
Copyright

by

Marko Vasic

2018

The Thesis Committee for Marko Vasic
certifies that this is the approved version of the following thesis:

CRN++: Molecular Programming Language

APPROVED BY

SUPERVISING COMMITTEE:

Sarfraz Khurshid, Supervisor

David Soloveichik, Co-Supervisor

CRN++: Molecular Programming Language

by

Marko Vasic

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2018

To my parents, who no matter how bad moments we passed through, or how

little we had, provided the crucial things needed to grow up with the ‘right’

set of values: a sense of warm home, support and love.

Acknowledgments

I would like to thank to my supervisor Professor Sarfraz Khurshid for his

guidance, brilliant ideas, shared excitement about the project, and having trust

in me. Special thanks also go to my co-supervisor Professor David Soloveichik,

who introduced me to the exciting area of Molecular Programming, inspired

me to pursuit it further, and provided invaluable feedback throughout the

work.

In addition to my thesis supervisors, I would also like to thank Milos

Gligoric for his feedback and guidance. My lab-mates and colleagues helped

me make this project successful. I would like to thank Keenan Breik, Cameron

Chalk, Aleksandar Milicevic, Boya Wang, and Kaiyuan Wang for sharing ideas

and giving useful feedback throughout the project. Thank you Cameron Chalk

for suggesting such an exciting name for the language!

The following research paper based on this work is under submission

for peer-review: Marko Vasic, David Soloveichik, Sarfraz Khurshid. CRN++:

Molecular Programming Language. Under submission in 24th International

Conference On DNA Computing and Molecular Programming.

This work was funded in part by the US National Science Foundation

(Grant Nos. CCF-1618895, CCF-165282, and CCF-1718903).

v

CRN++: Molecular Programming Language

Marko Vasic, M.S.E.

The University of Texas at Austin, 2018

Supervisors: Sarfraz Khurshid
David Soloveichik

Synthetic biology is a rapidly emerging research area, with expected

wide-ranging impact in biology, nanofabrication, and medicine. A key tech-

nical challenge lies in embedding computation in molecular contexts where

electronic micro-controllers cannot be inserted. This necessitates effective rep-

resentation of computation using molecular components. While previous work

established the Turing-completeness of chemical reactions, defining represen-

tations that are faithful, efficient, and practical remains challenging. This

work introduces CRN++, a new language for programming deterministic (mass-

action) chemical kinetics to perform computation. We present its syntax and

semantics, and build a compiler translating CRN++ programs into chemical

reactions, thereby laying the foundation of a comprehensive framework for

molecular programming. Our language addresses the key challenge of embed-

ding familiar imperative constructs into a set of chemical reactions happening

simultaneously and manipulating real-valued concentrations. Although some

deviation from ideal output value cannot be avoided, we develop methods to

vi

minimize the error, and implement error analysis tools. We demonstrate the

feasibility of using CRN++ on a suite of well-known algorithms for discrete and

real-valued computation. CRN++ can be easily extended to support new com-

mands or chemical reaction implementations, and thus provides a foundation

for developing more robust and practical molecular programs.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables x

List of Figures xi

Chapter 1. Introduction 1

Chapter 2. Examples 5

Chapter 3. Technique 13

3.1 Modules . 13

3.1.1 Convergence speed . 14

3.1.2 Composability . 15

3.1.3 Ld Module . 16

3.1.4 Add Module . 16

3.1.5 Sub Module . 17

3.1.6 Mul Module . 18

3.1.7 Cmp Module . 18

3.2 Sequential Execution . 22

3.3 Grammar . 25

3.4 Error Evaluation . 27

Chapter 4. Application 30

4.1 Examples . 30

4.1.1 Discrete Counter . 30

4.1.2 Factorial . 31

viii

4.1.3 Integer Division . 32

4.1.4 Integer Square Root . 34

4.1.5 Euler’s number approximation 34

4.1.6 Approximating π . 36

4.2 Error Characterization . 37

4.2.1 Error of Arithmetic Modules 38

4.2.2 Reducing the error through program refactoring 39

Chapter 5. Related Work 42

Chapter 6. Discussion and conclusions 45

Bibliography 47

ix

List of Tables

3.1 CRN++ Modules . 23

x

List of Figures

2.1 Multiplication CRN . 8

2.2 CRN++ program computing A:=A*B 9

2.3 Euclid’s algorithm . 10

2.4 GCD in CRN++: implementation and simulation 11

3.2 CRN++ Grammar . 26

4.1 Discrete counter in CRN++ 31

4.2 Factorial in CRN++ . 32

4.3 Integer division in CRN++ . 33

4.4 Integer square root algorithm 34

4.5 Integer square root in CRN++ 35

4.6 Approximating Euler’s constant in CRN++ 36

4.7 Approximating number π in CRN++ 37

4.8 Error evaluation of arithmetic modules. 40

4.9 Error comparison of Sub and an alternative way for subtraction 41

xi

Chapter 1

Introduction

A highly desired goal of synthetic biology is realizing a programmable

chemical controller that can operate in molecular contexts incompatible with

traditional electronics. In the same way that programming electronic comput-

ers is more convenient at a higher level of abstraction than that of individual

flip-flops and logic circuits, we similarly expect molecular computation to ad-

mit specification via programming languages sufficiently abstracted from the

hardware. This work focuses on developing a compiler for a natural impera-

tive programming language to a deterministic (mass-action) chemical reaction

network implementing the desired algorithm. We do not directly make as-

sumptions on how the resulting reactions would be implemented in chemistry.

This could in principle be achieved by DNA strand displacement cascades [25],

or other programmable chemical technologies.

Deterministic (mass-action) chemical kinetics is Turing universal [9],

thus in principle allowing the implementation of arbitrary programs in chem-

istry. Turing universality was demonstrated by showing that arbitrary com-

putation can be embedded in a class of polynomial ODEs [2], and then imple-

menting these polynomial ODEs with mass-action chemical kinetics. While

1

these results establish a sound theoretical foundation and show the power of

chemistry for handling computation tasks in general, translating and perform-

ing specific computational tasks can lead to infeasibly large and complex sets

of chemical reactions.

In this work we develop a programming paradigm for chemistry, based

on the familiar imperative programming languages, with the aim of making

molecular programming more intuitive, and efficient. Most commonly used

programming languages like Java, Python, C, etc, are imperative in that they

use statements that change a program’s state, with typical branching con-

structs such as if/else, loops, etc. Note that although CRNs are sometimes

talked about as a programming language [6], they are difficult to program di-

rectly (it is even unfair to equate them with assembly language). In contrast,

CRN++ operates at a much higher level.

A mapping of imperative program logic to chemical reactions manip-

ulating continuous concentrations poses various challenges that we must ad-

dress. All reactions happen concurrently, making it difficult to represent se-

quential computation where, for example, the result of one operation is first

computed and then used in another operation. Similarly, all branches of the

program execution (i.e., if / else) are followed simultaneously to some degree.

We introduce the syntax and semantics of CRN++, which is, to our

knowledge, the first imperative programming language which compiles to de-

terministic (mass-action) chemical reaction networks. CRN++ has an extensi-

ble toolset including error analysis, as well as a simulation framework [7]. We

2

thus provide an automatic environment for simulating experiments based on

CRN++ programs.

A user specifies a sequence of statements, termed commands, to exe-

cute. Assignment, comparison, loops, conditional execution, and arithmetic

operations are supported. The generated reactions are logically grouped into

modules performing the corresponding command. Each module transforms

initial species concentrations to their steady-state values which are the output

of the module. We ensure that such modules are composable by preserving the

input concentrations at the steady-state. Note that in mass-action chemistry

all species occur with non-zero concentrations, and thus all reactions happen

in parallel to some extent. To mimic sequential execution, we ensure that the

reaction corresponding to the current command happens quickly, while other

reactions are slow. For this we rely on a chemical oscillator in which the clock

species oscillate between low and high concentrations, and sequential execu-

tion is achieved by catalyzing reactions with different clock species. To achieve

conditional execution, we further need to ensure that the reactions correspond-

ing to the correct execution branch readily occur, while those corresponding

to other branches are inhibited. Our Cmp module sets ‘flag’ species to reflect

the result of comparison, which catalyzes the correct branch reactions.

Sequential execution as well as conditional branching leads to errors.

Error comes from the fact that instructions (reactions) that should not execute,

still do (at a smaller rate, of course). Moreover, the set of basic modules, such

as addition, converge to the correct value only in the limit, thus computing

3

approximately in finite time. To mitigate the error, we choose the set of

modules to exhibit exponential (fast) convergence, and we provide a toolkit

for error analysis and detection. Our tool is able to quantify error, so a user

can realize where the source of error comes from, and guide the design of more

optimal CRN++ programs.

We demonstrate the expressiveness of our language by implementing

and simulating common discrete algorithms such as greatest common divi-

sor, integer division, finding integer square root, as well as real-valued al-

gorithms such as computing Euler’s number and computing π. We imple-

ment the CRN++ compiler to reactions in Mathematica, and make use of

the CRNSimulator package [7] for manipulation and simulation of chemical

reactions. CRN++ is an extensible programming language allowing for easy

addition of new modules; we are working on the open-source version of the

tool to enable others make use of it, and extend it further.

4

Chapter 2

Examples

In this section we discuss the characteristics of chemical reaction net-

works (CRNs) through examples. First, the overall idea of computation in

CRNs is presented, followed by example programs in CRN++. The focus is

to give a high level idea of our technique, while later sections discuss internal

details.

Although historically the focus of the study of CRNs was on under-

standing the behavior of naturally occurring biological reaction networks, re-

cent advancements in DNA synthesis coupled with general methods for realiz-

ing arbitrary CRNs with DNA strand displacement cascades [25] opened the

path to engineering with chemical reactions. In this work we are not inter-

ested in a way to engineer the molecules implementing a reaction but focus on

reaction behavior and dynamics. We abstract away molecule implementation

information and denote molecular species with letters (e.g. A).

Molecular systems exhibit complex behaviors governed by chemical re-

actions. To give a formal notation of chemical reaction networks, consider the

following system:

5

CRN 1 Example chemical reaction network

A+B
1−−→ A+B + C (2.1)

C
1−−→ ∅ (2.2)

The CRN 1 consists of two reactions. A chemical reaction is defined with

reactants (left side), products (right side), and rate constant which quantifies

the rate at which reactants interact to produce products. To illustrate this,

reaction 2.1 is composed of reactants = {A,B}, products = {A,B,C}, and

rate constant k = 1. Since most reactions in CRN++ have the rate constant

equal to 1, from now on we drop the rate constant when writing reactions,

unless it is different than 1. Note that multiple molecules of same species

can be in a list of reactants (analogously for products); to handle this we use

multiset notation. As an example, to describe reaction: A + A −−→ B we

write reactants = {A2}, upper indice 2 represents multiplicity (number of

occurrences).

It may seem that a molecule of C is produced out of nothing in reac-

tion 2.1, since the multiset of reactants is a submultiset of the products. This

represents a level of abstraction where ‘fuel’ species that drive the reaction are

abstracted away (i.e., the first reaction corresponds to F +A+B −−→ A+B +

C). Making this assumption allows us to focus on the computationally rele-

vant species. The choice to use general (non-mass/energy preserving) CRNs

is an established convention for DNA strand displacement cascades [25].

6

When the molecular counts of all species are large, and the solution is

“well-mixed”, the dynamics of the system can be described by ordinary differ-

ential equations (mass-action kinetics). Molecular concentrations are quanti-

fied by a system of ODEs, where concentration of each species is characterized

by ODE of following structure:

d[s]

dt
=

∑
∀rxn∈CRN

k(rxn) · netChange(s, rxn) ·
∏

∀r∈reactants(rxn)

[r]mrxn(r)(t)

This ODE characterizes concentration of species s, written [s]. The right side

is a sum over reactions in a CRN, where k(rxn) is rate of reaction rxn, and

netChange(s, rxn) is a net change of molecules of s upon triggering of rxn

(can be negative). Concentration of a reactant r in time is written [r](t),

while mrxn(r) is the multiplicity of reactant r in reaction rxn. To illustrate

the general formula, the set of ODEs characterizing CRN 1 is:

d[A]

dt
= 0,

d[B]

dt
= 0,

d[C]

dt
= [A](t) · [B](t)− [C](t)

The concentration of species A and B is constant (derivatives zero);

thus we can write d[C]
dt

= [A](0) · [B](0) − [C](t). From this equality follows

that [C](t) is increasing when smaller than [A](0) · [B](0), decreasing in the

opposite case, and equal to zero when [C](t) = [A](0)·[B](0). Thus this system

has a global stable steady-state [C] = [A](0) · [B](0). We say that this module

computes multiplication, due to the relation between initial concentrations

and concentrations at the steady state.

7

0 5 10 15

2

4

6

8

10

12

Figure 2.1: Multiplication CRN
[A] shown in orange, [B] in green, and [C] in red.

We simulate and plot 1 dynamics of the multiplication CRN, as shown

in Figure 2.1. Initial concentrations of [A] and [B] are 6 and 2, respectively,

while the concentration of [C] approaches value 12. Note that the exact value

defined by the steady state ([C](t) = 12) is reached only at the limit of time

going to infinity. Since the computation has to be done in finite time, the

presence of error is unavoidable. This error raises challenging issues with pro-

gramming in chemistry, and necessitates techniques for controlling it. One

crucial property that determines the error is the convergence speed of the

module. The multiplication command in CRN++ is implemented through the

above module, following the design principles of convergence speed and com-

posability described in Section 3. Chemical reactions are abstracted away from

the user who can simply write Mul[A,B,C] to multiply.

CRN++ is imperative language, and as such supports sequential execu-

tion. Note that even a simple operation of multiplying and storing into the

same variable, e.g. A := A ∗ B, requires support for sequential execution: the

1All simulation done using CRNSimulator package developed by David Soloveichik [7]

8

above implementation of the Mul module necessarily assumes that the output

species is different from the input species. Otherwise, Mul[A,B,A] goes to in-

finity or 0 depending on the value of B. To implement this operation, we split

the computation into two sequential steps: (1) C := A∗B, (2) A := C. For the

multiplication we use the Mul module described above. For the assignment we

use the load module (Ld). To ensure the assignment executes after the multi-

plication is finished, we catalyze the two modules with the clock species that

reach their high values in different phases of the oscillator. Importantly, the

chemical oscillator and clock species are abstracted away from the user, who

simply uses the step construct to order reactions. To implement the desired

operation the user would write the code like in Figure 2.2.

1 crn={

2 step[{Mul[a,b,c]}],

3 step[{Ld[c,a]}]

4 };

Figure 2.2: CRN++ program computing A:=A*B

One of the basic blocks of programming languages are conditional

branches, executing upon success of a precondition. Similarly to implement-

ing sequential operations, we implement conditional execution by activating

(through catalysis) some reactions and deactivating others, depending on a

result of condition. Since no species can be driven to 0 in finite time2, all

branches of condition will be active to some extent, which makes this an inter-

2Although certain pathological CRNs can drive concentrations to infinity in finite time
(e.g., 2A → 3A), and thereby drive certain other species to 0 in finite time (e.g., with an
additional B +A→ A), these cases cannot be implemented with any reasonable chemistry.

9

esting source of errors without direct analogy in digital electronics. In contrast

to sequential computation catalyzed by clock species, conditional blocks are

catalyzed by so-called ‘flag’ species. Flag species have high and low values that

reflect the result of the comparison. We provide the Cmp module which sets

the flag species to reflect the result of the comparison. The code in Figure 2.4a

uses the Cmp module to compare a and b (step 1), enabling conditional exe-

cution in the next step.

To demonstrate the expressiveness of our language we showcase the

implementation of Euclid’s algorithm (Figure 2.3) to compute the greatest

common divisor (GCD) of two numbers. The GCD is found by subtracting

the smaller of the values from larger until the point when the two values

become equal.
1: procedure gcd(a, b)
2: while a 6= b do
3: if a > b then
4: a← a− b
5: else
6: b← b− a
7: end if
8: end while
9: return a

10: end procedure

Figure 2.3: Euclid’s algorithm

Figure 2.4a shows the implementation of Euclid’s algorithm in CRN++.

Lines 2-3 define the initial concentrations of species a, b; a0 and b0 represent

the values for which GCD is computed. To order the execution, the step

construct is used. In the first step a and b are stored into temporary variables

10

1 crn = {

2 conc[a,a0],

3 conc[b,b0],

4 step[{

5 Ld[a, atmp],

6 Ld[b, btmp],

7 Cmp[a,b]

8 }],

9 step[{

10 IfGT[{ Sub[atmp,btmp,a] }],

11 IfLT[{ Sub[btmp,atmp,b] }]

12 }]

13 };

(a) GCD implementation

0 100 200 300 400 500

5

10

15

20

25

30

(b) Dynamic simulation of the
GCD program for a0 = 32, b0 = 12.
Concentrations of a (green), and b
(orange) are shown in function of
time.

Figure 2.4: GCD in CRN++: implementation and simulation

and compared, setting the flag species to reflect the result of the comparison.

The second step uses the result of the previous comparison, and effectively

stores a − b into a if a > b, and vice versa. Since the same species cannot be

used as both input and output to Sub module, temporary variables are used

(atmp and btmp). Steps repeatedly execute due to the oscillatory behavior

of the clock species, thus implementing looping behavior by default; the steps

can be viewed as being inside of the ‘forever’ loop. CRN++, in addition to the

language and compiler to chemical reactions, is connected to the simulation

backend that enables convenient testing for correctness. We show simulation

of the GCD program in Figure 2.4b where GCD(32,12) is computed. Steps

repeatedly trigger causing a and b to converge to the correct result after a

couple iterations.

11

In addition, we implement a set of algorithms in (a) Discrete space—

counter, integer division, integer square root, as well as in (b) Continuous

space, by implementing CRN++ programs that approximate value of Euler’s

constant and π. These examples are shown in Section 4.

12

Chapter 3

Technique

This section explains CRN++, both the underlying constructs used to

build it, as well as high level primitives that represent the language itself.

We start by presenting high-level modules that are at the core of CRN++

(Section 3.1), followed by explanation about how the sequential behavior is

achieved (Section 3.2), after which we give an overview of CRN++ grammar

(Section 3.3), finally we talk about error detection and analysis tools we pro-

vide (Section 3.4).

3.1 Modules

Modules represent the core of CRN++, and in their form are somewhat

analogous to the instruction set architecture (ISA) in machine languages. Mod-

ules implement basic operations such as load, add, subtract, multiply, compare.

There are multiple ways of computing addition and other operations in

chemistry. As mentioned in the previous section, our implementation choice

is led by two basic principles: (a) convergence speed, (b) composability.

13

3.1.1 Convergence speed

Consider CRN implementing addition:

CRN 2 Addition CRN (inputs preserved). Inputs: A and B, output: C.

A −−→ A+ C

B −−→ B + C

C −−→ ∅

By solving the system of ODEs that characterize the concentration of

C we get the following:

[C](t) = [A] + [B] + ([C](0)− [A]− [B]) · e−t

[C](t) is concentration of species C in time, accordingly [C](0) is initial con-

centration, while [A](t) and [B](t) are constant (not dependent on time) thus

we exclude parenthesis and write [A] and [B]. From the equation it follows

that [C] converges to the value [A] + [B], and thus we say the CRN performs

addition. To consider the convergence speed we look at the non-constant part

of the equation. Due to the factor e−t the decrease of the non-constant part

is exponential, thus we say that the CRN exhibits exponential convergence

speed. The convergence speed is of great importance, since it directly affects

computation error; the sooner reaction converges the sooner it approaches the

correct value.

14

3.1.2 Composability

There are alternative ways to implement addition and have exponential

convergence speed:

CRN 3 Addition CRN (destructs inputs). Inputs: A and B, output: C.

A −−→ C

B −−→ C

Note that the above module does not preserve the input values. For

easier discussion, we name the initial addition module CRNAdd1 (CRN 2), and

the above one CRNAdd2 (CRN 3). To compute E := (A ∗B) +D we combine

the Mul module (CRN 1), computing C := A ∗ B, with an addition module,

computing E := C + D. Consider combining the multiplication module with

one of the addition modules. If CRNAdd1 is used, multiplication converges to

the correct value, after which CRNAdd1 has correct inputs and converges to

the expected value – E := (A∗B)+D. Before the multiplication converges, C

becomes equal to A ∗ B, reactions of CRNAdd1 trigger, but since the module

is input-preserving they do not affect steady state of the multiplication mod-

ule. However, CRNAdd2 consumes its inputs, and the composition will give

incorrect result. The Mul CRN constantly drives C to value A ∗ B, and will

keep refilling inputs to the CRNAdd2, causing the wrong result. This is the

reason CRNAdd1 is preferred over CRNAdd2. More formal discussion of com-

posability is presented in work by Buisman et al. [3], including proof showing

the composed module has a unique stable steady state, and that it preserves

15

the convergence speed.

We have set up the two main design criteria (convergence speed and

composability) for the modules, and we next describe the core modules of

CRN++.

3.1.3 Ld Module

Loads the value from source (first argument) into a destination (second

argument). The CRN used for load operation is following:

CRN 4 Load CRN

A −−→ A+B

B −−→ ∅

A are input and B are output species. This module, similar to Add , has

exponential convergence speed (detailed analysis in Buisman et al. work [3]).

In addition, concentrations of inputs are constant, thus ensuring composability.

3.1.4 Add Module

Adds two values (first and second argument) and stores the result into

destination (third argument). The Add CRN is shown in CRN 2; its conver-

gence speed and composability are already discussed.

16

3.1.5 Sub Module

Subtracts the second input value from the first and stores into destina-

tion (third argument).

CRN 5 Subtraction CRN

A −−→ A+ C

B −−→ B +H

C −−→ ∅
C +H −−→ ∅

The above CRN was generated via evolutionary algorithms [3]; by ana-

lyzing its system of ODEs, the network computes subtraction. Input species A

and B are not affected and the property of composability is satisfied. Neither

we nor Buisman et al. managed to find the analytical solution; however, anal-

ysis shows that the module converges exponentially quickly unless A = B (see

the Alternative Design subsection of the Cmp module below for an analogous,

easy to analyze case.) In our examples, A and B usually differ by at least

1. Our error evaluation tools (Section 3.4) help in detecting and analyzing

problematic cases (e.g., where A and B are close), thus enabling the user to

redesign the CRN. Runtime assertions in the simulation package that auto-

matically notify the user about these kind of problems would help identify the

source of the error. Note that many algorithms can be refactored to reduce

the error (see Section 6).

17

3.1.6 Mul Module

Multiplies inputs (first and second argument) and stores into destina-

tion (third argument). The multiplication CRN is shown in Section 2. This

CRN does not affect inputs and has exponential convergence speed, as shown

by Buisman et al. [3].

We presented modules for performing arithmetic operations (Ld , Add ,

Sub, Mul). The CRNs impose the restriction that same species cannot be used

as both input and output. More generally, species used as input to a module

cannot be used as output of any other module executing in the same step.

We show the exhaustive list of modules in Table 3.1. Importantly, CRN++ is

extensible, and supports easy addition of new modules.

3.1.7 Cmp Module

Compares the two values, and produces signals (flag species) informing

which value is greater or if they are equal.

Alternative Designs. Before explaining our implementation of com-

parison we discuss alternative implementations, and point out design decisions

that lead to the current implementation. One of more obvious ways to imple-

ment comparison is using following reaction:

A+B −−→ ∅ (3.1)

If initially [A] > [B] than all molecules of B interact with A, leaving molecules

of A at the equilibrium, and analogously for [B] > [A]. To conditionally

18

execute when [A] > [B], one can trigger reaction 3.1 in one clock phase and

than use A catalytically in the next clock phase; conditionally executing when

[B] > [A] is symmetrical.

The comparison module proposed above does not preserve inputs, and

thus it is not composable. This imposes the restriction that in the step in

which comparison is used no other module uses the compared values. Our

Cmp module does not have this restriction.

We analyze the ODE describing this CRN to evaluate the convergence

speed. Since the amount of B decreases with the same speed as A, we can

express [B](t) = [A](t)+d0, where d0 = [B](0)−[A](0). The following equation

holds:

d[A]

dt
= −[A](t) ∗ ([A](t) + d0) =⇒ [A](t) =

a0d0
−a0 + a0ed0t + d0ed0t

If d0 > 0 ([B](0) > [A](0)) terms with exponential factors converge to infinity,

and [A] to zero. Conversely, when d0 < 0, exponential factors converge to zero,

and [A] to −d0. A converges exponentially, unless A and B are equal at the

beginning (d0 = 0); then the dynamics of A are described with:

[A](t) =
a0

1 + a0t

In conclusion, the module converges fast (exponential speed) when operands

are different, while the module converges slow (linear speed) when operands

are equal (or close to each other). The linear convergence speed is yet another

problem that lead to sub-optimal performance of this module. Recall that the

19

comparison module drives the flag species which then catalyze branches that

should execute, thus having a chained effect. It is of great importance to have

a reliable comparison module.

Lastly, to detect equality with the above proposed module, absence of

a species needs to be detected, since both values are driven to zero in case

of equality. Detecting the absence of species in chemistry is itself non-trivial

and error-prone. There are several approaches based on so-called absence

indicators. Generally speaking, the absence indicator for A is produced at

a constant rate and gets degraded by A. The absence indicator has to be

produced slowly, or else it will be present in non-negligible concentration even

if A is present. The absence indicators in the literature rely on a difference

between rate constants of several orders of magnitude. The relatively slow

dynamics of the production of the absence indicator lead to a fair amount of

error affecting the computation, and necessitate slowing down the clock (i.e.,

the whole computation) to work properly.

Our Design. Cmp is implemented using two sequentially executed sets

of reactions, which trigger in consecutive clock phases. In the first phase, the

input values (X and Y) are normalized to signal species XGTY and XLTY

(CRN 6). For example, if [X] = 80 and [Y] = 20, signal species XGTY and

XLTY converge to 0.8 and 0.2, respectively. We analyze the ODEs charac-

terizing the normalization module and conclude it exhibits exponential con-

vergence speed.

20

CRN 6 CRN for normalizing compared values

XGTY + Y −−→ XLTY + Y

XLTY +X −−→ XGTY +X

The goal of the second phase of comparison is to detect which nor-

malized value is greater. We use a chemical Approximate Majority (AM)

algorithm [5] to detect if XGTY or Y GTX is in majority. All molecules of a

less populous species convert to other species. AM reactions are:

CRN 7 Approximate Majority CRN

XGTY +XLTY −−→ XLTY +B

B +XLTY −−→ XLTY +XLTY

XLTY +XGTY −−→ XGTY +B

B +XGTY −−→ XGTY +XGTY

The majority algorithm causes convergence of XGTY to 1 and XLTY

to 0 when X > Y , and vice versa. Now, one can use species XGTY as a

catalysts in reactions that should execute only if X > Y , and XLTY if X < Y .

The AM network has been studied in the stochastic context (stochastic CRNs)

and is known to converge quickly, even when inputs are close [1].

Equality checking. Due to the always present error in chemical com-

putation, checking for equality is actually approximate-equality checking. Con-

sider having a chemical program with real values, then if the values are close

to each other it is impossible to tell if they are actually equal but affected

21

with error, or they represent different real valued signals. Due to this issue,

while comparing for equality is impossible, we compare for ε-range equality,

where ε can be arbitrarily small. Since most of the problems we solve are

discrete algorithms we use equality checking for ε = 0.5, allowing easy com-

parison of the integer values (e.g., values in range (2.5, 3.5) are considered to

be equal to 2). To support equality checking we compare x+ ε with y (gener-

ating signals XGTY and XLTY), and at the same time compare y + ε with

x (generating signals Y GTX and Y LTX). Combining the signals of the two

comparisons gives the desired result: If X = Y , signal XGTY is high (XLTY

low) and Y GTX is high (Y LTX low) due to the added offset. To execute

a reaction upon equality both XGTY and Y GTX are used catalytically. If

X > Y , signal XGTY is high (XLTY low) and Y LTX is high (Y GTX low),

so both XGTY and Y LTX should be used catalytically. Symmetrically for

X < Y , both XLTY and Y GTX are used catalytically. Note that unlike

in the previously proposed comparison module, this module does not ask for

absence checks and absence indicators, and as such is more reliable in time-

constrained environment. After calling Cmp in a step, programmer can use

IfGT , IfGE , IfEQ , IfLT , IfLE in subsequent steps to conditionally execute

reactions. Note that the flags are active until the next call to Cmp module.

3.2 Sequential Execution

CRN++ allows programming in a sequential manner, despite the intrin-

sically parallel nature of CRNs. To model sequential execution in CRNs there

22

Mnemonic Restrictions Output (Steady State) CRN

Ld B 6≡ A B := A
A −−→ A + B

B −−→ ∅

Add C 6≡ A ∧ C 6= B C := A + B

A −−→ A + C

B −−→ B + C

C −−→ ∅

Sub C 6≡ A ∧ C 6≡ B C :=

{
A−B, A > B

0, otherwise

A −−→ A + C

B −−→ B + H

C −−→ ∅
C + H −−→ ∅

Mul C 6≡ A ∧ C 6≡ B C := A ·B
A + B −−→ A + B + C

C −−→ ∅

Dvd C 6≡ A ∧ C 6≡ B C := A/B
A −−→ A + C

B + C −−→ B

Sqr B 6≡ A B :=
√
A

A
1−−→ A + B

B + B
1
2−−→ ∅

AM A 6≡ B

A :=

{
A + B, A > B

0, B > A

B :=

{
0, A > B

A + B, B > A

A + B −−→ A + T

B + A −−→ B + T

T + A −−→ A + A

T + B −−→ B + B

Cmp A 6≡ B Sets flag species * Two CRNs (normaliza-
tion and AM) triggering
in two consecutive phases
(discussed in Section 3)

Table 3.1: CRN++ Modules
The first column denotes the name of the module. The restrictions column imposes

compile-time restrictions for using modules, here 6≡ is used to mean different species (not
values). The output column shows the value of outputs at the steady state. Finally, the

CRN column shows chemical reactions implementing the module.

23

is a need to isolate two reactions from co-occurring, and control the order in

which they happen. The key construct we rely on to achieve these goals is a

chemical oscillator.

A chemical oscillator is a CRN consisted of species which concentrations

oscillate between low and high values. The oscillatory CRN [18] we use is

described with a following set of reactions:

CRN 8 Oscillator CRN

i = 1, ..., n− 1 : Xi +Xi+1 −−→ 2Xi+1

Xn +X1 −−→ 2X1

Xi are clock species, and n is number of them. Concentration of Xi

oscillates between zero and maximum value – which depends on initial con-

centrations. Catalytic addition of the clock species to reactions controls the

rate at which the reaction fires. All Xi oscillate at the same frequency, but

differ in oscillation (clock) phase. Different species have different oscillation

phase and reach minimum and maximum points at different time moments, as

shown in Figure 3.1. To ensure two reactions (rxn1 and rxn2) do not co-occur,

we catalyze reactions with two non-overlapping clock species. It is not possi-

ble to ensure that two clock species have no overlap, and to allow for correct

sequential execution it is important to keep it as low as possible. We use every

third clock species, i.e. X3, X6, X9 etc., to catalyze reactions that should be

ordered.

The chemical oscillator is abstracted from a CRN++ user, who can or-

24

0 20 40 60 80 100

0.5

1.0

1.5

2.0

Figure 3.1: Chemical oscillator containing 3 species: X1 (red), X2

(green), and X3 (blue)

der reactions using the step construct. Reactions in different calls of step are

isolated from each other through clock species acting catalytically. Steps are

assigned in order, meaning that earlier calls of step are assigned earlier phases.

The oscillatory behavior of the clock species causes steps to get repeated, af-

ter the last step is executed the first one starts again, causing the loop-like

behavior. The total number of clock species needed is automatically deter-

mined through the number of calls to step. Each call to step typically requires

one clock species, with the exception in the case Cmp module is used, which

requires two phases to execute.

3.3 Grammar

We already revealed many pieces of CRN++ syntax, but have not co-

herently presented it. Figure 3.2 shows overview of the grammar.

At its root CRN contains a list of RootS s, where RootS can be either

ConcS – defines initial concentration of species, RxnS – defines a reaction,

ArithmeticS – performs arithmetic operation, and StepS – orders execution.

25

〈Crn〉 ::= ‘crn = {’ 〈RootSList〉 ‘}’

〈RootSList〉 ::= 〈RootS 〉
| 〈RootS 〉 ‘,’ 〈RootSList〉

〈RootS 〉 ::= 〈ConcS 〉
| 〈RxnS 〉
| 〈ArithmeticS 〉
| 〈StepS 〉

〈ConcS 〉 ::= ‘conc[’〈species〉‘, ’〈number〉‘]’

〈RxnS 〉 ::= ‘rxn[’〈Expr〉‘,’〈Expr〉‘,’〈number〉‘]’

〈ArithmeticS 〉 ::= ‘Ld [’〈species〉‘,’〈species〉]
| ‘Add [’〈species〉‘,’〈species〉‘,’〈species〉]
| ‘Sub [’〈species〉‘,’〈species〉‘,’〈species〉]
| ‘Mul [’〈species〉‘,’〈species〉‘,’〈species〉]

〈CmpS 〉 ::= ‘Cmp [’〈species〉‘,’〈species〉]

〈StepS 〉 ::= ‘step [’ NestedSList ‘]’

〈NestedSList〉 ::= 〈NestedS 〉
| 〈NestedS 〉 ‘,’ 〈NestedSList〉

〈NestedS 〉 ::= 〈RxnS 〉
| 〈ArithmeticS 〉
| 〈CmpS 〉
| 〈ConditionalS 〉

〈ConditionalS 〉 ::= ‘IfPresent[’〈species〉‘,’〈NestedSList〉‘]’
| ‘IfGT [’〈NestedSList〉‘]’
| ‘IfGE [’〈NestedSList〉‘]’
| ‘IfEQ [’〈NestedSList〉‘]’
| ‘IfLT [’〈NestedSList〉‘]’
| ‘IfLE [’〈NestedSList〉‘]’

〈Expr〉 ::= 〈species〉 { ‘+’ 〈species〉 }

Figure 3.2: CRN++ Grammar

26

Furthermore, StepS is divided into a list of NestedS s, where each NestedS is

either RxnS, ArithmeticS , CmpS – performs comparison, or ConditionalS.

ConditionalS conditionally executes a block based on result of previous com-

parison. Note that comparison should be executed in any step prior to condi-

tional execution. Based on result of comparison, whether the first operand is

greater than, greater or equal, equal, less or equal, less than the second operand,

conditional block IfGT , IfGE , IfEQ , IfLT , IfLE is executed. To execute upon

a presence of a species, IfPresent can be used; which catalytically adds species

to reactions.

The grammar can be easily extended; e.g., new arithmetic modules

can be added to the list of ArithmeticS nonterminals. Also, we experimented

with absence indicators, CRN++ grammar allows for easy addition of IfAb-

sent conditional statements that can be used to compare synchronous and

asynchronous programs.

3.4 Error Evaluation

Programming chemistry is inherently error-prone. We identify three

specific sources of error in CRN++. First, CRNs converge asymptotically—

only in the limit is the correct value reached— thus leaving certain amount of

error in a finite time. Second, we cannot completely turn off modules which

are not supposed to be currently executing, whether they belong to another

sequential step, or to another branch of execution. In addition, comparison

has to take into account possible error in the compared values.

27

● ●

●

● ●

●

● ● ● ● ● ● ● ●

0 100 200 300 400

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

Figure 3.3: Error evaluation of species a from GCD program.

Our design decisions were based on minimizing the error; however since

error cannot be avoided altogether, we provide a toolkit that helps in error

analysis and guiding the CRN (program) design. Using the tool, users can,

for any species of interest, track the difference between the correct value, and

the (simulated) value in chemistry. For example, if operation Add[a, b, c] is

executed in a step, than c = a + b is expected in the following step. CRN++

allows measuring the difference between the expected c = a + b, and actual

simulation value. This helps users analyze the error, and detect if the error

builds up over time.

We analyze the value of operand a from GCD example Figure 2.4, and

plot the error in Figure 3.3. In Figure 3.3, the x-axis represents time, while the

y-axis shows the difference between expected and actual value of a. Note that

the error is sufficiently small that the algorithm executes correctly throughout

the analyzed time. The error is not constant, which opens interesting questions

of correlating the error with instructions in the program. To correlate error

with program instructions we examine the GCD simulation (Figure 2.4b). It

is easy to connect the first two spikes of error with subtraction of a.

28

We provide the error evaluation framework with the vision of it being

a guiding element for programming in CRN++. We found this technique par-

ticularly useful for validation of programs, analyzing the error, understanding

the sources of error, and redesigning the CRN for correctness.

29

Chapter 4

Application

In this section we demonstrate CRN++ on several examples (Section 4.1).

There are two classes of problems we consider, (a) Discrete space—problems

involving discrete (integer) values, such as computing the greatest common di-

visor, discrete counter (Section 4.1.1), factorial (Section 4.1.2), integer division

(Section 4.1.3), integer square root (Section 4.1.4); (b) Continuous space—

problems including real valued values such as computing the Euler ’s (Sec-

tion 4.1.5) number and the number π (Section 4.1.6). Furthermore, we talk

about the error evaluation in Section 4.2.

4.1 Examples

4.1.1 Discrete Counter

We implement a discrete counter that counts from a predefined value

to zero, and repeats the process. Fig 4.1 shows both CRN++ program and

simulation results. The counter value is stored in the variable c, cInitial

preserves the initial value of the counter for later refills, while one and zero

store constants 0 and 1, respectively. The initial concentrations of the species

are set up in Lines 2-5, note that c0 is a parameter representing the initial

30

1 crn = {

2 conc[c,c0],

3 conc[cInitial,c0],

4 conc[one,1],

5 conc[zero,0],

6 step[{

7 Sub[c,one,cnext],

8 Cmp[c,zero]

9 }],

10 step[{

11 IfGT[{ Ld[cnext,c] }],

12 IfLE[{ Ld[cInitial,c] }]

13 }]

14 }

(a) CRN++ code

0 200 400 600 800 1000 1200

0.5

1.0

1.5

2.0

2.5

3.0

(b) Simulation results for c0 = 3;
value of c is shown (green line).

Figure 4.1: Discrete counter in CRN++

counter value. The counter is subtracted by one (cnext := c−1), and compared

with the zero; in the first step. In a case counter is zero, than its value is

reset to the initial value (c := cInitial), otherwise it is decremented by one

(c := cnext), in the second step. Recall the steps exhibit looping behavior,

thus the above process is repetitive.

4.1.2 Factorial

We compute the factorial using CRN++ program. Fig 4.2 shows both

the program and simulation results. To compute the factorial of a number n,

we store n in the iterator variable i, and repeatitively multiply f with i, de-

creasing i until it gets to zero. Initial concentrations of the species are defined

in Lines 2-4. In the first step (Lines 5-9), value of the iterator i is compared

31

1 crn={

2 conc[f,1],

3 conc[one,1],

4 conc[i,f0],

5 step[{

6 Cmp[i,one],

7 Mul[f,i,fnext],

8 Sub[i,one,inext]

9 }],

10 step[{

11 IfGT[{

12 Ld[inext,i],

13 Ld[fnext,f]

14 }]

15 }]

16 }

(a) CRN++ code

0 100 200 300 400 500

20

40

60

80

100

120

(b) Simulation results for f0 = 5; value
of f is shown (green line).

Figure 4.2: Factorial in CRN++

with one to check the termination condition; f is multiplied with the i storing

the value in the temporary variable fnext, and finally the iterator is decre-

mented storing the value in the temporary inext. In the second step (Lines

10-15), commands are executed only i > 1, moving the values of temporaries

back to f , and i.

4.1.3 Integer Division

We implement integer division of a two numbers, computing quotient

and remainer of the operation. Dividend is stored in the variable a, divisor

in b, quotient in q, and remainder in r. Fig 4.3 shows both program and

simulation results. Value of the divisor is subtracted from the dividend, until

dividend becomes less than the divisor. In the first step (Lines 5-7), dividend

32

1 crn={

2 conc[a,a0],

3 conc[b,b0],

4 conc[one,1],

5 step[{

6 Cmp[a,b]

7 }],

8 step[{

9 IfGE[{

10 Sub[a,b,anext],

11 Add[q,one,qnext]

12 }]

13 }],

14 step[{

15 IfGE[{

16 Ld[anext,a],

17 Ld[qnext,q]

18 }],

19 IfLT[{Ld[a,r]}]

20 }]

21 };

(a) CRN++ code

0 200 400 600 800 1000 1200

5

10

15

20

(b) Simulation results for a0 = 20, b0 = 3;
values of a (green), b (orange), q (red),
and of r (blue) are shown.

Figure 4.3: Integer division in CRN++

and divisor are compared to detect if the termination condition is satisfied. In

the second step (Lines 8-13), if a > b, the dividend is subtracted by divisor

and quotient incremented. In the third step (Lines 14-20), if a > b, new values

for the dividend and quotient are restored from the temporary variables into

the original ones. Also, in the last step, if a ≤ b, the value of dividend is stored

into the remainder (line 17).

33

1: procedure Int Sqrt(n)
2: z ← 0
3: while (z + 1)2 ≤ n do
4: z ← z + 1
5: end while
6: return z
7: end procedure

Figure 4.4: Integer square root algorithm

4.1.4 Integer Square Root

We implement a program that finds integer square root of a number.

Figure 4.4 shows the algorithm; the square root of a number n is found by

iterating through numbers 0, 1, 2, etc, until the power of the iterated number

overshoots n. We map the algorithm to CRN++ program, and show the code

and simulation results in Figure 4.5. In the first step (Lines 3-7), we increment

the z (znext := z + 1), compute power of the z + 1 (zpow := znext ∗ znext),

and compare the power with n. In the second step (Lines 8-11), if zpow < n,

then znext is stored into z, otherwise, the result is computed and stored in

the out.

4.1.5 Euler’s number approximation

So far, we presented discrete algorithms, however chemistry allows for

real-valued (analog) computations. For programming with real values we ex-

tend CRN++ with additional module performing division – Dvd . Dvd module

follows same design principles and characteristics as other arithmetic modules

we presented.

We implement program that approximates Euler’s constant. Euler’s

34

1 crn = {

2 conc[one,1], conc[n,n0],

3 step[{

4 Add[z,one,znext],

5 Mul[znext,znext,zpow],

6 Cmp[zpow,n]

7 }],

8 step[{

9 IfLT[{Ld[znext,z]}],

10 IfGE[{Ld[z,out]}]

11 }]

12 };

(a) CRN++ code

0 100 200 300 400 500

5

10

15

(b) Simulation results for n0 = 10.
Values of z (green), zpow (orange),
and out (red) are shown.

Figure 4.5: Integer square root in CRN++

constant can be computed using the following infinite series:

e =
∞∑
n=0

1

n!
=

1

1
+

1

1
+

1

1 · 2
+

1

1 · 2 · 3
+ ...

We map this program into CRN++ code, as shown in Fig 4.6. Variable e con-

tains current approximation of the constant, while element stores the current

element of the series. In the first step (Lines 7-11), the element is divded by

the divisor, divisor incremented for the next iteration, and e incremented by

the current element of the series. In the second step (Lines 12-16), the tem-

porary variables elementNext, eNext, and divisorNext, are restored into the

original ones. Precision achieved at the end of simulation is up to 5 decimal

digits, we get result 2.71828.

35

1 crn = {

2 conc[e, 1],

3 conc[element, 1],

4 conc[divisor, 1],

5 conc[one, 1],

6 conc[divisorMultiplier, 1],

7 step[{

8 Dvd[element, divisor, elementNext],

9 Add[divisor, one, divisorNext],

10 Add[e, elementNext, eNext]

11 }],

12 step[{

13 Ld[elementNext, element],

14 Ld[divisorNext, divisor],

15 Ld[eNext, e]

16 }]

17 };

(a) CRN++ code

0 200 400 600

0.5

1.0

1.5

2.0

2.5

(b) Simulation results; value
of e is shown (green line).

Figure 4.6: Approximating Euler’s constant in CRN++

4.1.6 Approximating π

We approximate the π constant via CRN++ program. We rely on the

following infinite series to do so:

π =
4

1
− 4

3
+

4

5
− 4

7
+

4

9
− 4

11
+ ...

Fig 4.7 shows both code and simulation. In the first step (Lines 6-13), 4 is

divided by the current divisor divisor1 and stored into the factor1, also 4 is

divided by the divisor2 := divisor1 + 2 and stored into the factor2, factor1

and factor2 are subtracted and added to pi, at the same time divisor1 and

divisor2 are increased by 2 for the next iteration. In the second step (Lines 14-

18), the temporary variables divisor1Next, divisor2Next, and pi are restored

to the original variables. Value of pi at the end of simulation is 3.1417. Note

36

1 crn={

2 conc[four, 4],

3 conc[divisor1, 1],

4 conc[divisor2, 3],

5 conc[pi, 0],

6 step [{

7 Dvd [four, divisor1, factor1],

8 Add [divisor1, four, divisor1Next],

9 Dvd [four, divisor2, factor2],

10 Add [divisor2, four, divisor2Next],

11 Sub [factor1, factor2, factor],

12 Add [pi, factor, piNext]

13 }],

14 step [{

15 Ld [divisor1Next, divisor1],

16 Ld [divisor2Next, divisor2],

17 Ld [piNext, pi]

18 }]

19 };

(a) CRN++ code

0 200 400 600 800 1000

0.5

1.0

1.5

2.0

2.5

3.0

(b) Simulation results; value of
pi is shown (green line).

Figure 4.7: Approximating number π in CRN++

that error builds up, if we increase simulation time π converges to value that

is in ε = 0.2 range of the correct result. This is unlike the approximation of

the Euler’s constant; error evaluation shows that the reason is due to using

the subtraction (of close values) to approximate the π, and subtraction is

the most error-prone operation out of all arithmetic modules we present (see

Section 4.2).

4.2 Error Characterization

In this section we evaluate the error of the basic arithmetic modules

(Section 4.2.1), and present the idea of redesigning CRNs to reduce the er-

37

ror (Section 4.2.2).

4.2.1 Error of Arithmetic Modules

Using our error evaluation mechanisms (Section 3.4) we analyze the

error of the modules. We evaluate each module separately, on different inputs,

to characterize its behavior. Figure 4.8 shows the error evaluation results,

x and y axis reflect values of the first (a) and second (b) operand, respec-

tively, while z axis shows the error. The plots provide useful knowledge: (a)

The Mul module error depends on the value being computed, it increases as

the value being computed increases, and does not depend on the order of

arguments—preserves commutativity property; (b) The Add module follows

the same pattern as Mul , but has a lower absolute error; (c) The Sub exhibits

the maximum error when inputs are close to each other, and in general, has

higher error rate than other arithmetic modules. This knowledge is useful

when designing CRN++ programs, we realize that the particularly error-prone

operation is subtraction of the arguments close to each other; this is indeed

the reason why error in example approximating π constant (4.1.6) is higher

than in the one approximating Euler’s number (4.1.5). Having this in mind,

a user can decide to rewrite programs in more optimal way; for example, the

subtraction of close operands can be done in alternative, less error-prone way

(Figure 4.9b). We plan to add runtime assertions to CRN++ programs that

alert for possible issues in the program, for example, when values being sub-

tracted are closer than ε to each other.

38

4.2.2 Reducing the error through program refactoring

The Sub has a high error when operands are close to each other; but

there are alternative ways to subtract. Figure 4.9b shows the alternative code

for performing subtraction. Value of b is subtracted from a, by iteratively

subtracting 1 from both a and b, until b reaches 0.

39

(a) Add evaluation (b) Mul evaluation

(c) Sub evaluation (d) Dvd evaluation

Figure 4.8: Error evaluation of arithmetic modules.
Axis a and b show the values of the first and second operand, respectively; z
axis show the value of the error (difference between the correct and actual

value of the operation).

40

0 10 20 30 40 50 60

x

0.5

1.0

1.5

error

(a) Comparing error of Sub mod-
ule (blue lines) and alternative
way to subtract (orange lines).
X-axis show the value of both
minuend and subtrahend.

1 crn = {

2 conc[a, a0], conc[b, b0],

3 conc[one, 1], conc[zero, 0],

4 step[{

5 Cmp[b, zero]

6 }],

7 step[{

8 IfGE[{

9 Sub[a, one, anext],

10 Sub[b, one, bnext]

11 }]

12 }],

13 step[{

14 IfGE[{

15 Ld[anext, a],

16 Ld[bnext, b]

17 }]

18 }]

19 }

(b) Alternative way to subtract

Figure 4.9: Error comparison of Sub and an alternative way for
subtraction
Error evaluation is shown (Figure a) for the cases when the operands are equal
(minuend and subtrahend same), since Sub exhibits the highest error in that
case.

41

Chapter 5

Related Work

Computational power of chemical reaction networks. Previous

research demonstrated techniques of achieving complex behaviors in chemistry,

such as: computing algebraic functions [3], polynomials [21], implementing

logic gates [20]. Moreover, the Turing completeness of chemistry has been

proven, using the strategy of implementing polynomial ODEs (which have

been previously shown to be Turing universal) in mass-action chemical kinet-

ics [9]. Even though Turing complete, this translation to chemistry can result

in infeasibly complex chemical reaction networks, which motivates other, more

direct methods.

Modular Reactions. Adding even a single reaction to a CRN can

completely change its dynamics, which makes the design process challenging.

The idea of ‘composable’ reactions seeks a set of reactions that can be com-

posed in a well-defined manner to implement more complex behaviors. Buis-

man et al. [3] compute algebraic expressions by designing the core modules

that implement basic arithmetic operations, which can be further composed

to achieve more complex tasks. Our goal is to make modular designs, and we

follow some of the proposed design principles for achieving the goal, such as

42

input-preserving CRNs.

Synchronous computation. Previous work utilized synchronous logic

to achieve complex tasks. Soloveichik et al. implement state machines in chem-

istry by relying on clock species [25]. We use the same technique, where we

add clock species acting catalytically to order reactions. Jiang et al.[15], also

relying on clock species, design a model of memory in chemistry to support

sequential computation, demonstrating their technique on examples of a bi-

nary counter and a fast Fourier transform (FFT). Previous work shows the

promise of programming synchronous logic in reactions, which we advance by

providing an explicit programming language and framework for designing and

testing wide-range of programs.

Asynchronous computation. Recall, an absence indicator is a species

that is present in high concentration when a target species is present in low

concentration. Absence indicators can be used to drive a reaction when a

particular reaction has finished, providing a method for executing modules in

desired order. Huang et al. [14] use absence indicators to implement algo-

rithms such as integer division and GCD. Their method requires two reaction

rates, ‘fast’ and ‘slow’, where the fast rate needs to be orders (2-3) of mag-

nitude larger to ensure the proper function of the system. Since, in practice,

biochemical systems allow for a restricted range of reaction rates, requiring a

large spectrum of rates slows down the computation when the computation

speed is dictated by the slow rates. In contrast, we allow all reactions to take

the same (or comparable) rate constants. While the goal of our work is not

43

to compare asynchronous and synchronous computation, we mention insights

and intuition of their differences, which we gained through empirical studies.

First, absence indicators are not robust, and typically require fine tuning to

get the system right. Second, error detection is easier with synchronous logic.

Since all operations follow the clock signal, there is a direct mapping from a

time moment to a command that is executing, which provides a way to check

correctness of a system at any point of time. Finally, we provide a framework

for implementing molecular programs which is easily extensible, and can be

used to compare synchronous and asynchronous logic. We include support for

absence indicators through a IfAbsent construct, thus allowing easy compari-

son of the two paradigms.

44

Chapter 6

Discussion and conclusions

There are multiple ways in which we can further improve CRN++. Note

that currently every high-level module is mapped to exactly one CRN imple-

menting the operation. Letting the tool decide which implementation to use

in different contexts could boost the performance. For example, the described

modules have a useful property of preserving inputs, but that property might

not be needed in every case. If the input preserving property is redundant,

CRN++ could choose to use the more optimized version (for example the more

compact subtraction CRN discussed above). Also, we can improve the pro-

gramming experience by allowing the same species as both input and output

of a module, and do the background work to allocate temporary variables.

An important direction for future research concerns reducing the error

in our construction, and how it builds up over time. We noticed that different

algorithms, even computing the same function, accumulate varying levels of

error. For example, as seen in 4.2.1, the error of the Sub module increases

with the magnitude of the operands, and also increases the closer they are.

However, we also found an alternative way to subtract, that keeps the error

constant and independent of the operands (see Figure 4.9b) at the cost of

45

slower run-time. Our error analysis shows that for most examples we tried,

but not all, error builds up over the course of the computation. For the CRN++

programs where the error builds up in this way, there is some maximum input

complexity beyond which the error overwhelms the output. Can all CRN++

programs be refactored (preferably automatically) to bound the cumulative

error of every module such that it does not build up over time? Note that

if this were possible, we would obtain another, more efficient, way to achieve

Turing universality.

To the best of our knowledge we are the first to provide an imperative

programming language which compiles to chemical reaction networks. More-

over, we build tools that can help users get a better understanding of CRNs

and improve their design. Although, absolutely correct computation is not

achieved, we provide tools that help understand why error occurs and improve

the design of CRNs. We release our toolkit as open source, to encourage new

research and improvement of the CRN++, with the hope of advancing the

engineering of information processing molecular systems.

46

Bibliography

[1] Dana Angluin, James Aspnes, and David Eisenstat. A simple population

protocol for fast robust approximate majority. Distributed Computing,

21(2):87–102, 2008.

[2] Olivier Bournez, Daniel S Graça, and Amaury Pouly. Polynomial time

corresponds to solutions of polynomial ordinary differential equations

of polynomial length: the general purpose analog computer and com-

putable analysis are two efficiently equivalent models of computations.

In LIPIcs-Leibniz International Proceedings in Informatics, volume 55.

Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[3] H. J. Buisman, Huub M. M. ten Eikelder, Peter A. J. Hilbers, and An-

thony M. L. Liekens. Computing algebraic functions with biochemical

reaction networks. Artificial Life, pages 5–19, 2009.

[4] Luca Cardelli, Milan Češka, Martin Fränzle, Marta Kwiatkowska, Luca

Laurenti, Nicola Paoletti, and Max Whitby. Syntax-Guided Optimal

Synthesis for Chemical Reaction Networks, pages 375–395. 2017.

[5] Luca Cardelli and Attila Csikász-Nagy. The cell cycle switch computes

approximate majority. Scientific reports, 2:656, 2012.

47

[6] Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca

Cardelli, David Soloveichik, and Georg Seelig. Programmable chemical

controllers made from DNA. Nature nanotechnology, 8(10):755, 2013.

[7] CRNSimulator Mathematica package. http://users.ece.utexas.edu/

~soloveichik/crnsimulator.html.

[8] Peter Dittrich, Jens Ziegler, and Wolfgang Banzhaf. Artificial chemistries

– a review. Artificial life, 7(3):225–275, 2001.

[9] François Fages, Guillaume Le Guludec, Olivier Bournez, and Amaury

Pouly. Strong Turing completeness of continuous chemical reaction net-

works and compilation of mixed analog-digital programs. In Interna-

tional Conference on Computational Methods in Systems Biology, pages

108–127, 2017.

[10] Brian Fett, Jehoshua Bruck, and Marc D Riedel. Synthesizing stochas-

ticity in biochemical systems. In Proceedings of the 44th annual Design

Automation Conference, pages 640–645, 2007.

[11] Brian Fett and Marc D Riedel. Module locking in biochemical synthesis.

In Computer-Aided Design, 2008. ICCAD 2008. IEEE/ACM Interna-

tional Conference on, pages 758–764, 2008.

[12] Jinting Gao, Yaqing Liu, Xiaodong Lin, Jiankang Deng, Jinjin Yin, and

Shuo Wang. Implementation of cascade logic gates and majority logic

48

http://users.ece.utexas.edu/~soloveichik/crnsimulator.html
http://users.ece.utexas.edu/~soloveichik/crnsimulator.html

gate on a simple and universal molecular platform. Scientific reports,

7(1):14014, 2017.

[13] Benjamin Groves, Yuan-Jyue Chen, Chiara Zurla, Sergii Pochekailov,

Jonathan L Kirschman, Philip J Santangelo, and Georg Seelig. Com-

puting in mammalian cells with nucleic acid strand exchange. Nature

nanotechnology, 11(3):287, 2016.

[14] De-An Huang, Jie-Hong R. Jiang, Ruei-Yang Huang, and Chi-Yun Cheng.

Compiling program control flows into biochemical reactions. In Proceed-

ings of the International Conference on Computer-Aided Design, pages

361–368, 2012.

[15] H. Jiang, M. Riedel, and K. Parhi. Synchronous sequential computa-

tion with molecular reactions. In 2011 48th ACM/EDAC/IEEE Design

Automation Conference (DAC), pages 836–841, 2011.

[16] H. Jiang, M. Riedel, and K. Parhi. Synchronous sequential computa-

tion with molecular reactions. In 2011 48th ACM/EDAC/IEEE Design

Automation Conference (DAC), pages 836–841, 2011.

[17] Ahmad S Khalil and James J Collins. Synthetic biology: applications

come of age. Nature Reviews Genetics, 11(5):367, 2010.

[18] Michael Lachmann and Guy Sella. The computationally complete ant

colony: Global coordination in a system with no hierarchy. In European

Conference on Artificial Life, pages 784–800. Springer, 1995.

49

[19] Alex Lake, Stephen Shang, and Dmitry M Kolpashchikov. Molecular

logic gates connected through DNA four-way junctions. Angewandte

Chemie International Edition, 49(26):4459–4462, 2010.

[20] Marcelo O Magnasco. Chemical kinetics is Turing universal. Physical

Review Letters, 78(6):1190, 1997.

[21] Sayed Ahmad Salehi, Keshab K. Parhi, and Marc D. Riedel. Chemical

reaction networks for computing polynomials. ACS Synthetic Biology,

6(1):76–83, 2017.

[22] Phillip Senum and Marc Riedel. Rate-independent constructs for chemi-

cal computation. PloS one, 2011.

[23] Adam Shea, Brian Fett, Marc D Riedel, and Keshab Parhi. Writing and

compiling code into biochemistry. In Biocomputing 2010, pages 456–464.

2010.

[24] David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck.

Computation with finite stochastic chemical reaction networks. natural

computing, 7(4):615–633, 2008.

[25] David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal

substrate for chemical kinetics. Proceedings of the National Academy of

Sciences, 107(12):5393–5398, 2010.

50

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Chapter 2. Examples
	Chapter 3. Technique
	Modules
	Convergence speed
	Composability
	Ld Module
	Add Module
	Sub Module
	Mul Module
	Cmp Module

	Sequential Execution
	Grammar
	Error Evaluation

	Chapter 4. Application
	Examples
	Discrete Counter
	Factorial
	Integer Division
	Integer Square Root
	Euler's number approximation
	Approximating

	Error Characterization
	Error of Arithmetic Modules
	Reducing the error through program refactoring

	Chapter 5. Related Work
	Chapter 6. Discussion and conclusions
	Bibliography

