

Copyright

by

Zijiang Yang

2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211343959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Report Committee for Zijiang Yang
Certifies that this is the approved version of the following report:

An Experimental Evaluation and Possible Extensions of SyPet

APPROVED BY
SUPERVISING COMMITTEE:

Sarfraz Khurshid

Isil Dillig

Supervisor:

An Experimental Evaluation and Possible Extensions of SyPet

by

Zijiang Yang, BE

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin
May 2017

 iv

Acknowledgements

This work was funded in part by the National Science Foundation (NSF Grant Nos.

CCF-1319688 and CNS-1239498).

I would first like to thank my report advisor Dr. Sarfraz Khurshid of the Department

of Electrical and Computer Engineering at the University of Texas at Austin. The door to

Prof. Khurshid office was always open whenever I ran into a trouble spot or had a question

about my research or writing. He consistently allowed this report to be my own work, but

steered me in the right the direction whenever he thought I needed it.

I would also like to thank the experts who gave me precious advices during my

research: Jinru Hua and Kaiyuan Wang. Without their passionate participation and input,

my research could not have been successfully conducted.

I would also like to acknowledge Dr. Isil Dillig of the Department of Computer

Science at the University of Texas at Austin as the second reader of this report, and I am

gratefully indebted to her for her very valuable comments on this report.

Finally, I must express my very profound gratitude to my parents for providing me

with unfailing support and continuous encouragement throughout my years of study and

through the process of researching and writing this report. This accomplishment would not

have been possible without them. Thank you.

 v

Abstract

An Experimental Evaluation and Possible Extensions of SyPet

Zijiang Yang, MSE

The University of Texas at Austin, 2017

Supervisor: Sarfraz Khurshid

Program synthesis is an automated programming technique that automatically

constructs a program which satisfies given specifications. SyPet is a recently published

novel component-based synthesis tool that assembles a straight-line Java method body that

invokes a sequence of methods from a given set of libraries to implement desired

functionality that is defined by a given test suite. In this report, we experimentally evaluate

the correctness and performance of the publicly available SyPet implementation, at the

black-box level, focusing on the size of test suites. We then demonstrate how SyPet can be

extended to support some other applications, such as synthesizing non-straight-line

methods and program repair. Finally, we conjecture an alternative technique that is

conceptually simpler for synthesizing straight-line methods and present a few initial

experimental results.

 vi

Table of Contents

List of Tables .. vii	

List of Figures .. viii	

Chapter 1:	 Introduction ...1	

Chapter 2:	 Evaluation of SyPet Implementation ..4	
I.	 Experimental Benchmarks ...4	
II.	 Results and Analysis ..5	

Chapter 3:	 New Applications of SyPet ...8	
I.	 Component-based Synthesis for Non-straight-line Methods8	

1.	 Test-partition Based Approach for Single If-Else Statement8	
2.	 Test-partition Based Approach on Chaining If-Else Statements12	
3.	 Automated Synthesis of Chaining If-Else Statements13	
4.	 Limitations of Test-partition Based Approach17	

II.	 Program Repair ..18	

Chapter 4:	 Idea of an Alternative Approach for Component-based Synthesis ...21	
I.	 Overview ..21	
II.	 Pruning Strategy ...22	
III.	 Experimental Results ...22	

Chapter 5:	 Conclusion ..24	

Appendix ..25	
Experiment Results of SyPet ..25	

References ..38	

 vii

List of Tables

Table 1:	Statistics of SyPet benchmarks ..4	

Table 2:	Experimental results of Algorithm 3 ...15	

Table 3:	Experimental results of our prototype ...23	

Table 4:	Experimental results of SyPet for same benchmarks as shown in Table 3 ...23	

 viii

List of Figures

Figure 1:	 Example of inadequate tests for int abs(int) ..6	

Figure 2:	 Example of good tests for int abs(int) ..6	

Figure 3:	 A non-straight-line method and its abstraction ..9	

Figure 4:	 Control flow graph of abstracted method in Figure 39	

Figure 5:	 Algorithm 1, an algorithm to synthesize single if-else statement10	

Figure 6:	 Partition of tests for method int abs(int) ..11	

Figure 7:	 The skeleton of method int abs(int) ...11	

Figure 8:	 An abstract method with an if-else chain ...12	

Figure 9:	 Algorithm 2, an algorithm to synthesize chaining if-else statements13	

Figure 10:	Different order of if-else bodies results in different conditions14	

Figure 11:	Algorithm 3, an algorithm to automatically synthesize chaining if-else

statements ...15	

Figure 12:	Test cases used in experiments of Algorithm 3 ...16	

Figure 13:	Screenshot of experimental output of Algorithm 316	

Figure 14:	An example of if-condition that changes program state17	

Figure 15:	Synthesized if-body and else-body of method in Figure 1418	

Figure 16:	Test file for program repair experiment ...20	

1

Chapter 1: Introduction

The problem of component-based synthesis [1, 2, 3] is to automatically construct a

program that is composed from a set of base components. Each base component can be a

small piece of program such as a method from an API. This technology can reduce the

manual effort of the programmer to read documentations and thus can increase the

programmer productivity.

SyPet [3] is a recently published novel tool that can synthesize straight-line Java

methods based on a given set of methods. The advantages of SyPet over other component-

based synthesis tools are that SyPet can work on a large set of components, e.g. a real-

world library, without the need of logical specifications of underlying components. The

only information required by SyPet is the expected method signature, a set of tests, and

some libraries. With the information gathered, SyPet can automatically generate the

implementation details of target method and guarantee that it passes given tests.

The key technology behind SyPet is type-based pruning using a special Petri net.

SyPet uses a Petri net to represent the relationships between different methods in a given

API, where a reachable path in the Petri net from the initial marking to target marking

represents a sequence of method invocations. For each candidate method sequence, SyPet

solves a sketch-completion [4] problem using SAT solver, and runs the tests against that

candidate to validate it.

Although SyPet is designed to synthesize straight-line Java methods, our

experiments demonstrate that we can actually use this tool to synthesize non-straight-line

Java methods, specifically ones with if-else branches, as long as the tests are partitioned

based on execution paths. Our basic idea is that we can decompose a non-straight-line Java

2

method synthesis problem into several straight-line Java method synthesis problems, which

can be solved by SyPet. Since the test-partitioning phase can be transferred into a set-

partitioning problem, we can synthesize certain type of non-straight-line methods in an

automated manner.

In addition to demonstrating how to add support for non-straight-line methods, we

also explore the use of SyPet for program repair [8, 9, 10]. We show that SyPet can be used

to fix errors in a program by replacing a wrong method invocation with a correct one. If

we know that a program invokes a wrong method m at certain point, we can replace m with

a new correct method n that has the same parameter list and return type as m. If we have

the scope of candidate methods, we can reduce the program repair problem into a

component-based synthesis problem, where n is the target method and candidate methods

are individual components. That synthesis problem can then be solved by SyPet, and the

solution will be a fix to the error in original program. In our experiment, we have

successfully fixed a bug in Google Closure Library with the help of SyPet.

Finally, we hypothesize an alternative approach which also synthesizes straight-

line Java method using a given set of components. Instead of using Petri nets and SAT

solving, our approach uses nondeterministic programming [5] to exhaustively try each

possible method sequence and prune them in an execution-driven manner [6]. We use re-

execution [7] to try different nondeterministic choices, and invoke the method sequence

using Java reflection mechanism, so we do not need to recompile the program each time

we try a new candidate. We will outline this simple idea and the initial experimental results

later in this report.

The rest of this report is organized as follows: First, we start by experimentally

evaluating the correctness and performance of the publicly available implementation of the

3

SyPet tool (Chapter 2). Then, we demonstrate how to extend SyPet to other applications

like non-straight line synthesis and program repair (Chapter 3). Finally, we demonstrate an

alternative approach for straight-line method synthesis (Chapter 4).

4

Chapter 2: Evaluation of SyPet Implementation

We use the publicly available SyPet implementation (Version 1.0) in our

experimental evaluation. We specifically investigate the following research question: how

does SyPet correctness and performance depend on the number of given tests? In this

chapter, we will describe our experiments and report our findings.

I. EXPERIMENTAL BENCHMARKS

 In order to figure out how does SyPet work under different number of tests, we

expand their original benchmarks used in the POPL 2017 paper [3] by adding more tests

and run different number of tests respectively for each original benchmark. To make our

evaluation more thorough, we add 2 additional benchmarks for each library presented in

the original paper, and we also add some new benchmarks based on our self-written

libraries. We have 47 benchmarks and 376 tests in total. The statistics of our new

benchmarks are shown in Table 1.

Library Number of benchmarks Number of tests for each
benchmark

Apache math 11 8

Geometry 8 8

Joda time 9 8

Jsoup, dom, text 10 8

Self-written library 9 8

Table 1: Statistics of SyPet benchmarks

5

II. RESULTS AND ANALYSIS

For each benchmark, we run SyPet 8 times, with 1 to 8 tests respectively. So, we

run SyPet 376 times in total. We collect the information about synthesis time, number of

Petri net paths we have explored, number of program candidates we have tried, number of

components in the solution, number of holes in the solution, and if the solution is correct.

All our experiments are performed in a Macbook Pro with 2.7 GHz Intel core i5 processor

and 8 GB memory.

The detailed results can be found in appendix of this report. From the results, we

can get 3 conclusions regarding the number of test cases:

1. Number of test cases affects correctness. More test cases are likely to result in

better solutions.

2. Number of test cases does not affect performance much if the result is correct. But

if the result is incorrect, having more test cases may result in longer execution time.

3. We need 1.26 tests to get correct solution on average.

The first conclusion is easy to understand. SyPet always guarantees that the result

passes all given test cases. But if the given test cases are not enough to identify the right

implementation, it may result in wrong solution. Suppose we want to synthesize a method

which calculates the absolute value of a double input using java.lang library. If we use tests

in Figure 1, we may result in getting a wrong implementation java.lang.Math.sqrt(double)

instead of java.lang.Math.abs(double). That is because both abs and sqrt return 0 when

input is 0, so both methods pass given tests. However, if we have more tests like Figure 2,

we will be able to filter out the wrong method and possibly get the correct solution. That

6

demostrates having more tests will give a more precise description of target method and

results in better solutions.

 boolean test0() {

 return abs(0) == 0;
 }

Figure 1: Example of inadequate tests for int abs(int)

 boolean test0() {
 return abs(0) == 0;
 }

 boolean test1() {
 return abs(1) == 1;
 }

 boolean test2() {
 return abs(-1) == 1;
 }

Figure 2: Example of good tests for int abs(int)

The second conclusion can be understood in the same way. Having fewer tests

makes the specification more general and thus results in more accepted solutions. As a

result, it takes less time to find the first acceptable solution. With number of tests

increasing, the specification is becoming more and more detailed, and the execution time

is becoming longer and longer. Once the correct solution is found, it always passes newer

tests, so the search process always stops at that solution. As a result, the execution time

stops increasing.

These conclusions show that we do not need too many redundant tests. Instead, we

only need a small number of tests that can precisely describe the behavior of target method.

7

In this way, we not only save test execution time, but also save programmer’s time for test

writing.

8

Chapter 3: New Applications of SyPet

The original SyPet tool is designed to synthesize straight-line Java methods. In this

chapter, we demonstrate two more applications that can be reduced to straight-line method

synthesis problems, which then can be solved by SyPet.

I. COMPONENT-BASED SYNTHESIS FOR NON-STRAIGHT-LINE METHODS

While SyPet is an efficient tool in synthesizing straight-line Java methods, a lot of

real-life methods are not straight-line and therefore cannot be synthesized by SyPet.

However, our work shows that we can use SyPet as an enabling technology to synthesize

such methods.

1. Test-partition Based Approach for Single If-Else Statement

Let’s consider the simplest case, where the target method contains a single if-else

statement. The basic idea is to reduce such a synthesis problem to several straight-line

method synthesis problems. Because we know that target method contains two execution

paths, we can treat each individual execution path as a straight-line method, whose input

arguments and return type are the same as those of the original method. In this way, we

can reduce the original synthesis problem to several sub-problems that can be solved by

SyPet.

Suppose we want to synthesize the method in Figure 3. The original method in

Figure 3 can be abstracted as a new method whose if-body and else-body are replaced by

a single method call. The control flow graph of the abstraction in Figure 3 can be found in

Figure 4. From the control flow graph, we notice that ifbody() and elsebody() cannot be

executed in a single method invocation. In other words, if ifbody() is executed, elsebody()

cannot be executed during the same method call. Due to this property, it is possible to write

9

test cases that only execute ifbody() or elsebody(). If we have these test cases, we can

synthesize ifbody() and elsebody() respectively, by applying test cases that only execute

ifbody() or elsebody().

 int method(int n) {
 if (condition(n)) {
 return ifbody(n);
 } else {
 return elsebody(n);
 }
 }

 int method(int n) {
 if (part0(n)) {
 int x = part1(n);
 int y = part2(n);
 return part3(x, y);
 } else {
 int x = part4(n);
 int y = part5(n);
 return part6(x, y);
 }
 }

Figure 3: A non-straight-line method and its abstraction

condition()

ifbody() elsebody()

end

Figure 4: Control flow graph of abstracted method in Figure 3

10

If we already have the implementations of ifbody() and elsebody(), the last step we

need to do is synthesizing the condition(). Since condition() is the only unknown

component, we can put all test cases together and let SyPet figure out the right

implementation of condition() based on the ifbody() and elsebody() we have synthesized in

previous steps.

The algorithm to synthesize a single if-else statement is called Algorithm 1, whose

inputs are method signature, library, and partitioned test cases. The details of Algorithm 1

can be found in Figure 5.

 synthesize_single_if_statement:

input: signature: String, library: String,

tests1: JavaFile, tests2: JavaFile

output: synthesized method or failure

ifbody := SYPET(signature, library, tests1)

elsebody := SYPET (signature, library, tests2)

skeleton := COMBINE_IF_ELSE_BODY(ifbody, elsebody)

tests3 := UNION(tests1, tests2, skeleton)

condition := SYPET(“booean condition(args)”, library, tests3)

result := COMBINE_METHOD(ifbody, elsebody, condition)

return result

Figure 5: Algorithm 1, an algorithm to synthesize single if-else statement

Here is an example. If we want to synthesize a method int abs(int) which returns

the absolute value of its input, we can apply Algorithm 1 based on test cases shown in

Figure 6. Firstly, we need to run SyPet against tests in partition 1 and get the first solution,

which will be an implementation that simply returns the argument. Then, we run SyPet

11

against tests in partition 2 and get the second solution, which will be an implementation

that negates the input argument. We know that solution 1 and solution 2 are different

branches of the actual implementation of int abs(int), so we can write the skeleton of int

abs(int) like Figure 7.

 Partition 1 Partition 2

 boolean test0() {
 return abs(0) == 0;
 }

 boolean test2() {
 return abs(4) == 4;
 }

 boolean test1() {
 return abs(-1) == 1;
 }

 boolean test3() {
 return abs(-3) == 3;
 }

Figure 6: Partition of tests for method int abs(int)

 int abs(int n) {

 if(condition(n)) {
 int a = mehtod_return_argument(n);
 return a;
 } else {
 int b = method_negate_argument(n);
 return b;
 }
 }

Figure 7: The skeleton of method int abs(int)

Then, we can put all these tests together, use the skeleton as a helper method, and

let SyPet synthesize the method boolean condition(int). Once SyPet gives an accepted

12

solution, we can put the solution into the skeleton and get a final solution to the original

method int abs(int).

2. Test-partition Based Approach on Chaining If-Else Statements

In this part, we extend the previous algorithm to make it applicable to chaining if-

else statements. An if-else chain is a sequence of if-else statements where an else-body

overlaps the next if-body. Figure 8 is an example of an if-else chain inside a method.

 int method(int n) {

 if (condition0(n)) {
 return body0(n);
 } else if (condition1(n)) {
 return body1(n);
 } else if (condition2(n)) {
 return body2(n);
 } else {
 return body3(n);
 }
 }

Figure 8: An abstract method with an if-else chain

Suppose we want to synthesize the method in Figure 8, we can use an approach

similar to Algorithm 1. Firstly, we need to partition the test cases based on execution paths.

In this example, we need 4 partitions. Then, we synthesize each if-body or else-body based

on its partitioned tests. Finally, we synthesize the conditions in bottom-up order.

Specifically, we first put partition 2, 3 together and synthesize condition2(). Then, we put

partition 1, 2, 3 together and synthesize condition1(). Finally, we put all partitions together

and synthesize condition0(). We call this approach Algorithm 2, which is shown in Figure

9.

13

 synthesize_chaining_if_statements:

input: signature: String, library: String,

tests: JavaFile[n]
output: synthesized method or failure

Method[n] bodies

for i from 0 until n-1, do:

 bodies[i] := SYPET(signature, library, tests[i])
result := bodies[n-1]

for i from n-2 until 0, do:

 ifbody := bodies[i]

 elsebody := result

 skeleton := COMBINE_IF_ELSE_BODY(ifbody, elsebody)
 test := UNION(tests[i .. n-1], skeleton)

 condition := SYPET(“boolean condition(args)”, library, test)

 result := COMBINE_METHOD(ifbody, elsebody, condition)

return result

Figure 9: Algorithm 2, an algorithm to synthesize chaining if-else statements

In our experiments, we have successfully used Algorithm 2 to synthesize a method

that categorizes a triangle into one of three classes: acute triangle, obtuse triangle, and right

triangle. Our library is a self-written library which contains methods that return category

labels and methods that distinguish different kinds of triangles. We have run SyPet 5 times

to get the final solution, which is an if-else chain with 2 conditions and 3 bodies. Each

execution takes 4.5 seconds on average.

3. Automated Synthesis of Chaining If-Else Statements

Although Algorithm 2 works well in synthesizing chaining if-else statements, it

requires the programmer to manually partition the test cases based on execution paths.

Sometimes the problem is not as intuitive as those in our experiments, in which case

14

programmer finds it hard to partition test cases. In this part, we describe another algorithm

that automatically synthesize chaining if-else statements without the needs of partitioning

test cases manually.

 Our new algorithm has two phases: test partitioning phase and synthesis phase.

The test partitioning phase is to automatically partition test cases into a few subsets. This

is the same as a traditional set-partitioning problem, except that we disallow empty sets in

our problem. When test partitioning is done, we can synthesize all the if-else bodies based

on the partitions. After that, we can synthesize if-conditions, by trying all possible orders

of if-else bodies. That is because different order of if-else bodies can result in completely

different conditions. An example is shown in Figure 10. Even though these 2 methods have

same if-else bodies, their different orders result in completely different conditions. If our

library only has isRight() method, the second order will make SyPet fail to find a solution.

String categorizeTriangle(Triangle t) {
 if(isAcute(t)) {
 return "acute";
 } else if(isRight(t)) {
 return "right";
 } else {
 return "obtuse";
 }
}

String categorizeTriangle(Triangle t) {
 if(isAcute(t)) {
 return "acute";
 } else if(isObtuse(t)) {
 return "obtuse";
 } else {
 return "right";
 }
}

Figure 10: Different order of if-else bodies results in different conditions

Our algorithm to automatically synthesize chaining if-else statements is called

Algorithm 3, which is shown in Figure 11.

15

 auto_synthesize_chaining_if_statements:

input: signature: String, library: String,

 tests: JavaFile, num_branches: int

output: synthesized method or failure

for each partitioned_tests in PARTITION_TESTS(tests, num_branches), do:

 Method[num_branches] bodies

 for i from 0 until num_branches-1, do:

 bodies[i] := SYPET(signature, library, partitioned_tests[i])

 for each (tests_permutation, bodies_permutation) in

PERMUTATIONS(partitioned_tests, bodies), do:

 conditions = SYNTHESIZE_ALL_CONDITIONS(library, tests_permutation,

bodies_permutation)

 result = COMBINE_METHOD(bodies_permutation, conditions)

 if NO ERROR :

 return result

Figure 11: Algorithm 3, an algorithm to automatically synthesize chaining if-else
statements

We have successfully used Algorithm 3 to synthesize a method int abs(int) that

contains a single if-else statement. We have tried different size of test cases from 2 to 5.

The results can be found in Table 2. Our test cases are shown in Figure 12. Figure 13 is a

screenshot of the output of our Algorithm.

Number of tests Number of

partitions tried Result partition Total time
(seconds)

2 1 {0}, {1} 13

3 2 {0, 2}, {1} 758

4 2 {0, 2}, {1, 3} 812

5 7 {0, 2, 4}, {1, 3} 4514

Table 2: Experimental results of Algorithm 3

16

 public static boolean test0() throws Throwable {

 return abs(0) == 0;
 }

 public static boolean test1() throws Throwable {
 return abs(-Integer.MAX_VALUE) == Integer.MAX_VALUE;
 }

 public static boolean test2() throws Throwable {
 return abs(5) == 5;
 }

 public static boolean test3() throws Throwable {
 return abs(-100) == 100;
 }

 public static boolean test4() throws Throwable {
 return abs(4) == 4;
 }

Figure 12: Test cases used in experiments of Algorithm 3

Figure 13: Screenshot of experimental output of Algorithm 3

17

4. Limitations of Test-partition Based Approach

We have demonstrated that SyPet can be used to synthesize non-straight-line

methods with if-else statements. However, not all methods with if-else statements can be

synthesized by SyPet. We have generalized that a method must meet two requirements in

order to be synthesized with test-partition based approach:

1. The method can be rewritten into an equivalent form with single if-else chain and

no statements outside of if-else clauses.

2. The conditions do not change program state.

The first requirement is obvious because our solutions are always in a form where

everything is inside a single if-else chain. If a method is not in such a form, there is no way

that SyPet can get the correct solution.

The second requirement aims to ensure the complete separation between conditions

and if-else bodies. That is because our test-partition based approach synthesizes if-else

bodies without considering conditions. If the conditions cannot be separated from if-else

bodies, the result may be incorrect.

 int method(Iterator<Integer> it) {

 if(it.next().equals(0)) {
 return it.next();
 } else {
 return sum(it.next(), it.next());
 }
 }

Figure 14: An example of if-condition that changes program state

18

Figure 14 shows such an example. If the first element in iterator is 0, the method

will return the second element. Otherwise, it will return the sum of second and third

elements. According to this logic, the synthesized if-body and else-body will be Figure 15,

which are incorrect because they redundantly include the condition.

 int ifbody(Iterator<Integer> it) {

 it.next();
 return it.next();
 }

 int elsebody(Iterator<Integer> it) {
 it.next();
 return sum(it.next(), it.next());
 }

Figure 15: Synthesized if-body and else-body of method in Figure 14

Due to above reasons, both requirements must be satisfied by a method in order to

be synthesized with our test-partition based algorithms.

II. PROGRAM REPAIR

Program repair is another important research area in Software Engineering [8, 9,

10]. It requires a program to automatically repair software bugs without the intervention of

a human programmer. At a high level, program repair techniques generate a patch for a

program in two steps. The first step is patch generation, which analyzes the original

program and produces one or more candidate patches. The second step is patch validation,

which validates the produced candidate patches from the previous step with either a formal

specification or a test suite of the program.

There are key similarities between the procedure of component-based synthesis and

the procedure of program repair. They both generate candidates and validate them with

19

some given specifications, e.g. test suites. From a high-level intuition, it is possible to

reduce a program repair problem to a component-based synthesis problem.

Our research shows we can use SyPet to solve such problems, as long as we know

the location of the bug and the repairing patch is a sequence of method invocations. We

can replace that method sequence with a “hole”, and let SyPet figure out the

implementation of that “hole” using existing methods. If an implementation makes the

program pass given test suites, we know this implementation is a correct fix to the bug. In

this way, a program repair problem is reduced to a component-based synthesis problem

which can be solved by SyPet.

Though it is possible to use SyPet for program repair problems, it is still not an easy

task because SyPet does not provide such interfaces. The first problem is how to let SyPet

insert candidate code into the “hole” in buggy program. That is not supported by current

SyPet implementation because candidate method sequences are only accessible in test files

and are not exposed to users. Another problem is how to transfer the original test suites

into SyPet-compatible tests. SyPet requires a boolean test method instead of JUnit test

suites, so we need some mechanisms to transfer JUnit test suites into a single test method.

We use following techniques to solve above problems. Assume the original

program invokes a wrong method w at some place in class c. To fix the bug, we need to do

following steps:

1. Define a new interface i, and declare a method m inside i. The signature of m is the

same as the signature of w.

2. Add a new public static field f in class c. The type of f is i.

3. At the buggy location, replace the invocation of w to f.m.

20

4. Compile the whole program, add the compiled classes as a library for SyPet.

5. Write a standard SyPet-styled test file with a single test method.

6. At the beginning of test method, define an anonymous instance a which implements

i and overrides m by invoking generated candidate method. Assign a to c.f.

7. In the test method, invoke original JUnit test suites programmatically, then check

the result. If JUnits result is successful, return true. Otherwise, return false.

8. Run SyPet. The solution will be the correct method invocation.

The above approach uses polymorphism to insert candidate methods into the

“hole”. It firstly replaces the wrong method invocation with an instance method invocation

from a static field. Then, it updates that static field before each execution of test suites. In

this way, the candidate method generated by SyPet will be invoked during test execution.

We have tested this approach with a real-life bug in defects4j. In our experiments,

SyPet successfully fixes the bug 104 in Google Closure Library in 19 seconds. Our test file

looks like Figure 16.

 public static boolean test0() throws Throwable {
 com.google.javascript.rhino.jstype.UnionType.solution = new
com.google.javascript.rhino.jstype.SypetSolution() {
 @Override
 public boolean solution(com.google.javascript.rhino.jstype.JSType type) {
 try {
 return mySolution(type);
 } catch(Throwable e) {
 throw new RuntimeException(e.toString());
 }
 }
 };
 org.junit.runner.Result res = new
org.junit.runner.JUnitCore().run(com.google.javascript.rhino.jstype.UnionTypeTest.class);
 return res.wasSuccessful();
 }

Figure 16: Test file for program repair experiment

21

Chapter 4: Idea of an Alternative Approach for Component-based
Synthesis

In this chapter, we briefly hypothesize an alternative approach which also

synthesizes straight-line Java methods using a given set of components in the spirit of

SyPet but is conceptually simpler in functionality. Our approach requires the same

information as SyPet: a set of candidate methods, the signature of target method, and some

tests. Instead of solving Petri net reachability problems and SAT problems like SyPet, our

approach uses nondeterministic programming [5] to exhaustively try each possible method

sequence and prune them in execution-driven manner [6].

I. OVERVIEW

The basic idea of our approach is very simple. If we have a list of possible methods,

we can try every sequence exhaustively in a backtracking manner. For each method

sequence, we check if it satisfies the specifications. If we find an acceptable method

sequence, we stop searching and return the result. This kind of backtracking is based on

model checkers. We use a re-execution model checker to choose different methods non-

deterministically, and invoke these methods using Java reflection. In this way, we can save

time by not recompiling candidate method sequences each time we run test suites.

To prune method sequences, we do not apply complex pruning strategies like Petri

net reachability checking. Instead, we apply some very simple pruning strategies, which

are described in the next section. Though less effective pruning in our approach may result

in more candidate checking, it has the potential to save a lot of time by avoiding complex

constraint solving problems.

22

II. PRUNING STRATEGY

We demonstrate three simple pruning strategies: type-based pruning, variable-

based pruning, and execution-driven pruning.

Firstly, we prune methods based on its parameter types and return type. If a method

m in sequence S requires an argument type T, but T neither appears in parameter list nor is

a return type of some previous methods in S, we can safely prune m. Similarly, if the target

method returns type T, but no method in sequence S has return type T, we can safely prune

S.

Next, we prune method sequences which produce unused intermediate variables.

This strategy is same as SyPet, because method sequences that produce unused variables

are unlikely to be correct [3].

Finally, we prune method sequences in execution-driven manner. Our execution-

driven pruning is very straightforward. We observe each individual method during test

executions. If any method throws an exception, we do not need to consider any method

sequences with the same prefix. For example, if we have method sequence [m1, m2, m3,

m4], and m2 throws an exception during a test execution, we know that any sequences start

with m1, m2 will throw the same exception. That is because every sequence starts with m1

will share the same state when m1 have been executed. Starting from that state, m2 will

always perform the same behavior. Thus, we can safely ignore sequences [m1, m2, …].

III. EXPERIMENTAL RESULTS

We have built a simple prototype of our approach and performed a few

experiments. Table 3 shows the experimental results of our tool. Table 4 shows the results

of SyPet for these benchmarks. All these experiments are performed in a Macbook Pro

with 2.7 GHz Intel core i5 processor and 8 GB memory.

23

Benchmark id Library Number of
tests

Number of
candidates
explored

Number of
methods

Total
time

(seconds)
Result

8 Apache common
math 8 3846 3 4 correct

9 Apache common
math 8 850299 4 467 correct

21 Joda time 8 356435 - 289 No solution

22 Joda time 8 624956 4 318 correct

Table 3: Experimental results of our prototype

Benchmark id Library Number of
tests

Number of
candidates
explored

Number of
methods

Total
time

(seconds)
Result

8 Apache common
math 8 1094 5 241 correct

9 Apache common
math 8 - - 393

Out of
Memory

Error
21 Joda time 8 4716 4 414 correct

22 Joda time 8 620 4 68 correct

Table 4: Experimental results of SyPet for same benchmarks as shown in Table 3

From the experimental results, we know that both tool fails in one benchmark. Our

tool fails in benchmark 21 and SyPet fails in benchmark 9. SyPet can actually complete

this benchmark successfully if given more memory but failed on our experimental

computer that did not have the required amount of memory. Our tool fails because of

current limitations in our approach in handling static members.

24

Chapter 5: Conclusion

In this report, we have described our black-box experiments on SyPet and presented

our findings. Then, we have demonstrated that SyPet can synthesize non-straight-line

methods with chaining if-else statements. We have also demonstrated that we can use

SyPet to solve program repair problems, as long as the repairing patch is a sequence of

method invocations. Finally, we have hypothesized an alternative approach which also

synthesizes straight-line Java methods using a given set of components but is conceptually

simpler, and presented our experimental results.

25

Appendix

EXPERIMENT RESULTS OF SYPET
ID Description #Tests Pruning Synthesis

Time (s) #Paths #Progs #Comps #Holes Result Notes

1
Compute the
pseudo-inverse
of a matrix

1 ON 8.43 256 511 3 4 correct -

2 ON 9.07 256 511 3 4 correct -

3 ON 9.03 256 511 3 4 correct -

4 ON 9.09 256 511 3 4 correct -

5 ON 9.41 256 511 3 4 correct -

6 ON 9.11 256 511 3 4 correct -

7 ON 8.89 256 511 3 4 correct -

8 ON 8.31 256 511 3 4 correct -

2

Compute the
inner product
between two
vectors

1 ON 0.33 1 1 3 5 correct -

2 ON 0.26 1 1 3 5 correct -

3 ON 0.28 1 1 3 5 correct -

4 ON 0.29 1 1 3 5 correct -

5 ON 0.26 1 1 3 5 correct -

6 ON 0.26 1 1 3 5 correct -

7 ON 0.29 1 1 3 5 correct -

8 ON 0.29 1 1 3 5 correct -

3

Determine the
roots of a
polynomial
equation

1 ON 0.96 7 13 3 5 correct -

2 ON 0.72 7 13 3 5 correct -

3 ON 0.78 7 13 3 5 correct -

4 ON 0.82 7 13 3 5 correct -

5 ON 0.77 7 13 3 5 correct -

6 ON 0.8 7 13 3 5 correct -

7 ON 1.17 7 13 3 5 correct -

8 ON 0.82 7 13 3 5 correct -

4

Compute the
singular value
decomposition
of a matrix

1 ON 0.11 1 1 3 4 correct -

2 ON 0.11 1 1 3 4 correct -

3 ON 0.12 1 1 3 4 correct -

4 ON 0.11 1 1 3 4 correct -

5 ON 0.11 1 1 3 4 correct -

6 ON 0.13 1 1 3 4 correct -

26

ID Description #Tests Pruning Synthesis
Time (s) #Paths #Progs #Comps #Holes Result Notes

7 ON 0.12 1 1 3 4 correct -

8 ON 0.12 1 1 3 4 correct -

5 Invert a square
matrix

1 ON 0.65 16 31 3 4 correct -

2 ON 0.7 16 31 3 4 correct -

3 ON 0.67 16 31 3 4 correct -

4 ON 0.67 16 31 3 4 correct -

5 ON 0.66 16 31 3 4 correct -

6 ON 0.73 16 31 3 4 correct -

7 ON 0.76 16 31 3 4 correct -

8 ON 0.66 16 31 3 4 correct -

6
Solve a system
of linear
equations

1 ON 34 788 1600 6 8 correct -

2 ON 33.21 788 1600 6 8 correct -

3 ON 32.82 788 1600 6 8 correct -

4 ON 34.88 788 1600 6 8 correct -

5 ON 35.04 788 1600 6 8 correct -

6 ON 32.9 788 1600 6 8 correct -

7 ON 34.17 788 1600 6 8 correct -

8 ON 32.83 788 1600 6 8 correct -

7

Compute the
outer product
between two
vectors

1 ON 4.83 14 48 4 6 correct -

2 ON 5.06 14 48 4 6 correct -

3 ON 5.37 14 48 4 6 correct -

4 ON 2.83 14 48 4 6 correct -

5 ON 5.15 14 48 4 6 correct -

6 ON 2.59 14 48 4 6 correct -

7 ON 2.6 14 48 4 6 correct -

8 ON 2.77 14 48 4 6 correct -

8

Predict a value
from a sample
by linear
regression

1 ON 176.29 534 1094 6 6 correct -

2 ON 175.53 534 1094 6 6 correct -

3 ON 176.67 534 1094 6 6 correct -

4 ON 176.4 534 1094 6 6 correct -

5 ON 185.44 534 1094 6 6 correct -

6 ON 179.46 534 1094 6 6 correct -

7 ON 181.81 534 1094 6 6 correct -

27

ID Description #Tests Pruning Synthesis
Time (s) #Paths #Progs #Comps #Holes Result Notes

8 ON 188.79 534 1094 6 6 correct -

9
Compute the ith
eigenvalue of a
matrix

1 ON 7.05 117 263 4 6 incorrect -

2 OFF - - - - - incorrect
Fails to sythesize
when pruning is on;
OutOfMemoryError

3 OFF - - - - - incorrect
Fails to sythesize
when pruning is on;
OutOfMemoryError

4 OFF - - - - - incorrect
Fails to sythesize
when pruning is on;
OutOfMemoryError

5 OFF - - - - - incorrect
Fails to sythesize
when pruning is on;
OutOfMemoryError

6 OFF - - - - - incorrect
Fails to sythesize
when pruning is on;
OutOfMemoryError

7 OFF - - - - - incorrect
Fails to sythesize
when pruning is on;
OutOfMemoryError

8 OFF - - - - - incorrect
Fails to sythesize
when pruning is on;
OutOfMemoryError

10
Compute the
transpose of a
matrix

1 ON 0.05 1 1 1 2 incorrect -

2 ON 0.34 8 15 3 4 correct -

3 ON 0.33 8 15 3 4 correct -

4 ON 0.35 8 15 3 4 correct -

5 ON 0.53 8 15 3 4 correct -

6 ON 0.35 8 15 3 4 correct -

7 ON 0.37 8 15 3 4 correct -

8 ON 0.34 8 15 3 4 correct -

11
Compute the
sum of two
matrices

1 ON 0.64 5 17 4 6 correct -

2 ON 0.52 5 17 4 6 correct -

3 ON 0.54 5 17 4 6 correct -

4 ON 0.52 5 17 4 6 correct -

5 ON 0.59 5 17 4 6 correct -

6 ON 0.53 5 17 4 6 correct -

7 ON 0.53 5 17 4 6 correct -

8 ON 0.57 5 17 4 6 correct -

12 Scale a rectangle
by a given ratio

1 ON 1.92 78 275 4 7 correct -

2 ON 1.97 78 275 4 7 correct -

3 ON 1.53 78 275 4 7 correct -

4 ON 2 78 275 4 7 correct -

28

ID Description #Tests Pruning Synthesis
Time (s) #Paths #Progs #Comps #Holes Result Notes

5 ON 1.77 78 275 4 7 correct -

6 ON 1.66 78 275 4 7 correct -

7 ON 1.82 78 275 4 7 correct -

8 ON 1.69 78 275 4 7 correct -

13

Shear a rectangle
and get its tight
rectangular
bounds

1 ON 2.1 79 282 4 7 correct -

2 ON 2.19 79 282 4 7 correct -

3 ON 2.42 79 282 4 7 correct -

4 ON 2.31 79 282 4 7 correct -

5 ON 2.45 79 282 4 7 correct -

6 ON 2.08 79 282 4 7 correct -

7 ON 2.13 79 282 4 7 correct -

8 ON 2.37 79 282 4 7 correct -

14

Rotate a
rectangle about
the origin by the
specified number
of quadrants

1 ON 0.43 9 21 4 6 correct -

2 ON 0.59 9 21 4 6 correct -

3 ON 0.43 9 21 4 6 correct -

4 ON 0.48 9 21 4 6 correct -

5 ON 0.42 9 21 4 6 correct -

6 ON 0.46 9 21 4 6 correct -

7 ON 0.56 9 21 4 6 correct -

8 ON 0.5 9 21 4 6 correct -

15

Rotate two
dimensional
geometry object
by the specified
angle about a
point

1 ON 0.1 1 1 3 6 incorrect -

2 ON 2.97 67 225 5 8 correct -

3 ON 3.2 67 225 5 8 correct -

4 ON 2.72 67 225 5 8 correct -

5 ON 2.91 67 225 5 8 correct -

6 ON 3.08 67 225 5 8 correct -

7 ON 2.75 67 225 5 8 correct -

8 ON 2.98 67 225 5 8 correct -

16
Perform a
translation on a
given rectangle

1 ON 0.92 41 156 4 7 correct -

2 ON 1 41 156 4 7 correct -

3 ON 1.12 41 156 4 7 correct -

4 ON 1.1 41 156 4 7 correct -

5 ON 1.15 41 156 4 7 correct -

29

ID Description #Tests Pruning Synthesis
Time (s) #Paths #Progs #Comps #Holes Result Notes

6 ON 1.1 41 156 4 7 correct -

7 ON 1.02 41 156 4 7 correct -

8 ON 1.16 41 156 4 7 correct -

17

Compute the
intersection of a
rectangle and the
rectangular
bounds of an
ellipse

1 ON 0.05 1 1 3 5 correct -

2 ON 0.06 1 1 3 5 correct -

3 ON 0.06 1 1 3 5 correct -

4 ON 0.06 1 1 3 5 correct -

5 ON 0.05 1 1 3 5 correct -

6 ON 0.07 1 1 3 5 correct -

7 ON 0.07 1 1 3 5 correct -

8 ON 0.05 1 1 3 5 correct -

18
Check if a point
is inside a
rectangle

1 ON 0.08 1 1 3 5 incorrect -

2 ON 17.45 423 890 6 8 correct -

3 ON 18.65 423 890 6 8 correct -

4 ON 19.3 423 890 6 8 correct -

5 ON 18.3 423 890 6 8 correct -

6 ON 18.49 423 890 6 8 correct -

7 ON 18.04 423 890 6 8 correct -

8 ON 17.83 423 890 6 8 correct -

19

Check if a line
segment
intersects a
rectangle.

1 ON 0.16 1 1 3 5 incorrect -

2 ON 0.55 6 16 4 7 incorrect -

3 ON 0.61 6 16 4 7 incorrect -

4 ON 0.49 6 16 4 7 incorrect -

5 ON 0.51 6 16 4 7 incorrect -

6 ON 0.53 6 16 4 7 incorrect -

7 ON 0.51 6 16 4 7 incorrect -

8 OFF - - - - - incorrect
Fails to sythesize
when pruning is on;
OutOfMemoryError

20

Compute
number of days
since the
specified date

1 ON 6.43 78 156 3 4 correct -

2 ON 6.36 78 156 3 4 correct -

3 ON 6.45 78 156 3 4 correct -

4 ON 6.49 78 156 3 4 correct -

5 ON 6.25 78 156 3 4 correct -

30

ID Description #Tests Pruning Synthesis
Time (s) #Paths #Progs #Comps #Holes Result Notes

6 ON 6.4 78 156 3 4 correct -

7 ON 6.36 78 156 3 4 correct -

8 ON 6.33 78 156 3 4 correct -

21

Compute the
number of days
between two
dates
considering
timezone

1 ON 0.15 1 2 2 4 incorrect -

2 ON 168.22 769 4716 4 6 correct -

3 ON 167.88 769 4716 4 6 correct -

4 ON 168.42 769 4716 4 6 correct -

5 ON 166.8 769 4716 4 6 correct -

6 ON 168.89 769 4716 4 6 correct -

7 ON 167.73 769 4716 4 6 correct -

8 ON 168.56 769 4716 4 6 correct -

22
Determine if a
given year is a
leap year

1 ON 0.39 2 3 2 3 incorrect -

2 ON 38.42 308 620 4 5 correct -

3 ON 38.36 308 620 4 5 correct -

4 ON 37.67 308 620 4 5 correct -

5 ON 38.24 308 620 4 5 correct -

6 ON 38.35 308 620 4 5 correct -

7 ON 37.19 308 620 4 5 correct -

8 ON 37.27 308 620 4 5 correct -

23 Return the day
of a date string

1 ON 0.81 1 1 3 5 correct -

2 ON 0.95 1 1 3 5 correct -

3 ON 0.78 1 1 3 5 correct -

4 ON 0.65 1 1 3 5 correct -

5 ON 0.8 1 1 3 5 correct -

6 ON 0.69 1 1 3 5 correct -

7 ON 0.76 1 1 3 5 correct -

8 ON 0.72 1 1 3 5 correct -

24

Find the number
of days of a
month in a date
string

1 ON 54.52 147 441 4 6 correct -

2 ON 51.18 147 441 4 6 correct -

3 ON 50.23 147 441 4 6 correct -

4 ON 50.16 147 441 4 6 correct -

5 ON 49.57 147 441 4 6 correct -

6 ON 51.25 147 441 4 6 correct -

31

ID Description #Tests Pruning Synthesis
Time (s) #Paths #Progs #Comps #Holes Result Notes

7 ON 50.02 147 441 4 6 correct -

8 ON 54.12 147 441 4 6 correct -

25
Find the day of
the week of a
date string

1 ON 19.24 103 307 4 6 correct -

2 ON 19.22 103 307 4 6 correct -

3 ON 18.55 103 307 4 6 correct -

4 ON 18.98 103 307 4 6 correct -

5 ON 18.33 103 307 4 6 correct -

6 ON 18.11 103 307 4 6 correct -

7 ON 18.68 103 307 4 6 correct -

8 ON 18.16 103 307 4 6 correct -

26
Compute age
given date of
birth

1 ON 11.82 142 288 3 4 correct -

2 ON 11.57 142 288 3 4 correct -

3 ON 11.71 142 288 3 4 correct -

4 ON 11.85 142 288 3 4 correct -

5 ON 11.9 142 288 3 4 correct -

6 ON 11.59 142 288 3 4 correct -

7 ON 11.67 142 288 3 4 correct -

8 ON 12.05 142 288 3 4 correct -

27

Compute
number of
minutes between
two time

1 OFF - - - - - incorrect
Fails to sythesize
when pruning is on;
OutOfMemoryError

2 OFF - - - - - incorrect
Fails to sythesize
when pruning is on;
OutOfMemoryError

3 OFF - - - - - incorrect
Fails to sythesize
when pruning is on;
OutOfMemoryError

4 OFF - - - - - incorrect
Fails to sythesize
when pruning is on;
OutOfMemoryError

5 OFF - - - - - incorrect
Fails to sythesize
when pruning is on;
OutOfMemoryError

6 OFF - - - - - incorrect
Fails to sythesize
when pruning is on;
OutOfMemoryError

7 OFF - - - - - incorrect
Fails to sythesize
when pruning is on;
OutOfMemoryError

8 OFF - - - - - incorrect
Fails to sythesize
when pruning is on;
OutOfMemoryError

28
Compute
number of
seconds since the

1 ON 3.38 30 59 2 3 correct -

2 ON 3.3 30 59 2 3 correct -

32

ID Description #Tests Pruning Synthesis
Time (s) #Paths #Progs #Comps #Holes Result Notes

midnight of a
given time 3 ON 3.23 30 59 2 3 correct -

4 ON 3.28 30 59 2 3 correct -

5 ON 3.34 30 59 2 3 correct -

6 ON 3.21 30 59 2 3 correct -

7 ON 3.27 30 59 2 3 correct -

8 ON 3.31 30 59 2 3 correct -

29

Compute the
offset for a
specified line in
a document

1 ON 0.48 3 5 3 5 correct -

2 ON 0.5 3 5 3 5 correct -

3 ON 0.49 3 5 3 5 correct -

4 ON 0.49 3 5 3 5 correct -

5 ON 0.42 3 5 3 5 correct -

6 ON 0.41 3 5 3 5 correct -

7 ON 0.39 3 5 3 5 correct -

8 ON 0.47 3 5 3 5 correct -

30

Get a paragraph
element given its
offset in the a
document

1 ON 2.31 33 65 4 6 correct -

2 ON 3.77 33 65 4 6 correct -

3 ON 3.86 33 65 4 6 correct -

4 ON 3.46 33 65 4 6 correct -

5 ON 3.51 33 65 4 6 correct -

6 ON 2.27 33 65 4 6 correct -

7 ON 3.51 33 65 4 6 correct -

8 ON 3.44 33 65 4 6 correct -

31

Obtain the title
of a webpage
specified by a
URL

1 ON 68.89 289 577 3 4 correct -

2 ON 67.24 289 577 3 4 correct -

3 ON 51.82 289 577 3 4 correct -

4 ON 81.33 289 577 3 4 correct -

5 ON 53.9 289 577 3 4 correct -

6 ON 54.36 289 577 3 4 correct -

7 ON 52.88 289 577 3 4 correct -

8 ON 59.62 289 577 3 4 correct -

32

Return doctype
of XML
document
generated by
string

1 ON 1.02 6 11 6 7 correct -

2 ON 0.87 6 11 6 7 correct -

3 ON 0.83 6 11 6 7 correct -

33

ID Description #Tests Pruning Synthesis
Time (s) #Paths #Progs #Comps #Holes Result Notes

4 ON 0.79 6 11 6 7 correct -

5 ON 0.81 6 11 6 7 correct -

6 ON 0.79 6 11 6 7 correct -

7 ON 0.78 6 11 6 7 correct -

8 ON 0.92 6 11 6 7 correct -

33
Generate an
XML element
from a string

1 ON 0.9 26 51 6 7 correct -

2 ON 0.88 26 51 6 7 correct -

3 ON 1.03 26 51 6 7 correct -

4 ON 0.95 26 51 6 7 correct -

5 ON 0.87 26 51 6 7 correct -

6 ON 0.97 26 51 6 7 correct -

7 ON 1.01 26 51 6 7 correct -

8 ON 0.95 26 51 6 7 correct -

34
Read XML
document from a
file

1 ON 0.08 1 1 3 4 correct -

2 ON 0.31 1 1 3 4 correct -

3 ON 0.1 1 1 3 4 correct -

4 ON 0.11 1 1 3 4 correct -

5 ON 0.1 1 1 3 4 correct -

6 ON 0.11 1 1 3 4 correct -

7 ON 0.1 1 1 3 4 correct -

8 ON 0.1 1 1 3 4 correct -

35

Generate an
XML from file
and query it
using XPath

1 ON 36.67 24 52 7 10 correct -

2 ON 37.38 24 52 7 10 correct -

3 ON 37.84 24 52 7 10 correct -

4 ON 37.35 24 52 7 10 correct -

5 ON 37 24 52 7 10 correct -

6 ON 37.63 24 52 7 10 correct -

7 ON 36.84 24 52 7 10 correct -

8 ON 37.25 24 52 7 10 correct -

36

Read XML
document from a
file and get the
value of root
attribute
specified by a
string

1 ON 0.36 3 5 5 7 correct -

2 ON 0.4 3 5 5 7 correct -

3 ON 0.34 3 5 5 7 correct -

4 ON 0.34 3 5 5 7 correct -

34

ID Description #Tests Pruning Synthesis
Time (s) #Paths #Progs #Comps #Holes Result Notes

5 ON 0.35 3 5 5 7 correct -

6 ON 0.34 3 5 5 7 correct -

7 ON 0.37 3 5 5 7 correct -

8 ON 0.35 3 5 5 7 correct -

37

Get number of
children of root
elements from
xml string

1 ON 0.3 3 5 3 4 incorrect -

2 OFF - - - - - incorrect
Fails to sythesize
when pruning is on;
OutOfMemoryError

3 OFF - - - - - incorrect
Fails to sythesize
when pruning is on;
OutOfMemoryError

4 OFF - - - - - incorrect
Fails to sythesize
when pruning is on;
OutOfMemoryError

5 OFF - - - - - incorrect
Fails to sythesize
when pruning is on;
OutOfMemoryError

6 OFF - - - - - incorrect
Fails to sythesize
when pruning is on;
OutOfMemoryError

7 OFF - - - - - incorrect
Fails to sythesize
when pruning is on;
OutOfMemoryError

8 OFF - - - - - incorrect
Fails to sythesize
when pruning is on;
OutOfMemoryError

38 Get the version
of xml string

1 ON 75.83 1356 2858 6 7 correct -

2 ON 77.97 1356 2858 6 7 correct -

3 ON 77.12 1356 2858 6 7 correct -

4 ON 78.79 1356 2858 6 7 correct -

5 ON 77.11 1356 2858 6 7 correct -

6 ON 79.36 1356 2858 6 7 correct -

7 ON 79.91 1356 2858 6 7 correct -

8 ON 76.11 1356 2858 6 7 correct -

39
Calculate
absolute value of
an integer

1 OFF 0.05 1 1 1 2 correct Fails to sythesize
when pruning is on;

2 OFF 0.05 1 1 1 2 correct Fails to sythesize
when pruning is on;

3 OFF 0.06 1 1 1 2 correct Fails to sythesize
when pruning is on;

4 OFF 0.05 1 1 1 2 correct Fails to sythesize
when pruning is on;

5 OFF 0.05 1 1 1 2 correct Fails to sythesize
when pruning is on;

6 OFF 0.05 1 1 1 2 correct Fails to sythesize
when pruning is on;

7 OFF 0.06 1 1 1 2 correct Fails to sythesize
when pruning is on;

8 OFF 0.05 1 1 1 2 correct Fails to sythesize
when pruning is on;

35

ID Description #Tests Pruning Synthesis
Time (s) #Paths #Progs #Comps #Holes Result Notes

40

Increment an
integer and
return its old
value

1 OFF 0.16 11 21 5 5 correct Fails to sythesize
when pruning is on;

2 OFF 0.18 11 21 5 5 correct Fails to sythesize
when pruning is on;

3 OFF 0.15 11 21 5 5 correct Fails to sythesize
when pruning is on;

4 OFF 0.08 11 21 5 5 correct Fails to sythesize
when pruning is on;

5 OFF 0.09 11 21 5 5 correct Fails to sythesize
when pruning is on;

6 OFF 0.09 11 21 5 5 correct Fails to sythesize
when pruning is on;

7 OFF 0.1 11 21 5 5 correct Fails to sythesize
when pruning is on;

8 OFF 0.1 11 21 5 5 correct Fails to sythesize
when pruning is on;

41

Increment an
integer by 2 and
return its old
value

1 OFF - 792 24139 - - incorrect
Fails to sythesize
when pruning is on;
TIMEOUT

2 OFF - 824 27278 - - incorrect
Fails to sythesize
when pruning is on;
TIMEOUT

3 OFF - 864 30576 - - incorrect
Fails to sythesize
when pruning is on;
TIMEOUT

4 OFF - 919 33295 - - incorrect
Fails to sythesize
when pruning is on;
TIMEOUT

5 OFF - 865 30699 - - incorrect
Fails to sythesize
when pruning is on;
TIMEOUT

6 OFF - 821 27045 - - incorrect
Fails to sythesize
when pruning is on;
TIMEOUT

7 OFF - 920 33416 - - incorrect
Fails to sythesize
when pruning is on;
TIMEOUT

8 OFF - 929 34237 - - incorrect
Fails to sythesize
when pruning is on;
TIMEOUT

42
Get the class
name of an
object

1 OFF 0.43 8 15 2 3 correct Fails to sythesize
when pruning is on;

2 OFF 0.39 8 15 2 3 correct Fails to sythesize
when pruning is on;

3 OFF 0.45 8 15 2 3 correct Fails to sythesize
when pruning is on;

4 OFF 0.34 8 15 2 3 correct Fails to sythesize
when pruning is on;

5 OFF 0.47 8 15 2 3 correct Fails to sythesize
when pruning is on;

6 OFF 0.35 8 15 2 3 correct Fails to sythesize
when pruning is on;

7 OFF 0.39 8 15 2 3 correct Fails to sythesize
when pruning is on;

8 OFF 0.35 8 15 2 3 correct Fails to sythesize
when pruning is on;

43
Get the first
value of an
integer array

1 ON 0.04 3 5 4 4 incorrect -

2 ON 0.03 3 5 4 4 incorrect -

3 ON 0.05 3 5 4 4 incorrect -

36

ID Description #Tests Pruning Synthesis
Time (s) #Paths #Progs #Comps #Holes Result Notes

4 ON 0.04 3 5 4 4 incorrect -

5 OFF 0.05 2 3 2 3 correct Fails to sythesize
when pruning is on;

6 OFF 0.04 2 3 2 3 correct Fails to sythesize
when pruning is on;

7 OFF 0.03 2 3 2 3 correct Fails to sythesize
when pruning is on;

8 OFF 0.03 2 3 2 3 correct Fails to sythesize
when pruning is on;

44

Calculate
minimum value
between two
integers

1 OFF 0.05 1 1 1 3 correct Fails to sythesize
when pruning is on;

2 OFF 0.05 1 1 1 3 correct Fails to sythesize
when pruning is on;

3 OFF 0.05 1 1 1 3 correct Fails to sythesize
when pruning is on;

4 OFF 0.05 1 1 1 3 correct Fails to sythesize
when pruning is on;

5 OFF 0.05 1 1 1 3 correct Fails to sythesize
when pruning is on;

6 OFF 0.05 1 1 1 3 correct Fails to sythesize
when pruning is on;

7 OFF 0.05 1 1 1 3 correct Fails to sythesize
when pruning is on;

8 OFF 0.05 1 1 1 3 correct Fails to sythesize
when pruning is on;

45

Calculate
minimum value
between three
integers

1 ON 0.05 1 1 2 4 incorrect -

2 OFF 0.22 6 66 2 5 correct Fails to sythesize
when pruning is on;

3 OFF 0.42 6 66 2 5 correct Fails to sythesize
when pruning is on;

4 OFF 0.22 6 66 2 5 correct Fails to sythesize
when pruning is on;

5 OFF 0.24 6 66 2 5 correct Fails to sythesize
when pruning is on;

6 OFF 0.23 6 66 2 5 correct Fails to sythesize
when pruning is on;

7 OFF 0.22 6 66 2 5 correct Fails to sythesize
when pruning is on;

8 OFF 0.22 6 66 2 5 correct Fails to sythesize
when pruning is on;

46

Given an array,
set the last entry
the value of first
entry

1 ON 0.14 7 13 5 5 incorrect -

2 OFF 2.61 314 2032 7 7 correct Fails to sythesize
when pruning is on;

3 OFF 2.29 314 2032 7 7 correct Fails to sythesize
when pruning is on;

4 OFF 2.92 314 2032 7 7 correct Fails to sythesize
when pruning is on;

5 OFF 2.51 314 2032 7 7 correct Fails to sythesize
when pruning is on;

6 OFF 2.77 314 2032 7 7 correct Fails to sythesize
when pruning is on;

7 OFF 2.5 314 2032 7 7 correct Fails to sythesize
when pruning is on;

8 OFF 2.48 314 2032 7 7 correct Fails to sythesize
when pruning is on;

47 Sort an integer
array

1 ON 0.27 1 1 2 2 correct -

2 ON 0.11 1 1 2 2 correct -

37

ID Description #Tests Pruning Synthesis
Time (s) #Paths #Progs #Comps #Holes Result Notes

3 ON 0.12 1 1 2 2 correct -

4 ON 0.11 1 1 2 2 correct -

5 ON 0.11 1 1 2 2 correct -

6 ON 0.11 1 1 2 2 correct -

7 ON 0.11 1 1 2 2 correct -

8 ON 0.12 1 1 2 2 correct -

38

References

[1] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. 2011. Synthesis of loop-free
programs. In PLDI 2011. 62–73.

[2] S. Jha, S. Gulwani, S. Seshia, and A. Tiwari. 2010. Oracle-guided component-based
program synthesis. In ICSE 2010. 215–224.

[3] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. 2017.
Component-Based Synthesis for Complex APIs. In POPL 2017. 599–612.

[4] Armando Solar-Lezama. 2013. Program sketching. STTT 15, 5-6 (2013), 475–495.
[5] Shaon Barman, Rastislav Bodik, Satish Chandra, Joel Galenson, Doug Kimelman,

Casey Rodarmor, and Nicholas Tung. 2010. Programming with angelic
nondeterminism. In POPL 2010. 339–352.

[6] Jinru Hua and Sarfraz Khurshid. 2017. Sketch4J: Execution-Driven Sketching for
Java. In SPIN 2017. To appear.

[7] Patrice Godefroid. 1997. Model Checking for Programming Languages using
Verisoft. In POPL 1997. 174–186.

[8] V. Debroy and W.E. Wong. 2010. Using mutation to automatically suggest fixes for
faulty programs. In ICST 2010. 65–74.

[9] H.D.T. Nguyen, D. Qi, A. Roychoudhury and S. Chandra. 2013. SemFix: program
repair via semantic analysis. In ICSE 2013. 772–781.

[10] Jinru Hua and Sarfraz Khurshid. 2016. A Sketching-Based Approach for Debugging
Using Test Cases. In ATVA 2016. 463-478.

