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Supervisor: M. Bayani Cardenas 

 

Humanity relies on groundwater. But, current consumption may be outpacing 

groundwater renewal rates, and anthropogenic activities are altering its quality. This 

dissertation advances the state of knowledge of how local and regional groundwater 

dynamics affect its quality and quantity. First, I investigate groundwater discharge patterns 

and fluxes in three lakes in the Nebraska Sand Hills region and on the island of Rarotonga, 

Cook Islands, to understand the hydrologic connection between groundwater and surface 

water in these lacustrine and coastal settings. In Nebraska, I use electrical geophysical 

methods to characterize the spatial signature of groundwater recharge and discharge to and 

from the lakes using groundwater salinity patterns. On Rarotonga, a detailed field study of 

groundwater flow at the intertidal zone shows how groundwater flow influences the 

thermal regimes of nearshore environments, affecting the biota that live and chemical 

processes that occur near and below this dynamic interface. Next, a dense network of 

geophysical surveys across the coastal plain and into the lagoon on Rarotonga constrains 

multiple features of the larger-scale hydrologic system that are primarily controlled by the 

local carbonate and volcanic geology on the island. Finally, I give the first estimate of the 

global storage and spatial distribution of groundwater with a mean age since recharge of 

less than fifty years. I use several thousand two-dimensional groundwater flow and age-as-



 vii 

mass transport simulations parameterized by the best available hydrologic and geologic 

datasets. This global analysis suggests that ~6% of the groundwater stored in the upper 2 

km of the Earth’s crust is younger than 50 years. Comparing this young groundwater 

storage to current groundwater depletion rates indicates that more than half of the irrigated 

areas depending significantly on groundwater could have already used up all of the young 

groundwater and are using groundwater more quickly than the storage is replenished. 

Together, these studies advance how to quantify groundwater as a renewable resource 

through the global estimation of groundwater storage associated with certain timespans and 

by analyzing the implications of groundwater flow on water quantity and quality in field 

settings. 
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Chapter 1: 
 

Introduction 

Water, water, every where, 
Nor any drop to drink. 

- from “The Rime of the Ancyent Marinere” 
 by Samuel Taylor Coleridge [1798] 

1.1. WATER 

Water is an irreplaceable necessity. Water supports life on Earth as a medium for 

exchange as well as storage, distributing both energy and mass from one place and time to 

another. The spatiotemporal patterns of water on Earth threaten life in times of extreme 

excess or scarcity, but otherwise sustain life. Water can spread unwanted chemicals or act 

as the dilution agent for other solutions. The many roles and manifestations of water in the 

natural and engineered worlds are important for mindfully managing present-day and 

future water resources and the natural and human systems that rely on water. 

The hydrologic cycle on Earth circulates water through natural purification stages, 

distillation through evapotranspiration and filtration through sediment, that define water as 

a renewable resource [Oki and Kanae, 2006]. But is all water similarly renewable and pure? 

Groundwater comprises the underground portion of Earth’s water cycle and more 

strictly refers to interstitial water at and below a water table. As part of the water cycle, 

groundwater is replenished by precipitation that infiltrates through the ground to the water 

table (i.e., groundwater recharge) as well as through water inputs from surface water bodies 

and, in the modern era, through agricultural irrigation and water transportation systems. 

Once part of groundwater, the water flows in the subsurface (i.e., aquifers and water-

bearing layers) at widely varying rates and pathways to flow back eventually to the Earth’s 

surface (i.e., groundwater discharge). The dynamics of groundwater flow control how 
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quickly groundwater and its chemical constituents travel through the subsurface. 

Therefore, any investigation of either groundwater quantity or groundwater quality 

inherently requires some understanding of groundwater flow. However, groundwater 

dynamics result from an incredibly diverse integration of spatiotemporally distributed 

lithologic properties and hydrologic forcings, whereby the quantification or even 

qualification of groundwater in many environments remains limited. My dissertation 

focuses first on measuring and describing groundwater dynamics and their effects on other 

physical processes in the field. I constrain groundwater flowpaths and interactions with 

surface water to unravel the control groundwater flow has on thermal and chemical 

transport in coastal settings. 

With the fundamental understanding of groundwater flowpaths and the 

hydrogeologic features controlling them, the next step is to understand how the timing of 

groundwater flow contributes to its quality and availability. Groundwater flow inherently 

incorporates a temporal aspect, where the rates of groundwater flow are controlled by a 

multitude of environmental factors that together determine how long water takes to traverse 

a hydrogeologic system. However, the residence time of groundwater for groundwater 

systems are mostly unconstrained, and the duration that a water molecule resides as 

groundwater also varies widely, ranging from timescales of minutes in hyporheic exchange 

[Cardenas, 2008; Cardenas et al., 2008; Gomez et al., 2012] to millions of years [Phillips 

et al., 1986; Sturchio et al., 2004]. These groundwater residence times affect the potential 

for groundwater-rock interactions and can lead to changing water quality along even a 

single flowpath [Chebotarev, 1955]. Beyond quality, the magnitude and patterns of 

groundwater flow also control how quickly water flushes through a groundwater system, 

setting the renewal timescale of that system. Thus, the renewability of groundwater 

depends upon the hydrologic conditions and subsurface properties, with a range of relevant 
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timescales of groundwater flow within a single groundwater system. My dissertation will 

explore what renewability means physically for groundwater and estimate how much 

groundwater is physically renewed over various timescales with numerical models.  

1.2. MOTIVATING QUESTIONS 

My dissertation is focused around questions of how the dynamics of groundwater 

flow affect its availability from both quantity and quality perspectives: How do 

groundwater-surface water interactions change groundwater flow and thus the delivery of 

groundwater and its constituents in natural settings, and how does groundwater flow 

control its availability? Important to these questions are how to integrate multiple physical 

processes and properties over the relevant spatiotemporal scales. 

My dissertation starts by addressing the questions of how do groundwater flow 

regimes interact with surface waters and how do these interactions affect water quality? I 

show how groundwater, solute, and energy fluxes in discharge zones result from 

groundwater-surface water interactions and field-scale hydrologic heterogeneity, 

ultimately controlling the groundwater quality at each field site. With these studies, I 

address the following questions: 

1. How do groundwater-lake interactions alter groundwater discharge and 

recharge patterns and contribute to the local water quality? 

2. How do groundwater dynamics in the subsurface intertidal zone affect the 

delivery of freshwater to the coast, alter the subsurface salinity distribution, 

and control the temperature dynamics? 

3. How do geologic heterogeneities control how groundwater flows in coastal 

areas and into coastal waters? 
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Next, I explore the question of how groundwater flow controls renewal timescales 

at the global scale and its implications for groundwater quantity motivated by the following 

questions: 

1. How much groundwater is renewed on a 50 year timescale? 

2. How sustainable are current groundwater extractions based on a renewal 

timescale of 50 years? 

3. What are the dominant timescales of groundwater flow on Earth? 

My dissertation advances the understanding of how groundwater dynamics control 

the quality and quantity of groundwater. The ultimate purpose of my dissertation is to 

quantify the relevant timescales and characteristics of groundwater flow from the 

continental interior to coastal environments. The quantitative analyses can then provide 

insight into how groundwater processes affect and are affected by global and local issues 

of groundwater availability. 

1.3. A GROUNDWATER MASS BALANCE FRAMEWORK 

A groundwater mass balance integrates groundwater dynamics with groundwater 

storage, where recharge and discharge fluxes control changes in storage. Therefore, I 

structure my dissertation to first present my contributions towards better understanding and 

constraining groundwater flow at recharge and discharge features and their implications on 

groundwater quality. Then, building off of this foundation of quantified groundwater flow, 

I develop a quantitative framework for assessing groundwater renewability. 

My first three chapters develop three field-based case studies that delineate how 

groundwater flow and hydrogeologic conditions contribute to other physical processes. In 

Chapter 2, I use electrical resistivity surveys in three lakes in the Nebraska Sand Hills to 

constrain groundwater-surface water interactions and the complexity of groundwater 
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recharge and discharge zonation throughout the lakes, transporting and controlling the 

distribution of salinity. Next, in Chapter 3, I investigate groundwater flow and heat 

transport below and through an intertidal zone, where groundwater controls the subsurface 

thermal and chemical regimes. Then, I discover and assess the impacts of larger-scale 

geologic spatial heterogeneity on the potential for groundwater flow and delivery of fresh 

water into a reef lagoon in Chapter 4. Finally, in Chapter 5, I use numerical simulations of 

groundwater age to estimate the stored volume of groundwater on Earth renewed in less 

than fifty years, while introducing a novel framework for quantifying physical groundwater 

renewability that integrates the temporal component of groundwater flow.  
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Chapter 2: 
 

 Classification and delineation of groundwater–lake interactions in the 
Nebraska Sand Hills (USA) using electrical resistivity patterns1 

We have no waters to delight 
Our broad and brookless vales— 
Only the dewpond on the height 

 Unfed, that never fails— 

- from “Sussex” by Rudyard Kipling [1902] 

ABSTRACT 

Lake-groundwater interactions exhibit a complex three-dimensional (3D) structure that is 

seldom studied. The utility of waterborne electrical resistivity (ER) surveys is explored 

for characterization of 3D groundwater flow and solute transport patterns for three lakes 

in the Nebraska Sand Hills, USA. Waterborne ER surveys, using contrasts between lake 

and groundwater solutes as natural tracers, are useful for inferring 3D patterns of 

groundwater flow and solute transport as well as classifying groundwater-lake 

interactions. Three unique groundwater flow systems are interpreted under each lake 

from dense networks of two-dimensional (2D) waterborne ER surveys. A lateral 

transition from high to low ER values beneath the saline Wilson Lake expresses its flow-

through regime, where groundwater salinity indicates changes from groundwater inflow 

to outflow. Alkali Lake ER profiles reveal a prevalent ER increase with depth over the 

lakebed area that is characteristic of groundwater discharge lakes. ER profiles beneath 

Gimlet Lake are the most resistive and indicate pockets of high ER related to fresh 

groundwater discharge into the lake, supporting a flow-through regime with a short 

flushing time. These ER patterns correctly classify groundwater–lake interactions and 

                                                 
1Befus, K. M., M. B. Cardenas, J. B. Ong, and V. A. Zlotnik (2012), Classification and delineation of 
groundwater–lake interactions in the Nebraska Sand Hills (USA) using electrical resistivity patterns, 
Hydrogeol. J., doi: 10.1007/s10040-012-0891-x. 
 
All of the authors participated in the data collection and conceptual development of the project. I was 
responsible for the quantitative analysis of the data, preparation of the article. 
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provide high spatial resolution of mixing patterns for systems with varying water salinity. 

This chapter was published as part of a collaborative project [Befus et al., 2012]. 

2.1. INTRODUCTION 

Lakes fed by groundwater with no surface water inputs or outputs mark a unique 

hydrologic interface between terrestrial, aquatic, and atmospheric systems. Groundwater 

flow and precipitation into these lakes are only balanced by evaporative losses and any 

return seepage of lake water through the lakebed. Present and paleoclimatic conditions 

strongly control the solute concentrations and water balances of such lakes. In order to 

understand the physical, chemical, and biological dynamics of these lakes, knowledge of 

the spatial distributions of solute concentrations and fluxes around and underneath the lakes 

is needed.  

Groundwater-lake interactions and their classification have been studied 

quantitatively and extensively with numerical and analytical models [e.g. Winter and 

Pfannkuch, 1984; Townley and Trefry, 2000; Zlotnik et al., 2009; Zlotnik et al., 2010]. In 

field studies [e.g. Winter, 1977; Schneider et al., 2005; Turner and Townley, 2006; Ong 

and Zlotnik, 2011], estimation of groundwater fluxes in lakes is typically accomplished 

using lake water budgets, and/or monitoring the head gradients and solute concentrations 

in limited numbers of piezometers installed in lakebed and shore sediments [Rosenberry et 

al., 2010]. More direct flux measurements are also possible with seepage meters but are 

often restricted to near or along the shore, and instrument installation is challenging in 

lakebed sediments which are typically fine-grained, easily disturbed from their natural 

state, and prone to clogging piezometer screens [Rosenberry et al., 2010]. In addition, a 

few point measurements fail to characterize a substantial portion of the lake, which may 

lead to oversimplified conceptualization of groundwater-lake interactions and potentially 

inaccurate lake water budgets. Therefore, the delineation of groundwater flow and transport 
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beneath lakes and classifying the lake-groundwater connections remain important 

problems in hydrogeology and limnology. 

Differences in electrical resistivity (ER) between surface water and groundwater 

can provide excellent tracers and targets for electrical and electromagnetic geophysical 

surveys [e.g. Bauer et al., 2006; Ong et al., 2010; Cardenas and Markowski, 2011]. ER 

imaging has the potential to noninvasively capture the configuration and various 

characteristics of groundwater flow systems beneath lakes and wetlands [Day-Lewis et al., 

2006; Mansoor and Slater, 2007; Nyquist et al., 2009; Toran et al., 2010]. While previous 

studies have utilized both natural and anthropogenic tracers in various settings, ER surveys 

have not been used for classifying lakes as groundwater ‘discharge’ or ‘flow-through’ 

lakes. 

To analyze the differences in groundwater-lake interactions among various lakes, 

continuous resistivity profiles (CRP) were conducted across several kilometers within three 

small lakes (< 0.5 km2) in the Nebraska Sand Hills (NSH), USA. A series of 2D profiles, 

organized in networks in each lake, elucidate the 3D ER patterns of lake-groundwater 

fluxes; however, the survey density was not sufficient for 3D inversion of the data. 

Interpretation of these surveys guide the classification of the lake-groundwater hydrologic 

system and delineate the potential spatial distributions of groundwater discharge and 

recharge zones within the lakes. This study also reveals the utility of waterborne CRP as a 

rapid, noninvasive, and robust method for determining 3D groundwater flow and solute 

distribution under lakes, especially in difficult settings. 

2.2. HYDROLOGY AND HYDROGEOLOGY OF THE NEBRASKA SAND HILLS  

The NSH are the largest vegetated dune field in the western hemisphere, covering 

an area of 58,000 km2. The NSH experiences continental climate with an annual rainfall of 
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533 mm and a mean temperature of about 10 °C [Szilagyi et al., 2011]. It hosts thousands 

of perennial and ephemeral lakes typically found in interdune areas. Pronounced 

geochemical variability among these lakes has been hypothesized to be primarily 

controlled by how the lakes interact with groundwater [Labaugh, 1986; Gosselin et al., 

1994; Bennett et al., 2007]. Lake water total dissolved solids (TDS) in the region ranges 

more than three orders of magnitude (0.32-122 g/L) whereas the groundwater remains 

much fresher with two orders of magnitude less TDS than the lakes (0.13-1.7 g/L) [Ong et 

al., 2010]. 

According to Loope et al. [1995] and references therein, the dunes of the NSH 

overlie between 150 and 300 m of late Cenozoic coarse clastic deposits that are part of the 

Ogallala or High Plains aquifer. Unconsolidated Quaternary fluvial sands, eolian sand 

sheets, and Pliocene fluvial sand and gravel separate the Quaternary dune sand from the 

underlying Miocene Ogallala Group. The eolian dunes comprise about 80% of the total 

sediment volume of the NSH. The thickness of Quaternary eolian sand ranges from <10 m, 

below interdune surfaces, to up to 20 m. In general, lakebed stratigraphy in the NSH is 

composed of < 2 m of lacustrine mud (gyttja), sometimes contains peat layers of variable 

thickness, and is underlain by eolian sand [Loope et al., 1995]. This stratigraphy varies 

spatially within individual lakes depending on depositional and hydrologic lake history 

[Loope et al., 1995; Ong and Zlotnik, 2011]. 

There is little runoff in the NSH due to high soil hydraulic conductivity [Wang et 

al., 2009] which promotes infiltration. The area is therefore considered an important 

recharge area for the High Plains aquifer [Szilagyi et al., 2011], where regional 

groundwater flow is generally towards the east or southeast (Figure 2.1). The productive, 

conductive, and regionally extensive aquifer system interacts with diverse dune and lake 

morphology to result in a variety of groundwater-lake exchange regimes [Winter, 1986; 
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Ong et al., 2010]. As the highly variable lake chemistry suggests, significant local 

hydraulic gradients near lakes alter local groundwater flowpaths [Zlotnik et al., 2009]. The 

NSH is therefore an ideal site for investigating groundwater-lake interactions and testing 

approaches for doing these studies. 

While there have been numerous hydrogeologic, geochemical, and geophysical 

studies conducted in the vicinity of the lakes in the NSH [Labaugh, 1986; Winter, 1986; 

Gosselin et al., 1994; Bennett et al., 2007; Ong et al., 2010; Ong and Zlotnik, 2011; Zlotnik 

et al., 2012], especially in recent years, a three-dimensional understanding of the 

groundwater flow and transport regime directly underneath the lakes is lacking due to the 

difficulty of conducting observations within the lakes. Detailed understanding at such 

scales is recognized as a critical gap in groundwater-surface water interaction studies 

[Sophocleous, 2002]. This report expands on and complements the past hydrogeologic 

studies in the NSH while helping fill a broader knowledge gap.        

2.3. METHODS 
Exploiting the electrical properties supplied by the TDS contrast between lake 

water and groundwater, three groundwater-fed lakes with different flow regimes were 

investigated (Figure 2.1) [Ong et al., 2010]: Wilson Lake is a saline, groundwater flow-

through lake; Alkali Lake is a saline, groundwater discharge lake; and Gimlet Lake is a 

freshwater flow-through lake. Shallow subsurface materials are eolian sands, silts, and 

clays with predominantly sands forming the dunes and finer materials settling to the 

lakebeds [Loope et al., 1995]. The lakebed stratigraphy in the dune environment may 

vary across individual lakebeds with interbedded deposits of paleo-lacustrine and eolian 

sediment [Loope et al., 1995; Ong and Zlotnik, 2011]. This potential stratigraphic   
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Figure 2.1.  Location of Wilson, Alkali, and Gimlet Lakes, and water table map of the 
Western Nebraska Sand Hills (modified after Ong et al. [2010]). The 
regional groundwater flows towards the southeast. A hypothesized paleo-
valley in the study area also influences groundwater flow [Loope et al., 
1995].  
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complexity contributes to the electrical signal measured with CRP, requiring careful 

interpretation of hydrologic phenomena from the ER profiles. In locations with high fluid 

conductivity, the fluid may govern the bulk resistivity and overcome the influences of 

sediment ER variability [Zarroca et al., 2011]. High lake water conductivity in Wilson 

and Alkali Lakes suggests most variations in ER were due to porewater TDS, rather than 

to variability of lakebed sediment composition and texture. The fresher Gimlet Lake 

requires consideration of spatial variations in lakebed sediment composition. 

2.3.1. Continuous Resistivity Profiling (CRP) 

The CRP surveys were recorded with the Advanced Geosciences, Inc. (AGI) 

Marine SuperSting R8 eight-channel ER system. Details of the method can be found in 

Day-Lewis et al. [2006] and Rucker et al. [2011]. Surveys were conducted using a floating 

cable with eleven electrodes at 5 m spacing. Two graphite electrodes transmit electrical 

current while the remaining stainless steel electrodes are paired into eight dipoles which 

measure the potential field. The electrode array was towed behind a boat moving with a 

speed less than 2 km/hr and following a marching dipole-dipole configuration. As the 

electrode array is translated, an integrated GPS device and sonar recorded position and 

water depth; the sonar transducer also simultaneously measured lake water temperature. 

CRP surveys were conducted in May 2010 when the lakes were full enough to use 

a 3-m boat with a trolling motor; this was an opportunity that very seldom occurs in Alkali 

and Wilson Lakes.  During data collection, water depths in the three lakes ranged from 0.3 

to 1.7 m along the survey lines. Strong winds, sometimes above 7 m/s, at times interfered 

with data collection by pushing the boat off course or by stopping forward motion. The 

wind occasionally created slack or multiple bends in the CRP cable that alter the electrode 
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configuration and break the 2D inversion assumption of aligned quadripoles, leading to ER 

artifacts in the inverted sections. These portions of the CRP data were not included in the 

inverted datasets. 

Several limitations of CRP require consideration when choosing the inversion 

procedure and then later when interpreting the results. By towing the resistivity array, 

repeat and reciprocal measurements that are common for ensuring data quality in land-

based ER surveys cannot be collected easily. Slow towing speeds allow some repeat 

measurements with the danger of wind, waves, or currents deforming the array, introducing 

geometrical errors. Other measurement errors may arise from high boat speeds causing 

electrode cavitations, vegetation getting tangled on electrodes, or damaged cables with 

internal shorts [Day-Lewis et al., 2006]. Prior to inversion, errors associated with random 

noise and other sources must be eliminated. If left in the inverted dataset, these errors could 

bias the resulting tomogram towards extreme values. To counter the effects of errors and 

to represent subsurface electrical fields more faithfully, ER inversion solves for a smoothly 

varying ER profile, where the amount of smoothing is specified in the inversion settings. 

Even for clean datasets, the inversion process will smooth the final ER profile to varying 

degrees and introduce correlation error [Day-Lewis et al., 2005]. Thus small ER features 

in the subsurface with very different ER values from the background material will appear 

as broader anomalies with lower magnitude ER values in the inverted section [Day-Lewis 

et al., 2006]. 

2.3.2. Inversion and post-processing 

Post-processing involved: (1) manual separation of the surveyed lines into straight 

sections, (2) incorporation of water depth data, and (3) piecewise, 2D data inversion using 

the CRP module of the AGI EarthImager software with a 65% overlap of consecutive sub-
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sections. A smooth model inversion method was used with data quality and inversion 

settings listed in Table 2.1. Convergence of ER sub-sections took 4 to 6 iterations with 

final RMS values from 3% to 9%.  

The 5 m spacing dipole-dipole array used for the CRP surveys has a maximum 

investigation depth of ~12 m from the air-water interface but also depends on the electrical 

conductivity of the water and subsurface sediments. The high lake water conductivity and 

the fine-grained bed sediments at the lake bottom (~1-2 m) caused low inverse model 

sensitivity in some areas of Wilson and Alkali Lakes (Figures 2.2-4).  

Lower relative model sensitivity indicates the observed data have less control over 

the inverted ER value. Inversion of ER data requires an electrical potential forward 

modeling step that pads the inversion domain with additional grid cells. These grid cells 

extend beyond the CRP data but can affect the final CRP ER section. Thus the sides and 

bottom of an inverted CRP section may contain incorrect values discernible only with the 

model sensitivity analyses. Alkali and Wilson Lakes data exhibit favorable model 

sensitivity magnitude (> 1x10-3) to 4-6 m depth below the air-water interface, and the 

fresher Gimlet Lake keeps these values to depths of 10-12 m (Figures 2.2b-4b). However, 

the shallow water depth in Alkali and Wilson Lakes (0.3-0.7 m) resulted in sufficient 

magnitude of electrical fields to be measured by the furthest dipoles (Figures 2.2-4), so the 

reduced depth penetration is a function of the ER structure and is not an artifact of noise; 

the noise in the transfer resistance remained low (< 5%) and was consistent when compared 

to a low-pass filtered version of the data (Figures 2.2a-4a) [Rucker et al., 2011]. 

The measured resistance values also provide insight into the quality of CRP data 

by displaying anomalously high and low resistances for a dipole that indicate bends in the 

cable either from turning the boat or from slack in the CRP cable. The measured resistance 

in both Wilson and Gimlet Lake show the effects of including a portion of the data that   
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Table 2.1. Settings for the smooth model inversion in AGI EarthImager 2D. 

Data Quality Forward Modeling 
Min voltage: 0.02 mV 
Max repeat error: 3% 
Min app res: 0.03 Ωm 
Max app res: 1000 Ωm 
Remove spikes: Yes 
Remove negative resistivity:Yes 

Method: Finite element 
Equation solver: Cholesky decomposition 
Boundary condition: Dirichlet 
# Mesh divisions: 1 
Thickness incremental factor: 1.1 
Depth factor: 1.1 

  
Resistivity Inversion 
Stop Criteria: 8 iterations, 3% max RMS error, or L2 Norm 
# CG iterations: 6 
Starting iteration of Quasi-Newton method: 20 
Smoothness factor: 100 
Damping factor: 100 
Starting model:   Average apparent resistivity 
Min ER:    0.1 Ωm 
Max ER:   1000 Ωm 
Horizontal to vertical roughness ratio: 0.1 
CRP Module > Number of electrodes per section: 250 
CRP Module > Overlap: 60% (150 electrodes) 
CRP Module > Fix water resistivity: No 
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Figure 2.2. Wilson Lake example section: a) recorded transfer resistance data for each 
potential dipole as a function of distance from the southeast shore (location 
of origin marked in Figure 2.5a); b) inverse model sensitivity giving a 
relative confidence of data control over model values; c) inverted ER profile 
that has been adjusted to a 20°C standard temperature. The grey line marks 
the sediment-water interface recorded during CRP collection. 
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Figure 2.3. Alkali Lake example section: a) recorded transfer resistance data for each 
potential dipole as a function of distance from the southeast shore (location 
of origin marked in Figure 2.5b); b) inverse model sensitivity giving a 
relative confidence of data control over model values; c) inverted ER profile 
that has been adjusted to a 20°C standard temperature. The grey line marks 
the sediment-water interface recorded during CRP collection. 
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Figure 2.4. Gimlet Lake example section: a) recorded transfer resistance data for each 
potential dipole as a function of distance from the southeast shore (location 
of origin marked in Figure 2.5c); b) inverse model sensitivity giving a 
relative confidence of data control over model values; c) inverted ER profile 
that has been adjusted to a 20°C standard temperature. The grey line marks 
the sediment-water interface recorded during CRP collection. 
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was collected just after the boat turned (Figures 2.2a and 4a).  In this case, the unaligned 

dipoles are closer to the current injection, leading to lower resistance values. When 

inverted, these erroneous values create false conductivity regions (e.g. 50-80 m in Figure 

2.4c). 

Good quality raw data and reasonable inversion results did not require further data 

removal or repeated inversions; data with marginally higher misfits after inversion were 

removed for different profiles and inverted without significant decreases in data misfit or 

changes to the resulting inverted ER profile. A single lake water electrical conductivity 

measurement was recorded in each lake with a YSI-3000 T-L-C meter. This single 

measurement is a reasonable representation of an average lake water column resistivity due 

to strong winds mixing the lake water and a very low groundwater seepage rate [Ong, 

2010]. At the time of recording, the lakes fit the physical characteristics of well-mixed 

lakes, which were assumed would require only one lake water conductivity sample. In the 

inversion, water ER was not constrained or set to a constant value to allow for salinity 

variations imposed by groundwater-lake water exchanges evident in the recorded 

temperature and raw ER data. 

Detectable but subtle changes in lake water temperature across the lakes were found 

in spite of strong winds and shallow water depths (Figure 2.5).  Both Wilson and Gimlet 

Lakes were surveyed in a single day and less than 4 hours each. Unlike salinity, temperature 

distribution is more variable, especially laterally as was found in similar lakes 

[Tcherepanov et al., 2005]. Wilson and Gimlet Lake temperature patterns show 0.5-1.0°C 

decreases in surface water temperature towards the northeast and southeast, respectively. 

Alkali Lake surveys were collected over three mornings to exploit calmer lake conditions. 

Variability in air temperature on these three days dominates the lake water temperature 

patterns recorded in Alkali Lake and cannot be used to interpret lake-groundwater  
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Figure 2.5.  Recorded lake water temperatures 
during CRP data collection in a) 
Wilson Lake, b) Alkali Lake, and c) 
Gimlet Lake linearly interpolated 
between survey lines (grey). Stars 
mark the origin for the individual 
profiles in Figures 2.2-2.4.   
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interactions (Figure 2.5b). Since ER is also a function of temperature, measured ER values 

were corrected to 20°C based on the geo-referenced lake water temperature measurements 

using [Keller and Frischknect, 1966]: 

 
ρ0 = ρT [1+α(T-T0)] (2.1) 

where ρT is the ER at ambient temperature T [°C], ρ0 is the ER at a reference temperature 

T0, and α describes how ER changes with temperature and ranges between 0.017-0.023 

[°C-1] [Revil et al., 1998; Hayashi, 2004; Hayley et al., 2007]. A conservative estimate for 

sand and clay mixtures is α=0.018°C-1 [Hayley et al., 2007]. For the profiles, larger α values 

increase the contrast between the high and low ER values in the CRP data; high ER areas 

correspond to higher temperatures and low ER areas occur where lower lake water 

temperatures were recorded. Reasonable values of α applied to the ER data result in a 

maximum amplitude error of 3 Ωm for all recorded ER values. Vertical thermal variations 

were not used to adjust ER values because subsurface temperatures were not recorded. 

Thus, the temperature correction was applied uniformly to vertical ER data slices based on 

the lake water temperature recorded by the sonar transducer.  

Since the lakes were very shallow, sonar data were sparse and did not provide 

adequate resolution to be used for water resistivity corrections. These sparse data and 

erroneous depth readings led to prominent artifacts in the inversions when constraining 

water resistivity values. Although assigning lake water depth and a water resistivity value 

may improve the ER model resolution and more accurately describe the true resistivity 

distribution below the sediment-water interface [Day-Lewis et al., 2006], unconstrained 

inversions can still adequately describe water column resistivity changes and yield similar 

resistivity results to the constrained inversion [Amidu and Dunbar, 2008]. 
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Assigning the depth of the transition zone between fresher groundwater and saltier 

lake water requires the application of a petrophysical model to distinguish between ER 

signals from porewater chemistry and sediment conductivity. Porewater resistivity values 

can be calculated with Archie’s Law [Archie, 1942], which describes the relationship 

between bulk and fluid resistivity and sediment porosity:  

 
F = ρb/ ρf = α n-q S-κ (2.2) 

where the formation factor (F) is the ratio of the bulk resistivity (ρb) to the fluid resistivity 

(ρf ) and is related to the effective electrical tortuosity (α), porosity (n), a cementation factor 

(q), fluid saturation (S), and a saturation factor (κ).  Local lakebed sediment have an 

estimated n=0.3 [Zlotnik et al., 2010]. Sediment under the lakes are assumed to be saturated 

(S=1). In general α≈1 [Ewing and Hunt, 2006], especially if the pores are electrically well-

connected as expected for n=0.3 in unconsolidated material with conductive porewater. 

Without experimental data, q remains a fitting parameter for assigning an appropriate 

petrophysical model. For unconsolidated sediment q≈2 [Ewing and Hunt, 2006], and the 

ER data are interpreted considering a range of q from 1.8-2.2. With these parameters, 

F=8.7-14.1. Inherent to these parameter estimations is an assumption that they represent 

the characteristic properties of the subsurface, integrating and averaging the effects of any 

heterogeneity in the subsurface. 

2.4. RESULTS AND DISCUSSION 

2.4.1. Wilson Lake 

 Eight straight segments of 2D CRP profiles with total a length of 2.7 km were 

extracted from 3.0 km of raw data collected at Wilson Lake (Figures 2.5 and 2.6c). Mean 

water depth was 0.7 m and did not exceed 1.0 m, while the adjusted lake water ER was 
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1.35 Ωm, collected off the northeastern shore. The ER depth of investigation extends at 

least 7 m into the lakebed sediments, but resolution decreases with depth (Figure 2.2b). An 

overview of lake properties during the survey period and CRP results is given in Table 2.2.  

Based on the measured Wilson Lake water ER, the expected ρb for materials 

containing only lake water is between 11.8-19.0 Ωm. Applying Archie’s Law to the Wilson 

Lake ER results, values greater than ~15 Ωm describe pore fluids that are fresher than the 

measured lake water. Resistivity values above this threshold are observed mainly in the 

southwest portion of Wilson Lake with resistivities below 15 Ωm towards the northeast. 

The resistivity values > 15 Ωm occur from 3 m below the water level in the southwest, and 

this transition zone becomes gradually deeper towards the middle of the lake (Figures 2.2c 

and 2.6c). These values extend 250-350 m into the lake from the southwest shore before 

the bulk sediments become more conductive (Figures 2.2c and 2.7a). 

TDS is inversely related to ER, and the TDS of the groundwater in the NSH in 

general is much lower than that of lake water. The lower ER values correspond to areas 

with higher TDS and indicate the lake water as its source, while higher ER and the lower 

TDS indicate the deeper, fresh groundwater as a source. As a broad, shallow (<0.5 m) lake 

under normal conditions, groundwater flowing into Wilson Lake would evaporate and 

concentrate ions in the lake water, increasing the salinity and lowering the ER of the 

original groundwater discharged into the lake over time. The more saline lake water is 

driven by advection into the subsurface and mixes with fresher groundwater following 

theoretical models by Townley and Trefry [2000] and Zlotnik et al. [2009]. This lake clearly 

indicates a transition that separates a lakebed section with upward fluxes from a zone that 

releases solutes back to the aquifer; this is often called a “hinge” line (see Figure 1 in Ong 

et al. [2010] for illustration of the conceptual flow model). The transition from high to low  
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Figure 2.6. ER profiles within Wilson Lake and Alkali Lake image patterns of fresh 
groundwater and saline lake water fluxes around and beneath the lakes: a) 
groundwater flow directions interpreted using EM and ER surveys around 
the lakes and CRP results, modified after Ong et al. [2010] (note units for 
apparent electrical conductivity); b) increasing resistivity with depth in 
Alkali Lake (0.3-1.0 m lake depth; 0.5 m mean) is an indicator of a 
groundwater discharge lake;  c) transition from higher ER values at the 
southwest area to significantly lower ER values at the northeast subsurface 
of Wilson Lake (0.4-1.0 m lake depth; 0.7 m mean), indicating the inflow of 
fresh groundwater below the lake in the southwest and outflow of saltier 
lake water to the aquifer in the north. Note exaggeration of vertical scales.  
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resistivity values from the southwest to northeast of Wilson Lake indicates fresher 

groundwater below the lake changes to more conductive groundwater, interpreted as lake 

water that recharged the aquifer, with a hinge line trending roughly southeast-northwest. 

The CRP lake water temperature data (Figure 2.5) also show a similar pattern that becomes 

cooler towards the northeast, where groundwater is ~10°C and the air temperature during 

surveying was 5-8°C. These transitional ER and temperature patterns verify the flow-

through groundwater regime of Wilson Lake and give an indication of local groundwater 

flow. The fresher groundwater seeps upward from the underlying aquifer into the 

southwestern third of Wilson Lake. Groundwater underneath the lake becomes more saline 

towards the middle of the lake as the saltier lake water infiltrates and mixes with the fresh 

groundwater. Eventually, further towards the northeast shore, the CRP lines suggest saline 

lake water is recharging into the lakebed and flowing into the aquifer. Note that the Wilson 

lakebed is very sandy [Ong and Zlotnik, 2011].  For the transition of ER to be dominated 

by sediments, over 7 m of gyttja would be required in the northeast portion of Wilson Lake 

that quickly transitions quickly to < 1 m along the southeast shoreline. 

These observations of lake-groundwater interactions extend similar results from 

previous land-based electromagnetic (EM) surveys along the shoreline and ER surveys at 

the northeast shore of Wilson Lake (Figure 2.5a here and Figure 5 in Ong et al. [2010]). 

With the CRP data, the signature of the groundwater flow under the lake demonstrates the 

groundwater-surface water mixing zones both laterally and with depth (Figure 2.7). The 

interpreted northeast-trending groundwater flow is inconsistent with the southeast-trending 

regional hydraulic gradient (Figure 2.1), suggesting a local hydraulic gradient set by lake-

lake or lake-groundwater interactions. Around the southern shoreline, high ER values 

persist further north than in the center of the lake, where local recharge from nearby dunes 

may sustain shallow flow paths that are directed opposite the regional flow. Evaporative  
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Figure 2.7.  ER depth sections for a) Wilson Lake, b) Alkali Lake, and c) Gimlet Lake 
taken at depths of 1 m, 3 m, 5 m, and 7 m below the air-water interface. ER 
values between transects were linearly interpolated to create the depth 
section. Three-dimensional inversion of CRP data requires much closer 
spacing of survey lines but yields a more accurate estimate of the ER 
structure than interpolating between 2D sections. The grey CRP survey 
tracks represent the highest confidence in the depth section estimates. 
Beyond the survey tracks, the depth section accuracy decreases, especially 
in areas not bounded by a survey line (e.g. northern edge of Gimlet Lake 
depth sections). These depth sections provide insight into the subsurface 3D 
ER structure, but a much denser network of CRP surveys would be required 
to fully capture the true ER structure under the lakes. Stars mark the origin 
for the individual profiles in Figures 2.2-2.4. 
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Table 2.2. Overview of lake properties and CRP data. 

Lake water properties Wilson Lake Alkali Lake Gimlet Lake 
Surface area1 [ha] 19.2 50.3 24.5 
Flow classification2 through discharge through 
Temperature [°C] 9.6 7.5 14.2 
Electrical conductivity [mS/cm] 6 30 0.62 
Electrical resistivity [Ωm] 1.67 0.33 16.26 
Temperature corrected ER [Ωm] 1.35 0.26 14.56 
ER range in subsurface [Ωm] 11.8-19.0 2.3-3.7 78.1-119 
        
CRP data       
CRP length (total) [km] 2.7 (3.0) 5.3 (9.0) 2.6 (2.8) 
Lake depth range [m] 0.3-1.0 0.3-1.0 0.5-1.7 
Lake depth mean [m] 0.7 0.5 0.9 
Temperature range [°C] 9.7-11.3 8.2-11.6 13.0-14.4 
Temperature mean [°C] 10.2 9.7 13.3 
CRP ER range[Ωm] 1.5-567 0.2-29.2 9.2-334.7 
CRP ER mean [Ωm] 6.5 4.1 67.8 

1after Ong et al. [2010] 
2following classification by Born et al. [1979] 
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losses from neighboring Alkali Lake may sustain a sufficient local gradient to overprint 

the regional flow system. This is discussed further with additional evidence from Alkali 

Lake CRP data in Section 2.4.2. 

ER data cannot give estimates of seepage rates, but these data can guide the 

installation of seepage meters to capture the distribution of groundwater fluxes across the 

lake [Toran et al., 2010]. To my knowledge, this is the first example of using ER for 

classifying a shallow groundwater-fed lake in a semi-arid environment. 

2.4.2. Alkali Lake 

Survey data with a total length of 5.3 km comprising thirteen 2D CRP sections were 

selected and processed from 9.0 km of raw data from Alkali Lake (Figures 2.3 and 6b, 

Table 2.2). Water depth ranged from 0.3 to 1.0 m with a mean of 0.5 m. Lake water ER 

was 0.26 Ωm. The lowest ER values of the three lakes were observed in Alkali Lake 

profiles (0.2-29.2 Ωm) and reached the resistivity of sea water (0.2 Ωm). At depths > 4 m, 

the ER profiles mostly show ER values above 4 Ωm, where any value over 2.3-3.7 Ωm 

suggests a groundwater component for the pore fluids. This supports the model by Zlotnik 

et al. [2010] where the deeper, fresher groundwater flows upwards throughout most of the 

lakebed, resulting in vertically increasing solute concentration towards the lake surface. 

The majority of Alkali Lake CRP data show a spatially uniform increase in ER with depth 

(Figure 2.7b). This may mean the saline and denser lake water has not initiated free 

convection at a resolution that CRP can capture, which is likely prevented and counteracted 

by the upward flowing fresher groundwater [Ong and Zlotnik, 2011]. Also, the wet months 

and greater fluxes of fresh groundwater into the lake preceding the survey allowed boat 

navigation but diluted the lake water. These combined freshening effects would further 
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lower the potential for free convection that may exist during long term average climate 

conditions. 

Thus, the ER data suggest Alkali Lake is predominantly a groundwater discharge 

lake which is consistent with observations of upward seepage at five more or less evenly 

spaced areas along the banks of the lake (see Figure 2 in Ong and Zlotnik [2011]). In a 

small area towards the northeast corner of Alkali Lake, low ER values occur at depth. This 

area, where Ong et al. [2010] observed high electrical conductivity along the shore, 

suggests a small zone where saline water from Alkali Lake may seep into the lakebed and 

sink. However, seepage fluxes (or head gradients) have not been quantified where there is 

evidence for saline discharge from Alkali Lake, so downward fluxes due to density 

gradients or very local hydraulic gradients causing outflow or inflow of lake water cannot 

be ruled out completely. Finer lakebed sediments could explain low ER values at depth, 

but this portion of Alkali Lake contains sandy material at least along the shore to depths of 

1 m [Ong and Zlotnik, 2011] and deeper as shown by lakebed coring [Ong, 2010].  

Therefore, the high salinity of the lake water suggests the ER values are more likely related 

to porewater chemistry and not due to more electrically conductive fine-grained sediment. 

Moreover, ER transects near this zone but further away from the bank show a conductive 

area which may be part of the groundwater plume sourced from the lake (see Figure 5b in 

Ong et al. [2010]). 

In the southwest corner of Alkali Lake, CRP transects show another area of low ER 

values (< 5 Ωm) that persists beyond depths > 5 m. These values correspond to ER values 

from the northeastern portion of Wilson Lake that were interpreted as saline water 

recharging the lakebed and aquifer (Figure 2.7). Together, these similar ER values may 

outline a series of groundwater flowpaths starting from Wilson Lake and then discharging 

salty groundwater into Alkali Lake, 640 m away. In order for groundwater to flow from 
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Wilson Lake to Alkali Lake, a northeast trending hydraulic gradient is required; however, 

the regional gradient is east to southeast. Therefore, local dune topography and significant 

evaporative flux from Alkali Lake appear to create a sufficient hydraulic gradient to 

maintain flow nearly perpendicular to the regional gradient. 

Local hydraulic gradients towards discharge lakes may allow for significant solute 

fluxes that could intensify lake salinization. Thus, the low ER pocket in the northeast of 

Alkali Lake may also arise from saline groundwater inputs recharged by lakes 200-400 m 

to the northeast, and saline groundwater was previously found up-gradient from Alkali 

Lake in this area [Ong et al., 2010]. However, a deficit of solutes is observed for Alkali 

Lake when considering advective and diffusive fluxes over the past 700 years [Zlotnik et 

al., 2010; Zlotnik et al., 2012]. Saline groundwater discharge into Alkali Lake would 

require additional solute losses, most likely  from eolian deflation, reduced solute influxes 

in the Holocene, and free convection [Zlotnik et al., 2010]. 

2.4.3. Gimlet Lake 

Six 2D CRP profiles with total length 2.6 km were extracted from 2.8 km of raw 

data in Gimlet Lake (Figure 2.8 and Table 2.2). Lake water depth varied between 0.5 and 

1.7 m with a mean of 0.9 m. The lake water ER was 14.56 Ωm. The profile resistivity range 

was 8.8-261.1 Ωm, but most values exceeded 30 Ωm for the majority of the profiles. Across 

the lake, ER values remain generally between 30-80 Ωm, where the range for sediment 

saturated with only lake water is 127-206 Ωm using the values discussed above. However, 

since Gimlet Lake is a groundwater-fed lake, a freshening of the lake water relative to the 

already fresh groundwater would require significant precipitation. Thus, the lower ER 

values from the CRP transects may describe a lake freshening due to heavy precipitation 

or the parameters used in the calculation of Archie’s Law may not capture the subsurface   
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Figure 2.8. ER profiles for freshwater Gimlet Lake: a) EM observations taken along the 
lake shore show a decrease in conductivity to the southeast (modified after 
Ong et al. [2010]), b) ER profiles under Gimlet Lake with 0.5-1.7 m lake 
depth; 0.9 m mean (note larger ER range in legend compared to Figure 2.6). 
Very resistive areas may represent locations of fresh groundwater seepage 
into the lake but are likely composed of more resistive sediment as well. 
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properties for all three lakes. Since Gimlet lake is 15 km southeast of Wilson and Alkali 

Lakes and is located within the hypothesized paleo-valley (Figure 2.1), the same Archie 

parameters likely do not apply, related to the potential for fluvial depositional processes 

changing sediment type and packing. Instead, n=0.35 and q=1.6-2.0 are used, giving an ER 

range for lake water saturated sediment of 78.1-119 Ωm. With these values, the majority 

of subsurface material beneath Gimlet Lake may be saturated with lake water. However, 

the groundwater ER is likely within the same ER range and indistinguishable from lake 

water, or lake water has not evolved significantly from its groundwater source. For salinity 

to remain similar to groundwater, lake water must be flushed quickly through Gimlet Lake 

because it experiences a similar evaporative potential as Alkali Lake, albeit Gimlet Lake is 

on average twice as deep. 

Despite the similarly and relatively fresh lake water and groundwater in Gimlet 

Lake, ER still varied spatially. Near the surface of the lakebed, high ER (50-150 Ωm, 320-

460 m in Figure 2.4c) values transition to lower values (<50 Ωm) that may describe fresh 

groundwater fluxes into the lake in the northwest and a hinge line with slightly more 

conductive water recharging the aquifer in the southeast (Figure 2.7c). This is consistent 

with EM and ER observations taken along the shore (see Figure 6 in Ong et al. [2010]). 

Available airborne EM data also show high ER values in the shallow subsurface on the 

western side of the lake, but this quickly transitions to lower values to the east, halfway 

through the lake [Smith et al., 2010]. The high ER (> 80 Ωm) pockets in the center of the 

lake at both shallow (1 m) and deeper (7 m) ER depth slices may mark discrete fresh 

groundwater springs and/or an area comprised of more resistive matrix materials (Figure 

2.7c). A 26-m deep, flowing piezometer discharging fresh water on the northwest corner 

of the lake had a hydraulic head of 1.4 m above the lake level (Figure 2.8a), which supports 

the existence of upward flow and the possibility for diffuse or discrete groundwater 
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discharge into the lake. Although lower resistivities persist in the northeast and southeast 

portions of the lake, they never reach the low ER values found in Wilson and Alkali Lakes. 

Lake perimeter EM and ER data reveal low ER values along the southeastern shore of 

Gimlet Lake but not to the northeast (Figure 2.8a) [Ong et al., 2010].  

Gimlet Lake is likely embedded within the eastern branch of the Pleistocene-aged, 

southeastward trending Blue Creek paleo-valley [Loope et al., 1995]. Therefore, discharge 

of water from the lake interpreted from low ER values underneath Gimlet Lake may be 

controlled by the regional hydraulic gradient towards the permeable fluvial deposits in the 

paleo-valley (Figure 2.1). Even so, the CRP results suggest Gimlet Lake is dominated by 

fresh groundwater inputs and intensively flushed, preventing the buildup of solutes in the 

lakebed and underlying deeper sediments that decreases ER, unlike in the other two lakes. 

2.5. SUMMARY AND CONCLUSION 

This study reveals the ability to determine and classify the groundwater flow 

regimes within and beneath groundwater-dominated lakes in the Nebraska Sand Hills by 

exploiting differences between solute concentrations of groundwater and surface water. 

Additionally, CRP surveys mapped 3D variations in ER of lakebed materials saturated with 

waters of contrasting salinity. This study complements and corroborates results from other 

studies which have not been able to show the three-dimensional character of groundwater-

lake interactions directly underneath the lakes. In Wilson Lake, a clear transition from high 

to low bulk ER in the lakebed suggests a flow-through system where fresh groundwater 

enters the lake from the southwest, and more saline lake water infiltrates into the lakebed 

and recharges the aquifer in the lake’s northeast portion. A kilometer away, the resistivity 

distribution beneath Alkali Lake shows a systematic and prevalent increase in ER with 

depth. This leads to the interpretation that fresh groundwater entering the lake from beneath 
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is trapped in the lake; evaporation results in the accumulation of solutes in the lake and 

lakebed. More conductive profiles in the northeast corner of Alkali Lake may suggest a 

zone of local downward vertical flux of low resistivity water. Nonetheless, Alkali Lake is 

mainly a groundwater discharge lake with a possible small groundwater recharge area in 

the northeast. The apparent flow pattern of groundwater under Wilson Lake towards Alkali 

Lake and similar ER values under the neighboring portions of each lake elucidated a 

hydraulic connection between them, where the flow direction is perpendicular to the 

regional hydraulic gradient. ER profiles in Gimlet Lake show much fresher groundwater 

underlying the lakebed than in the two other lakes. A stronger flushing capacity of the flow-

through Gimlet Lake explains the weak solute accumulation in contrast to that observed in 

Wilson and Alkali Lakes. The lakebed ER pattern indicates fresh inputs both from the east 

and west with outflow most likely towards the southeast where the shallow subsurface 

becomes less resistive. The surveys also show the possibility of freshwater springs. A 

flowing well on the northwest shore of Gimlet Lake suggests favorable hydrogeologic 

conditions for spring activity under the lake. In general, the surveys provide the spatial 

distribution of flux direction across the lake-aquifer interface. 

Among various applications of waterborne ER surveys, this study is the first to 

apply ER for classification of shallow, groundwater-fed lakes in a semi-arid environment. 

These lakes are widespread in semi-arid to arid areas on several continents. Such surveys 

can rapidly provide critical information regarding the pattern of groundwater flow under 

lakes; these noninvasive surveys can be performed in a short amount of time even in 

environments where direct instrumentation of the lakebed is difficult or impossible. 
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Chapter 3: 
 

Heat transport dynamics at a sandy intertidal zone2 

The shore has a dual nature, changing with the swing of the tides, belonging now 
to the land, now to the sea. On the ebb tide it knows the harsh extremes of the 
land world, being exposed to heat and cold, to wind, to rain and drying sun. On 
the flood tide it is a water world, returning briefly to the relative stability of the 
open sea. 

-from “The Marginal World” in The Edge of the Sea 
 by Rachel Carson [1955] 

ABSTRACT 
Intertidal zones are spatially complex and temporally dynamic environments. Coastal 

groundwater discharge, including submarine groundwater discharge, may provide 

stabilizing conditions for intertidal zone permeable sediments. In this study, I integrated 

detailed time series temperature observations, porewater pressure measurements, and 

two-dimensional electrical resistivity tomography profiles to understand the coupled 

hydraulic-thermal regime of a tropical sandy intertidal zone in a fringing coral reef 

lagoon (Rarotonga, Cook Islands). I found three heating patterns across the 15 m study 

transect over tidal and diel periods: (1) a highly variable thermal regime dominated by 

swash infiltration and changes in saturation state in the upper foreshore with net heat 

import into the sediment, (2) a groundwater-supported underground stable, cool region 

just seaward of the intertidal slope break also importing heat into the subsurface, and (3) 

a zone of seawater recirculation that sustained consistently warm subsurface temperatures 

that exported heat across the sediment-water interface. Simple calculations suggested 

thermal conduction as the main heat transport mechanism for the shallow intertidal 

sediment, but deeper and/or multi-dimensional groundwater flow was required to explain 

                                                 
2 Befus, K. M., M. B. Cardenas, D. V. Erler, I. R. Santos, and B. D. Eyre (2013), Heat transport dynamics 
at a sandy intertidal zone, Water Resour. Res., 49, 1-17, doi: 10.1002/wrcr.20325. 
 
Befus and Cardenas collected the field data with the assistance of Erler and Santos. Erler and Eyre funded 
the field expedition. Befus analyzed the data and prepared the manuscript under the supervision and 
guidance of the co-authors. 
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temperature patterns beyond 20 cm depth. Temperature differences between the distinct 

hydrodynamic zones of the foreshore site resulted in significant thermal gradients that 

persisted beyond tidal and diel periods. The thermal buffering of intertidal zones by 

coastal groundwater systems, both at surface seeps and in the shallow subsurface, can be 

responsible for thermal refugia for some coastal organisms and hotspots for 

biogeochemical reactions. This chapter arose through collaborative work and has been 

published [Befus et al., 2013]. 

3.1. INTRODUCTION AND BACKGROUND 

Intertidal zones represent the interface over which physical, chemical, and 

biological processes of terrestrial and marine systems interact. Together, these systems 

support dynamic mass and energy transfers, intimately tied to the competition of terrestrial 

surface and groundwater forcing versus tidal and wave processes. Heat transport dynamics 

within intertidal sediment specifically contribute to ecosystem stability and sustainability 

by moderating thermal regimes [Dale and Miller, 2007] and biogeochemical activity 

[Jickells, 1998]. 

Coastal geology and morphology interact with marine forcings that control the 

physical and hydrologic properties of an intertidal zone. Broad coastal shelves and 

sediment-mantled coastlines dissipate wave energy, leading to gently sloping foreshores 

with fine-grained sediment [Wright and Short, 1984]. Reflective coastlines are steeper and 

more likely to be rocky than dissipative or intermediate conditions [Wright and Short, 

1984; McLachlan and Turner, 1994;]. As coastlines evolve through erosive (e.g. storms) 

or depositional (e.g. river or current sediment delivery) events, the intertidal zone exists in 

a transient state controlled by timescales on the order of seconds (e.g. waves) to millennia 

(e.g. eustatic sea level change). In turn, the coastal topography and geologic framework 

determine the hydrologic properties and hydrodynamic boundary conditions controlling 
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interactions between terrestrial groundwater and the marine system [McLachlan and 

Turner, 1994; Robinson et al., 2006]. 

Terrestrial groundwater systems may serve as both sources and sinks of mass and 

energy in intertidal zones. Coastal groundwater generally flows towards the sea but may 

be diverted by geologic heterogeneity, discharge into rivers, lakes, or marshes, and affected 

by human exploits. Even under these circumstances, terrestrially-sourced groundwater 

discharges beyond the shore in a multitude of coastal conditions worldwide and has led to 

the active study of submarine groundwater discharge (SGD) [Burnett et al., 2003; Santos 

et al., 2012c]. Intertidal groundwater flow is a component of SGD, occurring in a domain 

of transient and dynamic mixing of marine and terrestrial waters that has been described 

and referred to as a subterranean estuary (STE) [Moore, 1999]. Intertidal porewater flow 

is induced both by tidal and wave action as well as by terrestrial hydraulic head gradients, 

creating a dynamic, spatially heterogeneous flow system [McLachlan and Turner, 1994; 

Robinson et al., 2006; Robinson et al., 2007a; Maji and Smith, 2009; Xin et al., 2010]. 

While STE mixing occurs across a broad range of scales [Bratton, 2010], the intertidal 

zone acts as both a transient upper boundary condition and outlet for the shallowest 

expression of the STE, producing dynamic environmental conditions in the foreshore 

forced by terrestrial and marine processes. 

Intertidal zones are ideal for studying how aquatic communities and processes 

respond to chemical and thermal variability, orchestrated in part by intertidal 

hydrodynamics. Abundant intertidal biological communities have evolved to survive the 

transition between aquatic and subaerial existence dictated by tides and waves [McLachlan, 

1983]. Groundwater seeps in the intertidal and subtidal ecosystems add both benefits and 

challenges for these communities. Salinity changes occur both spatially and temporally, 

creating osmotic gradients that may stress organisms [Miller and Ullman, 2004; Mitbavkar 
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and Anil, 2005; Dale and Miller, 2008]. Groundwater seeps in the foreshore may also 

support species that prefer lower salinities [Zipperle and Reise, 2005; Dale and Miller, 

2008]. Additionally, nutrient-enriched terrestrial groundwater may reach some intertidal 

and littoral zones and support large communities of specific nearshore organisms [Ullman 

et al., 2003; Miller and Ullman, 2004; Zipperle and Reise, 2005; Waska and Kim, 2010], 

sustain significant microbial decomposition of organic matter [Jickells, 1998], and feed 

microbial mats that change the flow conditions in intertidal sediment and alter the chemical 

environment [Decho, 2000]. Where groundwater inputs are minimal or heterogeneous, 

steep chemical gradients may develop as microbial communities consume available 

organic matter through various oxidation-reduction reactions [Fenchel and Riedl, 1970; 

Jickells, 1998; Windom and Niencheski, 2003; Anschutz et al., 2009]. Finally, groundwater 

seeps may thus provide more stable temperature envelopes for thermally sensitive 

organisms and influence community dynamics [Miller and Ullman, 2004; Dale and Miller, 

2007; Morelissen and Harley, 2007]. In turn, the organisms can alter and shape the 

hydrodynamics and thermal regimes of the foreshore environment [Piccolo et al., 1993; 

Dale and Miller, 2008]. Spatial and temporal differences of intertidal biota behavior and 

activity over short spatial and timescales created by intertidal dynamics offer insight into 

how communities may respond to future climate-related biological stresses or ecosystem 

shifts [Sanford, 1999; Helmuth and Hofmann, 2001; Harley and Helmuth, 2003]. 

Previous studies of intertidal zone porewater temperature dynamics capture tidal, 

diel, and seasonal cyclicity as well as spatial and temporal variability across multiple scales 

[Leland and Hummon, 1971; Wilson, 1983; Harrison and Morrison, 1993; Smith, 2002; 

Dale, 2006; Birt and Tibbetts, 2007; Dale and Miller, 2007; Vandenbohede and Lebbe, 

2011; Ricklefs and Vanselow, 2012]. In a beach without active fresh groundwater seeps, 

shallow (10 cm) temperatures are buffered by infiltrated seawater from the swash zone and 
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experience diel solar radiation fluctuations that decay quickly with depth in the sediment 

[Wilson, 1983; Harrison and Phizacklea, 1987; Piccolo et al., 1993; Cho et al., 2005; 

Ricklefs and Vanselow, 2012]. Mixing groundwater and surface water in the foreshore 

create decimeter scale heterogeneity in flow conditions and temperature patterns and may 

follow local hydraulic conductivity patterns [Dale, 2006; Dale and Miller, 2007]. Broader 

thermal regime shifts may be imposed by seasonal groundwater and marine temperature 

changes that affect entire coastal aquifers [Vandenbohede and Lebbe, 2011]. In turn, 

intertidal temperature gradients can induce density-driven convection and alter fluid flow 

dynamics on short timescales [Rocha, 2000]. In this study, I advance the understanding of 

coupled hydrodynamic and thermal regimes in the interstitial intertidal zone with detailed 

spatial and temporal hydraulic and temperature measurements. 

I focus on temperature dynamics in a sandy tidal flat, where groundwater flow 

influences the thermal regime. Extreme temperature fluctuations in rocky intertidal areas 

have been shown to affect organism activity, competition, and mortality [Sanford, 1999; 

Helmuth and Hofmann, 2001; Morelissen and Harley, 2007]. More moderate temperature 

fluctuations occur in sandy intertidal zones where perched tidal pools are rare, but these 

sand communities may still be stressed or otherwise influenced by changes in the thermal 

regime [Grant, 1986; Miller and Ullman, 2004; Dale, 2006;]. Heat dynamics in sandy 

intertidal zones also influence local biogeochemical activity, where temperature increases 

in intertidal porewater have been shown to accelerate microbial degradation of organic 

matter through multiple redox reactions [Grant, 1986; Al-Raei et al., 2009; Sanz-Lázaro et 

al., 2011]. I investigate the heat transport dynamics of a sandy intertidal zone to determine 

the potential effect of groundwater-seawater mixing on energy availability to intertidal 

biogeochemical and biological processes. I hypothesize that the hydrodynamics of the STE 

control the intertidal zone thermal regime and regulate its thermal budget. Next, I 
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hypothesize tidal fluctuations impose the dominant transience of intertidal zone STE 

temperatures by controlling both the thermal and hydrologic boundary conditions. 

Additionally, I hypothesize that the terrestrial groundwater buffers the diel solar radiation 

effects and semi-diel tidally-induced subsurface temperatures. I synthesize detailed 

temperature time series, water level measurements, and electrical resistivity (ER) 

tomography results to elucidate the complex thermal regime within an intertidal sandflat 

on Rarotonga, Cook Islands. I find that surface temperature signals penetrate to different 

depths related to groundwater-surface water interactions and heat conduction along a 15 m 

shore-perpendicular profile, instrumented with 52 temperature sensors (thermistors). 

Upward and seaward groundwater flow in the intertidal STE reveal a predominance of 

terrestrial gradients in this intertidal zone that are reflected in a high resistivity ‘tube’ where 

cooler and more stable temperatures were recorded.  

3.2. STUDY SITE AND METHODS 

3.2.1. Study site 

Rarotonga (21.2°S 159.8°W) is a high volcanic island 1450 km east of the Tonga 

Trench in the south-central Pacific Ocean with a well-developed fringing reef (Figure 3.1) 

[Hein et al., 2004]. Rugged mountains cover the majority of Rarotonga’s 67 km2 area, but 

volcaniclastic and coastal sediment surround the volcanic interior, providing a 0.3-1.2 km 

wide strip of developable land for the 13,000 inhabitants [Wood and Hay, 1970]. Two 

seasons define the tropical island: wet summers with potential cyclone activity (October to 

April) and drier winters (May to September). The highest temperatures are expected 

between January and February, and the mean annual temperature is ~24°C [Hein et al., 

2004]. Annual rainfall averages 2100 mm. There are only two perennial streams that 

originate in the island interior that reach the coast, but many smaller ephemeral streams 
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drain the peripheral slopes [Waterhouse et al., 1986; Hein et al., 2004]. Wetlands lie 

between the alluvium and storm-related beach-ridge deposits, and most of the smaller 

streams discharge into these wetlands, not reaching the coast via surface pathways [Hein 

et al., 2004; Waterhouse et al., 1986]. Anecdotally reported shoreline and underwater reef-

crest springs are postulated to be related to groundwater recharge in the high elevation 

alluvial terraces, coastal marshes, and fracture networks in the volcanic rocks [Waterhouse 

et al., 1986]. Rarotonga tides are microtidal, ranging 0.8 m during spring conditions and 

0.4 m during neap conditions [Waterhouse et al., 1986]. 

The study site is located adjacent to Parengaru Stream in Muri on the southeast 

corner of Rarotonga. Parengaru Stream is a first-order stream that has formed a deltaic 

sandflat (~1700 m2) and is tidally-affected until crossing the main road, about 100 m 

onshore of the high tide mark (Figure 3.1b). At Muri, a broad reef lagoon is protected by a 

reef crest ~700 m from the main shoreline. Significant SGD occurs in the lagoon and is 

estimated to range from 0.2-1.9 cm day-1 [Tait et al., 2013]. The permeable coastal 

sediment at the study site consists of predominantly bioclastic, calcareous sand over 3 m 

thick with sporadic lenses of coarser reef and shell detritus related to storm events [Leslie, 

1980]. Nearby beaches in Muri have exposed or slightly buried (< 0.5 m) beach rock but 

was not encountered near Parengaru Stream. 

3.2.2. Data collection and analysis 

In February 2011, I installed a 15 m-long shore-perpendicular transect of 

piezometers beginning at the highest obvious expression of the swash zone (Figure 3.1c-

d). Thirteen piezometers (T1-T13) were constructed from 2.5 cm diameter, 2 mm thick 

steel tubing and installed 50 cm into the intertidal sandflat. The piezometers were screened 

from 40-50 cm below the sediment-water interface (SWI) to allow water into the   
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Figure 3.1. Location and study site map. a) Rarotonga is located in the southern Cook 
Islands. b) The study site was located on an intertidal sandflat created by 
Parengaru Stream. c) Map view and d) profile view of the piezometer 
transect, consisting of piezometers with conductivity, temperature, and 
depth (CTD) sensors (P) and temperature sensor arrays (T).  
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piezometer to dampen the effect of air temperature fluctuations and approximate the 

thermal properties of the saturated, porous sediment. The first ten piezometers, starting 

from the land, were spaced 1 m apart, and the final three in the sandflat were spaced 2 m 

apart. Within each piezometer, I inserted four thermistors attached to a steel rod for careful 

placement at 0 cm (i.e. intertidal sediment surface), 5 cm, 10 cm, and 20 cm below the 

surface. Each thermistor was thermally isolated from the internal steel rod by electrical 

tape. No effort was made to isolate individual thermistors within the vertical arrays (e.g. 

packers were not used).  The implications of the piezometer design on the results are 

explored in the discussion section. Using this configuration, I deployed a total of 52 HOBO 

TMC20-HD thermistors attached to HOBO U12 four-channel data loggers, which have a 

measurement accuracy of ± 0.25°C and resolution of 0.03°C.  

Five additional piezometers (P1-P5) were installed along and beyond the thermistor 

piezometers for measuring interstitial hydraulic heads, ranging from 4 m landward of the 

first thermistor piezometer and 15 m seaward of the last thermistor piezometer. Five In-

Situ Inc. vented Aqua Troll 200 conductivity, temperature, and depth (CTD) probes were 

installed in these piezometers and recorded water level (< 1 cm accuracy and < 5 mm 

resolution) and temperature (± 0.1°C accuracy and 0.01°C resolution). One additional 

Aqua Troll 200 was secured at the base of the most seaward thermistor piezometer to record 

tide level and temperature at the sediment surface. Two In-Situ Inc. MiniTroll Pro pressure 

sensors were installed at thermal endmember locations. One recorded water levels 300 m 

into the lagoon to measure lagoon water temperature and lagoon water level during low 

tides exposing the entire sandflat. The other was installed in a 3 m deep piezometer 100 m 

inland from the thermistor transect to measure groundwater temperature and level. 

Piezometer locations and casing elevations were measured with a Leica TCR407 total 

station, and sensor deployment depths were measured with a tape measure.  
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Temperature and water level data were recorded every 5 minutes over three days 

and five tidal cycles in February 2011 during the transition from neap to spring tides. Data 

measurement from the piezometers began two hours after installation to allow the sediment 

return to an undisturbed state. Piezometer casing diameter introduces <10 minutes of lag 

in the temperature signal for the piezometers used, where five minute recording interval 

will fully sample external temperature changes without under-sampling [Cardenas, 2010]. 

I performed time-lapse ER surveys to capture larger scale porewater mixing 

dynamics in the intertidal zone. In direct current ER methods, an electrical current is 

injected into the ground through metal stakes (electrodes), and the resulting electrical field 

is measured with a separate pair of electrodes [see Telford et al., 1990; Dimova et al., 

2012]. Both sediment and water electrical properties contribute to measured ER values. 

Shoreline groundwater salinity and discharge patterns have been inferred from subsurface 

ER patterns by multiple studies [Swarzenski et al., 2006; Swarzenski and Izbicki, 2009; 

Henderson et al., 2010; Nakada et al., 2011; Dimova et al., 2012].  

I conducted the ER surveys simultaneously with the temperature measurements on 

an 82.5 m-long transect running parallel to the thermistor transect, offset by 5 m. The ER 

cable consisted of 56 graphite electrodes spaced 1.5 m apart. The first eight electrodes were 

connected to stainless-steel stakes and driven 10-20 cm into the sediment. Electrodes 

within the intertidal zone were buried with seawater-saturated sand multiple times during 

the surveying. Subtidal electrodes were placed on the seafloor and secured with large rocks. 

The total station was used to locate each electrode and provide topographic information for 

data inversion. ER data were collected using an Advanced Geosciences, Inc. (AGI) 

SuperSting R8 multi-channel resistivity system. ER surveys using the Schlumberger array 

were recorded approximately every half hour during the final 24 hours of temperature 

measurements. Each ER dataset was inverted individually with AGI EarthImager2D using 
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a smooth model constraint [see Toran et al., 2010; Dimova et al., 2012]. Time-lapse 

inversion of these data was not possible with the available software while still including 

critical topographic and tide level data in the inversion. Water depths were assigned using 

the offshore pressure sensor to set the water level elevation. Water resistivity was 

constrained to be 0.21 Ωm, the mean recorded in the lagoon during the data collection. All 

time steps converged to models with < 10% root-mean-square error in four iterations. 

3.3. RESULTS 

3.3.1. Water level measurements 

Hydraulic heads decreased between piezometers in the seaward direction for the 

majority of the time series (Figure 3.2). The tide water level remained below all of the head 

elevations in the piezometers, except for a few measurements related to individual waves. 

Pressure data were recorded every 5 minutes with no real-time averaging, so the sensor 

measured instantaneous pressure waves in the piezometers created by the surface waves. 

P1 and P2 heads continued to decrease during low tide but quickly increased with incoming 

floods. P3 and P4 heads decreased slightly over low tides. Low tide hydraulic heads at P5 

began to decay slowly, and then, ~1.5 hrs after mean tide, the heads started to more closely 

follow the tide stage. Head data were obscured for P2 between 06:50-08:00 on 2/17 by 

pumping and for P2 and P3 between 11:20-14:40 on 2/17 by a push-pull tracer test in 

nearby boreholes that significantly affected the water levels in the piezometers (Figure 

3.2a).  

Based on the instantaneous head measurements (h) in the piezometers and of the 

tide water level, horizontal (qh) and vertical (qv) groundwater fluxes were calculated 

following Darcy’s Law: 
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Figure 3.2. a) Calculated hydraulic head time series, b) horizontal groundwater flux 
(qh), and c) vertical groundwater flux (qv). Positive qh and qv represent 
seaward and upward water fluxes, respectively. The gaps in the qv time 
series mark when the lagoon water level was below the SWI at the 
piezometers (see Section 3.3.1 for additional discussion). 
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𝑞𝑞ℎ(𝑡𝑡) = −𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 ∙  
𝑑𝑑ℎ𝑝𝑝−𝑝𝑝(𝑡𝑡)

𝑑𝑑ℓ
 (3.1a) 

𝑞𝑞𝑣𝑣(𝑡𝑡) = −𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 ∙  
𝑑𝑑ℎ𝑝𝑝−𝑠𝑠(𝑡𝑡)

𝑑𝑑𝑑𝑑
 (3.1b) 

where Ksat is the saturated hydraulic conductivity. Horizontal gradients were calculated 

using the head data from two piezometers, dhp-p(t), and the distance between the 

piezometers (dℓ) derived from the total station survey. Vertical gradients were comprised 

of the difference between piezometer head and the water level of the tide, dhp-t(t), divided 

by the depth from the SWI to the middle of the screen (d𝑑𝑑). Thus, a vertical flux could only 

be calculated when the tide water level exceeded the elevation of the intertidal sediment at 

the piezometers. The fluxes were calculated so that positive qh indicated a seaward flux 

and positive qv indicated an upward flux. For the beach, I adopted a single Ksat value, 

implying that the sediment is homogeneous and isotropic and, thus, simplifying the 

stratigraphy of the shallow foreshore sediment. The Ksat was estimated with multiple in-

situ slug tests in two piezometers and with laboratory constant head permeameter tests 

using samples from the site. Based on these analyses, Ksat for the Muri sands was 4.1 × 10-

4 ± 4 × 10-5 m/s and 1.89 × 10-4 ± 4 × 10-5 m/s for the permeameter and slug tests, 

respectively. Ksat = 2 × 10-4 m/s was used for the flux calculations, putting more confidence 

on the in-situ and less disturbed conditions of the slug tests. 

Horizontal fluxes between neighboring piezometers ranged from -0.2-0.3 m/d with 

seaward (positive) groundwater flow for the majority of the study duration. On average, qh 

was 0.1 m/d. Seaward, qh decreased in magnitude during most tidal conditions, so the most 

landward piezometer pair (P1-P2) typically measured the largest fluxes. As the tide rose, 

qh decreased across the intertidal zone. Seaward of P3, the deeper lagoon water forced 

landward groundwater fluxes with nearly the same magnitude as the seaward fluxes at 
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lower lagoon stages. The most landward piezometer pair (P1-P2) suggested some landward 

fluxes during peak tide heights, whereas P2-P3 always yielded a seaward flux. 

Between the upper and lower foreshore, the horizontal fluxes responded differently 

to ebb and flood transitions. In the two landward pairs of piezometers (P1-P3), horizontal 

fluxes decreased quickly as the tide began to exceed the mean water level. These 

piezometers also recorded a high seaward flux ~3 hrs after the peak tide that decayed 

throughout low tide. Piezometers further seaward (P3-P5) indicated horizontal fluxes that 

inversely followed the tide stage smoothly and without time lags. 

Vertical fluxes calculated using the three most seaward piezometers (P3-P5) ranged 

from -3.5-4.5 m/d. On average, upward (positive) fluxes were measured to be 1.0 m/d, but 

individual events related to quick pressure changes measured in the piezometers created a 

broad range of instantaneous vertical fluxes. P3 and P4 each averaged an upwards flux of 

0.8 m/d, and P5 had a mean of 1.5 m/d with the largest range. 

3.3.2. Electrical resistivity tomograms 

A total of 24 ER surveys were conducted between 2/17 11:15 and 2/18 11:30 

(Figure 3.3 and electronic supplement Figure 1 in Befus et al. [2013]). First, I performed a 

depth of investigation analysis to quantify the robustness of the ER results, which relied on 

the output model sensitivity matrix from the inversion of the ER observations; this provides 

relative information on the extent to which the observations determined the final inverted 

section [Ward et al., 2010; Cardenas and Markowski, 2011; Befus et al., 2012]. In general, 

the inverted sections were less controlled by the data with increasing depth. Low resolution 

values reached near the SWI (4 m) under the seaward half of the transect, where there was 

a thicker layer of overlying seawater. On the landward portion of the surveys, no more than 

the upper 8 m of the transect was sufficiently controlled by the data.  
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Figure 3.3. Characteristic ER profiles for a) low tide and b) high tide conditions. c) 
Phase-averaged ER values in each cell show the mean ER conditions of the 
intertidal zone. d) The total ER range per inversion cell reveals subsurface 
areas with dynamic ER signals over 24 hours. Mean tide location during the 
surveys is marked by a blue triangle. The sediment surface is shown as a 
grey line. Piezometer locations are indicated by vertical black lines. See 
electronic supplement for Befus et al. [2013] for an animated version 
showing all 24 ER tomograms.  
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The ER time series revealed dynamic subsurface patterns. The majority of the ER 

changes occurred in the first 21 m (-8-13 m) of the ER transect (Figure 3.3). A high ER 

(30-50 Ωm) feature was imaged from the start of the line to 0 m that extended to 4 m depth 

in all inverted sections, corresponding to the supratidal portion of the cable. Next, a 

dynamic pocket of low ER values (< 2 Ωm) that ranged between 0.5-2.5 m thick was 

located at -2-4 m along the survey. During high tide, this pocket reached its maximum size 

(from -2-8 m) and its minimum values (0.5 Ωm), approaching that of seawater (Figure 

3.3b). A ubiquitous area of higher ER values (1-3 Ωm) extended below and beyond the 

more conductive pocket in all inverted sections that also grew and shrank with the tide 

(Figure 3.3a-c). Except during the highest tide stages, the high ER area stretched from 3-

14 m and spread over the upper 4 m of the profile (Figure 3.3c). With high tides, this high 

ER feature collapsed into an arm that was ~1 m thick at 3 m depth, below the low ER 

pocket, and then may have curved towards the surface between 8-13 m. However, low ER 

values at the surface reduce the simulated current that reaches lower model cells and can 

lead to over-estimated ER values [Clément et al., 2009]. Even so, the high ER feature 

remained during high tides, but the upper 2 m of the subsurface became less resistive. From 

10-35 m, the upper 3 m of the inverted profiles fluctuated between saltwater values and 

less than 1 Ωm, depending on the tide position (Figure 3.3d). ER changes beyond 35 m 

were small (<1.5 Ωm), and the low model sensitivity of this portion of the ER line rendered 

these fluctuations less significant (Figure 3.3d). 

3.3.3. Measured temperature distributions 

Surface temperatures at the most seaward piezometer ranged between 23.1°C and 

32.7°C with a mean of 27.3°C during the survey, incorporating emerged and submerged 

intertidal conditions. Lagoon water averaged 28.5°C with a 5°C range (26.7-31.9°C) 300 
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m offshore from the transect, where the water was 0.9 m deep. At the inland piezometer, 

groundwater averaged 25.8°C with the water table 2 m below the ground surface. Within 

the temperature piezometers, temperature fluctuations at depth generally followed the 

pattern at the SWI (Figures 3.4-6). Deeper thermistors recorded damped temperature 

changes relative to the surface signal with varying degrees of phase lag. Temperatures at 

20 cm depth corresponded to temperature shifts at the surface with time lags ranging from 

nearly instantaneous to almost 16 hours. The time lag at 20 cm depth was less than 30 

minutes for most thermistor arrays during the first tidal cycle, increasing to 4-16 hours 

during the second tidal cycle. Tidal amplitudes remained similar for these two cycles with 

low tides after midnight and noon, transitioning later over the course of the data collection. 

Thermal fronts spread from the surface to different depths across the length of the 

thermistor transect (Figure 3.4). Temperature changes recorded at the first thermistor 

piezometer, T1, showed thermal signals reaching 43 cm into the sediment. A majority of 

the temperature change at the surface attenuates by the second thermistor at 5 cm depth in 

the sediment, except during periods of prolonged hot surface conditions. Even so, surface 

temperature signals contributed to a 1.1°C range at 43 cm below the SWI, where the mean 

was identical to the SWI mean temperature of 27.3°C. Towards the middle of the transect, 

at T7, temperature variations closely followed surface changes to a depth of 5 cm with little 

attenuation or lag. At 10 cm in T7, the temperature variability is reduced by 2-3°C, and at 

20 cm the temperature range is less than 1.0°C around the mean of 26.8°C. Some periods 

of the time series for T7 contained highly attenuated temperature signals at 5 cm depth (see 

2/17 00:00-05:20 and 2/17 13:20-17:30, local time: GMT-10). Directly adjacent to T7, P3 

recorded less than ± 0.2°C around the mean of 26.6°C at 37 cm depth. Only 9 m further 

seaward, T13 displayed conspicuously different subsurface temperature patterns than T7.  
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Figure 3.4. 
 
a) Tide level and b-d) 
temperature array time 
series over multiple tides for 
piezometers b) T1, c) T7, 
and d) T13. Ambient surface 
temperature measurements 
(Ts) were recorded outside 
of T13 at the SWI. 
Temperature sensor 
locations are indicated by 
the solid black lines and 
symbols from Figure 3.1. 
Low tide conditions are 
shaded grey. 
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Shallow temperature front penetration showed more variability for T13 with some surface 

temperatures attenuating 2-2.5°C before reaching 5 cm depth (2/17 00:00-05:20) and 

another thermal front extending to 10 cm with almost no attenuation over a full tide cycle 

(2/16 10:00-22:30). At 20 cm depth, the thermistor recorded a 0.6°C range and a mean of 

27.9°C. Similarly, P4 logged a mean temperature of 27.9°C with a range of 0.4°C at 37 cm 

depth. In the 9 m span between T7 and T13, a 1.3°C difference persisted at larger depths 

and was minimally affected by diel temperature changes at the SWI. 

The thermal responses observed at the intertidal zone followed three patterns over 

different tide stage and surface temperatures (Figure 3.5 and electronic supplement Figure 

2 from Befus et al. [2013]), exemplified by the phase-averaged temperatures and 

temperature range over the study period (Figure 3.6). Along the upper beachface (T1-T4), 

surface temperature signals retained more than 1°C amplitudes at 20 cm depth and reached 

10 cm in less than 20 minutes. Just beyond the slope break, thermistor arrays T6-T10 

experienced small variations (<1°C) at 20 cm depth and remained at a roughly constant 

temperature, slightly cooler (26.8°C) than the mean surface fluctuations that mainly 

affected the upper 5 cm. Directly at the break in slope, T5 measured similar changes as T6-

T10, but temperature patterns at 20 cm were not recorded due to a faulty thermistor. 

Thermistor arrays furthest seaward (T11-T13) recorded consistently warmer temperatures 

than the mean surface temperature and also responded little to surface temperatures beyond 

10 cm depth (<1°C). Arrays T3 and T4 showed out-of-phase temperatures with respect to 

the surface signal at 10 cm and 20 cm throughout most of the survey.  

Additional analysis of the heat transport mechanisms explained the prevalence of 

downward heat transport in the intertidal sediment despite calculated upwards groundwater 

flow, which suggested net upwards heat advection over the 0.5 m depth range. At smaller  
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Figure 3.5. Temperature distribution across the study transect at different tide levels and 
surface temperatures: a) cool high tide, b) warm low tide, c) warm high tide, 
and d) cool low tide. Tide level inset charts show a blue dot and arrow for 
the time of the temperature profile. Tide level (ztide) is shown by the dashed 
line and is not indicative of groundwater level when below the SWI. See 
electronic supplement from Befus et al. [2013] for an animated version of 
the plots, showing the complete time series. 
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Figure 3.6. a) Phase-averaged temperatures and b) temperature range distribution for the 
study transect. The dashed line shows the mean tide level, and the fill color 
corresponds to the phase-averaged temperature and temperature range for 
the measured surface temperature. 
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spatial scales, both heat conduction and advection may control sediment temperatures. A 

characteristic length scale (dc) over which conduction could be responsible for sinusoidal 

heat pulses into the sediment in the absence of advection is described by: 

 

𝑑𝑑𝑐𝑐 = �𝛼𝛼𝛼𝛼
𝜋𝜋

 (3.2) 

where α is the thermal diffusivity, T is the period of the temperature fluctuations, and dc is 

the depth where a surface temperature pulse has decayed to ~0.37 (i.e. e-folding length) of 

the original pulse amplitude. With the 9.6°C temperature range during the study, dc 

indicated the depth where sediment temperatures are ~1.8°C different from the temperature 

at the surface due only to downwards conducting thermal pulses. I measured α of the beach 

sand using a Decagon KD2 PRO probe and found α=3.4 x 10-7 ± 5 x 10-8 m2/s. Both diel 

radiation and tidal cycles influenced the thermal patterns in the intertidal zone (Figure 3.4), 

giving T=12 hrs and T=6 hrs, respectively. Over the diel timescale, dc =6-8 cm, and dc = 4-

6 cm for the tidal timescale. The penetration of surface temperatures into the studied 

intertidal zone fit within the calculated range of dc across a majority of the thermistor 

transect for most of the study period (Figures 3.4 and 3.6b), indicating heat conduction 

could explain a majority of the shallow temperature patterns. It is important to note that dc 

does not explain the complete extent surface temperature pulses penetrate into the 

subsurface; temperature pulses continue to penetrate and decay through conduction below 

dc, as is visible in the temperature data (Figure 3.4). 

Since conduction is an important heat transport mechanism at the studied intertidal 

zone, I calculated vertical conductive heat fluxes (qv,heat) using Fourier’s Law: 
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𝑞𝑞𝑣𝑣,ℎ𝑒𝑒𝑠𝑠𝑠𝑠(𝑡𝑡) = −𝑘𝑘𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ∙  
𝑑𝑑𝛼𝛼(𝑡𝑡)
𝑑𝑑𝑑𝑑

 (3.3) 

with ktherm
 the bulk thermal conductivity of the sediment-water mixture and T(t) the 

temperature time series data recorded by the thermistors. I used a constant ktherm=0.8 Wm-

1C-1, the average of the measured KD2 Pro probe values, ignoring any potential 

heterogeneity of the thermal properties of coastal sediment and the dependence of ktherm on 

water content (e.g., Ochsner et al. [2001]). Calculated qv,heat within the intertidal zone 

varied primarily with the diel solar radiation cycle and not the tide stage (Figure 3.7). Both 

near the intertidal surface (0-10 cm) and deeper (10-20 cm), qv,heat distribution responded 

quickly to radiative surface heating. In the middle foreshore, the high qv,heat at the surface 

persisted, but the cool conditions lower in the sediment reduced the effect of surface 

heating beyond 10 cm depth. Deeper qv,heat between T120 cm-P2, T720 cm -P3, and T1320 cm -

P4 were over an order of magnitude lower than calculated in the shallower intertidal zone, 

but these qv,heat rates also responded to the combined signals of tide stage and surface 

temperature. The relative correlation between surface temperature and qv,heat in the 

subsurface, however, cannot explain the distinct thermal regimes across the intertidal zone, 

as revealed by integrating these conductive heat fluxes in time for each thermistor array to 

give the change in heat storage in intertidal sediment (Figure 3.7e).  Within the upper and 

middle intertidal zone, heat was imported into the subsurface (i.e. heat sink) over the study 

period, whereas the outer intertidal zone hydrogeologic system exported heat (i.e. heat 

source). Thus, heat conduction was not the sole heat transport mechanism in the intertidal 

zone sediment.  
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Figure 3.7. a) Tide elevation and surface temperature (Ts). b-d) Vertical heat flux 
(qv,heat) values calculated for different areas and depth ranges of the 
foreshore: Fu = upper foreshore (T1-T4), Fm = middle foreshore (T5-T10), 
Fo = outer foreshore (T11-T13). Heat fluxes from 20 cm to P2,3,4 includes the 
three pressure piezometers P2, P3, and P4; the flux was calculated using the 
nearest thermistors at 20 cm depth: T1, T7, and T13, respectively. An 
upward heat flux is positive. e) Cumulative heat storage in the intertidal 
sediment calculated from integrating qv,heat in time for each thermistor array.  
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3.4. DISCUSSION 

3.4.1. Potential sources of error and other limitations 

Inaccuracies when installing and surveying the pressure piezometers would impact 

the calculated hydraulic heads. When installing the pressure sensors, I carefully measured 

the piezometer dimensions as well as the depths of the sensors. My total station 

measurements of piezometer locations were accurate to < 1 cm, and tape measurements 

were recorded to the millimeter. Even so, these measurements were taken in sand, where 

the vertical dimension could be inaccurately measured by recording from different 

locations around the base of the piezometer or by allowing the surveying rod to sink 

inconsistently into the sand. Taken together, these error sources could lead to at least 1 cm 

inaccuracy in the calculated hydraulic heads. These 1 cm errors would lead to changes of 

about 50% in the vertical flux measurements and up to 57% for the horizontal fluxes. Thus, 

small errors in the hydraulic heads contribute significantly to the magnitude of the fluxes. 

Based on these responses, the vertical flux calculations could indicate erroneous flow 

directions with an error of 2-3 cm. For the horizontal fluxes, the two landward pairs of 

piezometers (P1-P2 and P2-P3) were most affected due to shorter distances (dℓ) and 

smaller differences in head (dh(t)), and the horizontal fluxes from the last three pairs 

changed by < 20% with a 1 cm error. Thus, a 2 cm error for the first three piezometers 

could have led to incorrect calculations for the direction of horizontal fluxes (i.e. landward 

instead of seaward), where a 5 cm error would be required for the seaward piezometers. 

Beyond piezometer construction contributing to uncertainty in the calculated 

groundwater fluxes, the pressure time series were susceptible to recording water levels 

uncharacteristic of the overall behavior of the intertidal sediment. Pressure waves would 

nearly immediately propagate through the porewater and to the piezometer [Reeves et al., 

2000; Cardenas and Jiang, 2011], where the pressure sensors would record an 
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instantaneous water level that may have little impact on groundwater motion over the 

recording interval. These high frequency signals do appear in the water level 

measurements, and thus in the head and flux data, during higher tides, occasionally 

reaching a magnitude of 5 cm. The 5-minute sampling frequency generally captured 

different wave conditions that provided good coverage of mean conditions, as well as the 

wave variability. As another example of atypical pressure signals, pumping during the 

experiment near P2 and P3 between 11:20 A.M.-2:40 P.M. on 2/17 led to spurious data and 

was culled before analysis. 

The ER dataset suffered from difficulties encountered in the field as well as from 

typical geophysical limitations. After culling faulty surveys due to incorrect cable 

connections and poor contact resistances, 24 ER surveys were inverted and subject to the 

uncertainty and non-uniqueness of the ER inversion process. Firstly, a conductive water 

layer at the surface reduces the current density reaching lower, more resistive layers. This 

effectively shields the lower portion of the profile from being imaged, and the inversion 

has less direction on what the true resistivity model should be in this area [Day-Lewis et 

al., 2006; Henderson et al., 2010]. ER inversions also rely on assumptions of relatively 

smoothly varying ER values in the subsurface to minimize an objective function, which 

leads to underestimation of ER magnitudes for individual features as well as a general 

smoothing of geological structure and are collectively termed correlation losses [Day-

Lewis et al., 2005]. Thus, both geological formation boundaries and sharp salinity 

interfaces in the ER surveys could appear more spatially diffuse than reality. 

The temperature measurements were temporally restricted by piezometer design. 

The vertical thermistor arrays required piezometers with at least a 2 cm diameter to fit the 

sensors, where a smaller diameter tube would have allowed quicker thermal equilibration 

between the thermistors and the sediment around the piezometer. A 5 minute minimum 
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sampling interval was dictated by the lag associated with the piezometer design to not 

oversample, thus integrating shorter duration thermal variations occurring in the sediment. 

However, these high frequency temperature signals, potentially due to small clouds or wind 

gusts, would quickly attenuate in the subsurface and compose a minor portion of the 

thermal budget of the sediment [Taniguchi et al., 1999]. Vertical heat conduction along the 

steel piezometer to the thermistors is expected to be negligible [Alexander et al., 2005; 

Cardenas, 2010]. Finally, vertical water flow within the piezometers may have artificially 

allowed thermal signals from the screen location (40-50 cm below the SWI) to extend 

further towards the surface, restricting the depth to which surface temperature signals 

would penetrate. Given the <10 min response time of the piezometer in the presence of 

upwards groundwater flow [Cardenas, 2010], this biasing of the internal piezometer 

temperatures would only matter for interpreting temperature variability on timescales 

shorter than 10 minutes. 

Vertical temperature profile measurements can also be used to independently 

estimate groundwater velocities [Hatch et al., 2006; Keery et al., 2007]; however, the 

analytical models typically used for this require steady and one-dimensional groundwater 

flow, both of which are violated by the multi-dimensional and dynamic hydraulics of the 

shallow subterranean estuary. 

3.4.2. Hydrodynamic processes 

The studied intertidal sands contained dynamic groundwater fluxes that result from 

interactions between the marine and terrestrial geomorphic and hydrologic systems. 

Calculated horizontal groundwater fluxes indicated that seaward groundwater flow 

occurred across the foreshore (Figure 3.2b), especially during low tide and between the 

three most landward pressure piezometers (P1-P3). In this upper foreshore area, seaward 
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groundwater flux was more responsive to tides than the seaward foreshore. The upper 

foreshore from -3-4 m was steeper (0.10-0.15 topographic gradient) than the seaward 

portion of the sandflat (0.002-0.03 topographic gradient). As the tide inundated the 

sandflat, all of the piezometer heads increased to nearly the same elevation (Figure 3.2a). 

Only P1 and P2 recorded heads 1-5 cm higher than the others. These higher heads could 

be from short-lived terrestrial groundwater pulses but were more likely created by tide and 

wave run-up infiltration into the sediment due to both the timing at high tide and the 

recurrence interval, as described by high resolution beachface groundwater studies 

[Nielsen, 1990; Turner and Nielsen, 1997; Li et al., 2000; Li et al., 2009; Xin et al., 2010; 

Heiss, 2011]. Water levels then remained high despite a falling tide, as the infiltrated 

seawater traversed a longer lateral distance than the vertical infiltration (topographic 

gradient ≪ 1). This asymmetry in hydraulic head time series data has also been observed 

elsewhere [Lanyon et al., 1982; Nielsen, 1990; Vandenbohede and Lebbe, 2007; King et 

al., 2010]. Thus, the upper piezometers were responding to a water table mound associated 

with both wave and tide infiltration that supported seaward groundwater motion throughout 

low tides. 

Further seaward along the transect, horizontal fluxes were less variable than the 

upper foreshore because the flatter intertidal interface created more spatially homogeneous 

infiltration during inundation by the high tide (Figure 3.2b). However, sufficient horizontal 

hydraulic gradients persisted within the lower sandflat for seaward fluxes to initiate at mean 

tide stage, potentially supported by seawater recharged during high tide or the seaward 

extension of the terrestrial phreatic groundwater flow system. 

Mean upward fluxes across the SWI existed over high tide conditions, but the 

experimental design prevented flux calculations during low tide (Figure 3.2c). Thus, the 

influence of infiltration versus terrestrial groundwater gradients on supporting the upward 
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fluxes remained ambiguous. Along coastlines with low terrestrial hydraulic gradients, 

tidally-induced infiltration supports upward fluxes during higher-than-mean tide stages 

[Robinson et al., 2006]. However, given sufficiently large terrestrial groundwater 

discharges, a higher tide could offset upward gradients that would otherwise support 

upward fluxes during low tides [Robinson et al., 2007a]. Upward groundwater flow in the 

intertidal zone for mean tide conditions is consistent with the conceptual model of 

converging terrestrial and saline groundwater bodies at the foreshore, as well as with other 

field studies [Robinson et al., 2006; Gibbes et al., 2008] and numerical models [Glover, 

1959; Bear, 1979; Jeng et al., 2005; Robinson et al., 2007a; Vandenbohede and Lebbe, 

2007; Xin et al., 2010; Kuan et al., 2012]. 

The ER tomograms also revealed important STE mixing patterns (Figure 3.3). High 

ER values as well as high variability over the landward-most 10 m of the ER images 

indicated fresh groundwater discharging towards the coast with the water table height 

changing with tide stage (Figure 3.3c-d). The ER tomograms also showed a persistent high 

ER lens between 1-4 m local depth and over 3-14 m distance of the transect. Since 

subsurface geology is constant between the time-lapse images, fluid conductivity changes 

would be the lone reason for ER changes, neglecting artifacts of the inversion process 

[Swarzenski and Izbicki, 2009; Henderson et al., 2010; Nakada et al., 2011; Dimova et al., 

2012]. Thus, the high ER tube marked the location of fresher groundwater that expanded 

and contracted with low and high tide, respectively. Several previous studies have 

presented models supported by field observations that show nearshore groundwater 

fluctuations interact with tide stage to affect fluid flow and solute transport as imaged by 

these ER surveys [Li et al., 1997; Li and Barry, 2000; Teo et al., 2003; Jeng et al., 2005; 

Robinson et al., 2007a; Xin et al., 2010; Kuan et al., 2012]. 
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ER profiles also imaged the dynamics of the so-called upper saline circulation cell 

throughout the tidal cycle; this is the low-resistivity area at the surface, 0-5 m along the 

transect, in between the high-resistivity zones (Figure 3.3). Interestingly, fresher 

groundwater quickly raised ER values along shallow foreshore ~2 hrs after high tide 

(Figure 3.3a-b). This rapid freshening occurred as terrestrial gradients became dominant 

over the tidal gradient, and fresh terrestrial groundwater diluted and/or flushed the 

infiltrated seawater. My ER observations clearly demonstrated the occurrence of a dynamic 

upper saline plume overlying fresh groundwater and are consistent with high resolution 

salinity observations in other sandy beaches [Robinson et al., 2007b; Santos et al., 2009]. 

Tides and waves create this upper saline plume in the foreshore, where infiltrated seawater 

is recirculated seaward with residence times and spatial extent determined by the 

magnitude of the surface water oscillations, terrestrial groundwater discharge, and beach 

slope [Robinson et al., 2007a; Vandenbohede and Lebbe, 2007; King et al., 2010; Xin et 

al., 2010; Kuan et al., 2012]. The importance of tides and waves on controlling foreshore 

hydrodynamics is determined by the coastal setting, but both can support well-developed 

upper saline plumes that may extend terrestrial groundwater discharge further seaward and 

reduce seawater intrusion [Xin et al., 2010; Kuan et al., 2012]. As terrestrial groundwater 

gradients decrease, tidal fluctuations can induce more seawater intrusion than a similar 

system with no tidal influences [Ataie-Ashtiani et al., 1999; Robinson et al., 2007a]. 

The groundwater flow regime for the study site depicts the transience expected 

within a subterranean estuary. My results are consistent with and further extend the 

previous observations and model results by describing the thermal regime within the 

context of the hydrodynamics.  
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3.4.3. Heat transport regime 

This study reveals that the intertidal zone is a thermally diverse interface for heat 

exchange between marine and terrestrial systems. Across the scale of the intertidal zone, 

porewater dynamics interact with and respond to surface conditions, creating several 

distinct thermal regimes. At the sub-meter scale, thermal conduction may become 

important in areas with low mean groundwater fluxes. 

Along the steeper beachface (T1-T4), thermal fronts seemed mainly controlled by 

changes in saturation due to draining swash waters. As high tide began to ebb and/or as 

swash began to reach the high tide mark, waves intermittently thermally buffered the upper 

portion of the intertidal zone (e.g., T1 in Figure 3.4a). Without prolonged inundation by 

tidal waters, surficial intertidal sediment and porewater cooled by up to 5°C compared to 

inundated areas of the intertidal transect; this cooling may be due to evaporation, exporting 

latent heat to the atmosphere. These cooler surface temperatures occurred up to 4 hours 

earlier than nocturnal cooling at 10 cm below the swash zone during one of the tidal cycles 

(2/16 7:30-11:30 PM) and completely buffered deeper portions during another warm 

evening high tide (2/17 7:00-11:00 PM) (Figure 3.4a). As the surface cooled, heat 

continued to conduct deeper into the sediment from an earlier warm period, creating steep 

vertical gradients (0.2°C/cm). This phenomenon is driven by the changing hydrodynamic 

boundary conditions. During low tide, the water table at T1 would fall to 10 cm below the 

sediment surface, reducing the thermal buffering of the beach above the capillary fringe 

enough for at least the first two thermistors to record more rapid temperature changes. The 

deeper, saturated sediment with more thermal inertia would be less sensitive to these air-

induced fluctuations, as displayed by the 10 cm thermistor in T1 that showed temperature 

changes connected to mostly higher tide levels (Figure 3.4a). 
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Closer to the slope break, T3 and T4 indicate that heat was stored at these locations 

from previous tidal cycles at 10-20 cm, since the temperature fluctuations were consistently 

out-of-phase with surface temperatures by up to 7 hrs (Figure 3.5 and electronic 

supplement Figure 2 from Befus et al. [2013]). This apparent thermal storage and inertia 

may be controlled by infiltrated swash and tidal waters whose hydraulic forcing weakens 

as the tide ebbs, resulting in deceleration or stagnation of fluid flow [Staver and Brinsfield, 

1996; Robinson et al., 1998; Turner and Acworth, 2004; Robinson et al., 2006a; 

Vandenbohede and Lebbe, 2006]. A relative and short-lived hydraulic stasis would create 

long residence times for water within the tidal recirculation zone between tides, and the 

interstitial environment would retain thermal signals from the previous high tide that would 

change only if local boundary conditions resulted in thermal gradients conducive for heat 

conduction. Furthermore, models indicate larger tidal range can increase groundwater 

residence time in the tidal circulation zone [Robinson et al., 2007a]. While tidal amplitudes 

were small in this study, beach morphology and permeability alter flow patterns and may 

allow small hydraulic gradients to exist in the tidal circulation zone [Vandenbohede and 

Lebbe, 2006]. The thermal storage I observed in this portion of the foreshore is consistent 

with the conceptual model of relative hydraulic stasis at specific areas in the intertidal zone. 

In the center of the thermistor transect, T5-T10 recorded consistently cooler 

temperatures and muted and shallow penetration of diel fluctuations compared to areas 

both landward and seaward in the intertidal sediment (Figures 3.4b, 3.5, 3.6, and electronic 

supplement Figure 2 from Befus et al. [2013]). Since the terrestrial groundwater 100 m 

from the coast was also much cooler than the lagoon water (25.8 °C vs 28.5 °C, 

respectively), these thermistors suggested the presence of a cool intertidal groundwater 

seep that supported thermal gradients of up to 0.7 °C/cm, but this changed with diel and 

tidal fluctuations. Temperatures recorded by T5-T10 were warmer than the terrestrial 
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groundwater by 1°C and showed the effects of additional heat diffusing downward from 

the intertidal surface. 

At the most seaward portion of the intertidal zone (T11-T13), warmer, but still 

stable, temperatures persisted at lower depths, where the temperatures ranged between the 

average SWI and the lagoon water temperatures (Figures 3.4c, 3.5, 3.6, and electronic 

supplement Figure 2 from Befus et al. [2013]). Hotter average surface conditions prior to 

the field measurements could explain these subsurface temperatures. This scenario would 

require heat from before the data collection to have been transferred deeply into the 

sediment with short-lived temperature fluctuations during the survey that were 

uncharacteristic of previous conditions. However, tidal pumping seaward of the 

piezometers followed by landward groundwater flow or during high tides at the 

piezometers could also advect warm lagoon water down to the lower thermistors. The 

temperature recorded at the SWI incorporated both inundated and aerially exposed 

conditions and, thus, did not dictate the potential for heat to enter the subsurface. Instead, 

the thermal signature of T11-T13 more closely followed the temperature of the warm 

lagoon water, controlling the heat at depth. Both the higher heat capacity of water compared 

to air and thermal blanketing by the upper 10 cm of variably-saturated sediment during low 

tide allowed the deeper intertidal interstitial environment to retain the heat from warm high 

tides for the duration of the study (Figure 3.6). Then, at depth, some of the heat stored 

during the day would be conducted out as nighttime cool pulses originated from the surface, 

and cooler terrestrial groundwater mixed with the intertidal groundwater. 

Thermal conditions at the study site lack the drivers for density-driven convection 

that contribute significantly to porewater dynamics studied elsewhere [Rocha, 2000; 

Moore and Wilson, 2005; Santos et al., 2012a]. First, the studied intertidal zone was 

thermally shielded from cooler ocean waters by the shallow backreef lagoon. Over the 5-
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10 day residence time in the Muri lagoon [Tait et al., 2013], solar radiation would heat the 

lagoon water, reducing the potential temperature gradients that the lagoon water would 

impose during flood tide at the similarly heated SWI. Cool, less saline groundwater inputs 

to the studied intertidal zone also create less possibility for thermally-driven convection 

while introducing the potential for convection based on solute concentration gradients. This 

study calculated significant, albeit noisy, upward groundwater fluxes over length scales of 

~0.5 m, indicating forced convection drove porewater flow (Figure 3.2c); however, free 

convection initiates at a smaller scale (10 cm) in some intertidal zones [Rocha, 2000] and 

was below the resolution of this study. 

The three distinct thermal zones across the studied intertidal zone suggested vertical 

heat transport controls the spatial distribution of heat more than horizontal heat transport. 

Heat conduction provides the mechanism for the surface temperature to penetrate vertically 

into the sediment, but alternate sources of heat transport are required to explain the 

difference in temperatures beyond 20 cm depth across the intertidal zone (Figure 3.4). Over 

the duration of the study, the upper and middle foreshore imported heat through the SWI, 

while the outer foreshore radiated heat across the SWI (Figure 3.7). 

3.4.4. Synthesis of hydraulic, thermal, and geophysical results 

Despite downward propagation of surface temperature signals into foreshore 

sediment, groundwater hydraulic head gradients indicated prevalent seaward and upward 

porewater flow (Figure 3.2). Unknown vertical fluxes during low tides create two opposite 

but not exclusive scenarios for downward thermal pulses: low tide marked a period of 

downward advection by porewater that caused heat to reach greater depths, or upward 

groundwater advection was overcome by downward thermal conduction. 
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Both temperature measurements and ER tomograms supported the hydrodynamic 

context suggested by the observed hydraulic heads and are summarized in Figure 3.8. 

Swash zone saturation changes and minimal thermal buffering by overlying water were 

interpreted from the very dynamic temperatures in the upper foreshore and in the ER 

changes of the upper saline plume. Persistent cool temperatures just beyond the break in 

slope topography, and co-located high ER values, suggested terrestrial groundwater inputs 

similar to the fresh groundwater discharge plume of Robinson et al. [2007b]; local 

groundwater was 2.7°C cooler on average than the lagoon water. Direct solar radiation on 

the surface of the sediment and conduction supplied heat to the upper 40 cm of this portion 

of the foreshore, but the surface heating attenuated quickly (~10 cm) because of upward 

groundwater flow that equilibrated with the warmer, shallow sediment. Furthest seaward, 

the subsurface hydrodynamics of the sandflat consisted of circulating lagoon water 

dependent on tide stage: temperatures reflected surface conditions, and the ER images 

suggested the presence of mainly saline porewater. 

The conductive length scale, dc, revealed the significance of heat conduction from surface 

heat pulses into the shallow (< 20 cm) subsurface. Swash infiltration, seaward terrestrial 

groundwater flow, and seawater circulation also affected the heat transported into and 

through the intertidal zone but, in this foreshore setting, mainly contributed to the intertidal 

thermal regime by setting the lower thermal boundary condition in the subsurface (Figure 

3.6). The shallow intertidal sediment heat budget was predominantly controlled by diel 

solar radiation forcing and conductive transfer vertically, but in the outer foreshore net 

radiative heat loss was calculated (Figure 3.7). Larger tidal ranges and/or waves could 

increase and alter the groundwater fluxes to more significantly affect heat transport at the 

study site, potentially undergoing seasonal cycles.  
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Figure 3.8. Conceptual model of the hydrologic and heat transport setting for the 
studied intertidal zone. Dashed arrows represent groundwater flowpaths, 
advecting heat. Solid arrows indicate heat conduction. 
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3.4.5. Ecological and biogeochemical implications 

Stable temperatures in the shallow subsurface of the intertidal zone create refugia 

for temperature-sensitive fauna. These refugia may have no surface expression, depending 

upon the beach sediment type, terrestrial groundwater flow system, and the marine energy 

setting (i.e., waves, tides, and currents). The temperature differences mapped in this study 

may not represent a significant stress to tropical intertidal species that are well-adapted to 

larger temperature fluctuations at the surface. However, this study reveals the existence of 

hydrodynamically-supported thermal refugia that may become critical to certain species in 

more temperate climates. Multiple studies have already suggested the important role 

intertidal groundwater seeps have in supporting biological communities through changing 

nearby sediment and porewater temperatures [Miller and Ullman, 2004; Dale and Miller, 

2007; Morelissen and Harley, 2007]. My observations show that organisms would only 

need to bury themselves 5 cm to escape most diel temperature fluctuations in locations 

with persistent terrestrial groundwater flow (Figure 3.6b). Different tide, wave, and 

groundwater hydrodynamics will alter this depth to the thermal refuge. 

Within the portion of the intertidal zone where terrestrial groundwater flow 

significantly mediates the thermal conditions, chemical reaction rates may be significantly 

more or less favorable than in the adjacent areas of the foreshore. Temperature controls 

kinetic reaction rates and equilibrium thermodynamics. In nutrient-rich environments, 

increasing temperature can significantly increase the production of microbial metabolic 

products [Sanz-Lázaro et al., 2011; Veraart et al., 2011; Santos et al., 2012b]. Thermal 

variability also affects the photosynthetic capacity of intertidal organisms [Blanchard et 

al., 1996] and may contribute to the alkalinity budget of the littoral zone [Cyronak et al., 

2013]. Additionally, in coastal settings with contaminated groundwater, the potential 

microbial transformation of contaminants may be regulated by heat transported through the 
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intertidal sediment, where a significant portion of coastal groundwater contaminants seep 

into coastal waters through the foreshore [Westbrook et al., 2005; Maji and Smith, 2009]. 

As coastal groundwater systems evolve with increasing coastal water demand due 

to ongoing development and urbanization and with climate and sea-level change, the 

properties affecting the fate and transformation of groundwater constituents may also 

change. Altered terrestrial groundwater gradients may lead to different terrestrial-marine 

interactions, where saltwater intrusion changes the dynamics between terrestrial 

groundwater and tidal fluctuations. These changes to the groundwater flow regime may, in 

turn, affect the intertidal thermal regime and nearshore marine ecosystems therein. 

3.5. CONCLUSIONS 

Detailed temperature, pressure, and electrical resistivity tomography measurements 

are combined in this study to explore the importance of coastal hydrodynamics on the 

thermal regime of a tropical sandy intertidal zone. I confirmed that groundwater-seawater 

interactions play a critical role in the transport and storage of thermal energy in the shallow 

portion of intertidal zone sediment. I showed that tide stage can affect the penetration of 

thermal signals into intertidal sediment as a result of the changing hydrologic boundary 

conditions, but the diel solar radiation cycle had a larger effect on the transient heating of 

the intertidal zone than the hydrodynamic transport processes. Even so, areas with 

terrestrial groundwater discharge sustained cooler temperatures than either swash 

infiltration or seawater circulation groundwater regimes, highlighting the importance of 

hydrodynamic boundary conditions on heat transport. When considering only vertical heat 

transport, conduction explained a majority of the temperature signal propagation, but the 

measured horizontal groundwater fluxes and temperature patterns ≥ 20 cm suggested 
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alternative flow scenarios that incorporate deeper and multi-dimensional groundwater 

movement. 

The variety in the forcing mechanisms of heat transport in the studied intertidal 

zone resulted in three unique thermal regimes, collectively characterized by pressure, 

temperature, and ER measurements. Groundwater hydraulic head gradients indicated the 

presence of seaward and upward groundwater flow, even during high tide. ER profiles 

imaged salinity changes that were used to interpret the flow conditions. Within the upper 

foreshore, variable flooding and swash infiltration created rapid temperature changes 

during most tide stages leading to net import of heat into sediment, but near a break in 

topographic slope of the beach, surface temperatures lingered in the saturated subsurface 

up to 4 hours. Just seaward of the slope break, sediment temperatures beyond depths of 10 

cm were stable and 1.3°C cooler than the rest of the intertidal sandflat. This thermal pattern 

was explained by upward and seaward groundwater flow suggested by both the pressure 

and ER data and also resulted in a net import of heat into the sediment. The most seaward 

portion of the study transect recorded stable but warm temperatures in the shallow 

subsurface with a net export of heat from the sediment, which matched the average surface 

temperatures. Groundwater movement in this seaward portion of the sandflat may be 

primarily due to tidal pumping; hence, the temperature range reflects primarily seawater 

temperatures. 

My analysis revealed the potential for subterranean thermal refugia in intertidal 

zones supported by coastal groundwater systems. In more temperate regions or where 

larger differences exist between groundwater and seawater temperatures, the thermally 

moderated portion of intertidal zones may control habitat quality as well as biogeochemical 

reaction rates. 
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Chapter 4: 
 

Geoelectrical signals of geologic and hydrologic processes in a fringing 
reef lagoon setting3 

Don't you realize that the sea is the home of water? All water is off on a journey 
unless it's in the sea, and it's homesick, and bound to make its way home someday. 

-a quote by Zora Neale Hurston (1891-1960) 

ABSTRACT 

Coastal groundwater may discharge into nearshore and offshore waters forced by terrestrial 

fluxes, controlled by local geology, and modulated by the hydrodynamics of littoral water. 

I investigated the electrical signature of these features with a dense, multiscale network of 

electrical resistivity tomography (ERT) surveys in the Muri Lagoon of Rarotonga, Cook 

Islands. The ERT surveys spanned from onshore to 400 m into the lagoon and used standard 

electrodes on land and across the foreshore, submerged electrodes in the shallow subtidal 

zone, and floating electrodes towed throughout the reef lagoon by a boat. ERT surveys on 

land mapped a typical freshwater lens underlain by a saltwater wedge, but with possible 

deviations in flowpaths and salinity distribution from the classical model due to an adjacent 

tidal creek. Further inland, ERT surveys imaged a layer of lava flow deposits that is 

potentially a confining hydrogeologic unit; this unit was used to constrain the expected 

electrical resistivity of these deposits below the lagoon. ERT surveys across the intertidal 

zone and into the lagoon indicated fresh groundwater and porewater salinity patterns 

consistent with previous small-scale studies including the seaward extension of fresh 

groundwater pathways to the lagoon. Electrical resistivity (ER) variations in the lagoon 

subsurface highlighted heterogeneities in the lagoon structure that may focus submarine 

groundwater discharge (SGD) through previously unknown buried lava flow deposits in 

                                                 
3Befus, K. M., M. B. Cardenas, D. V. Erler, and D. R. Tait (2014), Geoelectrical signals of geologic and 
hydrologic processes in a fringing reef lagoon setting, J. Hydrol., doi: 10.1016/j.jhydrol.2014.05.070.  
 
All of the authors contributed to the data collection and interpretation of the results. Befus was responsible 
for the analysis and data collection. 
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the lagoon. A transition to higher ER values near the reef crest is consistent with the ER 

signature of porosity reduction due to ongoing differential cementation of reef deposits 

across the lagoon. The imaged coastal hydrostratigraphic heterogeneity may thus control 

terrestrial and marine porewater mixing, support SGD, and provide the pathways for 

groundwater and the materials it transports into the lagoon. This hydrogeophysical 

investigation highlighted the spatial heterogeneity of submarine coastal geology and its 

hydrogeologic control in a reef lagoon setting, but is likely to occur in many coastal 

settings. Ignoring geologic complexity can result in mischaracterization of SGD and other 

coastal groundwater processes at many spatial scales. This chapter was published as a part 

of collaborative work [Befus et al., 2014]. 

4.1. INTRODUCTION 

Coastal communities often rely on limited freshwater resources that are vulnerable 

to changes in groundwater storage and contamination [White and Falkland, 2010; Bailey 

and Jenson, 2013]. Coastal groundwater systems respond to these perturbations over 

multiple timescales controlled in part by aquifer properties [Michael et al., 2005; Ferguson 

and Gleeson, 2012; Gonneea et al., 2013]. Moreover, spatial heterogeneities in 

permeability and porosity, related to lithology and/or geologic history, can accentuate the 

effects of climate- or human-induced changes on groundwater availability and residence 

times for even large aquifers [Swarzenski et al., 2013]. Thus, delineating coastal 

hydrogeologic structure, or hydrostratigraphy, can improve the characterization of 

groundwater flow and management of groundwater resources. Additionally, 

hydrostratigraphic complexities may control how coastal aquifers interact with marine 

ecosystems, transport solutes to coastal waters, and respond to perturbations such as 

climate change. 

Electrical resistivity (ER) surveys have been used extensively in coastal settings to 

reveal groundwater dynamics and mixing with seawater [e.g., Zohdy and Jackson, 1969; 
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Manheim et al., 2004; Breier et al., 2005; Day-Lewis et al., 2006; Swarzenski et al., 2006; 

Swarzenski and Izbicki, 2009; Cardenas et al., 2010; Henderson et al., 2010; Dimova et 

al., 2012; Befus et al., 2013]. Many ER studies rely on assumptions of geologic 

homogeneity to interpret porewater salinity variations or interpret inconsistent ER 

anomalies as being caused by heterogeneity in geologic properties. However, subsurface 

geologic heterogeneity is expected in coastal environments, where structural, volcanic, 

erosional, and diagenetic processes shape and alter coastal geology [Moore, 2001; 

Montaggioni and Braithwaite, 2009; Evans and Lizarralde, 2011; Rankey and Garza-

Perez, 2012; Ramalho et al., 2013]. Time-lapse ER surveys remove some uncertainty when 

interpreting the results of coastal ER studies as the changes measured in time-lapse ER 

surveys are predominantly from dynamic porewater salinity rather than changing 

subsurface geologic materials or their electrical properties [Ogilvy et al., 2009; Zarroca et 

al., 2011; Dimova et al., 2012; Befus et al., 2013; Misonou et al., 2013]. But, even these 

surveys suffer from uncertainty associated with both the ER structure and the electrical 

boundary conditions in or over dynamic salinity water regimes [Day-Lewis et al., 2006; 

Henderson et al., 2010; Orlando, 2013]. Thus, ER surveying always images the subsurface 

within an integrated geologic and hydrodynamic context, and the relative contributions of 

each to the measured ER signal must be acknowledged during interpretation. 

As the ultimate goal of many coastal ER studies is to elucidate groundwater 

features, ER surveys are used to develop and test the reliability of groundwater models. 

However, insights into the hydrodynamic processes involved in submarine groundwater 

discharge (SGD) and porewater mixing within the subterranean estuary often arise through 

models that predominantly consider a homogeneous subsurface [e.g., Robinson et al., 

2007b; Vandenbohede and Lebbe, 2007; Gibbes et al., 2008; Xin et al., 2010; Konikow et 

al., 2013]. Coastal ER results can compare favorably to shoreline groundwater simulations, 
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but are typically based on the assumption of homogeneity [Henderson et al., 2010; Nakada 

et al., 2011]. However, both geologic data [Moore, 2001; Emery and Myers, 2009; 

Ramalho et al., 2013] and geophysical surveys [Zohdy and Jackson, 1969; Evans and 

Lizarralde, 2011; Dimova et al., 2012; Misonou et al., 2013; Russoniello et al., 2013] 

document spatial heterogeneity across multiple spatial scales. Indeed, spatial variability in 

substrate properties and hydrodynamic conditions exist within the subterranean littoral 

zone and contribute to the magnitude of benthic fluxes [Santos et al., 2012b; Dose et al., 

2013; Sawyer et al., 2013]. In this chapter, I characterize coastal geologic heterogeneity 

with ER surveys in the context of a fringing reef lagoon system. These methods and results 

can help guide future SGD field studies and coastal groundwater flow models as they 

evolve to measure and incorporate different scales of heterogeneity.  

I investigated the hydrostratigraphic framework of a reef in southeastern Rarotonga 

with comprehensive onshore and offshore electrical resistivity tomography (ERT) surveys 

and interpreted the findings within the context of previous geologic and hydrologic studies. 

First, I briefly revisit related studies on Rarotonga that detected active fresh SGD at the 

same field site. I next use a petrophysical model and the range of ER values corresponding 

to fresher porewater from the previous work to identify other areas where fresh 

groundwater may be present and volumetrically significant in the subsurface with the more 

extensive ERT network in this study. Next, I discuss the ERT surveys within the context 

of the local geology to understand the effects of spatial heterogeneity of the lagoon geology 

on the ERT results. I then explore the sensitivity and uniqueness of these ER results with 

synthetic simulations (i.e., forward models) to assess the reliability of my data and to guide 

the interpretations. Finally, I extend these results to elucidate potential heterogeneous 

geologic controls on groundwater pathways into any nearshore or reef system. 
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4.2. STUDY SITE 

Rarotonga is a 67 km2 volcanic island with a fringing reef located in the south-

central Pacific Ocean (21.2°S 159.8°W) (Figure 4.1a). The island was formed by basaltic 

eruptions ~2 million years ago (Ma), experienced a brief volcanic hiatus, and then 

underwent a short period of late-stage volcanism [Thompson et al., 1998]. Eroded and 

weathered basalts (1.1-2.3 Ma) now shape the rugged, mountainous interior of Rarotonga. 

A narrow rim (0.3-1.2 km) of alluvium and reef deposits surrounds the exposed volcanic 

rocks. Within this coastal plain, spring- and stream-fed wetlands form inland of beach-

ridge deposits. During average flows, nearly all of the streams terminate in these coastal 

marshes and do not discharge directly to the coast [Waterhouse and Petty, 1986]. The 

fringing reef crest ranges from 50-900 m offshore and sets the breadth of the shallow (<3 

m) reef lagoon. 

This study was conducted in the Muri area and Muri Lagoon on the southeast of 

Rarotonga (Figure 4.1). Muri Lagoon is the widest portion of the lagoon surrounding 

Rarotonga (500-800 m) and contains the only lagoon islets. Both on and offshore, the local 

geology at Muri is complicated by the Raemaru phonolite flow deposit (1.1 Ma) that is 

exposed in the mountainous interior as well as the southernmost islet, Taakoka. The 

subterranean expression of the Muri Raemaru flow is unknown but may extend into the 

Muri Lagoon [Thompson et al., 1998]. On land, the surficial geology consists of carbonate 

sand beach ridges, wetland sediments, and alluvial deposits [Moriwaki et al., 2006], which 

comprise a shallow aquifer system with groundwater flow towards the coast [Waterhouse 

and Petty, 1986]. An ER sounding in north Muri detected volcanic bedrock at 13.7 m depth, 

potentially constraining the local thickness of the coastal aquifer [Ricci and Scott, 1998]. 

The geologic framework of the lagoon and near-beach environment addressed in this study 

has not been investigated before in detail.



 

 

79 

 

Figure 4.1.  a) Surficial geologic map of the southeast corner of Rarotonga with the location of b) outlined in red [after Wood 
and Hay, 1970; Thompson et al., 1998; Moriwaki et al., 2006]. b) The locations of the onshore (red lines), 
seafloor (blue lines), and marine (yellow lines) ERT surveys. Ground truth measurements were conducted on land 
and in the lagoon (white dots). 
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Previous hydrologic studies at Muri provide site-specific evidence of SGD into the 

reef lagoon. Many of the recent studies focus on the coastal environment near Parengaru 

Creek, a perennial creek that is tidally-affected until the main coastal road (Figure 4.1b). 

Porewater sampling at the outlet of Parengaru Creek identified brackish porewater (< 20 

practical salinity units, PSU) extending 50 m into the lagoon with fresher porewater (<10 

PSU) 10 m seaward of the high tide mark [Erler et al., 2014]. SGD also delivers significant 

amounts of reactive nitrogen into the lagoon [Erler et al., 2014]. Most of the saturated 

sediment was anoxic within 3 cm of the water table or sediment-water interface (SWI) 

[Cyronak et al., 2012]. Along a nearby transect, an ERT survey imaged ER values > 1.5 

Ωm over the first 10 m of the intertidal zone, where net groundwater discharge (up to 1 m 

d-1) was also measured directly with both pressure and temperature measurements [Befus 

et al., 2013]. Beyond quantifying groundwater dynamics at the coast, significant SGD 

fluxes (0.2-1.9 cm d-1) into the Muri lagoon were calculated using radiogenic isotopes [Tait 

et al., 2013]. Thus, the Muri Lagoon actively receives SGD, but the distribution and 

pathways of this SGD to the lagoon remain poorly constrained. 

4.3. ELECTRICAL RESISTIVITY (ER) METHODS 

Direct current ER surveys measure the electrical potential field generated by 

controlled electrical current sources. Earth materials have different electrical resistivity 

values as a function of chemical composition and porosity, and bulk ER of subsurface 

materials can be significantly reduced by the low ER of ion-rich interstitial fluids [Telford 

et al., 1990]. Disentangling the relative contributions of lithology and porewater in a 

measured ER signal relies upon petrophysical models. In sandy sediment or rock, the bulk 

ER (ρb) of the fluid and the matrix can be described using the empirical relationship 

[Archie, 1942]: 
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ρb = ρf n-m 
(4.1) 

incorporating ER contributions from the fluid resistivity (ρf) and the properties of the 

matrix through the porosity (n) and a cementation factor (m). ERT surveys roughly provide 

the spatial pattern of this ρb once the field data are inverted (see Loke and Barker [1996] 

for an introduction to ERT inversion). Equation (4.1), known as Archie’s Law, works well 

for sandy sediment and sandstones but does not accurately estimate the ρb for sediment 

with clay or other rock types [Revil et al., 1998; Jackson et al., 2002].  

A variety of field deployment methods and configurations exist for ERT imaging 

[Loke et al., 2013]. ERT datasets are collected by combining numerous electrode spacings 

and positions to image the subsurface both in depth (i.e., soundings) and at least one 

horizontal direction (i.e., profiling). Direct current ER data incorporate both the 

configuration of the electrodes and the ability of a medium to transmit current when 

investigating the subsurface [Telford et al., 1990]. As the arrangement of the source and 

receiver electrodes are changed, the sensitivity (i.e., the ability to accurately image the 

subsurface [Henderson et al., 2010]) of the survey to the surrounding medium also 

changes. ERT surveys are also restricted by the ability to resolve features in the subsurface 

due to the integrated contributions from individual subsurface components [Day-Lewis and 

Lane, 2004; Henderson et al., 2010].  

An inverted ERT section may show ER structure that fails to recover the true ER 

of individual geological entities, creating an important difference between the inverted (i.e., 

ρb) and true ER (ρb,true) structure of the subsurface. Together, the effects of different 

electrode configurations and electrode placements in relation to water would change the 

results from marine, submerged, and terrestrial ERT surveys investigating the same 

subsurface areas. Also, the thickness and conductivity of the water column strongly affects 

ERT results [Loke and Lane, 2004; Day-Lewis et al., 2006; Henderson et al., 2010; 
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Orlando, 2013]. Thicker and more conductive overlying water greatly reduces the 

sensitivity of ERT to the subsurface, whereby the majority of the injected current remains 

in the conductive water layer, termed current channeling [Day-Lewis et al., 2006].  

Quantitative measures of the sensitivity of the ERT survey can be calculated using 

components of the inverse problem [Alumbaugh and Newman, 2000; Day-Lewis et al., 

2004; Day-Lewis et al., 2005]. In this study, I used the model resolution matrix, specifically 

the diagonal of this matrix calculated using Equation 10 in Day-Lewis et al. [2005], to 

gauge the ability of an ERT survey to describe a prescribed ρb structure. A model resolution 

with a diagonal of unity indicates a perfectly resolved ER feature (i.e, ρb,true = ρb), while 

lower resolution suggests greater uncertainty in the ρb values of the inverted model. The 

model resolution analysis was performed on the synthetic data to test the ability of the 

analogous field ERT surveys to image real subsurface features.  

4.3.1. Field ER surveys 

Two-dimensional ERT surveys were conducted during two field seasons: February 

2011 and March 2012. I used a SuperStingR8 resistivity meter (Advanced Geosciences, 

Inc) to collect ERT data with three configurations: 1) 56 graphite electrodes with a 1.5 m 

spacing on a stationary waterproof cable deployed on the seafloor, 2) continuous resistivity 

profiling (CRP) using an 11 electrode boat-towed, floating cable with 5 m spacing, and 3) 

terrestrial ERT surveys with 1.25-3 m electrode spacing with 56 stainless-steel stakes. 

During the CRP surveys, two graphite electrodes injected current to create an electrical 

field that was measured by nine stainless-steel electrodes. The CRP survey used the dipole-

dipole array, while the submerged and terrestrial surveys were run as both dipole-dipole 

and Schlumberger arrays. During the CRP survey, simultaneous differential GPS and sonar 

measurements recorded position, water temperature, and water depth, while an independent 
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sonde measured water conductivity. The GPS measurements were used to position the CRP 

and sonar measurements, using the offset between the sonar, CRP cable, and GPS receiver. 

Terrestrial and seafloor ERT surveys were referenced with a total station. Select boreholes 

were drilled with a 41 mm outside diameter portable core drill, and pits were hand dug to 

characterize sediment type and determine refusal depths.  

4.3.2. ER inversion 

ERT datasets were inverted using Res2DInv [Loke and Barker, 1996] with robust 

parameter constraints. Dipole-dipole and Schlumberger surveys were merged and inverted 

together for all terrestrial and submerged datasets collected during the same tide conditions. 

Up to 10% of the merged datasets were culled to remove poor quality data and improve 

inversion performance.  

Each field survey required configuration-specific constraints within the inversion. 

Seafloor ERT inversions included seafloor topography, water thickness, and water 

resistivity information. Terrestrial surveys included topography in their inversions. The 

CRP survey was cropped into straight segments prior to inversion. Consistent transfer 

resistances for the CRP raw data indicated all eight dipoles collected data above the noise 

threshold [Rucker et al., 2011; Befus et al., 2012]. CRP inversions incorporated water 

depths from the sonar records, and the mean lagoon water resistivity (ρf = 0.175±0.001 

Ωm) during the survey was prescribed in the inversion. The marine ERT dataset was 

collected during low tide to maximize the investigation sensitivity, and the water depth 

ranged from 0.4-2.5 m with an average depth of 1.4 m. Due to the significant current 

channeling expected in the lagoon water, the ER of the water layer was solved for in the 

CRP inversion but with the constraint to minimize variability from the prescribed lagoon 

ρf  value.  Lagoon water temperature was 28.2 ± 0.5°C during the marine surveys. ER is 
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dependent on temperature, but 0.5°C would introduce ~1% error to the measurements and 

was less than the expected noise in the data (~3%) [Hayley et al., 2007; Befus et al., 2012]. 

Thus, no temperature correction was applied to the ERT data.  

4.3.3. ER forward modeling 

I simulated ERT surveys to test the degree to which the field ERT surveys could 

image a resistive body and thus constrain the interpretation of resistive features in the 

inverted field profiles. Simulated ERT measurements using the field survey configurations 

were modeled with the generic finite-element software Comsol Multiphysics after Butler 

and Sinha [2012]. The electrode spacing, array types, and active quadrapoles from the 

submerged and marine surveys in the field were used for the electrode configurations in 

the simulations. The static electrical field for each current dipole was solved in three-

dimensional (3D) space with tetrahedral elements: 

 
∇ ⋅ ∇ � 1

ρ(x,y,z)
Φ(x, y, z)� =  q, (4.2) 

where Φ(x,y,z) is the 3D scalar electrical potential field [V], ρ(x,y,z) is the 3D scalar 

electrical resistivity field [Ωm], and q is a vector of the current sources and sinks [A]. 

Infinite boundary elements surrounded the main domain, except for a Neumann no-flux 

condition applied to all exterior model surfaces (Figure 4.2) [Butler and Sinha, 2012]: 

 

∇Φ ⋅  n = 0 ,  for z = zsurf, z = -∞, and x = y = ±∞, (4.3) 

 

with n the normal vector of each surface and zsurf the elevation of the top domain boundary 

(i.e., land or water surface). An infinite boundary element is mapped or stretched toward 

infinity, thereby reducing model edge effects by extending the electrical insulation 
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boundaries (Equation 4.3) infinitely away from the main domain [Zienkiewicz et al., 1983]. 

I refined elements near all active electrodes to accurately simulate the near-field electrical 

potentials. Models with > 5×104 elements introduced < 2% error to simulated potentials 

modeled with 106 elements. Thus, refining the mesh to > 5×104 elements no longer changed 

the surface electrical potential significantly in the context of modeling field-scale ER 

signals. 

In addition to potential numerical errors introduced by the numerical model to the 

calculated electrical field (< 2%), normally distributed random noise was added to the 

simulated raw resistance data with a standard deviation of 5% of the mean modeled 

resistance value to resemble the noise levels that occur during data collection. Dipole-

dipole and Schlumberger array model results were combined prior to the inversion of the 

seafloor scenario. These forward model outputs were then inverted using the same 

inversion parameters as the field data. 

4.4. RESULTS 

A network of 28 ERT surveys was collected during the two field seasons, 

comprised of 8 terrestrial (L1-L8), 8 seafloor (S1-S8), and 12 CRP (M1-M12) lines (Figure 

4.1b). Terrestrial and seafloor ERT surveys are shown for higher than average tides, while 

the CRP survey was conducted during low tide. Inversion absolute error (Eabs) provides a 

metric for how well an inverted ERT survey reproduced the field data: 

 

𝐸𝐸𝑒𝑒𝑒𝑒𝑟𝑟 =  
100
𝑁𝑁

��log10(𝛒𝛒𝐚𝐚,𝐦𝐦𝐦𝐦𝐚𝐚𝐦𝐦) − log10(𝛒𝛒𝐚𝐚,𝐜𝐜𝐚𝐚𝐜𝐜𝐜𝐜)� 
(4.4) 

with N data points and the apparent resistivities of the measured data (ρa,meas) and 

synthetic data (ρa,calc) calculated using a forward model based on the ρb structure for a given 

iteration. Eabs was below 6% for all but one of the inverted sections (S7, Eabs= 9.5%).  
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Figure 4.2. Forward model geometry of the static electrical field in a) plan view and b) 
profile view. The main model domain (white) was surrounded by infinite 
elements (blue), except for the top insulating boundary. c) The forward 
model domain with an example electrical potential solution, tetrahedral 
mesh, current electrodes (red and blue), and potential electrodes (white) for 
a dipole-dipole array. Half of the main domain and one subdomain in the -y 
direction are transparent in c).  
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The inversions converged within four iterations, and additional iterations did not 

significantly improve Eabs values or more accurately resolved ER patterns. All ERT results 

show the inverted profile after four iterations. 

4.4.1. Onshore ERT surveys 

Two roll-along ERT surveys (L7-L8) were conducted inland to image the local 

coastal geology, where porewater salinity effects on the survey results would be minimal 

(Figure 4.3). In both surveys, 3-5 m of relatively conductive materials (10-70 Ωm) at the 

surface overlaid a much more resistive layer (≥ 100 Ωm) for the seaward half (L8) and the 

entirety (L7) of the lines. This resistive layer was 5-10 m thick. Both profiles also became 

more conductive > 10 m below the land surface. 

Near the outlet of Parengaru Creek, six land ERT surveys (L1-L6) and six seafloor 

surveys (S1-S6) were collected (Figure 4.1b and 4.4a). The upper 0.5-2 m of the terrestrial 

lines showed a layer of high ρb (>100 Ωm). Only along L2 was this resistive layer mostly 

absent, where the line was within the intertidal zone until 10 m from the northern end. L1, 

L3, L4, and L6 detected shallow ρb anomalies > 50 Ωm at the inland portions of the lines 

that reached to within ~20 m of the shoreline. Moderate ρb values (5-50 Ωm) comprised 

the majority of the terrestrial ERT surveys. An inland dipping transition to lower ρb values 

(< 5 Ωm) was imaged at the seaward ends of L3 and L4. Running along shore, L2 detected 

a ~3 m thick lens of ≥ 10 Ωm to 5 m depth overlying more conductive material. 

A different ρb pattern was imaged approaching Parengaru Creek than in the other 

terrestrial profiles. The southern 10 m of L6 and the majority of L5 imaged conductive (≤ 

10 Ωm) subsurface material further inland than the other terrestrial surveys. Additionally, 

the upper 5 m of S1 imaged a ~2 m thick layer of conductive material (≤ 10 Ωm) at 3 m 

depth that became more resistive inland. Thus, the ERT surveys imaged an overall   
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Figure 4.3. Inverted ERT profiles of L7 and L8 running parallel to Parengaru Creek 
over the Raemaru phonolite flow and alluvial deposits (see Figure 4.1a). 
Conductive materials at depth may be colluvium or weathering products of 
older lava flows produced during a volcanic hiatus [Thompson et al., 1998]. 
Borehole B1 was drilled through 3 m of clay-rich soil (blue layer in B1) 
before refusal (shown as red in B1).  
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transition from higher ρb (≥ 50 Ωm) to lower ρb (≤ 5 Ωm) moving towards the lagoon, and 

a slightly smaller decrease in ρb moving towards Parengaru Creek. 

4.4.2. Seafloor ERT surveys 

Seafloor ERT surveys (S1-S6) imaged ER anomalies across the intertidal zone and 

into the proximal, subtidal portion of the lagoon (Figure 4.4a). Across the mouth of 

Parengaru Creek, S3 detected two moderate ρb (≥ 5 Ωm) zones at 5 m depth, matching the 

ρb signal from S1 running along the creek. S2 also imaged the same feature at 5 m depth 

that extended seaward for 10 m beyond the intersection with S3, thereafter becoming 

increasingly conductive throughout. Moving north along the beach, S4 imaged an even 

more resistive ρb anomaly than across the mouth of Parengaru Creek, and S5 imaged 

moderate ρb zones 60-80 m into the lagoon. S6 showed a slight ρb increase at the seaward 

end that may be connected to the high ρb feature to the north in S5. 

At the Taakoka passage, two seafloor surveys (S7 and S8) imaged the top of a 

resistive anomaly (> 5 Ωm) 3-7 m below the SWI with more conductive overlying material 

(Figure 4.5). The interface depth of the resistive feature dipped from Taakoka towards 

mainland Rarotonga and became increasingly less resistive in the 40 m approaching the 

mainland. 

4.4.3. Lagoon ERT transects  

 Marine ERT surveys from Muri Lagoon (M1-M12) imaged changes in near-

surface ρb structure over 0.5 km2 (Figure 4.6a). Every inverted marine ERT line became 

more resistive with depth, but not uniformly. Within 2 m below the SWI, the ρb mainly 

remained ≤ 0.5 Ωm, where ρb values > 0.5 Ωm began at depths of 1.1 m ± 0.9 m. All of the 

marine surveys detected zones with ρb > 0.8 Ωm, and 45% of the profiled subsurface was 

comprised of ρb > 1.5 Ωm (Figure 4.6a). Indeed, large, more resistive features were imaged
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Figure 4.4. a) Inverted ERT results and b) inverted ERT results with contours at interpreted ρb values for terrestrial and 
seafloor ERT surveys at the outlet of Parengaru Creek. Resistive features characteristic of fresh porewater extend 
into the lagoon under the deltaic sandflat and 50 m north of the creek, indicating potential for active fresh 
groundwater discharge to the lagoon. Approximate geologic and hydrologic interpretations of the ρb values are 
given in the top and bottom rows of the legend, respectively, incorporating the incorporating analysis with 
Archie’s Law (Equation 4.1), the time-series study in Befus et al. [2013], and estimated values of heterogeneous 
geology after Telford et al. [1990].
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Figure 4.5. The seafloor ERT inverted profiles for S7 and S8, spanning the passage between the Taakoka islet and mainland 
Rarotonga. 
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southwest of Taakoka (M11-12) ≥ 5 Ωm and in the surveys running near the reef crest (M4-

5) ≥ 3 Ωm. Lower magnitude ρb signals (0.8-1.5 Ωm) were broadly distributed in the lagoon 

subsurface as a hummocky interface (e.g., M9-11) or as individual pockets (M1-3). Near 

the shore, more resistive water column ρf values (≥ 0.5 Ωm) were required by the inversions 

than the measured ER for lagoon water (0.175 Ωm), predominantly in very shallow (< 1 

m) portions of the lines (Figure 4.6a). 

4.4.4. Forward model simulations 

I simulated ERT surveys with a prescribed ρb,true structure to test the ability of the 

marine ERT methods to image resistors despite the overlying conductive lagoon water and 

seawater-saturated materials. The ρb,true structure for the forward models consisted of a 

buried resistive body (500 Ωm, consistent with the resistive layer in L7 and L8) overlain 

by 2 m of more conductive sediment (ρb = 0.431 Ωm with ρf =0.175 Ωm, n=0.5, and m=1.3 

in Equation 4.1) (Figure 4.7a and f). The resistive body spanned the center 20% of the 

modeled survey and was bounded on each side by the conductive sediment. In each 

simulated survey, a 1.4 m layer of very high conductivity (0.175 Ωm, average lagoon ρf) 

was included at the surface, corresponding to the study area average lagoon depth. This 

ρb,true structure extended infinitely in the line-perpendicular y-direction. While many 

combinations of ρb,true structure and values may be explored, the structure adopted here 

tested a maximum current channeling scenario, describing the lowest resolution of a 

resistive body buried below layers of very conductive, shallow water and very porous 

sediment saturated with the overlying water. 

Simulated seafloor and marine field configurations accurately imaged the position 

of the assigned resistive anomaly, but the individual relative resolutions of the ERT surveys 

were not sufficient to recover the full magnitude of the high ρb,true feature (Figure 4.7).



 

 

93 

Figure 4.6. a) Inverted marine ERT survey results and b) contours at interpreted ρb values from Muri Lagoon (M1-M12). 
High ρb features existed throughout the lagoon. Lithology or porewater salinity changes could explain the ρb 
patterns. The locations of the onshore surveys are outlined in red. Approximate geologic and hydrologic 
interpretations of the ρb values are given in the top and bottom rows of the legend, respectively, incorporating the 
time-series analysis by Befus et al. [2013], Archie’s Law (Equation 4.1), and estimated values of seawater-
saturated heterogeneous geology developed from the forward models in this study. 
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While both models included constraints for the water layer, the modeled marine inversion 

(Figure 4.7g) independently solved for the ρf of the water layer. Conversely, the geometry 

and ρf of the water layer in the modeled seafloor survey (Figure 4.7b) were constant during 

the inversion and were thus perfectly resolved.  

Both inverted ERT simulations resolved the conductive layer between the water 

and resistive body, but the smaller electrode spacing of the seafloor survey (Figure 4.7b) 

detected the boundary of the resistive body better. Away from the resistive body, both 

inverted profiles replicated the starting model to within ± 0.25 Ωm for the majority of the 

domains. Below the SWI, the inverted marine simulation (Figure 4.7g) included 

excessively conductive values that resulted, in part, from the 5 m electrode spacing not 

sufficiently resolving this interface. This low ρb just below the SWI also occurred in the 

inverted field CRP sections (e.g., Figure 4.7e), suggesting the field marine inversions 

(Figure 4.6) also lacked the resolution to accurately model the shallowest sediment. 

Within the resistive anomaly, the maximum ρb values for the seafloor and marine 

simulations were 8.1 Ωm and 12.4 Ωm, respectively, returning < 2.5% of the starting model 

ρb,true maximum. The marine simulation modeled the edges of the resistive feature 

accurately to 12 m depth (Figure 4.7g and h). The simulated seafloor survey, instead, only 

resolved the upper ~5 m of the resistive zone, yielding a resistive structure that disappeared 

or became more conductive at depth (Figure 4.7b and c). Thus, the maximum electrode 

spacing (9 m) of the seafloor survey failed to detect the prescribed structure at > 10 m 

depth, setting a lower limit of interpretation for the field seafloor surveys of ~ 10 m (i.e., 

depth of investigation). It is important to note that the model resolution is inherently linked 

to 1) the inversion setup that includes the measurement errors in the data and the 

regularization or noise dampening used and 2) the ERT data collection that incorporates 

ρb,true structure, electrode spacings, amounts of current injected, and electrode
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Figure 4.7. Seafloor (a-c) and marine (f-h) simulations and comparison to inverted field profiles of S7 (d) and M12 (e). The 
ρb,true structure for the a) seafloor and f) marine forward model included a resistive body over 20% of the total line 
length. White circles in a) and f) mark the electrode locations for the simulated surveys. Inversions of the 
simulated surveys (b and g) detected the resistive anomaly but could not recover the ρb,true magnitude, as indicated 
by the low relative model resolutions within the anomalies (c and h). The field data (d and e) detected similar ρb 
features to those imaged by the forward models (b and g). 
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configurations. Changing these parameters would result in different model resolution 

patterns. Thus, comparing the model resolutions of different surveys quantitatively must 

account for these variables, or the model resolutions can be used qualitatively through the 

relative model resolutions as in this analysis (Figure 4.7c and h). 

4.5. DISCUSSION 

4.5.1. Forward model discussion 

Despite a significant reduction in the ρb of the resistive anomaly imaged by 

simulated ERT surveys from ρb,true, both forward models accurately located the 500 Ωm 

resistive body. This ρb decrease resulted from current channeling in the simulated 

conductive seawater and surrounding sediment.  

The simulated analog of the ρb structure using the water conductivity and average 

depth of Muri Lagoon closely resembled the field surveys that detected resistive material 

below the lagoon. At the Taakoka passage, S7 and S8 imaged a resistive anomaly with ρb 

≤ 11 Ωm compared to the 8.1 Ωm of the resistive body in the seafloor simulation. This 

resistive feature in the field data was imaged shallower than the 10 m investigation depth 

suggested by the simulation, but the ρb,true for this anomaly remains unconstrained. The 

thicker layer (~5 m) of conductive material above the anomaly would also channel current 

away from this resistive feature more than in the simulation, leading to less ability to detect 

the resistive body. However, more resistive sub-bottom material across the end of S7 and 

throughout S8 would have less current channeling and resolve the resistive anomaly better 

than the synthetic seafloor survey. Therefore, S7 and S8 can and did detect a resistive 

anomaly with a ρb magnitude that is consistent with a ρb,true = 500 Ωm anomaly below 3.4 

m of very conductive material. 



 

 97 

Similarly, the field CRP surveys, specifically those near the Taakoka passage, could 

and did image ρb anomalies (≤ 10.5 Ωm) with similar magnitude as the simulated CRP 

survey (ρb  = 12.4 Ωm). Both synthetic ERT surveys represented a worst-case scenario for 

high current channeling and low model resolution below the conductive water and 

sediment layers, and the field CRP surveys would have better detection capabilities than 

the simulations for an identical ρb,true  structure. Since the simulations could accurately 

detect conductive materials away from the resistive body, ERT surveys with purely low ρb 

accurately omitted nonexistent resistive features, but much smaller resistive anomalies 

could exist below the detection limit of the current ERT setup. Similarly, the field CRP 

surveys would have been able to image a very resistive body (e.g., volcanic rock) within 

the 12 m depth of investigation, but with potentially less resolvability for resistive bodies 

deeper than the simulated 3.4 m anomaly. Thus, the resistive ρb anomalies in the field CRP 

data were real geologic features and not inversion artifacts.  

4.5.2. Field ERT interpretation 

Variations in ρb may be due to lithology or porewater salinity or both in the coastal 

ERT surveys in this study. Therefore, I use the insights from previous studies of the 

hydrology and geology of Muri to guide the interpretation of the ERT results, where 

possible, and develop multiple possible hypotheses where I lacked sufficient corroborating 

data. As is the case for all geophysical surveys, ground truth measurements are critical for 

interpreting the nonunique results, but this is not always feasible to obtain for every entity 

detected in field data. 

The two inland surveys (L7 and L8) were both conducted on the northern branch 

of the Raemaru phonolite deposits south of Parengaru Creek (Figure 4.1). At 150 m on L7, 

I drilled through 3 m of clay-rich soil before refusal on a very coherent rock layer (B1, 
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Figure 4.3). Therefore, I interpret this high ρb layer to represent the Raemaru phonolite 

flow deposit, but no sample could be recovered. While the layer thickness cannot be exactly 

extracted from these ERT surveys, mapped lava flows on Rarotonga can be as thick as 5 m 

with an average of 1-2 m [Thompson et al., 1998], matching the resistive layer thickness 

detected in both profiles (Figure 4.3). The transition to more conductive materials (ρb ≤ 20 

Ωm) at depth may have imaged freshwater-saturated colluvium (ρf =1-10 Ωm, n=0.2-0.3, 

and m=1.3 in Equation 4.1) and/or clay-rich weathering products formed during the hiatus 

between the mafic and felsic volcanic activity on Rarotonga [Thompson et al., 1998]. 

Interestingly, L8 only partially imaged the resistor interpreted as Raemaru deposits, 

matching the contact with Pleistocene alluvial deposits mapped further inland (Figure 4.1a) 

and visible in a road cut at 250 m on L8. A thicker clay-rich layer would channel more of 

the injected current, lowering the detectability of the lava flow deposit over the upper 

portion of L8. These inland surveys did not detect potential recharge zones in the form of 

discontinuous resistive anomalies, but the ERT surveys imaged the shallow 

hydrostratigraphy potentially consisting of a thin (3-5 m) layer of conductive clay-rich 

alluvium overlying the Raemaru phonolite flow deposits that could confine older, but 

similar, sediment. 

At the outlet of Parengaru Creek, ERT profiles potentially detected the water table 

and the transition from fresh to saline groundwater. Two pits, P1 and P2 (Figure 4.4), dug 

near the ERT surveys showed a 0.8 m (P1) and 1.5 m (P2) thick layer of unsaturated, 

unconsolidated sand reaching the water table, and extended 0.4 m below the water table in 

similar sediment. These unsaturated sediments would explain the high ρb (>100 Ωm) of the 

uppermost layer of the terrestrial surveys (Figure 4.4b). Then, if ρb > 100 Ωm marks the 

extent of the vadose zone, saturated sediment would lie everywhere below this layer in L1-

L6, and changes in the inverted ρb values would reflect changes in porewater conductivity, 
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neglecting changes in sediment type or packing. ERT imaged diminishing ρb values in the 

phreatic zone from at least 50 Ωm to at least 10 Ωm near the shoreline, detecting a transition 

in ρf from at least 10-26 Ωm to 2.4-5 Ωm (n=0.3-0.6). This ρf corresponds to < 2 PSU 

[Perkin and Lewis, 1980], indicating fresh porewater in the phreatic zone. Below the 

interpreted fresh groundwater, the ERT results imaged a reduction in ρb to ≤ 1.5 Ωm (ρf < 

0.3-0.8 Ωm, n=0.3-0.6; > 8-20 PSU), suggesting increasingly saline porewater. Together, 

these ERT surveys clearly delineated the transition from the freshwater lens and underlying 

saltwater wedge (Figure 4.4b), where L2 running along the high tide mark was conductive 

throughout, except for a shallow more resistive layer that may be the alongshore expression 

of the upper saline plume and fresh groundwater discharge patterns imaged at the southern 

end of L2 [Befus et al., 2013]. Furthermore, tracing the ρb-approximated water table in L3 

and L4 gave a horizontal hydraulic gradient of ~1.4 × 10-2, within the spread of gradients 

measured by pressure sensors < 15 m away [Befus et al., 2013].  

Alternatively, the terrestrial hydraulic gradient can be estimated by using the 

apparent slope of the fresh-salt porewater ρb interface with the approximation of sediment 

homogeneity and hydrostatic conditions [Ghyben, 1888; Herzberg, 1901]. If ρb < 5 Ωm 

and ρb > 5 Ωm are used as the approximate threshold of the fresh-salt porewater interface, 

the hydraulic gradient required to support such an interface was ~7.6 × 10-3, which is within 

the uncertainty introduced by the discretization of the inversion. Together with the 

homogeneous sediment found in the pits, the potential salinity distribution imaged in the 

ERT surveys may therefore characterize the shallow (< 8 m) shoreline aquifer as a classic 

homogeneous flow system with parabolic groundwater pathways [Badon-Ghyben, 1888; 

Herzberg, 1901; Glover, 1959] and without significant heterogeneities [Dose et al., 2013; 

Lu et al., 2013] in direct contrast with [Befus et al., 2013]. 
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Importantly, the classic pattern of coastal groundwater discharge through 

homogeneous material [Badon-Ghyben, 1888; Herzberg, 1901] did not exist adjacent to 

nor under Parengaru Creek. Instead, the sharp ρb interface imaged in L3 and L4 was much 

broader (32 m) in L5, with some change imaged in L6 as well (Figure 4.4). In S1, the 

deepest subsurface detected never reached below 15 Ωm, extending into the lagoon 

subsurface. Since Parengaru Creek underwent inundation by the tide for the full extent of 

the ERT surveys, lower ρb near the creek may be explained by infiltrating saline seawater. 

However, the onset of ρb ≥ 10 Ωm materials in S1 at depths > 5 m complicate the 

interpretation of L5 beyond the simplest explanation of saltwater intrusion from the creek. 

An indication of transience in ρb structure, and thus salinity, was imaged in S1, where an 

apparent lens of conductive ρb values persisted at the surface of the profile near the lagoon 

that then moved deeper into the section further inland. This may be a dynamic ρb feature 

as different level tides interact with the stream and underlying groundwater during the wet 

and dry seasons. The apparent dissonance between S1 and L5 may be explained by more 

active flushing of the sediment below the stream, while the infiltration of saltwater during 

higher tides diffuses slowly through the neighboring sediment, explaining the gentler 

gradient in ρb imaged by L5. An increase in sediment size and packing provide an 

alternative explanation for the higher ρb under Parengaru Creek, fitting the assumption that 

the high energy environment of the creek could host larger sediment sizes, but L5 showed 

more conductive material, requiring deposition of fine sediment (e.g., clay) or less 

compaction, within close proximity to both S1 and the other terrestrial surveys with similar 

> 5 m deep ρb structure. 

Seafloor ERT surveys near the outlet of Parengaru Creek detected more resistive 

subsurface anomalies than seawater saturated sand (ρb =0.4-1.5 Ωm with ρf = 0.175-0.2, 

n=0.2-0.6). Across the mouth of Parengaru Creek, S3 imaged a continuation of ρb values 
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consistent with the interpreted fresh groundwater below the creek in S1 (Figure 4.4b), but 

this feature becomes more conductive further into the lagoon (S2). Even so, these ρb 

anomalies were well above the cutoff for seawater-saturated sand further into the lagoon 

than in S6, towards the edge of the deltaic sandflat. Supporting the porewater salinity 

interpretation of these signals, S6 was the location for the previous time-lapse ERT, 

hydraulic head, and temperature measurements that described fresh groundwater and net 

heat discharge into the lagoon [Befus et al., 2013]. Additionally, boreholes B2 and B3 

encountered predominantly sandy material to 3 m depth and detected some freshwater 

component in porewater samples 3 m below the SWI (< 15 PSU). Resistive anomalies (ρb 

> 5 Ωm) in S4 and S5 may also have been related to porewater, but B3 did not extend deep 

enough to reject a geologic difference as the source of the anomaly. Interestingly, the 

anomaly in S4 was much more resistive than the other seafloor surveys, potentially 

detecting a different and/or more consolidated lithologic unit. 

ERT surveys across the channel between Taakoka islet and the mainland revealed 

more resistive material than would be expected for seawater-saturated sediment (ρb ≥ 1.5 

Ωm). Given the islet is comprised of Raemaru phonolite deposits [Thompson et al., 

1998](Figure 4.1a), this resistive layer could be the continuation of these lava deposits 

under the lagoon, overlain by 3-5 m of seawater-saturated sediment (Figure 4.5). Previous 

ER soundings from Rarotonga also imaged interpreted Raemaru deposits (ρb = 5×105 Ωm) 

in Muri at 13.7 m depth, north of the current study area [Ricci and Scott, 1998]. The ρb 

value of the lava deposits from the ER sounding is many orders of magnitude larger than 

that imaged in S7 and S8 (5-11 Ωm). Basaltic rocks can be very resistive (ρb,true  = 101-108 

Ωm with n = 0) [Telford et al., 1990], but saltwater saturation of the volcanic rock and 

overlying layers would greatly reduce the ρb,true and the ability to resolve the basalt at depth. 

No sensitivity testing in Ricci and Scott [1998] restricts the reliability of 5×105 Ωm to be 
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the expected value for ρb of the Raemaru flow deposits. If instead the 500 Ωm value from 

L7 and L8 is applied as the ρb value for the local Raemaru deposits and considering the 

low detectability of this feature below conductive material with the synthetic seafloor 

model results, the resistive materials in S7 and S8 could be the Raemaru deposits. 

Combining these results with the very high ρb imaged nearby in the lagoon, if a 500 Ωm 

resistor were to exist in the lagoon subsurface, any connected porosity within the geologic 

entity could be filled with seawater, drastically reducing the ρb of the fluid-rock 

combination. Saturation of geologic materials with conductive water can thus make rock 

appear orders of magnitude more conductive than a dry, pure sample [Telford et al., 1990]. 

Difficulties encountered in collecting S7 in the field added other restrictions in 

interpreting the ρb features of the Taakoka passage. The high Eabs (9.5%) of S7 may have 

resulted from high repeat error for several surface electrodes and geometrical problems, 

both of which are likely related to the ERT cable being draped over multiple coral heads 

with very irregular geometries. These bad data near the SWI resulted in poorly constrained 

ρb values in the upper portion of S7 (Figure 4.7d). Indeed, the very conductive values 

centered on 4 m depth from 10-50 m on S7 may not be accurate and also lower the ability 

to detect features below this conductive layer. Therefore, the apparent termination of the 

resistive anomaly approaching the mainland may be an artifact of the inversion and does 

not signify a disconnection between the Raemaru flow deposits on Rarotonga and Taakoka. 

The dense network of CRP surveys near the Taakoka passage contribute additional 

evidence for the existence of Raemaru flow deposits within the lagoon subsurface. South 

and west of Taakoka, an extensive resistive anomaly (ρb ≥ 5 Ωm) was detected by multiple 

marine ERT surveys (M3, M10-M12) (Figure 4.6). As suggested by the forward CRP 

simulation in Section 4.5.1., this high ρb was consistent with the CRP signature of a 500 

Ωm anomaly buried in conductive sediment. Therefore, if L7 and L8 imaged a layer of the 
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Raemaru phonolite deposits, then the ρb anomaly imaged between Taakoka and the 

mainland could also result from similar lava flow deposits. Also, the resistive anomaly 

southwest of Taakoka was disconnected from the resistive feature along the reef crest by 

ρb values characteristic of seawater-saturated sand (ρb < 1.5 Ωm) and may therefore be a 

separate anomaly. 

Alternatively, I surmise that this resistive feature along the reef crest represents a 

decrease in the porosity of the lagoon substrate, potentially due to reef diagenesis (e.g., 

cementation). Overall, the ρb values in M4 and M5 ranged from 1.5-5 Ωm, whereas the 

CRP results near Taakoka reached 10 Ωm. This difference in ρb values is not definitive on 

its own in explaining the uniqueness of the two signals, especially since M4 and M5 were 

conducted in deeper water (up to 2 m) and may thus suffer from lower resolution. The 

pervasive ρb > 1.5 Ωm in the subsurface imaged by M4 and M5 may be volcanic rocks, but 

a reduction in porosity due to the lithification of the carbonate sediment also provides a 

reasonable physically-based explanation. Indeed, carbonate cements may precipitate 

preferentially at reef shelf margins when compared to their more physically and chemically 

protected lagoons [Moore, 2001]. The precipitation of cements that are more resistive than 

seawater (i.e., CaCO3) and fill the pore spaces would increase the ρb of the medium, as seen 

when comparing a mid-lagoon ERT profile (e.g., M9) with one near the reef crest (e.g., 

M5) (Figure 4.6). The ubiquity of high ρb along the reef crest is more consistent with a 

lithologic rather than a porewater composition explanation. Therefore, I interpret this distal 

portion of the lagoon to be comprised of cemented reef materials. Hence, more conductive 

materials at depth within 300 m of the shore (e.g., M7-M9) would correspond to 

uncemented and/or less cemented carbonate sands. Interestingly, a single gap in the ρb > 

1.5 Ωm values along the reef crest (northeastern end of M5 in Figure 4.6) fit the linear 
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extrapolation of Parengaru Creek; but, no other morphologic evidence is available to 

support a connection between these low ρb values and geomorphic processes. 

While the local geology provides potential reasons for the resistive anomalies 

beneath the lagoon, fresher, and therefore more resistive, porewater could also contribute 

to high ρb in the ERT surveys. Applying Equation 4.1 to get ρb > 3 Ωm measured in the 

CRP surveys required brackish porewater with ρf > 0.9-1.5 Ωm (~6.7 PSU). However, if 

the effects of current channeling and resolution are considered, the porewater ρf must have 

been much fresher (> 150-255 Ωm, PSU < 0.04) to create an anomaly with ρb ~ 500 Ωm. 

Very fresh porewater could exist in the lagoon subsurface, especially near the Taakoka 

passage where these ER values were detected and the highest 222Rn activities, an indicator 

of SGD, were measured in the lagoon water [Tait et al., 2013]. Porewater samples from 

three boreholes (B4-B6) drilled to 2 m below the SWI showed lagoon water salinities. No 

core was recovered from these boreholes. Ground truth measurements reaching 5 m below 

the SWI in the lagoon are required to separate the geologic and hydrologic ρb,true  

contributions and was beyond the capabilities of the equipment available. Thus, the source 

of ρb anomalies in the lagoon subsurface may arise from porewater salinity and/or lithology 

with spatially heterogeneous proportions of each. 

4.5.3. Implications for groundwater flow 

 The ERT surveys imaged the electrical signature of the geologic structures and 

salinity distributions of the Muri Lagoon area that together constrain the hydrogeologic 

setting. Thus, these ERT surveys provided evidence for geologic structure that could 

control groundwater flowpaths towards and into the lagoon. In turn, my results resolved 

basic hydrogeologic variability that may be common in reef lagoons and coastal aquifers 

and offer insight into heterogeneous coastal environments.  



 

 105 

Interpreting geologic structure with ERT surveys in coastal settings is obscured by 

changes in the porewater salinity, both onshore and offshore. Current channeling in marine 

waters and saltwater-saturated sediment limit the ability of ERT surveys to resolve 

underlying features, as shown in the simulations in this study and by others [Loke and Lane, 

2004; Day-Lewis et al., 2006; Orlando, 2013]. Disentangling the lithologic and porewater 

contributions should be performed only after this sensitivity analysis, which is itself a 

complex source of uncertainty that requires additional evidence (i.e., ground truth) to 

unravel.  

At the outlet of Parengaru Creek, the terrestrial ERT surveys imaged what may be 

a well-developed freshwater lens overlying a saltwater wedge (L3 and L4, Figure 4.4b). 

This near-ideal geometry indicated the absence of significant low permeability layers 

within the shallowest 10 m of the subsurface that would reshape the near parabolic salinity 

interface [Dose et al., 2013; Lu et al., 2013]. Instead, the ERT results more closely matched 

the porewater salinity distribution that results from parabolic groundwater pathways of a 

homogenous coastal aquifer [Glover, 1959]. However, deeper flowpaths to the lagoon may 

exist: the stratigraphy outlined on land by L7 and L8 (Figure 4.3) detected an electrically 

conductive feature at depth, interpreted as saturated sediment or clays, that may allow or 

confine groundwater flow, respectively, in the older mafic lavas and buried colluvium. 

Additionally, L3 and L4 (Figure 4.4b) had narrower transitions from resistive to conductive 

material (i.e., mixing zone) moving seawards than the tidally-affected L5, suggesting more 

uniform groundwater flow away from the hydrodynamics of the tidal creek. The 

dimensions of the mixing zone can only be inferred with these ERT measurements, as the 

absolute porewater salinities remain unknown. Thus, this study demonstrates the suitability 

of ERT for providing information needed for qualitatively constraining coastal aquifer 

structure. Building off of this study, future ERT investigations of the mixing zone could 
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use select ground truth measurements (e.g., wells for porewater samples) to quantitatively 

constrain the ρf and ρb  signatures of mixing zones for more robust characterization of 

coastal stratigraphy and hydrogeology. 

Mapping the geology and subsurface variability of the lagoon with the interpreted ERT 

sections indicated that the Raemaru volcanic flow deposits may promote the terrestrial 

groundwater discharge ≥ 200 m into the lagoon (Figure 4.8). Some volcanic islands are 

recognized to support extensive SGD where lava tubes are common [Dimova et al., 2012], 

but there is no independent evidence for lava tubes existing on Rarotonga. However, 

contemporaneous mapping of radioisotopes in the Muri Lagoon tracked high 222Rn 

activities and low salinity lagoon water exactly where my ERT surveys imaged the 

extension of the Raemaru phonolite into the lagoon [Tait et al., 2013].  Thus, the basaltic 

rock between mainland Rarotonga and the Taakoka islet appears to support active 

groundwater flow to the lagoon. Additionally, a southern branch of the Raemaru deposits 

may provide an additional conduit for terrestrial groundwater to the lagoon (Figure 4.8), 

where other high 222Rn activities were measured but no ERT surveys were conducted [Tait 

et al., 2013]. Indeed, these lava flows may even extend to the reef crest [Thompson et al., 

1998], allowing terrestrial groundwater and solutes to reach the reef face. This study 

mapped the role of basalts as an active hydrostratigraphic unit, serving discontinuously as 

a fractured medium, a conduit system, and/or a confining unit that can deliver fresh SGD 

and its chemical constituents to coastal waters.  

As most of the Rarotongan lagoon is assumed to have no volcanic rocks near the 

SWI, the hydrogeologic structure of the nearshore lagoon would be controlled by carbonate 

sands and limestone (Figure 4.8), similar to many carbonate islands [Vacher and Quinn, 

2004; Rankey and Garza-Perez, 2012]. On Rarotonga, little limestone is present at the  



 

 107 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Interpreted hydrostratigraphy of the Muri Lagoon. The Raemaru phonolite 
flows are hypothesized to extend into the lagoon subsurface and allow SGD 
> 50 m beyond shore. The more resistive subsurface along the reef crest 
suggested reductions in porosity and more advanced diagenesis of the 
carbonate sediment than closer to shore. Geology identical to previous 
studies (see Figure 4.1) are shown in grey.  
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surface [Moriwaki et al., 2006], but there is unknown potential for carbonate formation and 

consequent dissolution since the late Pleistocene eruptions that created the island. 

Limestones from other reefs in the southern Cook Islands of Pleistocene age have 

undergone significant dissolution, whereas Holocene reef deposits are much less cemented 

but retain most of their primary porosity [Hein et al., 2004]. Focused dissolution and 

karstification may occur in carbonates where they overlie volcanic basement [Ramalho et 

al., 2013], such as in northern Guam and Bermuda [Mylroie and Vacher, 1999; Taboroši 

et al., 2003; Mink and Vacher, 2004]. In these systems, the less permeable and less reactive 

basement rocks preserve the aggressive acidity of groundwater along the basement-

carbonate contact, forming dissolution features [Mylroie and Vacher, 1999]. As a 

composite carbonate island, Rarotonga has a yet unknown potential for karstification 

providing conduits for groundwater flow, but the thin apron of coastal, non-volcanic, 

deposits offer a limited area for conduit formation. Thus, vuggy to karstic limestones may 

provide additional pathways for groundwater to discharge into the Rarotongan lagoon as 

well as from the reef shelf face, where underwater springs have been seen by divers, but 

remain undocumented. Carbonate dissolution may provide hidden conduits for 

groundwater flow in reef and other coastal environments that ERT surveys can expose.  

The ERT surveys in this study explored only the electrical structure of the shallow 

(<10 m) lagoon deposits and, thus, may have imaged only the Holocene limestones and 

more recent reef deposits and detritus, given an assumed reef accumulation rate of ~2 m/ky 

[Hein et al., 2004]. Rather than exposing dissolution features that would be expected in 

older carbonate deposits on neighboring islands [Hein et al., 2004], the ERT surveys may 

have imaged the cementation state of these deposits through the consistently high ρb (≥ 1.5 

Ωm) beginning ~400 m into the lagoon (Figure 4.6). Therefore, less circulation of seawater 

and a lower potential for SGD is expected through the less porous lagoon subsurface 
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materials within 200-300 m of the reef crest. The persistence of terrestrial groundwater 

flowpaths through the Holocene deposits is unlikely to extend far into the lagoon, unless 

the resistive layer imaged in L7 and L8 serves as a confining unit and continues below the 

lagoon sediment, deeper than the CRP surveys imaged (~5-10 m). Alternatively, the 

interpreted reduction in porosity at the reef crest may reduce the permeability of the lagoon 

substrate, creating a transient focusing of both recirculated seawater and potentially fresh 

groundwater over long timescales, either redistributing cementation zones or  accelerating 

dissolution [Evans, 2003], respectively. Thus, marine ERT surveys can be used to map and 

track incipient diagenesis in reef deposits or any littoral sedimentary system, under the 

constraint that these features can be accurately detected. 

Together, the link between geologic structure of the nearshore environment and 

groundwater flowpaths on Rarotonga create pathways for dissolved chemicals. SGD can 

provide abundant nutrients to littoral waters, altering the biogeochemical reactions [Slomp 

and Van Cappellen, 2004; Kroeger and Charette, 2008] and biological activity [Miller and 

Ullman, 2004; Waska and Kim, 2010]. Impermeable geologic features can deform the 

interface between porewater and groundwater [Dose et al., 2013; Russoniello et al., 2013], 

changing the surface area and potential groundwater residence times that can control 

nutrient evolution [Spiteri et al., 2008; Santoro, 2009; Santos et al., 2012a] and other 

chemical processes [Charette and Sholkovitz, 2006; Werner et al., 2006; Cyronak et al., 

2012]. Thus, the lava flow deposits in the Muri Lagoon may provide a conduit for elevated 

nutrient fluxes from onshore, if the supplying groundwater system became contaminated. 

However, the volcanic rocks may alternatively serve as an impermeable barrier that would 

block nutrient transport into the hydrostratigraphic unit supplying the SGD. 

Finally, the development and transformations of coastlines alter the topographic 

and hydrogeologic framework through which groundwater flows over many spatio-
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temporal scales [Turner and Nielsen, 1997; Horn, 2002; Russoniello et al., 2013]. 

Erosional and depositional processes affect the shallow subsurface, creating sediment 

aprons over heterogeneous geologic systems [Rankey and Garza-Perez, 2012; Ramalho et 

al., 2013]. This dynamic, composite coastal structure controls groundwater pathways, 

contributing to and creating the potential for SGD into littoral and marine environments. 

SGD and coastal groundwater studies must consider such hydrostratigraphic complexity 

and incorporate the time and length scales appropriate to the local system to avoid 

inaccurate accounts of the targeted physical and chemical processes. 

4. SUMMARY AND CONCLUSIONS 

I investigated the hydrogeologic setting of Muri Lagoon, Rarotonga, using an 

extensive network of electrical resistivity surveys. The surveys revealed the local terrestrial 

and reef hydrostratigraphy and outlined the geometry of the coastal mixing zone. My 

results suggested the lagoon is partially underlain by volcanic rocks in addition to carbonate 

sediment at various stages of cementation and which may become increasingly cemented 

towards the reef crest. With these insights, I interpreted potential groundwater pathways 

towards and into the Muri reef lagoon, providing the hydrogeologic framework for more 

detailed SGD and subterranean estuary studies. These results illustrate the importance of 

studying coastal groundwater flow and SGD in the context of the geologic setting. 

Additionally, I demonstrated that heterogeneity in the hydrostratigraphy persisted across 

the land-ocean interface, and this complexity may control coastal groundwater pathways. 

ERT surveys on land explored the potential for groundwater discharge into the reef 

lagoon. I used ground truth measurements, Archie’s Law, and previous studies to guide my 

analysis of ERT surveys. Near the outlet of Parengaru Creek, these surveys imaged a thin 

vadose zone (1-3 m) above an inland thickening freshwater lens. Higher electrical 
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conductivities below this interpreted freshwater lens corresponded to the saltwater wedge. 

This classical freshwater lens geometry suggested the shallowest water-bearing layer was 

unconfined and may discharge into the lagoon. Directly adjacent to Parengaru Creek (L5), 

the interpreted mixing zone appeared broader than in the other transects, where tides may 

force dynamic porewater mixing. Despite this tidal mixing, ρb values consistent with fresh 

groundwater extended 20 m into the lagoon. 

Waterborne ERT surveys in Muri Lagoon revealed non-uniform ρb structure within 

the lagoon subsurface. Most of the lagoon was underlain by conductive media that became 

slightly more resistive with depth, characteristic of seawater-saturated sediment. Southwest 

of the Taakoka islet, high ρb values were interpreted as a buried continuation of the 

Raemaru volcanic flow that connects to the islet. This portion of the lagoon also had high 
222Rn activities and lower salinity, both indicating a hotspot for groundwater discharge into 

the lagoon [Tait et al., 2013; Erler et al., 2014]. Thus, the volcanic structures within the 

lagoon may provide conduits for or confine groundwater flow, supporting SGD beyond 50 

m from shore. Pervasive high ρb along the reef crest was interpreted as the reduction of 

porosity in the reef carbonates, forming a barrier to porewater flow. Thus, the 

hydrostratigraphy of the reef lagoon consists of carbonate sediment undergoing variable 

cementation with discrete volcanic structures. 

To test the reliability of assigning conductive inversion results (ρb  ≤ 10 Ωm) to 

locally very resistive materials, I modeled ERT survey responses to a known ρb,true  

structure. Both seafloor and marine configurations could not fully recover high ρb,true 

magnitudes, which were shielded by overlying and adjacent conductive materials (current 

channeling). However, both simulations accurately located the onset and edges of the 

resistive body and resulted in similar anomalies to those detected in the inverted field 

sections. Therefore, these suggested that resistive materials could be imaged in the Muri 
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Lagoon and differentiated from conductive material. Given this potential for accurate 

detection and the similar ρb magnitudes imaged for a 500 Ωm resistor in the simulated and 

field surveys, the lava flow deposits imaged on land (L7 and L8) were also likely imaged 

by CRP (M3,M10-M12) and seafloor (S5-S8) ERT sections, mapping the lava deposits 

into the subsurface of the Muri Lagoon. 

With a network of ERT surveys, I comprehensively studied the hydrostratigraphy 

of a coastal groundwater system from onshore to submarine discharge and porewater 

recirculation zones. My results indicated SGD preferentially occurred where volcanic rocks 

were detected in the lagoon. Thus, the buried geologic structure of the coastal subsurface 

contributed to the location and magnitude of SGD. Future studies of coastal groundwater 

discharge in areas with heterogeneous geology must consider such complexity. 
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Chapter 5: 
 

Quantifying global groundwater ages4 

Letting the days go by, 
water flowing underground.  

Into the blue again, 
after the money's gone.  

Once in a lifetime, 
water flowing underground. 

      - from “Once in a lifetime” 
by Talking Heads [1980] 

ABSTRACT 
Timescales of groundwater dynamics can control how groundwater interacts with many 

Earth system processes, including weathering, the transport of solutes or contaminants, 

and hydrologic responses to climate change. In this study, I quantified the global volume 

and distribution of groundwater age that has been stored in shallow aquifers. First, I 

develop the methodology using a timescale of 50 years, a period relevant to current 

policy planning and similar to human generations. Then, I quantified the volume of 

groundwater storage associated with timespans ranging from 1-10,000 years. I modeled 

groundwater ages for shallow groundwater systems worldwide with 43,659 two-

dimensional flow and age-as-mass transport simulations guided by global datasets of 

basin geometric and hydraulic properties. The models suggested that less than 20% of the 

groundwater on Earth down to 2 km depth was recharged on average in the past 50 years. 

                                                 
4 Gleeson, T. P., K. M. Befus, S. Jasechko, E. Luijendijk, and M. B. Cardenas (submitted), The global 
volume, distribution, and lifespan of modern groundwater. 
 
Gleeson was the project lead, initiated the project with the ambition of using models to constrain young 
groundwater globally, and ran many of the spatial analyses. Jasechko amassed tritium analyses from around 
the world and modeled the percent modern groundwater in the samples. Luijendijk collected lithology and 
porosity datasets to compute the new volume of total shallow groundwater, developed the global average 
porosity curve, and found the best lithology-specific porosity-depth relationships. Cardenas provided 
overall guidance and constructive criticism throughout the project. I was responsible for the model 
development, implementation, quantitative post-processing of the datasets, and spatial analysis. All of us 
met almost weekly via video conference to discuss our progress, potential improvements, ways forward, 
and ways to keep me busy in perpetuity. 
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For most watersheds on Earth, this young groundwater was restricted to the upper 10 m 

of aquifers based on the models, but tritium samples show that young groundwater can be 

found much deeper in the real aquifers. For the full time series, the estimates of 

groundwater storage followed a cubic root of the groundwater age. Uncertainty in the 

storage estimate stemmed from the simplification of two-dimensional flow and 

uncertainty in permeability and porosity. This chapter represents my contributions to a 

collaborative project [Gleeson et al., submitted], and herein, I focus on the modeling and 

analysis components of this study within the context of the full study in addition to 

supplementary analyses and extensions. 

5.1. INTRODUCTION 

Groundwater can be considered a renewable resource, where under natural 

conditions dynamic equilibrium exists that balances “new” groundwater from recharge 

fluxes with losses from groundwater discharges. As a result of changing climatic conditions 

or groundwater extraction, this balance can be upset and results in changes to the volume 

of groundwater stored in aquifers through time. While groundwater is an ample resource 

for meeting agricultural, industrial, and municipal water needs, water extractions to meet 

these needs can lead to stressed and depleted groundwater systems [Wada et al., 2010; 

Gleeson et al., 2012]. 

Within the context of sustainable development, defined concisely as “development 

that meets the needs of the present without compromising the ability of future generations 

to meet their own needs” [Development, 1987], the preservation of groundwater resources 

depends on the balance between the demand for groundwater and replenishment of 

groundwater storage. In the past, sustainable groundwater use has been primarily quantified 

using the annual recharge rates, essentially following a simplified mass balance approach 

where the withdrawls are negated by the inputs, often overlooking the effects on and 
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responses of natural discharge features to pumping [Bredehoeft, 1997; Sophocleous, 2000; 

Bredehoeft, 2002]. To both protect groundwater supplies for future generations and meet 

present-day needs, mass balance approaches to managing groundwater must incorporate 

precise balances between groundwater recharge and discharge fluxes to quantify 

groundwater storage. 

Estimates of the inventory of groundwater age have been used to understand the 

sustainability of specific aquifers [Fogg et al., 1999; Zongyu et al., 2005], but a generic 

framework for understanding physical groundwater renewability has not been developed. 

In this chapter, I introduce a conceptual framework for quantifying aquifer-wide storage of 

groundwater renewed over a given timespan. These volumes of renewable groundwater 

provide pre-development estimates of the maximum groundwater storage in an aquifer over 

an established timespan, treating older groundwater supplies as not renewable over the 

same time period. This physical renewability of groundwater is itself a new conceptual 

model and is separate from viewing groundwater as an economically renewable resource. 

However, the physical renewability groundwater can be compared to consumptive 

groundwater use to potentially determine the sustainability of those groundwater practices. 

But then, how old is groundwater? Groundwater age is conceptually the duration 

water resides in hydrogeologic systems. Given the potential for water to enter groundwater 

systems multiple times over millennial timescales, a datum must be chosen to mark what 

constitutes the resetting of groundwater age. The moment infiltrating water reaches the 

water table (i.e., groundwater recharge) is a common definition of the beginning of 

groundwater aging [Bethke and Johnson, 2008]. Thus, groundwater ages in aquifer 

recharge zones are expected to be young, at least near the water table, while in discharge 

zones a parcel of water has presumably spent a longer time as groundwater. Therefore, 

groundwater age increases along flowpaths, yielding a distribution of groundwater ages 



 

 116 

across an aquifer that depends on both the hydraulics and hydrodynamics in the 

groundwater system. 

Groundwater residence time distributions (RTDs) characterize groundwater age in 

aquifers and have primarily been used to evaluate how chemical species, mainly 

contaminants, travel and are delivered through groundwater systems [Phillips and Castro, 

2005]. Both aquifer heterogeneity and hydrologic transience alter RTDs from similar 

homogeneous and steady-state configurations, leading to discrete areas of older and/or 

younger groundwater that retard or accelerate the transport of solutes used to construct 

RTDs, respectively [Cardenas and Jiang, 2010; Jiang et al., 2010; Gassiat et al., 2013; 

Gomez and Wilson, 2013; McCallum et al., 2014]. 

Characterizing groundwater age in natural systems generally relies on tracking 

chemical tracers from known recharge zones to wells or discharge locations. As the 

chemical tracer traverses an aquifer, diffusion and dispersion mix the target water with 

surrounding water and water-rock interactions occur, resulting in variable chemical 

concentrations through time reaching the sampling location recorded as breakthrough 

curves. The time it takes for the onset of the chemical to discharge until the last trace is 

gone marks the maximum extent of the groundwater RTD, where the species concentration 

through time can be used to understand flowpath lengths, aquifer properties, and the 

relative importance and/or mixing potential of given flowpaths. 

Groundwater RTDs have been studied using tracer experiments, naturally-

occurring chemical species in groundwater, and numerical methods. Man-made tracer 

experiments for obtaining groundwater RTDs are primarily useful over short flowpaths or 

in very permeable systems (e.g., karst), as groundwater residence times can exceed 

thousands of years. Naturally-occurring geochemical tracers can also constrain 

groundwater ages by using known or estimated recharge concentrations and supplying 
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models for the physical processes that can transform the tracers (e.g, radioactive decay, 

water-rock interactions, and mixing). 

Numerical analyses of groundwater age have progressed from simplified systems 

of only head-driven advection (i.e., plug flow) to incorporate a wide range of 

hydrodynamics [Bethke and Johnson, 2008]. Solute transport simulations following the 

tracer experiments provide breakthrough curves and thus groundwater RTDs sampled at 

wells or discharge features. Particle tracking is another method for numerically modeling 

RTDs and uses a pre-calculated groundwater flow field to track and time the movement of 

artificial particles through an aquifer [Suckow, 2014]. Another method for simulating RTDs 

treats groundwater age as mass in an advection-diffusion-dispersion framework that allows 

for the direct simulation of continuous groundwater ages throughout hydrologic systems 

[Goode, 1996; Ginn, 1999], rather than measuring groundwater ages at discharge locations 

as required by other methods. 

Instead of using RTDs in the traditional application for assessing the fate and 

transport of chemical species in groundwater, I modeled groundwater age to investigate the 

potential global storage of groundwater younger than 50 years old. Surface hydrology 

constrained the model domains and was used to assign the best currently available 

hydrologic and hydrogeologic global datasets to the models. These groundwater volumes 

provided estimates of the total volume and spatial distribution of groundwater renewed 

every 50 years under steady state conditions (i.e., without pumping or transient boundary 

conditions). This study aimed to quantify the volume of groundwater naturally renewed 

and stored over a timescale (50 years) on the order of a single human generation. This 

estimate provided a baseline for understanding how much of the groundwater on Earth is 

renewed over time periods relevant to human generations and considered in policy 
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planning. Then, the framework for quantifying groundwater storage was used to estimate 

the volume of groundwater renewed over timescales of one to ten thousand years. 

5.2. QUANTITATIVE ANALYSIS OF GROUNDWATER AGE 

5.2.1. Hydrologic datasets 

Global datasets of hydrologic parameters guide the groundwater age models. The 

data were extracted from a wide range of published lithologic and modeling analyses. First, 

the HydroSHEDS watershed delineation [Lehner et al., 2008] was used to set the geometry 

for the models and extract values from other datasets, where each watershed on Earth was 

assigned an underlying hydraulic gradient, near-surface permeability [Gleeson et al., 

2014], near-surface porosity [Gleeson et al., 2014], a characteristic value for the decay of 

porosity with depth [Ehrenberg and Nadeau, 2005], and half the mean distance between 

first-order perennial streams [after Lehner et al., 2008]. Each of these input parameters 

were assigned to individual watersheds (n=931,883 watersheds). My analysis with the 

HydroSHEDS watersheds only includes ice-free and permafrost-free land areas, excluding 

Antarctica and large portions of arctic and subarctic Asia, Europe, and North America. 

Thus, the watersheds included in the estimation of groundwater age are also restricted to 

ice- and permafrost-free regions. The hydraulic gradient was calculated using a 500 m by 

500 m interpolation of modeled steady-state water table depths [Fan et al., 2013] and a 

global elevation dataset [Danielson and Gesch, 2011]. The average hydraulic gradient of 

cells within each watershed was assigned as the model input. Near-surface permeability 

and porosity values were assigned using published values where available and lithologic 

averages elsewhere [Gleeson et al., 2014]. Porosity decay was assigned by the 

compressibility of each lithology with permeability decay proportional to porosity decay 

[Bernabé et al., 2003; Ehrenberg and Nadeau, 2005]. Once assigned to the watersheds, the 
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median values for the model parameters were 0.013 for the hydraulic gradient, 1.5 x 10-14 

m2 for the near-surface permeability, 0.19 for the near-surface porosity, and 5.2 km for the 

watershed-halfwidth. 

In addition to hydrologic datasets used for the groundwater age simulations, a 

global synthesis of tritium (3H) samples and mixing models by Gleeson et al. [submitted] 

provided a separate estimate of the global groundwater volume younger than 50 years old. 
3H concentrations in meteoric water peaked in the early 1960’s with the continued practice 

of above-ground thermonuclear testing, followed by a steady decay in 3H concentrations 

initiated by an international ban on these tests [Phillips and Castro, 2005]. 3H 

concentrations allow the estimation of groundwater ages by accounting for the radioactive 

decay of 3H in combination with models for how waters from different sources mix, which 

also requires the estimation of the spatiotemporal distribution of 3H [Phillips and Castro, 

2005]. In this way, approximate ratios can be calculated of the amount of modern 

groundwater in a sample. By also analyzing for 4He with 3H, an estimate can be made for 

the amount of time elapsed since the water molecules entered the groundwater system. 

However, in the 3H analysis from Gleeson et al. [submitted], only the ratio of modern 

groundwater was considered because the 4He data were less available internationally. More 

information on the calculation of the ratio of modern groundwater for the estimation of 

renewable groundwater storage is available in Gleeson et al. [submitted]. 

5.2.2. Binning hydrologic datasets for modeling 

To avoid simulating the groundwater flow and age transport problem for all 931,883 

watersheds, similar hydrologic attributes were binned to reduce the number of parameter 

combinations. Near-surface permeability, porosity, and the decay of each of these 

parameters are primarily controlled by surface lithology, so the published values for these 
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parameters were used directly from the assignment to the watersheds [Gleeson et al., 2014]. 

When a watershed extended over lithologic contacts, the most areally-extensive value was 

used, resulting in no more than a quarter order of magnitude difference in permeability in 

the data and was much less than the uncertainty in the permeability data (0.9-2 orders of 

magnitude) [Gleeson et al., 2014]. For the continuous distributions of water table gradients 

and watershed half-widths, binned model values were used to characterize the data based 

on the percentiles of each distribution (Figure 5.1). The water table gradients are roughly 

log-normally distributed, and 33 bins were used based on the logarithms of water table 

gradients, with increasing bin sizes away from the median value. Watershed half-widths 

had a long-tailed normal distribution, and so again 33 bins were used to discretize the half-

widths. To represent the larger watersheds (> 104 m), sixteen evenly spaced bins for every 

5 km were added to the original 33 watershed half-width bins startingwith 10 km up to 100 

km, the maximum allowed in the HydroSHEDS analysis. By simulating only combinations 

of these discretized parameters from the global datasets, only 43,659 model runs could be 

used to describe all 931,883 watersheds considered in this analysis. 

5.2.3. Numerical simulation of groundwater flow and age transport 

Groundwater age fields were modeled with two-dimensional (2D), steady-state 

groundwater flow and age transport simulations for water table-driven flow in fully water-

saturated conditions. The models were solved numerically with finite element models in 

COMSOL Multiphysics for the HydroSHEDS-based spatial assignment of input 

parameters. The domain geometry was designed after Tóth [1963] to describe groundwater 

flow from a watershed boundary (e.g., groundwater divide) to a corresponding drainage 

feature (e.g., river) (Figure 5.2). I assigned the model domains with lengths based on the 

average distance from the watershed boundary to the corresponding river, termed the   
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Figure 5.1. Distribution and binning of a) watershed half-widths and b) water table 
gradients from the assignment of hydrologic parameters to the global 
watersheds. Vertical dashed lines mark the locations of bin centers. 
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watershed half-width. The depth of the aquifer was assigned to be one fifth of the domain 

length. Thus, each model consisted of an effective ridge-to-valley groundwater flow system 

to simulate groundwater flow in each watershed. The effects of along-valley flowpaths and 

flowpaths not orthogonal to rivers on groundwater age distributions were not considered 

in this analysis, but subwatershed-scale hydrodynamics and heterogeneity can significantly 

alter groundwater flowpaths and residence times [Cardenas and Jiang, 2010; Jiang et al., 

2010; Gassiat et al., 2013; Gomez and Wilson, 2013]. The use of a watershed-based two-

dimensional model also does not incorporate regional flowpaths that could flow below and 

across the watershed boundaries used for the current analysis. However, the focus of these 

models are to elucidate the young groundwater component in groundwater systems. 

Considering multi-scale groundwater flow (i.e., regional and watershed-based systems) 

would more accurately determine the total distribution of groundwater ages in the 

subsurface. But, as long as the watershed-based domains encompass the range of ages used 

in the analysis of renewable groundwater, introducing larger scales of groundwater flow 

would only add insight to deeper and older portions of the flow fields.  

Instead of estimating water residence times through the whole surface and 

subsurface hydrologic system including precipitation, evapotranspiration, vadose zone 

processes, and groundwater, I focused on water residence times in the water-saturated 

subsurface. A global estimate of the water table at 30-arcsecond (~1 km) resolution [Fan 

et al., 2013] defined the uppermost boundary condition, using the mean watershed-wide 

gradient. Previous models of groundwater age and regional groundwater flow systems have 

often assumed the water table is at or near the surface as a subdued replica of topography 

[Tóth, 1963; Jiang et al., 2009; Cardenas and Jiang, 2010; Jiang et al., 2010], which can 

lead to artificially deeper groundwater circulation and/or greater than measured recharge  
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Figure 5.2. Model domain and boundary conditions for the flow and age-as-mass 
transport simulations. Thin black lines represent groundwater flowpaths to 
give an example but change depending on the hydraulic parameters. The 
black circle in the center of the upper boundary marks the hinge line 
between recharge and discharge zones. See discussion in text for a 
description of the variables.  
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rates. By using the distributed water table information, this analysis eliminated the need 

for relying on the similarity of the water table and topography.  

The permeability used at the surface of the flow models followed the spatial 

analysis of Gleeson et al. [2014]. These permeability values (k) decayed as a function of 

depth: 

 
𝒌𝒌(𝑥𝑥, 𝑧𝑧) =  𝑘𝑘0e−β𝑠𝑠[𝑧𝑧𝑠𝑠(𝑥𝑥)−𝑧𝑧] (5.1) 

 

with k0 the permeability of near surface materials, β the sediment compressibility, a a 

conversion factor from porosity to permeability decay held at a constant value of 2 for this 

study [Bernabé et al., 2003], and zs the elevation of the water table. No anisotropy was 

assigned to k. Porosity, ϕ, was similarly assigned to the models with: 

 
𝛟𝛟(𝑥𝑥, 𝑧𝑧) =  ϕ0e−β[𝑧𝑧𝑠𝑠(𝑥𝑥)−𝑧𝑧] (5.2) 

 

The steady-state groundwater flow equation was solved for the hydraulic head distribution 

(h) and used to set the advection and dispersion terms in the age-as-mass equation:  

 
∇ ⋅ (𝐤𝐤∇h(x, z)) = 0 (5.3) 

 

with k the two-dimensional, spatially heterogeneous permeability tensor calculated from 

the permeability distribution in Equation 5.1.  

The groundwater age transport equation treats groundwater age (τ) as mass in a 

steady-state advection-dispersion-diffusion equation (after Equation 10 of Goode [1996]): 

 
∇ ⋅ (𝛟𝛟𝑫𝑫∇𝜏𝜏(𝑥𝑥, 𝑧𝑧)) − ∇(𝐮𝐮𝛟𝛟𝜏𝜏(𝑥𝑥, 𝑧𝑧)) + 𝛟𝛟 = 0 (5.4) 
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with porosity, ϕ, as an age-as-mass source term, u = [ux, uz] the average linear groundwater 

velocity, and D the diffusion-dispersion coefficient tensor [Bear, 1979]: 

 

𝑫𝑫 = 𝛼𝛼𝑇𝑇|𝐮𝐮|𝛿𝛿𝑖𝑖𝑖𝑖 +
(𝛼𝛼𝐿𝐿 − 𝛼𝛼𝑇𝑇)𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖

|𝐮𝐮| + 𝐷𝐷𝑒𝑒 
(5.5) 

 

In D, the molecular diffusion coefficient, Dm, was assigned a constant value of 10-8 m2/s, 

the longitudinal dispersivity (αL) was scaled as a tenth of the square root of the domain 

dimensions with the transverse dispersivity (αT) an order of magnitude lower, and δij is the 

Kronecker delta function. The domain and boundary conditions used to solve Equations 

5.3 and 5.4 are shown in Figure 5.2. No-flow conditions were prescribed on all but the top, 

sloping boundary that was a Dirichlet head boundary for the flow problem and split into 

τ=0 years across the recharge zone and only advection of τ (i.e., no diffusion or dispersion) 

across the discharge zone. Using the parameter discretization scheme described above, 

43,659 of these coupled groundwater flow and age transport models were run for each 

parameter combinations. The hydraulic head and age fields were saved for every model for 

post-processing and archiving. 

I used an unstructured finite-element mesh with triangular elements to solve 

Equation 5.3 and Equation 5.4. An adaptive meshing algorithm allowed automated mesh 

refinement to more accurately solve and stabilize the age transport problem. When 

refinement was necessary, the mesh was refined for 60% of the elements with the highest 

solution errors using an a posteriori approximation of the L2 norm [Verfürth, 1996]. If the 

coupled models did not converge on a solution after two such refinements, a universal mesh 

refinement was applied before restarting the model run. This process was repeated up to 

three times until all of the model runs successfully converged. The number of triangular 
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mesh elements ranged from 3,000-656,000 with an average of 90,000 elements. Due to the 

automated nature of running thousands of models, a detailed analysis of mesh convergence 

was not possible, but the combined effects of the adaptive mesh and universal mesh 

refinement led to consistent results when compared to finer meshes during the early model 

development and vetting. The model runs took a total of 90 computer days with an average 

model solution time of 3 minutes and some taking several hours to solve. 

5.2.4. Calculating the effective depth to renewable groundwater and the renewable 
groundwater equivalent 

The objective of the groundwater flow and age-as-mass transport modeling here 

was to quantify the groundwater storage renewed over a certain timespan. By using 2D 

models, I could calculate the area between the 50-year isochrone and the water table, but 

this only provides storage information for a 2D groundwater system and was not 

immediately useful for characterizing the 3D storage of this young groundwater. Instead, 

my approach was to develop two length-scales that represent the watershed-wide storage 

of renewable groundwater that can be multiplied by the watershed area to give an estimate 

of the volume of renewable groundwater stored below that watershed. Thus, these length-

scales must integrate the potential for renewable groundwater in both the recharge and 

discharge zones for real and simulated groundwater systems. 

The first of the length-scales describing the renewable groundwater storage 

throughout a watershed is the effective depth of renewable groundwater (deffective). The 

deffective is defined as the average depth below the water table that renewable groundwater 

is found for an entire watershed (Figure 5.3a). Thus, deffective represents the watershed-wide 

storage thickness of renewable groundwater, but the total storage is still tied to the spatial 

properties of the porosity. 
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The second renewable storage length-scale accounts for the porosity and is, 

therefore, termed the renewable groundwater equivalent (dequivalent). Similar to deffective, 

dequivalent is conceptually a watershed-wide average value, but dequivalent is the uniform depth 

to which renewable groundwater would pond over a watershed if extracted from the ground 

(Figure 5.3b). Since dequivalent is only a measure of the renewable groundwater storage, 

dequivalent can be multiplied by the area of the corresponding watershed to give the total 

volume of renewable groundwater residing below that watershed. 

The deffective and dequivalent can now be used to elucidate the renewable groundwater storage 

for the watersheds of Earth using the 2D models of groundwater flow and age-as-mass 

transport. To accomplish this, I first defined physically renewable groundwater to be 50 

years old and younger. Then, I developed a probability-based approach for determining the 

likelihood of encountering renewable groundwater as a function of depth, where 

integrating this probability in depth yields the length groundwater age fields from the 

numerical simulations were used to calculate both the deffective and the dequivalent for every 

watershed globally. 

First, each modeled age field was transformed from elevation to depth (z’), 

referenced from the surface of the model domain (Figure 5.4d-f) (i.e., water table and/or 

ground surface). Next, the relative frequency of given groundwater ages, f (τ(z’)), was 

calculated for 500 horizontal cross sections (i.e., at 500 depth intervals) to a depth of 2000 

m or the maximum domain depth, using 500 logarithmically-spaced bins in time from 10-

1-104 yrs (Figure 5.4g-i). With the large number of samples in this analysis, the relative 

frequency distribution approximated a probability distribution. The depth-specific age 

probability distribution was integrated over 0-50 yr for each of the 500 depths, giving a -

scale of interest. In this way, the depth profile for the cumulative probability of finding 

groundwater 50 yr old or younger (Figure 5.3j-l). This basin-wide, truncated cumulative   
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Figure 5.3. Cartoon representations of the a) effective depth of renewable groundwater 
(deffective) and b) the renewable groundwater equivalent depth (dequivalent). 
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probability is the ratio of renewable groundwater, Rrenewable(z’): 

 

𝑅𝑅𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑒𝑒(𝑧𝑧′) = � 𝑓𝑓(𝜏𝜏(𝑧𝑧′))𝑑𝑑𝜏𝜏
50 𝑦𝑦𝑒𝑒

0
 

(5.6) 

 

where f (τ(z’)) is the number of samples per age bin divided by the total number of bins 

with units of yr-1, and Rrenewable is unitless. Rrenewable,3H was also calculated using the 3H 

analysis by Gleeson et al.[submitted], providing a comparison between the model results 

and geochemical samples of the proportion of groundwater younger than a given age, 50 

years in this example, as a function of depth. 

Despite this similarity in what they measure, the model-based Rrenewable and 

Rrenewable,3H represent the groundwater ages differently. For Rrenewable, the groundwater ages 

for an entire depth slice through a groundwater system is integrated, whereas Rrenewable,3H, 

integrates only the proportion of groundwater ages in the groundwater samples from an 

aquifer. Thus, Rrenewable and Rrenewable,3H will only be equal if Rrenewable,3H is comprised of an 

even mixture of all groundwater at a given depth below the water table across the entire 

aquifer. Therefore, the model and 3H estimates of renewable groundwater are not expected 

to be identical, but instead provide two separate approaches for quantifying the storage of 

groundwater renewed on a 50 year timescale. 

Next, integrating Rrenewable(z’) in depth gives either the deffective: 
 

deffective = � 𝑅𝑅𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑒𝑒(𝑧𝑧′) 𝑑𝑑𝑧𝑧′
𝑧𝑧′𝑚𝑚𝑚𝑚𝑚𝑚

0
 

(5.7) 

 

or the dequivalent if porosity is included in the integrand: 
 

dequivalent = � 𝛟𝛟(𝑧𝑧′) 𝑅𝑅𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑒𝑒(𝑧𝑧′) 𝑑𝑑𝑧𝑧
𝑧𝑧′𝑚𝑚𝑚𝑚𝑚𝑚

0
′ 

(5.8) 
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with z’max the maximum depth of the models from the top boundary. deffective represents the 

depth to which Rrenewable(z’) = 1 if all Rrenewable(z’) > 0 contributions were summed starting 

from the surface. Thus, deffective represents a characteristic depth scale for encountering a 

specific age of groundwater in a hydrogeologic system, chosen as 50 year for this example. 

Similarly, dequivalent provides a porosity-corrected characteristic depth scale that more 

readily accounts for the total volume of groundwater ≤ 50 yr. Equations 5.6-5.8 were 

integrated numerically: a three-point Newton-Cotes quadrature was for Equation 5.7 and 

Equation 5.8 for both the model-derived and 3H-derived ratio of renewable groundwater 

and a summation was used for Equation 5.6. Both deffective and dequivalent are scalars that were 

then assigned to the global watersheds based on the extracted values of the hydrologic 

spatial datasets. 

5.2.5. Assignment of modeled renewable metrics to watersheds globally 

Model results as well as deffective and dequivalent were assigned to the HydroSHEDS 

watersheds by matching the simulation parameters with the spatial parameters extracted 

from the global datasets to the watersheds. Model results with one order of magnitude 

change in the k0 above and below the published data were also assigned to each watershed 

as an estimate of the uncertainty introduced by the input parameters on the metrics of 

renewable groundwater. The volume of renewable groundwater was then calculated by 

multiplying the area of each watershed by dequivalent. 

5.2.6. Renewable groundwater comparison for thirty aquifers 

Tritium concentrations are only available for a minority of aquifers globally. Therefore, I 

developed two approaches for testing the agreement between the simulation and 3H-derived 

estimates of modern groundwater storage. The first method compared the volume of 

renewable groundwater storage for all of the watersheds within the footprint of the well   
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Figure 5.4. Examples of groundwater age distributions within the original flow domain 
(a-c), the same age distributions referenced from the surface (d-f), the 
resulting depth-specific age probability distribution for each model (g-i), 
and the calculated Rrenewable for each flow system (j-l). These example age 
distributions are for 10 km long groundwater flow domains with an ϕ0=0.2, 
β·a=0.01 m-1, and no anisotropy. Continuous zero values in g)-i) are 
removed for plotting purposes. Each row of data in g)-i) sums to unity and 
the red vertical line marks τ = 50 yr.  
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samples (i.e., approximating the aquifer extent) from the 3H approach with the total storage 

volume calculated from integrating Rrenewable,3H with estimated aquifer properties. In the 

second method, the deffective,3H calculated from integrating Rrenewable,3H was compared with 

the deffective based on the watershed-scale modeling result for 30 aquifers containing the 

largest amount of tritium samples.  

The first step for these comparisons was to determine the hydrologic properties of 

the aquifers. To do this, each well used for 3H samples was assigned hydrologic data from 

the global spatial data synthesis using its location. Then, these hydrologic data were used 

to assign outputs from the numerical simulation. The same binning procedure was used to 

assign the hydrologic inputs to the simulation parameter space. Additional models were 

run with the permeability at the surface for the 3H data changed by one order of magnitude 

from the base value [Gleeson et al., 2014]. 

Once the model results were assigned to the aquifer-related watersheds, the two 

comparison methodologies diverged. For the volume-based comparison, the results from 

all watersheds within 10 km of the well locations for a given aquifer were collected. 

Renewable groundwater volumes for each watershed were summed to give the aquifer-

wide estimate of renewable storage (Vstorage), and the areas of these watersheds were also 

summed. The most common lithology (i.e., for porosity and permeability decay values) in 

these watersheds was then used with Rrenewable,3H for Equation 5.8 to calculate the 

dequivalent,3H over each aquifer. Next, dequivalent,3H was multiplied by the total area of the 

enveloped watersheds to give an aquifer-wide 3H estimate of the volume of renewable 

groundwater storage (Vstorage,3H). This comparison of aquifer renewable groundwater 

volumes provided a consistent spatial framework for comparing the simulation and 3H 

results. However, the comparison relied upon an unbiased sampling of the aquifer (i.e., 
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well locations are evenly or randomly distributed throughout the aquifer) and the accuracy 

of enforcing lithologic homogeneity in the calculation of dequivalent,3H. 

In the comparison of deffective values, the Rrenewable,3H was integrated in depth 

following Equation 5.7 with the well data for each aquifer, yielding a single value for each 

aquifer. However, the simulation-based analysis operated at the watershed-scale, whereby 

each well sample had a corresponding watershed in which it was located. Thus, for this 

analysis, the deffective was used as the terminal indicator of renewable groundwater storage 

so as not to require additional assumptions of hydrogeologic properties and distributions 

across the aquifer. Since different scales were considered (i.e. aquifer vs. watershed), the 

simulation-based estimates should be lower to much lower than the 3H estimates. 

The modeling and tritium analyses provided separate methods for estimating young 

groundwater storage, but both approaches incorporated different simplifying assumptions 

that make calibration of one with the other not possible. Firstly, the modeled deffective and 

dequivalent values were based on a depth-integrated probability of the occurrence of 

renewable groundwater across an entire flow system, but the deffective,3H and dequivalent,3H were 

based on the proportion of renewable groundwater in well samples that integrate multiple 

scales of flow and potentially the effects of heterogeneity. However, the models restricted 

these storage metrics to include only the shallowest topographically-driven flow system 

bounded by perennial streams. In regions with small surface watersheds, the models would 

incorrectly limit the extent of renewable groundwater to shallower flow systems that in 

reality could mix with larger scale, more regional flowpaths. The models also only 

considered a single lithology per domain, whereas the 3H samples integrate the complexity 

of their hydrologic and hydrogeologic histories. Secondly, the simulations modeled the age 

of the groundwater, not the transport of 3H, whereby specifying a 3H molecular diffusivity 

value would be required. Additionally, the processes that led to the measured 3H 
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concentrations occurred in three-dimensional space and through time, whereas the models 

were steady-state and two-dimensional. Within the 3H analysis, uncertainty arose 

predominantly from the estimated 3H concentration in groundwater recharge and the 

stochastic groundwater mixing model, which did not include groundwater dynamics. Thus, 

the purpose of comparing the model and 3H results was to understand how the uncertainty 

in each analysis biased the renewability estimates and check if, despite these differences, 

the two analyses resulted in similar renewable groundwater storage for each aquifer. 

Additional uncertainty in the comparisons arose from the uncertainty in the model 

input parameters. A number of assumptions are inherent in the calculation and use of the 

watershed half-widths (e.g., what is the characteristic length scale for a watershed and how 

that translates to groundwater flow) and hydraulic gradients (e.g., soil permeability and 

only horizontal groundwater flow were used in the global water table depth dataset, while 

vertical flow and near-surface bedrock permeability were used in my analysis) in the 

numerical models. However, quantifying the uncertainty in these parameters is not 

straightforward and could require the monumental task of reproducing multiple previous 

studies. Instead, the uncertainty in the models is addressed using the near-surface 

permeability, which has published uncertainty ranges [Gleeson et al., 2014]. 

5.3. RESULTS 

5.3.1. Comparison of aquifer geochemical and modeling results 

Comparing the volumes of renewable groundwater storage from the numerical 

simulations with the 3H-based volumes, calculated using data from thirty aquifers (Figure 

5.5), showed twenty aquifers had storage volumes within the uncertainties considered in 

the two approaches (Figure 5.7a). Only one third of the aquifers had storage estimates that 
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were within one order of magnitude if only the average permeability modeling and median 

tritium scenarios were used (Table 5.1). 

The results of the comparison of the aquifer-wide tritium deffective,3H values (Figure 

5.5) with the well-specific watershed-based groundwater simulations showed nearly 

twenty of the aquifers matched model-derived deffective estimates to within the uncertainty 

ranges of the two methods (Figure 5.6 and 5.7b, Table 5.1). The ratio of deffective/deffective,3H 

was used as a metric of the misfit between the geochemical and simulated renewable 

groundwater estimates. Considering only the median deffective from the models with the 

median deffective,3H resulted in mainly one order of magnitude difference between the 

methods (Table 5.1, black dots in Figure 5.7b), but the disparity reached four orders of 

magnitude for the Najd Aquifer. Median simulation-derived deffective results primarily 

under-predicted the deffective,3H. Uncertainty in the deffective,3H arose from the uncertainty in 

Rrenewable,3H, whereas the uncertainty in the deffective from the simulations arises from both 

the heterogeneity in the hydrologic datasets sampled by the distribution of wells in each 

aquifer and the uncertainty within the hydrologic datasets. The colored uncertainty range 

in the deffective ratio in Figure 5.7b considered only the 25th-75th percentiles of deffective,3H 

with published permeability values [Gleeson et al., 2014] to guide the models and taking 

the median of the simulated deffective. Combining the uncertainty of deffective,3H and model 

deffective together defined the range of the grey boxes in Figure 5.7b. Combining all of the 

geochemical and modeling uncertainties led to favorable (i.e., overlapping) comparisons 

of deffective and deffective,3H for a majority of the aquifers tested (Figure 5.7b). Aquifers that 

did not show consistent results between the geochemical and model analyses did not follow 

any consistent geographic, spatial, or hydrologic trends.  
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Figure 5.5. Aquifer profiles of Rrenewable,3H and resulting estimates in the effective depth 
to renewable groundwater calculated from the tritium profiles (deffective,3H , 
horizontal dashed line and grey area). Table 5.1 reports the median values 
(dashed line) of deffective,3H for each aquifer. 
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Figure 5.6. Comparison of the effective depth to renewable groundwater calculated 
from the tritium profiles and numerical simulations with all sources of 
uncertainty for each data-rich aquifer.  
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Table 5.1. Aquifers used for the comparison of deffective derived from 3H samples and 
deffective calculated from numerical models using hydrologic parameters 
extracted to the well locations from the spatial datasets. The model results 
presented here do not include the uncertainty introduced by permeability nor 
in the 3H data. 

Continent Aquifer Wells Vstorage,3H Vstorage Vstorage ratio deffective ,3H  deffective  deffective ratio  

  
# [km3] [km3] Log10 

(Models/3H) [m]  [m]  Log10 
(Models/3H) 

Africa Sidi Bouzid plain 48 2.5 0.12 -1.32 56.7 14.7 -0.59 
 Karoo 20 18.4 0.10 -2.25 28.1 1.5 -1.27 
 Chad basin 28 1212.9 3.96 -2.49 376.2 1.7 -2.35 
 Tadla basin 74 115.7 121.46 0.02 135.2 15.6 -0.94 
 Kalahari 48 4242.4 20.74 -2.31 101.9 1.5 -1.83 
         
Asia Canterbury Plains 29 3.5 0.09 -1.60 43.4 23.7 -0.26 
 Perth basin 34 3.6 0.01 -2.69 28.5 0.2 -2.10 
 Krishna-Godavari basin 60 31.5 0.59 -1.72 32.2 1.8 -1.26 
 Taoyuan Chungli 

Tableland 8 4.7 0.02 -2.47 41.7 0.3 -2.08 
 Songnen Plain 95 2089.2 52.72 -1.60 77.7 4.7 -1.22 
 Paleogene limestone 37 23.2 0.84 -1.44 32.8 6.1 -0.73 
 Batinah coast 19 0.1 0.51 0.61 1.7 12.2 0.86 
 Najd 48 457.6 0.97 -2.67 155.3 0.0 -4.41 
 North China plain 151 2018.0 10.56 -2.28 268.6 1.8 -2.17 
 Yinchuan plain 37 486.7 12.34 -1.60 236.5 10.0 -1.37 
 Bengal basin 109 466.5 5.83 -1.90 42.6 2.6 -1.21 
         
Europe Pisa coast 59 0.6 1.19 0.30 17.6 0.1 -2.11 
 Paris basin 31 1.0 5.67 0.73 47.4 442.6 0.97 
 S. Turkey coast 24 209.5 84.40 -0.39 76.1 27.7 -0.44 
 Molasse basin 63 5.0 0.18 -1.43 39.0 7.9 -0.69 
 Aquitaine basin 49 183.9 47.81 -0.58 185.5 132.4 -0.15 
         
Americas Santiago basin 13 0.9 0.08 -1.02 86.3 0.2 -2.59 
 Central Oklahoma 59 43.8 0.43 -2.01 69.3 0.9 -1.86 
 E. Snake River plain 39 146.7 379.37 0.41 122.0 361.8 0.47 
 Villa de Reyes basin 14 15.8 7.50 -0.32 73.7 151.9 0.31 
 Pleistocene till plain 76 3.6 24.72 0.84 22.0 0.1 -2.35 

 Miss. Embayment: 
Memphis 40 0.6 0.12 -0.71 15.9 12.0 -0.12 

 Middle Rio Grande 168 185.8 91.99 -0.31 99.3 356.6 0.56 
 Central High Plains 24 353.1 15.91 -1.35 57.3 7.6 -0.88 
 California basin 60 239.2 2.67 -1.95 123.6 3.6 -1.53 

Wells with 3H samples for comparison = 1564      
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Figure 5.7. Comparison of modeled and 3H-based estimates of a) the volume of 
renewable storage (Vstorage), and b) effective depth of renewable 
groundwater (deffective) for 30 aquifers with the most 3H samples. The colored 
bar shows the uncertainty range only considering the 3H analysis, and the 
grey bars show the combined uncertainty from the 3H calculation and 
permeability in the numerical simulations. Black dots in a) show the ratio of 
storage volumes calculated from the average permeability models and the 
median dequivalent,3H

 and in b) show the ratio of the median deffective from the 
models and the median deffective,3H for each aquifer. 
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5.3.2. Global distribution of renewable groundwater 

By transforming renewable groundwater storage into a length scale to describe 

average conditions for a surface watershed, I calculated the deffective and dequivalent for every 

watershed on Earth using the numerical models of groundwater flow and age-as-mass 

transport (Figure 5.8 and 5.9). The global median deffective was 8.1 m (1.0-58.5 m for the 

25th-75th percentiles), and the global median dequivalent was 0.6 m (0.1-3.8 m for the 25th-75th 

percentiles). Neither deffective nor dequivalent strictly matched a statistical distribution (Figure 

5.10), but both resembled a log-normal distribution with some multi-modality. 

The spatial patterns of deffective and dequivalent both predominantly followed two of the input 

parameters: the permeability at the surface and the hydraulic gradient. The connection 

between these input parameters is complex and is demonstrated with some examples. 

However, more detailed analysis of the effect of input parameters is planned using the 

model results in future work. Despite having relatively high permeability across much of 

Australia (~10-13 m2), low hydraulic gradients resulted in most of the continent showing a 

dequivalent of less than 1 m, likely related to low topographic gradients implicit through the 

analysis of Fan et al., [2013]. A similar combination of high permeability and low 

hydraulic gradients resulted in minimal renewable groundwater storage in Somalia. On the 

opposite side of this spectrum, the U.S. Rocky Mountains have low permeabilities (~10-

16.5 m2) but have sufficient topographic gradients to support steep hydraulic gradients, 

resulting in dequivalent values >10-100 m. In most of the watersheds on Earth, both 

permeability and the hydraulic gradient control the storage of young groundwater, making 

the deconvolution of their individual combinations to the renewable groundwater storage 

more complex. 

The uncertainty arising from two orders of magnitude change in the permeability 
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Figure 5.8. Global map of the effective depth of renewable groundwater (deffective) calculated from the numerical simulations. 
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Figure 5.9. Global map of the renewable groundwater equivalent (dequivalent) calculated from the numerical simulations. 
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Figure 5.10. Histograms of global a) deffective and b) dequivalent values. The grey area marks 
the 25th-75th percentiles in the data, the vertical red line marks the median 
value, and the black vertical line marks the arithmetic mean. 
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Figure 5.11. Global map of the total range in the dequivalent for simulations with one order of magnitude above and below the 
permeability assigned to each watershed (i.e., two orders of magnitude range in permeability centered around the 
assigned lithology-average values). 
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Figure 5.12. Statistical distributions of the range of a) deffective and b) dequivalent values 
resulting from prescribing the global collection of models with a 
permeability range of two orders of magnitude around the lithologic mean. 
The shade grey area extends from the 25th-75th percentiles in the data, and 
the vertical red bar marks the location of the median value. 

on dequivalent for the watersheds on Earth shows the sensitivity of the renewable groundwater 

storage to permeability and likely represents the largest source of uncertainty in these 

calculations (Figure 5.11).The median uncertainty range for a two orders of magnitude 

change in permeability on dequivalent is 7.8 m (Figure 5.12). In general, watersheds with low 

dequivalent values have less variability introduced by changing the permeability at the surface. 

Implicit in this analysis is the assumption that changing the permeability at the surface does 

not change the depth decay of permeability (i.e., β in Equation 5.1). Additional analysis of 

the effect of permeability and porosity decay on groundwater age fields and the 

renewability metrics will be the subject of future work, but will certainly change the 

groundwater age field [Cardenas and Jiang, 2010; Jiang et al., 2010]. 
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5.3.3. Volume of renewable groundwater 

Multiplying dequivalent by the area of each watershed yields the estimated volume of 

renewable groundwater stored in each watershed (Figure 5.13). The map of renewable 

groundwater storage provides quantitative estimates at the watershed scale, but without the 

watershed boundaries, visual inspection of the global map does not indicate regional 

storage trends, since the volume is also controlled by the size of the watershed. For 

example, west Texas appears to have a large region of very little renewable groundwater 

storage (Figure 5.14), but this area is composed of smaller watersheds that each store small 

volumes of renewable groundwater that sum to a significant volume (9687 km3 with all 

5504 watersheds, reducing to 4113 km3 when removing 759 watersheds with over-

predicted recharge). However, as discussed in Section 5.4., the more arid portions of Texas 

may have over-predicted volumes of renewable groundwater arising from both the 

simplifications in the model setup and underlying datasets. An example of this over-

prediction is apparent in west Texas near El Paso, where mountainous areas create the 

potential for steep hydraulic gradients that are in reality recharge-limited, but in the 

modeling of groundwater age, too much applied recharge creates too much renewable 

groundwater storage. 

By summing the renewable groundwater storage volumes for every ice- and 

permafrost-free watershed on Earth, the total volume of groundwater renewed on a 50 year 

timescale is 1,410,000 km3 (257,000-4,18,000 with +/- one order of magnitude in the near 

surface permeability). Therefore, with the numerical modeling approach, I calculated that 

6.2% (1.1-19%) of the world’s groundwater supply to a depth of 2000 m (22,600,000 km3) 

is renewable [Gleeson et al., submitted]. In comparison, the percent of groundwater 

renewed in 50 years was calculated using only geochemical data was estimated to be 5.6%  
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Figure 5.13. Global map of the volume of renewable groundwater (Vrenewable). Watershed boundaries are omitted. 
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Figure 5.14. Renewable groundwater volume (Vrenewable) map of Texas showing 
watershed boundaries from HydroSHEDS. 
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(1-16% including the uncertainty in the mixing models and the global porosity function) 

of the total groundwater in the upper 2 km of the crust [Gleeson et al., submitted]. 

Therefore, through two very different approaches, ~6% of the more accessible and more 

likely to be fresh groundwater [Frape et al., 2003; Kharaka and Hanor, 2003] on Earth is 

replenished on a fifty year timescale. 

5.3.4. Volumes of Holocene-aged groundwater storage 

The selection of groundwater younger than 50 years old in the calculation of 

Rrenewable was arbitrary and can be exchanged for other timescales. The cumulative 

proportions of groundwater age can be computed for any relevant timescale. Thus, I 

extended the probability-analysis developed in Section 5.2.4. to calculate the volumetric 

distribution of groundwater ages on Earth. Hydrologic transience certainly affects the 

groundwater age fields [Gomez and Wilson, 2013], so the steady-state simulations in the 

current study can be used to estimate storage for groundwater under current climate 

conditions. Therefore, I calculated the groundwater storage for timespans of up to 9,500 

years, potentially spanning much of the Holocene, but the simulated groundwater ages do 

not integrate the time spent in the vadose zone and, thus, should not be associated with 

specific historic time periods. The time lag introduced by water traversing the vadose zone 

is not included in the calculation of groundwater age by definition. Quantifying storage for 

longer timescales would need to account for different recharge conditions arising from the 

last glacial period and the transition to interglacial climate, which is not possible with the 

current steady state simulations. However, even intra-annual transience can affect 

groundwater ages [Gomez and Wilson, 2013], and the resulting changes to the calculated 

storage of groundwater for short timescales (< 1 yr) are below the temporal resolution of 

the current analysis. Similarly, as longer timescales are considered for calculating the 
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storage volume, boundary effects on the age fields become more significant, especially for 

small watersheds: either the watershed-based groundwater system may be too shallow to 

fully constrain the location of old groundwater, or erroneously old groundwater ages could 

occur near the no-flow boundary conditions. 

With the underlying acknowledgement of these limitations, I calculated the first 

temporally-constrained global distribution of groundwater storage volumes (Figure 5.15). 

Groundwater storage increased as roughly the cube root of groundwater age. Uncertainty 

in the storage volume resulting from an order of magnitude change in permeability 

increases when considering larger timescales. While non-linearity between groundwater 

storage and groundwater age may be expected due to the complexity of hydrogeologic 

systems, this is the first attempt at quantifying the relationship at the global scale. 

According to this analysis, 47.3% (23.5-75.2% with permeability changed one order of 

magnitude) of all groundwater in the upper 2 km of the crust is renewed over less than 

9,500 years. From a different perspective, 10% of groundwater storage is renewed on a 

timescale of 120 yrs (12-1200 yrs for an order increase and decrease in permeability, 

respectively). 

5.4. DISCUSSION 

5.4.1. Model simplifications 

Simplifications of groundwater systems were required in using 2D models to 

investigate real 3D watersheds globally. The upper boundary condition of the models was 

based on previously-modeled water table depths that only incorporated horizontal 

groundwater fluxes under topography-driven flow and unconfined conditions using the 

Dupuit-Forchheimer approximation [Fan et al., 2013]. Using these data, the spatial head   
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Figure 5.15. The distribution of groundwater storage renewed over timescales of up to 
9,500 years. The average permeability (kavg) case shows points for the 
timescales calculated, and the best fit to this curve is shown as the thin 
dashed line. The area in grey is the range of uncertainty in the storage 
introduced by changing the model permeability at the surface one order of 
magnitude. The percent of global storage uses a groundwater volume of 22.6 
million km3. 
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gradients used in my models were calculated by subtracting the water table depth from 

topography and then differentiating. Finally, the mean hydraulic gradient was calculated 

for each watershed to transform the 3D water table into my 2D model domain. 

Simplifying the hydrogeologic expression of both the topography and morphology 

of watersheds into a planar, uni-directionally sloping water table undoubtedly led to 

inaccuracies in the modeled groundwater age distributions when attributing them to real 

groundwater systems. For the model results to simulate real groundwater age fields 

adequately, either a very simple watershed geometry is required or the model needs to be 

expanded to include multiple scales of flow systems and ideally include 3D topography 

and transience. Only a watershed that is symmetric across the drainage feature (e.g., 

stream) and has an equidistant ridge orthogonal from that drainage feature would be 

accurately characterized by the 2D model domain used in this analysis.  

Separate from the transformation of the flow system from 3D to 2D, the assignment 

of the hydraulic gradient using a water table configuration based on the Dupuit-

Forchheimer assumptions was somewhat paradoxical [Kirkham, 1967]. In the analysis of 

Fan et al., [2013], only horizontal head gradients exist. Whereas in my simulations, the 

calculated groundwater age field was primarily controlled by vertical head gradients 

imposed by the top boundary condition. A more complete analysis of groundwater flow 

and age would solve directly for the water table as a free surface and not rely on 

predetermined, assumption-laden head gradients [Haitjema and Mitchell-Bruker, 2005]. 

However, such an analysis would require a more sophisticated global analysis of 

groundwater flow than has been attempted to date.  

No pumping nor artificial recharge conditions were considered in the numerical 

models, which were instead designed to understand so-called “natural” hydrogeologic 

conditions prior to the introduction of pumping wells. By pumping wells and changing the 
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recharge regime through irrigation, the groundwater residence time for an aquifer would 

change as the groundwater system adjusted to the new hydrodynamic setting. In the two-

dimensional models discussed above, introducing additional groundwater recharge or 

discharge features to the models would in turn create different simulated groundwater age 

distributions. Adding a pumping well anywhere in the model domain would lead to larger 

head gradients and overall younger groundwater residence ages, though models with rapid 

permeability decays with depth could restrict the younger groundwater near the surface and 

lead to overall older groundwater throughout the domain. Additional recharge features in 

the recharge zone would similarly increase head gradients and lead to younger 

groundwater. However, recharge features in the original discharge zone would lead to 

localized groundwater flow systems that can lead to both older and younger groundwater 

depending on the permeability distribution [Jiang et al., 2010]. Thus, the 2D steady-state 

models in this analysis provide a first estimate of global groundwater age distributions 

based on much simpler flow systems than in reality, and this simplification can have 

different effects on the groundwater age distributions depending on the locations of 

groundwater extraction and recharge features. 

Another simplification in the numerical analysis was that the most areally-extensive 

near-surface lithology was used to prescribe both a watershed-wide porosity and 

permeability. This areal homogeneity of the subsurface properties does not account for 

geologic structure nor variability that would alter groundwater flowpaths and age fields. 

Additionally, any hydrogeologically relevant stratigraphy is not considered. These 

additional hydrogeologic complexities would provide more accurate groundwater age 

fields but would require a full understanding of the 3D structure and stratigraphy of the 

upper 2 km of the lithosphere. 
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Finally, the contribution of renewable groundwater from karst was not explicitly 

considered, though carbonates were one of the lithologies used to parameterize the 

simulations. Karst occurs in ~16% of the land on Earth and plays a significant role in 

groundwater flow [Ford and Williams, 2007]. Thus, the contribution of karstic 

groundwater systems to the storage of renewable groundwater is also substantial. However, 

groundwater residence times in karst integrate contributions from a complex network of 

fractures, conduits, and primary porosity in the carbonate matrix [Worthington, 2007]. 

Therefore, to simulate the groundwater age for the system, the relative proportions of each 

hydrogeologic component of karst systems must also be known. Even so, nearly all (~90%) 

of the flow through karst aquifers is through conduits, whereas nearly all of the 

groundwater storage volume (> 90%) is in the matrix [Worthington, 2007]. Using this 

delineation of storage and flow, then nearly all karst conduit flow is likely to be renewable 

on a 50 year timescale if the flowpaths are short enough and gradients steep enough, and 

most of the groundwater stored in karst systems could be much older than 50 years. In this 

way, if the total volume of groundwater in karst conduits and in the surrounding matrix 

where known, then karst groundwater storage could be compartmentalized as renewable 

and nonrenewable, respectively, but currently not enough data are available to execute this 

analysis at the continental scale. 

5.4.2. Analysis of groundwater recharge in the numerical simulations 

Groundwater recharge is the mechanism for the replenishment of groundwater 

resources and is critical for understanding the hydrodynamics in hydrogeologic systems. 

In the numerical simulations, groundwater recharge was assigned to the domain by 

prescribing a Dirichlet head condition at the upper boundary that distributed the recharge 

and discharge fluxes as a function of the hydrologic properties in the modeling domain. 
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Thus, recharge fluxes can be calculated from my models but was not an input parameter. 

However, the assigned head gradients were calculated from water table depths [Fan et al., 

2013] that were modeled using globally-distributed, average modern recharge estimates 

from Dӧll et al., [2008]. Other global groundwater recharge estimates are calculated by 

Wada et al., [2010] and using land surface climate models through the Global Land Data 

Assimilation System (GLDAS) [Rodell et al., 2004]. 

Few quantitative estimates of groundwater recharge exist at the continental scale 

that can be compared to the simulation results (Table 5.2). Indeed, no consensus exists for 

what the average global groundwater recharge is, given the lack of and uncertainty in 

hydrologic and subsurface data. Complicating the quantification of groundwater recharge 

to shallow aquifers, the comparison between different recharge estimates on the shallow, 

unconfined water table position are relatively insensitive to significantly different recharge 

conditions [Fan et al., 2013]. Thus, previous estimates are the state of the science but may 

not consider all of the hydrological processes nor fully incorporate hydrological 

heterogeneity commented on below. 

Global estimates of groundwater recharge are calculated with mass balance models 

that try to close the water budget, whereby precipitation and evapotranspirative fluxes 

control surface and subsurface flows [Nace, 1969; Garmonov et al., 1974; L'Vovich, 1974; 

Trenberth et al., 2007; Döll and Fiedler, 2008]. Agreement between modeled and 

measured stream hydrographs provides the main test of model performance in these 

studies, where the assumption is that all of runoff and groundwater discharges enter 

terminally into river networks. While the majority of recharge likely enters the river 

network at some point before leaving the terrestrial system, direct groundwater discharges 

into the ocean are widespread [Burnett et al., 2003; Post et al., 2013; Kwon et al., 2014] 

and may serve as an outlet for recharged groundwater that is not accounted for in some   
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Table 5.2.  Summary of previous groundwater storage, groundwater recharge, and 
surface water runoff estimates. For the Global Land Data Assimilation 
System (GLDAS) estimates [Rodell et al., 2004], the calculation of 
groundwater recharge is assumed to equal the remainder of precipitation 
after both surface runoff and evapotranspiration have been removed. 

 

 Fresh storage Recharge Surface 
runoff Recharge/Runoff 

 106 km3 103 km3/yr 103 km3/yr % 

Nace [1969] 1 to 7 1.5 29.5 5.1 
Nace [1971] 4 to 60 6.0 - - 

Garmonov [1974]  23.4 (3.6 active) 13.3 43.8 30.4 

L'Vovich [1974] 60 (4 active) 12.0 38.8 30.9 

Döll et al. [2002] - 13.8 38.3 36.0 

NRC [1986] 15.3 - 40.0 - 

Döll and Fiedler [2008] - 12.7 39.4 32.2 

Wada et al. [2010] - 15.2 36.2 42.0 

GLDAS CLM annual mean - 17.7 21.6 81.9 

GLDAS MOS annual mean - 15.3 5.59 273 

GLDAS NOAH annual mean - 24.8 5.80 427 

Gleeson et al. [submitted] * 22.6 (1.3 young) 48.0 - - 

*current analysis, average permeability case only 
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global estimates of recharge. Another assumption in groundwater recharge estimates is that 

once water enters a surface water feature it is unable to recharge groundwater systems, 

forcing all surface waters to be groundwater discharge features and without considering 

losing conditions. This simplification would lead to overestimating groundwater discharge 

using the balance of precipitation, evapotranspiration, and runoff alone. Thus, the global 

estimates of groundwater recharge may underestimate the magnitude of groundwater 

recharge with respect to not accounting for submarine groundwater discharge but in places 

may overestimate recharge where losing conditions (i.e., groundwater recharge from 

surface waters) exist, as in arid regions where the models underperform [Döll and Fiedler, 

2008]. 

Despite the potential shortcomings of these global estimates of groundwater 

recharge, they provide benchmarks for understanding how well my numerical simulations 

characterized the real hydrogeologic systems. My models transformed the lateral two-

dimensional water table depth analysis into a simplified vertical cross-section domain that 

was meant to integrate both the hydrologic and hydrogeologic systems at the watershed 

scale. Furthermore, all previous recharge analyses are discretized based on a regular grid, 

my recharge analysis explained below used the HydroSHEDs watersheds as the spatial 

unit, which complicated how previous estimates were compared with the current work 

given different organizational units. To test the validity of the simulations to quantify the 

young groundwater storage, the recharge calculated from the groundwater models should 

be consistent with the underlying recharge data, of which Döll et al., [2008] was used as 

the input for the water table study [Fan et al., 2013] that parameterized my models. 

To calculate the watershed-integrated groundwater recharge that my models 

indirectly impose, a similar methodology to that used for the storage length-scales was 

adopted. Given that the simulations were in steady state, the groundwater recharge imposed 
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by the prescribed head condition equals the groundwater discharge from the domain, which 

is required to conserve mass (Equation 5.3; Figure 5.2). Thus, the up-gradient half of the 

domain was the recharge zone with a flux magnitude equal to the discharge flux but with 

the opposite sign. Total recharge and discharge fluxes [m2/yr] are calculated for each of the 

simulations by integrating the fluxes into and from the upper domain boundary. The 

recharge equivalent, requivalent [m/yr], for a watershed was then calculated by dividing the 

total recharge flux by the watershed half-width (Lhalf-width): 

 

𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑣𝑣𝑠𝑠𝑟𝑟𝑒𝑒𝑟𝑟𝑠𝑠,𝜏𝜏 =  
𝜏𝜏

𝐿𝐿ℎ𝑠𝑠𝑟𝑟𝑎𝑎−𝑟𝑟𝑖𝑖𝑤𝑤𝑠𝑠ℎ
� 𝑟𝑟(𝑥𝑥)𝑑𝑑𝑥𝑥
𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑚𝑚𝑟𝑟𝑎𝑎𝑟𝑟

 (5.12) 

 

with r(x) the recharge rate into the domain over the recharge zone, Lrecharge. Then, requivalent 

can be multiplied by a time-scale to give a length-scale of recharge that occurs over a given 

time period, τ. Using τ = 1 year, requivalent,1 gives a watershed-wide integrated length-scale 

of recharge that can be multiplied by the watershed areas to give the volumetric rate of 

groundwater recharge in those watersheds. These recharge rates can then be summed 

globally to compare with previous recharge estimates. Similarly, a time-scale of 50 years 

can be chosen to compare the volume of groundwater storage younger than 50 years with 

the expected volume of recharge that would occur over 50 years. Since the storage 

calculation accounts for groundwater of various ages mixing, the storage volume is 

expected to be less than the recharged volume because older groundwater mixes with 

incoming younger groundwater, especially where heterogeneity is significant [Cardenas 

and Jiang, 2010; Gassiat et al., 2013]. Equivalent recharge volumes less than young 

groundwater storage volumes could be expected in groundwater systems where very active 
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young groundwater dispersively mixes with older groundwater, yielding a mean age 

younger than the cutoff for the definition of groundwater youth (e.g., 50 years). 

My initial estimate of the global recharge rate for all ice-free watersheds using the 

average permeability values was 50.6 ∙ 103 km3/yr (5.21-523 ∙ 103 km3/yr for permeability 

one order of magnitude below and above the average permeability values, respectively). 

Previous global groundwater recharge estimates are listed in Table 5.2. Indeed, global 

estimates of precipitation available after evapotranspiration for runoff and potential 

groundwater recharge based on measurements range from 36-40 ∙ 103 km3/yr [Schneider 

et al., 2014] and others listed in Table 5.2, which set the upper limit of realistic potential 

groundwater recharge (i.e., groundwater recharge is generally less than precipitation, 

regionally). Thus, I investigated the effect of culling watersheds with extreme modeled 

recharge rates on the global groundwater recharge and the modeled young groundwater 

storage. However, the uncertainty introduced by the permeability, which sets the recharge 

rate, contained the entire range of previous recharge estimates. 

The results of the culling are summarized in Table 5.3. First, I culled watersheds 

(n=48,364; area = 7.3 ∙ 106 km2, 6.0% of land surface) where the water table from Fan et 

al., [2013] was beyond the scope of their analysis (i.e., > 100 m), reducing my global 

recharge estimate by 2.6 ∙ 103 km3/yr (5.1%). In my analysis, these areas would have 

hydraulic gradients set only by the topography since they were prescribed a constant water 

table depth of 100 m. Additionally, these areas with deep water tables are primarily in arid 

and semi-arid regions with significant topography that would likely have groundwater 

systems controlled by recharge rates rather than topography [Haitjema and Mitchell-

Bruker, 2005; Gleeson et al., 2011], where the latter is the assumption in my numerical 

simulations. In addition, I culled all watersheds with annual groundwater recharge values 

that were greater than mean annual precipitation using Climate Prediction Center Merged 
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Analysis of Precipitation (CMAP) data5 [Xie and Arkin, 1997], where 92,540 watersheds 

(10.0% of land surface) accounted for 42.1 ∙ 103 km3/yr (83.2%) of my recharge estimate 

for the original permeability models. Thus, the culled estimate of the global recharge rate 

as specified by the flow models was 5.9 ∙ 103 km3/yr without areas where model inputs 

were inconsistent with observational data or poorly constrained. This estimate may be 

within the range of uncertainty in the previous recharge estimates, given the misfit between 

the recent models is 2.5 ∙ 103 km3/yr [Wada et al., 2010]. However, the true uncertainty in 

the model results is unknown, and large groundwater fluxes (0.1-6.5 ∙ 103 km3/yr from 

submarine groundwater discharge [Burnett et al., 2003]) and hydrological processes (e.g., 

groundwater recharge from surface waters) were not considered in these analyses that 

would require additional recharge to balance the groundwater budget. 

Watersheds with groundwater recharge equivalents greater than the CMAP 

precipitation rate were primarily located in arid and mountainous regions (Figure 2.16). 

These areas of high modeled recharge values highlight the current disconnect between 

surface and subsurface hydrologic models, since groundwater flow in my models attempted 

to consolidate results from both: my hydraulic gradient is derived from ground-truthed 

water table depths modeled using shallow soil permeability [Fan et al., 2013] and 

groundwater recharge estimates from a surface hydrologic model [Döll and Fiedler, 2008]. 

Large-scale surface hydrologic models do not include subsurface processes and data 

important to my study, including lateral and vertical flows, hydrodynamic dispersion, and 

lithology-based permeability and porosity values. Similarly, the water table data are 

derived from a global model that uses soil permeability rather bedrock permeability, even 

though soil permeability does not likely control regional water tables.

                                                 
5provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their website at 
http://www.esrl.noaa.gov/psd/ 
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Table 5.3. Summary of the final estimates for the modeled groundwater recharge and storage renewal rates using all ice-free 
watersheds, watersheds with a water table depth less than 100 m and watersheds with recharge equivalents less 
than the precipitation rate. Since recharge rates are calculated using the assigned permeability, different recharge 
rates were calculated for the same watersheds for the different permeability scenarios. The relative contributions 
and extent of the culls are shown in the subtractions section. 

 
     Base k k · 10-1 k · 101 Base k k · 10-1 k · 101 
 Watersheds Area Model recharge Storage renewal 

Watersheds # % 
 106 

km3 % 
103 

km3/yr % 
103 

km3/yr % 
103 

km3/yr % 
103 

km3/yr % 
103 

km3/yr % 
103 

km3/yr % 

All ice-free 933639 100 121.7 100 50.6 100 5.2 100 522.9 100 28.2 100 5.1 100 83.6 100 
Water table < 100 m 885275 94.8 114.4 94.0 48.0 94.9 5.0 95.0 496.8 95.0 25.8 91.6 4.8 93.8 74.7 89.4 
requivalent < precipitation (CMAP)                      
Base k 790982 84.7 102.3 84.0 5.9 11.7 - -  - -  6.9 24.6 - -  - -  
k ∙ 10-1 866577 92.8 112.3 92.2 - - 2.7 50.8 -  - -  - 2.8 55.3 - -  
k ∙ 101 633825 67.9 81.6 67.1 -  - -  - 11.0 2.1 -  - - - 11.2 13.4 
Subtractions                         

Water table > 100 m 48364 5.2 7.3 6.0 2.6 5.1 0.3 5.0 26.1 5.0 2.4 8.4 0.3 6.2 8.9 10.6 
requivalent > precipitation (CMAP)                       
k permeability 92540 9.9 12.2 10.0 42.1 83.2 - - - - 18.9 67.0 - - - -  
k ∙ 10-1 16877 1.8 2.2 1.8 - - 2.3 44.2 -  - - - 2.0 38.4 - -  
k ∙ 101 250776 26.9 32.8 26.9 -  - - -  485.7 92.9 -  - -  - 63.5 76.0 
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Figure 5.16. Watershed locations with a water table depth greater than 100 m (red) [Fan 
et al., 2013] and a recharge equivalent greater than expected precipitation 
values for the average permeability case (blue). Increasing the permeability 
one order of magnitude increased the number of erroneous watersheds, 
whereas decreasing the permeability resulted fewer watersheds with 
groundwater recharge greater than precipitation. 
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This recharge analysis also demonstrated the plausibility of magnitude changes of 

permeability on the global scale. Part of the misfit of the global recharge rate for this study 

resulted from the assumptions built into the numerical models, restricting the analysis with 

lithology-average permeability primarily to less arid regions of the world (i.e., primarily 

topography-limited flow), but an order of magnitude change in permeability also resulted 

in an expected order of magnitude change in the calculated global recharge rate. Thus, for 

the base permeability case, overestimating the recharge was a result of introducing too 

much recharge into arid and semi-arid regions and potentially from uncertainties in the 

cross-dimensional transformation of head gradients and in assigning hydrologic properties 

to watersheds. Thus, the estimate of young groundwater storage prior to considering 

recharge could represent an upper limit of this storage, given that my average permeability 

case may overestimate global groundwater recharge by a factor of two or more. However, 

also integrated into the recharge analysis is the unknown effect of the transformation of the 

laterally two-dimensional water table data into a watershed-based characteristic two-

dimensional groundwater flow domain with one lateral and one vertical dimension. 

5.4.3. Lifespan and vulnerability of renewable groundwater 

The calculated volume and spatial distribution of young groundwater on Earth can 

now elucidate how worldwide groundwater demand and use compare to the distributed 

renewal of groundwater storage. It is important to note that my simulations did not try to 

quantify how changing recharge, discharge, or extraction alter groundwater dynamics and 

the resulting age fields. Therefore, this analysis was solely to explore the consumption of 

the steady state storage of renewable groundwater calculated from my models. 

Following the analysis in Gleeson et al., [submitted], I calculated the lifespan of renewable 

groundwater under modern pumping rates (Figure 5.17). Dividing the spatial datasets of 
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the volume of renewable groundwater by the volumetric rates of modern extraction for 

irrigation [Wada et al., 2012] gave the lifespan of the renewable groundwater if only 

renewable groundwater is extracted. Thus, this lifespan was a minimum estimate, since 

groundwater extractions are not necessarily concentrated in recharge zones where younger, 

and therefore renewable using my conceptual model, groundwater is located: extracted 

groundwater will actually be a mixture of renewable and older groundwater as a function 

of the hydrologic setting as well as the well location, well depth, and screen length. 

This lifespan of renewable groundwater provides a new measure of the sustainability of 

modern groundwater use, estimating how long it takes for groundwater extractions to 

completely remove the storage of renewable groundwater from an aquifer. A lifespan 

greater than 50 years implies that the current rate of groundwater extractions will not 

deplete the storage of groundwater renewed over 50 years. However, more complex 

groundwater dynamics than those considered in my analysis from pumping will alter the 

groundwater age distributions, so a lifespan of renewable groundwater that is longer than 

50 years does not define the consumption as sustainable. Using the 50 km by 50 km 

resolution of the groundwater extraction data, 82.8% of areas irrigated with groundwater 

have lifespans of renewable groundwater over 50 years. 

Importantly, the lifespan of renewable groundwater also revealed regions where 

groundwater consumption was likely to surpass the rate of groundwater renewal. 

Anywhere with a lifespan that was less than 50 years indicated the potential for current 

unsustainable groundwater use, with increasing severity as the lifespan shrinks. 17.2% of 

the world’s irrigated areas had a lifespan of renewable groundwater under 50 years. 12.7%, 

8.4%, and 1.4% of renewable groundwater had a lifespan less than 25, 10, and 1 years, 

respectively.
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Figure 5.17. Global map of the lifespan of renewable groundwater if all groundwater extracted only removes modern 
groundwater. Removed portions of the map show areas where the water table depth was modeled to be greater 
than 100 m in the previous study [Fan et al., 2013]. 
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Figure 5.18. Global map of the percent of irrigation using groundwater after Siebert et al., [2010] overlaid by areas with a 
lifespan of renewable groundwater less than 50 years (red). 
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Despite this small overall proportion of the world having unsustainable lifespans of 

renewable groundwater, the relative importance of groundwater in meeting the demand for 

water, primarily for agriculture [Siebert et al., 2010], in these areas was also significant 

[Gleeson et al., submitted]. Thus, comparing the extent to which groundwater was used for 

irrigation with the unsustainable groundwater use following the lifespan analysis offered 

more insight into how important this overconsumption was for the sustainability of current 

agricultural practices (Figure 5.18). Where at least 25% and 50% groundwater was used 

for irrigation, 46.5% and 57.9% of these areas have lifespans of renewable groundwater 

that were less than 50 years [Gleeson et al., submitted]. Thus, in agricultural areas that 

depend upon groundwater for irrigation, approximately half of those areas had the potential 

to be using groundwater unsustainably. 

Overestimating groundwater recharge for watersheds with the numerical 

simulations also affects the reliability of the lifespan of modern groundwater in those areas. 

More recharge, leading to larger young groundwater storage, would erroneously suggest 

that these regions have a sustainable balance between young groundwater renewal and 

modern groundwater consumption. However, real groundwater recharge in these areas are 

likely much lower, potentially by a factor of 10 using global averages of other estimates of 

groundwater recharge versus precipitation [L'Vovich, 1974; Rodell et al., 2004; Trenberth 

et al., 2007; Schneider et al., 2014]. Thus, for areas where my simulations over-predict 

groundwater recharge, I expect the lifespan of modern groundwater to be much shorter and 

quite possiblely < 50 years. I cannot constrain these areas better with the current numerical 

simulations and data available at the global scale of this analysis. 

This study calculated the renewable groundwater resources by focusing on the 

problem of groundwater quantity, but the quality of this water also determines its 

usefulness. By using groundwater age to constrain groundwater renewability, the volume 
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of renewable groundwater is inherently the more vulnerable groundwater in the subsurface 

to contamination. To calculate the global volume of groundwater renewable on a 50 year 

timescale, I transformed near-surface groundwater systems into 2D for computational 

simplicity, but the length-scales I calculated for each watershed represent a watershed-wide 

average storage of this young groundwater. However, using the onset of groundwater aging 

as the moment of recharge, young groundwater is the most recently recharged, regardless 

of the complexity or heterogeneity of a flow system. Therefore, young groundwater occurs 

predominantly in recharging areas, and recharge, whether natural or induced, can introduce 

chemical species and contaminants into the flow system. Thus, when quantifying 

groundwater renewability within the context of groundwater age, it is important to also 

consider the quality of this groundwater, and not just the quantity. However, quantifying 

the proportion of clean versus contaminated renewable groundwater would be challenging 

and location specific, given the diversity of potential contaminants, differences in the 

sources, unique transport dynamics, and solute-dependent attenuation processes. 

5.5. CONCLUSIONS 

How much groundwater is renewable? The renewal of groundwater is dependent 

on the dynamics of a groundwater system that control the characteristic timescales of 

groundwater flow. In this chapter, I instead use a timescale of 50 years to define a 

benchmark of groundwater renewability from an outward-looking-in perspective that 

incorporates the importance of groundwater as a resource, ideally to be sustained and 

managed for perpetual human consumption. 

The global volume of modern groundwater was estimated to be 1,290,000 km3 

using 2D groundwater flow and age-as-mass transport models parameterized with global 

hydrologic and hydrogeologic datasets. The resulting groundwater age fields from these 
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simulations were analyzed using the probability of modern groundwater occurring at a 

given depth below the water table to yield length-scales of renewable groundwater storage 

that described the entire flow system. The deffective indicated the thickness of renewable 

groundwater storage in-situ underground, whereas the dequilvalent was defined as the length 

scale of the renewable groundwater storage, considering only the fluid phase underground. 

Since these length-scales account for the watershed-wide probability of the presence of 

renewable groundwater, they apply to both the 2D simulations and the real 3D watersheds 

to the degree that the 2D model parameters can accurately describe the 3D system. Thus, 

multiplying the dequivalent by the watershed area gives the volume of renewable groundwater 

under the assumption of topographically-driven groundwater systems. 

Modeled estimates of deffective compared favorably with 3H-based estimates of 

deffective for 30 major aquifers on Earth. Accounting for the sources of uncertainty in both 

analyses resulted in most aquifers having both a Vstorage and deffective that were within the 

uncertainty of the two methods, suggesting that the models were sufficiently characterizing 

the groundwater age fields with respect to the overall proportion of renewable groundwater 

in the systems. Additional similarity in the final proportion of renewable groundwater from 

the model analysis (6.2%) and the 3H analysis (5.6%) also supported the relevance of the 

simulations. Together, the 3H and numerical modeling approaches both agree remarkably 

well that roughly 6% of the groundwater in the upper 2 km of the crust is renewed over 50 

years, with as little as 1% or as much as 20% when accounting for the uncertainty in the 

two analyses. 

By estimating the distribution of renewable groundwater on the watershed scale, 

groundwater sustainability is addressed by subjecting this renewable groundwater storage 

to present-day pumping rates, yielding the lifespan of renewable groundwater. Using 

irrigation-related groundwater extractions, a majority (82.8%) of the world’s irrigation 
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currently extracts groundwater at rates slower than groundwater is renewed. The remaining 

agricultural areas not only use groundwater unsustainably using the lifespan of renewable 

groundwater as the metric of sustainability, but half of these unsustainable practices rely 

significantly on groundwater for irrigation (> 25%). Thus, this analysis reveals that while 

modern groundwater provides a significant, sustainable water resource, groundwater 

extraction can rapidly and irreplaceably exhaust this storage. Indeed, the natural storage of 

50 year old groundwater may have already been abstracted in areas with high groundwater 

consumption. 

The renewability of groundwater depends upon the timescale of interest in addition 

to groundwater use practices. In this chapter, I introduce a new approach for quantifying 

physical groundwater renewability by determining the storage volume renewed over 

multiple timespans. By linking groundwater storage to a timescale of renewal, groundwater 

users can make more informed decisions on how to manage and regulate groundwater 

consumption. These users and managers can refer to the global distribution of renewable 

groundwater storage using a 50 year timescale and storage over longer timescales to get an 

estimate of their local groundwater resources.  
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Chapter 6: 
 

Conclusion 

Water of love, deep in the ground: 
no water here to be found. 

Someday, baby, when the river runs free, 
it'll carry that water of love to me. 

-from “Water of Love” by Dire Straits [1978] 

6.1. DISSERTATION SUMMARY 

The purpose of my dissertation was to explore the storage and fluxes of 

groundwater within the framework of groundwater renewal. Inherent within this renewal 

are the inward and outward fluxes of water at the interface between groundwater systems 

and other components of the water cycle, primarily surface water bodies. Thus, my 

dissertation progressed from field measurements of groundwater flow in lacustrine and 

marine settings to a global, large-scale analysis of the storage of groundwater with a mean 

age of 50 years. 

In Chapter 2, electrical geophysical measurements in three lakes in the Nebraska 

Sand Hills were used to delineate groundwater-lake water mixing in the lacustrine 

subsurface. The spatial patterns of electrical resistivity (ER) arose from differences in water 

salinity created by originally fresh groundwater mixing with evaporatively solute-laden 

lake water. The ER surveys imaged lateral transitions in subsurface ER across both Wilson 

and Gimlet Lakes, which were interpreted as groundwater flow-through lakes. A larger 

magnitude change in ER under Wilson Lake indicated longer lake water residence times 

than in Gimlet Lake due to more evaporation leading to higher salinities in the surface 

water. The lakebed ER pattern of Alkali Lake showed a systematic increase in ER with 

depth that suggested fresh groundwater discharges to the lake, but little to no groundwater 
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recharge occurs from Alkali Lake, as evaporation removes water mass and leads to solute 

accumulation in both the lake water and lakebed. Importantly, the spatial patterns of 

groundwater flow revealed by the ER surveys showed that these shallow lakes created 

hydraulic gradients that overprinted the regional groundwater system. Within the context 

of groundwater renewability, these shallow groundwater flow systems are below the 

resolution of the global analysis of renewable groundwater storage from Chapter 5, 

especially in the Nebraska Sand Hills where very few perennial streams exist. However, 

the lake-driven groundwater systems contain unaccounted for young groundwater, albeit 

of highly variable quality. 

In Chapter 3, I investigated the influence of groundwater flow on heat transport in 

a sandy intertidal zone. The relatively stable temperatures of groundwater had been 

previously shown to be important for supporting coastal ecosystems, but I revealed how 

the hydrodynamics of the intertidal zone interact to create a thermal regime that can be 

buffered by groundwater. Using a beach on Rarotonga, I used ER surveys combined with 

temperature and water level measurements from the intertidal surface and subsurface to 

develop a conceptual model for how the subterranean thermal regimes were influenced by 

the hydrodynamics. In the upper foreshore, large variations in temperature were forced by 

swash infiltration and diel heating patterns. The remainder of the intertidal subsurface 

temperatures were controlled by conduction in the upper 10 cm of the sediment with 

groundwater setting temperatures below. Near a break in slope of the intertidal zone with 

ER surveys imaged fresher groundwater, cool and stable temperatures persisted. Beyond 

this change in slope, warm and stable temperatures were likely controlled by recirculated 

lagoon water. This study revealed the importance of groundwater flow on intertidal heat 

transport resulting from both terrestrial and marine forcings, and this study was the first to 

quantify both vertical and horizontal distributions of temperature in the subsurface of an 
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intertidal zone while quantifying the groundwater flow and sources. Moderating 

temperature dynamics in an intertidal zone represents a key ecosystem service of 

groundwater discharge that is dependent upon that groundwater being renewable. The 

perpetual replenishment of the supporting groundwater systems is required in order to 

sustain groundwater discharges at the coast. Thus, my contributions to the understanding 

the thermal regimes and hydrodynamics of the intertidal zone can be used to better 

constrain the importance of groundwater renewal to sustaining coastal habitats. 

In Chapter 4, I expanded my analysis of groundwater features on Rarotonga to 

extend from the island interior and into the reef lagoon. ER surveys constrained differences 

in bulk electrical conductivity that arose from the subsurface geologic materials and 

changes in fluid conductivity. Building off of the intertidal work in Chapter 4, the ER 

surveys imaged the potential for low salinity porewater discharges into the reef lagoon up 

to 100 m offshore. On land, a classical freshwater lens with underlying saltwater were 

imaged near the coast, which paradoxically suggested low potential for groundwater 

discharges to occur far beyond shore. The potential for conduit flow into the lagoon may 

occur through or beneath basaltic rocks, based on applying terrestrial ER results over lava 

flows in addition to numerical simulations to estimate the expected ER signal of submarine, 

seawater-saturated basalts. Areas where the ER surveys imaged potential lava flows in the 

subsurface also correlated to parts of the lagoon where high groundwater discharge had 

been previously measured. Another result of the ER surveys in the lagoon showed a 

transition from more porous sub-lagoon materials to less porous materials, presumably all 

carbonates, approaching the reef crest and may represent the first application of geophysics 

to show differential diagenesis across a fringing reef system. Together, these ER surveys 

imaged patterns of fresh and saline groundwater within the complicating setting of geologic 

heterogeneity, which in turn controls the hydrogeologic properties for the interacting 
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marine and terrestrially-driven groundwater flow systems. Thus, with this ER investigation 

of the hydrogeology of coastal Rarotonga, I showed an example of the importance of 

studying coastal hydrological processes with a spatially well-constrained understanding of 

the local geology and geologic heterogeneity. 

In Chapter 5, I developed a new framework for understanding the renewability of 

groundwater as a global resource by calculating a timescale associated with groundwater 

storage than can be chosen to address a problem of interest. For this analysis, I chose 50 

years to cover a timespan that marks the turnover of human generations and the time-scale 

of many management planning and policy decisions. A colossal amount of data was 

assimilated to guide the development of numerical simulations of groundwater flow and 

age-as-mass applied at the resolution of small watersheds. The deffective and the dequivalent 

were introduced as two length-scales that describe the integrated groundwater storage over 

a given area, in this case a surface watershed. Multiplying dequivalent by the watershed area 

yielded the storage of young groundwater held beneath that watershed. By summing all of 

the ice-free watersheds on Earth, I estimated the global volume of groundwater younger 

than 50 years on average to be 1.41 million km3 or 6.2% of the total groundwater storage 

to a depth of 2 km. Uncertainty in the permeability used in the models would change this 

estimate to 20.1% and 1.1% for an order of magnitude increase and decrease in 

permeability, respectively. A separate global analysis of tritium in groundwater samples 

included in the publication estimated 5.6% of groundwater to be young, again with large 

uncertainty (1-20%) arising from the uncertainty in the mixing and recharge models as well 

as the total volume of groundwater in the upper 2 km of the crust. Given the availability of 

two separate metrics of young groundwater storage, I compared the young groundwater 

storage in 30 aquifers using both a metric of renewable groundwater storage and estimates 

of renewable groundwater volumes, which showed general agreement between the 
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methods, given the uncertainties in both methods. The numerical simulations generally 

predicted less renewable groundwater than the tritium estimate. My simulations led to over-

predicted global groundwater recharge rates using the average permeability scenarios, 

while decreasing the permeability an order of magnitude led to a global recharge rate that 

was lower than other previous estimates. Thus, the estimates of renewable groundwater 

storage for the average permeability scenario likely represents an upper limit on renewable 

groundwater both globally and for mainly the arid and mountainous regions of the world. 

While the purpose of the fifth chapter was to quantify groundwater storage, the 

earlier chapters focused on characterizing and quantifying groundwater fluxes near surface 

water bodies. Groundwater fluxes to and from surface waters remain poorly constrained 

globally but are important for understanding issues of groundwater sustainability and 

groundwater responses to changing climate that were beyond the scope of the analysis of 

renewable groundwater. 

 

6.2. FUTURE RESEARCH 

Each of the chapters of this dissertation contribute to quantifying and characterizing 

groundwater flow and its effects on water quality and quantity at either the local or 

continental scale. In this section, I will share possible future research questions building 

off of this dissertation that are based both on the challenges that arose during the analyses 

and on the findings from these studies. 

6.2.1. Groundwater age and groundwater renewal 

Using the model outputs from the analysis in Chapter 5, I hope to explore, in more 

detail, the feedbacks between the different model parameters. The hydraulic gradient and 

the permeability distribution both control the potential for groundwater flow (i.e., Darcy’s 
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Law) and therefore are the dominant drivers of the advection of groundwater age-as-mass. 

However, the large number of parameter combinations and spatial scales considered in this 

analysis, along with the depth-decaying permeability and porosity, provide a unique dataset 

of groundwater age fields that can be used to improve my understanding of groundwater 

age and groundwater renewability. 

Building off of the estimation of groundwater storage over the past 10,000 years, I 

plan on constraining the potential for geochemical reactions to occur based on different 

reaction timescales. One of the end products of this study would allow me to estimate the 

mass of various solutes based on both the reaction rate and solubility. I would focus 

primarily on one-way dissolution reactions reaching chemical equilibrium and not allow 

precipitation to occur for at least this initial study. 

I would also like to address and improve upon some of the simplifications in this 

analysis in future work. I hope to explore the effect of modeling real groundwater systems 

with 2D instead of 3D domains to better quantify the information lost and potential 

accuracy remaining when transforming from one dimensional system to the other. Also, 

introducing transience into the groundwater age models would begin to allow more 

accurate quantification of groundwater ages under the influence of changing climate. As 

an ultimate goal, I would like to model full 3D landscapes and mutli-scale groundwater 

flow with realistic groundwater-surface water interactions and boundary fluxes to solve for 

a more accurate global water table/potentiometric surface dataset and a spatially-cohesive 

groundwater age field. 

6.2.2. Groundwater-surface water interactions 

My work on coastal groundwater systems has shown that hydrogeologic spatial 

heterogeneity is likely the norm for most groundwater-surface water interactions, 
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especially in coastal settings. Despite this increasingly well-acknowledged importance of 

heterogeneity in the hydrologic sciences, much of my work is restricted to well-manicured 

transects of sensors and sampling that inherently rely on the assumption of lateral 

homogeneity. I intend to develop both geophysical and sampling studies that continue to 

advance my understanding of groundwater-surface water interactions in heterogeneous 

environments and at specific locations. I will then use these insights to develop numerical 

simulations that will constrain the hydrologic responses of both groundwater and surface 

water under different heterogeneity scenarios. I believe it is crucial for hydrologists to 

quantify 3D groundwater-surface water interactions through time. 

6.3. BROADER DISSERTATION SIGNIFICANCE 

My hope is that this dissertation and the time I spent at The University of Texas 

will serve to advance more than just the academic discipline of hydrogeology. Here I 

outline some of the ways I see my research informing research in other scientific 

disciplines, on specific societal concerns, and general perceptions on groundwater and 

water resources. 

The focal topic of my dissertation is the renewability of groundwater, integrating 

the timescales of groundwater flow with smaller scale dynamics and patterns that its flow 

control. I hope my discussion of groundwater renewal, and the spatial variability of the 

storage of groundwaters recharged over different timespans, eventually leads to better 

groundwater literacy for the scientific community and the general public. I believe that 

associating a timescale with groundwater storage reiterates the fact that groundwater 

indeed flows. My quantification of groundwater storage volumes that are replenished over 

short to long timescales is a significant improvement to the common depiction of 

groundwater residence times spanning orders of magnitude without any sense of how much 
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groundwater is associated with a particular residence time. Therefore, my analysis of 

groundwater renewal initiates a new hydrogeologic endeavor to quantify groundwater as a 

temporally-relevant resource rather, than as one devoid of any connections to current 

groundwater or land use practices. My hope is that groundwater will be viewed as a 

resource with differing degrees of renewability based on hydrologic, geologic, and 

anthropogenic settings, even though I would argue that all groundwater systems are 

renewable to a certain degree over a long enough timespan. 

My geophysical delineations of groundwater-surface water mixing patterns, and the 

potential for them, show the heterogeneity of this mixing and their dependence on the local 

geology. I hope that future studies of coastal hydrology, geochemistry, and ecology 

incorporate the insights from my work and strive to understand the various processes within 

the framework of complexity that arises from stratigraphy and geologic structures. 

I hope that my research on Rarotonga can be used to understand the influence of 

groundwater discharges on the health of their coastal and reef ecosystems. I showed both 

the importance of groundwater discharges to the nearshore and foreshore sediment with 

connections to the temperature patterns in Chapter 3 and the larger scale potential for 

groundwater discharges in Chapter 4. While I think my ER surveys in the reef lagoon 

primarily depict the geologic framework for groundwater flow, and not fresh groundwater 

directly, the location and distribution of the carbonate and basaltic rocks in the reef may be 

crucial variables in both how and where groundwater enters the lagoon, affecting flowpaths 

and timescales that can carry unwanted contaminants to the lagoon. 

6.4. CONCLUDING REMARKS 

Is groundwater renewable? Is groundwater a renewable resource? If so, how much 

groundwater is renewable? These questions motivated my dissertation, and they will 



 

 179 

continue to motivate my research in the future. I have learned that renewable is a 

controversial and ambiguous term, especially in relation to groundwater. Part of the 

problem with the term renewable or renewability is the potential for connecting the topic 

of the renewal (i.e., groundwater) with other processes that depend on its current 

manifestation (e.g., wetlands or rivers). Adding these connections into renewability can 

result in the conclusion that any consumption of groundwater is unsustainable, and all 

groundwater use damages its renewability. The counter argument can be made that all 

groundwater is renewable regardless of consumption as long as recharge continues to 

occur, even if that recharge is captured from other water sources. While any definition of 

groundwater renewability is acceptable and may be appropriate for a certain application, 

what it means for groundwater to be renewable must be clearly communicated within cross-

discipline conversations and when reaching beyond the scientific community. 

My use of groundwater renewability in this dissertation has been focused on an 

uncommon usage of renewability, one that arises from the physical renewal of groundwater 

and is free from assigning groundwater an economic or environmental value. However, 

water consumption or conservation is ultimately tied to both economics and environmental 

needs and has immense value. Thus, physical groundwater renewability, as I use the term, 

is the metric of how quickly groundwater can be replenished based on groundwater 

recharge and the physical properties of the subsurface. Also, by using steady state 

simulations of groundwater age, my analysis of groundwater renewal was restricted to pre-

development conditions, where groundwater extractions could not alter flowpaths and 

groundwater residence times. The question now becomes: can physical groundwater 

renewability conceptually exist separate from the demand for or consumption of 

groundwater? 
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I now offer a perspective on what it means for groundwater to be renewable that 

was developed in collaboration with T.P. Gleeson (personal communication). To do this, I 

use an analogy: groundwater is physically renewable similar to how lumber is renewable. 

Just as trees grow at different rates due to species differences (e.g., bamboo vs. sequoia) or 

a multitude of environmental factors (e.g., soil thickness, water availability, solar 

intensity), groundwater flow rates are controlled by the integrated effects of the lithologic 

setting and adjoining hydrologic conditions. As numerous trees comprise a forest, a variety 

of hydrogeologic conditions can simultaneously control the flowpaths in a groundwater 

system, incorporating both heterogeneities and transience. 

With these general similarities between groundwater and lumber, the extension to 

renewability can be made. Both lumber and groundwater can be extracted using different 

management strategies that control the degree of renewability, often weighing resource 

yields for environmental concerns. In this way, clear-cutting a forest is analogous to 

rampantly drawing down and depleting an aquifer. More minimalist approaches can be 

taken to reduce the environmental impacts of the resource consumption, but, given enough 

time left alone, both systems could return to a near original natural state. However, 

permanent damage can also be done to groundwater (e.g., compaction) just like forests 

(e.g., ecosystem shifts). What is currently lacking for many depleting groundwater systems 

is the timescale dependence of renewability that is built into forestry management 

practices, and this is what I hope to offer with my dissertation. Part of the added difficulty 

in managing groundwater is that it is “hidden” underground and operates over a wide range 

of timescales for a given system, whereas a forest of one tree species grows at more or less 

the same rate. 

Another important lesson about groundwater renewability that can be learned from 

this analogy is that lumber is a renewable resource despite widespread human impacts and 
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management. I suggest groundwater is also physically renewable even though it may be 

stressed or contaminated. Thus, while groundwater can be degraded by human activities or 

as a result of climate change, all groundwater is physically renewable, though the degree 

to which it is renewable may change. Stated in a different way, aquifers are a renewable 

source of groundwater, but the renewability of groundwater as a resource is determined by 

the rates of withdrawals versus the rate of replenishment that depends on the aquifer 

properties and hydrologic conditions. The infinite physical renewability of groundwater 

that I refer to does not imply groundwater is infinitely available for consumption, as this is 

limited by both the economics of drilling deeper wells and potential changes in 

groundwater quality with depth. 

While this tree analogy may elucidate some components of what makes 

groundwater renewable or nonrenewable as a resource, I think that groundwater 

renewability remains and should remain an open forum for debate and conversation 

between scientists, economists, governments, and the public. From the scientific 

perspective, groundwater storage and processes must continue to be quantified within the 

holistic network of hydrological, biological, geological, and chemical connections in which 

groundwater is an active participant. A better understanding of these connections can be 

used to address the full range of the implications of groundwater use and enlighten the 

value judgments required for sustainable management of groundwater resources. 

As Chapters 2-4 show, understanding how groundwater connects to the surface of 

the Earth continues to hold many unknowns that are intimately tied to the ability to quantify 

hydrogeologic heterogeneity in space and through time. These fluxes and interactions at 

the surface control how groundwater systems respond to changing climate as well as retain 

remnants of previous climatic conditions. Moving forward, questions connecting 

groundwater flow to groundwater quantity and quality will lead to a better understanding 
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of the relevant spatiotemporal scales and hydrogeologic processes that dictate the 

feedbacks between groundwater and other earth surface and subsurface processes. Onward. 
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