View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by University of Minnesota Digital Conservancy

Persistent Effects of Herbaceous Species on the Infectious
Lethality of Soil for Conifer Seedlings

David ]J. Schimpf

Department of Biology and Olga Lakela Herbarium, University of Minnesota Duluth
Duluth, MN 55812 USA

dschimpf@d.umn.edu

Steven C. Garske!
Department of Biology, University of Minnesota, Duluth, Minnesota 55812 USA
steveg@glifwc.org

Ronald R. Regal

Department of Mathematics and Statistics, University of Minnesota, Duluth, Minnesota
55812 USA

rregal@d.umn.edu

Present address: Great Lakes Indian Fish and Wildlife Commission, Odanah,
Wisconsin 54861, USA.

Key words: Aegopodium podagraria, apparent competition, damping-off, epidemiology,
indirect effects, plant disease, Weibull model

Abstract

Seeds of the coniferous trees Abies balsamea, Picea mariana, and Pinus strobus were sown
in the laboratory in two soils taken from ground-layer patches differing in species
composition, one of which was dominated by Aegopodium podagraria (goutweed). This
permitted inference whether herbaceous species may affect the favorableness of the soil
for establishment of these trees. Weibull distributions were fitted to the time course of
aggregate seedling emergence and post-emergence mortality, enabling seedling lifespan
to be inferred without monitoring of each individual. A higher percentage of Abies
seeds developed into emerged seedlings in the goutweed soil, likely because of less pre-
emergence mortality incited by pathogens. Picea and Pinus emergence percentages
were similar in both soils. Most emerged seedlings died within weeks, with symptoms
of diseases incited by soil- or seed-borne fungi. Although the timing of seedling
emergence did not differ between soils, seedlings died more quickly on the goutweed
soil, largely because of a faster development of post-emergence damping-off. Total
post-emergence mortality of Picea and Pinus was greater on the goutweed soil. The
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relative frequencies of the several symptoms exhibited by dying seedlings varied
between the two soils, suggesting that the ground-layer species differentially affected
the microbial community’s composition or interactions with the seedlings. Symptom
frequencies differed among tree species. Local spatial variation in herbaceous species
composition appeared to produce patchy infectious lethality of soil for tree seedlings, an
indirect effect that was observed after the herbaceous plants had been removed.

Introduction

The recruitment of forest tree populations from seed may be inhibited by
herbaceous species or other ground-layer plants (Daniel et al. 1979, George and Bazzaz
2003, Maguire and Forman 1983). For tree species tolerant of overstory shade, this may
limit advance regeneration. Suppression of tree seedling establishment by the ground
layer could come about through competition for limiting resources, release of directly
inhibitory allelochemicals, apparent competition - the ground layer’s stimulation of
other species that are the tree seedlings’ natural enemies (Holt and Lawton 1994), or the
ground layer’s inhibition of other species that benefit the tree seedlings. Because
apparent competition and inhibition of beneficial species are mediated by third parties,
each represents an indirect interaction (Wooton 1994) between neighboring plant
species.

An extreme degree of local dominance by the forb Aegopodium podagraria L.
(goutweed) has been observed in one place where it was introduced into forest
vegetation beyond its native Eurasian range. At the site of a former settlement in the
southern boreal forest, Minnesota, USA, a 0.23-ha continuous cover of goutweed under
an evergreen coniferous overstory was found to have low vascular plant richness and
diversity, in comparison to that in an adjoining native forest ground layer (Garske
2000). Seedling and sapling densities of shade-tolerant coniferous trees were greatly
depressed within the goutweed patch, which had existed for several decades before the
data of Garske (2000) were obtained (Ahlgren and Ahlgren 1984). There were 3340 ha'
of these juvenile trees amidst goutweed, vs. 18,200 ha” amidst the native ground layer
(Garske 2000). All of the juvenile trees in the sample quadrats were the shade-tolerant
Abies balsamea (L.) Miller. If we use 2000 trees ha™ as a representative regional value for
a fully stocked overstory of Abies and Picea with stem diameter greater than 10 cm
(Bakuzis and Hansen 1965), this allows for little further mortality of juvenile trees in the
goutweed patch before the future overstory may become discontinuous. Ahlgren and
Ahlgren (1984) proposed that allelopathy accounted for the extreme dominance by
goutweed on this site. We would add that goutweed appears to be an overbearing
competitor for limiting light. We observed that goutweed produces a dense layer of
closely abutting leaflets that is held higher than the leaves of conifer seedlings and most
native forest herbs at the Minnesota boreal site, allowing goutweed to pre-empt photons



where light is scarce. A goutweed patch forms by lateral extension of rhizomes. Details
on the structure and dynamics of goutweed clones are given by Gatsuk et al. (1980).

Our study attempted to discover whether herbaceous species, especially
goutweed, differentially suppress tree recruitment through processes beyond resource
competition. Because early seedling development is an especially vulnerable portion of
the life cycle of many species, we focused on possible effects of the ground layer on
seedling establishment through its influence on soil characteristics. The opportunity for
a seedling to acquire soil nutrients generally has little influence on its early success at
establishment (Harper 1977), so any ground-layer effects on nutrient availability may be
assumed to have low direct importance for this phase of the seed-plant life cycle. Any
observed influence on establishment by ground-layer conditioned soil could then be
attributed to allelopathy or to indirect interactions. We tested the hypotheses that
contrasting ground-layer composition influenced soil properties so as to affect the
percentage of seedling emergence, the time course of seedling emergence, the
percentage of post-emergence seedling survival, and the time course of post-emergence
seedling survival.

Methods
Soil source

Because soil could not be brought promptly to the laboratory from the remote
boreal site described above, soil was obtained from a human-modified northern
deciduous forest site in Duluth, Minnesota, USA (46°48" N 92°8” W 400 m elevation), in
the first week of June, 1994, after herbs had grown to nearly full size. One soil collection
was made within a dense 220 m? patch of goutweed; the other soil was collected 1 -2 m
beyond the edge of the goutweed patch, with both collection areas on the same contour.
Only goutweed grew in the ground layer where “goutweed soil” was collected. The
“other soil” was collected near the non-native species Phalaris arundinacea L. and
Valeriana officinalis L., where the ground-layer canopy was less continuous and extended
over a much greater vertical range. Both ground-layer patches had a discontinuous
overstory of Populus balsamifera L. about 8 m tall. Soil was removed by excavating
surface blocks about 15 cm square and 7 - 10 cm deep, trimming off the outer 1 cm of
soil from the cut edges of the block with a dull knife to exclude possible sap from
wounded roots or rhizomes, then gently crumbling the remaining block. This was
repeated until the total soil volume was about 0.05 m? from each type of ground layer.
Evident stones, roots, rhizomes, and invertebrates were removed manually, and the
remaining soil mixed by hand. Analysis of soil texture (hydrometer method) found the
goutweed soil to be 70% sand, 9% silt, and 21% clay; the other soil was 65% sand, 11%
silt, and 24% clay (USDA particle sizes). Soil pH (1:1 water), measured with a pH meter
(SA720, Thermo Orion, Beverly, MA, USA), was 6.2 for the goutweed soil and 6.3 for
the other soil.



Seed source

Seeds of the conifers Abies balsamea, Picea mariana (Miller) BSP, and Pinus strobus
L. were obtained from the Minnesota Department of Natural Resources. Each of these
species is highly dependent on seed for recruitment (Burns and Honkala 1990) and was
common in the canopy at the boreal field site. The supplier reported the viabilities as
94%, 95%, and 91%, respectively. Each seed lot had been collected from a native
population in Minnesota within 32" latitude and 65 m altitude of the site from which the
soil was taken. Seeds were stratified in moist paper towels at 5 °C for 60 days just
before planting.

Germination experiment

Immediately after it was mixed, each soil was distributed into nine plastic flats
(25 x 52 x 6 cm) having drainage holes, giving a soil depth of 3.5 cm. Both soils had a
crumb structure, with aggregates up to a few mm in diameter. Seeds were sown
immediately. Each flat received 48 seeds of each species in an 18 x 8 grid, with every
seed being 3 cm from its nearest neighbors. We alternated the species at consecutive
points in the planting grid. Seeds were covered with 3 - 6 mm of soil. We covered each
flat with a transparent plastic dome that fit loosely enough to allow slight air exchange.
Equal amounts of deionized water were added to each flat as a fine mist periodically
throughout the experiment, which kept the soil moist but not wet enough to result in a
visible sheen of liquid. Flats were placed on table tops with the two soils alternating in
spatial sequence. The room was illuminated for 12 h per day by cool-white fluorescent
ceiling lamps, and its temperature fluctuated within 21 - 26 °C. Counts of live and dead
emerged seedlings were made daily for 45 days, except for day 44. Seedlings were not
monitored individually. The covers were removed from the flats while observations
were made. Each dead seedling was assigned to one category of symptoms based on
Hartley et al. (1918): (1) classic damping-off (mechanical failure of the hypocotyl near
the soil surface), (2) moldy shoot (visible mycelium enveloping the epicotyl and
cotyledons or attached seed coat), or (3) top wilt (seedling erect and shriveled or
discolored, but not visibly moldy). These symptoms are associated with infections by
fungi (sensu lato). The date of death was the first daylight period when (1) the seedling
had fallen over, (2) the mycelium had reached the shoot apex and base of the
cotyledons, or (3) the cotyledons were shriveled or discolored to their base, respectively.
Each dead seedling was left in place, and a 1-cm thread was laid on the soil next to it on
the day of death to enable differentiation of new fatalities from old ones.

At the end of the experiment, instantaneous photosynthetic photon flux density
(PPFD) was measured. A point quantum sensor (LI-190SA and LI-1000, LICOR,
Lincoln, NE, USA) was held horizontally 15 cm in from each end of each flat and 4 cm
above the soil surface, and the two readings per flat were averaged. The sample mean
and 95% confidence interval (CI) PPFD was 6 + 0.6 umol m”s” for each kind of soil. For
each flat the soil was then mixed, and a sample with a moist mass of about 250 g had its




water content determined gravimetrically (®_) at the end of the experiment. The
sample mean and 95% CI ®_ was 0.33 + 0.03 for the goutweed-soil flats and 0.35 + 0.02
for the flats with the other soil.

Data analysis

The time-course of a population’s germination or seedling emergence can be
represented closely by a Weibull distribution (Brown and Mayer 1988). Weibull
distributions can also be used to analyze disease progress in plants (Campbell 1998).
We built Weibull models of seedling emergence and post-emergence mortality with
SAS (SAS Institute 2004) (Appendix). The fit of the model function to the mean of the
daily observations was tested with an approximation of the Komolgorov - Smirnov test
that used a critical value (0.05 level) of 1.36/n%. From the model outputs we estimated
the final mean proportion emerged, mean time to emergence of the 50th percentile of
the sown seeds, mean time alive after emergence for the 25th percentile of emerged
seedlings that died, and final proportion of emerged seedlings that survived. Standard
errors and tests of significance were computed with 400 bootstrap runs. In accord with
potential statistical dependence of plants in the same flat, bootstraps were obtained by
randomly sampling flats with replacement, rather than individual plants.

Frequencies of mortality symptoms were compared between soils within species
by multi-response permutation procedure (MRPP), and frequencies of symptoms were
compared between species within soils by blocked MRPP, both using PC-ORD
(McCune and Mefford 1999). In both types of analysis, counts were relativized per flat,
and Euclidean distance and n/X(n) weighting were used. For the blocked MRPP,
median alignment was performed. Post-emergence days until death for each symptom
was compared between soils within species with a t-test, using Statistix (Analytical
Software 2003).

Results

Observations of cumulative seedling emergence and post-emergence mortality
are summarized in Figure 1. The emergence trajectories were very similar between soils
within species, being most gradual for Abies and most abrupt for Picea. The fit of the
model functions (Table 1) to the means of the emergence observations was within the
critical value of 0.065 for all species, soils, and days, with two exceptions: for Pinus on
the other soil (soil 2), the difference between the model and the observed mean was
0.075 on day 12 and 0.089 on day 13. These were days when cumulative emergence was
increasing especially rapidly, a situation anticipated by Brown and Mayer (1988). From
model estimates of total emergence (p., Table 1), a greater fraction of Abies seeds
developed into emerged seedlings on the goutweed soil than on the other soil
(bootstrap P = 0/400). The fraction of Picea seeds that developed into emerged seedlings
was not significantly different between the two soils, and this was also true for Pinus.
Picea seedlings emerged earlier than the other two species. Pinus 50th-percentile
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Figure 1. Cumulative seedling emergence (open circles) and cumulative mortality of

emerged seedlings (solid circles) for Abies balsamea, Picea mariana, and Pinus strobus
sown on two different forest soils in the laboratory. Soil 1 was from a patch of
goutweed, soil 2 from other herbaceous species. There were 48 seeds of each tree
species in each of nine flats per soil, sown on day 0. Bars represent +1 standard

deviation.



emergence occurred about 4 days later than that of Picea, and that of Abies occurred
about 9 days later than that of Picea. Within species, the time of 50th-percentile
emergence was very similar on both soils (Table 1).

The appearance of the post-emergence mortality trajectories (Figure 1) differs
between soils within species, and among species within soils. Mortality began sooner
on the goutweed soil. It began soonest and accumulated most rapidly for Picea, latest
and most slowly for Abies. The fit of the models (Table 1) to the means of post-
emergence mortality observations was within the critical value in every case. Total
post-emergence survival (ps) of Picea was only one-third as high on goutweed soil as on
the other soil, a statistically significant difference (bootstrap P = 0.015) (Table 1). Total
post-emergence survival of Pinus seedlings was four to six times as high as that of Picea.
Total survival for Pinus was about one-half as high on goutweed soil as on the other
soil; this seemingly large difference was not statistically significant, apparently because
the delayed mortality on the other soil censored the data sufficiently to expand the
standard error of the estimate. Similarly, the even later occurrence of mortality for Abies
did not permit meaningful estimates of total post-emergence survival for that species
(Table 1). Early post-emergence mortality occurred sooner on goutweed soil. The
estimated time after emergence until the first 25% of total mortality was complete was
shorter on goutweed soil by about 5 days (Abies) or 9 days (Picea and Pinus) (Table 1).
Each of these between-soil differences was statistically significant (bootstrap P = 0/400).

All newly dead seedlings had symptoms of infections by fungi (sensu lato).
Classic damping-off was the most frequent symptom for all three species on both soils,
and was substantially more frequent on goutweed soil than on the other soil for both
Picea and Pinus (Table 2). The between-soil trend for Abies was the same, but the effect
size was smaller and the difference not statistically significant. On the other soil the
lower frequencies of classic damping-off were balanced mainly by higher frequencies of
moldy shoot for Pinus and of top wilt for Picea. For each of the three species-pair
comparisons of frequency distributions, the effect size was less on the goutweed soil,
although the difference between Abies and Picea was not statistically significant on
either soil. The differences in frequency distributions were statistically significant on
each soil for Abies vs. Pinus and for Picea vs. Pinus.

For each of the three species, mortality from classic damping-off tended to occur
earlier on the goutweed soil than on the other soil (Table 3). The statistical significance
of this is attributable in part to greater test power associated with much larger numbers
of observations of this symptom, yet the between-soil absolute difference in mean days
between sowing and death was also larger for classic damping-off than it was for the
other two categories of symptoms for each of the species. Mean date of observed
mortality from classic damping-off occurred earlier on goutweed soil by 3.3 days for
Abies, 9.1 days for Picea, and 10.4 days for Pinus. Mean date of mortality of Picea from



Table 1. Estimated parameters (see Appendix) for seedling emergence and mortality. Soil 1 was from a patch of
goutweed, soil 2 from other herbaceous species. Numbers in parentheses are standard error of the mean. Percentile
emerged is days after sowing, percentile dead is days after emergence. For statistical significance, see text.

Parameter Species and Soil

Abies soil 1  Abies soil 2 Piceasoil 1  Piceasoil 2 Pinussoill Pinus soil 2

zi 7.33 8.41 6.91 6.77 3.45 6.74
a1 2.00 1.85 2.12 2.48 448 2.58
ki 0.0708 0.0762 0.262 0.258 0.0835 0.117
22 0.000 2.06 1.35 3.08 6.83 0.000
e 2.68 414 1.72 2.63 1.53 3.16
k2 0.0258 0.0269 0.0937 0.0548 0.0923 0.0366
Total emergence (pe) 0.85(0.014) 0.77(0.018) 0.91 (0.018) 0.92(0.016) 0.96 (0.011) 0.93 (0.018)
50th percentile emerged (days) 19.1(0.35) 19.2(1.02)  10.1(0.10) 10.1(0.038) 14.5(0.10)  14.1 (0.26)
25th percentile dead (days) 243(0.99) 29.5(0.95) 626(0.32) 14.9(0.35) 12.4(0.44) 21.7 (1.22)

Total post-emergence survival (ps) n.a. n.a. 0.03 (0.012) 0.09 (0.019) 0.18 (0.034) 0.35(0.13)




Table 2. Proportion of dead seedlings assigned to mutually exclusive categories of
symptoms. Soil 1 was from a patch of goutweed, soil 2 from other herbaceous species.
Means are followed by standard deviations in parentheses. A can be regarded as effect

size in MRPP, P is probability of an equal or smaller delta.

Species and soil

Category

Classic damping-off Moldy shoot Top wilt
Abies soil 1 0.893 (0.141) 0.011 (0.033) 0.096 (0.117)
Abies soil 2 0.842 (0.142) 0.087 (0.112) 0.070 (0.086)
Picea soil 1 0.947 (0.038) 0.022 (0.020) 0.030 (0.024)
Picea soil 2 0.788 (0.087) 0.030 (0.024) 0.182 (0.078)
Pinus soil 1 0.886 (0.059) 0.090 (0.049) 0.026 (0.024)
Pinus soil 2 0.664 (0.072) 0.293 (0.085) 0.044 (0.050)

Abies, soil 1 vs. 2
Picea, soil 1 vs. 2
Pinus, soil 1 vs. 2
Abies vs. Picea, soil 1
Abies vs. Picea, soil 2
Abies vs. Pinus, soil 1
Abies vs. Pinus, soil 2
Picea vs. Pinus, soil 1
Picea vs. Pinus, soil 2

A=0.009, P=0.294
A=0.384, P <0.000
A =0.435, P <0.000
A=0.036, P=0.229
A=0.053, P=0.167
A=0.107, P=0.043
A=0.381, P=0.003
A=0.265, P=0.012
A=0.481, P=0.002

moldy shoot also occurred significantly earlier (6.6 days) on goutweed soil, despite
moldy shoot having an earlier average mortality date than that of the other two
symptoms on the other soil. The other symptom-species combinations had smaller
differences between soils that were not statistically significant. There was only one
moldy-shoot death of Abies on goutweed soil (day 35), with five Abies deaths (mean =
33.8 days) associated with that symptom on the other soil.

Discussion
Epidemiology

Post-emergence seedling disease involving mixed-species germination is a
challenging system to analyze temporally. Seedling communities can be extremely
dynamic, with the number of new susceptible hosts sometimes increasing rapidly and
nonlinearly, while previously emerged hosts may either die or develop beyond the
susceptible stage before all seedlings have emerged. These processes will often be
asynchronous among species sharing the same seedbed. Although changing host
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Table 3. Days from sowing until observed seedling death, by species, symptom, and
soils. Soil 1 was from a patch of goutweed and soil 2 from other herbaceous species.
Observations aggregated across all flats. Means followed by standard deviations in
parentheses. Two-tailed Student’s t (absolute value) followed by degrees of freedom in
parentheses; decimal degrees of freedom indicate t-test based on unequal variances. P
is probability of an equal or larger ¢ by chance. Abies moldy shoot could not be tested
because there was only one occurrence on soil 1.

Species and symptom Soil

1 (days) 2 (days) t P
Abies classic damping-off 36.4 (5.6) 39.7 (4.2) 3.98 (117.0) 0.0002
Abies top wilt 32.3(10.2) 32.8(5.0) 0.08 (12) 0.9352
Picea classic damping-off 20.7 (5.8) 29.8 (6.2) 19.19 (639) <0.0000
Picea moldy shoot 16.1 (3.7) 22.7 (3.6) 3.80 (17) 0.0014
Picea top wilt 21.9 (8.2) 25.0 (5.8) 1.31 (15.9)  0.2079
Pinus classic damping-off 29.9 (6.3) 40.3 (5.2) 12.58 (286.0) <0.0000
Pinus moldy shoot 28.0 (3.7) 28.8 (4.2) 0.86 (86) 0.3909
Pinus top wilt 32.4 (4.8) 30.9 (8.4) 0.44 (15) 0.6675

abundance has been addressed in several ways in plant epidemiology generally
(Campbell 1998), it appears that less has been done with seedlings and their diseases.
We demonstrated one way (Appendix) in which the time course of disease may be
analyzed when individual seedlings have not been monitored after time of emergence.

Because our data are not spatially explicit, we are unable to dissect the epidemics
directly into primary and secondary infections, as done by Otten et al. (2003). A method
(Filipe et al. 2004) that allows inference of primary vs. secondary infections from the
temporal pattern of non-spatial data was validated with spatial data from a
monoculture of hosts, all of which had emerged before they were challenged with a
single type of pathogen. The relatively great temporal spread of emergence among our
three species and the expected diversity of our pathogen communities (Cram 2003)
would seem to limit the resolving power of that method for our data. Neher et al.
(1987) found that less synchronous germination could either increase or decrease
mortality from damping-off, depending on the host species. The earlier mortality on
goutweed soil (Table 1) probably involved increased numbers of lethal primary
infections, but we can draw no clear conclusions about secondary infections. Our 3-cm
minimum distance between nearest-neighbor emergents is short enough to make
secondary infections plausible in the laboratory (e.g., Burdon and Chilvers 1975).

The earlier mortality on goutweed soil seen for all three species in the laboratory
could sometimes be more important in the field. If changing weather were to alter
temperature or moisture so as to subsequently disfavor damping-off, then early
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mortality may constitute a greater portion of total mortality. This could accentuate
between-soil differences in total mortality. Even under the steady conditions of our
laboratory, there was a positive association between earlier mortality and greater total
mortality for Picea, and quite probably for Pinus as well (Table 1). Neher et al. (1992)
likewise concluded that more rapid damping-off (both pre- and post-emergence) was
positively associated with higher total laboratory mortality for seedlings. Pérez-Reche
et al. (2012) found evidence that early mortality from soil-borne fungi was predictive of
overall mortality. We suggest that this possibly general pattern merits further
evaluation, using other hosts, soils, and conditions.
Interactions among pathogens and hosts

Earlier mortality in both Picea and Pinus was associated with large increases in
classic damping-off’s proportion of total deaths (Table 2). Through multiplying these
proportions by total mortality (1 - ps from Table 1), it can be seen that they also
correspond to large increases in the absolute number of seedlings killed post-emergence

on goutweed soil. Classic damping-off was also the symptom by which goutweed soil
most accelerated death (Table 3). Pinaceae seedlings become more likely to escape
mortality of this type as the outer tissues of their hypocotyls lose succulence during
development (Cram 2003; Daniel et al. 1979). Younger seedlings are therefore more
susceptible to classic damping-off. Because classic damping-off caused a large majority
of the deaths (Table 2), the earlier mean time of death from it on goutweed soil (Table 3)
could be used to infer that seedlings killed by classic damping-off were younger, on
average, on that soil. Thus it would seem that the pathogens that incite classic
damping-off were able, on the goutweed soil, to infect the hypocotyls earlier or weaken
the hypocotyls to the failure point more rapidly after infection began. This succumbing
to classic damping-off at a younger post-emergence age may explain the higher overall
mortality that we observed for Picea and Pinus on goutweed soil, as fewer seedlings
escaped the disease through further development. Although moldy shoot also tended
to kill Picea earlier on goutweed soil (Table 3), it did not kill a higher proportion or total
number of Picea seedlings in those flats (Table 2) and was only a minor source of
mortality on either soil.

Earlier and more extensive mortality from classic damping-off on goutweed soil
was associated with lower frequencies (as well as reduced absolute numbers) of deaths
from moldy shoot (Pinus) or top wilt (Picea) (Table 2). These latter symptoms did not
tend to have notably later mean dates of mortality than classic damping-off did (Table
3). Thus the lower frequencies of these other symptoms on goutweed soil can not be
attributed to overall host pre-emption by classic damping-off, although they could
result from pre-emptive mortality in any subpopulation of seedlings that is more
vulnerable to these latter symptoms. Between-soil differences in the dynamics of the
microbial community may explain the altered frequencies. The contrast in between-soil
differences in symptom frequencies for Pinus vs. Picea (Table 2) indicates that the



12

interaction between the microbial community and the seedlings varied between soils in
unequal ways for different host species. The most frequent occurrence of moldy shoot
was, by far, on Pinus on the other soil (Table 2). We hypothesize that Pinus may be
more susceptible to moldy shoot because its cotyledons may be slower to shed the seed
coat and diverge. As compared to our other two species, a Pinus strobus seedling has 1.5
- 3 times as many cotyledons, which are 2 - 6 times as long and have serrate instead of
smooth margins (Ahlgren and Ahlgren 1958).

The lower total emergence for Abies from the other soil (Table 1) could be
ascribed to pre-emergence damping-off or to allelopathic inhibition. We would expect
chemical inhibition to delay emergence, given that Lehle and Putnam (1982) found that
germination was delayed even when chemical concentrations were too low to reduce
total germination. Because the time for 50th-percentile emergence was the same on
both soils (Table 1), it seems more likely that unequal frequencies of pre-emergence
damping-off explain this modest but statistically significant difference in total
emergence. An experiment that prevented pre-emergence infections would be
necessary to test this hypothesis more rigorously. Interestingly, this higher pre-
emergence mortality was in the soil that was associated with lower post-emergence
mortality, another indication of between-soil differences in the microbial community.
Abies was the slowest-emerging of the three species (Table 1), which lengthened its time
of exposure to pre-emergence mortality from pathogens. Its total emergence from
either soil was notably less than the 94% viability reported by the seed supplier, so there
may have been detectable pre-emergence damping-off in both soils if the viability
report was accurate. The total emergence proportions for Picea and Pinus were close to
the reported viabilities, suggesting that pre-emergence damping-off or chemical
inhibition were nearly nil for these species. We would expect the lengthy residence of
seeds in soil in the forest from autumn/winter dispersal until spring/summer
germination to raise the rates of pre-emergence damping-off in the field above the
frequencies that we observed in our briefer experiment.

Processes generating ground-layer effects

Damping-off is favored by low shortwave irradiance, high humidity, and wet
soil (Rotem 1978). The photosynthetic photon flux density (PPFD) of the seedling
environment in our laboratory was very low (0.26 mol m d") and would be expected to

be stressful to inadequate for seedling survival, as this number was similar to mean
values in a neutrally shaded greenhouse that increased mortality in seedlings of A.
balsamea and P. mariana, but not P. strobus (Walters and Reich 2000). Like we did,
Walters and Reich (2000) observed more damping-off in Picea than in the other two
species. Garske (2000) found June mid-day instantaneous PPFD beneath the goutweed
canopy at the boreal field site to be only one-third that of our laboratory levels, with
PPFD just above the boreal goutweed canopy at 4.5 times our laboratory levels. In
addition, mean saturation deficit of air just above the soil surface at that field site was
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3.5 g m? under goutweed during the same afternoon that it was 9.7 g m- in the native
ground layer (Garske 2000), which was comparatively open like that where our other
experimental soil was obtained. This deeper shade and higher humidity at the soil
surface would reinforce goutweed’s promotion of post-emergence damping-off via the
persistent influences on soil that we observed in the laboratory.

If our results prove to be representative for goutweed patches more generally,
how might a persistent effect of goutweed on soil pathogenicity develop? Packer and
Clay (2004) found that the damping-off of a seedling raised the risk of primary
damping-off for seedlings planted in the same soil immediately thereafter. The shade
and humidity beneath a goutweed canopy that should promote damping-off may
similarly leave the soil there more lethal for subsequent seedlings. As Packer and Clay
(2004) point out, this increased lethality could come about through an increase in
pathogen inoculum density, a decrease in activity of antagonists to the pathogens, or
natural selection for greater pathogen virulence. Goutweed could also improve the
soil’s chemical quality for the pathogens. Fresh dead organic matter can enhance or
suppress damping-off, depending on whether it preferentially promotes saprophytic
growth of the damping-off pathogens or of their antagonists (Martin and Loper 1999).
Wall (1984) found that addition of nutrient-rich dead plant matter promoted damping-
off of Picea mariana and Pinus banksiana Lambert, but that adding nutrient-poor dead
plant matter had no effect. Goutweed produces relatively high amounts of herbage
(Garske 2000), and we observed its litter to decay rapidly, which suggests that it is
nutrient-rich. Thus one plausible explanation is that goutweed litter favors saprophytic
growth of damping-off pathogens. Martin and Loper (1999) generalized that, at least
for the Pythium pathogen group, the incidence of damping-off in the field is more likely
related to the success of saprophytic growth of the pathogen than it is to inoculum
density.

A further, non-exclusive hypothesis is that goutweed soil could increase seedling
susceptibility to infection. For example, Patrick and Koch (1963) and Tousson and
Patrick (1963) inferred that allelochemicals in soil made plants more susceptible to root
rot. Allelochemicals from goutweed could be hypothesized to directly increase
susceptibility of conifer seedlings to post-emergence damping-off, perhaps by slowing
the hardening of the hypocotyl or by increasing the leakage of metabolites from the
seedling. The chemicals could also act indirectly on seedlings if they stimulated
pathogens or inhibited soil biota that are beneficial to seedlings. Whitehead et al. (1982)
analyzed a soil supporting a pure stand of goutweed for phenolic substances and found
that it did not appear to have especially high concentrations or unusual combinations of
specific compounds. Phenolics, of course, are not the only type of compounds that may
be allelochemically operative.

Our results show some parallels to the findings of Wardle (1959). He observed
that post-emergence damping-off of Fraxinus excelsior tree seedlings in the forest was
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much more common within dense patches of Mercurialis perennis than it was where the
herbage of this forb had been trimmed away or where other species dominated the
ground layer; densities of newly emerged Fraxinus seedlings were not affected by this
ground-layer variation. Mercurialis forms a dense and relatively tall canopy early in the
growing season (Hutchings and Barkham 1976), similar to what we observed for
goutweed. Wardle (1959) measured deep shading by the Mercurialis canopy, yet
Fraxinus seedlings survived well, albeit in a suppressed condition, under even deeper
shade as long as Mercurialis was absent. Our results indicate that the promotion of
damping-off by a plant can be brought about not only by an immediate effect of the
plant on physical factors near the soil surface, but also through an effect on the soil that
persists for at least a few weeks beyond the presence of the plant, whereas Wardle
(1959) did not report a persistent effect. No visible litter remained in the soil that we
used for the experiment, distinguishing our results from those (e.g., Daniel and Schmidt
1972) that demonstrate lethality of some kinds of litter to seeds.

Spatial patterns of damping-off may also be associated with the locations of
seeds and seedlings relative to mature conspecifics (e.g., Packer and Clay 2000). Our
soils came from a site where the species of the seeds we used were not present in the
vegetation, eliminating this potentially confounding variable. Wardle (1959) apparently
did not consider overall dispersion of the host (Fraxinus), but his research has the virtue
of including multiple examples of one ground-layer patch type (Mercurialis). Our work
and that of Wardle (1959) can be viewed as the beginnings of evidence that herbaceous
mosaics can generate sizable short-distance variation in fatal disease risk and pathogen-
host dynamics for tree seeds or young seedlings. More complex studies, which would
examine multiple examples of selected ground-layer patch types and at the same time
account for dispersion of host species, would be of benefit. For now, it appears that
spatial heterogeneity of damping-off within a plant community may result not only
from dispersion of a host species, but also from the distribution of other plant species.
These indirect effects illustrate that there can be apparent competition between ground-
layer and tree species, in addition to resource competition.
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Appendix

To model emergence times, we defined p. to be the probability that a seed is
viable and would eventually become an emerged (“live”) seedling. Let S be the random
variable for emergence time. The cumulative emergence distribution function is F(t) =
P(S<t)=1-exp(-(ki(t - z1))?!) for t > z1 where ki estimates the rate of increase of
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emergence for the population once emergence has begun, z1 estimates the time lag
between sowing and the emergence of the first seedling, ci is a shape parameter for the
time-course curve, and t is time since sowing. The corresponding probability density
function is f(t) = ciki!(t - z1)*lexp(-(ki(t - z1))!) for t > z1. For a seedling that emerges on
day ¢, the contribution of this datum to the likelihood when estimating the parameters is
the probability that the seedling will eventually emerge and the probability that the
observed emergence is on day t. Let D be the day of emergence. For a seed that will
eventually emerge, the probability of its emergence on day t is P(D =t | viable) = F(t) -
E(t -1). For finding maximum likelihood estimates, the contribution of an emerged
seedling to the likelihood is Lik(observed emerged) = P(viable) P(D =t | viable) = p.[F(t)
- E(t - 1)] since seedlings are observed and recorded once daily. An advantage of using
this probability of an observed day in the likelihood rather than the density function is
that the density function approaches infinity for c1 <1.0 at t =z1. For seedlings that
have not emerged by the last day of observation, the likelihood has two components: (1)
the probability that the seedling would never emerge and (2) the probability that the
seedling would eventually emerge but had not done so by the last day of observation.
Let Trbe the final observation time. Lik(not emerged) =1 - p. + p¢[1 - F(T)]. The
loglikelihood for all emergence information is LogLik (emerged) =

Ylog[Lik(observed emerged)] + Zlog[Lik(nonemerged)].

For the times until death the complication is that we do not know which
emergence time goes with which time of death. Hence we don’t know the time from
emergence until death for each individual seedling. The time of observed death is the
sum of the emergence time (D) plus L, the post-emergence time alive. The post-
emergence survival time can only be estimated in aggregate, based on the observed
distributions of emergence time (D) and total time until death (D + L). We modeled L
with a Weibull distribution with parameters ke, z2 and c2. Only seedlings that emerged
before the last observation day give us information about L. Let G(t) and g(t) be the
cumulative distribution function and density function for L. For seedlings that emerged
before the last day, the distribution is a truncated Weibull: G(t) = P(L = t | emerged) =
G(8)/G(T)).

The probability that D + L is less than or equal to some given t is a convolution of

t-z2

the distributions of D and L: H(t) =P(D+ L < t | emerged) = .[ f(x)G(t - x)dx. The

1

limits on the integration are determined by where the product is nonzero. We cannot
write this integral as an explicit function, so we numerically approximate the integral.
We partition the interval z1 to ¢ - z2 intoxo =z1, x1=x0+ €x, x2=x1 + €x, J, Xn=1t-22. We
chose Ax, the width of an interval, to be about one day by letting n equal round(f - z2 -
z1+1). We approximated f(x) Ax with F(xi+1) - F(xi). This again avoids the problem of an
unbounded density function. H(t) is estimated by X(F(xin1) - F(xi))G(t - (xi + xi11)/2).
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Some individuals develop beyond the susceptible stage without succumbing to these
maladies that are specific to post-emergence seedlings. Let ps be the probability that an
emerged seedling survives the post-emergence period of risk. We observed only part of
the post-emergence risk period, the part until day Tr. For an observed death at day ¢,
the probability is Lik(observed death) = (1 - ps) [H(t) - H(t - 1)]. A live emerged seedling
at the end of observation occurs if either (1) the seedling would survive the whole post-
emergence risk period or (2) the seedling would not survive the whole post-emergence
risk period but its time of death occurred after Tr. For a surviving seedling the
likelihood contribution is Lik(unobserved death) = ps + (1 - ps)(1 - H(Ty)). The
loglikelihood of the death times is LogLik(death) = Xlog[Lik(observed death)] +
Ylog[Lik(unobserved death)]. If we assume that the lifetimes of seedlings and the
emergence times of seedlings are independent, then the loglikelihood of all data is
LogLik(emergence) + LogLik(death). The goal is to maximize this loglikelihood over
the parameters p., ki, z1, c1, ps, k2, 12, and c2. This maximization was accomplished using
SAS (SAS Institute 2004) procedure NLMIXED using its general likelihood capability.
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