value

describes the extent of scattering by quantifying the amount of ringing in a trans-
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fer function relating the wavelet before and after propagation through a fractured

medium.

The transfer function represents the ability of a fractured layer to generate

scattered energy. With surface seismic reflection traces, a transfer function quantifies

the change of a seismic wavelet before and after propagating through a fractured

layer. The transfer function describes how the amplitude and phase of a particular

signal are altered by a linear filter. The fractured layer can be considered to be a

filter, where the input signal is the reflection from the top of the fractured layer. The

fractured layer transforms this signal into an output, which is the reflection at the

base of the fractured layer. Thus, this problem can be written in a convolutional form

follows:

i(t) ∗ f(t) = o(t), (4.1)

where f(t) is the time domain transfer function, i(t) is the input signal, o(t) is

the output signal, and ∗ represents convolution. Thus to obtain the transfer function,

f(t) , Weiner devonvolution is performed on o(t) using i(t). The transfer function

f(t) completely describes the properties of the medium between the top and bottom

of the fractured medium. With the transfer functions for a full range of azimuth of a

fracture system, the scattering index can be used to quantify the amount of ringing

in transfer functions. The SI is defined as

SI =
m∑
i=0

|ti|in, (4.2)
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where i is the time lag in the transfer function, ti is the transfer function magnitude

at lag i, n is an exponent, and m is a lag where the transfer function magnitude

vanishes. This expression gives more weight to the transfer function at the large lag

times than the small lag times. The scattering index approaches zero if there is no

scattering.

4.2 Effect of fracture spacing, density, height

In the present study, I implement this method using the waveforms recorded

from receivers distributed on the top surface of the model. Figure 4.1a shows the

model details with the locations of the source and receivers. Figure 4.1b shows the

contour plot of the scattering index from the receivers. Because our model is sym-

metric with respect to the central plane, I only show a quarter of data from the top

surface. The area selected for the scattering index is within 400m-offset in both X

and Y directions to avoid the boundary effect. In this case, I varied the ratio between

fracture spacing and wavelength by fixing the fracture spacing at 40m while varying

frequency from 5Hz to 25Hz. Figure 4.2 shows the displacement wavefield results for

each case.

In Figure 4.2, I observe that the amount of scattering increases as the ratio

between fracture spacing and wavelength increases. Frequency increases from 5 to

25 Hz from Figure 4.2a to 4.2i. The ratio between fracture spacing and wavelength

increases from Figure 4.2a to 4.2i as does the scattering. However, when I examine

results from the contour plots (Figure 4.3) from the SI on the top surface, I note that

the total amount of scattering is not proportional to the ratio between fracture spacing
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Figure 4.1: a) model details, b) contour plot of SI on top surface for frequency of
7.5Hz (quarter view).
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Figure 4.2: Shot gathers for different frequencies recorded at zero Y-offset. Horizontal
axes are X-offset in meters. Vertical axes are time in seconds. From a)-i), I varied
the ratio between fracture spacing and wavelength by fixing the fracture spacing at
40m while varying frequency from 5Hz to 25Hz.
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and wavelength. From these results, I notice that the SI shows a ring type pattern. As

the ratio increases I observe an increase in the number of rings with higher intensity.

However, when the ratio reaches a certain value, this pattern is lost. Therefore, I use

the mean SI value of the entire contour plot. This mean value indicates the overall

scattered energy through the entire domain; the mean SI is plotted against each ratio

in Figure 4.4. I observe that the SI increases first when the ratio increases from 0.067

to 0.267. After reaching the peak, it shows a rapid drop in SI values.

With this result, I present a relationship between scattering and fracture spac-

ing/wavelength ratio. In practice, if the only unknown parameter to be characterized

is the spacing of the fracture arrays, then I can use the obtained SI vs fracture spac-

ing/wavelength ratio curve to estimate its corresponding values. This result also

shows that as the fracture spacing increases, the scattering increases to a peak value

then decreases sharply. This trend can be attributed to the interference between

scattered waves from individual fractures. When the fracture spacing is small, the

interference increases as the spacing reduces, producing a significant amount of wave

scattering. However, as the spacing exceeds a certain level, the area affected by

this interference reduces rapidly causing a significant drop in the scattering index.

Therefore, it gives an indication that the correlation between fracture spacing and

scattering index should be established for different ranges.

4.3 Azimuthal effects of fractures

To investigate the azimuthal effect, I setup up a model with variations of

source-to-fracture azimuth and an explosive source that generates a spherical pressure
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Figure 4.3: Contour plots for different ratio between fracture spacing and wavelength
by fixing the fracture spacing at 40m while varying frequency from 5Hz to 25Hz. The
color in each plot indicates the normalized SI value.
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Figure 4.4: SI vs. ratio between fracture spacing and wavelength.
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wave-front. The fractures with different properties are placed in the center of the

model to maximize the wave-scattering effects. The model geometries are shown in

Figure 4.5. The model in Figure 4.5 contains a vertical fracture with 200m height

located at the center indicated by the black bar. The red stars denote the source

locations at seven source-to-fracture azimuths (0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦) . The

sources are 500m away from the fracture center for all source azimuths with receivers

over the entire domain.

4.3.1 Effect of incident angles on single fractures

The displacement wavefields are shown in Figure 4.6. Here, I observe that

the wavefront is bent at the location where a line connects the source to the center

of the fracture. The bending of the wavefront is caused by the time delay of waves

propagating through the fracture. The bending location of the wavefront rotates as

we change the source azimuth. The time delay in 0◦ source azimuth is the most

significant. The time delay gradually reduces from 0◦ source azimuth to the 90◦

source azimuth. Scattering is observed at both corners of the fracture for almost all

cases. On the other hand, because I selected a relatively large compliance value of

1.8∗10−9mPa−1 for the fracture, the amount of reflection wave energy is substantial,

which gives rise to significant scattering between the source and the fracture line.

Next I quantify the seismic scattering using the scattering index method of

Willis et al. (2006). Figure 4.7 shows the scattering index contour plots for seven

source azimuths from 0◦ to 90◦. Each value in the scattering index contours is ob-

tained using each trace from the entire receiver field. The azimuthal effect is clearly
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Figure 4.5: A single fracture model containing a vertical fracture with 200m height
located at the center, which is indicated by the black bar. The red stars denote the
source location at seven incident angles. The sources are 500m away from the fracture
center for all seven angles. The source to the left of fracture is the 0◦ incident angle.
The source above the fracture corresponds to the 90◦ incident angle.
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Figure 4.6: Wavefields for a single fracture with source to fracture azimuth varying
from 0 to 90 degrees. The source-to-fracture azimuths are labeled on the upper right
corner of each wavefield. The red stars indicate the source location. The blue boxes
indicate the area selected for scattering analysis.
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observable on the scattering index contours. I observe that most of the scattering

occurred between the source and the line fracture for 0◦ source azimuth. However,

for 90◦ source azimuth, most of the scattering occurred on the transmission side. The

centroid of the scattering seems to rotate as the azimuth changes. To show the extent

of fracture with varying azimuth, I selected receivers at full azimuth θ distributed

about 500m away from the center of the fracture shown as the red dashed circle. The

scattering indices at these locations are then plotted in polar coordinate in Figure

4.8.

In Figure 4.8, I show the scattering index values with θ from the location of

the receivers. The radius represents the values of SI. The angle in polar coordinates

represents the full azimuth of the fracture. The connected line shows that the scat-

tering index values are indeed high in the area between the source and fracture. More

interestingly, there seems to exist peaks in these plots indicating that the centroids

of these patterns are indeed shifted with changes in azimuth.

To describe the wave scattering for each case, an average index is needed. I

then seek the definition of mean values in statistics. This mean value is obtained

using the first moment of the scattering index in terms of azimuth angle. Based on

the theory of the center of mass (Mancosu, 1999), we obtain the weighted central

azimuth angle using :

θw =

∫ 2π

0
f(SI ∗ θ)dθ∫ 2π

0
f(SI)dθ

, (4.3)

where f is a function of SI in terms of θ.
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Figure 4.7: SI contour plots for a single fracture with source to fracture azimuth
varying from 0 to 90 degrees. The source-to-fracture azimuths are labeled on the
upper right corner of each contour plot. The red circles indicate the full receiver
azimuth 500m away from the center of fracture.
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Figure 4.8: SI polar plot for a single fracture with source-to-fracture azimuth varying
from 0 to 90 degrees. The SI values are obtained from the full receiver azimuth 500m
away from the center of fracture.
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If I plot a polar SI for all seven source azimuths together in Figure 4.9a, I notice

that the centroid for each SI polar plot seems to rotate with the source azimuth. To

confirm this, I plot the average SI against the weighted θ angle from each polar SI

plot in Figure 4.9a in Figure 4.9b. From Figure 4.9b, I noticed that, from source

azimuth 0◦ to 90◦, the average SI values are about the same. However, the weighted

θ gradually rotates from 220◦ to 270◦. The results shown in Figure 4.9b are from one

quadrant only (0◦ to 90◦). Because of the symmetry of the model, I complete the

remaining three quadrants of the results and plot them all in FIgure 4.9c. Here, I

observe that all of the central angles are located around 270 degrees. This indicates

that for a single fracture, the scattering indices are usually high in the direction

parallel to the fracture.

4.3.2 Effect of incident angles on multiple parallel aligned fractures

Subsequently, I investigate the effect of multiple fractures on wave scattering.

The fracture spacing of 40m is selected to be close to the spacing over wavelength

ratio of 0.267, which should give the maximum amount of wave scattering in Figure

4.4. The wave-field results are shown in Figure 4.10. In this multiple parallel aligned

fractures model, there are more distortions of the wavefront than in the previous sin-

gle fracture model. The distortion is caused by the interference of the scatter wave

with the first wave-front. I also observe more scattering in the reflection wavefield

caused by the multiple fractures. This is due to the fact that the effective fracture

compliance from the array of fractures is higher than the compliance of the single

fracture. Therefore, more reflections are found, which leads to more severe interfer-
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Figure 4.9: a) SI polar plot for a single fracture from seven source to fracture azimuths
vary from 0 to 90 degrees. b) average SI and weighted θ in a quadratic polar plot. c)
average SI and weighted θ in complete source to fracture azimuth vary from 0 to 360
degrees.
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ence giving rise to enlarged areas with high scattering index values as shown in Figure

4.11.

In these contour plots, I observe much larger areas having high scattering

index values than those in the single fracture model. More interestingly, I observe

valley areas on the side of the array show low scattering index values. This is caused

by the destructive interference in the wavefield. In addition, similarly as found in

the case of single fracture, the same trend of rotation of the centroid as the azimuth

angle varies. The polar plots of the scattering index values from receivers 500m away

from the center of fractures are shown in Figure 4.12. The centroid of the SI shape

in 0◦ source azimuth is between the source and the fractures. As the source azimuth

rotates from 0◦ to 90◦, the centroid of the SI shape gradually rotates counterclockwise

on the transmission side of the fractures. Figure 4.12 also shows that the scattered

wave passing the multiple fractures have considerable SI values.

SI polar plots from all seven source azimuths are plotted in Figure 4.13a. I

then conducted the weighted average as done for the case of the single fracture from

the results in a quarter of source azimuth (Figure 4.13b) and full azimuth (Figure

4.13c). I then observe that the equivalent total scattering values are around 250

degrees. This value is quite close to that of the single fracture case. However, the

distribution of these locations are much dispersed compared to the previous case.

4.3.3 Effect of incident angles on intersecting fractures

Considering the direction that the average scattering index points to is close

to the parallel direction of the fractures, I also investigate the effect of azimuth an-
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Figure 4.10: Wavefields for multiple fractures with source-to-fracture azimuths vary-
ing from 0 to 90 degrees. The source-to-fracture azimuths are labeled on the upper
right corner of each wavefield. The red stars indicate the source location. The blue
boxes indicate the area selected for scattering analysis.
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Figure 4.11: SI contour plots for multiple fractures with source-to-fracture azimuths
varying from 0 to 90 degrees. The source-to-fracture azimuths are labeled on the
upper right corner of each contour plot. The red circles indicate the full receiver
azimuth 500m away from the center of fracture.
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Figure 4.12: SI polar plot for multiple fractures with source-to-fracture azimuths
varying from 0 to 90 degrees. The SI values are obtained from the full receiver
azimuth 500m away from the center of fracture.
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Figure 4.13: a) SI polar plot for multiple fractures from seven source-to-fracture
azimuths varying from 0 to 90 degrees. b) average SI and weighted theta in a quadratic
polar plot. c) average SI and weighted θ in complete source-to-fracture azimuths
varying from 0 to 360 degrees.
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gles on intersecting fractures. The two intersecting fractures are selected to have

the same length of 200m to avoid the influence from different fracture length. From

the displacement fields shown in Figure 4.14, I observe significant interference of the

transmitted wave with the wavefront. These scattering indices are high but they ap-

pear smeared over the entire contour area (Figure 4.15). The destructive interference

caused by the intersecting fractures show reduction in SI values in the vicinity of

the fractures. The polar plot shown in Figure 4.16 confirms these observations. In

addition, these SI polar patterns are symmetric about the axis connecting the source

to the center of the fractures. Figures 4.17a and 4.17b show the overlapped SI polar

plots and average SI vectors for seven source azimuths, respectively. The total vec-

tor scattering indices of full azimuth are shown in Figure 4.17c. These vectors are

mainly uniformly distributed in between 240 and 300 degrees. With the intersecting

fractures, the reflected and transmitted waves cast severe interference and give rise

to significant scattering index values in the fractured region.

4.3.4 Effect of incident angles on multiple intersecting fractures

Next I place multiple intersecting fractures in the center of the domain. In

this model, the fracture spacing is selected to be the same as that in the multiple

parallel aligned fractures. The length of the horizontal intersecting fracture is the

same as that in the single intersecting fracture model. In this fracture pattern, I form

a compliant area that reflects most of the incoming waves in the vertical direction (90

degrees). The strong interference is found in the fractured area from the displacement

fields (Figure 4.18). Both the contour and polar plots (Figure 4.19 and 4.20) in terms
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Figure 4.14: Wavefields for a single intersecting fractures with source to fracture
azimuth vary from 0 to 90 degree. The source-to-fracture azimuth are labeled on the
upper right corner of each wavefield. The red stars indicate the source location. The
blue boxes indicate the area selected for scattering analysis.
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Figure 4.15: SI contour plots for a single intersecting fractures with source-to-
fracture azimuths varying from 0 to 90 degrees. The source-to-fracture azimuths are
labeled on the upper right corner of each contour plot. The red circles indicate the
full receiver azimuths 500m away from the center of fracture.
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Figure 4.16: SI polar plot for a single intersecting fractures with source-to-fracture
azimuths varying from 0 to 90 degrees. The SI values are obtained from the full
receiver azimuths 500m away from the center of fracture.
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Figure 4.17: a) SI polar plot for a single intersecting fractures from seven source-to-
fracture azimuths varying from 0 to 90 degrees. b) average SI and weighted theta in a
quadratic polar plot. c) average SI and weighted theta in complete source-to-fracture
azimuths varying from 0 to 360 degrees.
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of scattering indices confirm the intensified scattering due to the array of intersecting

fractures. Figure 4.21a and 4.21b show the overlapped SI polar plots and average SI

vectors for seven source azimuths, respectively. The vectors of the polar plot of full

azimuth are plotted in Figure 4.21c. With this particular pattern, I found the vectors

are mainly distributed in between 240-300 degrees uniformly.

4.4 Correlating fracture properties, incident angles, and scat-
tering index values

The above results show that the scattered wave often points to a direction

parallel to the main fracture direction, which is determined by the direction having the

highest compliance. The distribution of the fractures results in different distribution

of the vectors. I then take another average for the vectors of four fracture models

(figure 4.22). The average theta and SI values for four fracture models are listed

in Table 1. Clearly all the average vectors are in the range between 240 and 270

degrees. By switching from single to multiple fractures, the average scattering vector

increases in values but stays in the same direction. For the case of the intersecting

fractures, the total scattering vector increases as the number of fracture increases.

The corresponding direction shift closer to 270 degrees.

Based on these findings, it can be concluded that the overall magnitude of

the scattering index is related to the compliance of the fractured region. The higher

compliance gives rise to more intense scattering. The direction of the overall scattering

index is then related to the anisotropy of the fractured region. The scattering direction

is generally parallel to the direction of the maximum compliance matrix.
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Figure 4.18: Wavefields for multiple intersecting fractures with source-to-fracture
azimuths varying from 0 to 90 degrees. The source-to-fracture azimuths are labeled
on the upper right corner of each wavefield. The red stars indicate the source location.
The blue boxes indicate the area selected for scattering analysis.
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Figure 4.19: SI contour plots for multiple intersecting fractures with source-to-fracture
azimuths varying from 0 to 90 degrees. The source-to-fracture azimuths are labeled on
the upper right corner of each contour plot. The red circles indicate the full receiver
azimuths 500m away from the center of fracture.
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Figure 4.20: SI polar plot for multiple intersecting fractures with source-to-fracture
azimuths varying from 0 to 90 degrees. The SI values are obtained from the full
receiver azimuths 500m away from the center of fracture.

113



Figure 4.21: a) SI polar plot for multiple intersecting fractures from seven source-to-
fracture azimuths varying from 0 to 90 degrees. b) average SI and weighted theta in a
quadratic polar plot. c) average SI and weighted theta in complete source-to-fracture
azimuths varying from 0 to 360 degrees.
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Figure 4.22: Average weighted SI and theta for a single fracture model, multiple
fractures model, single intersecting fractures model, and multiple intersecting frac-
tures model. The radius represents the value of SI. The angle represents the θ angle
corresponding to the average SI.
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Theta Scattering index
Single fracture -2.0145 5.3482

Multiple fractures -2.02 6.6484
Single intersecting fracture -1.9665 6.67

Multiple intersecting fracture -1.7353 7,4361

Table 4.1: Average weighted SI and theta for four types of fracture model: a single
fracture model, multiple fractures model, single intersecting fractures model, and
multiple intersecting fractures model.

4.5 Conclusions

The scattering index method has been used in this study to quantify the effect

of fracture spacing on wave scattering. The mean values of the scattering index for

the entire domain provide a correlation between scattering and fracture spacing over

wavelength ratio. This relationship can help identify the fracture spacing when other

properties of fractures are known. Using both pattern recognition and mean values of

the scattering index contour plot, I should be able to characterize fracture properties

in a quantified manner.

I also investigated the effect of fracture azimuth by placing an explosive source

at different angles toward the center of line or intersecting fractures. The wave-field

results were examined, and the scattering effect was characterized using the scattering

index method. The average scattering vectors surrounding the fractured domain were

computed and discussed. Finally, the total average scattering vectors for different

fracture patterns were computed and compared. From the results, I found that the

wave scattering is very sensitive to the fracture distribution. For the case of relatively

large compliance, the scattering was mainly induced by the interference between the

reflected wave and the explosive wave. As the fracture density increases, the scattering
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index increases. The intersecting fracture pattern showed more scattering compared

to the case of a single fracture. Multiple intersecting fractures seem to intensify such

an effect. In terms of the orientation, most of the scattering vectors were close to the

direction parallel to the single fracture or the maximum compliance of the fractured

region.
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Chapter 5

Conclusions and future studies

This dissertation aimed to solve two main issues. The first involved the ex-

ploration of a suitable numerical method to explicitly simulate fractures in 3D elastic

wave propagation problems. The second issue was to investigate the relationship be-

tween fracture properties and assorted seismic signatures. Chapters 2 and 3 mainly

focused on addressing the first issue. Chapter 4 focused on addressing the second

issue. The results and discussions are concluded in this chapter.

The discontinuous Galerkin (DG) method implemented by De Basabe et al.

(2015) was used to simulate the fracture explicitly. I examined the accuracy of the DG

method by comparing numerical results with known analytical results. This method

offers a direct mathematical description of the displacement continuity at the frac-

ture surface (or boundary). In this way, high accuracy was preserved by assigning

different displacement values at the duplicated nodes on fractures. The first gradi-

ent of displacement (or strain) was passed along this discontinuous boundary, which

maintained the equilibrium at each node. The shape functions were also preserved

in each continuous domain leaving the error term unchanged. The additional error

term induced by the discontinuity was then bounded as the discontinuity occurred in

terms of a step function. The DG method can also easily incorporate the linear-slip
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model at the fracture location with the inherited convenience from the displacement

discontinuity. However, the disadvantage lies in the relative high computation cost

due to the finite element formulation. From the finite element formulation, the accu-

racy of the solution from the weak form is highly dependent on the mesh size in the

form of power function. This means a finer mesh is usually required, which leads to a

significantly large size of stiffness matrix in terms of a solver input. This hindered the

computation efficiency directly. With this distinct shortcoming, it is quite challenging

to conduct parametric studies on fractures in the case of 3D seismic wave propagating

in elastic media.

As an alternative, I sought a solution using an integral based approach. In this

approach, I no longer solve a weak form in terms of spatial integrals and correspond-

ing discretization. Instead, I integrate the governing equation out and simplify this

integrated equation with known conditions from wave equations. In this way, I es-

sentially solve a mixed governing equation using stress based discretization methods.

Based on this discretization scheme, I lose accuracy in terms of displacement within

each element but preserve the accuracy in strains in the whole field. Compared to

DG, the integral method may have a low convergence rate in terms of mesh sensitivity,

but it requires less computational cost and provides relatively high accuracy in terms

of strain and stress. Therefore, this integral based approach may be better suited to

conduct parametric studies on the effect of fracture properties on elastic waves. To

ensure the accuracy, validations were confirmed by comparing the results using DG,

the integral-based method, and analytical solutions.

To address the second issue of correlating fracture properties with features
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from wave propagation in fractured elastic media, I firstly observed the wave field

results using both DG and the integral-based method. I found out the wave scattering

induced by fractures is the main feature that directly ties the fracture properties to

wave propagation. The results also show that the wave scattering is very sensitive to

all fracture parameters including spacing, density, patterns, and azimuth. However,

the specific correlation requires quantification. The scattering index method (SI)

(Willis et al., 2006) was then selected to quantify this effect. This method basically

evaluates the energy from the scattered wave induced by fractures. I then conducted

numerical simulations with varying fracture properties and obtained the SI contours

of the wavefield for different fractures. The results in Chapter 4 indicate that the

fracture spacing is critical in correlating fracture properties with wave scattering

due to the corresponding interference effect. More interestingly, by investigating the

azimuthal effect, I observed that the most scattering occurred in a direction parallel to

the direction of the maximum fracture compliance. This confirms some of the general

observations by Willis et al. (2006). However, I established the correlation between

both fracture density, patterns, and angles and wave scattering. These results provide

the first level of estimation in characterizing fracture properties using elastic waves.

To summarize, this work implemented an integral-based method that can ac-

curately simulate fractures explicitly in elastic media undergoing seismic wave prop-

agation. The quantified correlation between fracture properties and wave scattering

has been established using this method. The provided results lay a foundation in fu-

ture development of inversion algorithms in fracture characterization. The following

works are suggested for future study:
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(1) The effect of fracture compliance should be studied in combination with

other fracture properties.

(2) The intrinsic relationship between each fracture parameter should be in-

vestigated to identify the specific role of each parameter on wave scattering.

(3) An improved scattering index method should be developed to facilitate the

above tasks.
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