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Maintaining multiple variants of software systems is extremely di�cult

because developers often port edits and bug fixes during software evolution.

This challenge particularly applies to closely related families of open source

projects, such as BSD projects (FreeBSD, NetBSD and OpenBSD) with exten-

sive cross-project porting activities. Developers encounter increasing obstacles

in maintaining projects, particularly because of the di�culty in understand-

ing historical artifacts involved in cross-system porting. Maintainers face the

primary challenge of keeping track of the sources of ported edits, as it can

be extremely time-consuming to mine historical data and track the source

and target of patches. In the worst-case scenario, the maintainer has to mine

through all historical data to ascertain the sources of ported code. Although

current version control systems like CVS and GIT preserve historical data, the

developer cannot easily identify and understand cross-system porting activi-

ties.
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In this thesis, we address the aforementioned issues by designing and

implementing software visualization support to analyze the long chain of cross-

project porting activities for Open Source Softwares (OSS) and particularly for

three BSD projects (FreeBSD, OpenBSD and NetBSD). We take into account

the geographically distributed community of OSS developers and maintainers,

hosting the visualization of the activities as a web application. This study

aims to analyze the e↵ects of visualization on cross-project porting activity

awareness. To meet the study’s objective, we developed a web-based awareness

tool, VIGNETTE, based on the results of REPERTOIRE [18] (which identifies

the cross-project porting activities in BSD projects using release history).

This study focuses on two research questions: (1) How can visualization

help novice open-source developers and maintainers gain insights into cross-

project (projects evolving from the same code base) porting activities? (2) How

can the visualization show the following: (a) a file-level association between

peer projects (porting activities in cross-project files with similar file names),

(b) the pairwise frequency of porting (the porting activity count between two

cross-projects in a year), (c) the patch-file association (same patch id applied

to di↵erent cross-project files), and (d) the developer to developer association

based on cross-project porting activities (number of times the cross-project

developers was involved in a common porting activity)? We conducted a user

study with graduate students in the role of novice open-source developers

interested in learning about cross-project porting activities. The results of the

initial study showed that VIGNETTE could be very useful in answering the
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questions about cross-project porting and in determining who was involved in

a particular porting activity and when.
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Chapter 1

Introduction

Open Source Softwares (OSS) often needs to maintain di↵erent variants

of the same project. These variants exist for several reasons, such as di↵erent

project goals, personality clashes [26] or even licensing restrictions [8]. For ex-

ample, one of the main reasons for the BSD project to maintain three variants

(FreeBSD, NetBSD and OpenBSD) is because of di↵erent project goals. This

common practice of creating di↵erent variants of the same project (software

forking) introduces complexity to the process of software maintenance. Soft-

ware forking activity spawns “competing” projects that cannot later exchange

code, thus splitting the potential developer community [20]. To maintain

forked projects, developers need to port code from peer projects, which in-

volves manual adaptation of features and bug fixes (a code exchange activity).

Moreover, developers may find it di�cult to learn about patch updates (for

example, updates made to a previously applied bug fix patch) and porting

sources across peer projects because of the split in the developers’ community.

To overcome the di�culties associated with learning about porting activities

by mining the code repository or from discussion forums, developers may re-

quire a visualization system that summarizes these activities.
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1.1 Background

Many forked open-source projects require a significant amount of port-

ing activities in the maintenance phase. For example, forked BSD projects

(FreeBSD, NetBSD and OpenBSD) evolve from the same code base and may

need the same bug fix patch to applied to all three projects (Porting). An

in-depth case study conducted on BSD projects using 18 years of release his-

tory reveals that porting is an important regularly-occurring activity, and that

ported code is less defect-prone [18]. The importance of porting activities can-

not be overstated; for example, Unix systems lost market share compared to

Windows mainly due to the porting restriction imposed on a large number

of forked Unix projects [26]. (These restrictions on forked projects resulted

from proprietary innovations that caused the forked Unix OSs to di↵er from

each other while restricting access to the innovations made in source code

[27].) Unlike Unix OS, Linux OS supports software porting across di↵erent

forked projects (cross-project), allowing the innovations to be available to var-

ious user communities [27]. Clearly, porting can have a huge impact on the

project success. REPERTOIRE represents the first work to successfully iden-

tify cross-project porting activities in BSD projects [18]. Based on the results

of REPERTOIRE [18], this thesis proposes a simple solution that visualizes

cross-system porting activities using a web-based application. This applica-

tion attempts to ease the developers’ burden in performing investigation of

cross-project porting.
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1.2 Visualizations

We developed a web-based awareness tool, VIGNETTE. Because OSS

developer communities are spread across the globe, we took this geographical

distribution into consideration by making the tool web accessible. VIGNETTE

currently analyzes the porting activities for BSD peer projects. As input, the

tool takes the porting activity data identified by REPERTOIRE [18] and visu-

alizes the results in di↵erent views. VIGNETTE provides four visualizations:

1. Tree visualization shows in hierarchy the porting activities based on the

file level similarity across peer projects.

2. Bubble visualization shows the pairwise porting frequency as a bubble

chart.

3. Bipartite visualization shows a bipartite chart of the porting activi-

ties based on the same patch IDs applied to the same project and peer

projects files.

4. Developer Dependency visualization represents as a dependency wheel

the number of times the developer pair was involved in a cross-project

porting activity.

Figure 1.1 displays the thumbnail view of the four visualizations as

displayed on the Welcome page of VIGNETTE.
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Figure 1.1: Thumbnail view of four visualizations

1.3 Research Problem

The main purpose of this thesis is to investigate how visualization of

cross-system porting can help developers understand who ported what and

when. This study hypothesizes that understanding the cross-project depen-

dencies and porting activities are key aspects for successful maintenance of

OSS projects.

The following summarizes the research questions and study results:

1. How can the visualizations help novice open-source developers
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and maintainers gain insights into cross-project porting activi-

ties?

This research question seeks to investigate if visualization could help

OSS developers learn about cross-project porting activities; it also seeks

to identify how quickly they could learn about these activities. In the

study, both users identified the porting activities correctly, completing

the identifications tasks within 20 minutes.

2. How well can VIGNETTE show the following aspects of cross-

project porting activities?

(a) A file level association.

We investigated if tree visualization could help developers identify

porting activities in similar files between FreeBSD and NetBSD.

(b) The pairwise frequency of porting.

We investigated if bubble visualization could help the OSS com-

munity learn about porting frequency among project pairs over the

entire project history.

(c) Patch-file association.

We investigated if bipartite visualization could help novice devel-

opers learn about patch-file associations (association of the same

patch Id with di↵erent files in peer projects) among the FreeBSD

project patches and files in the FreeBSD and NetBSD projects.
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(d) The developer to developer association.

Using this question, we investigated if the developer dependency vi-

sualization could help novice developers learn about the developer-

to-developer (number of times the developer pair was involved in a

porting activity) association.

The initial user study was conducted with two participants. In the study,

both participants could perform the tasks correctly. Both users gave a

higher rating (mostly 4 or 5 out of 5) for VIGNETTE. The following

user comments demonstrate users’ satisfaction, as collected during each

study session:

“I think the bipartite visualization is the most useful.”

“Visualization can represent the raw data very well.”

1.4 Contributions

The main contributions of this thesis include the following. We have

analyzed the raw porting data identified by REPERTOIRE [18] in four di↵er-

ent aspects and visually presented the data. In addition, we have developed

a novel web-based tool, VIGNETTE, to make porting analysis results easily

accessible to any developer from anywhere in the world.
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1.5 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 sum-

marizes the literature regarding prior works on this topic. Chapter 3 describes

various aspects of the tree visualization, while Chapter 4 presents the features

of the bubble chart visualization. Chapter 5 provides details into the bipar-

tite visualization, and Chapter 6 discusses the developer dependency wheel

visualization. Chapter 7 discusses the web-based tool implementation. Chap-

ter 8 provides the evaluation methodology and summarizes the study results.

Finally, Chapter 9 concludes the thesis by summarizing and discussing the

study’s limitations and by making recommendations for future work.
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Chapter 2

Literature Review

This chapter summarizes various prior researches in closely related ar-

eas. The review on earlier works is presented in five categories: (1) cross-

project porting activities, (2) clone detection techniques, (3) tool support and

mining software repositories for cross-project activities, (4) visualization aid

for cross-project porting activities, and (5) web-based tools for analyzing soft-

ware repositories. The rest of the chapter is organized into five subsections

(subsections 2.1 through 2.5, one for each of the categories listed above) that

explain the findings, the limitations, and the results in comparison to this

thesis.

2.1 Analysis of Cross-Project Porting

In an open source development context, developers often adapt code

patches from similar projects. Ray et al. studied the cross-project porting

activities in BSD peer projects using REPERTOIRE [18]. Ray et al. found

that cross-system porting happens more often. They showed that porting rate

does not decrease over time, and a significant portion of active committers port

changes. Although REPERTOIRE [18] was a major milestone in this area,
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the tool was designed to identify cross-system porting activities but lacked

an intuitive method to present cross-project porting activity data to BSD

developers. Tilbrook et al. studied the criteria for an e↵ective porting strategy

[23] when retargeting large-scale software to support new platforms. They

showed that the methodology employed to specify the characteristics of target

platforms is important for any porting strategy. German et al. identified that

licensing issues between variants of related projects contributed to creation

of di↵erent products, code siblings [11]. They showed that cross-project code

migration happens from less restrictive licenses to more restrictive licenses.

None of the prior studies could visualize porting activities that might

save OSS developers or contributors a great deal of time. In contrast, this

work focuses on presenting porting activity data to developers so as to save

their time in investigating cross-system porting.

2.2 Clone Detection Techniques

Porting is an activity of applying similar patches across variant projects.

Therefore, clone detection and porting analysis are closely related. Kim et al.

analyzed and presented evolutionary code clones, designing SoftGUESS [1] to

visualize code clone data. Although SoftGUESS intuitively represents the code

clones in various browser views, it is limited to present the clone visualizations

in a desktop application. Krinke et al. proposed an approach that detects

similar but not identical clones using program dependency graphs (PDG) [14],

while Taires et al. developed an eclipse plug-in, CloneDR [22], to visualize the

9



clones. Rieger et al. created DUPLOC [21], a matrix-based clickable clone de-

tector and a visualizer explorer. DUPLOC could detect and summarize clones

at source code granularity in a report. Kapser et al. created CLICS (Clone

Interpretation and Navigation System) [12] in order to understand the code

cloning process. They showed that a sub-project constituting approximately

17% of the project’s code held about 39% of the clones. Li et al. developed

CP-Miner [16] to detect copy-pasted code and defects. They showed that CP-

Miner could detect numerous clones as well as previously unidentified defects

in Linux and FreeBSD. Balint et al. identified the patterns between devel-

opers involved in code copying [2]. They associated developers if they cloned

the code at the same time in a similar notion of our developer-to-developer

association based on porting activities. Koschke et al. presented a complete

clone analysis, including identification of cloning root cause, detection, visu-

alization, and removal of code clones [13]. Fisher et al. reported the code

commonalities for three BSD projects [10].

It should be noted that none of these works have visualized the clones

detected using methods similar to those presented in this thesis. Rather than

just presenting the porting data, we propose a novel way of representing the

cross-project porting activities using four di↵erent visualizations.
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2.3 Tool Support and Mining Software Repositories for
Cross-Project Activities

Mining software repositories can be one of the first steps for identifying

clones and relationships between projects as well as for understanding porting

activities. Wagstrom et al. developed GitMiner [25] to identify the relationship

between projects and to track user activities across projects based on the data

mined from the GitHub repository (specifically for Ruby on Rails projects).

GitMiner [25] identifies the relationship between Ruby on Rails projects with

the other projects in the ecosystem and also facilitates understanding of this

mined data in the context of relationships between projects, users, and their

activities. Ohira et al. focused on enhancing knowledge collaboration among

peer project developers by mining project data in sourceForge using GRAPH-

MANIA [17]. This tool promotes knowledge collaboration by allowing its users

to access the cross project and developer information.

Although many of the previous studies referenced in this section at-

tempted to resolve issues related to cross-project activities, none of the existing

awareness tools aimed to represent porting across projects similar to how this

thesis attempts to visualize the activities of BSD project family. This work

focuses on the development of a visualization tool that utilizes patch pairs

generated by REPERTOIRE [18], attempting to display cross-project porting

activities using a web interface. The main goal of this thesis is to help novice

developers and contributors understand cross-project porting activities.
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2.4 Visualization Aid for Cross-Project Activities

Software visualization and metrics are two powerful techniques for rep-

resenting historical data. Visualizing enormous amounts of information is

particularly useful for easily exploring data. Canfora et al. proposed a novel

method, Cross-System-Bug-Fixing (CSBF) [4], for investigating the propaga-

tion of related changes and bug fixes across cross projects. They have used

the clustered social networks of OpenBSD and FreeBSD committers follow-

ing the CSBF method. They showed that less than 10% of the OpenBSD

and FreeBSD committers were the same; only 10% of the changes traceable to

source projects and contributors appeared in email discussions. Biehl et al. de-

veloped FASTDash [3] in order to visualize the following: current development

activities, the methods and files being modified, and the active developers in

these activities. These projects primarily aimed to increase the awareness of

current activities rather than to analyze repository data. Their user study and

interviews showed that visualization improves team awareness; however, one

limitation of FASTDash is that it cannot preserve visually analyzed data for

future use. Ueday et al. developed Gemini [24] to visualize the code clones

detected by CC-finder, while Lanza et al. used code crawler [15] to present

lightweight polymetric views of the source code.

Although the works referred to above used visualization to represent

various activities and results, most were limited to visualizing either socio-

technical relations or clone detection results, or to tracking bug-fix activities.

In contrast, the current work displays historical evolution data to improve
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awareness of past porting activities. It also preserves the results and provides

a way of accessing the results via web browser. The tool uses four di↵erent

visualizations to provide a birds-eye view of porting activities based on four

di↵erent associations (file level, patch-file etc.).

2.5 Web-based Tools for Analyzing Software Evolution

Web-based tools are easily accessible, require no configuration set-up,

and are ideal for the globally-distributed open-source developer community.

Developed by DAmbros et al., Churrasco [7] visualizes and analyzes software

evolution through a web interface framework. These researchers studied the

impacts of migrating the desktop software to a web platform using the SPO

(Small Project Observatory) [6] and the Churrasco framework [7]. They an-

alyzed the availability, scalability, and browser compatibility of this newly-

migrated web tool. Surveys conducted on their tool showed that 50% of

the users agreed that the web framework was useful, and 72% of the users

agreed that collaboration is important in reverse engineering tasks. Similar

to the above works, this thesis attempts to improve awareness of cross-project

porting activities among OSS developers. We have developed VIGNETTE, a

web-based tool to visually analyze various aspects of cross-project porting.
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Chapter 3

Tree Visualization

This chapter introduces the features of tree visualization with Section

3.1 presenting the background for the tree view. Section 3.2 provides details

about the employed color scheme, while Section 3.3 shows input data formats.

Section 3.4 describes the interactive features of the visualization, and Section

3.5 discusses the potential benefits of the tree view.

3.1 Background

It remains a time-consuming and tedious task to identify the source of

cross-project porting activities using the raw project data in the repository.

We thus aimed to easily identify the sources of porting activity and to track

porting patches. For example, suppose a project file introduces a new defect

after porting a feature enhancement. Knowing the sources of the ported patch

could help the developers apply the bug fix patch consistently and easily track

the updates to the patch. For example, suppose a bug fix patch was applied

to the project file ap/A.c of FreeBSD and was ported to the project file ic/A.c

(similar name) of NetBSD. After this porting activity, if the FreeBSD developer

identifies that the defect was not completely fixed and updates the bug fix
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patch. In this situation, the NetBSD developer who has ported the patch from

the FreeBSD file can use this visualizations to track for the patch updates (as

he is aware of the porting activity of the FreeBSD file with a similar file name).

The updates to the patch ids can be tracked using the latest patch commit

date presented in the Additional information page of this visualization along

with the hierarchical representation.

3.1.1 Motivation

Suppose a novice developer has a bug fix task to complete. If cross-

project porting activities are prevalent in the project, the developer may need

to know the modules from the peer project that could possibly be a↵ected by

or may a↵ect the bug fix. Searching through the project repositories could help

the developer to locate the a↵ected peer projects, but this search represents a

daunting task. Moreover, the developer could not identify all a↵ected projects

with a manual search through the repositories. Tree visualization provides an

alternative way to quickly identify all a↵ected projects and could also help the

developer focus on the bug fix task itself.

3.1.2 A Hierarchical Representation

Tree visualization represents the projects in a hierarchical form. The

depth of the hierarchical tree reflects the actual project folder’s structure

in FreeBSD and NetBSD projects. For example, if a file foo.c has a path

sys/ids/foo.c from the project root folder (freeBSD), then VIGNETTE dis-
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plays foo.c in a tree with sys as a root node. The current implementation

of the visualization shows the file level association for FreeBSD and NetBSD

project files. Figure 3.1 shows a sample hierarchical view of FreeBSD sub-

projects.

Figure 3.1: FreeBSD hierarchical tree view

Node. A node represents a file, module, directory, or subdirectory of a

project. Every node displays the corresponding text (file name) near the node

circle. Color filling can be used to di↵erentiate between nodes having child

nodes and nodes without child nodes. A parent node represents a top-level

folder or directory in a project structure.
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3.1.3 Comparison View

To compare cross-project porting activities between two projects for

the selected year, this page is built with two di↵erent frames. Each frame

displays the hierarchal tree view for a project. The current implementation of

the page represents the first frame with FreeBSD data and the second frame

with NetBSD data. The a↵ected files of the NetBSD projects gets displayed

automatically in the second project frame when the user selects a node (in the

first frame) by clicking on it. Figure 3.2 displays a sample snapshot of the tree

visualization page showing the comparison view.

Figure 3.2: Comparison views of FreeBSD and NetBSD projects

Year Selection Drop Down. The year selection drop-down allows

the user to select the year of interest for porting activities. Values for the year
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selection drop-down range from 1997 to 2014.

BSD Project Selector Drop Downs. The two BSD project drop

downs can be used to select the two di↵erent projects for comparing the cross-

project activities. Both the BSD drop-downs have three options (FreeBSD,

NetBSD, and OpenBSD).

3.2 Coloring Scheme

We used di↵erent colors to represent di↵erent project elements in the

visualization. Table 3.1 describes the color scheme and its interpretation.

S. No. Color Interpretation

1. Represents a FreeBSD project node
2. Represents a FreeBSD edge

3. Represents a compressed FreeBSD node with
children

4. Represents a NetBSD project node
5. Represents a NetBSD edge

6. Represents a compressed NetBSD node with
children

Table 3.1: Tree visualization coloring scheme interpretation
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3.3 Data Formatting

The format of the data used to draw the graph is very important when

using Data-Driven Document JavaScript (D3.js) API. Data can either be hard-

coded or loaded from external resources. Binding data from an external re-

source o↵ers the advantage of handling data dynamically. The D3 API parses

and binds data in any one of the following formats:

• XMLHttpRequest

• Text file

• JSON blob

• HTML document fragment

• XML document fragment

• Comma-Separated Values (CSV) file

• Tab-separated values (TSV) file

We developed the current graph by binding data from the database in a JSON

blob format. VIGNETTE queries the database and retrieves all the patch

ID’s for the selected FreeBSD file (in the FreeBSD frame) for the specific

year. Next, it queries for all the a↵ected NetBSD file paths using the retrieved

FreeBSD patch IDs. Then, it converts these file paths to a hierarchical JSON

format and writes the formatted data to a file, which is later used to display
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the graph in the NetBSD frame. The view presented in the NetBSD frame

represents the cross-project porting activity based on the file name similarity.

3.3.1 Sample Data with Example

If a user selects a node with the name kern in the FreeBSD frame

after selecting the year as 2003, then a query will be sent to the database

as soon as the user selects the cancel button on the pop-up dialogue box.

Then VIGNETTE retrieves the a↵ected NetBSD projects files for kern in

2003 using the aforementioned steps. The following are the sample NetBSD

folder paths retrieved from the database, which are formatted to the JSON

format to generate the tree view for NetBSD (refer to figure 3.2).

List of folder paths:

NetBSD/sys,

sys/kern/uipc socket.c,

sys/kern/vfs syscalls.c, sys/kern/uipc syscalls.c,

sys/kern/sys socket.c, , sys/kern/vfs syscalls.c,

sys/kern/vfs xattr.c, sys/kern/vfs syscalls.c,

3.4 Interactive Features

This section discusses various interactive features supported in this vi-

sualization.

20



3.4.1 Graph Zoom In and Zoom Out

The tree view API has a built-in zoom in and zoom out feature. To

zoom in and zoom out on the graph, the mouse focus should first be brought

inside the frame; then, the mouse can be scrolled in and out respectively.

3.4.2 Graph Panning

The user can change the view position via a mouse operation, another

flexible feature of this visualization.

3.4.3 Click Event

Clicking any node in the graph displays a pop-up dialogue box and

performs the following operations: (1) Submit the tree visualization form to

initiate a query for cross-project data if the user selects the cancel button, or

(2) Redirect the user to an additional information page if the user selects the

ok button. Figure 3.2 shows the resulting a↵ected NetBSD project files for

the cancel button selection, while Figure 3.3 shows the pop-up dialogue box.

3.4.4 Additional Information Page

We designed the Additional Information page with the aim of giving the

developers an opportunity to further investigate the porting activity associated

with the selected module. Using the Additional Information page, novice

developers can learn more about the developers involved in the activity, their

email IDs, the list of used patch IDs and the activities’ dates. Figure 3.4
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Figure 3.3: Pop-up dialogue box displayed when a node is clicked

provides an example snapshot that captures all of the additional information

pages.

3.4.5 Learn More Page

Clicking on the “Learn more” button (shown in Figure 3.5) displays a

tutorial on tree visualization (shown in Figure 3.6).

3.5 Intended Benefits

The benefits of using the tree visualization include the following: (1)

developers can easily learn about corresponding a↵ected files in a peer project

by clicking a node in the tree visualization, and therefore (2) they can be more

productive by focusing on development tasks.

22



Figure 3.4: Tree visualization additional information page

Figure 3.5: Learn more button
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Figure 3.6: Tree visualization learn more page
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Chapter 4

Bubble Chart Visualization

This chapter introduces the features of bubble visualization. Section

4.1 describes the background for implementing the bubble visualization, while

Section 4.2 provides an overview of the chart. Section 4.3 interprets the bub-

ble chart color schemes, and Section 4.4 discusses the bubble chart’s input

data format. Section 4.5 describes the interactive features, while Section 4.6

discusses the intended benefits.

4.1 Background

Porting is an important activity in software evolution, yet few porting

awareness tools exist. In an attempt to emphasize the importance of porting

activities, the bubble chart visualization measures and displays porting activity

frequency over the entire history of BSD projects.

4.1.1 Motivation

Suppose a novice developer has joined the BSD community and is to-

tally unaware of the porting activities in the BSD projects. In an open-source

development environment, these activities cannot be learned from peer devel-
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opers due to the geographically-distributed nature of the community and also

due to the split in the developer community. Bubble visualization represents

an alternative way to quickly learn about cross-project porting activities.

4.2 A Bubbled Representation

Bubble visualization represents the porting activity frequency for three

BSD projects taken pairwise. The current implementation of this visualiza-

tion shows the frequency of porting only for three BSD projects (FreeBSD,

NetBSD and OpenBSD) for the entire project history (1993 to 2013). Figure

4.1 shows the frequency of porting for FreeBSD-NetBSD, OpenBSD-FreeBSD,

and NetBSD-OpenBSD.

Figure 4.1: Porting frequency in bubble visualization

Bubble. The chart shows one bubble per year for each project pair

displaying the porting frequency. We define porting frequency as the number

of times the patch in one project is applied to a di↵erent project. For example,

26



if patch P was released and applied to project A, and project B has ported the

patch from A, then we consider project A as the source of the porting activity.

X-Axis. The x-axis represents the years of porting activity. The unit

interval on the x-axis is one year. Currently the chart records frequencies from

1993 to 2013.

Y-Axis. The y-axis represents the porting activity count. The unit

interval on the y-axis is 2.

Bubble Weight. The size or weight of the bubble varies based on

the porting frequency. A large amount of porting frequency results in a larger

bubble. The following represents the porting frequency scale on a graph. If

the actual frequency of porting is 100 then it is represented as 1 on the graph.

4.3 Coloring Scheme

We represent the porting frequencies of the three project pairs (FreeBSD-

NetBSD, NetBSD-OpenBSD, and OpenBSD-FreeBSD) with unique colors.

Table 4.1 provides the color scheme interpretation.

4.4 Data Formatting

We provide the input data format of the bubble chart as an array of

JSON. As attributes for the three projects, the data includes the year, porting

activities count and weight parameters.
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S. No. Color Interpretation

1. Porting source as NetBSD

2. Porting source as OpenBSD

3. Porting source as FreeBSD

Table 4.1: Bubble visualization coloring scheme interpretation

4.4.1 Sample Data with Example

VIGNETTE generates the bubble chart by parsing the key value pairs.

The data has the following as keys: year, FreeBSD, NetBSD, OpenBSD,

WFreeBSD, WNetBSD and WOpenBSD. From the data input, the tool parses

the year variable values and porting activity count (FreeBSD, NetBSD, and

OpenBSD) values and represents them as (x , y) coordinates respectively.

Then it assigns the bubble size based on the value parsed from WFreeBSD,

WNetBSD and WOpenBSD porting frequency variable.

4.5 Interactive Features

This section discusses various interactive features supported with this

visualization.
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4.5.1 Bubble Mouseover

We built the bubble chart with a mouse-over feature. When the user

hovers over the bubbles, a tool-tip with additional information is displayed.

The tool-tip displays the porting source, the porting year, and frequency, as

illustrated by figure 4.2.

Figure 4.2: Bubble mouse over event

4.5.2 On Bubble Click

Bubbles in the chart are clickable. Clicking on any of the bubbles will

display a redirection pop-up window. Selecting the cancel button on the pop-

up dialogue box displays the bubble chart page. Selecting the ok button on

the pop-up dialogue box redirects the user to the Additional Information page.

Figure 4.3 is a sample screenshot showing the pop-up dialogue.
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Figure 4.3: Bubble mouse click event

4.5.3 Additional Information Page

The Additional Information page enables the developer to further in-

vestigate the files that have contributed to the frequency of porting for the

chosen year. The Additional Information page displays the Patch ID applied,

developers involved, and files for the selected project pair. Figure 4.4 displays

the Additional Information page for the bubble visualization.

4.5.4 Learn More Page

Clicking on the “Learn more” button (shown in Figure 4.5) displays a

tutorial on bubble visualization (shown in Figure 4.6).
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Figure 4.4: Bubble visualization additional information page

Figure 4.5: Learn more button

4.6 Intended Benefits

The benefits of using the bubble chart visualization include the fol-

lowing: (1) novice developers can quickly learn the importance of porting
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Figure 4.6: Bubble visualization learn more page

activities, (2) developers can leverage the data from the Additional Informa-

tion page to support their maintenance tasks, and (3) managers can use this

view to improve the open-source project process.
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Chapter 5

Developer Dependency Wheel Visualization

This chapter introduces the features of the developer dependency visu-

alization. Section 5.1 presents a discussion of the background, and Section 5.2

describes the purpose of di↵erent web page elements. Section 5.3 interprets

the color scheme used in the chart, and Section 5.4 provides more detail on

the data format used to build the chart. Section 5.5 describes the interactive

features, and Section 5.6 outlines the intended benefits.

5.1 Background

Open source developers mostly rely on mailing lists and forums to learn

all the developers whose modules may be a↵ected in a porting activity. Ob-

taining this list is di�cult (due to forum access restrictions) if cross-project

developers are involved in the porting activity. To address this di�culty, we

developed a developer dependency wheel in this thesis. This visualization

analyzes and displays the cross-project developer associations based on past

porting activities.
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5.1.1 Motivation

Suppose developers ported patch P across di↵erent projects and later

updated this patch. If this patch update is very important and has to be

communicated to di↵erent cross-project developers. One way of getting the list

of developers is by using the discussion forums but the forum access restrictions

may not allow the cross-project developer to know the developers involved. In

this situation, the developer can get the list of the cross-project developers

involved in a porting activity along with him/her by using the connecting

chords in the dependency wheel visualization. The connecting chords show

that the developers were involved in the same porting activities for the selected

year. The current implementation shows the associations for the FreeBSD and

NetBSD developers.

5.2 Developer Dependency Wheel

In this visualization, we represent the chart as a circular wheel with

connecting chords. We built the circular wheel with a number of arcs, each

one representing a developer from either FreeBSD or NetBSD project. We

associated developers in the chart based on their common porting activity

participation.

Arc Wheel. The arc length varies with the number of times a de-

veloper was associated with a peer project developer. Figure 5.1 shows the

variable length arcs for each developer. For easy identification, we prefixed the

FreeBSD developers with “FBsd/ ” to their names and the NetBSD developers
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Figure 5.1: Developer dependency visualization

with “NBsd/ ”to their names.

Connecting Chords. Chords connecting the two arcs of the wheel

show the developers’ associations. We determined the width of a connecting

chord by the number of times the same developer was paired in di↵erent port-

ing activities. Figure 5.1 displays the pairing of the developers connected by

chords.

The dependency visualization has a common navigation bar, title, de-

scription ribbon and year selection drop-down. It also has a back button at

the bottom of the page. For simplicity and scalability purposes, the current

implementation shows the association between 50 peer project developers for
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the year 1995. Figures 5.2 and 5.3 represent sample screenshots that capture

all page elements.

Figure 5.2: Developer dependency wheel web page

Figure 5.3: Developer dependency page showing back button

5.2.1 Learn More Page

Clicking on the “Learn more” button (shown in Figure 5.2) displays a

tutorial on developer dependency wheel visualization (shown in Figure 5.4).
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Figure 5.4: Learn more page

5.3 Color Scheme

Each developer can be identified through a unique color in the chart. In

the current chart implementation, we used 50 unique color codes to represent

50 developers in both FreeBSD and NetBSD projects.

5.4 Data Formatting

This chart requires the input data to be formatted as a dependency ma-

trix. We modeled data obtained from the database as a dependency matrix.

Rows and columns in the matrix represent FreeBSD and NetBSD developers.

Elements in the matrix have a value of zero, if the developer pair has not par-

ticipated in the same porting activity; a value of greater than zero represents
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the number of times of pairing. Suppose developer A of FreeBSD is mapped

to a column index 1, and developer B of NetBSD is mapped to a row index 2

in the dependency matrix. If the number of times A and B were paired is 10,

then the element identified as dependency [2][1] will be updated to 10. Figure

5.5 illustrates a sample dependency matrix for the 50 developers of FreeBSD

and NetBSD projects.

Figure 5.5: Dependency matrix for 50 FreeBSD and NetBSD developers

5.5 Interactive Features

This section provides the interactive features of the developer depen-

dency wheel visualization.
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5.5.1 Mouseover

Wheel Arc. Hovering on the arc displays a tool-tip with additional

information, including the developer’s name and the percentage of the devel-

oper’s porting participation. Figure 5.6 shows a tool-tip displaying that a

FreeBSD developer “Ache” was actively paired for 56.0% of the time with

di↵erent NetBSD developers.

Figure 5.6: Mouse over action on wheel arc

Figure 5.7: Mouse over action on wheel chord

Connecting Chord. Hovering over the chord displays a tool-tip

with additional information, the percentage of developer pairing. Figure 5.7
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shows a tool-tip displaying how FreeBSD developer “Swallace” was paired with

NetBSD developer “Fvdl” in the same porting activity for 32% of the time.

5.6 Intended Benefits

The benefits of using the dependency visualization include the follow-

ing: (1) developers can gain a great deal of developer association information

from the compact representation, and (2) they can reduce the time spent on

obtaining the list of cross-project developers.
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Chapter 6

Bipartite Visualization

This chapter introduces the features of our bipartite visualization. Sec-

tion 6.1 introduces the background motivation, and Section 6.2 describes the

bipartite visualization. Section 6.3 interprets the color schemes used. Section

6.4 discusses the data format. Section 6.5 describes the interactive features of

the graph, and Section 6.6 presents the intended benefits.

6.1 Background

As software evolves, developers may need to apply an updated patch

to the same project and peer projects files. Knowing all of the dependent

project files can be tedious and error prone. Bipartite visualization overcomes

this issue by identifying the files that have the same patch applied across

cross-projects.

6.1.1 Motivation

Suppose di↵erent developers apply the patch with id f123 to two dif-

ferent projects of the FreeBSD project and one project of the NetBSD project.

When patch P is updated, the updated patch may be applied to all the af-
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fected project files. It is easy to identify the a↵ected files, if the patch was

applied to a small number of files. However, if the patch was applied to many

project files, the developers may overlook updating some of the a↵ected files.

To address this issue, we have developed the bipartite visualization. Using this

visualizations developers will know all the files (even with di↵erent names) that

have used the same patch.

6.2 Bipartite View

Bipartite visualization displays the patch-file relationship for a given

patch applied to the files across peer projects. This view has two pairs of

stacked bars showing these patch-file relationships. In each pair of the stacked

bar, the left-hand sidebars represent the patch IDs, and the right-hand sidebars

represent the file names. The current implementation of Bipartite visualization

shows the relationship of FreeBSD patch Ids with that FreeBSD files and also

the NetBSD files.

6.2.1 Comparison View

The comparison view gives the developer an opportunity to view and

compare two di↵erent patch-file relationships. The bipartite chart provides

two patch-file relationships, showing the FreeBSD patch ID to FreeBSD file

as well as the FreeBSD patch ID to the NetBSD file. Figure 6.1 shows a

comparison view with two patch-file relationships. They represent either the

patch IDs or file names across the same or peer project.
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Figure 6.1: Bipartite comparison view

Stacked Bars. They represent either the patch IDs or file names across

the same peer project.

Connector. The translucent connectors map the patch IDs to the file

names.

Percentage. The number of times the same patch ID was used is

expressed as a percentage on the visualization.

Count. The count on either side of the graph represents the number

of usages for a particular file or patch.

Page Elements. The bipartite view has a common navigation bar,

a title, a description ribbon, a learn more button, a year drop-down and a

back button. The current implementation visualizes 20 patch-file relationships
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which were randomly selected for the year 1995. Figure 6.1 shows a sample

screen for the bipartite visualization page.

Figure 6.2: Bipartite visualization web page

6.2.2 Learn More Page

Clicking on the “Learn more” button (shown in Figure 6.2) displays a

tutorial on bipartite visualization (shown in Figure 6.3).

We randomly assigned a color to each bar representing a patch ID or

file name from a defined set of color codes.

6.3 Data Formatting

We generated the bipartite view by parsing the data represented as an

array of tuples. We constructed each array with four attributes: the patch ID,
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Figure 6.3: Learn more page

patch count, file name, and file count. We also constructed each tuple with

four attributes. Figure 6.4 shows data formatted as an array of tuples.

Figure 6.4: Bipartite visualization input data format
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6.4 Interactive Features

This section discusses various interactive features of the bipartite view.

6.4.1 Mouse Over

It is possible to hover over the stacked bars in this visualization. When

hovering over a stacked bar, thus a user highlights the patch file relationships

in both parts of the view, and the remaining connectors disappear. Figure 6.5

displays the mouse-over operation.

Figure 6.5: Bipartite chart mouseover on the patch ID

6.4.2 Mouse Click

Clicking the patch IDs displays a pop-up dialogue box. Selecting the

cancel button of the pop-up dialogue box maintains the bipartite view. Choos-
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Figure 6.6: Bipartite view click operations

ing the ok button of the pop-up redirects the user to the developer dependency

wheel. Figure 6.6 shows a pop-dialogue box for a click event.

6.5 Intended Benefits

Knowing the patch-file pair of a past porting activity can help the

developer to consistently apply an updated patch.
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Chapter 7

Implementation

This chapter gives the implementation details for VIGNETTE. Section

7.1 discusses various web pages. Section 7.2 discusses the APIs used to build

the application.

7.1 Web Pages

The web application includes the following web pages: the Welcome

page, the Learn More page, and four visualization pages.

Welcome page. The welcome is a landing page for the application.

As soon as the user accesses the application URL, he or she sees the home page

displayed. Figure 7.1 displays the common navigation bar. The Select Visu-

alization drop-down on the navigation bar allows users to navigate between

di↵erent visualizations. Each page displays a title ribbon. From the home

page, the user can navigate to each of the visualizations using the thumbnails,

as displayed in Figure 7.2.

Learn more page. Users can access this page by clicking on the

Learn More button in the title ribbon of the home page. This page gives a

brief motivation for the development of VIGNETTE. A back button can be
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Figure 7.1: Common navigation and page ribbon

Figure 7.2: Thumbnail views of visualizations

used to navigate back to the Welcome page. Figure 7.3 shows the Learn More

page.

7.2 APIs and Server

We built VIGNETTE using many external APIs and developed the

application’s back-end with servlets and JSP (Java Server Pages) technology.
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Figure 7.3: Learn more page

We stored the porting data in a MySQL database. We developed the front-

end for the application using JavaScript, Jquery, HTML and CSS. We built

three of the visualizations (tree view, developer dependency wheel, bipartite

visualization) using the Data-Driven Document (D3.js) JavaScript API. We

deployed the application in a remote Tomcat web server. The application can

be accessed using the URL below:

http://www.vignettetool.com/TreeVisualization

Data-Driven Document (D3) library. D3 is a JavaScript library

used to manipulate DOM elements with a data-driven approach. Data is

bound to the DOM element using HTML, CSS3, and SVG (Scalar Vector

Graphics). An important feature of D3 is its ability to render the visualization
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as SVG elements. An SVG element is preferred to an HTML <div> element,

as rendering the data with <div> is not consistent across di↵erent browsers.

Therefore, D3 API is reliable, visually consistent, and faster. D3 introduces

dynamism to the visualizations and supports animations.

Browser Compatibility. Users can access the web application via

any of the browsers. We have tested VIGNETTE in Google Chrome, Safari

and Firefox browsers.
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Chapter 8

Evaluation and Results

This chapter describes the methodology used to evaluate VIGNETTE

and presents the evaluation results. We designed and conducted a user study

to evaluate VIGNETTE with the aim of analyzing its usefulness.

8.1 User Study Design

We conducted an initial user study with two participants. Before per-

forming any tasks, we introduced the users to the concept of cross-project

porting, including an exploratory demo of VIGNETTE. We also provided the

participants with a user study reference manual (presented in Appendix A).

The user study manual included an introduction to cross-project porting, a

brief overview of the web tool, and an introduction to the various visualiza-

tions, tasks, and questionnaires.

8.2 Study Experience

This section presents two user study session experiences. We preserve

the anonymity of these users in the following manner: User A refers to the

first participant, and User B refers to the second participant. During the
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user study, we captured each participant’s activities by screen recording and

transcribed the conversations. We asked each participant to perform the same

exploratory tasks on VIGNETTE. As a first step in the study, we gave User

A and User B reference manuals and asked them to read the introduction

in order to learn about the background of the research. Next, we verbally

explained the research background and the details of cross-project porting to

both participants. Finally, we provided a demo on how to use VIGNETTE

before asking participants to perform the tasks.

8.2.1 User Profiles

User A. She is a doctoral student in software engineering with over

five years of development experience. She is interested in contributing to open-

source development and has recently started contributing to an open-source

project (Shifu ML). This participant completed all the exploratory tasks in

approximately 10 minutes.

User B. He is a post-doctoral researcher in software engineering. With

over five years of development experience, he has contributed to multiple open-

source projects, such as XIO (a programming language for parallel program-

ming) and Wala (a program analysis framework for Java). This participant

completed all exploratory tasks in approximately 15 minutes.
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8.3 Results

This section summarizes the findings from the two study sessions. The

questions provided for each tasks were either rating questions with multiple

choices, open-ended questions, or concrete questions with a single correct an-

swer. To present quantitative results, we interpreted each user’s answers as

a score based on the type of question. The ratings question had a maximum

score based on the number of options given; for example, if a question had

three options, then the maximum score was three, and the minimum score

was one. We did not include the open-ended and background questions in the

score interpretations. We interpreted the concrete questions to have a score

of either 1 (correct answer selected) or 0 (wrong answer selected). We sum-

marized the score interpretations for the four visualizations in four di↵erent

tables (Tables 8.1 to 8.4).

8.3.1 Interpretation

Tables 8.1 to 8.4 summarize the resulting interpretations for tree, bub-

ble, bipartite, and developer dependency visualizations respectively. In each

of the Tables (8.1 to 8.5), the first column includes the questions related to

each task taken directly from the reference manual, A
answer

and B

answer

are

the answers selected by User A and User B respectively. A
score

and B

score

are

the score interpretation of the users. T

score

is the total score of User A and

User B, andM

score

is the maximum combined score for any given question. Ta-

bles 8.5 and 8.6 provide the overall feedback and user backgrounds respectively.
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Question. A

answer

B

answer

A

score

B

score

T

score

M

score

How would you rate
Tree visualization
in terms of present-
ing the file level
porting association
across freeBSD and
netBSD projects?

Excellent Excellent 5 5 10 10

In a role of novice
Open Source devel-
oper, would you like
to use this tool dur-
ing project develop-
ment?

Would
think
about
using
the tool

Definitely
use the
tool

2 3 5 6

How would you rate
the information pro-
vided in the addi-
tional details page
for learning about
the porting activity?

Useful Extremely
useful

4 5 9 10

Table 8.1: Tree visualization results summary

8.3.2 Result Metrics

To evaluate the research questions, we normalized the scores interpreted

in Tables 8.1 to 8.4 with the maximum score (M
score

). Below, we present the

visualization evaluation parameters.

Usefulness. Measures how useful the visualizations are for performing

cross-project porting activities.
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Question. A

answer

B

answer

A

score

B

score

T

score

M

score

Could you please
select the year
that has the
largest port-
ing frequency
for NetBSD-
OpenBSD
projects pair?

2001 2001 1 1 2 2

After exploring
the bubble chart,
how much impor-
tance needs to be
weighed on the
learning porting
activities?

Highly im-
portant

Highly im-
portant

4 4 8 8

On a scale of 1
to 5, how would
you think the de-
tails provided in
the additional de-
tails page can be
utilized for further
investigation?

4 3 4 3 7 10

Table 8.2: Bubble visualization results summary

E↵ectiveness. Measures whether the visualizations are of any value

to cross-project porting activities.

Usability. Measures the ease of use and clarity of the porting infor-

mation provided in the visualization.

We categorized the user study exploration task questions into three cat-
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Question. A

answer

B

answer

A

score

B

score

T

score

M

score

Select the
NetBSD file
name that has
two di↵erent
Free Patch Ids
applied?

lxoldmap.c lxoldmap.c 1 1 2 2

Select the
FreeBSD file
name that has
two di↵erent
Free Patch Ids
applied?

pcvtvtf.c pcvtvtf.c 1 1 2 2

Rate the ease
with which the
largest patch-file
relationship
could be identi-
fied?

Easy Very easy 3 4 7 8

Who could ben-
efit most from
such type of vi-
sualization? (
Choose all that
apply)

Developer,
Committer,
Maintainer

Manager,
Developer,
Committer,
Maintainer

3 4 7 8

Table 8.3: Bipartite visualization results summary

egories based on the above evaluation parameters. Figures 8.1 to 8.4 illustrate

the final results of the four visualizations and Figure 8.5 shows the overall

rating for VIGNETTE.
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Question. A

answer

B

answer

A

score

B

score

T

score

M

score

How would you
rate the amount of
information pre-
sented on the peer
project developer
dependencies?

Extremely
informa-
tive

Extremely
informa-
tive

4 4 8 8

How would you rate
the developer de-
pendency wheel for
knowing the list of
a↵ected developers
while a patch is ap-
plied to a paired de-
veloperś work?

Very
helpful

Extremely
helpful

3 4 7 8

Table 8.4: Developer dependency visualization results summary

Figure 8.1: Tree visualization results
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Question. A

answer

B

answer

A

score

B

score

T

score

M

score

How would you
rate the overall
user experi-
ence(Look and
Feel) of the web
tool?

5 (Excel-
lent)

5 (Excel-
lent)

5 5 10 10

Is visualization a
powerful medium
for learning port-
ing? (Please rate
on a scale of 1 -
5 using the follow-
ing)?

5 (Ex-
tremely
powerful)

5 (Ex-
tremely
powerful)

5 5 10 10

Select the best/
most useful visu-
alization from the
four visualization
of the web appli-
cation?

BiParate
Visual-
ization

BiParate
Visual-
ization

0 0 0 0

How would you
like to rate the
ease of use (Nav-
igation between
pages) of the web
application?

4 (Very
easy)

5 (Ex-
tremely
easy)

4 5 9 10

Table 8.5: Overall feedback results summary

8.3.3 Research Questions

Using the score summaries presented in Figures 8.6, this subsection

summarizes the results.

1. How can the visualizations help novice open-source developers
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Question. A

answer

B

answer

How many years of experience in
software application design/ devel-
opment or in any other activity do
you have?

5 - 10 years 5 - 10 years

Have you ever contributed to a Open
Source Development?

Yes Yes

If you have selected Yes in the above
question please list the projects that
you have worked on

Shifu ml XIO and Wala

Table 8.6: User background summary

Figure 8.2: Bubble visualization results

and maintainers gain insights into cross-project porting activi-

ties?

The usefulness of visualizations presented in VIGNETTE can be inter-
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Figure 8.3: Bipartite visualization results

Figure 8.4: Developer dependency visualization results
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Figure 8.5: Overall results for VIGNETTE

Figure 8.6: Summary of normalized scores

preted from the Tables (8.1 to 8.4). The following is a brief summary

of the conclusions: (1) The visualizations presented in this thesis can be

of much value for performing porting activities e↵ectively, (2) we found
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that all visualizations could be highly useful for porting activities, and

(3) the amount of information presented in the visualizations could be

very useful for porting activities.

2. How well can VIGNETTE show the following based on cross-

project porting activities?

(a) A file level association.

To understand the usefulness of file-level association for FreeBSD

and NetBSD, we can consider the tree visualization results from

Figure 8.6. The tree view could be very useful in identifying the

file level association between FreeBSD and NetBSD projects and it

is very easy to use.

(b) The pairwise frequency of porting.

We evaluate the pairwise frequencies among the three BSD projects

using the bubble visualization ratings from Figure 8.6. The porting

frequencies could be useful and easily identified from the visual-

izations. It could help a developer perform the porting activities

e↵ectively.

(c) The patch-file association.

To understand the impacts of visualization on patch-file relation-

ships identification, we considered bipartite visualization results
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from Figure 8.6. The bipartite visualization could e↵ectively iden-

tify the porting activities and very easy to identify porting activi-

ties. Moreover, during the user study session, one user commented,

“Biparatite visualization is extremely useful in identifying porting

activities based on the patch-file relationship.

I really like the details presented in this visualization.”

(d) The developer to developer association.

To analyze the usefulness of visualization in obtaining the cross-

project developer association, we consider the dependency wheel

visualization results in Figure 8.6. The dependency wheel visu-

alization is very e↵ective in identifying the developer association

e↵ectively.

Additionally, during the user study session, one participant made the following

comment:

“The tool was extremely well built.

I really liked the idea of visualizing the raw data.”

Both users were very interested in knowing about VIGNETTE’s implementa-

tion details and asked the following questions:

“How did you implement the tool?

What technologies have you used?”
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Based on the above analysis, we conclude that VIGNETTE is a useful

tool for understanding porting activities. To completely reach a conclusion on

the usefulness of this tool, further evaluation should be performed.
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Chapter 9

Conclusion and Future Work

This chapter summarizes the thesis work. Section 9.1 presents the

Threats to Validity. Sections 9.2 and 9.3 describe the summary and future

work respectively.

9.1 Threats To Validity

This section describes the threats to construct, internal, external and

conclusion validities.

9.1.1 Construct Validity

Threats to construct validity measure how well a study measures its

claim. This thesis relied on cross-project ported edits identified by REPER-

TOIRE [18]. In the current implementation of the web-based tool, the results

of porting analysis displayed as visualizations have certain restrictions. Tree

visualization currently presents porting activities based on file name similar-

ity for only FreeBSD-NetBSD project pairs for the entire project history. In

order to display the visualizations at a web-page scale, bipartite visualiza-

tion displays the porting activities for the top 20 patch IDs for FreeBSD and
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NetBSD projects; meanwhile, the developer dependency visualization presents

the relationships of 50 developers from both FreeBSD - NetBSD project pairs.

9.1.2 Internal validity

Threats to internal validity measure the accuracy of cause-e↵ect infer-

ences or causal relationships. This tool relies on REPERTOIRE [18] for the

ported edits as inputs. All REPERTOIRE [18] threats to internal validity are

applicable to VIGNETTE.

9.1.3 External Validity

Threats to external validity are a measure of the findings’ generalizabil-

ity. This study focuses on analyzing the porting activities in FreeBSD, NetBSD

and OpenBSD. This tool may not generalize to other open-source projects

where there is no evidence of cross-project porting activities and forking.

9.1.4 Conclusion Validity

Conclusion validity measures whether the study conclusions are rea-

sonable. For the purpose of this thesis, we evaluated VIGNETTE with an

exploratory user study using a group size of two members. As a result, the

tool’s usability measure is restricted to the level of expertise and experience

of the two participants. Moreover, based on the given evaluation results, the

study may or may not be applicable to a broad scope of open-source develop-

ers.
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9.2 Summary

To analyze cross-project porting activities awareness, we have devel-

oped a web-based visualization tool, VIGNETTE. To support the geographi-

cally distributed community of open-source developers, we have chosen a web

platform to implement the tool. VIGNETTE visualizes and presents the cross-

project activity results as four visualizations. The user study results reveal

that VIGNETTE can be very useful when learning about cross-project port-

ing activities.

9.3 Future Work

In the future, we plan to improve the following aspects of the study.

Future Extension. As a future extension, we plan to extend the tool

to support porting activities in other BSD projects, such as DragonFly BSD,

and to support visualizations for di↵erent OSS projects, such as Mozilla and

Linux, not only for porting activities but also for other maintenance activities.

Improve the Scalability of the Visualizations. In the current

version of the tool, some of the visualizations (bipartite and developer depen-

dency) have been designed to display only a few analysis results. For future

extension, we plan to visualize all analysis results.

Recommendations of Ports. We plan to implement a functionality

that automatically recommends ports to developers based on existing analysis

results.
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Appendix A

User Study Reference Manual

A.1 Introduction

Maintaining multiple variants of a project is a time-consuming process,

as new requirements and issues must be adapted to other project variants in a

timely manner. Software porting is one of the common techniques employed

to maintain forked open-source project variants; the developer manually ports

feature enhancements from closely related projects. These activities are clearly

evident in the family of BSD projects (FreeBSD, NetBSD, and OpenBSD).

Because three projects evolved from a single BSD project, a bug fix in one

project may a↵ect some part of the code in other peer projects. Therefore, a

developer of other peer projects may need to be aware of bug fix patches. This

thesis hypothesizes that understanding cross-project porting dependencies is

key to evolving project variants. To support the main objectives of this work,

we designed a new web-based tool, VIGNETTE. The main goal of this study

is to analyze the benefits associated with the web visualization, which aims to

improve awareness of cross-project activities. We have designed the user study

to introduce the tool’s features, including a 30-minute tool demonstration.
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A.1.1 Web-based Visualization of Cross-Project Porting

This work supports design and implementation of the following four

di↵erent views to help developers understand porting activities: (1) tree view,

(2) bubbled view, (3) bipartite view, and (4) dependency view. The following

is a brief summary of each of these views.

1. Tree visualization shows a file level association of cross-project porting

activities. The file level association can be defined as follows. For in-

stance, if a user is applying a patch, say P1, and modifies a NetBSD

file. If P1 is adapted to a file with the same name in OpenBSD, then

the two files are associated. Developers can benefit from knowing the

file-level associations between peer projects during a bug fix or feature

enhancement. They can quickly learn more about the activities simply

by clicking on a particular tree node rather than spending a great deal

of time on such activities.

2. Bubble visualization gives the frequency of porting activities over the

entire history of BSD projects. The frequency is represented as bub-

bles/circles of varying sizes and colors. With this view, users can quickly

understand the frequency of cross-project porting activities.

3. Bipartite visualization presents a patch-file relationship constructed

with two stacked bar charts displayed in a row to represent the patch-file

relationship. Developers can learn about the number of times that the

same patch was ported to a module in a peer project and a di↵erent
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module of the same project. Developers can take advantage of the view

to learn the location of dependent projects, in which an updated patch

needs to be applied across di↵erent modules in the same project or in

peer projects.

4. Developer Dependency visualization displays developer dependencies

across closely-related projects. Using this visualization, the developers

can obtain a list of cross-project developers to whom important infor-

mation about porting activities needs to be communicated.

A.1.2 Study Overview

We have designed the study to be completed within approximately one

hour. The study participants will be guided in exploring the web visualization

tools by performing various tasks associated with the four di↵erent visualiza-

tions. The user study will begin with a 30-minute introductory session that

includes a demo of the tool, followed by an exploratory task for each view. We

have designed each task to be completed within approximately 10 minutes,

including a feedback survey after each task. The user study will end with a

post-questionnaire that can be completed within 5 minutes.

A.1.3 Demo Agenda

A demo of the tool includes a demonstration of the following.

• Overview of all the pages.
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• Navigation between the pages.

• Showing all the features of the tools.

• Presenting the interactive features of the tools.

A.1.4 Tasks

Tree Visualization Tasks: explore the visualization by follow-

ing the steps provided and answer the associated questions. This

task is divided into two sub-tasks. The following is a brief overview

of the tree view.

• Each node represents a file in the FreeBSD or NetBSD project.

• The edge represents the hierarchy of the projects.

• Each node can be clicked for further investigation.

Task 1.1

Please identify the a↵ected files in NetBSD project by a patch that

was applied to the module kern of the FreeBSD project for the year

2005.

Steps

1. Hit the below application URL in any browser.

http://vignettetool.com/TreeVisualization/
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2. Select the Tree Visualization view from the home page.

3. Select the year 2005 from Select Year dropdown.

4. Select FreeBSD and NetBSD as the projects from BSD Project 1

and BSD Project 2 dropdowns.

5. Click the node named kern under the FreeBSD frame section ! Pop

window gets displayed ! Select the Cancel button.

6. Observe updated tree of files in the NetBSD frame, this tree structure

of files are files a↵ected in NetBSD for the selected porting activity in

freeBSD.

Questionnaire

1. How would you rate Tree visualization in terms of presenting

the file level porting association across FreeBSD and NetBSD

projects?

(a) Excellent

(b) Very Good

(c) Good

(d) Fair

(e) Needs Improvement
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2. In a role of a novice open source developer, would you like to

use this tool during project development?

(a) Would definitely use the tool.

(b) Would think about using the tool.

(c) Would prefer not to use.

(d) Unsure about the tool usage.

3. Please suggest improvements for the tool,(if any) ———-

Task 1.2

Please investigate further to find out all the developers involved,

their emails, commit dates, and patch IDs related to porting activ-

ities of the log module for the year 2005.

Steps

1. Hit the below application URL in any browser.

http://vignettetool.com/TreeVisualization/

2. Select the Tree Visualization view from the home page.

3. Select the year 2005 from Select Year dropdown.

4. Select FreeBSD and NetBSD as the projects from BSD Project 1

and BSD Project 2 dropdowns.
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5. Click the node named log under the FreeBSD frame section ! Pop

window gets displayed ! Select the OK button.

6. Observe and learn more about the additional information such as devel-

oper(s) involved, the Patch IDs and commit dates for the selected year

of porting.

Questionnaire

1. How would you rate the information provided on the additional

details page for learning about porting activity?

(a) Extremely useful

(b) Useful

(c) Additional information required

2. If you have selected option c above, please suggest what infor-

mation could be included on the page——

Bubble Visualization Task: could be useful to gain insights about the fre-

quency of porting throughout the entire history of the BSD project, to learn

about the importance of porting, and to answer questions at the end of each

task.

• The degree of frequency is represented as a colored bubble for a specific

project.
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• A bigger bubble represents the large porting activity.

• Each project in a source of porting can be identified with a respective

color code.

Coordinates

• X - Axis - represents the year of porting.

• Y - Axis - represents the number of porting activities.

Additional functionality

The bubble chart was designed to handle hover events and mouse click events.

Task 2.1

Please identify the largest porting frequency for NetBSD-OpenBSD

project pairs from the entire history of the BSD project.

Steps

1. Hit the below application URL in any browser.

http://vignettetool.com/TreeVisualization/

2. Select the Bubble Visualization view from the home page.

3. Now hover on the NetBSD-OpenBSD porting frequency bubble with

largest size.
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4. Next click on the largest NetBSD-OpenBSD bubble.

5. A pop-up gets displayed ! Select the OK button ! Additional infor-

mation page is displayed.

6. Observe and learn more about developers involved, Patch Ids and com-

mit dates for the selected year of porting.

Questionnaire

1. Could you please select the year that has the largest porting

frequency for NetBSD-OpenBSD project pair?

(a) 1998

(b) 1999

(c) 2000

(d) 2001

(e) 2002

2. After exploring the bubble chart, how much importance needs

to be weighed on learning the porting activities?

(a) Not at all important

(b) Little importance

(c) Important

(d) Highly important
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3. On a scale of 1 to 5, how would you think the details provided

in the additional details page could be utilized for further in-

vestigation?

(a) 1 (Low)

(b) 2

(c) 3

(d) 4

(e) 5 (High)

Answer to (1): 2001

Bipartite Visualization Tasks is designed to o↵er a comparison view that

displays the cross-project patch file relationship and the same project patch-

file relationship. The main purpose of this task is to explore the patch-file

relationship for a particular patch applied to di↵erent modules of the same

project and across the peer project.

• Two stacked bar graphs are displayed side by side in each comparison

view.

• The stacked bar graphs are connected by means of translucent lines

indicating the patch file relationship.

• The weight of the bars varies based on the number of times that the

same patch was used in di↵erent porting activities.
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Coordinates

• The text on the left side of stacked bars represents the patch ID and the

number of times the patch was used in di↵erent porting activities.

• The text on the right side of stacked bars represents the file count of the

number of times that the file has ported from di↵erent patches.

• Color-coding of the bars is displayed according to the amount of porting.

Additional functionality Hover and click functionalities were integrated

into this visualization.

Task 3.1

Please identify the di↵erent FreeBSD patch Ids that has been ported

a single NetBSD file.

Steps

1. Hit the below application URL in any browser.

http://vignettetool.com/TreeVisualization/

2. Select the Bipartite Visualization view from the home page.

3. From FreeBSD Patch to NetBSD files (stacked bar view in the left

section of the page) ! Identify a NetBSD file that had two di↵erent

FreeBSD patch IDs ported.
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1. Select the NetBSD file name that has two di↵erent Free Patch

Ids applied?

(a) linux sigaction.c

(b) lx oldmmap.c

(c) ad1848.c

(d) sys generic.c

Answer: lx oldmmap.c

Task 3.2

Please identify the FreeBSD patch ID that has been ported many

times to the same FreeBSD files.

Steps

1. Hit the below application URL in any browser.

http://vignettetool.com/TreeVisualization/

2. Select the Bipartite Visualization view from the home page.

3. From FreeBSD Patch to FreeBSD files (stacked bar view in the left

section of the page) ! Identify a FreeBSD file that had two di↵erent

FreeBSD patch IDs ported.
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4. Click on the identified file name! A pop window gets displayed! Select

the OK button ! Developer Dependency wheel view is displayed.

1. Select the FreeBSD file name that has two di↵erent Free Patch

Id?s applied?

(a) ad1848.c

(b) nic5000.c

(c) pcvt vtf.c

(d) sys generic.c

Answer: pcvt vtf.c

Questionnaire

1. Rate the ease with which the largest patch-file relationship

could be identified?

(a) Very easy

(b) Easy

(c) Di�cult

(d) Very di�cult

2. After exploring the bubble chart, how much importance needs

to be weighed on the learning of porting activities?
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(a) Very easy

(b) Easy

(c) Di�cult

(d) Very di�cult

3. Who would benefit most from such a visualization type? (Select

all that apply.)

(a) Manager

(b) Developer

(c) Committer

(d) Maintainer

(e) None

Developer Dependency Visualization Task: The main purpose of this

view is to analyze and learn about the developer pair across the peer projects

based on porting activities across the projects.

• The chart is represented as a Wheel of Developer Dependencies.

• Each developer is represented as an arc of the wheel chart.

• The developer-to-developer pair dependency is represented in the form

of connecting chords.
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• The width of the chord represents the number of times that the same

developer pair was observed together in a porting activity.

• Each developer is represented with a distinct color.

Additional functionality

• Hovering over the developers name indicates the pairing percentage of

the developer.

• Hovering over the chord connecting the developer pair gives additional

information about the pairing.

Task 4.1

Identification of the two developers who were paired for the maxi-

mum number of times.

Steps

1. Hit the below application URL in any browser.

http://vignettetool.com/TreeVisualization/

2. Select the Wheeled Visualization view from the home page.

3. Identify the two developers who were paired with more number of peer

project developers.
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4. Hover on the developer with name FBsd/dfr (in Light red color) !

Observe how active (as a percentage) the FreeBSD developer has been

active from the tool tip.

5. Hover on the developers developer with name FBsd/dfr (in Light red

color) ! Observe the pair percentage for the developers in the tool tip.

Questionnaire

1. How would you rate the amount of information presented on

the peer project developer dependencies?

(a) Extremely informative

(b) Highly Informative

(c) Informative

(d) Not Informative

2. How would you rate the Developer Dependency Wheel in terms

of knowing the list of a↵ected developers while a patch is ap-

plied to a paired developer’s work?

(a) Extremely helpful

(b) Very helpful

(c) Not very helpful

(d) Not at all helpful
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3. What would you like to see improved in this view? Please make

suggestions.

A.1.5 Feedback Questionnaire

This section contains questions that gauge the participant’s overall user

experience along with questions that collect the user’s background information.

1. How would you rate the overall user experience (Look and Feel)

of the web tool?

(a) 5 (Excellent)

(b) 4 (Very Good)

(c) 3 (Good)

(d) 2 (Fair)

(e) 1 (Poor)

2. Is visualization a powerful medium for learning such porting

activities? (Please rate the following on a scale of 1 - 5.)

(a) 5 (Extremely powerful)

(b) 4 (Highly powerful)

(c) 3 (Powerful)

(d) 2 (Less powerful)

(e) 1 (Not at all powerful)
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3. Select the best/most useful visualization among the four visu-

alizations of the web application?

(a) Tree Visualization

(b) Bubble Visualization

(c) Bipartite Visualization

(d) Dependency Wheel Visualization

4. How would you rate the ease of use (navigation between pages)

of the web application?

(a) 5 (Extremely easy)

(b) 4 (Very easy)

(c) 3 (Easy)

(d) 2 (Not easy)

(e) 1 (Not at all easy)

Background

1. How many years of experience in software application design/development

or in any other activity do you have?

(a) Less than 5 years

(b) 5 - 10 years

(c) 10 - 15 years

87



(d) 15 - 20 years

(e) More than 20 years

2. Have you ever contributed to an open source development?

(a) Yes

(b) No

3. If you selected Yes in the question listed above, please list the

projects that you have worked on ———-
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