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I first study the effects of additional loan modifications on loan losses

during the recent financial crisis. Despite loan modification being widely dis-

cussed as an alternative to foreclosure, little research has focused on quantify-

ing its effect on loan performance. By exploiting plausible exogenous variation

in the incentives to modify securitized non-agency loans, I find that an addi-

tional modification reduces loan losses by 34.5% relative to the average loss.

Consistent with theory, modifications are especially beneficial when borrowers

are less likely to return to a current status without help and when foreclo-

sure losses are higher. Modification types that grant greater concessions to

borrowers are the most effective for minimizing losses. Overall, additional

modifications prevent borrower foreclosure while simultaneously benefiting in-

vestors.

I then study the relation between originators that misreported mort-

gages and house price movements. ZIP codes with high concentrations of

vi



misreporting originators experienced a 75% larger relative increase in house

prices from 2003 to 2006 and a 90% larger relative decrease from 2007 to 2012

compared to other ZIPs. Six causality related tests suggest that high fractions

of bad originators in a ZIP result in larger price swings. In areas of elastic

land supply, ZIPs with bad originators are associated with a building boom

and a subsequent price bust that is much more severe than in similar ZIPs

without bad originators. Originators with high misreporting seemed to have

both given credit to borrowers of a higher stated risk and further understated

the borrowers’ true risk. Overall, the findings suggest that there are settings

where questionable business practices can lead to large distortionary effects.
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Chapter 1

When are Modifications of Securitized Loans

Beneficial to Investors?

1.1 Introduction

Financial economists have long studied debt renegotiation in the con-

text of corporate default.1 With the recent securitization crisis and the col-

lapse of the housing market, part of this attention has shifted toward the

renegotiation of mortgage loans (i.e., loan modifications). Several academics

and policymakers advocated for reforms to incentivize modifications because

they blamed the low loan modification rates for exacerbating the waves of

foreclosures that occurred during the financial crisis (e.g., Posner and Zin-

gales (2009), Mayer, Morrison, and Piskorski (2009a), Congressional Oversight

Panel (2009)).2 However, others note that due to the asymmetric information

inherent in the mortgage market, loan modifications are not necessarily ben-

eficial for the loan holder (Adelino, Gerardi, and Willen (2013a)). Of partic-

1For example, early work by Gilson, John, and Lang (1990) and Asquith, Gertner, and
Scharfstein (1994) study the outcome of debt restructuring following payment default and
Beneish and Press (1993) study the costs of debt renegotiation following covenant violations.

2The rationale is that foreclosures can be prevented by changing the terms (e.g., the
principal, the interest rate, the amortization period) of a distressed loan and then reinstating
it. This always benefits the borrower, while it can also benefit the loan holder if the prevented
loan losses outweigh the modification costs.
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ular concern are the contract frictions of the non-agency securitized market,

in which most of the foreclosures occurred.3 This paper examines how loan

modifications in the non-agency securitized market affect loan losses.

Evaluating the impact of loan modification on loan losses is challenging

for multiple reasons. First, the impact of modification on losses is not con-

stant across loans: Some loans may benefit from modifications while others

may not. Thus, the average effect of modification on loan losses as captured

by the standard regression framework is not very informative. What is of in-

terest is the effect of modification on the marginal loan, which is the effect an

additional modification would have on the next loan that would be selected

for modification. Second, the decision to modify a loan is endogenous. Loan

modifications are not randomly assigned and are likely to be determined by

dimensions beyond what is accounted for in the data. For example, the modi-

fication decision may be correlated with an unobserved measure of loan quality

that also affects loan losses, potentially causing a bias.

I address the challenges in measuring the effect of loan modification on

loan losses using a quasi-natural experiment. I exploit a shock to modification

incentives that affected a subset of the non-agency loans in my sample. In Au-

gust 2008, Fannie Mae and Freddie Mac began paying servicers, who manage

3Foreclosure rates of privately securitized loans were quite high compared to other types
of loans. By 2007, privately securitized mortgages made up 55% of foreclosure initiations
(Mortgage Bankers Association (June 2007)) despite being roughly 20% of all mortgages
(Goodman et al. (2008)).
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loss mitigation decisions, an incentive fee for each successful modification.4 Al-

though I am interested in studying loans from the non-agency market and not

from the government-sponsored enterprise (GSE) market, I take advantage of

the fact that some servicers operate in both markets (“both-market servicers”)

while other servicers only operate in the non-agency market (“non-agency-only

servicers”). The incentive fee made modifications in the GSE market more at-

tractive to both-market servicers relative to modifications in the non-agency

market (which offered no incentive fee). This provides a plausible source of

exogenous variation in non-agency modifications of the servicers who operate

in both markets that can be used to identify the effect of modification on the

losses of the marginal loan.

Advocates for additional modifications argue that securitization dis-

torts the modification incentives of servicers. First, servicers do not neces-

sarily benefit more from modifications than from other actions available to

them (e.g., foreclosures). Second, pooling and servicing agreements (PSAs),

which set rules that govern privately securitized loans, do not provide precise

guidelines to servicers, and may even limit modifications. Third, the seniority

ordering of the various tranches inherent to securitized products can also affect

modifications, because different investors could benefit from different servicing

4The incentive fee approximately covered servicers’ modification expenses. In December
2008, these incentive fees were further formalized by the “Streamline Modification Program,”
a joint effort of Fannie Mae, Freddie Mac, the Federal Housing Finance Agency (FHFA),
and the U.S. Department of the Treasury. The incentive fee was replaced by the Home
Affordable Modification Program (HAMP) in March 2009. My sample starts in August
2007 and ends in February 2009.
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decisions. However, while a successful modification avoids foreclosure and the

subsequent destruction of property value,5 it is not obvious that additional

modifications are in the best interests of investors. First, if a loan becomes

delinquent again shortly after modification, investors could suffer larger losses

than if they had not modified the loan at all. In particular, if house prices are

declining, losses associated with redefaulted loans could be much larger than

the losses associated with foreclosure without modification (thus, servicers face

“redefault risk”). Second, it is also possible that a delinquent borrower can

return to a current status without help, in which case any concession to the

borrower would be unnecessary (thus, servicers face “self-cure risk”). Third,

modification might also encourage opportunistic behavior from other borrow-

ers who may default with the intention of extracting benefits from servicers

(thus, servicers face “moral hazard”).6 Ultimately, whether the effect of mod-

ification on loan losses is economically important is an empirical question, as

is the question of when additional modifications are beneficial.

A difference-in-difference estimation in a large set of non-agency loans

that became seriously delinquent or were modified (“distressed”) shows that

both-market servicers responded to the incentive fee by modifying their non-

agency loans 5.7% less than non-agency-only servicers. This is equal to 50.9%

of the average modification rate of 11.2%, showing that the incentive fee is a

5For example, foreclosed properties tend to lose value due to poor maintenance (Madar,
Been, and Armstrong (2009), Campbell, Giglio, and Pathak (2011)).

6For a rigourous treatment of redefault and self-cure risks see Adelino, Gerardi, and
Willen (2013a).
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relevant instrumental variable (IV). This result is consistent with i) modifica-

tions being costly and labor intensive, ii) servicers being capacity constrained,

and iii) servicers being unable or unwilling to increase capacity. In addition,

for the incentive fee to be a valid instrument, it also must satisfy the exclusion

restriction condition. I argue that because the introduction of the incentive

fee in the GSE market is a direct incentive to modify, it should have had no

effect on loan losses in the non-agency market (i.e., a separate market), except

through the modifications of both-market servicers.

Using the incentive fee in an IV regression framework, I find that mod-

ification prevents losses by 13.9%, which is a sizable 34.5% relative to the

average loan loss of 40.3%. This suggests that modifications of non-agency

loans have an important economic effect on the margin. This result is robust

to different subsamples and verified using a matching estimation procedure

based on ZIP code, month of distress, and propensity score. The benefits of

modification are especially important in areas with relatively larger housing

price decreases and relatively larger unemployment increases, where borrow-

ers are less likely to return to current without help (low self-cure risk), and

where foreclosure losses are higher. Even in the ZIP codes with low self-cure

rates and large losses associated with foreclosures, more than 40% of the mod-

ified loans do not redefault within three years, suggesting that modifications

prevent future loan losses by helping avoid foreclosure.7 Also, modification

7My empirical design takes into account redefault and self-cure risks, but abstracts from
the potential moral hazard problem mentioned above, which can add additional costs to
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types that grant greater concessions to borrowers are the most effective for

minimizing losses.

One potential concern is that the previous results are driven by obser-

vations from areas where house prices recovered quickly after the real estate

bust. A modification may appear helpful because a loss on the house was

avoided, but the loss avoidance may actually have been caused by a house

price rebound (through a gain of equity) and not the modification. I study

house price rebounds in the ZIP codes with the largest housing price declines

(where modifications are especially beneficial) and find the strongest effect of

modification on loan loss prevention in the areas with no rebound. This con-

firms that the marginal benefits of modifications are not mechanically driven

by observations from areas where house prices recovered quickly, but instead

derive from modifications that prevent future foreclosures.

These results raise questions about implications for the economy. Ig-

noring general equilibrium considerations, a conservative back-of-the-envelope

calculation indicates that during the past crisis, an increase of 10% in modifi-

cations8 could have helped more than 66,000 distressed borrowers avoid delin-

quency and keep their homes while benefiting investors at the same time.

Furthermore, these benefits could have been even more important in light of

the negative spillover effects of foreclosures on house prices in a given neigh-

modification (as shown by Mayer, Morrison, Piskorski, and Gupta (2014)). I discuss this in
Section 2.6.

8This increase is slightly above the difference in modification rates between non-agency-
only servicers and both-market servicers after the incentive fee.
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borhood, and the fact that this estimation only considers the non-agency spec-

trum.

Prior research convincingly argues that loan modifications could be a

tool for mitigating damage from the recent foreclosure crisis (e.g., Posner and

Zingales (2009), Mayer, Morrison, and Piskorski (2009a)). While this research

is primarily theoretical, we currently lack direct empirical evidence quantify-

ing the benefits of additional modifications. Piskorski, Seru, and Vig (2010),

Agarwal et al. (2011), and Kruger (2014) show that securitization impedes

loan modifications, a result that could be interpreted as evidence that ser-

vicers of securitized loans may modify too infrequently. On the other hand,

Adelino, Gerardi, and Willen (2013a) do not find economically important dif-

ferences in mortgage renegotiation between securitized loans and loans kept

by the lenders (portfolio loans). My results draw no conclusions regarding

differences in modification rates between securitized loans and portfolio loans.

Rather, I use the introduction of the incentive fee to show that the effect of

loan modification on losses is economically important, which is also consistent

with servicers modifying too infrequently.

This paper also relates to the literature concerning the effect of the ser-

vicer on loan performance. Haughwout, Okah, and Tracy (2009) and Quercia

and Ding (2009) show that loan redefault rates depend on the type of modifica-

tion chosen by the servicer. Demiroglu and James (2012) show that originator-

servicer affiliation affects residential mortgage-backed security (RMBS) perfor-

mance. Gan and Mayer (2007) study commercial mortgage-backed securities

7



(CMBS) and show that when holding the junior tranche, the servicer delays

liquidation and the security has higher delinquency rates. Like this prior re-

search, my results show that servicing has an important impact on securitized

loan performance.

Finally, this paper also relates to studies that evaluate recent policy

interventions in the mortgage market. Agarwal et al. (2013) show that al-

though HAMP increased loan modifications, its effect was weaker than ex-

pected largely due to differences in servicer response. Although my main

focus is on quantifying the effects of additional modifications on loan losses

and not on evaluating policy, my results also have policy implications by sug-

gesting that the intervention of the GSE market may have negatively affected

the non-agency market: Therefore, my results show that policymakers should

be cautious of the unintended consequences that may result from other inter-

connected markets.

1.2 Background and empirical framework

1.2.1 The servicing industry

The servicer is the entity responsible for the collection of interest and

principal payments of mortgage loans. If the loan is securitized, the servicer

remits the payments to a trust that holds the mortgages. The trust later

distributes the money to investors. Broadly speaking, if a borrower becomes

delinquent, the servicer can i) wait to see if the loan self-cures without taking

any action, ii) foreclose the loan, or iii) work with the borrower to help him

8



or her become current (e.g., modify). In a loan modification, the servicer can

choose to restructure one or more features of the loan (e.g., the principal, the

interest rate, the amortization period), waive penalties and fees, or capitalize

the interest and fees. Servicer actions differ in costs. Payment processing is

the cheapest because it can be highly automatized and is subject to economies

of scale. However, servicer costs increase during economic downturns, when

delinquencies tend to increase significantly. The foreclosure process can still

be automatized to some degree, though it is more costly than managing pay-

ments.9 In contrast, loan modifications are more discretionary and require

more labor, which makes them relatively more costly.10

Servicers deal with different types of mortgage loans, such as portfolio

loans (retained by the lender) or securitized loans (sold by the lender). This

study focuses on securitized loans. Securitized mortgages are classified into

two main groups, depending on the issuer of the security. Loans included

in RMBS and issued by investment banks are non-agency loans (or private-

label loans). In contrast, agency (or GSE) loans are those in RMBS issued by

government-sponsored enterprises such as Fannie Mae or Freddie Mac. The

non-agency and the GSE mortgage markets differ not only in size but also in

loan characteristics.11 They also differ in the incentives that servicers face.

9An extreme example of this is the robo-signing scandal of 2010.
10Levitin and Twomey (2011) note that the modification costs for servicers range from

$500 to $1,000.
11According to Goodman et al. (2008), the total size of the non-agency market by mid-

2007 was $2.12 trillion, while the GSE market was $4.15 trillion. In terms of loan character-
istics, non-agency loans in general are either larger than GSE loans, or have lower expected
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Guidelines on servicer actions regarding the mortgages in the trust of a non-

agency RMBS can be found in the Pooling and Servicing Agreement (PSA),

a document generally prepared by the sponsor of the deal and filed with the

Securities and Exchange Commission (SEC). The general guideline for the

servicer is to manage the loan as if it were its own, which means it should

maximize the net present value for the investor. Yet, PSAs are often vague

with respect to the specific actions servicers should take if a loan becomes

delinquent. On the other hand, the guidelines for servicers in the GSE market

are set directly by the guarantors of the securities, Fannie Mae and Freddie

Mac. Unlike PSAs, Fannie Mae’s and Freddie Mac’s guidelines are consid-

erably more explicit. Additionally, Fannie Mae and Freddie Mac frequently

update and clarify their guidelines for servicers.

Some servicers specialize in servicing only non-agency loans (non-agency-

only servicers), while other servicers focus on GSE loans or a mixture of both

loan types (both-market servicers). Table 1.1 documents this fact among 22

of the 23 servicers in my sample of non-agency loans as of year-end 2007.12

Of the servicers listed in the table, 36% focus mainly on subprime (mostly

non-agency securitized) loans, while the remaining 64% operate in both the

GSE and the non-agency markets. My main empirical strategy exploits this

heterogeneity.

quality than GSE loans, which conform to Fannie Mae’s and Freddie Mac’s guidelines.
12The missing servicer, MetLife Home Loans, was founded in 2008.
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1.2.2 A change in modification incentives

In August 2008, Fannie Mae and Freddie Mac began paying servicers

an incentive fee of $700 and $800, respectively, for each successful modifica-

tion, in an attempt to provide incentives for servicers to pursue alternatives

to foreclosure.13 This incentive fee made modifications in the GSE market

relatively more attractive to both-market servicers than modifications in the

non-agency market, which offered no incentive fee at the time. To the ex-

tent that both-market servicers lacked the capacity to handle the increasing

demand for modifications, the incentive fee provides a plausible source of ex-

ogenous variation in modification rates of both-market servicers, which can be

used to identify the effect of modifications on loan losses. In this paper, I use

the introduction of this incentive fee as an instrument for modification to esti-

mate the causal effect of modification on the losses of the marginal loan (i.e.,

the next loan that would be selected for modification). I discuss the validity

of the introduction of the incentive fee as an instrumental variable in detail in

Section 1.4.

1.2.3 Main identification strategy

The main objective of this paper is to evaluate the impact of loan

modification on loan losses. Consequently, the baseline regression of interest

13Later, in December 2008, these incentive fees were further formalized by the “Streamline
Modification Program,” a joint effort of Fannie Mae, Freddie Mac, the Federal Housing
Finance Agency (FHFA), and the U.S. Department of the Treasury. An $800 incentive
fee was offered to servicers for each successful modification. The fee was paid upon the
completion of the modification, after a trial period.
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is of the form

Yi = α1 + β1Modi +X ′iΓ1 + ε1i (1.1)

where Yi represents loan i’s losses, Modi is an indicator for modification, and

Xi is a vector of loan-level characteristics and fixed effects. More specifically,

in this paper, net losses are defined as losses minus recoveries, divided by

the outstanding principal amount when the loan became distressed (60+ days

delinquent or modified). Losses of modified loans incorporate any concessions

made to the borrower. I divide by the principal outstanding to capture the loss

for the RMBS investor. The indicator Modi takes the value of one (1) if the

loan was modified within six months from becoming distressed, and zero (0) if

it was not (e.g., no action was taken, the loan was foreclosed, or the loan was

modified after six months). The cases in which the servicer does not take any

action are included to account for self-cures. In terms of fixed effects, I include

Core Based Statistical Area (CBSA)-month of origination fixed effects in an

attempt to control for unobservable quality and local economic conditions

at the time of origination. The month of loan distress and servicer fixed

effects are also included to control for aggregate economic conditions and time-

invariant unobservable characteristics of servicers. Additionally, estimates are

calculated from a sample of distressed loans in an attempt to further mitigate

possible unobservable differences across loans.

However, estimating this baseline regression is unlikely to be very infor-

mative. First, the ordinary least-squares (OLS) estimate of β1 essentially cap-
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tures the average difference in loan losses between modified and non-modified

loans. If the effect of loan modification on loan losses is not constant across

loans, which is likely to be the case, then the OLS estimate of β1 cannot be

interpreted as the effect of modification on the losses of the marginal loan. Sec-

ond, the decision to modify a loan is endogenous. Loan modifications are not

randomly assigned and are likely to be decided based on dimensions beyond

what is accounted for in the data. If the decision to modify a loan is correlated

with unobserved characteristics (captured in the residual) that explain loan

losses (e.g., an unobserved measure of loan quality), then the estimate of the

coefficient β1 is likely to be biased. Furthermore, it is not possible to forecast

the direction of the bias, since it will depend on the correlation between the

omitted variable and the rest of the explanatory variables in the regression,

which are not necessarily obvious.14

To overcome the two concerns described above, I follow a two-stage least

squares/IV approach (2SLS/IV). More specifically, I use the introduction of

the incentive fee in the GSE market as an instrument for modifications. The

first-stage regression is

Modi = α2 + β2BothMarkets× AfterFeei +X ′iΓ2 + ε2i (1.2)

14An example of this may be the correlation between a loan-level control (such as the
property occupancy status) and borrower quality. Though investors may have an incentive
to default strategically if prices drop dramatically and they lose the equity on the house,
investors also tend to have higher income, so they may be better payers than property
occupants.
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where the instrumental variable is BothMarkets×AfterFeei, the interaction

of BothMarketsi (a dummy variable that takes the value of one (1) if the

servicer managing the loan is a both-market servicer, and zero (0) otherwise)

and AfterFeei (a dummy variable that takes the value of one (1) if the loan

became distressed after the incentive fee in the GSE market was introduced,

and zero (0) otherwise).15,16 The second-stage regression is

Yi = α3 + β3M̂odi +X ′iΓ3 + ε3i (1.3)

where M̂odi are the fitted values from Equation 1.2. The coefficient β3 is con-

sistent, provided that BothMarkets×AfterFeei is a valid instrument. More-

over, because only a subset of loans is affected by the instrumental variable,

the IV estimate of β3 captures the Local Average Treatment Effect (LATE)

of loan modification on loan losses. As I show in Section 1.4, the introduction

of the incentive fee prevented some modifications of loans serviced by both-

market servicers. Consequently, under the additional requirement that the

instrumental variable affects the affected loans in the same way, the estimate

of β3 captures the effect that an additional modification would have on the

marginal loan, which is the effect on the next loan that would be selected

for modification.17 Under the null hypothesis that an additional modification

15Although the dependent variable Modi is a binary variable, the first-stage regression fits
a linear probability model since using a probit or a logit model could result in inconsistent
estimates (Angrist and Pischke (2009)).

16Note that because X ′
i includes servicer and month of distress fixed effects, the variables

BothMarketsi and AfterFeei are not necessary in the regression.
17More formally, in the terms of the treatment effects literature, I estimate an IV with
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does not affect the losses of the marginal loan, β3 should not be statistically

distinguishable from zero. Alternatively, if additional modifications are bene-

ficial to RMBS investors, then β3 should be statistically negative. Also, under

the assumption that servicers first modify those loans that will benefit the

most from modification, a negative β3 would also be consistent with servicers

modifying too infrequently.18

1.3 Data and sample

The primary source of data in this study comes from Lewtan’s AB-

SNet Loan. This database provides detailed information on loans that back

U.S. non-agency RMBS. Lewtan collects and cleans loan-level data reported

in RMBS servicer and/or trustee tapes and covers more than 90% of the non-

agency market. The database includes variables that describe each securitized

loan at the time of origination, including the loan amount, credit score, com-

bined loan-to-value ratio (CLTV), interest rate, level of documentation, exis-

tence of a prepayment penalty, and other descriptive variables. This database

also contains the identity of the servicer, the monthly history of payments,

foreclosure dates, loss information, and modification information (i.e., dates,

type and amounts forgiven). Though sometimes reported by the servicer or

heterogeneous treatment effects. The LATE captures the effect of modification prevention
on compliers (the loans that would have been modified had the incentive fee not existed).

18If servicers modify optimally (from the perspective of the RMBS investor), then the
effect of an additional modification on loan losses should be zero (β3 not distinguishable
from zero).
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the trustee, some of Lewtan’s modification information is derived from changes

to the mortgage contract. This helps ensure consistency across servicers and

across time.19

I study loans in RMBS deals from vintages between 2000 and 2007

(when most RMBS issuances anteceding the financial crisis occurred) that be-

came 60 days or more past due or were modified between August 2007 and

February 2009.20 This study does not focus on loans that became distressed

after February 2009, since HAMP was announced in that month and imple-

mented shortly after. Therefore, my window of analysis should only be affected

by the incentive fee and should be free from the influence of HAMP.21 The data

also includes loss information up to September 2012. Ending the sample in

February 2009 provides a window longer than three years to allow losses to

materialize following servicer actions, so losses should not be affected by right

censoring. Additionally, since my empirical strategy depends on identifying

who makes the modification decision when a loan becomes distressed, I focus

on loans with servicer information.22 I also impose some additional restrictions

19In my sample, 66.8% of the modifications are self-reported, with the remaining 33.2%
being implied. For a detailed discussion on these contract-change algorithms, see Adelino,
Gerardi, and Willen (2013a).

20Specifically, I consider first-time delinquencies or modifications.
21Although my measure of modification considers loans modified within six months of

the loan becoming distressed, the effect of HAMP on the measure should be negligible.
It is a well-known fact that HAMP had a slow start. Indeed, the number of permanent
modifications under HAMP in 2009 totaled 66,465, which is equivalent to 12.7% of the
521,630 permanent modifications under HAMP in 2010 (Inside Mortgage Finance (2012))

22During the years surrounding my analysis there was considerable merger activity in the
servicing industry. A list with the relevant events to determine servicer identity at the time
in which the loan becomes distressed can be found in Appendix A.
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on the underlying loans. I consider first-lien loans that originated between 2000

and 2007. I omit Federal Housing Administration (FHA) and Veterans Affairs

(VA) loans, which include guarantees from the government that may affect

servicer behavior. I also omit negative amortization loans, loans smaller than

$30,000, loans with loan-to-value (LTV) over 103%, and loans of multi-unit

properties. Finally, I require the variables used as controls to be non-missing,

and I focus on loans serviced by the 23 most frequent servicers in my sample.

The final sample includes slightly less than one million loans.23

1.3.1 Sample description

Table 1.2 describes the loan sample by servicer type (both-market

servicers and non-agency-only servicers) for different sub periods (full, pre-

incentive fee and post-incentive fee). Several facts can be observed. First, the

number of loans in distress serviced by both-market servicers is 2.9 (744,334/

254,733) times larger than the number of distressed loans serviced by non-

agency-only servicers, reflecting the fact that both-market servicers tend to

have a larger market share in the non-agency market. Second, the characteris-

tics of the loans across servicer types differ. Loans serviced by non-agency-only

servicers appear to be of lower quality, on average (e.g., lower credit score,

higher interest rates, a larger fraction of adjustable-rate loans), confirming the

23A total of 1.63 million loans became distressed between August 2007 and February
2009. After applying the filters described above, 1.02 million loans remain. Finally, I also
drop the loans from small non-agency-only servicers (those with less than 5,000 loans). The
final sample has 999,067 distressed loans.
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importance of controlling for loan characteristics in the empirical analyses.

Third, during the pre-incentive fee period, the difference in modification rates

between non-agency-only servicers and both-market servicers is 1.4% (9.6%-

8.2%). This difference increases to 9.5% during the post-incentive period. The

relative increase in modifications by non-agency-only servicers is also accom-

panied by a relative increase in more aggressive modifications (larger propor-

tions of multiple attribute modifications and principal reductions). Fourth,

losses following unsuccessful modifications during the pre-incentive fee period

are 3.1% (40.2%-37.1%) larger for both-market servicers, suggesting that non-

agency-only servicers may have had slightly better expertise at modifying.

This difference drops to 1.2% in the post-incentive fee period.

1.4 The incentive fee as an instrument

This section explores the effects of the incentive fee on the non-agency

mortgage market. I argue that by introducing the incentive fee in the GSE

market, Fannie Mae and Freddie Mac made modifications in the GSE mar-

ket relatively more attractive than modifications in the non-agency market to

both-market servicers, since the non-agency market had no incentive fee at

the time. These servicers were likely to have capacity constraints at the time,

since servicers lack incentives to have excess modification capacity and delin-

quencies were increasing abnormally. They responded by conducting fewer

modifications in the non-agency market relative to their modifications in the

GSE market, when compared to the pre-incentive fee period. Therefore, the

18



incentive fee generated variation in modification rates of both-market servicers

that is arguably independent from any potentially unobservable characteristics

of the loans serviced by them. Moreover, the introduction of the incentive fee

in the GSE market was a direct incentive to modify, so it is unlikely to have

had any effect on loan performance in a separate and different market such

as the non-agency market, except through the modifications of both-market

servicers.

Although the available data do not allow for observation of the disag-

gregated modification behavior of both-market servicers in the GSE market,

the non-agency-only servicers are a suitable control group in the non-agency

market who were unaffected by the incentive fee. Therefore, it is possible to

test the effect of the introduction of the incentive fee on the modification rates

in the non-agency market of both-market servicers and non-agency-only ser-

vicers through a difference-in-differences (DD) framework, which is essentially

the first-stage regression of the IV estimation.

I start by analyzing modification rates graphically. Figure 1.1 shows the

monthly modification rates of the two groups of servicers around the time the

incentive fee was introduced. During the period anteceding the incentive fee

(delimited by the vertical line), when aggregate delinquencies in the U.S. (rep-

resented by the black line) were relatively lower, both types of servicers show

similarly lower modification rates (defined as the number of non-agency loans

modified within six months as a fraction of all non-agency loans in distress).

Even though modification rates began to increase rapidly after November 2007
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(consistent with servicing becoming a focus of attention for regulators and the

media due to increasing delinquencies), the modification rates of both types of

servicers move together. However, both modification rates diverge after the in-

centive fee is introduced, with both-market servicers exhibiting a significantly

lower modification rate than their counterparts.

One concern that arises from Figure 1.1 is that modification rates begin

to diverge in April 2008, four months before the incentive fee was introduced.

This is partially due to the fact that the modification rates capture modifica-

tions completed within six months of the loan becoming distressed. The gray

shaded area in the figure delimits the months in which modification rates were

affected by the incentive fee. Before this, there is no indication that the trends

are not parallel.24

Table 1.3 shows the result discussed above more formally through a

DD estimation. The dependent variable is the modification indicator. The

coefficient of interest is the one associated with the variable BothMarkets×

AfterFee. Recall that this is the interaction of BothMarkets (a dummy

variable that takes the value of one (1) if the servicer managing the loan

is a both-market servicer, and zero (0) otherwise) and AfterFee (a dummy

variable that takes the value of one (1) if the loan became distressed after the

incentive fee in the GSE market was introduced, and zero (0) otherwise). The

24In Appendix B, I show several of the figures in this paper in five to six-year windows
and confirm that modification rates of both-market servicers and non-agency-only servicers
moved parallel for a long period anteceding the incentive fee.
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set of controls includes loan-level information at the time of origination such

as credit score, CLTV, and interest rate. These controls also include indicators

of whether the loan has an adjustable or fixed rate, has low/no documentation

or full documentation, and whether it has a prepayment penalty. Another

control is whether the borrower self-reported the property as owner-occupied,

or as an investment/second home. The regression also controls for the unpaid

principal balance at the time of the loan becoming distressed and includes

CBSA-month of origination, servicer, and month of distress fixed effects. In

particular, servicer fixed effects are important to control for time-invariant

unobservable characteristics of servicers. Finally, standard errors are clustered

by the Combined Statistical Area (CSA) to account for correlation within

economically-tied geographic areas.25

Column 1 of Table 1.3 shows that after the introduction of the in-

centive fee, the relative difference between modification rates of both-market

servicers and non-agency-only servicers increased by 5.7% on average (with

non-agency-only servicers modifying proportionally more). This effect is sta-

tistically significant at the 1% level, and is equivalent to an increase of 50.9%

relative to the mean modification rate of 11.2%. Column 2 shows the results of

estimating the same regression as in Column 1 in a subsample of loans exclud-

ing loans that became distressed during the period from March 2008 to July

25CSAs are larger geographic areas than CBSAs. There are 124 CSAs and 939 CBSAs
in the sample. While it is also possible that the regression residuals are correlated within
servicers, clustering by servicer may result in biased standard errors due to the fact that
there are only 23 servicers in the sample (Angrist and Pischke (2009)).
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2008, which is demarcated by the gray area in Figure 1.1, when the incentive

fee begins to affect modification rates. The effect of the incentive fee is even

stronger, yielding a statistically significant coefficient of 6.4%. Appendix B

further validates the previous estimates through several robustness tests and

falsification tests. The coefficient associated with BothMarkets × AfterFee

is economically and statistically significant when excluding Bank of America

(the largest servicer) or California (the largest state) from the sample.26 Ad-

ditionally, the estimate drops to 1.0% under the false assumption that the

incentive fee was introduced in January of 2008 (eight months earlier than

the true date). Finally, Appendix B also shows that the economic effect of

the incentive fee on the control variables used in the regression in Table 1.3 is

minor.

One necessary requirement for the validity of my identification strat-

egy is that servicers lacked the capacity to handle the increased demand for

modifications. If both-market servicers had idle resources, it is possible that

the differences in modification rates between both-market servicers and non-

agency-only servicers is not due to the incentive fee causing a distortion of

modification decisions of both-market servicers. This sample does not allow

for a direct measure of capacity of the servicers, but the fact that most ser-

vicers were capacity-constrained and unable to handle the unexpectedly in-

creased number of delinquencies has been widely discussed as a major concern

26Though in Table 1.1, Bank of America appears in sixth place in terms of market share,
it became the largest servicer after acquiring Countrywide in July 2008.
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during the real estate crisis (Cordell et al. (2009), Congressional Oversight

Panel (2009), Wilse-Samson (2010)). In a speech in December 2008, in which

he discussed the challenges in the real estate market, Chairman of the Federal

Reserve Ben Bernanke explicitly stated:27

“... More generally, the sheer volume of delinquent loans has over-

whelmed the capacity of many servicers, including portfolio lenders,

to undertake effective modifications.”

The capacity constraint of both-market servicers is not so easily re-

solved by hiring new employees. First, hiring a loan modification officer is not

an expedited process. Labor markets have frictions, and modification officers

must be trained and certified. Second, many of the servicers struggled finan-

cially during the crisis, which increased the difficulty of expanding capacity.

Third, even if servicers are in good financial condition and if labor frictions are

not present, it is not clear that servicers benefit from conducting non-agency

modifications; therefore, servicers would not seek to hire more staff. Several

studies argue that servicers are not incentivized to modify non-agency secu-

ritized loans, and they can profit more from foreclosures (e.g., Eggert (2007),

Thompson (2011)). Given all these considerations, it is reasonable to believe

that both-market servicers were capacity-constrained when the incentive fee

was introduced, and that they most likely remained constrained–at least for

the 8-month period I analyze following the incentive fee.

27Bernanke, Ben S. (December 4, 2008). Speech at the Federal Reserve System Confer-
ence on Housing and Mortgage Markets, Washington, D.C.
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Column 3 of Table 1.3 provides additional evidence consisting in both-

market servicers being capacity-constrained. Both-market servicers are di-

vided into two groups based on the increase in delinquencies they experienced

from the pre-incentive fee period to the post-incentive fee period. The vari-

able HighDelinquency is a dummy that takes the value of one (1) if the

servicer belongs to the group with the larger increase in delinquencies, and

zero (0) otherwise. The coefficient of -2.38% on the explanatory variable

of interest (HighDelinquency × AfterFee) indicates that, after the incen-

tive fee, the both-market servicers that experienced the largest increase in

non-agency delinquencies conducted fewer modifications (proportionally) than

both-market servicers, who experienced the lowest increase in delinquencies

compared to the pre-incentive fee difference.

The previous evidence suggests that the incentive fee prevented non-

agency modifications of both-market servicers; however, it is still possible that

both-market servicers modify less in the post-incentive fee period because they

face different risks. For example, if the distressed borrowers from both-market

servicers are more likely to self-cure, then the pattern shown in Figure 1.1 can

still be optimal. To explore this possibility, I plot the self-cure rates of both-

market servicers and non-agency-only servicers in Figure 1.2. Though self-cure

rates of both-market servicers are consistently higher, which is consistent with

these servicers modifying less, the incentive fee has no apparent effect on the

relative difference in self-cure rates among the two servicer types.

Finally, if modification affects loan performance, the difference in losses
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of non-agency loans between the two types of servicers should also respond to

the introduction of the incentive fee. More specifically, if modifications are

beneficial, given that the introduction of the incentive fee seemed to have

impeded modifications of both-market servicers in the non-agency market,

both-market servicers should experience a relative increase in loan losses com-

pared to non-agency-only servicers after the incentive fee. Table 1.4 shows

that this is the case.28 Servicers that operate in both-markets experience a

relative increase of 0.93% in loan losses after the introduction of the incentive

fee when compared to non-agency-only servicers. This result is confirmed in

Column 2 in a subsample of loans that excludes loans that became distressed

during the period from March 2008 to July 2008 (indicated by the gray area in

Figure 1.1). Additionally, the Figure 1.3 shows the previous result graphically.

Non-agency-only servicers show greater losses than both-market servicers in

the subset of loans that became distressed before the incentive fee, but the

difference virtually disappears afterwards.29

28Note that the specification in Table 1.4 is essentially the reduced form regression de-
riving from the IV regression that uses the incentive fee as an instrument. This, in turn, is
the same specification as Table 1.3, with the only difference that the dependent variable is
the loan loss.

29Appendix B shows the losses by servicer type in a five-year window around the incentive
fee. Although some convergence among losses of both servicer types can be seen before my
sample period, losses of both-market servicers and non-agency-only servicers tend to move
parallel before the incentive fee in my sample (as shown by Figure 1.3).
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1.5 Are mortgage modifications beneficial?

This section examines whether loan modification has an impact on the

losses of the non-agency loans in the sample. I start by showing the baseline

linear regression. Then I use the introduction of the incentive fee in an IV

framework as described in Section 1.2.

1.5.1 Baseline regression (OLS)

I start by estimating OLS regressions of loan losses on a modification

indicator, loan-level controls, and fixed effects, as specified by Equation 1.1.

As before, I cluster standard errors by CSA. Though this regression may be

subject to endogeneity problems and it is not very informative, it provides a

benchmark to contrast with the IV estimation. Table 1.5 shows the results

for different subperiods. Column 1 shows that modified loans experience lower

losses than non-modified loans, on average, from August 2007 to February

2009. Specifically, on average, a modification saves investors 6.1% (15.1%

relative to the average loss of 40.3%) of the principal amount outstanding at

the time the loan became distressed. Columns 2 and 3 show that, though

the average effect of modification on loan losses is significant in both the pre-

incentive fee period and the post-incentive fee period, it is 4.4 % stronger in

the post-incentive fee period.
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1.5.2 IV estimation

As shown in the previous section, the introduction of the incentive fee

generated plausible exogenous variation in modification rates of both-market

servicers. I exploit this variation through the IV framework described in Sec-

tion 1.2, making a slight change to the main specification compared to the

regressions estimated above. For ease of estimation, I include both CBSA and

month of origination fixed effects separately instead of including CBSA-month

of origination fixed effects (interacted).30 Appendix B shows that the baseline

OLS estimation yields virtually the same coefficients when this change in the

set of fixed effects is introduced. The same is true for the DD estimation shown

in the previous section, as shown by the first-stage regression below.

Table 1.6 shows the results of the IV estimation for the full sample of

loans and for a subsample of loans that excludes loans that became distressed

during the period from March 2008 to July 2008, when the incentive fee begins

to affect modification rates. Columns 1 and 2 show the first-stage regressions.

The variable BothMarkets×AfterFee strongly explains the modification in-

dicator in both samples, showing that the instrument satisfies the relevance

restriction.31 Additionally, both F -statistics are significantly above the thresh-

old of 10, indicating that the instrument is strong (Bound, Jaeger, and Baker

30Including CBSA-month of origination fixed effects is equivalent to including 34,667
dummy variables, which makes the IV estimation considerably more complex.

31Note that, as discussed in the previous paragraph, the coefficient estimate on
BothMarkets × AfterFee in Column 1 of Table 1.6 (which is comparable to Column 1
of Table 1.3) is 5.76% which, compared to 5.72%, is a very similar value.
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(1995), Staiger and Stock (1997)).

Columns 3 and 4 of Table 1.6 show the causal effect of modification on

the losses of the marginal loan. The coefficient on the modification indicator

in the full sample is -13.9% (statistically significant at the 1% level), meaning

that, on average, modifying a non-modified loan that would have likely been

modified without the incentive fee reduces losses by 13.9% (the LATE). This

is equivalent to a 34.5% decrease relative to the mean loss of 40.3%, which is

an economically significant amount. This result is confirmed in the subsample

in Column 4, which shows a coefficient of -11.9%.32 Also, both the bias and

the lack of informativeness of the OLS estimate are confirmed by the fact that

the coefficient of -13.9% on the modification indicator in Column 3 of Table

1.6 is more than twice as large (in absolute value) than the coefficient of -6.1%

on the modification indicator in Column 1 of Table 1.5. This justifies the

empirical strategy undertaken in this paper.

1.6 The channel and validation of the main results

The previous section shows that modification has an important causal

effect on the losses of the marginal loan. However, the results do not speak to

why or under which conditions modifications are most helpful. In this section

I investigate the channel through which modifications affect outcomes and

32Additionally, in Appendix B, I show that the results in Table 1.6 are robust to the ex-
clusion of loans serviced by Bank of America (the largest servicer) and loans that originated
in California (the largest state).
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provide additional insight on the effect of modification on loan losses.

1.6.1 The channel

As mentioned in the introduction, several factors can affect the modi-

fication decision and its success. When a loan is modified, investors can suffer

greater losses if the borrower redefaults shortly after modification. Addition-

ally, it is also possible that a delinquent borrower can self-cure (i.e., return

to current without help), so any concession to the borrower would be un-

necessary. Because house price movements can impact the previous factors, I

analyze the effect of modification in loan samples based on the short-run house

price movements in the ZIP codes of the loans.

I compute ZIP code-level house price returns using Zillow, an online

real estate database.33 Each loan is assigned a return based on the ZIP code

of the loan’s underlying property. Returns are computed from the month in

which the loan became distressed to the bottom price of the index in 2009.

Then, the loans in the sample are divided into three groups based on their

house price returns. The first group corresponds to loans with returns equal

or greater than zero (no house price drop). The second and third groups are

based on the median return of the remaining loans. The second group contains

loans that experienced a small house price drop, while the third group contains

33Zillow provides ZIP code-level house price indices based on median home values. A
description of their methodology can be found on the Zillow website: http://www.zillow.
com/research/zhvi-methodology-6032. Of the loans in the sample, 92.9% are from ZIP
codes with Zillow coverage.
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the loans that experienced a large house price drop.

Table 1.7 shows the result of the IV estimation for each group of loans.34

The geographic distribution of the loan sample shows significant variation in

house price returns. The average return in the group of loans in the large house

price drop area is -34.6%, which is 3.7 times larger than the average return of

-9.3% from the group of loans in the small house price drop group. Also, very

few loans (only 21,616) are in the group that experienced no house price drop.

Modifications are especially impactful in the set of loans that experienced the

largest short-term drop in house prices following the month of distress, with

a coefficient of -34.53% on the modification indicator; however, there is no

statistically significant difference between the coefficient of -34.53% and the

coefficient of -7.16% in the sample of loans with a small house price drop.35

This result can be understood by an analysis of self-cure rates, redefault rates,

and foreclosure costs. The set of loans with large house price drops shows an

average self-cure rate of 13.4%, considerably lower than the self-cure rates of

the other two groups, which are 22.3% for the small house price drop group

and 27.5% for the no-drop group. In addition, the areas with the largest house

price drops also show a much larger average loss in the case of foreclosure.

34The first-stage regressions (i.e., those that show the relevance restriction is met) are
available in Appendix B. Additionally, I also provide the results of the IV estimation using
an alternative set of house price returns computed from March 2009 to March 2010 (to
ensure that returns do not affect the modification decision) and find the same results as in
Table 1.7.

35The 95% confidence intervals of both of the coefficients on the modification indicator
in Columns 2 and 3 of Table 1.7 overlap substantially, indicating that both estimates do not
statistically differ from one another.
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Foreclosed loans in areas with a large house price drop show average losses of

68.3%, much larger than the losses of 51.1% and 49.0% shown in the other

two area groups. Redefault rates, on the other hand, do not appear to differ

between groups to the same extent. The redefault rates of loans in the group

with a large house price drop show a 3% difference from the loans in the group

with a small house price drop.

Overall, Table 1.7 shows that additional modifications are helpful when

self-cure risk is low and when foreclosure costs are high. The fact that redefault

rates do not vary significantly across groups, and the fact that more than 40%

of the modified loans do not redefault suggests that modifications help prevent

loan losses by avoiding foreclosure and subsequent liquidation.

1.6.2 Additional validation of the results

1.6.2.1 Housing price rebounds

A possible concern with the results presented previously could be that

they are driven by areas where house prices experienced a strong recovery after

the house price bust. Consider, for example, a borrower who decides to default

because of the negative equity in a house that obtains a loan modification,

and assume that this modification does not really improve the situation of the

borrower. If the house price continues to decrease or remains flat, the borrower

may decide to redefault. If, on the contrary, the house price experiences a large

increase, the borrower may continue to pay the mortgage because he or she

would now have equity in the house. In this case, the modification may appear

31



to be helpful because the loss on the house was avoided, but the rebound in

housing prices actually caused the benefit, not the modification. However, it

is also important to note that house price rebounds may also help delinquent

mortgages to self-cure. Therefore, it is not always clear how the IV estimates

are affected by geographic house price swings.

To address the concern above, I compute ZIP code-level house price

rebounds. The rebound is the cumulative return of index from the time it

reached its bottom level in 2009 to its level in September 2012, when no

additional loan losses can be observed.36 Within the group that exhibited a

large house price drop, as shown in Table 1.7, I classify the loans into three

groups based on their house price rebound and then repeat the IV estimation

for each group. The first group consists of the loans in areas that did not

experience a rebound in house prices (i.e., prices continued to drop). The

second and third groups are based on the median rebound of the remaining

loans: The second group contains the loans that experienced a small house

price rebound while the third group contains the loans that experienced a

large house price rebound.

Table 1.8 shows the results of the IV estimation. The coefficients on

the modification indicator are large in all areas (although not statistically sig-

nificant in the group of loans that experienced a small rebound). The effect is

36The bottom level is defined as the lower value of the index before January 2010. Con-
sequently, ZIP codes that continue to experience a decline in house prices may have a
“negative” rebound.
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stronger (with a significant coefficient of -37.6% on the modification indicator)

in the group of loans in which house prices continue decreasing, indicating

that the results shown in the previous table are not explained mechanically

by house price rebounds. Both self-cure rates and redefault rates do not vary

considerably across house price rebound groups, though in the case of foreclo-

sure, loan losses are around 6% greater in the areas where prices continued to

decrease. When we consider the fact that 40.0% of the modified loans do not

redefault, these results once again support the idea that modifications help

prevent losses because they help avoid future redefaults and foreclosures.

1.6.2.2 Unemployment increases

Unemployment is another important factor that may affect the success

of a modification. Areas that exhibit increases in unemployment should show

lower self-cure rates and higher redefault rates. Therefore, it is unclear how

changes in unemployment rates may impact the effect of modifications on

loan losses. To investigate this, I divide the loan sample based on the change

in unemployment rates in the Metropolitan Statistical Area (MSA) where

the underlying property of the loan is located. I divide the sample into two

groups based on the median increase in unemployment from the month the

loan became distressed to the highest value of the index in 2009.37 Table 1.9

shows the results of repeating the IV estimation in the two groups described

37Unemployment data comes from the Bureau of Labor Statistics. All MSAs in the
sample experienced an increase in unemployment
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above.

Modifications are considerably more helpful in preventing loan losses

in areas that experienced a strong increase in unemployment rates soon after

the loan became distressed. As hypothesized, self-cure rates in these areas are

lower and redefaults are larger. However, it is not clear whether self-cure risk

dominates redefault risk in this case, because the areas with the largest increase

in unemployment rates also show significantly larger house price declines. The

results in Table 1.9 are consistent with the results in Table 1.8, thus providing

reassurance about the validity of the previous results.

Finally, Appendix B shows the results of the IV estimation based on

unemployment levels at the time the loan became distressed, and on the av-

erage household income of the ZIP code in 2006 (income data comes from the

IRS 2006 SOI database). Additional modifications prove to be more helpful in

preventing loan losses in areas with lower unemployment and higher income.

1.6.2.3 The moral hazard problem

One possible limitation of my results is that these tests do not account

for the fact that increasing modifications may potentially create a moral haz-

ard problem. If borrowers believe that obtaining a modification is easy, they

may default strategically with the intention of extracting some benefit from

servicers even though they did not have any actual difficulty in meeting the

mortgage payments. Mayer, Morrison, Piskorski, and Gupta (2014) show that

default rates increased after Countrywide agreed with the government to offer
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modifications to seriously delinquent borrowers, which indicates that moral

hazard can potentially reduce the benefits of modification.

Figure 1.4 shows the number of distressed loans from non-agency-only

servicers relative to the number of distressed loans from both-market servicers

in my sample. The figure shows that the number of distressed loans by the two

types of servicers in the sample does not relatively change significantly after

the incentive fee; therefore, non-agency-only servicers do not experience an

abnormal increase in defaults after the incentive fee, showing that my empirical

tests should not be affected by strategic behavior. It is unlikely that borrowers

understood the dynamics of the setting I exploit in this paper as easily as

they could understand a well-publicized settlement such as the Countrywide

settlement. However, when interpreting my results, it is important to consider

that it is still possible that the benefits of modifications could be reduced in a

scenario in which modifications increase significantly and borrowers are aware

of the increase.38

1.6.2.4 Matching estimation

In this section, I combine the introduction of the incentive fee with

a matching methodology as a complement to the IV regressions. To the ex-

tent that the incentive fee in the GSE market impeded some modifications of

38The average modification concession in my sample is 1% of the outstanding balance,
so it is unlikely that this potential moral hazard problem explains a significant portion of
the IV coefficient of 13.9%. However, the effect could be more substantial if the expected
modifications are mostly principal reductions.

35



both-market servicers in the non-agency market, it is possible to find a counter-

factual to a modified loan from a non-agency-only servicer by matching it to a

similar loan from both-market servicers–a loan that arguably would have been

modified had the incentive fee not existed. This experimental design provides

two very similar loans from different servicers, in which one was modified and

the other was not modified due to an exogenous reason (i.e., the incentive fee).

A schematization of this empirical strategy is depicted in Figure 1.5. In the

period that follows the incentive fee, I match non-agency loans that were mod-

ified by non-agency-only servicers (the treated group) with non-agency loans

that were not modified by both-market servicers (the control group). I then

compare their losses through the average treatment effect on the treated.39

Of course, the validity of the test relies heavily on the matching pro-

cedure used to find the modified loan’s counterfactual. For this reason, when

computing the propensity score used to match the loans, a complete set of

loan-level characteristics and fixed effects are included. In addition, besides

matching the loans by propensity score, I also match by ZIP code and by the

month in which the loans became distressed, in an attempt to control for unob-

servable geographical and timing factors. Additionally, I repeat the estimation

using CBSA instead of ZIP code to obtain a higher matching rate.

39I omit loans that were modified between 7 and 12 months from the control group. The
use of a propensity score tends to match a high proportion of loans modified shortly after
the six-month threshold. By using this filter, the proportion of late modifications (after six
months) in the matched group is virtually the same as the proportion of late modifications
in the full sample.
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The results of the previously described test are shown in Table 1.10.

Panel A shows the logit regressions used to estimate the propensity scores.

Panel B shows the average treatment effect on the treated (ATT), both for

the matching that uses ZIP code and for the matching that uses CBSA (which

achieves a higher matching rate). As shown by Column 1, modified loans

yield losses that are 9.8% lower than non-modified loans, on average. The

ATT is slightly lower when matching by CBSA (-8.4%). Finally, in Column 2,

matched loans are restricted to the quartile with the largest propensity scores.

Even with this tighter matching criterion, the ATTs continue to be sizeable

and significant. Overall, the matching results confirm that modifications have

an effect on loan losses.

1.6.3 Are certain types of modifications better than others?

For the sake of completeness, this subsection analyzes the average ef-

fects of the different types of modifications on loan losses. Specifically, the data

allow for distinguishing between modifications of multiple attributes, principal

reductions, interest rate reductions, and capitalizations. I estimate an OLS re-

gression using the subset of modified loans. The specification is similar to the

specification in Table 1.5, but instead of the modification indicator, I include

indicators for whether the modification was a principal reduction or an interest

rate reduction, or whether multiple attributes were changed. Therefore, the

coefficient on each estimator is interpreted as the relative average effect of the
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modification type relative to capitalizations.40

The coefficient estimates of the previously described regression are dis-

played in Figure 1.6. Modifications in which multiple attributes are changed

and/or the principal is reduced are the most effective on average in terms of

preventing future losses. Interest rate reductions follow, being about 4.0%

more helpful than capitalizations. In Appendix B, I confirm the same or-

dering using the matching methodology applied above.41 These findings are

consistent with previous studies, which show that modifications that grant a

larger concession to the borrower experience lower redefault rates (Haughwout,

Okah, and Tracy (2009), Quercia and Ding (2009)).

1.7 Implications for the aggregate economy and the ef-
fects of policy

So far, I have focused on the effects of modification on loan performance.

This section discusses the implications of the results presented above for the

aggregate economy (i.e., for RMBS investors and households). I then briefly

discuss the fact that it appears the incentive fee had a distortionary effect on

the modification decisions of both-market servicers, beyond thinking of the

incentive fee only from an identification strategy standpoint.

40The 1,357 modifications in which the type is unidentified are dropped from the sample
used in the regression.

41ATTs are -14.0%, -11.9%, -6.1%, and -3.3% for modifications in which multiple at-
tributes were changed, for principal reductions, for interest rate reductions, and for capital-
izations, respectively.
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1.7.1 Implications for the aggregate economy

As mentioned above, a prevention of 13.9% in losses is equivalent to

saving 34.5% relative to the average loan loss of 40.3%. However, the impact

of this loss prevention on the RMBS market and the aggregate economy is still

unanswered. Abstracting from general equilibrium considerations,42 a back-

of-the-envelope calculation can help estimate economic magnitudes.

First, let us consider an RMBS delinquency rate of 40% and an increase

of 10% in modifications, which is slightly above the difference in modification

rates between non-agency-only servicers and both-market servicers after the

incentive fee. This 10% increase would imply preventing losses of RMBS for a

total value of 0.56% (40%×10%×13.9%) of the deal. This is important because

this effect is almost half of the average RMBS equity tranche, which is roughly

1.2% (Begley and Purnanandam (2013)).

Second, and more importantly, given that more than 40% of the modi-

fied loans in the sample do not redefault,43 an increase of 10% in modifications

would imply more than 4% (40%×10%) more successful modifications. Be-

cause approximately 55% of defaults stemmed from non-agency loans during

the crisis, and because more than 3 million mortgages were in default at one

time, 10% more modifications could have helped 66,000 (3M×55%×4%) bor-

rowers avoid delinquency and the potential loss of their homes. If we consider

42It is possible that a significant increase in modifications has an effect on the mean
values of some of the variables I will consider in the estimations.

43This is true at least before September 2012, which provides a significant amount of
time for modified loans to redefault.
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that about 65% of modified loans do not redefault within a year, and we use

this figure as a benchmark for successful modifications, the effects would be

significantly greater. Furthermore, the previous magnitudes are a lower bound

not only because I use conservative figures in my estimations, but also because

these estimations do not consider the negative spillover effects of foreclosures

in neighborhoods (Campbell, Giglio, and Pathak (2011)) and only consider

the non-agency spectrum.

Overall, these results suggest that additional modifications would have

achieved the intended goal of preventing foreclosures. Furthermore, modifi-

cations allow people to remain in their homes while benefiting loan holders.

These results have important implications for current policy discussions (Pos-

ner and Zingales (2009), Mayer, Morrison, and Piskorski (2009a)).

1.7.2 Unintended effects of policy: GSE intervention and non-
agency modifications

In this paper, I show that the introduction of an incentive fee for mod-

ifications in the GSE market negatively affected modifications of both-market

servicers, who appear to have redirected resources toward the GSE market.

The incentive fee was further formalized by the Streamline Modification Pro-

gram, a joint effort of Fannie Mae, Freddie Mac, the Federal Housing Finance

Agency, and the U.S. Department of the Treasury. Thus, it follows that both

GSEs and regulators intervened in the GSE market. Although I use the in-

troduction of the incentive fee in the GSE market as an instrument in my
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empirical framework, concerns regarding possible unintended effects of policy

should be raised by the fact that this intervention in the GSE market dis-

torted the incentives to modify loans in the non-agency market of the subset

of servicers affected by the policy.

The incentive fee was introduced with the intention of helping to pre-

vent foreclosures and liquidations of loans in deals guaranteed by Fannie Mae

and Freddie Mac. I cannot evaluate whether the intervention was positive or

negative in terms of aggregate losses and social welfare because I do not ob-

serve GSE loan performance. However, based on my findings, the policy had

a negative spillover effect by preventing modifications that would have been

helpful on average, ultimately causing greater losses in the non-agency market.

1.8 Conclusion

After examining how loan modifications affect loan losses in a sample of

nearly one million non-agency securitized loans that became distressed between

August 2007 and February 2009, I find that additional loan modifications

significantly help reduce loan losses by 34.5% relative to the average loss of

40.5%. Modifications are especially helpful in preventing future loan losses

in areas where, in relative terms, housing prices decrease and unemployment

increases: These areas have low self-cure risk and higher losses in the case of

foreclosure. The benefits of modifications are not explained mechanically by

house price rebounds; they are explained by their effect on avoiding future

foreclosures and subsequent liquidations. In addition, I find that the most
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effective modification types grant greater concessions to borrowers.

Leaving general equilibrium considerations aside, a simple calculation

indicates that an increase of 10% in modifications, which is slightly above the

difference in modification rates between non-agency-only servicers and both-

market servicers after the incentive fee, could potentially have helped tens of

thousands of distressed households keep their homes, while also benefiting the

loan holders, on average.

Overall, my results show that more modifications of non-agency loans

are desirable and, in times of large increases in delinquencies, servicers tend

to modify too infrequently. Modifications prevent foreclosures, a fact that

directly supports recent advocates who argue that loan modifications should

be used as a tool to mitigate damage from the recent foreclosure crisis.

My findings also suggest caution for policy makers, as an incentive

meant to help GSE loans led to fewer modifications of non-agency loans. Para-

doxically, the non-agency loan market–which is mostly subprime–was precisely

the market of the highest concern for regulators and the government during

the crisis, and the market from which most of the alarm originated.
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Chapter 2

Did Dubious Mortgage Origination Practices

Distort House Prices?

Note: This chapter is joint work with John Griffin.

2.1 Introduction

Are the costs of misrepresentation large or small? Are these costs lo-

calized, or do they affect prices more broadly? Leff (1964), Lui (1985), and

Acemoglu and Verdier (2000) argue that corruption is not necessarily prob-

lematic. On the other hand, Shleifer and Vishny (1993) argue that corruption

is more costly than just the amount paid for the corrupt activity because cor-

ruption has distortionary economic effects.1 Akerlof and Romer (1993) also

demonstrate how financial corruption can cause aggregate price distortions

that are much larger than the amounts gained from the original activity.2

They point to the U.S. savings and loans crisis as an example where develop-

1Empirical studies have largely found that corruption is harmful to economic growth due
to channels such as a reduction in innovation and foreign direct investment (Mauro (1995),
Wei (2000), Reinikka and Svensson (2004)). For a more detailed discussion of corruption
and its effects, see Bardhan (1997) and Svensson (2005).

2They argue that government guarantees or other financial frictions can lead to a setting
where the normal economics of maximizing value can be replaced by managers maximizing
extractable value or “looting.”
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ers and bankers extracted rents from thrifts through non-recourse construction

loans that allowed the developers and bankers to book high short-run account-

ing profits on building projects with negative expected returns. However, the

combined activity had the unintentional effect of amplifying a commercial real

estate building boom and an ultimate bust that was exceedingly costly to tax

payers. In a similar vein, we ask whether questionable origination practices

led to any distortions in the recent 2002-2011 real estate boom and bust.

Misreporting a few features on a lender’s application seems harmless

enough; however, the process could extend credit to a borrower who may

have little financial wherewithal or desire to repay. What if misreporting was

not isolated, but instead driven by origination practices that differed widely

across loan originators with different geographic coverage? ZIP codes that

contained a high presence of originators with questionable origination practices

may have experienced relatively more undeserved loans than ZIP codes with

better loan origination standards. This excess credit may have led to increased

housing demand causing a rise in prices when excessive credit was applied and a

decrease in prices when the credit was removed. This is the central explanation

we test.

Our paper builds on influential work by Mian and Sufi (2009), Mayer

and Pence (2009), and Pavlov and Wachter (2011) that links residential real

estate prices and valuations to supply-side credit. Mian and Sufi (2009) show

that subprime ZIP codes experienced a large increase in credit from 2002 to

2005 unrelated to income growth. This increase in credit can be traced to
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the rise of securitization (Nadauld and Sherlund (2013)), indicating support

for a supply-based explanation for the 2002 to 2006 house price bubble. Mian

and Sufi note that additional research is required to better understand the

economics behind the credit supply mechanism. We fill this void by examining

the relationship between cross-sectional housing price movements and cross-

sectional variation in origination practices.

There is substantial evidence that the “originate-to-distribute” model

led to “lax screening” and poor quality loans (Keys, Mukherjee, Seru, and

Vig (2010), Purnanandam (2011), and Keys, Seru, and Vig (2012)). However,

there is also growing awareness that the problem may have moved beyond

a lack of careful monitoring to actively pushing loans that did not meet un-

derwriting standards. Jiang, Nelson, and Vytlacil (2013), Carrillo (2011),

Ben-David (2011), Garmaise (2013), and Haughwout, Lee, Tracy, and Van der

Klaauw (2011) all document various aspects of mortgage misreporting at cer-

tain banks or in certain geographic areas. Piskorski, Seru, and Witkin (2015)

and Griffin and Maturana (2014) detect large-scale second-lien misreporting

that is later associated with significantly higher probabilities of default. They

find that second-lien misreporting varies widely across originators. This wide

variation in misreporting practices across originators lays the empirical ground-

work to ask if bad origination practices simply led to isolated losses or if they

were linked to regional distortions in home prices.

In particular, one can contrast two main views about the role of se-

curitization in the housing crisis that both build upon the existing literature
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and are generally consistent with the originate-to-distribute view. First, se-

curitization may have been subject to low standards across the board with

little variation across originators. If this is the case, then ZIP codes with

larger increases in supply-side credit due to securitization should exhibit the

largest increases and decreases in housing prices in the boom and bust cycles,

respectively. Second, rather than securitization giving out excess credit in a

consistent manner, certain originators which engaged in rampant misreport-

ing may have given much more credit to unqualified borrowers. If these bad

origination practices concentrated in certain ZIP codes, the excess credit could

have led to an increased demand for housing from uncreditworthy borrowers

who ultimately would default. These practices could have led to substantial

price distortions.

We test these two views while also noting that the two explanations are

not necessarily mutually exclusive. To examine the first view, we measure the

fraction of loans securitized in a ZIP Code. For the second explanation, each

year, we classify originators in the highest tercile of second-lien misreporting

in Griffin and Maturana (2014) as the ‘worst’ originators. We measure the

fraction of all transactions each year within a ZIP code by the worst, medium,

and best originators.3 We first document that ZIP codes with high fractions of

securitized loans exhibited a larger rise in house prices from 2003 to 2006 and

a larger decrease from 2007 to 2012. However, we find that this correlation is

3Even the originators with lower levels of second-lien misreporting exhibited some small
amounts of second-lien misreporting. Measurement problems should reduce the power of
our tests and understate the impact of misreporting.
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weaker than that between bad origination activity in a ZIP code during 2003 to

2006 and home price increase and subsequent 2007 to 2012 price decrease. This

relation between the worst origination activity in a ZIP code and subsequent

2003 to 2006 house price increases and 2007 to 2012 decreases holds within

Metropolitan Statistical Areas (MSAs) and after controls for income levels

and income growth. The relation also holds for ZIP codes in the top 25% of

the income distribution, indicating that the effect is not confined to subprime

ZIP codes. Overall, the 858 ZIP codes with the highest fraction of worst

originators’ market share increased 75% faster (63% relative to 36%) over the

2003 to 2006 boom relative to the 4,318 ZIP codes with a lower presence of

bad originators. Conversely, from 2007 to 2012, these same ZIP codes with a

high presence of worst originators experienced a decrease nearly twice as large

as the other ZIPs (40% relative to 21%).

The strong relation between house prices and bad origination practices

in the ZIPs need not be causal. For example, originators with bad practices

may simply be more aggressive at expanding into areas of rapidly increasing

prices, or they may have expanded into more inelastic areas that experienced

larger increases. To investigate the causality we take several approaches.

First, as instruments for the market share of the worst originators be-

tween 2003 and 2006, we use the market share of the worst originators and the

number of worst originators present in a ZIP code, both in 2002, which is prior

to our period of examination. The main intuition is that lenders had a certain

geographical presence before the advent of massive securitization. Those with
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bad practices expanded operations most rapidly through their original loca-

tions. A two-stage regression procedure confirms the distortive effect of bad

origination practices on house prices. An increase of 5% in the market share

by the worst originators increases housing returns by 6.4% in the 2003 to 2006

boom and decreases housing returns by 11.6% in the bust.

Second, bad originators may have expanded operations by targeting

areas of unmet loan demand by uncredit-worthy borrowers. We use ZIP Code

level loan rejection rates from the Home Mortgage Disclosure Act from 1996

to 1999 to predict the expansion of bad origination activity. We find that this

instrument strongly predicts worst originator market share in 2003 to 2006.

The second-stage regression confirms the distortive effect of bad origination

practices on house prices.

Third, we use anti-predatory law changes between 2004 and 2005 as an

exogenous source of variation that restricts the lending activity of the worst

originators. During the boom years, ZIP codes in states that passed anti-

predatory laws experienced a 9.6% annual lower home price increase relative

to states with no law change.

Fourth, if the extension of credit by worst originators was causal, then

the supply of credit should precede price peaks. Although there is consider-

able variation in ZIP code level price peaks, the peak of credit by the worst

originators precedes the house price peak in over 90% of our 858 ZIPs with

large market share of worst originators.
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Fifth, originators with bad practices may simply be more aggressive at

expanding into areas of rapidly increasing prices. We test this by matching the

2003 to 2006 run-up of house prices of ZIP codes with a large market share of

worst originators with ZIP codes with a low presence of the worst originators

within the same MSA. The ZIP codes with high concentrations of the worst

originators exhibit a 15% larger bust from 2007 to 2012 even after controlling

for income and income growth. This is consistent with the worst originators

issuing credit in an irresponsible manner, which caused a distortive effect on

house prices.

Sixth, an alternative explanation is that the worst originators rationally

expanded credit into ZIP codes with high elasticity of housing supply, and

that these ZIP codes were more sensitive to housing swings. We test this

in two ways. First, the effect of the worst origination activity should lead

to larger price swings in areas of inelastic land supply. We find this result.

Second, in elastic ZIP codes, instead of excess credit leading to large increases

in house prices, it led to large increases in new housing construction over 2004

to 2006 that was seemingly unwarranted since housing prices crashed in the

bust. Consistent with building to meet more legitimate demand, elastic ZIP

codes with a low presence of the worst originators had only a minor burst

in housing prices compared to the large correction in the ZIP codes with a

high presence of the worst originators. This evidence in elastic ZIP codes is

consistent with loose credit from the worst originators creating excess housing

supply that led to an excess building boom, followed by a subsequent price
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decline.

We then turn to examine the channel through which the worst origi-

nators affected prices. First, bad originators could extend credit to uncredit-

worthy borrowers by originating loans to borrowers with a higher stated risk

profile. Second, these worst originators could be poorer at screening their ap-

plicants. Third, through the underreporting of applicant risk, they could be

granting loans to applicants with a risk profile that is even worse than stated.

We find evidence for the first and third explanation but not for the second.

Our set of worst originators do issue loans which have a much higher expected

delinquency percentage at the time of issuance, even controlling for stated loan

attributes. Yet, the interest rates that worst originators charged were stronger

predictors of future default than for better originators, indicating that they

were seemingly better at screening loan applicants than their peers. Finally,

we find that the originators who engaged in second-lien misreporting may have

engaged in full-doc loan misreporting as well.4 Thus, originators who engaged

in large amounts of second-lien misreporting had bad practices in the sense

that they gave credit out to borrowers with a higher stated risk profile while

also underreporting the true risk profile of their borrowers.

We also study the fact that bad originators may have expanded oper-

ations by targeting areas of unmet loan demand. We use ZIP Code level loan

4The loans these originators reported as full documentation defaulted at a higher rate
than from other originators even after controlling for other loan attributes and a ZIP code-
level propensity score loan matching. These same loans ended up having missing debt-to-
income information over 99% of the time.
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rejection rates from the Home Mortgage Disclosure Act from 1996 to 1999 to

predict the expansion of the origination activity of the different types of loan

originators. We find that only the origination activity by the worst originators

relates to unmet demand.

Finally, for illustrative purposes, we compare the costs of inflation by

comparing the activity in the 858 ZIPs with high presence of bad origination

activity to those in the 4,318 ZIP codes with a low presence of bad origination

activity. We find that the ZIP codes with bad origination activity had $656

billion in excessive transaction values from 2003 to 2012 and over $1 trillion

in excess market value at the peak. These back-of-the-envelope calculations

indicate substantial potential effects of bad origination activity, but more work

is needed to assess precise magnitudes.

Overall, our evidence supports the hypothesis that bad origination prac-

tices had a distorting effect on house prices. Nevertheless, we are not trying to

distinguish the precise extent to which all of the increase in credit from origi-

nators which engaged in misreporting is due to fraud or simply lax (but legal)

standards. Our goal is not to examine all causes for the housing price bubble

as surveyed by Mayer, Pence, and Sherlund (2009b) or Levitin and Wachter

(2012).5 Our evidence is difficult to reconcile with arguments that the cri-

5While our focus is on cross-sectional differences, Hubbard and Mayer (2009) find that
interest rates may have played a sizeable role in the aggregate housing increases whereas
Glaeser et al. (2010) and Adelino, Schoar, and Severino (2013b) find a small effect. Coleman,
LaCour-Little, and Vandell (2008) and Demyanyk and Van Hemert (2011) find deteriorating
underwriting standards.

51



sis was not driven by problems in securitization incentives (Gorton (2008) and

Gorton (2009)), or that origination practices did not drive house prices (Foote,

Gerardi, and Willen (2012)).

2.2. Hypotheses

Housing prices respond to a shift in the demand curve (Herring and

Wachter (2000), Hubbard and Mayer (2009)). As lenders loosen credit stan-

dards, those who could not previously qualify to purchase a house are able

to. Additionally, borrowers who qualified for smaller loans can now afford

larger ones. If lenders allow purchasers with little or no equity to borrow

large amounts of credit, then there could be a large shift in the demand for

housing. The magnitude of the demand shift will depend on what fraction

of new borrowers, who were previously credit constrained, are given access

to credit. Thus, our tests follow a similar rationale as those done by Mian

and Sufi (2009) and Pavlov and Wachter (2011); when the supply of credit is

extended by lowering underwriting standards, the demand curve for housing

shifts outward, and housing prices increase. However, originators may vary

in regards to the extent they affect demand. Originators who were willing

to loan to uncreditworthy borrowers may shift the demand curve more than

originators who screen borrowers to meet certain stated minimum standards.

Once an originator is willing to misreport whether a borrower has money down

or income above a threshold, the loan may be issued to a borrower with little
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ability to repay the loan.6 This could occur not only for non-agency loans,

but also for agency loans to the extent that the misreporting is undetected by

the federal agency. In contrast, an originator who is securitizing loans but is

not misreporting may not lend to borrowers below standards. Additionally,

Ben-David (2014) shows that higher leverage buyers paid 3.4% too much for

the house, providing a more immediate channel for origination practices to af-

fect house prices since misreported second-lien loans are typically of extremely

high combined loan-to-value. This reasoning leads to our first hypotheses:

Hypothesis 1.1: ZIP codes with a larger fraction of originators with

bad practices will experience more rapid house price increases during periods

of credit expansion.

Hypothesis 1.2: ZIP codes with a larger fraction of originators with

bad practices will experience larger price decreases during the period of credit

contraction.

Alternatively, it may be that lending standards were low across the

board and that all originators gave out credit indiscriminately to uncreditwor-

thy borrowers. If this is the case, then house prices should purely be related

to the fraction of loans in the ZIP that are securitized. House prices should

6It is well documented that underwriters who securitized loans through RMBS did per-
form due diligence and thus likely understood that the loans they were acquiring were worse
than stated. If the underwriter paid the appropriately lower price for the origination on
the misreported loan, then it would eliminate the incentive to misreport. However, if the
underwriter also profits from misreported loans in RMBS and purchases the loans at less
than the required misreporting discount, then originators would be incentivized to continue
to misreport.
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not be related to the misreporting practices of the originators.

Hypothesis 1.1A and 1.2A: The misreporting practices of the orig-

inator will have little or no relation to house price increases or decreases.

Saiz (2010) and Glaeser, Gyourko, and Saiz (2008) show that the elas-

ticity of the available supply of land has a large effect on housing prices. In

inelastic ZIP codes, prices may increase quite rapidly with increases in housing

price demand, whereas in ZIP codes with an elastic supply of available land,

price increases will be short-lived and followed by new construction. Hence, if

bad originators lead to an increase in housing, we expect the price distortion

effects of bad credit should be greatest in areas of inelastic land supply.

Hypothesis 2: ZIP codes in areas of inelastic land supply should ex-

perience the most rapid increase and decrease in housing prices in response to

bad credit practices.

Glaeser, Gyourko, and Saiz (2008) show prices are never more than

10% to 15% above production costs in areas of elastic supply. In elastic areas

when originators with bad practices extend credit, excess credit should not

lead to larger price increases since new housing can be built. However, it does

lead to overbuilding, and when credit is removed, house prices will experience

large busts not typically associated with areas of high elasticity.

Hypothesis 3: In areas of elastic land supply, bad origination practices

will lead to large price decreases during the period of credit contraction.

Hypothesis 3A: In areas of elastic land supply, bad origination prac-
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tices have no relation to prices during the period of credit contraction.

We now turn to our data and measurement of bad origination practices.

2.3. Data, Measures, and Sample

In this section we discuss our data sources, the measure of bad origina-

tion practices, the construction of our empirical measures, and sample selec-

tion.

2.3.1. Data

The data used in this study is from a number of reputable sources.

Property transaction information is obtained from DataQuick, securitized loan

information from Lewtan’s ABSNet Loan, ZIP code-level house price indices

from Zillow, ZIP code-level demographics from the Decennial Census 2000,

and ZIP code-level household income information from the IRS.

DataQuick is one of the main providers of real estate transaction in-

formation recorded by county assessors. Specifically, we use DataQuick’s His-

tory File, which provides the transfer date, location, the type of property

transaction, and the names of the originators involved. Lewtan, on the other

hand, compiles and cleans information from servicer/trustee reports of non-

agency RMBS deals (similar to the information available to RMBS investors

in Prospectus Supplements at issuance). From ABSNet, we use fields includ-

ing the origination date, type of transaction, originator name, and ZIP code

associated to the loan. We obtain house price indices from Zillow, an online
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real estate database, for 12,614 ZIP codes from 2003 to 2012. Mian and Sufi

(2009) report that the Fiserv’s Case Shiller Weiss indices have a correlation

of 0.91 with overlapping ZIP codes in Zillow, yet Zillow’s coverage is much

broader.7 Lastly, we obtain demographic and income data for controls for our

empirical tests from the 2000 Decennial Census and the IRS SOI. Specifically,

from the Census we obtain ZIP code-level variables such as the population,

the number of houses, and the housing vacancy rate. From the IRS files, we

obtain the average household income per ZIP code in 2001 and the change

in average household income between 2001 and 2006. We also use the Home

Mortgage Disclosure Act (HMDA) data set. This data set contains detailed

information about loan applications and the actions that followed the applica-

tions (i.e., whether the loan was originated along with the reason in the case

that the origination failed). Using Census track information the HMDA data

is mapped to our ZIP Codes for approximately 70% of our sample.

2.3.2. Originator Practices

We use the measure of unreported second-lien loans in Griffin and Mat-

urana (2014) as a proxy of mortgage originators’ bad practices. This indica-

7The Zillow Home Value Index (ZHVI) is a time series of median home values. Zillow
home values, called “Zestimates,” are calculated by a proprietary automated valuation model
that accounts for both recent nearby transaction data and home attributes. This model
generates Zestimates for both recently sold homes and homes that have not seen a recent
transaction. Within a ZIP code, the ZHVI is generated by calculating the median Zestimate.
The raw median is then adjusted for seasonality and systematic residual error, among other
filters. A detailed description of the methodology can be found on the Zillow website:
http://www.zillow.com/research/zhvi-methodology-6032.
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tor essentially compares the data from servicer/trustee reports (in ABSNet)

with the corresponding property transactions from the county deed records (in

DataQuick). Although Griffin and Maturana examine three types of misre-

porting, second-lien misreporting is strongly related to the originator whereas

owner occupancy misreporting and appraisal overstatements are not. They

find that more than 13% of the first-lien loans originated between 2002 and

2007 that were reported as not having a second lien in the RMBS records

did have a second lien issued on the same day in the county-level transaction

records. Piskorski, Seru, and Witkin (2015) also find extremely similar levels of

second-lien misreporting using entirely different data sources and methodolo-

gies. They also find that misreporting varies widely across states, suggesting

substantial cross-sectional variation for analysis. Griffin and Maturana find

that the unreported second-lien indicator varies significantly across the set of

the largest 25 mortgage originators in their sample. They show that delinquen-

cies by the originator are strongly related to second-lien misreporting levels,

even after controlling for the three types of loan level misreporting. This sug-

gests that the originators with high levels of second-lien misreporting may have

engaged in other bad practices which led to losses. Thus, we use originator

second-lien misreporting because this type of misreporting seems correlated

with other bad practices including but not limited to mortgage misrepresen-

tation practices.8 Nevertheless, in the last section we will further investigate

8As an independent verification of this conjecture, WMC mortgage, which had the
highest level of second-lien misreporting rate in Griffin and Maturana’s sample, is reported
to be under criminal investigation by the FBI and the US Department of Justice. The

57



the potential problems with these originators.

Each year, we classify the same 25 loan originators with more than 2.2

million loans in Griffin and Maturana (2014) into three groups based on the

cumulative fraction of misreported loans they issued. Specifically, we use the

amount of cumulative second-lien misreporting of each originator in year t− 1

to rank the originators in year t.9 We refer to the originators in the tercile

with the highest misreporting as the worst originators and to the originators in

the tercile with the lowest misreporting as the best originators.10 Some of the

originators with medium or low levels of second-lien misreporting have been

reported to have engaged in questionable loan practices. For this reason we call

them ‘medium’ or ‘best’ but also note that they may have additional types

of misreporting/fraud beyond the second-lien misreporting. To the extent

that our benchmark for better practices still contains some bad origination

practices, our empirical tests using this benchmark will likely understate the

extent to which bad origination practices affected house prices. The amount

of misreporting per tercile per year is presented in Appendix B and shows that

indeed the best tercile has trivial levels of second-lien misreporting compared

to the worst originators.

accusations against WMC include rampant practices of falsifying loan documents in many
dimensions and sidelining employees who repeatedly reported some of the falsifications they
had seen (Hudson and Reckard (2012)).

9Since we have the unreported second-lien indicator for the period 2002 to 2007, our
rank of originators starts from 2003 (using 2002 data). Also, beginning in 2008 we hold the
ranking fixed for the following years.

10We also refer to the originators in the second tercile as medium originators. If the
originators are not in the set of 25 originators we call these unranked originators.
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2.3.3. Empirical Framework

As we are interested in the negative spillover effects of loan originators’

practices, we use DataQuick to create a set of ZIP code-level measures to

capture the importance of each type of originator in the mortgage market at

each ZIP code. We use purchase transactions and not refinances since we

are interested in the transactions that influence market prices. The use of

the county deed records is important to expand the set of mortgages beyond

those securitized in non-agency RMBS. This set includes agency mortgages

and privately held mortgages, though we suspect that mortgages privately

held by the worst originators are negligible since these originators are known

for their role in securitizing mortgages. To capture their relative importance,

we divide the number of loans for purchase issued by each type of originator

(worst, medium, best, and not ranked) in each ZIP code by the total amount

of purchase transactions in the ZIP code with originator information over the

ranking period. Likewise, we construct measures of the fraction securitized by

each type of originator. For this, we take the number of purchase loans issued

by each type of originator in each ZIP code from the securitized (non-agency)

loans in ABSNet and divide it by the total number of purchases per ZIP code

in DataQuick.

2.3.4. Sample Selection

To guarantee the accuracy of our measures and empirical tests, we

impose some restrictions on the ZIP codes sample. First, since our main
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measures heavily rely on the identification of loan originators, we only use

loans with non-missing originator names, and we drop ZIP codes where the

originator name coverage is less than 25% as some counties may not commonly

report originator names. Of the 69.9 million purchase transactions (from 2003

to 2012) recorded in DataQuick, 24.7 million or 25.5% have non-missing lender

names.11 Second, because we want accurate measures, we require ZIP codes

to show more than 500 purchase transactions during the period 2003 to 2006.

Third, we drop ZIP codes where the proportion of securitized (ABSNet) loans

to county level (DataQuick) loans is in the highest 2.5%, as those extreme

values are likely due to a relatively lower coverage of the DataQuick database.

Finally, since most of our specifications will rely on identification within the

MSA, we drop MSAs with less than 15 ZIP codes remaining after applying the

first three filters explained above. A total of 5,176 ZIP codes remain which

compares favorably to the Mian and Sufi (2009) house price sample of slightly

over 3,000 ZIP codes.12 The 5,176 ZIP code sample has lender name coverage

for 42.5% of the observations. We only use these loans with lender name

coverage to generate our measures and tests.

11The states with larger coverage are New Hampshire, Montana, and the District of
Columbia, with 72%, 59%, and 57% coverage, respectively. On the other hand, South
Dakota and Vermont have virtually no coverage.

12DataQuick shows 18,909 ZIP codes with purchase transactions with originator names
during 2003 to 2012. After dropping the ZIP codes with low originator name coverage
11,096 ZIP codes remain. An additional 3,861 ZIP codes do not comply with the minimum
requirement of the number of transactions, leaving 7,235 ZIP codes. Then, 1,069 ZIP codes
are lost after merging the sample with Zillow and dropping ZIP codes with high values of
fraction securitized, or missing values for the controls. Finally, 990 ZIP codes are dropped
because they are in MSAs with less than 15 ZIP codes.
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Descriptive statistics for the ZIP code-level measures and controls are

shown in Table 1.2. As mentioned before, we focus on the top 25 lenders

ranked by non-agency securitization and classify them into three groups (worst,

medium, and best) based on the amount of second-lien misreporting they

exhibit. On average, the worst originators were responsible for 5.6% of loans

between 2003 and 200613 while the medium and best originators have 17.3%

and 11.1% respectively of the market of loans with originator names reported

in the 5,176 ZIPs. The worst, medium, and best originators combined account

for 34% of the loan originations between 2003 and 2006 with the remaining 66%

being from originators who are not among the top 25 non-agency originators.

Furthermore, the three types of ranked originators (top 25) account for 92.4%

of privately securitized loans over the period from 2003 to 2006 (14.5% of the

15.7%). These non-agency securitizers also sold loans to agency deals. We

find that 12 of the 25 non-agency securitizers did business with government-

sponsored enterprises (GSE).14

13Appendix B shows that worst originators’ market share (from 2003 to 2006) varies
considerably across ZIP codes.

14Fannie Mae makes public a subset of the loans they have acquired since 2000. In the 7.3
million loans in the Fannie Mae sample data that were originated between 2003 and 2007,
we confirm the presence of five of our top 25 non-agency originators in the agency market
(Bank of America, Chase, GMAC-RFC, SunTrust, and Wells Fargo). However, it seems
likely that at least a subset of the remaining 20 originators were also involved with agency
deals because Fannie Mae simply lists the lender name as “Other” for 21.6% of the loans. We
investigate this further by conducting an online search for agency MBS prospectuses that
linked our remaining 20 originators with GSEs and confirm that at least an additional seven
lenders (Argent, BNC, Countrywide, First Franklin, Fremont, New Century, and WMC)
sold loans to agency MBS as well.
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2.4. Bad Origination Activity and House Prices

Our main goal in this section is to test whether home prices are related

to origination activity of misreporters (Hypothesis 1.1 and 1.2) or simply

the amount of securitization (Hypothesis 1.1A and 1.2A). We start this

section by visually inspecting if the presence of the worst originators is related

to extreme positive (negative) house returns during the boom (bust). We

divide ZIP codes into two groups: those where the average market share of

the worst originators during the third quarter of 2004 and the second quarter

of 2006 exceeds 10% are in the first group, and the remaining ZIP codes are in

the second group.15 The objective is to compare the house price movements

during the boom and the bust of both groups and determine if the group with

the highest worst originators’ market share experienced a higher increase on

prices during the boom, followed by a more violent crash of prices during the

bust. Figure 2.1 shows the progression of house prices: the ZIP codes with the

highest worst originators’ market share went up by 63% during the 2003 to

2006 boom, whereas the ZIP codes with the best originators only experienced a

36% run-up from 2003 to 2006. This 27% difference in absolute terms amounts

to a 75% (27%/36%) relatively larger increase in house prices in the ZIP codes

with the worst originators relative to the other ZIPs. Conversely, from 2007

to 2012, ZIP codes with a high presence of worst originators experienced a

15The sizes of these groups are of 858 and 4,318 ZIP codes, respectively. Appendix B
shows that there is indeed considerable variation in the worst originators’ market share
during the 2003 to 2006 period. The worst originators’ market share of both groups rapidly
decreases towards zero during 2007, as most of the worst originators went bankrupt or lost
considerable business.
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40% decrease as compared to a 21% decrease for ZIP codes with the best

originators, a 19% absolute difference or a 90% (19%/21%) higher relative

decrease.

We look at this result from a geographic perspective and show that the

57% of ZIP codes with large house price increases and 61% of ZIP codes with

large house price decreases have a high market share of worst originators.16

As additional motivation for our analysis, in Appendix B, we show that there

exists a strong positive relation between securitization and ZIP-code house

returns. However, the simple univariate relation is eight to ten times stronger

when using the fraction securitized by lenders with bad origination practices

rather than the total fraction securitized.17

We turn now to a more formal framework. In Panel A of Table 2.2, we

present OLS regressions where ZIP code house price return is the dependent

variable and the market shares of the three different types of originators are

the main explanatory variables of interest. We include several controls. To

account for the relation between securitization and house returns we include

the fraction of loans securitized at the ZIP code during the period 2003 to

2006. We also control for demographic characteristics that might be related to

cross-sectional differences in house returns across ZIP codes such as the ZIP

16These results are found in Appendix B. The findings suggest that loan origination by
the worst originators is correlated with extreme house price fluctuations during the boom and
bust periods and that the effect is particularly strong in the West Coast. This emphasizes
the importance of our use of MSA controls in all of our main results.

17In Appendix B, we confirm this result in a multivariate regression framework.
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codes’ population, number of house units, and vacancy rate (all in the year

2000). Controls are included for average household income in 2001 and aver-

age household income changes from 2001 to 2006 (also at the ZIP), as well as

MSA fixed effects. Standard errors are heteroskedasticity-robust and clustered

at the MSA level. Column 3 confirms the strong relation between the worst

originators’ market share and house returns during the boom. Also, the effect

of the worst originators is the most important among the three types of orig-

inators. The coefficient of 1.235 on worst originators’ market share (which is

statistically significant at the 1% level) implies that an increase of 5% (which

is less than the difference between the median worst originators market share

and the 90th percentile) in loan origination activity in a ZIP code by the worst

originators during 2003 to 2006 increased prices 6.18% on average during the

boom. Similarly, during the bust, an increase of 5% in the worst originators’

market share during 2003 to 2006 implied a decrease of 7.10% in house prices

during the bust (Column 6). As in the boom, the relevance of the worst orig-

inators surpasses that of the other types of originators. Loan issuances by

originators with the worst practices are strongly related to house price distor-

tions. Interestingly, the fraction securitized does not enter significantly as a

determinant of the housing price run-up during the boom with the inclusion

of worst originators’ market share. The coefficient does enter significantly in

the bust, though the slope is about 1/7 of that on the market share due to

worst originators.

Given that Mian and Sufi (2009) show that house price distortions were
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concentrated in subprime ZIP codes, we now examine if our results only hold

in subprime ZIP codes. Panel B of Table 2.2 shows the same specifications in

Panel A for the set of ZIP codes in the highest quartile based on household

income during 2001. The effect of worst originators’ market share is strongly

related to house returns in the boom and bust. A 5% change in the market

share of the worst originators is associated to an average increase of 4.25% in

house return. This relation is strong both statistically and economically, but

the slope is slightly lower than in the full sample. In the bust, the coefficient

remains unchanged.

While Mian and Sufi (2009) use the percentage of borrowers in a ZIP

code with credit score under 660 as of 1996 as their measure of ‘subprime’ ZIP

code, we use income since we lack credit score data for the whole ZIP code

and the two should be highly correlated. However, as a check, we compute

a measure of subprime ZIP code based on the credit scores of the securitized

loans in ABSNet (using the whole database of approximately 20 million loans)

and obtain similar results (see Appendix B). Overall, we find little support

for home prices being related to just securitization (Hypothesis 1.1A and

1.2A) but considerable support for ZIP Code level variation being related to

bad origination practices (Hypothesis 1.1 and 1.2).
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2.5. Did Bad Origination Cause House Price Distortions?

Although we find a strong relation between house prices and the per-

centage market share of the worst originators, the relation may not be causal.

The worst originators may have followed more aggressive business strategies

in entering ZIP codes with increasing house prices. A second and related pos-

sibility is that the worst originators aggressively entered the ZIP codes where

they expected prices to go up during the boom because of tight supply. Third,

there could be some other omitted variable that drove both bad origination

and house price movements. We take a variety of approaches to investigate if

the relationship between bad origination practices and house price distortions

is causal. First, we use the market share of the worst originators and the num-

ber of worst originators in a ZIP code both in 2002 as instruments for worst

originators’ market share over the 2003 to 2006 period. Second, we explain the

expansion of worst originator market share through a measure of unmet credit

demand at the ZIP code from 1996 to 1999. Third, we use changes in state-

level anti-predatory lending laws as a quasi-natural experiment that affects the

amount of bad loan origination. Fourth, we analyze the cross-sectional vari-

ation in price peaks across ZIP codes to examine if supply peaks from worst

or best originators anticipate ZIP code level price peaks. Fifth, to address

whether worst originators were targeting areas of rapid price appreciation, we

match house price returns over the boom period and compare returns during

the bust for a set of ZIP codes with a high activity of the worst originators
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and a set of ZIP codes with low worst originator activity. Sixth, we use the

elasticity of housing supply from Saiz (2010) as a proxy for expectations about

future house appreciation. We focus on the effect of worst originator activity

on house prices in ZIP codes in the most elastic MSAs.

2.5.1. Instrumenting For Worst Originator Activity

We would like to find an instrumental variable (IV) related to worst

originators’ market share that does not affect house prices directly. In this

subsection, we use a set of plausible instruments based on the idea that origina-

tors spread their operations first through their existing operations, and also by

moving to areas with untapped credit demand. First, we use the market share

of the worst originators and the number of worst originators present in a ZIP

code, both in 2002, to account for originators geographical locations prior to

the crisis. Subsequently, we use the aggregate ZIP-code level loan application

rejection rates from 1996 to 1999 as a proxy for unmet loan demand.

2.5.1.1. Worst Originator Presence

We start by using the market share of the worst originators and number

of worst originators present in a ZIP code in 2002 as this instrument for worst

originators’ market share. The idea of the instrument is that originators with

dubious practices were located in particular locations across the country. As

securitization grew in importance, these originators expanded to new areas,

but the original locals experienced a wave of credit which allowed them to
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increase their market share in these areas. 2002 is the year before we examine

any home price movements.18 As shown in the bottom panel of Table 2.3,

the instrument satisfies the relevance restriction. Both instruments predict

worst originators’ market share from 2003 to 2006. The partial correlation is

positive and highly significant, and the F -statistic is also always higher than

the threshold of 10, both with and without control variables, indicating that

there is no problem of weak instruments (Bound, Jaeger, and Baker (1995);

Staiger and Stock (1997)). Intuitively, the exclusion restriction should also be

satisfied. There is no apparent reason why the regional presence of certain bad

lenders should affect house prices in the future through something other than

the credit channel.

We follow the typical two-stage procedure and estimate the IV regres-

sion using 2SLS. The results are displayed in Table 2.3. The fitted value of

worst originators’ market share from the first stage regression positively af-

fected house returns during the period from 2003 to 2006, while the effect is

negative during the period from 2007 to 2012. The IV coefficients on worst

originators’ market share are 1.272 in the boom and -2.309 in the bust, which

are slightly larger than the OLS coefficients of 1.235 and -1.420. More specifi-

cally, an increase of 5% in the market share by the worst originators increases

18More specifically, in each ZIP code during 2002, we count the number of loan origina-
tions by lenders that consistently ranked among the highest tercile of second-lien misreport-
ing from 2003 to 2008 (i.e., Fieldstone, First Franklin, Fremont, GreenPoint, and WMC).
For an originator to be considered as being ‘present’ in a county, it had to originate at least
300 loans in the county during 2002. Appendix B shows the frequency with which each
lender ranked in each tercile of second-lien misreporting between 2003 and 2008.
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housing returns by 6.4% in the 2003 to 2006 boom and decreases housing

returns by 11.6% in the bust. Interestingly, neither medium nor best origina-

tor activity has a significant distortionary effect on house returns in this IV

setting.

2.5.1.2. Prior Loan Application Rejection Rates

We now use the aggregate ZIP-code level loan application rejection rate

in the period from 1996 to 1999 as an instrument for worst originators’ market

share. The idea behind this instrument is that the loan application rejection

rate is a proxy for unmet loan demand from borrowers. Loan application rejec-

tion rates indicate that the demand for housing is more likely to be unsatisfied.

If worst originators expand by granting credit to uncredit worthy borrowers

then the previous loan application rejection rate will be positively related with

worst originators’ market share over the subsequent 2003-2006 period in which

their activity expands. The effect of loan application rejection rates on future

housing prices would then be through a future increase in market share, plau-

sibly satisfying the exclusion restriction. It is reasonable to expect that loan

rejection rates should be related to house prices through the credit channel.

For each ZIP code, we sum the number of rejected applications between

1996 and 1999 as captured by the HMDA records and then divide them by

the total number of applications received during the period.

As before, we estimate an IV regression using 2SLS. The first stage

coefficient is shown at the bottom panel of Table 2.4. The partial effect of

69



the instrument on worst originators’ market share is positive and strongly

significant and therefore the instrument satisfies the relevance restriction. Ad-

ditionally, the F -statistic is also considerably higher than the threshold of 10

for the two specifications (with and without ZIP code-level controls) indicating

that the instrument has strong predictive power.

The results of the second stage (where housing returns are regressed on

the fitted values of worst originators’ market share from the first stage plus

controls) are shown in Table 2.4. The coefficients on worst originators’ market

share are several times larger than the coefficients of the OLS regressions.

Therefore, we are more comfortable relying on the strong causal inference from

the regression than on the exact coefficient magnitudes. As with the previous

instrument, neither medium nor best originator activity has a significant effect

on house returns.

Overall, the instrumental variable regressions indicate that worst origi-

nator activity had a causal effect on house prices during the periods from 2003

to 2006 and from 2007 to 2012.

2.5.2. Anti-Predatory Law Changes

An alternative path to examining if bad origination activity has an

effect on house prices is to focus on a quasi-exogenous event that reduced

bad quality loan originations, and therefore, loan originations by the worst

originators. In this section, we use anti-predatory law (APLs) as a quasi-

natural experiment to analyze the effect of loan supply by the worst originators
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on house price movements. Bostic et al. (2008) find that APLs reduce subprime

loan originations, especially when the APLs are more restrictive. These law

changes should have also led to relatively less origination of loans by originators

with bad standards. Indeed, we find such a relation in Appendix B. Hence,

we compare house price movements in states that passed APLs between 2004

and 2005 with house price fluctuations in states with no anti-predatory laws.19

Figure 2.2 shows the house price movements of the ZIP codes that

suffered a law change and the ZIP codes in the benchmark (no APL). Both

sets of ZIP codes experience extremely similar house price increases during the

two-year period anteceding the law change. However, after the law change,

house prices of ZIP codes in the first group continue to increase at a much

lower rate than the ZIP codes in the second group. This finding is consistent

with APLs preventing some bad quality loan originations which would have

otherwise occurred, and hence reducing upward pressure on home prices.20

Table 2.5 shows the previous result more formally. We regress house

price returns on a Post Law dummy and a set of controls and quarter fixed

effects.21 The negative coefficient on the law dummy variable of -0.024 (andt-

statistic of 4.31) means that ZIP codes in states that passed APLs had a 2.4%

19The set of states that implemented APLs in 2004 and 2005 are New Mexico (Q1 of
2004), South Carolina(Q1 of 2004), Massachusetts (Q3 of 2004), Indiana (Q1 of 2005),
and Wisconsin (Q1 of 2005). The set of states with no APLs are Arizona, Delaware, New
Hampshire, Montana, Oregon, Washington, and Tennessee.

20In Appendix B we also plot the results for the three different quarters in which the law
changes occur and find that house prices significantly diverge in two of the three quarters
(Q1 and Q3 of 2004).

21Standard errors are heteroskedasticity-robust and clustered by CBSA.
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slower quarterly (9.6% annually) home price increase than in states with no

APLs. The table also shows a negative effect of the law changes on worst

originator loan supply (Column 2, coefficient of -2.1% and t-statistic of 3.97)

which is consistent with the law change being the channel for reducing the

origination supply.22 Columns 3 and 4 of Table 2.5 show that the effects are

considerably stronger for the subsample of ZIP codes with worst originator

loan supply above the median level. The relative increase of house prices and

worst originator loan supply of ZIP codes with law changes are 3.5% and 5.1%

lower, respectively, than ZIP codes with no APLs.

2.5.3. The timing of Supply and Price Peaks

If loan origination had a causal effect on house prices during the bust

period, we would expect loan supply to have peaked before house prices. Fur-

thermore, if bad credit by the worst originators had a more important effect

on the excessive house price fluctuations during the financial crisis than credit

of better quality, then we should see loan origination supply by the worst orig-

inators generally peaking before house prices and significantly more frequently

than the loan supply by the best originators. In contrast, if prices were driven

by the best originators initiating credit, then the expansion or contraction of

their activity in a ZIP code should anticipate ZIP code level price peaks.

22We construct a measure of worst originators’ loan supply by dividing the number of
loan originations by the worst originators each quarter by the total amount of loans granted
by the worst originators from 2003 to 2009. To put the variable on a quarterly basis values
are then scaled by multiplying the variable by 28 (the number of quarters between 2003 and
2009).
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To ensure the adequate presence of bad originators, we focus on the

subset of ZIP codes where the average market share of the worst originators

exceeded 10% between the third quarter of 2004 and the second quarter of

2006. Interestingly, there is considerable variation in house price peaks be-

tween 2005 and 2007 with 18.5 % of price peaks occurring in 2005, 43.8 % in

2006, and 31.3% in 2007 (as shown in Appendix B) that allows us to examine

if this cross-section of peaks is related to supply peaks.

Figure 2.3 shows the quarterly zip code-loan supply by the worst and

the best originators along with ZIP code house price movements during the

four year window around the house price peak. Panel A consolidates all peak-

years. While both types of supply initially increase together with house prices

and decrease before the house price peak, loan supply by the worst originators

decreases rapidly before the supply by the best originators. Panels B through

D show that this pattern is consistent within each peak-year. In particular,

each peak year displays the pattern that supply by bad originators peaked two

to three quarters prior to prices. Note that for ZIP codes that peaked in 2005

and 2006, the supply of loans by the best originators is only slightly below its

peak level six to eight quarters after the price peak even though prices in the

ZIP have fallen 15%.

To test for the reliability of these patterns, Table 2.6 presents a test

of difference in proportions. More specifically, for the 858 ZIPs with a large

presence of worst originators, we compare if the proportion of ZIP codes where

loan supply by bad originators peaks before house prices is significantly larger
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than the proportion of ZIP codes where loan supply by the best originators

peaks before house prices. Loan supply by the worst originators peaks before

house prices in 90% of the 804 ZIP codes (of the 858) where house prices

peaked between 2005 and 2007. Furthermore, this proportion is 24.3% larger

in absolute terms (36.8% larger in relative terms) than the proportion of the

best originators and is strongly significant (z -statistic of 11.7). Once again,

this result is consistent across different peak-years. Loan supply by the worst

originators anticipates price peaks more than the loan supply by the best

originators, suggesting that supply by bad originators played a leading role in

house price fluctuations.

2.5.4. Were the Worst Originators Simply Chasing House Returns?

The worst originators might have simply been chasing large house price

returns and quickly entering booming ZIP codes. Therefore, the greater drop

in house prices for ZIP codes with worst originator activity could simply be

due to mean reversion. Alternatively, the worst originators may have been

issuing undeserved credit which increased the supply of loans and amount of

credit, leading to house price dislocations. The two explanations have different

implications with respect to matching ZIPs with large worst originator activity

with ZIPs with low presence of the worst originators based on house price in-

creases. Suppose the worst originators were simply targeting ZIP codes which

experienced a large house price increase, then if one matched ZIP codes with

similar level of home price appreciation during the boom, one would expect a
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similar bust as the home prices reverted to their pre-bubble expectation. In

contrast, if the worst originators were giving out undeserved credit unrelated

to fundamentals, then one would expect these ZIP codes to crash to lower

levels than ZIP codes where more of the credit may have been warranted.

To examine these hypotheses, we take the 858 ZIP codes where the

worst originators had an average market share of more than 10% between the

third quarter of 2004 and the second quarter of 2006, and match each of them

to a ZIP code in the same MSA with the most similar housing returns from

2003 to 2006 and where the worst originators have a market share lower than

5%.

House prices go down at the same time that the majority of the worst

originators went bankrupt unexpectedly (gray area in Figure 2.4).23 Panel A of

Figure 2.4 compares the house price movements of the worst originator and the

matched group price movements and finds that, consistent with the matching

construction, the two groups have almost identical price run-up during the

boom. The dashed lines represent the 95% confidence interval and show that

the decrease in house price is significantly stronger for the group of ZIP codes

with the worst originator activity. For the worst misreporting group, the

home prices decrease 39.4% whereas for the matching ZIP code within the

same MSA with a lower presence of the bad originators, home prices decrease

23.5%. Thus, even though the two ZIP codes increase the same amount from

23While it can be argued that an originator’s bankruptcy could have been expected, the
time of the event was arguably unexpected.
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2003 to 2006, ZIP codes with bad originators experience a 15.9% larger drop

in housing prices from 2007 to 2012. The results are consistent with the

hypothesis that loans issued by the worst originators exhibited a distorting

effect on house prices.

In Panel B of Figure 2.4, due to concerns that originators might have

self-selected to ZIP codes (or that individuals might have self-selected to orig-

inators) within small areas, we repeat the previous exercise but the match is

done among ZIP codes of different MSAs. The findings are similar; the ZIP

codes with the worst originators experienced the largest drops in house values

after 2007.

One concern is that the differences in the bust could be due to dif-

ferences in characteristics, like the average income between the two groups.

Hence, in Table 2.7, we test the result shown in Panel A of Figure 2.4 more

formally by controlling for differences in the population, income, and growth

in income in the ZIP codes. Here, we estimate the following difference-in-

difference regression:

return = β0 + β1(worst orig. > 10% × post2006)

+ β2(worst orig. > 10%) + β3post2006 +XΓ + ε, (2.1)

where return is a vector with house returns,24 worst orig. >10% is an indicator

that identifies the 858 ZIP codes in the first group graphed in Panel A of Figure

24Specifically, this vector has 2 returns per ZIP code, one for the boom and one for the
bust.
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2.4, post2006 is a dummy variable that takes a value of one if the date of the

return corresponds to the year 2007 or later, and zero otherwise, and X is

the same set of control variables used in the specifications in Table 2.2. Since

we are interested in comparing the magnitudes of the price decrease between

the two groups, the parameter of interest is β1. Column 2 in Table 2.7 shows

that after most of the worst originators went bankrupt, the house prices of the

group of ZIP codes decreased an additional 17.3% on average compared to the

ZIP codes with lower activity of the worst originators.

Overall, ZIP codes where the worst originators had more business show

a larger price decrease even when the ZIP code is matched to require a similar

house price increase than the ZIP code where the worst originators had less

business. This effect is not explained by income, income growth, MSA fixed

effects, or other controls. The results are inconsistent with the notion that

the relation between worst origination market share and home prices is due

to strong trend chasing. The results are consistent with the hypothesis that

prices fell more in ZIP codes with larger fractions of worst originators because

these originators doled out unwarranted credit, which had a distortive effect

on home prices.

2.5.5. Are the Price Distortions by Bad Originators Explained by
Increased Price Expectations?

We analyze the possibility that the worst originators entered the mar-

kets where they expected house prices to go up. Following Mian and Sufi
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(2009), we use elasticity of housing supply from Saiz (2010) as a proxy for

house appreciation expectations.25 The elasticity measure is a topologically-

based measure that gauges elasticity by surrounding geographic constraints.

Glaeser, Gyourko, and Saiz (2008) show that house prices fluctuate much

more in inelastic MSAs.26 Hence, expectations of future house price increases

by originators are expected to be higher in areas where housing supply is rel-

atively inelastic. Thus, it is in these MSAs where we expect an increase in

credit supply to have a larger effect on prices. If the previous results are driven

by the worst originators aggressively forecasting house prices by issuing loans

in ZIP codes with inelastic supply, the expansion of worst origination market

share should be confined to those areas with tight elasticity. Following Mian

and Sufi (2009), we examine the top and bottom 50% and 25% of MSAs. We

examine whether the worst originator market share increases were confined to

MSAs where the housing supply was inelastic. We find that, though level of

activity was lower in elastic MSAs, worst originators increased their market

share both in inelastic and elastic MSAs.27

Since home prices should be more sensitive to credit in inelastic MSAs,

we expect to see a stronger relation between worst origination credit expan-

sion and house prices in inelastic MSAs as discussed in Hypothesis 2. The

25Table VI of Saiz (2010) reports the elasticity of housing supply for the 1970 to 2000
period for 95 metro areas with a population over 500,000. We match 65 of these with our
sample, which includes 90.2% of the ZIP codes.

26We confirm this result in Appendix B.
27Appendix B shows the worst originators’ market share in both elastic (blue solid circles)

and inelastic (black hollow circles) MSAs. Panel A shows the result when we split the MSAs
in half, and Panel B shows the result when we select the extreme quartiles.
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expansion of credit should have little effect on the run-up in prices in elas-

tic MSAs since increases in prices will predominately be due to increases in

construction costs and limited with respect to land supply. However, as dis-

cussed in Hypothesis 3, these areas could experience a considerable decrease

in house prices during the crash if the expansion of credit to unqualified bor-

rowers led to an increase in housing supply that was not supported by income

and population growth.

In Table 2.8, we estimate our main specifications for the bust for elastic

and inelastic ZIP codes (based on the top and bottom 50% and 25% of MSAs).

For the elastic MSAs, a 5% increase in loan issuances by the worst originators

explains an economically large decrease of 9.05% in house returns on average

(column 1). The results are slightly stronger in the top 25% of ZIP codes

(column 2), indicating that bad origination activity was associated with a

considerable bust in elastic MSAs. In columns 3 and 4 (inelastic MSAs) the

same coefficients are negative and significant (-1.268 and -1.265), indicating

that only the worst origination market share during the run-up (not medium

or good) is predictive of a bust in inelastic MSAs).28

As the worst originators expanded to very elastic areas, we further

analyze the subset of ZIP codes in the 25% more elastic MSAs. Figure 2.5

shows that in the elastic ZIP codes with high share of the worst originators the

excess credit led to a large increase in new housing construction in between

28In Appendix B we present the same regressions for the boom period.
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2004 and 2006 that was seemingly unwarranted since housing prices crashed

in the bust. Elastic ZIP codes with a low presence of the worst originators had

only a minor burst in prices and ended up with house prices in 2012 around

20% above those in the ZIP codes with a high presence of the worst originators.

This explanation is consistent with loose credit from bad originators creating

excess housing supply that led to an excess building boom, followed by a

subsequent price decline.

In summary, the worst originators did not seem to solely target areas

where land supply was constrained, as there are substantial increases in worst

origination credit in elastic areas. Moreover, the increase in credit in areas

of elastic supply led to unwarranted housing and a subsequent crash in home

prices even in areas that experienced little run-up due to the increase in credit.

The fact that the bad origination activity is related to crashes in areas

of elastic land supply indicates that the relation between bad origination and

crashes is not due to bad originators solely concentrating in areas of tight land

supply. More generally, our five tests to address various aspects of potential

endogeneity suggest that bad origination practices did cause economically large

house prices fluctuations.

2.6. The Channel

The previous section establishes that bad origination practices seem

to have caused large home price fluctuations, but the precise mechanism still

needs to be further explored. We seek to learn more about the differences in
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the lending practices of the originators who engaged in second-lien misreport-

ing. First, bad originators could extend credit to uncreditworthy borrowers

by originating loans to borrowers with a higher risk of default and stating

their attributes correctly. Second, the poor loan performance could also sug-

gest that certain lenders were poor at screening their applicants. Third, the

understating of borrower information itself could be extending credit to un-

creditworthy applicants. We examine these possibilities in several ways. We

look at the predicted probability of delinquency of the loans issued by the

worst and the best originators using the stated loan attributes. We also ex-

amine if the interest rates charged by bad originators indicate poor screening

abilities of bad originators and if misreporting by bad originators was confined

to the second-lien channel, or if there is any evidence of any other forms of

misreporting.

Finally, we examine whether the lending activity of the different types

of originators in a ZIP code relates to the previous unmet demand in the area.

2.6.1. Loan Quality

We assess the credit risk of the loans at the point of origination to see if

the loans by bad originators had similar or higher probabilities of default. We

base our estimates on the stated loan properties. We have detailed borrower

and loan characteristics for the set of loans in non-agency securitized products

(ABSNet). We fit a logit model using all first-lien loans originated before 2001,

where the dependent variable is a dummy that takes the value of one if the
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loan became seriously delinquent (90+ days) before 2002, and zero otherwise.

The set of explanatory variables includes credit score, combined loan-to-value

ratio, interest rate, the log of the loan amount, and dummy variables for level

of documentation (low/no-doc or full-doc), self-reported occupancy status, re-

finance, and the existence of a prepayment penalty. We then use the estimated

coefficients in combination with the loan characteristics of the securitized loans

originated during 2003 or later to obtain expected probabilities of delinquency.

This approach to estimate delinquency probabilities is similar to the one used

by Ashcraft, Goldsmith-Pinkham, and Vickery (2010). We assess this behav-

ior across ZIP codes with a high or low presence of the bad originators since

bad originators may be lending in riskier regions.

Panel A of Figure 2.6 shows that the worst originators securitized loans

that were significantly worse than the loans securitized by the best originators

in terms of average ex-ante probability of delinquency. This occurs across all

types of ZIP codes.

One possibility is that the competition with bad originators caused

the best originators to issue riskier loans in ZIP codes where there is a high

presence of bad originators. This does not appear to be the case. The best

originators do not issue loans with a higher foreclosure frequency in ZIP codes

where bad originators have a high presence. Originators with high misreport-

ing are also not issuing riskier loans in the ZIP codes where they have the

largest presence. This suggests that the effect of bad originators is predomi-

nately due to their higher market share where they issue loans with a higher
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ex-ante default probability.

It is interesting to note whether good and bad originators engaged in

second-lien misreporting in the areas in which bad originators had a high mar-

ket share. Panel B of Figure 2.6 shows that the worst originators do have high

levels of second-lien misreporting in the ZIP codes where they have the highest

presence; almost half of their originations exhibit second-lien misreporting (on

purchase transactions) in the ZIP codes where they have the highest market

share. However, bad originators still misreport around 35% of their loans in

the ZIP codes where they have little business. In contrast, the best origina-

tors present significantly lower (and much more stable) levels of second-lien

misreporting. This indicates that the misreporting practice was not primar-

ily a problem only for certain loan officers or branch locations but related to

business practice and culture within the loan originating firms.

2.6.2. Do worst originators misreport in other dimensions or were
they poor at loan screening?

Originators who misreported on second-lien loans issued loans of lower

quality based on stated loan attributes. But if stated loan attributes are

incorrect, the loans could be even riskier than recorded. It is not clear if our

separation of originators by second-lien misreporting is an issue related solely

to second-lien misreporting or a symptom of other forms of misreporting. We

obviously do not have access to internal bank sources such as documentation

and debt coverage to verify such information. However, we can investigate the
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predictive value of loan attributes for default. If an attribute was incorrectly

reported, then this would decrease their ability to predict future default.

We estimate an OLS regression where the dependent variable is an

indicator for delinquency (90+ days) and the explanatory variables are a set

of loan-level characteristics. Since we seek to capture any difference in the

explanatory power of the loan-level controls across different type of lenders,

we include the interaction of a dummy variable for worst lender with each one

of the controls. The coefficient estimates are shown in Column 1 of Table 2.9.

We find that combined loan-to-value ratio and the level of documentation are

strong predictors of default in general, but their explanatory power is weaker

for loan originators with high levels of second-lien misreporting.

We also wish to understand if bad originators were poor at screening

borrowers, or if they understood that certain borrowers were of higher risk but

lent to them anyway. If an originator sought to maximize short-term profits,

they would lend to a risky borrower at a high rate, but then underreport

some of the loan’s risky features when they resold it. In this case, the loan’s

interest rate would still be a good predictor of future default. Yet, if bad

originators simply did a worse job of screening borrowers, the interest rate

would be a less accurate predictor of default for bad originators. In Column

2 of Table 2.9 we regress delinquency on the interest rate at the time of loan

origination. Overall, the interest rate strongly forecasts default, but it is a

significantly better forecaster for the worst originators. In Column 3 with the

other control variables, we again find that interest rates are a much stronger
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predictor of default for bad originators. These results suggest that the worst

originators were not poor at gauging risk or tricked by borrowers, but that

they charged higher interest rates for loans that were indeed considerably more

risky. Additionally, even after controlling for interest rates, the explanatory

power of combined LTV and full-doc indicators are less for bad originators.

Although these findings are consistent with potential misrepresentation

of these loan features, it is also possible that the low predictive power of

certain borrower information is due to some other differences in the types of

loans originated by bad originators. The loans may have substantially different

features that make the comparison of loan-to-value ratio and documentation

level problematic. To investigate this possibility, we take a propensity score

matching approach where for each loan issued by a bad originator, we find

another loan issued by a good originator in the same ZIP code-year that also

has similar propensity score.29

In Columns 4 to 6 of Table 2.9 we repeat the analysis discussed above in

the matched sample of loans. We again find that combined LTV and the full-

29To compute the propensity score, we estimate a logit regression where the dependent
variable is a dummy that takes the value of one if the loan was issued by one of the worst
originators and takes the value of zero if the loan was issued by one of the best originators,
and the explanatory variables are combined LTV, credit score, interest rate, the log of the
loan amount, and indicators for low-doc, non-owner occupied property, arm loan, and the
existence of a prepayment penalty. Also, we impose a maximum distance between propensity
scores of 1%. We are able to impose such a tight criteria because there are many more loans
from the better originators, and we match with replacement up to a maximum of five times.
We find a match for 81% (86,822 out of 107,338) of the loans by the worst lenders. A
comparison of the matched loans from both groups is shown in Appendix B confirming that
they have similar characteristics.
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documentation indicator are significantly weaker predictors of delinquency for

worst originators which again raises the possibility of further misreporting.30

The fact that combined LTVs are not good predictors of delinquency is

to be expected given the second-lien misrepresentation documented by Pisko-

rski, Seru, and Witkin (2015) and Griffin and Maturana (2014). However, the

fact that the same originators who engage in second-lien misreporting have a

lower forecasting power of the full-documentation indicator raises the possi-

bility of additional misreporting. 31 To investigate this we look at whether

there are any differences between good and bad originators in the reporting of

debt-to-income for full-documentation loans. Interestingly, good and bad orig-

inators have approximately the same percentage (43.5% for good and 43.1%

for bad) of loans self-declared as full-docs. Yet, of the loans classified as full-

doc, 16.9% have missing debt-to-income for good banks while this percentage

is 99.6% for bad banks (only 168 full-doc loans issued by the worst origina-

tors have non-missing debt-to-income). These differences indicate either a lack

of disclosure which is more concentrated for bad originators or that the bad

originators misrepresented low or no-doc loans as full documentation with the

intention of making them appear less risky.32

30In addition, we estimate regressions of delinquency on loan characteristics for both
matched groups (best and worst) separately in Appendix B. Loan characteristics explain a
much larger proportion of the variation in delinquencies in the sample of loans from worst
originators (differences in R-squared is 10% in absolute terms or 40% in relative terms).

31Indeed, the recent JP Morgan statement of facts states that loans se-
curitized by JP Morgan were missing key pieces of documentation, in-
cluding income. The report also identified excessive debt-to-income.
http://www.justice.gov/iso/opa/resources/94320131119151031990622.pdf.

32Griffin and Maturana (2014) found that owner occupancy misreporting was primarily
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In summary, although we cannot fully rule out other explanations, we

find that the originators who engaged in second-lien misreporting have con-

siderably more full-documentation loans that are missing a key piece of docu-

mentation raising the possibility that these originators engaged in other forms

of misreporting beyond second-lien. We do not find evidence that bad origina-

tors did a poor job of classifying risky borrowers since the interest rates they

charged were actually better predictors of future default than the interest rates

charged by originators with lower levels of misreporting. Hence, we find that

the ‘worst originators’ were primarily ‘bad’ in their misreporting practices and

in giving out credit to more risky borrowers. These two are intuitively related

since an originator who can misreport key loan features can give more credit

to riskier borrowers than an originator who correctly reports.

2.6.3. Unmet Demand

We conclude this section by examining whether the market share of

the different types of originators in 2003 to 2006 is relates to previous unmet

demand. Table 2.10 shows the results of an OLS estimation where the depen-

dent variable of the regressions are the market shares of the different types of

originators between 2003 and 2006, and the independent variable of interest

is the ZIP code-level loan rejection rates (unmet demand) between 1996 and

1999. Of the three types of market share (i.e., worst, medium, and best),

on behalf of occupants, and appraisal misreporting was primarily a misreporting from ap-
praisers. Consistent with this finding, Appendix B reports owner occupancy misreporting
and appraisal misreporting across good and bad originators and finds little differences.
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only the one corresponding to the worst originators is positively related to

unmet demand. This result is consistent with the worst originators expanding

by granting credit to uncredit worthy borrowers in areas where demand for

housing was not satisfied.

2.7. How Large were the Price Dislocations due to Bad
Practices?

In the previous sections, we show that ZIP codes with a high presence of

loan originators with bad lending practices experienced significant house price

distortions: prices rose quickly and excessively during the boom period and

later crashed more violently during the bust period than prices in ZIP codes

with low presence of the worst lenders. Intuitively, given the importance of the

housing market to the US economy (19% of the GDP in 2005), the effect of bad

origination practices seems economically important. In this section we attempt

to measure the aggregate economic distortions of bad practices to the affected

households. We develop two measures (a transaction and an aggregate value

measure) that capture this ‘cost’ in the 858 ZIP codes in our sample where

the worst originators had a market share of at least 10%. We compare the

increase in house prices in ZIPs with a high presence of the worst originators

to ZIPs with a low presence of the worst originators as the benchmark. To the

extent that our benchmark also had bad lending or not all ZIP codes largely

affected by bad practices are included, our calculations likely understate the

true importance of bad practices.
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First, we measure the total excess transfer paid by buyers in each house

purchase transaction during the boom and the bust. To the extent that prices

in the ZIP codes with a high presence of the worst originators were unjustifiably

high, each purchase will involve an unnecessary money transfer to the seller.

Recall from Figure 2.1 that ZIP codes with the highest worst originators’

market share appreciated at 63% whereas ZIP codes with a low presence of bad

originators only appreciated 35% between 2003 to 2006. As a proxy for price

inflation, we use the cumulative difference (starting from the end of the first

quarter of 2003) between the Zillow’s house price return of each affected ZIP

code relative to the average house price return of the 4,318 ZIP codes with low

presence of the worst lenders (the benchmark). As an example, let’s suppose a

house was sold during the fourth quarter of 2005, and that the ZIP code where

the house is located experienced a 61% appreciation from the end of the first

quarter of 2003 to the end of 2005. Given that the average return of the house

prices in the benchmark was 34% during that same period, the cumulative

return difference is 27%.33 Because we lack house prices for the majority of

purchase transactions, we use the Zillow index price in the ZIP as a proxy for

the value. We realize the index is a median price and that the total would be

more accurate if using mean values, but the use of medians is advantageous

to avoid the affect of outliers. Thus, if the Zillow house price index in the ZIP

code was, for example, $300,000 by the end of 2005, then the excess transfer

33To avoid double counting, when the cumulative house return of the bad ZIP code is
lower than the cumulative house return of the benchmark, we fix the difference at 0%.
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paid by the buyer was $81,000 ($300,000×27%). To compute the aggregate

measure at the ZIP code level for the second quarter of 2005, we multiply

the excess transfer of $81,000 by the number of purchase transactions in the

ZIP code that quarter. We only consider purchase transactions to capture

the money transfers between borrowers.34 We repeat this process for every

quarter during 2003 to 2011 and sum all quarter aggregates to obtain a ZIP

code level measure. Then, we aggregate across the 858 ZIP codes to obtain

the aggregate cost of the price distortions. We find that these money transfers

at higher prices were $480.3 billion from 2003 to 2006 and a further $176.1

billion at higher prices from 2007 to 2011, totaling $656.4 billion during the

9 year period (2003 to 2011). Though not linear, this averages $72.9 billion

per year, which is equivalent to 0.53% of the average GDP of the US between

2003 and 2011.

Second, we measure the aggregate distortion on the stock of houses

in the 858 ZIP codes with the highest presence of the worst originators by

the end of 2006. Again, we rely on the cumulative difference in house price

returns between the affected ZIP codes and the benchmark of the ZIP codes

with low presence of the worst originators, from the end of the first quarter

of 2003 to the end of the fourth quarter of 2006. To obtain the total stock of

houses in each ZIP code, we sum all houses in the ZIP code with construction

34However, the cost of bad practices can be even larger if we consider that borrowers
could have additionally extracted money from lenders through cash-out refinances. While
DataQuick does not specifically flag cash-out refinances, we know that 54.2% of the trans-
actions in the 858 ZIP codes were either cash-out or term/rate refinances.
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dates between 1900 and 2006 (according to DataQuick). Under the assumption

that all houses have the value of the index by the end of 2006, we can then

obtain the price distortion of the ZIP code-house stock by multiplying the ZIP

code index price by the house price stock and by the cumulative difference in

house price returns. We find that the sum of the price inflation of the house

stock in the 858 ZIP codes was of $1,098.9 billion the end of 2006. This price

inflation is equivalent to 6% of the total stock of all the ZIP codes covered by

DataQuick and Zillow, which account for $18.4 trillion as of the end of 2006.35

Additionally, estimates of losses associated with MBS securities issued before

the financial crisis are around $500 billion.36 Thus, the distortionary costs of

misreporting on prices may exceed the direct losses to investors.

Overall, for the 858 ZIP codes where the bad practices originated, we

estimate substantial distortion on transactions and on the stock of houses.

We hope the calculations give a sense of the potential costs of bad practices,

but we also realize that estimating the total effect of bad practices is difficult

since our benchmarks likely also contain bad practices, and moderately bad

practices are present in other ZIP codes. Additionally, the relation between

the originators and house prices may not be directly attributable to their

bad practices. Nevertheless, we think these back-of-the-envelope calculations

support Akerlof and Romer (1993) ’s conjectures that the distortionary effects

35Appendix B shows histograms of frequencies for the main ZIP-code level variables
involved in the cost calculations.

36See Financial Crisis Inquiry Commission (2011) and Greenlaw, Hatzius, Kashyap, and
Shin (2008)
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of misreporting can be large.

2.8. Conclusion

The process of underreporting key loan attributes can have the by-

product of facilitating credit to borrowers who have little ability to repay. We

find that fraction of originators who engaged in second-lien misreporting helps

explain the 2003 to 2006 run-up of housing prices and its subsequent 2007

to 2012 collapse. The effect is strong even after controlling for credit due

to securitization, income, income growth, and present even in the wealthiest

ZIP codes, indicating that the effect is not merely a subprime phenomenon.

Through two instrumental variable tests, and an exogenous law change, it

appears that the bad originators did cause the price distortions through the

issuance of excess credit through bad practices. There is no evidence to support

the view that these effects are due to bad originators merely chasing prices or

forecasting areas of highly inelastic housing to expand into.

It is interesting to ask why the credit from these misreporting mortgage

originators had a much larger distorting influence on house prices. Since the

interest rates these bad originators charged were useful predictors of default, it

seems these originators were actually competent in their applicant screening.

It appears that these lenders who engaged in second-lien misreporting not

only gave credit to borrowers with a much higher stated risk profile, but also

significantly underreported the true loan risk.

Our paper highlights that the unintended side-effect of mortgage mis-
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reporting may have had real direct distortionary costs on those who bought

homes in ZIP codes with substantial misreporting. In fact, the distortionary

effects caused by the bad practices of even a small fraction of originators may

be even more costly than the direct losses suffered by MBS investors. These

findings also suggest that actions of agents who facilitated misreporting jointly

helped caused the real estate crisis and that these agents should not simply

blame investor losses on market conditions. We are not intending to provide a

comprehensive examination of all forces behind the home price expansion, but

rather to document the importance of bad origination practices in this growing

literature. Indeed, Akerlof and Romer (1993)’s conjecture that the distortions

of prices through corrupt activity may spur further speculation seems to be an

interesting avenue for future housing market research. Our findings support

the idea that misreporting, a seemingly benign form of corruption, can have

broad and unintended consequences, not just in developing markets, but also

in the most open and transparent of markets. We hope our findings will spur

additional debate and research on the role of trust and integrity in financial

markets.
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Tables and Figures

Table 1.1: Mortgage servicers at year-end 2007
This table characterizes 22 of the 23 servicers in the loan sample at year-end 2007 (the
missing servicer, MetLife Home Loans, was founded on 2008). Volume figures (in billions
of dollars) are from Inside Mortgage Finance (IMF). Subprime volume values marked with
a * are not reported by IMF and are estimated from Moody’s or S&P’s servicer evaluation
reports.

Servicer Total Total Subprime Subprime
Servicer name type Volume Mkt. share Volume Mkt. share

Countrywide Both-market $1,476 13.2% $112 11.9%
Wells Fargo Both-market $1,473 13.2% $51 5.4%
CitiMortgage Both-market $800 7.2% $62 6.6%
JP Morgan Both-market $776 7.0% $74 7.9%
WAMU Both-market $623 5.6% $44 4.7%
Bank of America Both-market $517 4.6% $10* 1.1%
RFC - GMAC Both-market $410 3.7% $41 4.4%
IndyMac Both-market $198 1.8% $4 0.4%
National City Both-market $188 1.7% $1 0.1%
PHH Mortgage Both-market $159 1.4% <$1 <0.1%
SunTrust Both-market $146 1.3% <$1 <0.1%
Aurora (Lehman) Both-market $113 1.0% $2* 0.2%
EMC (Bear) Both-market $89 0.8% $22 2.3%
Ocwen Non-agency $53 0.5% $53 5.6%
Option One Non-agency $48 0.4% $48 5.1%
HomEq (Barclays) Non-agency $47 0.4% $46 4.9%
Litton (Goldman) Non-agency $46 0.4% $41 4.4%
Saxon (Morgan) Non-agency $34 0.3% $34 3.6%
American Home Non-agency $30 0.3% $30 3.2%
SPS (CSFB) Non-agency $29 0.3% $21 2.2%
PNC Both-market $25 0.2% $1* 0.1%
Carrington Non-agency $15 0.1% $15 1.6%

Total Outstanding $11,150 $940
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Table 1.3: The effect of the incentive fee on modification rates
This table shows OLS estimates of regressions where the dependent variable is an indicator
for whether a loan was modified within six months of becoming distressed. In columns 1
and 2 the explanatory variable of interest is Both Markets×After Fee, the interaction of
Both Markets (a dummy variable that takes the value of one if the servicer managing the
loan services loans both from government-sponsored enterprises (GSEs) mortgage-backed
securities and from non-agency mortgage-backed securities, and zero otherwise) and After
Fee (a dummy variable that takes the value of one if the loan became distressed after the
incentive fee in the GSE market was introduced, and zero otherwise). In column 1 the
regression is estimated using the full sample while in column 2 the period from February
2008 to July 2008 (when the modification rate starts being affected by the incentive fee)
is excluded from the estimation. In column 3, only loans from both-market servicers are
considered. Both-market servicers are divided into two groups based on the increase in
delinquencies they experienced from the pre-incentive fee period to the post-incentive fee
period. The explanatory variable of interest is High Delinquency×After Fee. High Delin-
quency is a dummy variable that takes the value one if the servicer belongs to the group
with the larger increase in delinquencies, and zero otherwise. Loan-level controls and a
variety of fixed effects are also included. Continuous control variables are standardized and
the regression’s intercept is not reported. All estimates are in percentage terms. Reported
t-statistics in parentheses are heteroskedasticity-robust and clustered by CSA. ***p<0.01,
**p<0.05, *p<0.1.

(1) (2) (3)

Full Period Excluding Both-market
Aug07-Feb09 Mar08-Jul08 servicers only

Both Markets×After Fee -5.72*** -6.37***
(-14.86) (-15.06)

High Delinquency×After Fee -2.38***
(-9.20)

Credit Score -0.60*** -0.59*** -1.16***
(-7.69) (-9.46) (-13.18)

CLTV 0.66*** 0.68*** 0.83***
(6.36) (6.39) (7.72)

Interest Rate 3.77*** 3.36*** 2.57***
(23.15) (22.99) (13.15)

Unpaid Balance 0.30*** 0.23** 0.05
(2.99) (2.58) (0.49)

Adjustable 4.33*** 3.79*** 4.23***
(17.58) (15.80) (16.37)

Non-Owner Occupied -4.78*** -4.37*** -4.29***
(-35.38) (-29.30) (-34.97)

Low/No-Doc -3.31*** -3.05*** -3.21***
(-17.23) (-15.92) (-12.83)

Prepayment Penalty 4.32*** 3.97*** 4.61***
(17.67) (18.29) (17.91)

CBSA×Origination month
FE

Y Y Y

Servicer FE Y Y Y
Distress month FE Y Y Y

Observations 999,067 758,625 740,040
Adj. R2 0.09 0.10 0.07

96



Table 1.4: Reduced form: the effect of the incentive fee on loan losses
This table shows OLS estimates of regressions where the dependent variable is the net loan
loss, which is defined as losses minus recoveries, divided by the outstanding principal amount
at the time of becoming distressed. Losses of modified loans incorporate any concessions
made to the borrower. The explanatory variable of interest is Both Markets×After Fee,
the interaction of Both Markets (a dummy variable that takes the value of one if the ser-
vicer managing the loan services loans both from government-sponsored enterprises (GSEs)
mortgage-backed securities and from non-agency mortgage-backed securities, and zero oth-
erwise) and After Fee (a dummy variable that takes the value of one if the loan became
distressed after the incentive fee in the GSE market was introduced, and zero otherwise).
Loan-level controls and a variety of fixed effects are also included. Continuous control
variables are standardized and the regression’s intercept is not reported. In column 1 the
regression is estimated using the full sample while in column 2 the period from February
2008 to July 2008 (when the modification rate starts being affected by the incentive fee) is
excluded from the estimation. All estimates are in percentage terms. Reported t-statistics
in parentheses are heteroskedasticity-robust and clustered by CSA. ***p<0.01, **p<0.05,
*p<0.1.

(1) (2)

Full Period Excluding
Aug07-Feb09 Mar08-Jul08

Both Markets×After Fee 0.93*** 0.90***
(3.43) (3.14)

Credit Score 1.57*** 1.56***
(9.82) (9.47)

CLTV 5.22*** 5.27***
(17.79) (17.35)

Interest Rate -1.35*** -1.29***
(-6.27) (-6.08)

Unpaid Balance -5.88*** -5.61***
(-12.53) (-11.97)

Adjustable 4.13*** 4.16***
(15.38) (15.30)

Non-Owner Occupied 15.71*** 16.01***
(9.73) (10.43)

Low/No-Doc 2.52*** 2.50***
(7.34) (7.21)

Prepayment Penalty 0.95*** 0.85***
(3.96) (3.74)

CBSA×Origination month FE Y Y
Servicer FE Y Y
Distress month FE Y Y

Observations 999,067 758,625
Adj. R2 0.22 0.22
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Table 1.5: OLS regressions of loan losses on modification
This table shows OLS estimates of regressions where the dependent variable is the net loan
loss, which is defined as losses minus recoveries, divided by the outstanding principal amount
of the loan at the time of becoming distressed. Losses of modified loans incorporate any
concessions made to the borrower. Modification is an indicator that takes the value of one if
the loan was modified within six months of becoming distressed, and zero otherwise. Loan-
level controls and a variety of fixed effects are also included. Continuous control variables are
standardized and the regression’s intercept is not reported. The regressions are estimated
using the full sample (column 1), the period before the incentive fee was implemented
(column 2), and the period after the incentive fee was implemented (column 3). All estimates
are in percentage terms. Reported t-statistics in parentheses are heteroskedasticity-robust
and clustered by CSA. ***p<0.01, **p<0.05, *p<0.1.

(1) (2) (3)

Full Period Before fee After fee
Aug07-Feb09 Aug07-Jul08 Aug08-Feb09

Modification -6.08*** -3.77*** -8.20***
(-15.70) (-8.12) (-17.60)

Credit Score 1.54*** 1.25*** 2.03***
(9.72) (6.23) (12.19)

CLTV 5.26*** 5.62*** 4.71***
(18.22) (22.34) (11.14)

Interest Rate -1.12*** -1.01*** -1.54***
(-5.32) (-5.17) (-5.24)

Unpaid Balance -5.86*** -6.78*** -4.76***
(-12.50) (-12.44) (-11.84)

Adjustable 4.39*** 4.96*** 3.55***
(16.64) (19.98) (10.27)

Non-Owner Occupied 15.42*** 14.85*** 16.25***
(9.64) (8.22) (12.39)

Low/No-Doc 2.32*** 3.03*** 1.10***
(7.13) (8.29) (3.97)

Prepayment Penalty 1.21*** 1.47*** 0.79***
(4.88) (4.62) (3.59)

CBSA×Origination month FE Y Y Y
Servicer FE Y Y Y
Distress month FE Y Y Y

Observations 999,067 638,186 360,881
Adj. R2 0.22 0.22 0.21
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Table 1.6: Instrumental variable regressions of loan losses on modification
This table shows the results of instrumental variable regressions estimated using the stan-
dard two-stage least squares (2SLS) procedure. Two samples of loans are used in the es-
timations: the full sample of loans and for a subsample that excludes loans that became
distressed during the period from March 2008 to July 2008 (when modification rates begin
being affected by the incentive fee). In the first stage (Columns 1 and 2) the incentive fee
introduction is used as an instrument for modification. In the second stage (Columns 3
and 4) the fitted value from the first stage is the main explanatory variable. Loan-level
controls and a variety of fixed effects are also included. Continuous control variables are
standardized and the regression’s intercept is not reported. All estimates are in percent-
age terms. Reported t-statistics (for the first stage) and z -statistics (for the second stage)
in parentheses are heteroskedasticity-robust and clustered by CSA. ***p<0.01, **p<0.05,
*p<0.1.

(1) (2) (3) (4)

First stage Second stage
Full Period Excluding Full Period Excluding

Aug07-Feb09 Mar08-Jul08 Aug07-Feb09 Mar08-Jul08

Modification -13.92*** -11.91***
(-2.95) (-2.60)

Both Markets×After Fee -5.76*** -6.42***
(-15.35) (-15.80)

Credit Score -0.61*** -0.61*** 1.51*** 1.51***
(-8.42) (-10.14) (9.33) (9.02)

CLTV 0.67*** 0.68*** 5.26*** 5.28***
(6.53) (6.75) (18.01) (17.31)

Interest Rate 3.72*** 3.31*** -0.75*** -0.79***
(23.00) (23.13) (-3.66) (-4.14)

Unpaid Balance 0.33*** 0.26*** -5.64*** -5.39***
(3.23) (2.90) (-12.45) (-11.99)

Adjustable 4.41*** 3.85*** 4.84*** 4.70***
(18.28) (16.63) (12.24) (13.12)

Non-Owner Occupied -4.78*** -4.35*** 14.97*** 15.42***
(-34.95) (-30.62) (8.79) (9.64)

Low/No-Doc -3.23*** -2.94*** 2.13*** 2.22***
(-16.10) (-15.06) (5.10) (5.70)

Prepayment Penalty 4.23*** 3.89*** 1.66*** 1.44***
(17.36) (17.83) (4.87) (4.55)

Origination month FE Y Y Y Y
CBSA FE Y Y Y Y
Servicer FE Y Y Y Y
Distress month FE Y Y Y Y

Observations 999,067 758,625 999,067 758,625
Adj. R2 0.09 0.10 0.21 0.21

F -statistic 235.5 249.6
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Table 1.7: Instrumental variable regressions by housing price drop
This table shows the second stage of instrumental variable regressions estimated using the
standard two-stage least squares (2SLS) procedure. The loans in the sample are divided into
three groups based on their short-run house price returns. Column 1 shows the results of the
IV estimation on the loans with returns equal or greater than zero (no house price drop).
Two other groups are formed based on the median return of the remaining loans. Column
2 considers the loans that experienced a small house price drop while Column 3 considers
the loans that experienced a large house price drop. In the first stage (in the Appendix) the
incentive fee introduction is used as an instrument for modification. In the second stage the
fitted value from the first stage is the main explanatory variable. Loan-level controls and a
variety of fixed effects are also included. Continuous control variables are standardized and
the regression’s intercept is not reported. All estimates are in percentage terms. Reported
z -statistics in parentheses are heteroskedasticity-robust and clustered by CSA. ***p<0.01,
**p<0.05, *p<0.1.

(1) (2) (3)

No housing Small housing Large housing
price drop price drop price drop

Modification -6.87 -7.16 -34.53***
(-0.31) (-1.18) (-3.09)

Loan-level controls Y Y Y
Origination month FE Y Y Y
CBSA FE Y Y Y
Servicer FE Y Y Y
Distress month FE Y Y Y

Observations 21,616 451,936 451,948
Adj. R2 0.14 0.17 0.12

Mean price drop (%) 2.1 -9.3 -34.6
Mean price rebound (%) 0.0 -5.0 -6.3
Self-cure rate (%) 27.5 22.3 13.4
Redefault rate (%) 49.4 55.5 58.5
Loss rate if foreclosed (%) 49.0 51.1 68.3
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Table 1.8: Instrumental variable regressions by housing price rebound
This table shows the second stage of instrumental variable regressions estimated using the
standard two-stage least squares (2SLS) procedure. I rank the loans in the large house price
drop group in Table 1.7 into three groups based on their ZIP code house price rebound (from
the bottom of 2009 o September 2012) and then repeat the IV estimation for each group.
Column 1 shows the results of the IV estimation on the loans in areas that did not experience
a rebound in house prices (prices continued to drop). Two other groups are formed based on
the median return of the remaining loans. Column 2 considers the loans that experienced
a small house price rebound while Column 3 considers the loans that experienced a large
house price rebound. In the first stage (in the Appendix) the incentive fee introduction is
used as an instrument for modification. In the second stage the fitted value from the first
stage is the main explanatory variable. Loan-level controls and a variety of fixed effects are
also included. Continuous control variables are standardized and the regression’s intercept
is not reported. All estimates are in percentage terms. Reported z -statistics in parentheses
are heteroskedasticity-robust and clustered by CSA. ***p<0.01, **p<0.05, *p<0.1.

(1) (2) (3)

No housing Small housing Large housing
rebound rebound rebound

Modification -37.57*** -34.23 -31.20*
(-3.10) (-1.46) (-1.75)

Loan-level controls Y Y Y
Origination month FE Y Y Y
CBSA FE Y Y Y
Servicer FE Y Y Y
Distress month FE Y Y Y

Observations 305,441 73,309 73,178
Adj. R2 0.11 0.13 0.14

Mean price drop (%) -34.1 -35.6 -35.5
Mean price rebound (%) -12.9 2.9 12.5
Self-cure rate (%) 13.9 12.8 11.6
Redefault rate (%) 58.3 58.5 59.6
Loss rate if foreclosed (%) 70.4 64.5 64.3
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Table 1.9: Instrumental variable regressions by unemployment change
This table shows the second stage of instrumental variable regressions estimated using the
standard two-stage least squares (2SLS) procedure. I divide the sample into two groups
based on the median increase in unemployment from the month the loan became distressed
to the highest value of the index in 2009. Column 1 considers the loans with a small
increase in unemployment while Column 2 considers the loans with a large increase in
unemployment. In the first stage (in the Appendix) the incentive fee introduction is used
as an instrument for modification. In the second stage the fitted value from the first stage
is the main explanatory variable. Loan-level controls and a variety of fixed effects are also
included. Continuous control variables are standardized and the regression’s intercept is not
reported. All estimates are in percentage terms. Reported z -statistics in parentheses are
heteroskedasticity-robust and clustered by CSA. ***p<0.01, **p<0.05, *p<0.1.

(1) (2)

Small increase Large increase
in unemployment in unemployment

Modification -6.48 -55.28*
(-0.56) (-1.89)

Loan-level controls Y Y
Origination month FE Y Y
CBSA FE Y Y
Servicer FE Y Y
Distress month FE Y Y

Observations 226,562 224,838
Adj. R2 0.18 0.05

Mean unemployment (%) 4.5 4.7
Mean increase in unemp. (%) 3.8 6.4
Mean price drop (%) -12.4 -32.3
Self-cure rate (%) 23.4 15.8
Redefault rate (%) 54.5 62.3
Loss rate if foreclosed (%) 53.9 64.4
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Table 1.10: Matching analysis of loan losses
This table shows the results from a propensity score matching analysis that compares the
loan losses of loans modified by servicers which only manage non-agency loans with the loan
losses of loans that were not modified by servicers which manage both agency and non-agency
loans. The matching is performed based on the month the loans became distressed, on ZIP
code (or CBSA for a higher matching rate), and on propensity scores calculated using the
logit regression in Panel A (which shows odd ratios and robust z -statistics in parentheses).
Continuous explanatory variables are standardized and the regression’s intercept is not
reported. Matching is performed without replacement using the nearest neighbor technique
(1-to-1). Also, a common support is imposed and the maximum difference between the
propensity scores of the treated (modified) loans and the control (non-modified) loans is
limited to 0.5% (0.1% when matching by CBSA). Since some loans have identical propensity
scores, the sample is randomly sorted before matching. Panel B shows the average treatment
effect on modifications (ATT), with robust t-statistics in parentheses. Column 1 shows the
ATT for the whole sample and column 2 shows the ATT when restricting the loans to be
in the quartile with the largest propensity scores. ***p<0.01, **p<0.05, *p<0.1.

Panel A: Determinants of modification

Pr(Modification = 1)

Credit Score 0.71***
(-28.21)

CLTV 1.01
(0.58)

Interest Rate 1.99***
(78.35)

Unpaid Balance 1.01
(0.56)

ARM 2.02***
(33.13)

Non-Owner Occupied 0.51***
(-21.97)

Low/No-Doc 0.59***
(-26.96)

Prepayment Penalty 3.14***
(59.20)

Origination month FE Y
Distress month FE Y
CSA FE Y

Observations 239,761
Pseudo R2 0.23

Panel B: Treatment effects

(1) (2)

Differences in loss rates, High
modified minus not modified All loans propensity score

Matched sample (by ZIP), ATT -9.8%*** -7.1%***
t-statistic (-9.67) (-3.63)
Matching rate 13.3% 5.6%

Matched sample (by CBSA), ATT -8.4%*** -7.2%***
t-statistic (-15.97) (-9.82)
Matching rate 44.9% 33.1%
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Table 2.1: Descriptive statistics
This table shows descriptive statistics for the 5,176 zip codes in the sample. To obtain the
final sample, ZIP codes where the originator name coverage is less than 25% are dropped,
and zip codes are required to show more than 500 purchase transactions during the period
2003 to 2006. Additionally, zip codes with the highest 2.5% fraction of loans securitized are
dropped. Finally, MSAs with less than 15 zip codes are dropped.

Mean p10 p50 p90

Worst Originators’ Mkt. Share (03-06) 5.6 1.7 4.8 10.8
Medium Originators’ Mkt. Share (03-06) 17.3 11.0 16.9 23.9
Best Originatos’ Mkt. Share (03-06) 11.1 6.6 10.6 16.2
Unranked Originators’ Mkt. Share (03-06) 66 51.4 67.4 77.6

Fraction Securitized (03-06) 15.7 7.2 14.7 26.1
Fraction Securitized by Worst Originators (03-06) 1.0 0.2 0.8 2.0
Fraction Securitized by Medium Originators (03-06) 6.8 2.9 6.4 11.3
Fraction Securitized by Best Originators (03-06) 6.7 2.8 6.2 11.4
Fraction Securitized by Unranked Originators (03-06) 1.2 0.4 1.0 2.2

Population (2000), th.$ 24.6 6.4 21.7 46.3
Housing Units (2000), th.$ 9.7 2.5 8.8 18.0
Housing Vacancy Rate (2000) 6.0 2.2 4.5 10.7
Average Household Income (2001), th.$ 56.7 30.6 47.6 88.9
Change Average Household in Income (01-06), th.$ 12.9 2.4 7.8 27.3

House Price Return (03-06) 44.8 10.0 39.0 86.9
House Price Return (07-12) -21.5 -45.5 -20.2 -0.5

Number of Zip Codes 5,176
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Table 2.2: Effect of worst originator activity on house returns
This table shows OLS estimates for regressions where zip code price return is the dependent
variable, on the zip code-level market share for various types of originators during the period
from 2003 to 2006. The regressions include different combinations of demographic controls
and MSA fixed effects. Columns 1 to 3 show the results for the boom period (2003-2006)
and columns 4 to 6 show the results for the bust period (2007-2012). Panel A shows the
regression results for all zip codes while Panel B includes only the zip codes in the highest
income quartile in 2001. t-statistics are presented in parentheses. ***p<0.01, **p<0.05,
*p<0.1.

Panel A: All Zip Codes

2003-2006 2007-2012

Worst Originators’ Mkt. Sh. 3.253*** 1.743*** 1.235*** -2.282*** -1.982*** -1.420***
(29.34) (4.47) (2.91) (-34.89) (-5.10) (-3.55)

Medium Originators’ Mkt. Sh. 1.297*** -0.449*** -0.320** -0.007 0.010 -0.017
(14.68) (-3.27) (-2.60) (-0.13) (0.09) (-0.18)

Best Originators’ Mkt. Sh. 0.469*** -0.698* -0.553* -0.182*** 0.782*** 0.607**
(4.36) (-1.79) (-1.67) (-2.87) (2.77) (2.33)

Fraction Securitized 0.045 -0.222***
(0.40) (-3.10)

Population 0.005*** -0.002***
(3.15) (-3.54)

Housing Units -0.011*** 0.006***
(-3.12) (4.21)

Housing Vacancy Rate 0.658*** -0.167***
(4.59) (-4.02)

Average Household Income -0.001*** 0.000***
(-2.67) (5.07)

∆ in Avg. Household Income 0.001 0.000***
(1.35) (3.77)

Constant -0.010 0.506*** 0.479*** -0.066*** -0.192*** -0.195***
(-0.73) (10.07) (11.90) (-8.24) (-4.43) (-4.72)

MSA FE N Y Y N Y Y
SE Clustered by MSA N Y Y N Y Y

Observations 5,176 5,176 5,176 5,176 5,176 5,176
Adj. R-squared 0.28 0.80 0.81 0.23 0.75 0.76
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Table 2.2 - continued

Panel B: High Income Zip Codes

2003-2006 2007-2012

Worst Originators’ Mkt. Sh. 1.930*** 0.659** 0.850*** -1.474*** -1.495*** -1.420***
(6.04) (2.44) (2.74) (-7.07) (-3.59) (-3.75)

Medium Originators’ Mkt. Sh. 1.278*** -0.107 -0.075 0.146 0.171 0.159
(8.36) (-0.82) (-0.57) (1.46) (1.30) (1.28)

Best Originators’ Mkt. Sh. -0.200 -0.242 -0.358** -0.094 0.452*** 0.351**
(-1.13) (-1.26) (-2.42) (-0.82) (2.73) (2.27)

Fraction Securitized -0.066 -0.014
(-1.08) (-0.24)

Population 0.001 -0.001
(0.37) (-0.94)

Housing Units -0.002 0.005**
(-0.69) (2.00)

Housing Vacancy Rate 0.311*** -0.179***
(3.61) (-3.47)

∆ in Avg. Household Income 0.000* 0.000***
(1.78) (3.02)

Constant 0.080*** 0.389*** 0.389*** -0.098*** -0.174*** -0.179***
(3.67) (10.40) (10.39) (-6.88) (-6.47) (-6.49)

MSA FE N Y Y N Y Y
SE Clustered by MSA N Y Y N Y Y

Observations 1,035 1,035 1,035 1,035 1,035 1,035
Adj. R-squared 0.20 0.82 0.83 0.05 0.70 0.72
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Table 2.3: Effect of worst originator activity on house returns – IV
This table shows the results of a two-stage estimation procedure via 2SLS. First, the en-
dogenous variable, Worst Originators’ Mkt. Share is regressed on the market share of the
worst originators in 2002 and the number of worst banks operating in the zip code in 2002
(the instruments), the market share of the best and medium originators, and a set of con-
trols (depending on the specification). Then, zip code price returns are regressed on the
zip code-level market share for various types of originators during the period from 2003 to
2006. In particular, Worst Originators’ Mkt. Share is the fitted value of the regression in
the first stage. The regressions include different combinations of demographic controls and
MSA fixed effects. Columns 1 to 2 show the results for the boom period (2003-2006) and
columns 3 to 4 show the results for the bust period (2007-2012). Reported t-statistics in
parentheses are heteroskedasticity-robust and clustered by MSA. The instruments’ coeffi-
cients in the first stage regression, along with the F -statistic are shown in the bottom of the
table. ***p<0.01, **p<0.05, *p<0.1.

2003-2006 2007-2012

Worst Originators’ Mkt. Share 1.669*** 1.272** -2.693*** -2.309***
(4.37) (2.08) (-6.42) (-4.04)

Medium Originators’ Mkt. Share -0.503*** -0.389** 0.0949 0.0400
(-3.25) (-2.54) (0.86) (0.39)

Best Originators’ Mkt. Share -0.301*** -0.828** 0.581* 0.434
(-2.98) (-2.05) (1.95) (1.46)

Controls N Y N Y
MSA FE Y Y Y Y

Observations 4,034 4,034 4,034 4,034
Adj. R-squared 0.85 0.86 0.80 0.81

First Stage Coefficients
Worst Originators’ Mkt. Share in 2002 1.156** 0.777**

(2.57) (2.23)
Worst Originators’ Presence in 2002 0.00387*** 0.00179**

(3.65) (2.04)

Observations 4,034 4,034
Adj. R-squared 0.727 0.804
F -statistic 51.89 13.80
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Table 2.4: Effect of worst originator activity on house returns – IV 2
This table shows the results of a two-stage estimation procedure via 2SLS. First, the endoge-
nous variable, Worst Originators’ Mkt. Share is regressed on the loan application rejection
rate from 1996 to 1999 (the instrument), the market share of the best and medium origi-
nators, and a set of controls (depending on the specification). Then, zip code price returns
are regressed on the zip code-level market share for various types of originators during the
period from 2003 to 2006. In particular, Worst Originators’ Mkt. Share is the fitted value
of the regression in the first stage. The regressions include different combinations of de-
mographic controls and MSA fixed effects. Columns 1 to 2 show the results for the boom
period (2003-2006) and columns 3 to 4 show the results for the bust period (2007-2012). Re-
ported t-statistics in parentheses are heteroskedasticity-robust and clustered by MSA. The
instrument’s coefficient in the first stage regression, along with the F -statistic are shown in
the bottom of the table. ***p<0.01, **p<0.05, *p<0.1.

2003-2006 2007-2012

Worst Originators’ Mkt. Share 3.909*** 3.887*** -3.205*** -3.420***
(6.03) (3.39) (-6.12) (-3.88)

Medium Originators’ Mkt. Share -0.450*** -0.262* 0.0431 0.00942
(-3.09) (-1.75) (0.42) (0.11)

Best Originators’ Mkt. Share -0.388 -0.478 0.607 0.557
(-0.72) (-0.97) (1.57) (1.32)

Controls N Y N Y
MSA FE Y Y Y Y

Observations 3,939 3,939 3,939 3,939
Adj. R-squared 0.76 0.78 0.69 0.69

First Stage Coefficients
Rejection Rate from 1996 to 1999 0.219*** 0.110***

(6.46) (5.51)

Observations 3,939 3,939
Adj. R-squared 0.66 0.764
F -statistic 41.71 30.35
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Table 2.5: Effect of APLs on house price movements and loan supply by the
worst originators
This table shows the effect of anti-predatory lending laws on house price movements and
loan supply by the worst originators, during the boom period (2003-2006). In the first two
columns, the zip codes included are in states that passed anti-predatory lending laws (APLs)
between 2004 and 2005 or in states that did not pass any APLs before 2006. In the last
two columns, the sample is restricted to the half of zip codes with the largest average loan
supply by the worst originators. The variable Post Law takes the value of one after the
quarter where an APL was passed, and zero otherwise. All regressions include quarter fixed
effects. Reported t-statistics in parentheses are heteroskedasticity-robust and clustered by
CBSA. ***p<0.01, **p<0.05, *p<0.1.

All High Worst
Zip Codes Orig. Supply

House
Returns

Supply
House

Returns
Supply

Post Law -0.024*** -0.021*** -0.035*** -0.051***
(-4.31) (-3.97) (-7.03) (-7.37)

Fraction Securitized 0.035 0.221*** 0.017 0.226***
(1.72) (6.05) (1.55) (6.58)

Population 0.000 0.001* 0.000 0.001
(0.24) (1.88) (1.56) (1.17)

Housing Units 0.000 -0.002 -0.001* -0.003
(0.25) (-1.62) (-1.90) (-1.24)

Housing Vacancy Rate 0.032* 0.043* 0.042** -0.004
(1.86) (2.06) (2.61) (-0.16)

Average Household Income -0.000 -0.000*** 0.000 -0.000***
(-1.55) (-4.50) (1.57) (-5.92)

Constant 0.007 0.004 0.006 0.019**
(1.17) (0.96) (0.84) (2.61)

Quarter FE Y Y Y Y

Observations 17,162 17,000 8,710 8,880
Adj. R-squared 0.266 0.396 0.373 0.299
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Table 2.7: Relative house price drop difference between run-up matched ZIP
codes
This table shows OLS estimates for the specification,

return = β0 + β1(worst orig. zips > 10% × post2006)+
β2(worst orig. zips > 10%) + β3post2006 +XΓ + ε,

where return is a vector with house returns, worst orig. zips > 10% is an indicator that
identifies the 858 zip codes in the first group graphed in Panel A of Figure 2.4, post2006
is a dummy variable that takes the value of one if the date of the price corresponds to the
year 2007 or later, and zero otherwise, and X is a set of control variables that includes the
fraction of loans securitized at the zip code level during the period 2003 to 2006, zip code
population, number of house units, vacancy rate (all in the year 2000), average household
income in 2001, and average household income changes from 2001 to 2006. Reported t-
statistics in parentheses are heteroskedasticity-robust and clustered by MSA. ***p<0.01,
**p<0.05, *p<0.1.

2003-2012

Worst Orig. Zips > 10% × Post2006 -0.144*** -0.146***
(-6.74) (-6.57)

Post2006 -0.680*** -0.681***
(-12.53) (-12.43)

Worst Orig. Zips > 10% 0.030*** -0.006
(2.94) (-0.57)

Fraction Securitized 0.657***
(3.95)

Population -0.002
(-1.32)

Housing Units 0.007
(1.68)

Housing Vacancy Rate 0.185
(1.68)

Average Household Income -0.001***
(-3.21)

∆ in Avg. Household Income 0.002***
(3.62)

Constant 0.477*** 0.390***
(9.50) (7.03)

Observations 1,472 1,435
Adj. R-squared 0.78 0.79
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Table 2.8: Effect of worst originator activity in elastic and inelastic ZIP codes
during the bust
This table shows OLS estimates for regressions where zip code house price returns during
the bust is the dependent variable, on the zip code-level market share for various types
of originators during the period from 2003 to 2006, for different subsamples of zip codes
based on housing supply elasticities from Saiz (2008). The regressions include different
combinations of demographic controls and MSA fixed effects. Column 1 shows the estimates
for the zip codes in MSAs in the most elastic half. Column 2 shows the regression for
zip codes in MSAs in the most elastic quartile. Column 3 considers the most inelastic
half, and column 4 the most inelastic quartile. Reported t-statistics in parentheses are
heteroskedasticity-robust and clustered by MSA. ***p<0.01, **p<0.05, *p<0.1.

Elastic MSAs Inelastic MSAs

2007-2012 2007-2012

Top 50% Top 25% Bottom 50% Bottom 25%

Worst Originators’ Mkt. Share -1.809*** -2.400*** -1.268*** -1.265**
(-5.73) (-7.24) (-2.99) (-2.78)

Medium Originators’ Mkt. Share -0.070 -0.161 0.076 0.042
(-0.52) (-0.88) (0.56) (0.23)

Best Originators’ Mkt. Share -0.078 -0.544*** 0.903*** 1.127***
(-0.26) (-3.38) (3.49) (4.88)

Fraction Securitized -0.187 -0.177 -0.230*** -0.230**
(-1.58) (-1.61) (-2.99) (-2.58)

Population -0.004*** 0.000 -0.001*** -0.001**
(-2.88) (0.01) (-2.98) (-2.43)

Housing Units 0.010*** -0.001 0.005*** 0.005***
(2.79) (-0.21) (4.01) (3.33)

Housing Vacancy Rate 0.017 -0.094 -0.237*** -0.237***
(0.15) (-0.63) (-4.55) (-3.60)

Average Household Income 0.001 0.001 0.000*** 0.000*
(1.59) (1.29) (4.63) (2.07)

∆ in Avg. Household Income 0.000 -0.000 0.000*** 0.000
(0.58) (-0.52) (2.90) (1.27)

Constant -0.062 0.061** -0.292*** -0.336***
(-1.66) (2.29) (-6.02) (-6.35)

MSA FE Y Y Y Y

Observations 1,796 633 2,871 2,111
Adj. R-squared 0.67 0.67 0.76 0.70
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Table 2.9: Explanatory power of loan-level controls
This table shows OLS loan-level regressions where the dependent variable is an indicator
for whether the loan became 90 days or more delinquent and the explanatory variables are
a set of loan characteristics. We also include the interaction of a dummy variable for worst
lender with each one of the controls and ZIP Code interacted with year of origination fixed
effects. Columns 1 through 3 shows the results for the full sample of loans. Columns 4
through 6 show the results for a sample where, for each loan issued by a bad originator,
we find another loan issued by a good originator in the same ZIP code-year that also has
similar propensity score. To compute the propensity score, we estimate a logit regression
where the dependent variable is a dummy that takes the value of one if the loan was issued
by one of the worst originators and takes the value of zero if the loan was issued by one of
the best originators, and the explanatory variables are combined LTV, credit score, interest
rate, the log of the loan amount, and indicators for low-doc, non-owner occupied property,
arm loan, and the existence of a prepayment penalty. Also, we impose a maximum distance
between propensity scores of 1%. We are able to impose such a tight criteria because there
are many more loans from the better originators and we match with replacement up to a
maximum of five times. Reported t-statistics in parentheses are heteroskedasticity-robust
and clustered by CBSA. ***p<0.01, **p<0.05, *p<0.1.

All Loans Matched Loans

CLTV 0.630*** 0.609*** 0.785*** 0.766***
(38.86) (33.52) (32.96) (31.67)

CLTV×Worst -0.189*** -0.253*** -0.367*** -0.390***
(-10.07) (-13.83) (-14.72) (-14.82)

Full-Doc -8.581*** -8.538*** -9.986*** -9.912***
(-20.03) (-20.30) (-12.42) (-12.47)

Full-Doc×Worst 1.377** 1.400** 2.090*** 2.187***
(2.14) (2.32) (3.58) (3.77)

Interest Rate 2.688*** 0.851*** 3.103*** 1.024***
(7.42) (5.11) (9.67) (5.83)

Interest Rate×Worst 1.445*** 0.978*** 1.066*** 0.428***
(15.52) (9.47) (11.33) (2.83)

Non-owner Occupied 3.003*** 2.900*** 0.619 0.444
(4.94) (5.02) (0.61) (0.44)

Non-owner Occ.×Worst -2.881*** -2.736*** -0.796 -0.600
(-3.69) (-3.42) (-1.03) (-0.76)

Credit Score -0.154*** -0.145*** -0.168*** -0.157***
(-26.69) (-33.98) (-18.34) (-18.05)

Credit Score×Worst -0.012** 0.003 0.007 0.011**
(-2.14) (0.52) (1.46) (2.16)

ln(Loan Amount) 3.628*** 4.128*** 5.458*** 6.092***
(9.32) (9.79) (7.24) (7.71)

ln(Loan Amount)×Worst 2.781*** 1.813*** 2.961*** 2.631***
(9.48) (6.48) (8.68) (7.23)

ARM 0.962*** 1.391*** 0.814 1.244**
(4.05) (5.51) (1.30) (2.00)

ARM×Worst 4.137*** 3.603*** 3.106*** 3.341***
(7.26) (5.76) (3.87) (4.11)

Prepayment Penalty 6.798*** 7.204*** 10.207*** 10.539***
(21.72) (23.55) (12.69) (13.00)

Prepayment Pen.×Worst -2.218*** -2.516*** -4.921*** -4.912***
(-3.82) (-4.50) (-5.83) (-5.75)

Constant 41.852*** 18.647*** 25.054*** 28.347*** 32.294*** 7.386
(7.95) (7.79) (4.86) (4.00) (14.22) (0.95)

ZIPxYear FE Y Y Y Y Y Y

Observations 932,236 932,236 932,236 173,644 173,644 173,644
Adj. R-squared 0.30 0.24 0.30 0.278 0.212 0.279
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Note: Modification rates of both−market servicers are in the non−agency market.

Figure 1.1: Non-agency loan modifications by servicer type
This figure shows the likelihood of modification within six months of the loans becom-
ing distressed (60+ days delinquent or modified), by month. Loans are categorized by
the type of servicer holding the servicing rights at the time the loan became distressed.
The first group, “both-market servicers,” includes servicers which manage loans both from
government-sponsored enterprises (GSEs) mortgage-backed securities and from non-agency
mortgage-backed securities. The second group, “non-agency-only servicers,” includes ser-
vicers which mostly manage non-agency loans. The black line shows the total number of
mortgages 60+ days delinquent in the U.S. (foreclosure initiations are not included). The
vertical line indicates the month when Fannie Mae and Freddie Mac increased modification
incentives in the GSE market. The gray area delimits when the modification rate starts
being affected by the incentive fee. U.S.-level figures are calculated from the Mortgage
Bankers Association’s National Delinquency Survey.
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Figure 1.2: Non-agency self-cure rates by servicer type
This figure shows the likelihood of self-cure by month of distress. Loans are categorized
by the type of servicer holding the servicing rights at the time the loan became distressed.
The first group, “both-market servicers,” includes servicers which manage loans both from
government-sponsored enterprises (GSEs) mortgage-backed securities and from non-agency
mortgage-backed securities. The second group, “non-agency-only servicers,” includes ser-
vicers which mostly manage non-agency loans. The vertical line indicates the month when
Fannie Mae and Freddie Mac increased modification incentives in the GSE market.
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Figure 1.3: Losses of non-agency loans by servicer type
This figure shows the average losses of the two servicer types in the loan sample, by month
of distress (60+ days delinquent or modified). Loans are categorized by the type of servicer
holding the servicing rights at the time the loan became distressed. The first group, “both-
market servicers,” includes servicers which manage loans both from government-sponsored
enterprises (GSEs) mortgage-backed securities and from non-agency mortgage-backed se-
curities. The second group, “non-agency-only servicers,” includes servicers which mostly
manage non-agency loans. The vertical line indicates the month when Fannie Mae and
Freddie Mac increased modification incentives in the GSE market. The gray area delimits
when the modification rate starts being affected by the incentive fee.
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Figure 1.4: Relative difference in distressed loans across servicer types
This figure shows the ratio between the number of distressed loans in the sample by the
two types of servicers. Each month the number of distressed loans from non-agency-only
servicers is divided by the number of distressed loans from both-market servicers. The
vertical line indicates the month when Fannie Mae and Freddie Mac increased modification
incentives in the GSE market.
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Figure 1.5: Matching strategy schematization
This figure shows a diagram illustrating the matching strategy. The intuition is to match
a loan modified by non-agency-only servicers (treatment) with a very similar not-modified
loan from both-market servicers (control) which arguably would have been modified had
the incentive fee not existed, and compare their ex post losses. The matching is performed
based on the month the loan became distressed, on ZIP code or CBSA, and on propensity
scores based in a large set of loan characteristics.
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Figure 1.6: Effect of modification type on loan losses
This figure shows the effect of modification type on loan losses, relatively to the effect
of capitalizations. An OLS regression where the dependent variable is the net loan loss
and the explanatory variables of interest are three indicators for whether the modification
(executed within six months from the loan becoming distressed) is a principal reduction, an
interest rate reduction, and for whether more than one attribute was modified. Loan-level
controls and CBSA-month of origination, servicer, and month of distress fixed effects are
also included. All estimates are in percentage terms. Standard errors are heteroskedasticity-
robust and clustered by CSA. The bars plot the coefficients associated with each modification
type indicator.
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Figure 2.1: House price movements and worst originators’ market share
This figure shows the relation between activity of the worst originators and house prices.
Zip codes are divided into two groups: those where the average market share of the worst
originators during the period 2004q3-2006q2 (highlighted by the yellow shaded area) exceeds
10% (blue solid circles) and the other remaining zip codes (black hollow circles). The gray
shaded area highlights the period when most of the worst originators went bankrupt or lost
considerable business. Dashed lines show the 95% confidence interval for house price.
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Figure 2.2: House price movements before and after APLs
This figure compares the house price movements of zip codes in states that passed anti-
predatory lending laws (APLs) between 2004 and 2005 (blue circles) with the house price
movements of a benchmark of zip codes in states that did not pass any APLs before 2006
(black hollow circles), before and after the law changes. The set of states that implemented
APLs in 2004 and 2005 are New Mexico (Q1 of 2004), South Carolina(Q1 of 2004), Mas-
sachusetts (Q3 of 2004), Indiana (Q1 of 2005), and Wisconsin (Q1 of 2005). The set of states
with no APLs are Arizona, Delaware, New Hampshire, Montana, Oregon, Washington, and
Tennessee.
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Panel C: Peaks in 2006
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Figure 2.3: Loan supply and house price peaks
This figure shows the zip code-quarterly loan supply by the worst (blue circles) and best
(black hollow circles) originators around zip code-house price peaks. Zip codes with an
average market share of the worst originators during the period 2004q3-2006q2 exceeding
10% where house prices peaked between 2005 and 2007 are included. The dashed lines
represent house price movements. Panel A shows all zip codes and Panels B, C, and D,
show zip codes where house prices peaked in 2005, 2006, and 2007, respectively.
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Panel B: Across MSA

Figure 2.4: House price movements (run-up matching)
This figure compares the average house price movement of zip codes where the average
market share of the worst originators during the period 2004q3-2006q2 exceeds 10% (blue
solid circles) with the average house price movement of a group of zip codes that show
an average market share of the worst originators below 5% during the same period (black
hollow circles). The control group is constructed to match the house returns of the group
with high activity of the worst originators during the run-up period as closely as possible
(matching is done with replacement and ZIP codes are allowed to be matched a maximum
of five times). In Panel A, zip codes in the control group are also required to be in the same
MSA as the zip codes with high activity of the worst originators. In Panel B, matching
is done across MSAs. The gray shaded area highlights the period when most of the worst
originators went bankrupt or lost considerable business. Dashed lines represent the 95%
confidence interval for house price.
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Panel B: House Price Movements

Figure 2.5: New houses and price movements in elastic ZIP codes
This figure shows the new housing supply and house price changes in elastic zip codes (zip
codes in the 25% of more elastic MSAs). Panel A, shows the zip code-average of new house
transactions as a fraction of total houses in 2002 for the zip codes in the highest tercile
of worst originators’ market share (blue circles) and the lowest tercile of worst originators’
market share (black hollow circles). Panel B shows the average price changes for the same
groups. Dashed lines represent the 95% confidence interval for house price.
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Figure 2.6: Worst and best originator quality comparison
This figure shows a comparison of the quality of the loans originated by the worst and
best originators in our sample. Panel A shows the percentage of second-lien misreporting
exhibited by loans issued by the worst and best originators, by worst originators’ market
share quintile. Panel B shows the average expected probability of delinquency (90+ days)
exhibited by loans issued by the worst and best originators, by worst originators’ market
share quintile. The expected probability of delinquency is obtained by fitting a logit model
at the beginning of 2002 using all first-lien loans originated before 2001 in ABSNet. More
specifically, the dependent variable is a dummy that takes the value of one if the loan became
delinquent before 2002, and zero otherwise. The set of explanatory variables includes credit
score, combined loan-to-value ratio, interest rate, the log of the loan amount, and dummy
variables for level of documentation (low/no-doc or full-doc), self-reported occupancy status,
refinance, and the existence of a prepayment penalty.
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Figure 2.6 - continued
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Appendix A

Relevant events for determining the servicer

when a loan becomes distressed

Jul 2006. Centex Home Equity becomes Nationstar Mortgage.

Dec 2006. Merrill Lynch acquires First Franklin (from National City).

May 2007. Carrington acquires servicing rights from New Century.

Sep 2007. CitiMortgage acquires ACM Mortgage Services (which also owns

Argent and Ameriquest).

Apr 2008. JP Morgan acquires Bear Sterns (which also owns EMC Mort-

gage).

Apr 2008. American Home Mortgage acquires Option One.

Jul 2008. Bank of America acquires Countrywide.

Sep 2008. JP Morgan acquires Washington Mutual.

Sep 2008. PNC Mortgage acquires National City.

Sep 2008. Barclays acquires Lehman Brothers (Aurora Loan Services later

transfers servicing rights to Nationstar on Jul 2012).

Oct 2008. Bank of America acquires Merrill Lynch.
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Dec 2008. Bank of America acquires GreenPoint Mortgage.

Jan 2009. Wells Fargo acquires Wachovia.

Mar 2009. OneWest Bank acquires IndyMac.

Mar 2010. IBM acquires Wilshire Credit Corporation.

Sep 2010. Ocwen acquires HomeEq Servicing (from Barclays).

Sep 2011. Ocwen acquires Litton Loan Servicing (from Goldman Sachs).
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Appendix B

Supplementary tables and figures

Table B.1: The effect of the incentive fee on modification rates - Robustness
This table shows the robustness of the results in Table 1.3. Columns 1 and 2 show the same
regression than Column 1 of Table 1.3 excluding from the sample loans serviced by Bank of
America (the largest servicer in the sample) and excluding the loans originated in California
(the largest state). Column 3 shows the results of a falsification test where the incentive fee
is assumed to start in January 2008 and the period in which the regression is estimated goes
from August 2007 to July 2008 (just before the incentive fee was implemented). All estimates
are in percentage terms. Reported t-statistics in parentheses are heteroskedasticity-robust
and clustered by CSA. ***p<0.01, **p<0.05, *p<0.1.***p<0.01, **p<0.05, *p<0.1.

(1) (2) (3)

Excluding Excluding Falsification
BOA California test

Both Markets×After Fee -6.05*** -5.98*** -1.00***
(-14.49) (-13.79) (-4.48)

Credit Score 0.04 -0.51*** 0.04
(0.58) (-5.88) (0.42)

CLTV 0.24** 0.85*** 0.37***
(2.14) (7.40) (4.54)

Interest Rate 3.97*** 3.49*** 3.53***
(25.63) (25.07) (18.85)

Unpaid Balance 0.67*** 0.45*** 0.59***
(6.72) (4.65) (5.96)

Adjustable 3.00*** 4.55*** 3.02***
(13.42) (15.18) (11.83)

Non-Owner Occupied -4.79*** -4.88*** -3.76***
(-31.07) (-35.67) (-23.91)

Low/No-Doc -3.17*** -2.99*** -2.83***
(-19.62) (-12.99) (-18.36)

Prepayment Penalty 3.32*** 3.75*** 3.14***
(19.74) (14.13) (15.19)

CBSA×Origination month FE Y Y Y
Servicer FE Y Y Y
Distress month FE Y Y Y

Observations 858,966 748,383 638,186
Adj. R2 0.09 0.09 0.08
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Table B.2: The effect of the incentive fee on modification rates - Additional
falsification test

This table shows an additional falsification test to show the robustness of the results in
Table 1.3. The difference-in-differences estimation in Table 1.3 is repeated using each orig-
inal loan-level control variable as the dependent variable. The coefficient on the variable
Both Markets×After Fee (i.e., the effect of the incentive fee) is reported (t-statistics are
heteroskedasticity-robust and clustered by CSA).

Dependent Mean value Effect of the Effect relative
variable of variable incentive fee t-statistic to the mean (%)

Credit Score 649.34 1.37 3.39 0.2
CLTV (%) 86.03 0.13 1.35 0.2
Interest Rate (%) 7.82 0.03 2.10 0.4
Unpaid Balance ($) 258,637.40 4,534.14 4.94 1.8
Adjustable (%) 71.86 -3.01 -9.13 -4.2
Non-Owner Occupied (%) 14.44 -0.32 -1.47 -2.2
Low/No-Doc (%) 57.05 1.81 3.94 3.2
Prepayment Penalty (%) 51.53 -3.82 -6.25 -7.4
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Table B.3: OLS regression of loan losses on modification with alternative set
of fixed effects

This table shows OLS estimates of regressions similar to the ones in Table 1.5, but with
a CBSA and month of origination fixed effects included separately (not interacted). The
dependent variable is the net loan loss, which is defined as losses minus recoveries, divided
by the outstanding principal amount at the time of becoming distressed. Losses of modified
loans incorporate any concessions made to the borrower. Modification is an indicator that
takes the value of one if the loan was modified within six months of becoming distressed, and
zero otherwise. Continuous control variables are standardized and the regression’s intercept
is not reported. All estimates are in percentage terms. ***p<0.01, **p<0.05, *p<0.1.

(1) (2) (3)

Full Period Before fee After fee
Aug07-Feb09 Aug07-Jul08 Aug08-Feb09

Modification -5.97*** -3.70*** -8.11***
(-15.75) (-8.22) (-19.28)

Credit Score 1.56*** 1.26*** 2.06***
(10.32) (6.63) (13.60)

CLTV 5.21*** 5.56*** 4.62***
(18.34) (22.61) (11.48)

Interest Rate -1.04*** -0.93*** -1.37***
(-5.13) (-4.88) (-5.12)

Unpaid Balance -5.67*** -6.56*** -4.55***
(-12.43) (-12.21) (-12.11)

Adjustable 4.49*** 5.11*** 3.56***
(16.52) (19.81) (11.02)

Non-Owner Occupied 15.35*** 14.80*** 16.18***
(9.75) (8.48) (12.13)

Low/No-Doc 2.39*** 3.09*** 1.13***
(7.00) (8.10) (4.06)

Prepayment Penalty 1.32*** 1.60*** 0.93***
(5.47) (5.18) (4.62)

CBSA FE Y Y Y
Origination month FE Y Y Y
Servicer FE Y Y Y
Distress month FE Y Y Y

Observations 999,067 638,186 360,881
Adj. R2 0.21 0.21 0.20
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Table B.4: Robustness tests for Table 1.6
This table shows the results of instrumental variable regressions estimated using the stan-
dard two-stage least squares (2SLS) procedure. Bank of America (the largest servicer) or
California (the largest state) are omitted from the sample. In the first stage (Columns 1 and
2) the incentive fee introduction is used as an instrument for modification. In the second
stage (Columns 3 and 4) the fitted value from the first stage is the main explanatory vari-
able. Loan-level controls and a variety of fixed effects are also included. Continuous control
variables are standardized and the regression’s intercept is not reported. All estimates are
in percentage terms. Reported t-statistics (for the first stage) and z -statistics (for the sec-
ond stage) in parentheses are heteroskedasticity-robust and clustered by CSA. ***p<0.01,
**p<0.05, *p<0.1.

(1) (2) (3) (4)

First stage Second stage
Excluding Excluding Excluding Excluding

BOA California BOA California

Modification -10.21** -9.30*
(-2.16) (-1.83)

Both Markets×After Fee -6.07*** -6.00***
(-15.07) (-14.40)

Credit Score 0.04 -0.53*** 1.54*** 1.65***
(0.60) (-6.58) (10.03) (8.75)

CLTV 0.24** 0.85*** 5.08*** 4.84***
(2.24) (7.66) (18.89) (16.31)

Interest Rate 3.92*** 3.43*** -1.11*** -0.68***
(25.74) (26.18) (-5.17) (-2.88)

Unpaid Balance 0.69*** 0.49*** -6.09*** -5.07***
(6.82) (4.99) (-12.63) (-10.59)

Adjustable 3.10*** 4.64*** 4.47*** 4.49***
(14.50) (16.04) (11.55) (10.47)

Non-Owner Occupied -4.76*** -4.87*** 14.87*** 16.21***
(-31.57) (-35.63) (8.80) (8.17)

Low/No-Doc -3.11*** -2.89*** 2.16*** 2.08***
(-18.61) (-12.43) (5.09) (3.97)

Prepayment Penalty 3.22*** 3.65*** 0.99*** 1.21***
(18.83) (14.32) (3.40) (2.99)

Origination month FE Y Y Y Y
CBSA FE Y Y Y Y
Servicer FE Y Y Y Y
Distress month FE Y Y Y Y

Observations 858,966 748,383 858,966 748,383
Adj. R2 0.09 0.09 0.22 0.21

F -statistic 227.0 207.3

134



Table B.5: First stage of Table 1.7
This table shows the first stage regressions of the second stage regressions shown in Table
1.7. The loans in the large house price drop group in Table 1.7 are ranked into three groups
based on their ZIP code house price rebound (from the bottom of 2009 o September 2012).
Column 1 shows the results of the IV estimation on the loans with returns equal or greater
than zero (no house price drop). Two other groups are formed based on the median return of
the remaining loans. Column 2 considers the loans that experienced a small house price drop
while Column 3 considers the loans that experienced a large house price drop. All estimates
are in percentage terms. Reported t-statistics in parentheses are heteroskedasticity-robust
and clustered by CSA. ***p<0.01, **p<0.05, *p<0.1.

(1) (2) (3)

No housing Small housing Large housing
price drop price drop price drop

Both Markets×After Fee -6.19*** -5.76*** -4.59***
(-6.71) (-11.65) (-20.34)

Credit Score -0.69*** -0.95*** -0.29**
(-2.66) (-8.94) (-2.41)

CLTV 1.14*** 0.94*** 0.26***
(6.56) (7.90) (4.02)

Interest Rate 2.03*** 3.73*** 4.01***
(5.15) (19.63) (23.55)

Unpaid Balance 0.12 0.26** 0.50***
(0.51) (2.42) (3.88)

Adjustable 7.56*** 4.79*** 3.58***
(9.76) (16.36) (12.39)

Non-Owner Occupied -5.33*** -5.14*** -4.40***
(-9.04) (-32.41) (-20.06)

Low/No-Doc -1.57*** -3.23*** -3.51***
(-3.08) (-11.35) (-16.34)

Prepayment Penalty 4.67*** 4.85*** 3.74***
(9.26) (11.52) (13.86)

Origination month FE Y Y Y
CBSA FE Y Y Y
Servicer FE Y Y Y
Distress month FE Y Y Y

Observations 21,616 451,936 451,948
Adj. R2 0.10 0.09 0.09

F -statistic 45.0 135.6 413.6
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Table B.6: Robustness test for Table 1.7
This table shows the second stage of instrumental variable regressions estimated using the
standard two-stage least squares (2SLS) procedure. The loans in the sample are divided
into three groups based on their short-run house price returns computed using a different
criteria than in Table 1.7. Here house price returns are computed from March 2009 to
March 2010 (to ensure that returns do not affect the modification decision). Column 1
shows the results of the IV estimation on the loans with returns equal or greater than zero
(no house price drop). Two other groups are formed based on the median return of the
remaining loans. Column 2 considers the loans that experienced a small house price drop
while Column 3 considers the loans that experienced a large house price drop. All estimates
are in percentage terms. Reported z -statistics in parentheses are heteroskedasticity-robust
and clustered by CSA. ***p<0.01, **p<0.05, *p<0.1.

(1) (2) (3)

No housing Small housing Large housing
price drop price drop price drop

Modification -12.29 -11.63* -22.28***
(-1.40) (-1.82) (-2.83)

Loan-level controls Y Y Y
Origination month FE Y Y Y
CBSA FE Y Y Y
Servicer FE Y Y Y
Distress month FE Y Y Y

Observations 272,732 326,939 327,616
Adj. R2 0.18 0.21 0.17

First stage coefficient -5.88*** -6.28*** -5.15***
(-9.88) (-11.73) (-18.78)

F -statistic 97.6 137.6 352.9

Mean price drop (%) 4.0 -3.6 -16.0
Self-cure rate (%) 19.4 19.9 15.1
Redefault rate (%) 55.9 56.5 57.3
Loss rate if foreclosed (%) 49.4 58.3 72.2
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Table B.7: First stage of Table 1.8
This table shows the first stage regressions of the second stage regressions shown in Table
1.8. The loans in the sample are divided into three groups based on their short-run house
price returns. Column 1 shows the results of the IV estimation on the loans in areas that
did not experience a rebound in house prices (prices continued to drop). Two other groups
are formed based on the median return of the remaining loans. Column 2 considers the
loans that experienced a small house price rebound while Column 3 considers the loans that
experienced a large house price rebound. All estimates are in percentage terms. Reported
t-statistics in parentheses are heteroskedasticity-robust and clustered by CSA. ***p<0.01,
**p<0.05, *p<0.1.

(1) (2) (3)

No housing Small housing Large housing
price rebound price rebound price rebound

Both Markets×After Fee -4.39*** -5.34*** -5.35***
(-18.97) (-7.88) (-7.10)

Credit Score -0.31** -0.41* -0.09
(-2.18) (-1.71) (-0.91)

CLTV 0.34*** 0.16 0.10
(4.07) (0.87) (0.78)

Interest Rate 3.76*** 4.61*** 4.74***
(17.76) (20.10) (24.86)

Unpaid Balance 0.59*** 0.30** 0.36*
(2.80) (2.15) (1.88)

Adjustable 3.83*** 3.09*** 2.95***
(12.78) (11.88) (5.83)

Non-Owner Occupied -4.55*** -4.17*** -3.42***
(-17.93) (-8.68) (-12.27)

Low/No-Doc -3.42*** -3.47*** -3.98***
(-10.68) (-11.34) (-22.20)

Prepayment Penalty 3.84*** 3.65*** 3.70***
(9.46) (14.46) (15.55)

Origination month FE Y Y Y
CBSA FE Y Y Y
Servicer FE Y Y Y
Distress month FE Y Y Y

Observations 305,441 73,309 73,178
Adj. R2 0.09 0.09 0.09

F -statistic 360.0 62.0 50.4
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Table B.8: IV regressions by unemployment and income levels at the time of
distress

This table shows the second stage of instrumental variable regressions estimated using the
standard two-stage least squares (2SLS) procedure. The loans in the sample are divided into
two groups based based on unemployment levels at the time the loan became distressed, or
on the average household income of the ZIP code in 2006. All estimates are in percentage
terms. Reported z -statistics in parentheses are heteroskedasticity-robust and clustered by
CSA. ***p<0.01, **p<0.05, *p<0.1.

(1) (2) (3) (4)

Low High Low High
unemployment unemployment income income

Modification -35.73*** -8.22 -6.11 -13.78***
(-2.91) (-1.19) (-0.91) (-3.17)

Credit Score 1.46*** 1.58*** 1.93*** 1.25***
(7.51) (7.97) (8.49) (7.84)

CLTV 5.46*** 5.01*** 5.92*** 4.85***
(17.26) (11.07) (14.03) (22.69)

Interest Rate 0.45 -1.56*** -2.00*** -0.30
(1.10) (-4.52) (-8.99) (-1.09)

Unpaid Balance -5.46*** -6.22*** -10.67*** -2.91***
(-10.90) (-14.98) (-16.85) (-8.71)

Adjustable 5.80*** 4.30*** 5.46*** 4.16***
(10.26) (7.34) (9.35) (18.35)

Non-Owner Occupied 13.48*** 16.17*** 17.36*** 9.28***
(6.42) (8.92) (9.59) (14.23)

Low/No-Doc 2.21*** 1.64*** 2.78*** 1.91***
(2.98) (5.10) (5.64) (3.55)

Prepayment Penalty 2.24*** 1.24*** 0.56 1.75***
(3.62) (3.05) (1.18) (4.94)

Origination month FE Y Y Y Y
CBSA FE Y Y Y Y
Servicer FE Y Y Y Y
Distress month FE Y Y Y Y

Observations 466,260 452,758 499,469 499,466
Adj. R2 0.15 0.23 0.22 0.20

First stage coefficient -5.30*** -4.61*** -5.54*** -5.93***
(-9.97) (-10.41) (-14.83) (-13.06)

F -statistic 63.4 61.1 220.0 170.6

Mean income/unemployment 4.6 7.8 36,263 71,177
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Table B.9: First stage of Table 1.9
This table shows the first stage regressions of the second stage regressions shown in Table 1.9.
The sample is divided into two groups based on the median increase in unemployment from
the month the loan became distressed to the highest value of the index in 2009. Column
1 considers the loans with a small increase in unemployment while Column 2 considers
the loans with a large increase in unemployment. All estimates are in percentage terms.
Reported t-statistics in parentheses are heteroskedasticity-robust and clustered by CSA.
***p<0.01, **p<0.05, *p<0.1.

Small increase Large increase
in unemployment in unemployment

Both Markets×After Fee -4.85*** -11.11***
(-7.96) (-7.82)

Credit Score -0.22** 0.39***
(-2.06) (4.10)

CLTV 0.87*** 0.07
(13.58) (1.28)

Interest Rate 3.12*** 3.28***
(11.29) (18.66)

Unpaid Balance 0.63*** 0.50***
(6.87) (6.71)

Adjustable 4.19*** 1.33***
(8.00) (9.76)

Non-Owner Occupied -4.59*** -2.91***
(-23.09) (-22.94)

Low/No-Doc -2.66*** -2.66***
(-5.08) (-23.45)

Prepayment Penalty 3.25*** 2.07***
(8.55) (10.27)

Origination month FE Y Y
CBSA FE Y Y
Servicer FE Y Y
Distress month FE Y Y

Observations 226,562 224,838
Adj. R2 0.08 0.06

F -statistic 63.4 61.1
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Table B.10: Matching analysis of loan losses
This table shows the results from a propensity score matching analysis that compares the
loan losses of loans modified by servicers which only manage non-agency loans with the
loan losses of loans that were not modified by servicers which manage both agency and
non-agency loans, by modification type. The matching is performed based on the month
the loans became distressed, on ZIP code (or CBSA for a higher matching rate), and on
propensity scores calculated using the logit regression in Panel A of Table 1.10. Matching
is performed without replacement using the nearest neighbor technique (1-to-1). Also, a
common support is imposed and the maximum difference between the propensity scores
of the treated (modified) loans and the control (non-modified) loans is limited to 0.5%
(0.1% when matching by CBSA). Since some loans have identical propensity scores, the
sample is randomly sorted before matching. The table shows the average treatment effect
on modifications (ATT), with robust t-statistics in parentheses. Columns 1, 2, 3, and 4
show the ATT for modifications in which more than one attribute was modified, principal
reductions, interest rate reductions, and capitalizations, respectively. ***p<0.01, **p<0.05,
*p<0.1.

(1) (2) (3) (4)

Differences in loss rates, Multiple Principal Interest rate
modified minus not modified attributes reduction reduction Capitalization

Matched sample (by ZIP), ATT -14%*** -11.9%** -6.1%* -3.3*
t-statistic (-10.67) (-2.18) (-1.81) (-1.74)
Matching rate 12.5% 13.8% 13.2% 16.0%

Matched sample (by CBSA), ATT -12.8%*** -11.9%*** -0.2% -3.0%***
t-statistic (-19.11) (-4.01) (-0.09) (-2.97)
Matching rate 42.9% 42.1% 44.1% 53.9%
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Table B.11: Effect of securitization on house price returns (pooled regressions)
This table shows OLS estimates for regressions where zip code house price returns is the
dependent variable, on the zip code-level of securitization and on the fraction of securitized
loan originations by the various types of originators during the period from 2003 to 2006.
Columns 1 and 2 show the results for the boom period (2003-2006), and columns 3 and 4
show the results for the bust period (2007-2012). t-statistics are presented in parentheses.
***p<0.01, **p<0.05, *p<0.1.

2003-2006 2007-2012

Fraction Securitized 1.44*** -0.79***
(25.62) (-24.70)

Fraction Securitized by Worst Originators 7.73*** -5.97***
(12.81) (-17.54)

Fraction Securitized by Medium Originators 1.86*** -0.54***
(10.45) (-5.37)

Fraction Securitized by Best Originators 0.17 -0.31***
(0.94) (-2.96)

Constant 0.22*** 0.23*** -0.09*** -0.10***
(23.12) (24.36) (-16.55) (-18.18)

Observations 5,176 5,176 5,176 5,176
Adj. R-squared 0.11 0.13 0.11 0.14
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Table B.13: Effect of worst originator activity on house price returns (higher
credit score)
This table shows OLS estimates for regressions where zip code house price returns is the
dependent variable, on the zip code-level market share of the various types of originators
during the period from 2003 to 2006. The zip codes in the regressions belong to the lowest
quartile based on the fraction of loans securitized reported in ABSNet with credit scores
under 660. The regressions include different combinations of demographic controls and
MSA fixed effects. Columns 1 to 3 show the results for the boom period (2003-2006), and
columns 4 to 6 show the results for the bust period (2007-2012). t-statistics are presented
in parentheses. ***p<0.01, **p<0.05, *p<0.1.

2003-2006 2007-2012

Worst Originators’ Mkt. Share 2.152*** 1.412*** 1.463*** -1.520*** -1.792*** -1.745***
(9.01) (4.26) (4.38) (-10.53) (-3.41) (-3.46)

Medium Originators’ Mkt. Share 0.996*** -0.161 -0.067 0.033 0.144 0.170
(6.74) (-1.09) (-0.46) (0.37) (0.86) (0.89)

Best Originators’ Mkt. Share -0.268 0.005 0.057 0.145 0.533** 0.431**
(-1.54) (0.02) (0.18) (1.39) (2.52) (2.14)

Fraction Securitized -0.106 -0.087
(-1.25) (-1.05)

Population 0.002 -0.001
(1.15) (-1.42)

Housing Units -0.005 0.006**
(-1.33) (2.49)

Housing Vacancy Rate 0.435*** -0.208***
(5.48) (-4.19)

Average Household Income -0.000* 0.000
(-1.99) (1.37)

Change in Avg. Household Income 0.000 0.000***
(1.23) (3.06)

Constant 0.159*** 0.387*** 0.381*** -0.104*** -0.168*** -0.178***
(6.75) (7.13) (7.94) (-7.28) (-4.27) (-4.20)

MSA FE N Y Y N Y Y
SE Clustered by MSA N Y Y N Y Y

Observations 1,036 1,036 1,036 1,036 1,036 1,036
Adj. R-squared 0.20 0.75 0.76 0.11 0.58 0.61
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Table B.14: Effect of worst originator activity in elastic and inelastic ZIP codes
during the boom
This table shows OLS estimates for regressions where zip code house price returns during
the boom is the dependent variable, on the zip code-level market share of the various types
of originators during the period from 2003 to 2006, for different subsamples of zip codes
based on housing supply elasticities from Saiz (2008). The regressions include different
combinations of demographic controls and MSA fixed effects. Column 1 shows the estimates
for the zip codes in MSAs in the most elastic half. Column 2 shows the regression for
zip codes in MSAs in the most elastic quartile. Column 3 considers the most inelastic
half and column 4 the most inelastic quartile. Reported t-statistics in parentheses are
heteroskedasticity-robust and clustered by MSA. ***p<0.01, **p<0.05, *p<0.1.

Elastic MSAs Inelastic MSAs

2003-2006 2003-2006

Top 50% Top 25%
Bottom

50%
Bottom

25%

Worst Originators’ Mkt. Share 0.924 -1.032** 1.093*** 1.315***
(0.80) (-2.19) (2.78) (3.44)

Medium Originators’ Mkt. Share 0.147 -0.209 -0.423*** -0.253**
(0.77) (-1.28) (-4.74) (-2.73)

Best Originators’ Mkt. Share 0.256 0.185 -0.925** -1.212***
(1.25) (0.80) (-2.43) (-2.95)

Fraction Securitized 0.009 0.024 0.094 0.109
(0.08) (0.16) (0.65) (0.61)

Population 0.001 0.003 0.005*** 0.005***
(0.77) (1.37) (3.92) (3.87)

Housing Units -0.004 -0.007 -0.012*** -0.011***
(-1.36) (-1.66) (-3.29) (-3.07)

Housing Vacancy Rate 0.870*** 0.637*** 0.631*** 0.579***
(2.81) (4.06) (4.03) (3.52)

Average Household Income -0.002*** -0.001*** -0.001*** -0.001***
(-3.77) (-4.12) (-2.88) (-3.83)

Change in Avg. Household Income 0.002*** 0.002*** 0.000 0.001**
(5.48) (4.49) (0.66) (2.28)

Constant 0.319*** 0.267*** 0.586*** 0.616***
(6.98) (9.95) (15.94) (12.16)

MSA FE Y Y Y Y
SE Clustered by MSA Y Y Y Y
Observations 1,796 633 2,871 2,111
Adj. R-squared 0.80 0.67 0.82 0.80
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Table B.15: Lender names and second-lien misreporting ranking frequencies
This table shows the number of years each of the 25 lenders in the sample entered the
different terciles of second-lien misreporting.

Tercile of second-lien misrep.
Lender 1 2 3

Fieldstone 0 0 6
First Franklin 0 0 6
Fremont 0 0 6
GreenPoint 0 0 6
WMC 0 0 6
Aegis 0 2 4
Mortgage IT 1 2 3
Ownit 0 0 3
American Home 0 4 2
BNC 0 4 2
New Century 0 4 2
People’s Choice 0 4 2
Argent 5 1 0
Bank of America 4 2 0
Chase 2 4 0
Countrywide 2 4 0
Downey 6 0 0
IMPAC 6 0 0
Indymac 6 0 0
National City 3 3 0
Option One 3 3 0
GMAC RFC 6 0 0
SunTrust 1 5 0
Washington Mutual 5 1 0
Wells Fargo 1 5 0
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Table B.16: Loan characteristics by lender type (matched sample)
This table compares the characteristics of the loans issued by the worst originators with the
characteristics of the loans issued by the best originators in the matched sample. For each
loan issued by a bad originator, we find another loan issued by a good originator in the same
ZIP code-year that also has similar propensity score. To compute the propensity score, we
estimate a logit regression where the dependent variable is a dummy that takes the value of
one if the loan was issued by one of the worst originators and takes the value of zero if the
loan was issued by one of the best originators, and the explanatory variables are combined
LTV, credit score, interest rate, the log of the loan amount, and indicators for low-doc,
non-owner occupied property, arm loan, and the existence of a prepayment penalty. Also,
we impose a maximum distance between propensity scores of 1%. We are able to impose
such a tight criteria because there are many more loans from the better originators and we
match with replacement up to a maximum of five times.

Worst Lenders Best Lenders

CLTV (perc.) 90.1 91.0
Full-Doc 42.0% 32.0%
Interest Rate (perc.) 7.30 7.28
Non-owner Occupied 17.6% 19.9%
Credit Score 677 686
Loan Amount 257,079 277,674
ARM 80.7% 78.5%
Prepayment Penalty 50.6% 50.6%
Delinquent 90+ 63.2% 54.4%
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Table B.17: Explanatory power of loan-level controls - separate subsamples
This table shows OLS loan-level regressions where the dependent variable is an indicator
for whether the loan became 90 days or more delinquent and the explanatory variables are
a set of loan characteristics. ZIP Code interacted with year of origination fixed effects are
also included. Columns 1 shows the results for the loans by the worst originators while
column 2 shows the results for the loans by the best originators. For each loan issued by
a bad originator, we find another loan issued by a good originator in the same ZIP code-
year that also has similar propensity score. To compute the propensity score, we estimate
a logit regression where the dependent variable is a dummy that takes the value of one
if the loan was issued by one of the worst originators and takes the value of zero if the
loan was issued by one of the best originators, and the explanatory variables are combined
LTV, credit score, interest rate, the log of the loan amount, and indicators for low-doc,
non-owner occupied property, arm loan, and the existence of a prepayment penalty. Also,
we impose a maximum distance between propensity scores of 1%. We are able to impose
such a tight criteria because there are many more loans from the better originators and we
match with replacement up to a maximum of five times. Reported t-statistics in parentheses
are heteroskedasticity-robust and clustered by CBSA. ***p<0.01, **p<0.05, *p<0.1.

Delinquency 90+
Worst Best

CLTV 0.351*** 0.803***
(16.19) (28.98)

Full-Doc -7.559*** -9.680***
(-7.19) (-11.16)

Interest Rate 1.635*** 0.827***
(8.03) (4.34)

Non-owner Occupied -0.656 0.167
(-0.52) (0.14)

Credit Score -0.139*** -0.154***
(-14.36) (-14.90)

ln(Loan Amount) 9.221*** 5.661***
(8.41) (6.29)

ARM 4.737*** 2.137***
(5.69) (3.32)

Prepayment Penalty 5.598*** 11.578***
(6.93) (13.51)

Constant -2.725 7.008
(-0.24) (0.62)

ZIPxYear FE Y Y

Observations 86,822 86,822
Adj. R-squared 0.25 0.35
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Figure B.2: Second-lien misreporting by originator tercile

This figure shows the yearly second-lien misreporting of the highest (blue solid circles) and
lowest (black hollow circles) terciles of misreporting. The dash line shows the average for
all the originators.
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Figure B.3: Histogram of worst originators’ market share

Each year the 25 loan originators in Griffin and Maturana (2014) are classified into 3 groups
based on the cumulative fraction of loans they issued with second-lien misreporting. The
amount of cumulative misreporting of each originator in year t − 1 is used to rank the
originators in year t. Originators in the tercile with the highest misreporting are referred
to as the worst originators. This figure shows the histogram of frequencies of the worst
originators’ market share between 2003 and 2006.
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Figure B.4: Worst originators’ market share

This figure shows the time-series of the average worst originators’ market share for each
group shown in Figure 2.1. Zip codes are divided into two groups: those where the average
market share of the worst originators during the period 2004q3-2006q2 (highlighted by the
yellow shaded area) exceeds 10% (blue solid circles) and the other remaining zip codes
(black hollow circles). The gray shaded area highlights the period when most of the worst
originators went bankrupt or lost considerable business.
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Worst Originators' Mkt. Share High Medium Low

A: 2003-2006

Figure B.5: Extreme house price movements and worst originators’ market
share

The above maps report the zip codes with the most extreme house returns during the boom
and the bust, as well as the presence of bad originators within these zip codes. Zip codes
are first divided into three equal terciles based on market share of the worst originators.
Zip codes with the highest presence of the worst originators are in red, a moderate presence
is in green, and the lowest presence is in blue. Additionally, zip codes are classified into
four equal quartiles based on house price returns during the boom and the bust. In the
boom, Panel A, only the zip codes in the highest quartile of house returns are displayed,
representing the largest gains. Similarly, in the bust, Panel B, only the zip codes in the
lowest quartile of house returns are displayed, representing the largest losses.
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Figure B.5 - continued

Worst Originators' Mkt. Share High Medium Low

B: 2007-2012
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Panel A: Securitization and house price return
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Figure B.6: Securitization and house returns

This figure shows the correlation of securitization activity with house price returns. Panel
A shows the relation between the fraction of loans securitized in each zip code during the
period 2003-2006 and the return of the corresponding zip code house price index for the
2003-2006 period (left graph), and for the 2007-2012 period (right graph). Panel B shows
the relation between the fraction of loans securitized in each zip code during the period 2003-
2006 by the worst tercile of originators based on second-lien misreporting and the return of
the corresponding zip code house price index. The red lines fit pooled linear regressions.
Coefficient estimates and t-statistics are presented at the top of each graph.
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Figure B.6 - continued

Panel B: Securitization by worst originators and house price return
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Figure B.7: Loan supply by the worst originators before and after APLs

This figure compares the cumulative loan supply by the worst originators of zip codes in
states that passed anti-predatory lending laws (APLs) between 2004 and 2005 (blue circles)
with the cumulative loan supply by the worst originators of a benchmark of zip codes in
states that did not pass any APLs before 2006 (black hollow circles), before and after
the law changes. The states in the first group are Indiana, Massachusetts, New Mexico,
South Carolina, and Wisconsin. The states in the benchmark are Arizona, Delaware, New
Hampshire, Montana, Oregon, Washington, and Tennessee.
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Panel A: 2004Q1, New Mexico and South Carolina
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Figure B.8: Effect of APLs on house price movements and loan supply by the
worst originators

This figure compares the house price movements (on the left) and the cumulative loan supply
by the worst originators (on the right) of zip codes in states that passed anti-predatory
lending laws (APLs) between 2004 and 2005 (blue circles) with the house price movements
and the cumulative loan supply by the worst originators of a benchmark of zip codes in
states that did not pass any APLs before 2006 (black hollow circles). In each panel, zip
codes share the same quarter when APLs were passed. In Panel A, the zip codes in the
“Law Change” group are from New Mexico and South Carolina (APL in 2004Q1). In Panel
B, the zip codes in the “Law Change” group are from Massachusetts (APL in 2004Q3). In
Panel C, the zip codes in the “Law Change” group are from Indiana and Wisconsin (APL
in 2005Q1). Dashed lines delimit the 95% confidence interval.
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Figure B.8 - continued

Panel B: 2004Q3, Massachusetts
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Panel C: 2005Q1, Indiana and Wisconsin
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Figure B.9: Frequency histogram of house price peaks

This figure shows the frequency histogram for the house price peaks of the zip codes con-
sidered in Figure 2.3 and Table 2.6.
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Panle A: Top and Bottom 50%
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Figure B.10: House price movements in elastic and inelastic ZIP codes

This figure shows the average price movements of zip codes in MSAs with high housing
supply elasticity (blue circles) and with low housing supply elasticity (hollow black circles).
Panel A splits the sample in half. Panel B considers the zip codes in the extreme quartiles
of MSA housing supply elasticity. The dashed lines represent the 95% confidence interval.
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Panel A: Top and Bottom 50%
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Figure B.11: Worst originator activity of elastic and inelastic ZIP codes

This figure shows the evolution of the worst originators’ market share of zip codes in MSAs
with high housing supply elasticity (blue solid circles) and with low housing supply elasticity
(black hollow circles). Panel A compares the top half of MSAs against the bottom half based
on housing supply elasticity. Panel B considers the zip codes in the extreme quartiles.
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Figure B.12: Occupancy misreporting and appraisal overstatements by lender
type

This figure shows the amounts of occupancy misreporting and appraisal overstatements by
lender type (worst and best). The two misreporting indicators are defined in Griffin and
Maturana (2014).

162



0
50

10
0

15
0

20
0

25
0

Fr
eq

ue
nc

y

0 1000 2000 3000 4000
Aggregate Transaction Loss ($ Million)

0
20

0
40

0
60

0
80

0
10

00
Fr

eq
ue

nc
y

0 500 1000 1500 2000
Number of Transactions per Quarter

Panel A: Losses due to Transactions, 2003−2006
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Figure B.13: Histograms of cost estimates components

This figure shows histograms of ZIP code-level values of different components involved on
the computation of the transaction losses (Panels A and B) and the excess value of houses
(Panel C) in the ZIP codes with larger share of bad originators.
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