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Introduction 

Carbohydrates, commonly known as sugars, are one of the most prevalent organic 

compounds used by living organisms for energy. The smallest unit of carbohydrate is called a 

monosaccharide, and the most common of these molecules are glucose, fructose and galactose, 

which are all isomers of one another. These monosaccharides are rich in high energy carbon and 

hydrogen bonds that can be oxidized to produce large amounts of adenosine triphosphate (ATP) 

to power rapid cellular processes. Carbohydrates can also serve as a temporary energy storage 

that facilitates future cellular processes.  

Glycogen is a storage form of carbohydrate, which is formed when excess glucose in the 

cells undergo condensation reactions to form alpha and beta glycosidic linkages. These 

condensation reactions are catalyzed by glycosyltransferases, which link individual glucose 

molecules together in different orientations to produce large storage polysaccharides known as 

glycogen (Arrese, 2010). The structure of glycogen is a highly branched, multichained polymer 

of glucose residues surrounding a core protein called glycogenin. The chain structure of glucose 

around glycogenin consists of 1,4 alpha glycosidic bonds with 1,6 glycosidic bonds as the branch 

points of the polymer. Through various sedimentation and electron micrograph methods, the 

average molecular weight of glycogen is estimated to be 10-500 x 10
6 

Da (Calder, 1991).  
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Glycogen is an excellent energy storage molecule due to its branching structure. The 

branched structure of glycogen allows for multiple reaction sites, which accounts for the 

breakdown of carbohydrate at rapid rates so that energy can be easily accessed when needed 

(Gilbert, 2011). As a large, multi-branched sphere of glucose, glycogen can be broken down into 

glucose by glycoside hydrolases that cleave the glycosidic bonds between different glucose 

monomers. Once in its monomeric form, glucose can be metabolized into pyruvates, acetyl CoA, 

and eventually into ATP by the glycolytic enzymes, pyruvate dehydrogenase complex and 

oxidative phosphorylation of the electron transport chain, respectively (Arrese, 2010).  

Glycogen is a particularly important form of energy storage in animals (Gilbert, 2011).  

Insects store glycogen in an organ called the fat body, which is located inside the lining of the 

abdomen. The fat body is analogous to the vertebrate liver because they both play important 

roles in storage of carbohydrates and fat (Liu et. al., 2009).  For instance, glycogen provides 

energy for developing insect embryos, for extended periods of flight, for cuticle formation and 

for the preservation during periods of cold and drought (Suarez, 2005; Arrese, 2010.)  

 Bumble bees (genus Bombus) are the most economically important native pollinator in 

the U.S. (National Research Council 2007) and also play an important role in healthy ecosystem 

function. Bumble bees have highly developed social system with stratified castes of males, 

queens and workers.  They obtain carbohydrates primarily from ingesting floral nectar, which is 

highly rich in glucose. In queen bumble bees, glycogen storage is essential for various life stages, 

including during larval development and also for survival over a winter diapause period (Alford, 

1969).  Queen bumble bees spend approximately two months during the winter in a diapause 

state, before emerging to find new colonies of their own the following spring. During diapause, 

queens do not forage or eat, but instead utilize copious amounts of stored glycogen in their fat 
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bodies to survive (Alford, 1969). Previous studies have shown that glycogen levels in queens 

increase prior to diapause, then plummet post diapause (Alford, 1969; Arrese, 2010). This 

strongly suggests that queen bumble bees rely on glycogen as an energy source for surviving 

through the winter (Alford, 1969).  

Although glycogen storage in bumble bee queens has been studied fairly extensively 

(Arrese, 2010; Inagaki, 1986; Liu, 2009; Roseler, 1986), it remains unknown if differing 

carbohydrate intake affects carbohydrate storage, and thereby the survival of queen bumblebees 

during and after diapause. This information is important because elucidating the relationship 

between carbohydrate intake and glycogen storage in bumble bees can contribute to our 

understanding of the basic biology and nutritional needs of bumble bees. This information may 

ultimately contribute to conservation and management strategies, because more informed 

conservational efforts can be made available to enhance food availability for bumble bees. Here, 

we explored the relationship between carbohydrate intake and glycogen storage in bumble bee 

queens, by experimentally manipulating carbohydrate intake in bumble bee queens and 

observing how this influences weight gain and glycogen storage. We hypothesized that bumble 

bee queens with little or no carbohydrate in their diet would fail to gain weight or sequester 

glycogen during their first 12 days post-emergence from diapause.  

 

Methods 

Bees. 29 colonies of the bumble bee Bombus impatiens were obtained from Koppert Biological 

Systems (Romulus, MI) and allowed to mature until queen production. The colonies were        

                       C and 50-70% relative humidity, which simulated their natural 

underground colony environment (Biobees, 2011.) Emergent young queen bees were drawn from 
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each colony (age 1 day) for each treatment. The approximate age of the queens was visually 

detected by their silvery color (Bugguide, 2014). These queens were pulled and individually 

labeled by small number tags on their thorax to individually distinguish each queen. 

Diet manipulations. Newly emerged queens were randomly assigned to one of four treatment 

groups (below) and were isolated in small, circular plastic Tupperware cups cages 

(approximately 1-cup size). Queens were fed ad libitum every day. 

(i) N c    S   v      g   p (     f   , “NS”): Q      w    f         z   w     (0% 

sucrose) and pollen (multisource, mixed with deionized water) every day. 

(ii) L w Q  l  y N c    (     f   , “LQN”): Q      w    f       l       f   % w/v 

  c       l      (“  c   ”)     p ll   (  l      c ,   x   w      % w/v   c     

solution) every day. 

(iii) Control group (     f   , “CTL”): Queens were fed a solution of 50% w/v sucrose 

  l      (“  c   ”)     p ll   (  l      c ,   x   w     0% w/v   c       l     )  v  y 

day. 

 (iv) High Quality Nectar (     f   : “HQN”): Queens were fed a solution of 75% w/v 

  c       l      (“  c   ”)     p ll   (  l      c ,   x   w    7 % w/v sucrose 

solution) every day. 

Experiment 1: Weight gain. For this experiment, the queens in all groups (N = 111) were 

weighed approximately every 24 hr for twelve days, and their weights documented to determine 

any daily changes in weight. To estimate total weight gain (total Δ weight), the mass of bees on 

day 1 was subtracted from their mass on day 12. Across the four groups, mean Δ weight values 

were compared using comparative, pairwise two-tailed t-tests. 
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Experiment 2: Glycogen Storage. To compare glycogen levels across the four groups, total body 

glucose levels were compared. Because glycogen primarily consists of glucose (Arrese, 2010), 

glucose levels were used as a proxy for measurement of glycogen levels. The bodies of a subset 

of bees (N = 40, 10 per group) of the four treatment groups were pulverized using a bead beater 

and carbohydrate levels were quantified using a protocol modified from Judd et. al. (2010). Six 

glucose standards were prepared each containing 0, 12.5, 25, 50, 100, 200 µg. Using 50 µL 

subsets of samples, 18% NaSO4 solution, followed by anthrone reagent, were added. Heat was 

applied at 100 °C for 12 min and samples were cooled to room temperature away from light. 

Total body glucose levels were measured using absorbance of standards and samples at 625 nm 

on spectrophotometer. Each sample was run in triplicate and the average was taken across the 

separate assays to ensure replicability. Glucose concentrations were estimated using standard 

c  v   x   p l       f      b   b  c      g B    L  b   ’  l w. Differences in carbohydrate 

levels across the groups were compared using an ANOVA and post-hoc HSD Tukey Tests. 

 

Results  

Experiment 1: Weight Queens. Queens in all treatment groups gained the most weight in the first 

24 hr post-emergence, then only continued to gain additional weight if they obtained enough 

carbohydrates through their diet (Figure 1). Relative to the other treatment groups, NS queens 

failed to gain any weight in a 12-day period post-emergence (mean Δ weight = 0.0373g). All 

other groups (LQN, CTL, HQN) gained more weight than the NS group (Δ weights = 0.1142g, 

0.1778g, 0.1605g, P-values of 0.0036, 0.0014, 0.0006, and respectively; Figure 2). Similarly, 

LQN q     ’ Δ weight (mean Δ weight = 0.1142) were significantly lower relative to that of the 
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CTL (P = 0.0484). The HQN queens gained weight (mean Δ weight = 0.1605g) but not 

significantly more than that of the CTL group (P >0.05; Table 1; Figure 2).  

 

Experiment 2: Glycogen Storage. NS queen carbohydrate levels were significantly lower than all 

the other groups (P < 0.0001, comparison to CTL; P < 0.0001, comparison to HQN; and P= 

0.0020, comparison to LQN; Table 2 and Figure 3). LQN q     ’     l b  y c  b  y      l v l 

(4.6753 ug) was not significantly lower than that of the CTL group (P > 0.05). T   HQN q     ’ 

total body carbohydrate level (7.0700 ug) was not significantly higher than that of the CTL group 

(P > 0.05, Tukey HSD). (Table 2, Figure 3)  

Analysis of Variance (ANOVA) was used to analyze intrinsic variations within each 

treatment group’  glycogen levels. NS queens had lower mean glycogen levels than all other 

groups (t < 0.0001; Figure 4). The results of this ANOVA analysis confirmed the analysis of 

Tukey HSD test shown previously (Table 3). Similar differences among different treatment 

groups can also be observed with whiskers-boxplot distribution of the data (Figure 4). 

 

Discussion: 

Carbohydrates, especially in the form of glycogen, serve as important form of energy 

storage in animals and insects (Gilbert, 2011). Carbohydrates are crucial for development of 

insect embryos, cuticle formation and particularly for sustenance in the form of glycogen during 

diapause (a state in which bumble bee queens spend during the winter) (Arrese, 2010). 

Therefore, without sufficient nutrition such as carbohydrates, we hypothesized that glycogen 

storage in bumble bee queens might be jeopardized when they are fed low-carbohydrate diets. 
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The study of the relationship between carbohydrate intake and glycogen storage can contribute to 

our understanding of the nutritional needs of bumble bee queens. 

Consistent with our hypothesis, we found that queens with no carbohydrates in their diet 

(NS group) failed to gain weight, whereas queens in other treatment groups did gain weight in 

the first 12 days of adult life. These weight data suggest that when queens cannot get enough 

sugar in their diet, they are not able to build up much (or any, as in the case of NS queens) stored 

glycogen. As predicted, the NS group also had lower glycogen levels compared to all the other 

groups, because their diet treatment did not contain any carbohydrate to make glycogen.  

 Additionally, LQN (25% sucrose) queens gained significantly more weight than the NS 

queens and their glycogen levels were significantly higher than those of the NS queens, equaling 

to that of CTL queens. These findings suggest that the young emergent queens probably increase 

their food intake to compensate for their sugar deficient diet. It has been shown that mice fed 

nutrient poor food eat more because Gcn2, a transcription factor, is activated upon starvation, 

inducing the starved mouse to feed more (Hao, 2005). However, despite any increase in nectar 

consumption to make LQN gained as much glycogen as CTL queens, LQN queens are still 

hindered by their diet treatment as their weight gain was minimal (not significant) relative to the 

CTL and HQN queens and their glycogen levels remained significantly lower than that of HQN 

(75% sucrose). These findings mean that LQN queens were not able to fully compensate for their 

low quality nectar by consuming enough extra nectar to equal the advantages of the CTL and 

HQN queens. Additionally, the LQN group’        l w  g   g    could also be due to the fact 

that the largest contributor of weight is the insect exoskeleton. Exoskeleton cannot fluctuate in 

size and weight due to fluctuations in diet, which is infinitesimal compare to the large weight of 

the exoskeleton, therefore little weight change was observed. 
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Interestingly, HQN queens did not gain more weight than CTL queens and there was no 

statistical difference between CTL and HQN carbohydrate levels. These findings suggest that 

these queens might have reached a saturation point that did not permit more cellular absorption 

of carbohydrate despite copious extra intake of carbohydrate. Alternatively, queens may be able 

to sense highly concentrated nectar, and this might cause queens of the HQN group alter their 

f     g b   v           c            c         CTL q     ,      by  q  l z  g      w  g   p ’ 

weight differences and carbohydrate levels.  

Together, we found that our manipulations of feeding treatments altered weight gain and 

glycogen storage in newly emergent bumble bees. The HQN group shows that extra nourishment 

does little to affect the weight and glycogen of young queen bumble bees. LQN and NS groups 

together show that without adequate carbohydrate intake, young queens are unable to gain 

weight or sequester abundant glycogen. With these data, we call to attention the decline of 

bumble bees and assert that nutritional deficiencies, particularly carbohydrate deficiencies, may 

play a role in lowering survival likelihood of bumble bee queens through the diapause period 

(Goulson, 2008). Lowering survival likelihood of a young queen has serious overarching 

implications because a death of a young queen means no opportunity for an entire bee colony to 

be created. Given the importance of queen bumble bees and their strong need for stored glycogen 

to survive diapause, carbohydrate deficiencies may be one of the many contributing factors 

leading to the bumble bee population decline.  

Bumble bee population decline is very important because it could in turn lead to fewer 

pollination events, a lower crop yield and therefore our own poor nutrition (Goulson, 2008). 

Studying their varying feeding rates in reaction to different levels of carbohydrate facilitates an 

understanding that carbohydrate is essential to their survival. With this information, we can 
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target their essential food sources in the wild and focus conservation efforts on maintaining this 

food source. 

 

Figures and Tables. 

 

Table 1. Comparison of queen weight gain across treatment groups. P values are for t-tests of 

comparison of different treatment groups for experiment 1 (Weight Queens). Significant 

differences at a 95% confidence interval are denoted in red. 

 

Weight Difference (End Weight - Start Weight) 

  CTL HQN LQN NS 

Group mean 

starting 

Weight  0.5519 0.5615 0.5677 0.5367 

Group mean 

ending 

Weight  0.7342 0.7312 0.6920 0.5740 

Group mean 

Weight 

difference  0.1778 0.1605 0.1142 0.0373 

Standard 

error 0.0255 0.0158 0.0124 0.0200 

P value: 

comparison 

to CTL 

 

0.6576 0.0484 0.0014 

P value: 

comparison 

to HQN 0. 

 

0.0376 0.0006 

P value: 

comparison 

to LQN 0.048381 0.037567 

 

0.0036 
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Table 2: Comparison of queen carbohydrate levels across treatment groups. P-values are for 

pos-hoc HSD Tukey test of comparisons of means glycogen concentration of different treatment 

group for experiment 2 (Glycogen storage). Significant differences at a 95% confidence interval 

are denoted in red.  

Glycogen Concentration Comparisions 

 
CTL HQN LQN NS 

Group mean 

glycogen 

levels 5.7606 7.0699 4.6753 1.2914 

St. Error 0.7331 0.6589 0.6723 0.3409 

Mean 

difference: 

comparison 

to CTL 

 

1.2945 1.1001 4.4840 

Mean 

difference: 

comparison 

to HQN 

  

2.3946 5.778 

Mean 

difference: 

comparison 

to LQN 

 

0.037567 

 

3.3838 

P value: 

comparison 

to CTL 

 

0.4670 0.5803 <0.0001 

P value: 

comparison 

to HQN 

  

0.0479 <0.0001 

P value: 

comparison 

to LQN 

 

0.037567 

 

0.0020 
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Table 3: Comparison of queen carbohydrate levels across treatment groups. P-values are for 

analysis of variance of means glycogen concentration of different treatment group for experiment 

2 (Glycogen storage). Significant intrinsic variations within each group are denoted in red.  

Glucose level comparisons 

Group CTL HQN LQN NS 

Mean difference 5.7754 1.2945 -1.1001 4.4840 

Standard Error 0.6068 0.8817 0.8582 -0.8582 

t-value 9.5170 1.4680 -1.2820 -5.2250 

P 3.04e-11 0.1510 0.2080 8.12e-06 

 

 

Figure 1: Daily changes in queen weight across the 12 day experiment period, separated by 

treatment group. X axis represents days in the experiment; Y axis represents the mean weight of 

queens in grams. Bars represent standard errors.   
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Figure 2. Changes in queen weight after the 12 day experiment period, separated by treatment 

group. X axis represents different treatment groups, Y axis represents mean weight changes 

(from day 1 to 12) of queens in grams. Different letters denotes there is a significant difference 

between weight changes of these treatment groups. Bars on each column represent standard 

errors.    
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Figure 3. Glycogen levels of queens across different treatment groups of experiment 2 

(Glycogen storage).  X axis represents different groups, Y axis represents mean glycogen 

concentrations of queens in µg. Different letters denotes there is a significant difference between 

weight changes of these treatment groups. Bars on each column represent standard errors.    
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Figure 4. Distribution of carbohydrate levels across different treatment groups of experiment 2 

(Glycogen storage). X axis represents different group, Y axis represents mean glycogen 

concentrations of queens in µg. Bars on each day represent standard errors.  Overlapping 

whiskers and median show no significant differences between groups. 
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