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Abstract 

 

An Experimental Evaluation and Possible Extensions of SyPet 

 

Zijiang Yang, MSE 

The University of Texas at Austin, 2017 

 

Supervisor:  Sarfraz Khurshid 

 

Program synthesis is an automated programming technique that automatically 

constructs a program which satisfies given specifications. SyPet is a recently published 

novel component-based synthesis tool that assembles a straight-line Java method body that 

invokes a sequence of methods from a given set of libraries to implement desired 

functionality that is defined by a given test suite. In this report, we experimentally evaluate 

the correctness and performance of the publicly available SyPet implementation, at the 

black-box level, focusing on the size of test suites. We then demonstrate how SyPet can be 

extended to support some other applications, such as synthesizing non-straight-line 

methods and program repair. Finally, we conjecture an alternative technique that is 

conceptually simpler for synthesizing straight-line methods and present a few initial 

experimental results. 
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Chapter 1: Introduction 

The problem of component-based synthesis [1, 2, 3] is to automatically construct a 

program that is composed from a set of base components. Each base component can be a 

small piece of program such as a method from an API. This technology can reduce the 

manual effort of the programmer to read documentations and thus can increase the 

programmer productivity.  

SyPet [3] is a recently published novel tool that can synthesize straight-line Java 

methods based on a given set of methods. The advantages of SyPet over other component-

based synthesis tools are that SyPet can work on a large set of components, e.g. a real-

world library, without the need of logical specifications of underlying components. The 

only information required by SyPet is the expected method signature, a set of tests, and 

some libraries. With the information gathered, SyPet can automatically generate the 

implementation details of target method and guarantee that it passes given tests.  

The key technology behind SyPet is type-based pruning using a special Petri net. 

SyPet uses a Petri net to represent the relationships between different methods in a given 

API, where a reachable path in the Petri net from the initial marking to target marking 

represents a sequence of method invocations. For each candidate method sequence, SyPet 

solves a sketch-completion [4] problem using SAT solver, and runs the tests against that 

candidate to validate it.  

Although SyPet is designed to synthesize straight-line Java methods, our 

experiments demonstrate that we can actually use this tool to synthesize non-straight-line 

Java methods, specifically ones with if-else branches, as long as the tests are partitioned 

based on execution paths. Our basic idea is that we can decompose a non-straight-line Java 



 

 

2 

method synthesis problem into several straight-line Java method synthesis problems, which 

can be solved by SyPet. Since the test-partitioning phase can be transferred into a set-

partitioning problem, we can synthesize certain type of non-straight-line methods in an 

automated manner.  

In addition to demonstrating how to add support for non-straight-line methods, we 

also explore the use of SyPet for program repair [8, 9, 10]. We show that SyPet can be used 

to fix errors in a program by replacing a wrong method invocation with a correct one. If 

we know that a program invokes a wrong method m at certain point, we can replace m with 

a new correct method n that has the same parameter list and return type as m. If we have 

the scope of candidate methods, we can reduce the program repair problem into a 

component-based synthesis problem, where n is the target method and candidate methods 

are individual components. That synthesis problem can then be solved by SyPet, and the 

solution will be a fix to the error in original program. In our experiment, we have 

successfully fixed a bug in Google Closure Library with the help of SyPet. 

Finally, we hypothesize an alternative approach which also synthesizes straight-

line Java method using a given set of components. Instead of using Petri nets and SAT 

solving, our approach uses nondeterministic programming [5] to exhaustively try each 

possible method sequence and prune them in an execution-driven manner [6]. We use re-

execution [7] to try different nondeterministic choices, and invoke the method sequence 

using Java reflection mechanism, so we do not need to recompile the program each time 

we try a new candidate. We will outline this simple idea and the initial experimental results 

later in this report. 

The rest of this report is organized as follows: First, we start by experimentally 

evaluating the correctness and performance of the publicly available implementation of the 
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SyPet tool (Chapter 2). Then, we demonstrate how to extend SyPet to other applications 

like non-straight line synthesis and program repair (Chapter 3). Finally, we demonstrate an 

alternative approach for straight-line method synthesis (Chapter 4).  
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Chapter 2: Evaluation of SyPet Implementation 

We use the publicly available SyPet implementation (Version 1.0) in our 

experimental evaluation. We specifically investigate the following research question: how 

does SyPet correctness and performance depend on the number of given tests? In this 

chapter, we will describe our experiments and report our findings. 

I. EXPERIMENTAL BENCHMARKS 

 In order to figure out how does SyPet work under different number of tests, we 

expand their original benchmarks used in the POPL 2017 paper [3] by adding more tests 

and run different number of tests respectively for each original benchmark. To make our 

evaluation more thorough, we add 2 additional benchmarks for each library presented in 

the original paper, and we also add some new benchmarks based on our self-written 

libraries. We have 47 benchmarks and 376 tests in total. The statistics of our new 

benchmarks are shown in Table 1. 

 

Library Number of benchmarks Number of tests for each 
benchmark 

Apache math 11 8 

Geometry 8 8 

Joda time 9 8 

Jsoup, dom, text 10 8 

Self-written library 9 8 

Table 1: Statistics of SyPet benchmarks 
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II. RESULTS AND ANALYSIS 

For each benchmark, we run SyPet 8 times, with 1 to 8 tests respectively. So, we 

run SyPet 376 times in total. We collect the information about synthesis time, number of 

Petri net paths we have explored, number of program candidates we have tried, number of 

components in the solution, number of holes in the solution, and if the solution is correct. 

All our experiments are performed in a Macbook Pro with 2.7 GHz Intel core i5 processor 

and 8 GB memory. 

The detailed results can be found in appendix of this report. From the results, we 

can get 3 conclusions regarding the number of test cases: 

 

1. Number of test cases affects correctness. More test cases are likely to result in 

better solutions. 

2. Number of test cases does not affect performance much if the result is correct. But 

if the result is incorrect, having more test cases may result in longer execution time. 

3. We need 1.26 tests to get correct solution on average. 

 

The first conclusion is easy to understand. SyPet always guarantees that the result 

passes all given test cases. But if the given test cases are not enough to identify the right 

implementation, it may result in wrong solution. Suppose we want to synthesize a method 

which calculates the absolute value of a double input using java.lang library. If we use tests 

in Figure 1, we may result in getting a wrong implementation java.lang.Math.sqrt(double) 

instead of java.lang.Math.abs(double). That is because both abs and sqrt return 0 when 

input is 0, so both methods pass given tests. However, if we have more tests like Figure 2, 

we will be able to filter out the wrong method and possibly get the correct solution. That 
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demostrates having more tests will give a more precise description of target method and 

results in better solutions.  

 
     boolean test0() { 

        return abs(0) == 0; 
    } 

 

Figure 1: Example of inadequate tests for int abs(int) 

 

     boolean test0() { 
        return abs(0) == 0; 
    } 
     
    boolean test1() { 
        return abs(1) == 1; 
    } 
     
    boolean test2() { 
        return abs(-1) == 1; 
    } 
  

Figure 2: Example of good tests for int abs(int) 

The second conclusion can be understood in the same way. Having fewer tests 

makes the specification more general and thus results in more accepted solutions. As a 

result, it takes less time to find the first acceptable solution. With number of tests 

increasing, the specification is becoming more and more detailed, and the execution time 

is becoming longer and longer. Once the correct solution is found, it always passes newer 

tests, so the search process always stops at that solution. As a result, the execution time 

stops increasing. 

These conclusions show that we do not need too many redundant tests. Instead, we 

only need a small number of tests that can precisely describe the behavior of target method. 
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In this way, we not only save test execution time, but also save programmer’s time for test 

writing.  
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Chapter 3: New Applications of SyPet 

The original SyPet tool is designed to synthesize straight-line Java methods. In this 

chapter, we demonstrate two more applications that can be reduced to straight-line method 

synthesis problems, which then can be solved by SyPet.  

I. COMPONENT-BASED SYNTHESIS FOR NON-STRAIGHT-LINE METHODS 

While SyPet is an efficient tool in synthesizing straight-line Java methods, a lot of 

real-life methods are not straight-line and therefore cannot be synthesized by SyPet. 

However, our work shows that we can use SyPet as an enabling technology to synthesize 

such methods. 

1. Test-partition Based Approach for Single If-Else Statement 

Let’s consider the simplest case, where the target method contains a single if-else 

statement. The basic idea is to reduce such a synthesis problem to several straight-line 

method synthesis problems. Because we know that target method contains two execution 

paths, we can treat each individual execution path as a straight-line method, whose input 

arguments and return type are the same as those of the original method. In this way, we 

can reduce the original synthesis problem to several sub-problems that can be solved by 

SyPet. 

Suppose we want to synthesize the method in Figure 3. The original method in 

Figure 3 can be abstracted as a new method whose if-body and else-body are replaced by 

a single method call. The control flow graph of the abstraction in Figure 3 can be found in 

Figure 4. From the control flow graph, we notice that ifbody() and elsebody() cannot be 

executed in a single method invocation. In other words, if ifbody() is executed, elsebody() 

cannot be executed during the same method call. Due to this property, it is possible to write 
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test cases that only execute ifbody() or elsebody(). If we have these test cases, we can 

synthesize ifbody() and elsebody() respectively, by applying test cases that only execute 

ifbody() or elsebody(). 

 
 
     
 
 

 
 
 
 

    int method(int n) { 
        if (condition(n)) { 
            return ifbody(n); 
        } else { 
            return elsebody(n); 
        } 
    } 

    int method(int n) { 
        if (part0(n)) { 
            int x = part1(n); 
            int y = part2(n); 
            return part3(x, y); 
        } else { 
            int x = part4(n); 
            int y = part5(n); 
            return part6(x, y); 
        } 
    } 
  

Figure 3: A non-straight-line method and its abstraction 

 

 
 
 
 

 
 
 
 

 
 
 

 
 
 
 
 

 
 

 

condition() 

ifbody() elsebody() 

end 

 

Figure 4: Control flow graph of abstracted method in Figure 3 
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If we already have the implementations of ifbody() and elsebody(), the last step we 

need to do is synthesizing the condition(). Since condition() is the only unknown 

component, we can put all test cases together and let SyPet figure out the right 

implementation of condition() based on the ifbody() and elsebody() we have synthesized in 

previous steps. 

The algorithm to synthesize a single if-else statement is called Algorithm 1, whose 

inputs are method signature, library, and partitioned test cases. The details of Algorithm 1 

can be found in Figure 5. 

 
 synthesize_single_if_statement: 

input:  signature: String, library: String,  

tests1: JavaFile, tests2: JavaFile 

output: synthesized method or failure 

 

ifbody :=  SYPET(signature, library, tests1) 

elsebody := SYPET (signature, library, tests2) 

skeleton :=  COMBINE_IF_ELSE_BODY(ifbody, elsebody) 

tests3 := UNION(tests1, tests2, skeleton) 

condition := SYPET(“booean condition(args)”, library, tests3) 

result := COMBINE_METHOD(ifbody, elsebody, condition) 

 

return result 
 

Figure 5: Algorithm 1, an algorithm to synthesize single if-else statement 

Here is an example. If we want to synthesize a method int abs(int) which returns 

the absolute value of its input, we can apply Algorithm 1 based on test cases shown in 

Figure 6. Firstly, we need to run SyPet against tests in partition 1 and get the first solution, 

which will be an implementation that simply returns the argument. Then, we run SyPet 
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against tests in partition 2 and get the second solution, which will be an implementation 

that negates the input argument. We know that solution 1 and solution 2 are different 

branches of the actual implementation of int abs(int), so we can write the skeleton of int 

abs(int) like Figure 7. 

 

 
                        Partition 1                                          Partition 2 

 
    boolean test0() { 
        return abs(0) == 0; 
    } 
 
    boolean test2() { 
        return abs(4) == 4; 
    } 
       

     
    boolean test1() { 
        return abs(-1) == 1; 
    } 
     
    boolean test3() { 
        return abs(-3) == 3; 
    } 
 

 

Figure 6: Partition of tests for method int abs(int) 

 
     int abs(int n) { 

        if(condition(n)) { 
            int a = mehtod_return_argument(n); 
            return a; 
        } else { 
            int b = method_negate_argument(n); 
            return b; 
        } 
    } 
  

Figure 7: The skeleton of method int abs(int) 

Then, we can put all these tests together, use the skeleton as a helper method, and 

let SyPet synthesize the method boolean condition(int). Once SyPet gives an accepted 
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solution, we can put the solution into the skeleton and get a final solution to the original 

method int abs(int). 

2. Test-partition Based Approach on Chaining If-Else Statements  

In this part, we extend the previous algorithm to make it applicable to chaining if-

else statements. An if-else chain is a sequence of if-else statements where an else-body 

overlaps the next if-body. Figure 8 is an example of an if-else chain inside a method. 

 
     int method(int n) { 

        if (condition0(n)) { 
            return body0(n); 
        } else if (condition1(n)) { 
            return body1(n); 
        } else if (condition2(n)) { 
            return body2(n); 
        } else { 
            return body3(n); 
        } 
    } 
  

Figure 8: An abstract method with an if-else chain 

Suppose we want to synthesize the method in Figure 8, we can use an approach 

similar to Algorithm 1. Firstly, we need to partition the test cases based on execution paths. 

In this example, we need 4 partitions. Then, we synthesize each if-body or else-body based 

on its partitioned tests. Finally, we synthesize the conditions in bottom-up order. 

Specifically, we first put partition 2, 3 together and synthesize condition2(). Then, we put 

partition 1, 2, 3 together and synthesize condition1(). Finally, we put all partitions together 

and synthesize condition0(). We call this approach Algorithm 2, which is shown in Figure 

9. 
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 synthesize_chaining_if_statements: 

input:  signature: String, library: String,  

tests: JavaFile[n] 
output: synthesized method or failure 

 

Method[n] bodies 

for i from 0 until n-1, do: 

        bodies[i] := SYPET(signature, library, tests[i]) 
result := bodies[n-1] 

for i from  n-2 until 0, do: 

        ifbody := bodies[i] 

        elsebody := result 

        skeleton := COMBINE_IF_ELSE_BODY(ifbody, elsebody) 
        test := UNION(tests[i .. n-1], skeleton) 

        condition := SYPET(“boolean condition(args)”, library, test) 

        result := COMBINE_METHOD(ifbody, elsebody, condition) 

 
return result 

  

Figure 9: Algorithm 2, an algorithm to synthesize chaining if-else statements 

In our experiments, we have successfully used Algorithm 2 to synthesize a method 

that categorizes a triangle into one of three classes: acute triangle, obtuse triangle, and right 

triangle. Our library is a self-written library which contains methods that return category 

labels and methods that distinguish different kinds of triangles. We have run SyPet 5 times 

to get the final solution, which is an if-else chain with 2 conditions and 3 bodies. Each 

execution takes 4.5 seconds on average. 

3. Automated Synthesis of Chaining If-Else Statements 

Although Algorithm 2 works well in synthesizing chaining if-else statements, it 

requires the programmer to manually partition the test cases based on execution paths. 

Sometimes the problem is not as intuitive as those in our experiments, in which case 
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programmer finds it hard to partition test cases. In this part, we describe another algorithm 

that automatically synthesize chaining if-else statements without the needs of partitioning 

test cases manually. 

 Our new algorithm has two phases: test partitioning phase and synthesis phase. 

The test partitioning phase is to automatically partition test cases into a few subsets. This 

is the same as a traditional set-partitioning problem, except that we disallow empty sets in 

our problem. When test partitioning is done, we can synthesize all the if-else bodies based 

on the partitions. After that, we can synthesize if-conditions, by trying all possible orders 

of if-else bodies. That is because different order of if-else bodies can result in completely 

different conditions. An example is shown in Figure 10. Even though these 2 methods have 

same if-else bodies, their different orders result in completely different conditions. If our 

library only has isRight() method, the second order will make SyPet fail to find a solution. 

 
 

String categorizeTriangle(Triangle t) { 
    if(isAcute(t)) { 
        return "acute"; 
    } else if(isRight(t)) { 
        return "right"; 
    } else { 
        return "obtuse"; 
    } 
} 
 

String categorizeTriangle(Triangle t) { 
    if(isAcute(t)) { 
        return "acute"; 
    } else if(isObtuse(t)) { 
        return "obtuse"; 
    } else { 
        return "right"; 
    } 
} 
  

Figure 10: Different order of if-else bodies results in different conditions 

Our algorithm to automatically synthesize chaining if-else statements is called 

Algorithm 3, which is shown in Figure 11. 
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 auto_synthesize_chaining_if_statements: 

input: signature: String, library: String,  

            tests: JavaFile, num_branches: int 

output: synthesized method or failure 

 

for each partitioned_tests in PARTITION_TESTS(tests, num_branches), do: 

        Method[num_branches] bodies 

        for i from 0 until num_branches-1, do: 

                bodies[i] := SYPET(signature, library, partitioned_tests[i]) 

        for each (tests_permutation, bodies_permutation) in 

PERMUTATIONS(partitioned_tests, bodies), do:  

                conditions = SYNTHESIZE_ALL_CONDITIONS(library, tests_permutation, 

bodies_permutation) 

                result = COMBINE_METHOD(bodies_permutation, conditions) 

                if NO ERROR : 

                        return result 

  

Figure 11: Algorithm 3, an algorithm to automatically synthesize chaining if-else 
statements 

We have successfully used Algorithm 3 to synthesize a method int abs(int) that 

contains a single if-else statement. We have tried different size of test cases from 2 to 5. 

The results can be found in Table 2. Our test cases are shown in Figure 12. Figure 13 is a 

screenshot of the output of our Algorithm. 

 
Number of tests Number of 

partitions tried Result partition Total time 
(seconds) 

2 1 {0}, {1} 13 

3 2 {0, 2}, {1} 758 

4 2 {0, 2}, {1, 3} 812 

5 7 {0, 2, 4}, {1, 3} 4514 

Table 2: Experimental results of Algorithm 3 
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     public static boolean test0() throws Throwable { 

        return abs(0) == 0; 
    } 
 
    public static boolean test1() throws Throwable { 
        return abs(-Integer.MAX_VALUE) == Integer.MAX_VALUE; 
    } 
 
    public static boolean test2() throws Throwable { 
        return abs(5) == 5; 
    } 
 
    public static boolean test3() throws Throwable { 
        return abs(-100) == 100; 
    } 
 
    public static boolean test4() throws Throwable { 
        return abs(4) == 4; 
    } 
  

Figure 12: Test cases used in experiments of Algorithm 3 

 

 

Figure 13: Screenshot of experimental output of Algorithm 3 
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4. Limitations of Test-partition Based Approach 

We have demonstrated that SyPet can be used to synthesize non-straight-line 

methods with if-else statements. However, not all methods with if-else statements can be 

synthesized by SyPet. We have generalized that a method must meet two requirements in 

order to be synthesized with test-partition based approach: 

 

1. The method can be rewritten into an equivalent form with single if-else chain and 

no statements outside of if-else clauses. 

2. The conditions do not change program state. 

 

The first requirement is obvious because our solutions are always in a form where 

everything is inside a single if-else chain. If a method is not in such a form, there is no way 

that SyPet can get the correct solution. 

The second requirement aims to ensure the complete separation between conditions 

and if-else bodies. That is because our test-partition based approach synthesizes if-else 

bodies without considering conditions. If the conditions cannot be separated from if-else 

bodies, the result may be incorrect.  

 
     int method(Iterator<Integer> it) { 

        if(it.next().equals(0)) { 
            return it.next(); 
        } else { 
            return sum(it.next(), it.next()); 
        } 
    } 

 

Figure 14: An example of if-condition that changes program state 
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Figure 14 shows such an example. If the first element in iterator is 0, the method 

will return the second element. Otherwise, it will return the sum of second and third 

elements. According to this logic, the synthesized if-body and else-body will be Figure 15, 

which are incorrect because they redundantly include the condition. 

 
     int ifbody(Iterator<Integer> it) { 

        it.next(); 
        return it.next(); 
    } 
     
    int elsebody(Iterator<Integer> it) { 
        it.next(); 
        return sum(it.next(), it.next()); 
    } 

 

Figure 15: Synthesized if-body and else-body of method in Figure 14 

Due to above reasons, both requirements must be satisfied by a method in order to 

be synthesized with our test-partition based algorithms. 

II. PROGRAM REPAIR 

Program repair is another important research area in Software Engineering [8, 9, 

10]. It requires a program to automatically repair software bugs without the intervention of 

a human programmer. At a high level, program repair techniques generate a patch for a 

program in two steps. The first step is patch generation, which analyzes the original 

program and produces one or more candidate patches. The second step is patch validation, 

which validates the produced candidate patches from the previous step with either a formal 

specification or a test suite of the program. 

There are key similarities between the procedure of component-based synthesis and 

the procedure of program repair. They both generate candidates and validate them with 
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some given specifications, e.g. test suites. From a high-level intuition, it is possible to 

reduce a program repair problem to a component-based synthesis problem.  

Our research shows we can use SyPet to solve such problems, as long as we know 

the location of the bug and the repairing patch is a sequence of method invocations. We 

can replace that method sequence with a “hole”, and let SyPet figure out the 

implementation of that “hole” using existing methods. If an implementation makes the 

program pass given test suites, we know this implementation is a correct fix to the bug. In 

this way, a program repair problem is reduced to a component-based synthesis problem 

which can be solved by SyPet. 

Though it is possible to use SyPet for program repair problems, it is still not an easy 

task because SyPet does not provide such interfaces. The first problem is how to let SyPet 

insert candidate code into the “hole” in buggy program. That is not supported by current 

SyPet implementation because candidate method sequences are only accessible in test files 

and are not exposed to users. Another problem is how to transfer the original test suites 

into SyPet-compatible tests. SyPet requires a boolean test method instead of JUnit test 

suites, so we need some mechanisms to transfer JUnit test suites into a single test method. 

We use following techniques to solve above problems. Assume the original 

program invokes a wrong method w at some place in class c. To fix the bug, we need to do 

following steps: 

 

1. Define a new interface i, and declare a method m inside i. The signature of m is the 

same as the signature of w.  

2. Add a new public static field f in class c. The type of f is i. 

3. At the buggy location, replace the invocation of w to f.m. 
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4. Compile the whole program, add the compiled classes as a library for SyPet. 

5. Write a standard SyPet-styled test file with a single test method.  

6. At the beginning of test method, define an anonymous instance a which implements 

i and overrides m by invoking generated candidate method. Assign a to c.f. 

7. In the test method, invoke original JUnit test suites programmatically, then check 

the result. If JUnits result is successful, return true. Otherwise, return false. 

8. Run SyPet. The solution will be the correct method invocation. 

 

The above approach uses polymorphism to insert candidate methods into the 

“hole”. It firstly replaces the wrong method invocation with an instance method invocation 

from a static field. Then, it updates that static field before each execution of test suites. In 

this way, the candidate method generated by SyPet will be invoked during test execution.   

We have tested this approach with a real-life bug in defects4j. In our experiments, 

SyPet successfully fixes the bug 104 in Google Closure Library in 19 seconds. Our test file 

looks like Figure 16. 
 

    public static boolean test0() throws Throwable { 
        com.google.javascript.rhino.jstype.UnionType.solution = new 
com.google.javascript.rhino.jstype.SypetSolution() { 
            @Override 
            public boolean solution(com.google.javascript.rhino.jstype.JSType type)  { 
                try { 
                    return mySolution(type); 
                } catch(Throwable e) { 
                    throw new RuntimeException(e.toString()); 
                }   
            }  
        }; 
        org.junit.runner.Result res = new 
org.junit.runner.JUnitCore().run(com.google.javascript.rhino.jstype.UnionTypeTest.class); 
        return res.wasSuccessful(); 
    } 
  

Figure 16: Test file for program repair experiment 
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Chapter 4: Idea of an Alternative Approach for Component-based 
Synthesis 

In this chapter, we briefly hypothesize an alternative approach which also 

synthesizes straight-line Java methods using a given set of components in the spirit of 

SyPet but is conceptually simpler in functionality. Our approach requires the same 

information as SyPet: a set of candidate methods, the signature of target method, and some 

tests. Instead of solving Petri net reachability problems and SAT problems like SyPet, our 

approach uses nondeterministic programming [5] to exhaustively try each possible method 

sequence and prune them in execution-driven manner [6].   

I. OVERVIEW 

The basic idea of our approach is very simple. If we have a list of possible methods, 

we can try every sequence exhaustively in a backtracking manner. For each method 

sequence, we check if it satisfies the specifications. If we find an acceptable method 

sequence, we stop searching and return the result. This kind of backtracking is based on 

model checkers. We use a re-execution model checker to choose different methods non-

deterministically, and invoke these methods using Java reflection. In this way, we can save 

time by not recompiling candidate method sequences each time we run test suites. 

To prune method sequences, we do not apply complex pruning strategies like Petri 

net reachability checking. Instead, we apply some very simple pruning strategies, which 

are described in the next section. Though less effective pruning in our approach may result 

in more candidate checking, it has the potential to save a lot of time by avoiding complex 

constraint solving problems.  
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II. PRUNING STRATEGY 

We demonstrate three simple pruning strategies: type-based pruning, variable-

based pruning, and execution-driven pruning. 

Firstly, we prune methods based on its parameter types and return type. If a method 

m in sequence S requires an argument type T, but T neither appears in parameter list nor is 

a return type of some previous methods in S, we can safely prune m. Similarly, if the target 

method returns type T, but no method in sequence S has return type T, we can safely prune 

S. 

Next, we prune method sequences which produce unused intermediate variables. 

This strategy is same as SyPet, because method sequences that produce unused variables 

are unlikely to be correct [3].  

Finally, we prune method sequences in execution-driven manner. Our execution-

driven pruning is very straightforward. We observe each individual method during test 

executions. If any method throws an exception, we do not need to consider any method 

sequences with the same prefix. For example, if we have method sequence [m1, m2, m3, 

m4], and m2 throws an exception during a test execution, we know that any sequences start 

with m1, m2 will throw the same exception. That is because every sequence starts with m1 

will share the same state when m1 have been executed. Starting from that state, m2 will 

always perform the same behavior. Thus, we can safely ignore sequences [m1, m2, …]. 

III. EXPERIMENTAL RESULTS 

We have built a simple prototype of our approach and performed a few 

experiments. Table 3 shows the experimental results of our tool. Table 4 shows the results 

of SyPet for these benchmarks. All these experiments are performed in a Macbook Pro 

with 2.7 GHz Intel core i5 processor and 8 GB memory. 
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Benchmark id Library Number of 
tests 

Number of 
candidates 
explored 

Number of 
methods 

Total 
time 

(seconds) 
Result 

8 Apache common 
math 8 3846 3 4 correct 

9 Apache common 
math 8 850299 4 467 correct 

21 Joda time 8 356435 - 289 No solution 

22 Joda time 8 624956 4 318 correct 

Table 3: Experimental results of our prototype 

 

Benchmark id Library Number of 
tests 

Number of 
candidates 
explored 

Number of 
methods 

Total 
time 

(seconds) 
Result 

8 Apache common 
math 8 1094 5 241 correct 

9 Apache common 
math 8 - - 393 

Out of 
Memory 

Error 
21 Joda time 8 4716 4 414 correct 

22 Joda time 8 620 4 68 correct 

Table 4: Experimental results of SyPet for same benchmarks as shown in Table 3 

From the experimental results, we know that both tool fails in one benchmark. Our 

tool fails in benchmark 21 and SyPet fails in benchmark 9. SyPet can actually complete 

this benchmark successfully if given more memory but failed on our experimental 

computer that did not have the required amount of memory. Our tool fails because of 

current limitations in our approach in handling static members.  
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Chapter 5: Conclusion 

In this report, we have described our black-box experiments on SyPet and presented 

our findings. Then, we have demonstrated that SyPet can synthesize non-straight-line 

methods with chaining if-else statements. We have also demonstrated that we can use 

SyPet to solve program repair problems, as long as the repairing patch is a sequence of 

method invocations. Finally, we have hypothesized an alternative approach which also 

synthesizes straight-line Java methods using a given set of components but is conceptually 

simpler, and presented our experimental results.  
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Appendix 

EXPERIMENT RESULTS OF SYPET 
ID Description #Tests Pruning Synthesis 

Time (s) #Paths #Progs #Comps #Holes Result Notes 

1 
Compute the 
pseudo-inverse 
of a matrix 

1 ON 8.43 256 511 3 4 correct - 

2 ON 9.07 256 511 3 4 correct - 

3 ON 9.03 256 511 3 4 correct - 

4 ON 9.09 256 511 3 4 correct - 

5 ON 9.41 256 511 3 4 correct - 

6 ON 9.11 256 511 3 4 correct - 

7 ON 8.89 256 511 3 4 correct - 

8 ON 8.31 256 511 3 4 correct - 

2 

Compute the 
inner product 
between two 
vectors 

1 ON 0.33 1 1 3 5 correct - 

2 ON 0.26 1 1 3 5 correct - 

3 ON 0.28 1 1 3 5 correct - 

4 ON 0.29 1 1 3 5 correct - 

5 ON 0.26 1 1 3 5 correct - 

6 ON 0.26 1 1 3 5 correct - 

7 ON 0.29 1 1 3 5 correct - 

8 ON 0.29 1 1 3 5 correct - 

3 

Determine the 
roots of a 
polynomial 
equation 

1 ON 0.96 7 13 3 5 correct - 

2 ON 0.72 7 13 3 5 correct - 

3 ON 0.78 7 13 3 5 correct - 

4 ON 0.82 7 13 3 5 correct - 

5 ON 0.77 7 13 3 5 correct - 

6 ON 0.8 7 13 3 5 correct - 

7 ON 1.17 7 13 3 5 correct - 

8 ON 0.82 7 13 3 5 correct - 

4 

Compute the 
singular value 
decomposition 
of a matrix 

1 ON 0.11 1 1 3 4 correct - 

2 ON 0.11 1 1 3 4 correct - 

3 ON 0.12 1 1 3 4 correct - 

4 ON 0.11 1 1 3 4 correct - 

5 ON 0.11 1 1 3 4 correct - 

6 ON 0.13 1 1 3 4 correct - 



 

 

26 

ID Description #Tests Pruning Synthesis 
Time (s) #Paths #Progs #Comps #Holes Result Notes 

7 ON 0.12 1 1 3 4 correct - 

8 ON 0.12 1 1 3 4 correct - 

5 Invert a square 
matrix 

1 ON 0.65 16 31 3 4 correct - 

2 ON 0.7 16 31 3 4 correct - 

3 ON 0.67 16 31 3 4 correct - 

4 ON 0.67 16 31 3 4 correct - 

5 ON 0.66 16 31 3 4 correct - 

6 ON 0.73 16 31 3 4 correct - 

7 ON 0.76 16 31 3 4 correct - 

8 ON 0.66 16 31 3 4 correct - 

6 
Solve a system 
of linear 
equations 

1 ON 34 788 1600 6 8 correct - 

2 ON 33.21 788 1600 6 8 correct - 

3 ON 32.82 788 1600 6 8 correct - 

4 ON 34.88 788 1600 6 8 correct - 

5 ON 35.04 788 1600 6 8 correct - 

6 ON 32.9 788 1600 6 8 correct - 

7 ON 34.17 788 1600 6 8 correct - 

8 ON 32.83 788 1600 6 8 correct - 

7 

Compute the 
outer product 
between two 
vectors 

1 ON 4.83 14 48 4 6 correct - 

2 ON 5.06 14 48 4 6 correct - 

3 ON 5.37 14 48 4 6 correct - 

4 ON 2.83 14 48 4 6 correct - 

5 ON 5.15 14 48 4 6 correct - 

6 ON 2.59 14 48 4 6 correct - 

7 ON 2.6 14 48 4 6 correct - 

8 ON 2.77 14 48 4 6 correct - 

8 

Predict a value 
from a sample 
by linear 
regression 

1 ON 176.29 534 1094 6 6 correct - 

2 ON 175.53 534 1094 6 6 correct - 

3 ON 176.67 534 1094 6 6 correct - 

4 ON 176.4 534 1094 6 6 correct - 

5 ON 185.44 534 1094 6 6 correct - 

6 ON 179.46 534 1094 6 6 correct - 

7 ON 181.81 534 1094 6 6 correct - 
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ID Description #Tests Pruning Synthesis 
Time (s) #Paths #Progs #Comps #Holes Result Notes 

8 ON 188.79 534 1094 6 6 correct - 

9 
Compute the ith 
eigenvalue of a 
matrix 

1 ON 7.05 117 263 4 6 incorrect - 

2 OFF - - - - - incorrect 
Fails to sythesize 
when pruning is on;  
OutOfMemoryError 

3 OFF - - - - - incorrect 
Fails to sythesize 
when pruning is on;  
OutOfMemoryError 

4 OFF - - - - - incorrect 
Fails to sythesize 
when pruning is on;  
OutOfMemoryError 

5 OFF - - - - - incorrect 
Fails to sythesize 
when pruning is on;  
OutOfMemoryError 

6 OFF - - - - - incorrect 
Fails to sythesize 
when pruning is on;  
OutOfMemoryError 

7 OFF - - - - - incorrect 
Fails to sythesize 
when pruning is on;  
OutOfMemoryError 

8 OFF - - - - - incorrect 
Fails to sythesize 
when pruning is on;  
OutOfMemoryError 

10 
Compute the 
transpose of a 
matrix 

1 ON 0.05 1 1 1 2 incorrect - 

2 ON 0.34 8 15 3 4 correct - 

3 ON 0.33 8 15 3 4 correct - 

4 ON 0.35 8 15 3 4 correct - 

5 ON 0.53 8 15 3 4 correct - 

6 ON 0.35 8 15 3 4 correct - 

7 ON 0.37 8 15 3 4 correct - 

8 ON 0.34 8 15 3 4 correct - 

11 
Compute the 
sum of two 
matrices 

1 ON 0.64 5 17 4 6 correct - 

2 ON 0.52 5 17 4 6 correct - 

3 ON 0.54 5 17 4 6 correct - 

4 ON 0.52 5 17 4 6 correct - 

5 ON 0.59 5 17 4 6 correct - 

6 ON 0.53 5 17 4 6 correct - 

7 ON 0.53 5 17 4 6 correct - 

8 ON 0.57 5 17 4 6 correct - 

12 Scale a rectangle 
by a given ratio 

1 ON 1.92 78 275 4 7 correct - 

2 ON 1.97 78 275 4 7 correct - 

3 ON 1.53 78 275 4 7 correct - 

4 ON 2 78 275 4 7 correct - 
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ID Description #Tests Pruning Synthesis 
Time (s) #Paths #Progs #Comps #Holes Result Notes 

5 ON 1.77 78 275 4 7 correct - 

6 ON 1.66 78 275 4 7 correct - 

7 ON 1.82 78 275 4 7 correct - 

8 ON 1.69 78 275 4 7 correct - 

13 

Shear a rectangle 
and get its tight 
rectangular 
bounds 

1 ON 2.1 79 282 4 7 correct - 

2 ON 2.19 79 282 4 7 correct - 

3 ON 2.42 79 282 4 7 correct - 

4 ON 2.31 79 282 4 7 correct - 

5 ON 2.45 79 282 4 7 correct - 

6 ON 2.08 79 282 4 7 correct - 

7 ON 2.13 79 282 4 7 correct - 

8 ON 2.37 79 282 4 7 correct - 

14 

Rotate a 
rectangle about 
the origin by the 
specified number 
of quadrants 

1 ON 0.43 9 21 4 6 correct - 

2 ON 0.59 9 21 4 6 correct - 

3 ON 0.43 9 21 4 6 correct - 

4 ON 0.48 9 21 4 6 correct - 

5 ON 0.42 9 21 4 6 correct - 

6 ON 0.46 9 21 4 6 correct - 

7 ON 0.56 9 21 4 6 correct - 

8 ON 0.5 9 21 4 6 correct - 

15 

Rotate two 
dimensional 
geometry object 
by the specified 
angle about a 
point 

1 ON 0.1 1 1 3 6 incorrect - 

2 ON 2.97 67 225 5 8 correct - 

3 ON 3.2 67 225 5 8 correct - 

4 ON 2.72 67 225 5 8 correct - 

5 ON 2.91 67 225 5 8 correct - 

6 ON 3.08 67 225 5 8 correct - 

7 ON 2.75 67 225 5 8 correct - 

8 ON 2.98 67 225 5 8 correct - 

16 
Perform a 
translation on a 
given rectangle 

1 ON 0.92 41 156 4 7 correct - 

2 ON 1 41 156 4 7 correct - 

3 ON 1.12 41 156 4 7 correct - 

4 ON 1.1 41 156 4 7 correct - 

5 ON 1.15 41 156 4 7 correct - 
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ID Description #Tests Pruning Synthesis 
Time (s) #Paths #Progs #Comps #Holes Result Notes 

6 ON 1.1 41 156 4 7 correct - 

7 ON 1.02 41 156 4 7 correct - 

8 ON 1.16 41 156 4 7 correct - 

17 

Compute the 
intersection of a 
rectangle and the 
rectangular 
bounds of an 
ellipse 

1 ON 0.05 1 1 3 5 correct - 

2 ON 0.06 1 1 3 5 correct - 

3 ON 0.06 1 1 3 5 correct - 

4 ON 0.06 1 1 3 5 correct - 

5 ON 0.05 1 1 3 5 correct - 

6 ON 0.07 1 1 3 5 correct - 

7 ON 0.07 1 1 3 5 correct - 

8 ON 0.05 1 1 3 5 correct - 

18 
Check if a point 
is inside a 
rectangle 

1 ON 0.08 1 1 3 5 incorrect - 

2 ON 17.45 423 890 6 8 correct - 

3 ON 18.65 423 890 6 8 correct - 

4 ON 19.3 423 890 6 8 correct - 

5 ON 18.3 423 890 6 8 correct - 

6 ON 18.49 423 890 6 8 correct - 

7 ON 18.04 423 890 6 8 correct - 

8 ON 17.83 423 890 6 8 correct - 

19 

Check if a line 
segment 
intersects a 
rectangle. 

1 ON 0.16 1 1 3 5 incorrect - 

2 ON 0.55 6 16 4 7 incorrect - 

3 ON 0.61 6 16 4 7 incorrect - 

4 ON 0.49 6 16 4 7 incorrect - 

5 ON 0.51 6 16 4 7 incorrect - 

6 ON 0.53 6 16 4 7 incorrect - 

7 ON 0.51 6 16 4 7 incorrect - 

8 OFF - - - - - incorrect 
Fails to sythesize 
when pruning is on;  
OutOfMemoryError 

20 

Compute 
number of days 
since the 
specified date 

1 ON 6.43 78 156 3 4 correct - 

2 ON 6.36 78 156 3 4 correct - 

3 ON 6.45 78 156 3 4 correct - 

4 ON 6.49 78 156 3 4 correct - 

5 ON 6.25 78 156 3 4 correct - 
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ID Description #Tests Pruning Synthesis 
Time (s) #Paths #Progs #Comps #Holes Result Notes 

6 ON 6.4 78 156 3 4 correct - 

7 ON 6.36 78 156 3 4 correct - 

8 ON 6.33 78 156 3 4 correct - 

21 

Compute the 
number of days 
between two 
dates 
considering 
timezone 

1 ON 0.15 1 2 2 4 incorrect - 

2 ON 168.22 769 4716 4 6 correct - 

3 ON 167.88 769 4716 4 6 correct - 

4 ON 168.42 769 4716 4 6 correct - 

5 ON 166.8 769 4716 4 6 correct - 

6 ON 168.89 769 4716 4 6 correct - 

7 ON 167.73 769 4716 4 6 correct - 

8 ON 168.56 769 4716 4 6 correct - 

22 
Determine if a 
given year is a 
leap year 

1 ON 0.39 2 3 2 3 incorrect - 

2 ON 38.42 308 620 4 5 correct - 

3 ON 38.36 308 620 4 5 correct - 

4 ON 37.67 308 620 4 5 correct - 

5 ON 38.24 308 620 4 5 correct - 

6 ON 38.35 308 620 4 5 correct - 

7 ON 37.19 308 620 4 5 correct - 

8 ON 37.27 308 620 4 5 correct - 

23 Return the day 
of a date string 

1 ON 0.81 1 1 3 5 correct - 

2 ON 0.95 1 1 3 5 correct - 

3 ON 0.78 1 1 3 5 correct - 

4 ON 0.65 1 1 3 5 correct - 

5 ON 0.8 1 1 3 5 correct - 

6 ON 0.69 1 1 3 5 correct - 

7 ON 0.76 1 1 3 5 correct - 

8 ON 0.72 1 1 3 5 correct - 

24 

Find the number 
of days of a 
month in a date 
string 

1 ON 54.52 147 441 4 6 correct - 

2 ON 51.18 147 441 4 6 correct - 

3 ON 50.23 147 441 4 6 correct - 

4 ON 50.16 147 441 4 6 correct - 

5 ON 49.57 147 441 4 6 correct - 

6 ON 51.25 147 441 4 6 correct - 
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ID Description #Tests Pruning Synthesis 
Time (s) #Paths #Progs #Comps #Holes Result Notes 

7 ON 50.02 147 441 4 6 correct - 

8 ON 54.12 147 441 4 6 correct - 

25 
Find the day of 
the week of a 
date string 

1 ON 19.24 103 307 4 6 correct - 

2 ON 19.22 103 307 4 6 correct - 

3 ON 18.55 103 307 4 6 correct - 

4 ON 18.98 103 307 4 6 correct - 

5 ON 18.33 103 307 4 6 correct - 

6 ON 18.11 103 307 4 6 correct - 

7 ON 18.68 103 307 4 6 correct - 

8 ON 18.16 103 307 4 6 correct - 

26 
Compute age 
given date of 
birth 

1 ON 11.82 142 288 3 4 correct - 

2 ON 11.57 142 288 3 4 correct - 

3 ON 11.71 142 288 3 4 correct - 

4 ON 11.85 142 288 3 4 correct - 

5 ON 11.9 142 288 3 4 correct - 

6 ON 11.59 142 288 3 4 correct - 

7 ON 11.67 142 288 3 4 correct - 

8 ON 12.05 142 288 3 4 correct - 

27 

Compute 
number of 
minutes between 
two time 

1 OFF - - - - - incorrect 
Fails to sythesize 
when pruning is on;  
OutOfMemoryError 

2 OFF - - - - - incorrect 
Fails to sythesize 
when pruning is on;  
OutOfMemoryError 

3 OFF - - - - - incorrect 
Fails to sythesize 
when pruning is on;  
OutOfMemoryError 

4 OFF - - - - - incorrect 
Fails to sythesize 
when pruning is on;  
OutOfMemoryError 

5 OFF - - - - - incorrect 
Fails to sythesize 
when pruning is on;  
OutOfMemoryError 

6 OFF - - - - - incorrect 
Fails to sythesize 
when pruning is on;  
OutOfMemoryError 

7 OFF - - - - - incorrect 
Fails to sythesize 
when pruning is on;  
OutOfMemoryError 

8 OFF - - - - - incorrect 
Fails to sythesize 
when pruning is on;  
OutOfMemoryError 

28 
Compute 
number of 
seconds since the 

1 ON 3.38 30 59 2 3 correct - 

2 ON 3.3 30 59 2 3 correct - 
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ID Description #Tests Pruning Synthesis 
Time (s) #Paths #Progs #Comps #Holes Result Notes 

midnight of a 
given time 3 ON 3.23 30 59 2 3 correct - 

4 ON 3.28 30 59 2 3 correct - 

5 ON 3.34 30 59 2 3 correct - 

6 ON 3.21 30 59 2 3 correct - 

7 ON 3.27 30 59 2 3 correct - 

8 ON 3.31 30 59 2 3 correct - 

29 

Compute the 
offset for a 
specified line in 
a document 

1 ON 0.48 3 5 3 5 correct - 

2 ON 0.5 3 5 3 5 correct - 

3 ON 0.49 3 5 3 5 correct - 

4 ON 0.49 3 5 3 5 correct - 

5 ON 0.42 3 5 3 5 correct - 

6 ON 0.41 3 5 3 5 correct - 

7 ON 0.39 3 5 3 5 correct - 

8 ON 0.47 3 5 3 5 correct - 

30 

Get a paragraph 
element given its 
offset in the a 
document 

1 ON 2.31 33 65 4 6 correct - 

2 ON 3.77 33 65 4 6 correct - 

3 ON 3.86 33 65 4 6 correct - 

4 ON 3.46 33 65 4 6 correct - 

5 ON 3.51 33 65 4 6 correct - 

6 ON 2.27 33 65 4 6 correct - 

7 ON 3.51 33 65 4 6 correct - 

8 ON 3.44 33 65 4 6 correct - 

31 

Obtain the title 
of a webpage 
specified by a 
URL 

1 ON 68.89 289 577 3 4 correct - 

2 ON 67.24 289 577 3 4 correct - 

3 ON 51.82 289 577 3 4 correct - 

4 ON 81.33 289 577 3 4 correct - 

5 ON 53.9 289 577 3 4 correct - 

6 ON 54.36 289 577 3 4 correct - 

7 ON 52.88 289 577 3 4 correct - 

8 ON 59.62 289 577 3 4 correct - 

32 

Return doctype 
of XML 
document 
generated by 
string 

1 ON 1.02 6 11 6 7 correct - 

2 ON 0.87 6 11 6 7 correct - 

3 ON 0.83 6 11 6 7 correct - 
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ID Description #Tests Pruning Synthesis 
Time (s) #Paths #Progs #Comps #Holes Result Notes 

4 ON 0.79 6 11 6 7 correct - 

5 ON 0.81 6 11 6 7 correct - 

6 ON 0.79 6 11 6 7 correct - 

7 ON 0.78 6 11 6 7 correct - 

8 ON 0.92 6 11 6 7 correct - 

33 
Generate an 
XML element 
from a string 

1 ON 0.9 26 51 6 7 correct - 

2 ON 0.88 26 51 6 7 correct - 

3 ON 1.03 26 51 6 7 correct - 

4 ON 0.95 26 51 6 7 correct - 

5 ON 0.87 26 51 6 7 correct - 

6 ON 0.97 26 51 6 7 correct - 

7 ON 1.01 26 51 6 7 correct - 

8 ON 0.95 26 51 6 7 correct - 

34 
Read XML 
document from a 
file 

1 ON 0.08 1 1 3 4 correct - 

2 ON 0.31 1 1 3 4 correct - 

3 ON 0.1 1 1 3 4 correct - 

4 ON 0.11 1 1 3 4 correct - 

5 ON 0.1 1 1 3 4 correct - 

6 ON 0.11 1 1 3 4 correct - 

7 ON 0.1 1 1 3 4 correct - 

8 ON 0.1 1 1 3 4 correct - 

35 

Generate an 
XML from file 
and query it 
using XPath 

1 ON 36.67 24 52 7 10 correct - 

2 ON 37.38 24 52 7 10 correct - 

3 ON 37.84 24 52 7 10 correct - 

4 ON 37.35 24 52 7 10 correct - 

5 ON 37 24 52 7 10 correct - 

6 ON 37.63 24 52 7 10 correct - 

7 ON 36.84 24 52 7 10 correct - 

8 ON 37.25 24 52 7 10 correct - 

36 

Read XML 
document from a 
file and get the 
value of root 
attribute 
specified by a 
string 

1 ON 0.36 3 5 5 7 correct - 

2 ON 0.4 3 5 5 7 correct - 

3 ON 0.34 3 5 5 7 correct - 

4 ON 0.34 3 5 5 7 correct - 
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ID Description #Tests Pruning Synthesis 
Time (s) #Paths #Progs #Comps #Holes Result Notes 

5 ON 0.35 3 5 5 7 correct - 

6 ON 0.34 3 5 5 7 correct - 

7 ON 0.37 3 5 5 7 correct - 

8 ON 0.35 3 5 5 7 correct - 

37 

Get number of 
children of root 
elements from 
xml string 

1 ON 0.3 3 5 3 4 incorrect - 

2 OFF - - - - - incorrect 
Fails to sythesize 
when pruning is on;  
OutOfMemoryError 

3 OFF - - - - - incorrect 
Fails to sythesize 
when pruning is on;  
OutOfMemoryError 

4 OFF - - - - - incorrect 
Fails to sythesize 
when pruning is on;  
OutOfMemoryError 

5 OFF - - - - - incorrect 
Fails to sythesize 
when pruning is on;  
OutOfMemoryError 

6 OFF - - - - - incorrect 
Fails to sythesize 
when pruning is on;  
OutOfMemoryError 

7 OFF - - - - - incorrect 
Fails to sythesize 
when pruning is on;  
OutOfMemoryError 

8 OFF - - - - - incorrect 
Fails to sythesize 
when pruning is on;  
OutOfMemoryError 

38 Get the version 
of xml string 

1 ON 75.83 1356 2858 6 7 correct - 

2 ON 77.97 1356 2858 6 7 correct - 

3 ON 77.12 1356 2858 6 7 correct - 

4 ON 78.79 1356 2858 6 7 correct - 

5 ON 77.11 1356 2858 6 7 correct - 

6 ON 79.36 1356 2858 6 7 correct - 

7 ON 79.91 1356 2858 6 7 correct - 

8 ON 76.11 1356 2858 6 7 correct - 

39 
Calculate 
absolute value of 
an integer 

1 OFF 0.05 1 1 1 2 correct Fails to sythesize 
when pruning is on;  

2 OFF 0.05 1 1 1 2 correct Fails to sythesize 
when pruning is on;  

3 OFF 0.06 1 1 1 2 correct Fails to sythesize 
when pruning is on;  

4 OFF 0.05 1 1 1 2 correct Fails to sythesize 
when pruning is on;  

5 OFF 0.05 1 1 1 2 correct Fails to sythesize 
when pruning is on;  

6 OFF 0.05 1 1 1 2 correct Fails to sythesize 
when pruning is on;  

7 OFF 0.06 1 1 1 2 correct Fails to sythesize 
when pruning is on;  

8 OFF 0.05 1 1 1 2 correct Fails to sythesize 
when pruning is on;  
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ID Description #Tests Pruning Synthesis 
Time (s) #Paths #Progs #Comps #Holes Result Notes 

40 

Increment an 
integer and 
return its old 
value 

1 OFF 0.16 11 21 5 5 correct Fails to sythesize 
when pruning is on;  

2 OFF 0.18 11 21 5 5 correct Fails to sythesize 
when pruning is on;  

3 OFF 0.15 11 21 5 5 correct Fails to sythesize 
when pruning is on;  

4 OFF 0.08 11 21 5 5 correct Fails to sythesize 
when pruning is on;  

5 OFF 0.09 11 21 5 5 correct Fails to sythesize 
when pruning is on;  

6 OFF 0.09 11 21 5 5 correct Fails to sythesize 
when pruning is on;  

7 OFF 0.1 11 21 5 5 correct Fails to sythesize 
when pruning is on;  

8 OFF 0.1 11 21 5 5 correct Fails to sythesize 
when pruning is on;  

41 

Increment an 
integer by 2 and 
return its old 
value 

1 OFF - 792 24139 - - incorrect 
Fails to sythesize 
when pruning is on; 
TIMEOUT 

2 OFF - 824 27278 - - incorrect 
Fails to sythesize 
when pruning is on; 
TIMEOUT 

3 OFF - 864 30576 - - incorrect 
Fails to sythesize 
when pruning is on; 
TIMEOUT 

4 OFF - 919 33295 - - incorrect 
Fails to sythesize 
when pruning is on; 
TIMEOUT 

5 OFF - 865 30699 - - incorrect 
Fails to sythesize 
when pruning is on; 
TIMEOUT 

6 OFF - 821 27045 - - incorrect 
Fails to sythesize 
when pruning is on; 
TIMEOUT 

7 OFF - 920 33416 - - incorrect 
Fails to sythesize 
when pruning is on; 
TIMEOUT 

8 OFF - 929 34237 - - incorrect 
Fails to sythesize 
when pruning is on; 
TIMEOUT 

42 
Get the class 
name of an 
object 

1 OFF 0.43 8 15 2 3 correct Fails to sythesize 
when pruning is on;  

2 OFF 0.39 8 15 2 3 correct Fails to sythesize 
when pruning is on;  

3 OFF 0.45 8 15 2 3 correct Fails to sythesize 
when pruning is on;  

4 OFF 0.34 8 15 2 3 correct Fails to sythesize 
when pruning is on;  

5 OFF 0.47 8 15 2 3 correct Fails to sythesize 
when pruning is on;  

6 OFF 0.35 8 15 2 3 correct Fails to sythesize 
when pruning is on;  

7 OFF 0.39 8 15 2 3 correct Fails to sythesize 
when pruning is on;  

8 OFF 0.35 8 15 2 3 correct Fails to sythesize 
when pruning is on;  

43 
Get the first 
value of an 
integer array 

1 ON 0.04 3 5 4 4 incorrect - 

2 ON 0.03 3 5 4 4 incorrect - 

3 ON 0.05 3 5 4 4 incorrect - 
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ID Description #Tests Pruning Synthesis 
Time (s) #Paths #Progs #Comps #Holes Result Notes 

4 ON 0.04 3 5 4 4 incorrect - 

5 OFF 0.05 2 3 2 3 correct Fails to sythesize 
when pruning is on;  

6 OFF 0.04 2 3 2 3 correct Fails to sythesize 
when pruning is on;  

7 OFF 0.03 2 3 2 3 correct Fails to sythesize 
when pruning is on;  

8 OFF 0.03 2 3 2 3 correct Fails to sythesize 
when pruning is on;  

44 

Calculate 
minimum value 
between two 
integers 

1 OFF 0.05 1 1 1 3 correct Fails to sythesize 
when pruning is on;  

2 OFF 0.05 1 1 1 3 correct Fails to sythesize 
when pruning is on;  

3 OFF 0.05 1 1 1 3 correct Fails to sythesize 
when pruning is on;  

4 OFF 0.05 1 1 1 3 correct Fails to sythesize 
when pruning is on;  

5 OFF 0.05 1 1 1 3 correct Fails to sythesize 
when pruning is on;  

6 OFF 0.05 1 1 1 3 correct Fails to sythesize 
when pruning is on;  

7 OFF 0.05 1 1 1 3 correct Fails to sythesize 
when pruning is on;  

8 OFF 0.05 1 1 1 3 correct Fails to sythesize 
when pruning is on;  

45 

Calculate 
minimum value 
between three 
integers 

1 ON 0.05 1 1 2 4 incorrect - 

2 OFF 0.22 6 66 2 5 correct Fails to sythesize 
when pruning is on;  

3 OFF 0.42 6 66 2 5 correct Fails to sythesize 
when pruning is on;  

4 OFF 0.22 6 66 2 5 correct Fails to sythesize 
when pruning is on;  

5 OFF 0.24 6 66 2 5 correct Fails to sythesize 
when pruning is on;  

6 OFF 0.23 6 66 2 5 correct Fails to sythesize 
when pruning is on;  

7 OFF 0.22 6 66 2 5 correct Fails to sythesize 
when pruning is on;  

8 OFF 0.22 6 66 2 5 correct Fails to sythesize 
when pruning is on;  

46 

Given an array, 
set the last entry 
the value of first 
entry 

1 ON 0.14 7 13 5 5 incorrect - 

2 OFF 2.61 314 2032 7 7 correct Fails to sythesize 
when pruning is on;  

3 OFF 2.29 314 2032 7 7 correct Fails to sythesize 
when pruning is on;  

4 OFF 2.92 314 2032 7 7 correct Fails to sythesize 
when pruning is on;  

5 OFF 2.51 314 2032 7 7 correct Fails to sythesize 
when pruning is on;  

6 OFF 2.77 314 2032 7 7 correct Fails to sythesize 
when pruning is on;  

7 OFF 2.5 314 2032 7 7 correct Fails to sythesize 
when pruning is on;  

8 OFF 2.48 314 2032 7 7 correct Fails to sythesize 
when pruning is on;  

47 Sort an integer 
array 

1 ON 0.27 1 1 2 2 correct - 

2 ON 0.11 1 1 2 2 correct - 



 

 

37 

ID Description #Tests Pruning Synthesis 
Time (s) #Paths #Progs #Comps #Holes Result Notes 

3 ON 0.12 1 1 2 2 correct - 

4 ON 0.11 1 1 2 2 correct - 

5 ON 0.11 1 1 2 2 correct - 

6 ON 0.11 1 1 2 2 correct - 

7 ON 0.11 1 1 2 2 correct - 

8 ON 0.12 1 1 2 2 correct - 
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