
Copyright

by

Oscar Hernan Madrid Padilla

2017

The Dissertation Committee for Oscar Hernan Madrid Padilla
certifies that this is the approved version of the following dissertation:

Constrained estimation via the fused lasso and some

generalizations

Committee:

James G. Scott , Supervisor

Constantine Caramanis

Purnamrita Sarkar

Mingyuan Zhou

Constrained estimation via the fused lasso and some

generalizations

by

Oscar Hernan Madrid Padilla, B.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2017

Dedicated to my parents.

Acknowledgments

I would like to thank James Scott, who has been a very supportive

advisor. He has been patient, helpful, and has made me feel free about my

research. For all this I will always be thankful to him.

I would also like to thank Mingyuan Zhou for his guidance during

the early years of my stay in Austin. It was him who encouraged me to start

doing research very early on in the PhD program.

I would like to specially acknowledge James Sharpnack fo being such

supportive collaborator. I had many stimulating conversations with him

that have made me a much better researcher.

I am also very grateful to have worked along side great researchers:

Nick Polson, Ryan Tibshirani, and Pradeep Ravikumar. Each with his own

style, they have all had great influence in the way I think and do statistical

research.

I would like to thank the Statistics and Data Sciences Department

(SDS), at The University of Texas at Austin. Its support has made possible

every step of my way in the PhD program. In particular, I am very grateful

to Michael Daniels and Vicky Keller for making my stay in SDS as smooth

as possible.

I also would like to acknowledge the partial support by the CAREER

v

grant (DMS-1255187) from the U.S. National Science Foundation. More-

over, the motion capture data used in this thesis was obtained from mo-

cap.cs.cmu.edu. The database was created with funding from NSF EIA-

0196217.

My sincere gratitude also goes to my colleagues, teachers and friends

for making my life in Austin very pleasant.

I would like to thank the dissertation committee members for taking

the time to read and help me improve this dissertation.

Finally, to my family. My parents Alejandrina Padilla and Jose Madrid.

They have provided everything for me. I thank them for their inconditional

love and incredible vision of life. To my siblings, thanks for all their encour-

agement and love.

vi

Constrained estimation via the fused lasso and some

generalizations

Publication No.

Oscar Hernan Madrid Padilla, Ph.D.

The University of Texas at Austin, 2017

Supervisor: James G. Scott

This dissertation studies structurally constrained statistical estima-

tors. Two entwined main themes are developed: computationally efficient

algorithms, and strong statistical guarantees of estimators across a wide

range of frameworks.

In the first chapter we discuss a unified view of optimization prob-

lems that enforces constrains, such as smoothness, in statistical inference.

This in turn helps to incorporate spatial and/or temporal information about

data.

The second chapter studies the fused lasso, a non-parametric regres-

sion estimator commonly used for graph denoising. This has been widely

used in applications where the graph structure indicates that neighbor nodes

have similar signal values. I prove for the fused lasso on arbitrary graphs,

vii

an upper bound on the mean squared error that depends on the total vari-

ation of the underlying signal on the graph. Moreover, I provide a surro-

gate estimator that can be found in linear time and attains the same upper–

bound.

In the third chapter I present an approach for penalized tensor de-

composition (PTD) that estimates smoothly varying latent factors in multi-

way data. This generalizes existing work on sparse tensor decomposition

and penalized matrix decomposition, in a manner parallel to the general-

ized lasso for regression and smoothing problems. I present an efficient

coordinate-wise optimization algorithm for PTD, and characterize its con-

vergence properties.

The fourth chapter proposes histogram trend filtering, a novel ap-

proach for density estimation. This estimator arises from looking at surro-

gate Poisson model for counts of observations in a partition of the support

of the data.

The fifth chapter develops a class of estimators for deconvolution

in mixture models based on a simple two-step bin-and-smooth procedure,

applied to histogram counts. The method is both statistically and compu-

tationally efficient. By exploiting recent advances in convex optimization,

we are able to provide a full deconvolution path that shows the estimate for

the mixing distribution across a range of plausible degrees of smoothness,

at far less cost than a full Bayesian analysis.

viii

Finally, the sixth chapter summarizes my contributions and provides

possible directions for future work.

ix

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xv

List of Figures xviii

Chapter 1. Introduction 1
1.1 A regularized likelihood point of view of estimation 2
1.2 Graph denoising . 5
1.3 Tensor decompositions . 7
1.4 Density estimation and deconvolution 8
1.5 Total variation penalties . 11
1.6 Outline . 13

Chapter 2. The DFS Fused Lasso: Linear-Time Denoising over Gen-
eral Graphs 16

2.1 Statistical model . 17
2.1.1 Summary of results . 19
2.1.2 Assumptions and notation 23
2.1.3 Related work . 25

2.2 The DFS fused lasso . 29
2.2.1 Tree and chain embeddings 29
2.2.2 The DFS fused lasso . 33
2.2.3 Running DFS on a spanning tree 34
2.2.4 Averaging multiple DFS estimators 36

2.3 Analysis for signals of bounded variation 36

x

2.3.1 The DFS fused lasso . 36
2.3.2 The graph fused lasso . 37
2.3.3 Minimax lower bound over trees 40

2.4 Analysis for signals with bounded differences 41
2.4.1 The DFS fused lasso . 41
2.4.2 Graph wavelet denoising 43
2.4.3 Minimax lower bound for trees 44

2.5 Experiments . 45
2.5.1 Generic graphs . 46
2.5.2 2d grid graphs . 52
2.5.3 Tree graphs . 54

2.6 Discussion . 56
2.6.1 Beyond simple averaging 57
2.6.2 Distributed algorithm . 58
2.6.3 Theory for piecewise constant signals 59
2.6.4 Weighted graphs . 61
2.6.5 Potts and energy minimization 62

Chapter 3. Tensor decomposition with generalized lasso penalties 64
3.1 Structure and sparsity in multiway arrays 64
3.2 Relation to previous work . 66
3.3 Basic definitions . 68
3.4 Penalized tensor decompositions 69
3.5 Solution algorithms . 71

3.5.1 Constrained problem . 71
3.5.2 Unconstrained version . 75
3.5.3 A toy example . 77
3.5.4 Multiple factors . 80

3.6 Convergence analysis . 82
3.7 Experiments . 84
3.8 Real data examples . 89

xi

3.8.1 Flu hospitalizations in Texas 89
3.8.2 Motion capture data . 91

3.9 Discussion . 93

Chapter 4. Nonparametric density estimation
by histogram trend filtering 95

4.1 Nonparametric density estimation 95
4.2 Histogram trend filtering in one dimension 97
4.3 Previous work . 100

4.3.1 Other adaptive and penalized likelihood density esti-
mators . 100

4.3.2 Log-Density estimation by total variation 105
4.3.3 Lindsey’s method . 106

4.4 Statistical convergence . 106
4.5 Model selection . 108
4.6 Bayesian histogram trend filtering 109
4.7 Histogram trend filtering for 2D density estimation 111
4.8 Examples and discussion . 113

4.8.1 Comparison with kernel methods 113
4.8.2 Comparison with other adaptive and penalized methods 117
4.8.3 NYC Taxi Data . 121

4.9 Conclusion . 124

Chapter 5. A deconvolution path for mixtures 126
5.1 Deconvolution in mixture models 126

5.1.1 Methodological issues in deconvolution 127
5.2 Connections with previous work 128
5.3 A deconvolution path . 130

5.3.1 Overview of approach . 130
5.3.2 Binned counts problem 133
5.3.3 Solution algorithms . 135
5.3.4 Solution path and model selection 136

xii

5.3.5 A toy example . 138
5.4 Sensitivity analysis across the path 139
5.5 Theoretical properties . 143
5.6 Experiments . 146

5.6.1 Mixing density estimation 146
5.6.2 Normal means estimation 153

5.7 Discussion . 156

Chapter 6. Concluding remarks 158
6.1 Summary . 158
6.2 Future work . 159

6.2.1 DFS fused lasso . 159
6.2.2 Tensor decompositions 160
6.2.3 Density estimation and deconvolution 161

Appendices 163

Appendix A. Proofs for Chapter 2 164
A.1 Derivation of (2.12) from Theorem 3 in [149] 164
A.2 Proof of Theorem 2.3.3 . 168
A.3 Proof of Theorem 2.4.3 . 171

Appendix B. Proofs and experiments details for Chapter 3 173
B.1 ADMM algorithm to solve the constrained updates 173
B.2 Solution path algorithm for finding the constrained updates . 174
B.3 Proof of technical results . 175

B.3.1 Proof of Theorem 3.5.1 175
B.3.2 Proof of Theorem 3.6.1 . 179

B.4 Simulation details . 182
B.5 Real data examples additional details 184

B.5.1 Flu hospitalizations . 184
B.5.2 Motion capture . 185

xiii

Appendix C. Proofs of theorems for Chapter 4 186
C.1 Proof of Theorem 4.3.1 . 186

C.1.1 Proof of Theorem 4.4.1 . 187

Appendix D. Proofs and experiments details for Chapter 5 191
D.1 Gradient expression for `2 regularization 191

D.1.1 Proof of Theorem 5.5.1 . 191

Bibliography 199

Vita 221

xiv

List of Tables

2.1 A summary of the theoretical results derived in this chapter. All rates are
on the mean squared error (MSE) scale (E‖θ̂ − θ0‖2n for an estimator θ̂),
and for simplicity, are presented under a constant scaling for t, s, the radii
in the BVG(t),BDG(s) classes, respectively. The superscript “∗” in the
BDG(s) rate for the DFS fused lasso is used to emphasize that this rate
only holds under the assumption that Wn � n. Also, we write dmax to
denote the max degree of the graph in question. 57

3.1 Comparison of the Frobenius norm error between the true
tensor and the estimated tensor using different methods. . . . 87

3.2 Comparison of the Frobenius norm error between the true
tensor and the estimated tensor using for different levels of
noise and a fixed structure, averaging over 100 Monte Carlo
simulations . 88

3.3 Comparison of the Frobenius norm error between the true
tensor and the estimated tensor using different methods, av-
eraging over 100 Monte Carlo simulations 89

3.4 Comparison of the Frobenius norm error between the esti-
mated tensor and the test tensor for the moCap datasets 93

4.1 Mean-squared error × 100 on example 1 for histogram trend
filtering with k = 1 and k = 2 versus three other methods:
kernel density estimation with bandwidth chosen by cross-
validation, kernel density estimation using the normal refer-
ence rule, and local polynomial density estimation. 116

4.2 Mean-squared error × 100 on example 2 for the same five
methods in Table 4.1. 116

4.3 Mean-squared error × 10 on example 1, averaging over 50
MC simulations . 117

4.4 Mean-squared error × 100 on example 2, averaging over 50
MC simulations. 118

4.5 Mean-squared error × 10 on example 3, averaging over 50
MC simulations. 118

xv

4.6 Mean-squared error × 10 on example 4, averaging over 50
MC simulations. 119

4.7 Time in seconds for Example 1, averaging over 50 MC simu-
lations. 119

4.8 Average log-likelihood on test set times 10−3, averaging over
50 random training and test sets of sizes s% and (100 − s)%
respectively. 123

5.1 Mean squared error (MSE) between the true and estimated
mixing densities, averaging over 100 Monte Carlo simula-
tions, for different methods given samples from density Ex-
ample 1. The acronyms here are given the text. The MSE is
multiplied by 102 and reported over two intervals containing
95% and 99% of the mass of the mixing density. 150

5.2 Mean squared error (MSE) between the true and estimated
mixing densities, averaging over 100 Monte Carlo simula-
tions, for different methods given samples from density Ex-
ample 2. The acronyms here are given the text. The MSE is
multiplied by 103 and reported over two intervals containing
95% and 99% of the mass of the mixing density. 151

5.3 Mean squared error (MSE) between the true and estimated
mixing densities, averaging over 100 Monte Carlo simula-
tions, for different methods given samples from density Ex-
ample 3. The acronyms here are given the text. The MSE is
multiplied by 103 and reported over two intervals containing
95% and 99% of the mass of the mixing density. 152

5.4 Mean squared error (MSE) between the true and estimated
mixing densities, averaging over 100 Monte Carlo simula-
tions, for different methods given samples from density Ex-
ample 4. The acronyms here are given the text. The MSE is
multiplied by 104 and reported over two intervals containing
95% and 99% of the mass of the mixing density. 153

5.5 Mean squared error, of the normal means estimates, times
100 , averaging over 100 Monte Carlo simulations, for differ-
ent methods given samples from example 1. 155

5.6 Mean squared error, of the normal means estimates, times
100, averaging over 100 Monte Carlo simulations, for differ-
ent methods given samples from example 2. 155

xvi

5.7 Mean squared error, of the normal means estimates, times
100, averaging over 100 Monte Carlo simulations, for differ-
ent methods given samples from example 3. 156

5.8 Mean squared error, of the normal means estimates, times
100, averaging over 100 Monte Carlo simulations, for differ-
ent methods given samples from example 4. 156

xvii

List of Figures

1.1 Example of image denoising, the left panel corresponds to a
noisy input image, the right panel consists of the fused lasso
solution. 6

1.2 The first two panels show two examples of f0 in model (1.5)
plotted on top of the corresponding draws y, which are dis-
played as a normalized histogram. The panels in the second
row show from left to right (for a different f0), respectively,
the density φ ∗ f0 on top of the draws {yi}ni=1, and the den-
sity f0 on top of the unobserved draws {µi}ni=1. Here φ is the
standard Gaussian density function. 9

2.1 The optimized MSE for the DFS fused lasso and Laplacian smoothing
(i.e., MSE achieved by these methods under optimal tuning) is plotted as
a function of the total variation of the underlying signal, for each of the
three road network graphs. This has been averaged over 50 draws of data
y for each construction of the underlying signal θ0, and 10 repetitions in
constructing θ0 itself. For low values of the underlying total variation,
i.e., low SNR levels, the two methods perform about the same, but as the
SNR increases, the DFS fused lasso outperforms Laplacian smoothing by
a considerable margin. 49

2.2 Underlying signal, data, and solutions from the 2d fused lasso and differ-
ent variations on the DFS fused lasso fit over a 1000× 1000 grid. 51

2.3 Optimized MSE and runtime for the 2d fused lasso and DFS fused lasso
estimators over a 2d grid, as the grid size n (total number of nodes) varies. 51

2.4 The left panel shows the optimized MSE as a function of the sample size
for the fused lasso over a tree graph, as well as the 1 random DFS and 5
random DFS estimators, and wavelet smoothing. The right panel 55

xviii

3.1 Panel (a): Frobenius error comparison of the of three differ-
ent methods for finding a rank-1 decomposition. These are:
Algorithm 1 with the ADMM method from [156], block coor-
dinate descent for solving the unconstrained problem (3.11),
and Algorithm 1 using the solution path method as described
in Section 3.1. Panel (b): For each of the methods, time in sec-
onds for solving one problem with a particular choice of tun-
ing parameters. Our unconstrained formulation with adap-
tive chosen penalties achieves nearly the reconstruction error
of the unconstrained formulation with optimal hyperparam-
eter choice, but at far less computational cost. 79

3.2 Each row gives rise to a different structure by taking the outer
product on the corresponding, horizontally plotted, vectors. . 85

3.3 (a) Time vector for the first factor (b) Loadings matrix for first
factor (c) Time vector for second factor (d) Loadings matrix
for second factor. 90

4.1 Left panel depicts the estimated density provided by our Bayesian
HTF, with τ selected using DIC, on top of data generated us-
ing the density on the third panel. For purposes of compari-
son, we also display the Bayesian HTF by itself in the second
panel. In this example n = 4000. 110

4.2 Top two panels: the true densities f1 (left) and f2 (right) in
the simulation study, together with samples of n = 2500 from
each density. Middle two panels: results of histogram trend
filtering for the f1 sample (left) and the f2 sample (right). Bot-
tom two panels: results of kernel density estimation for the
f1 sample (left) and the f2 sample (right). In the bottom four
panels the reconstruction results are shown on a log scale. . . 115

4.3 Each row of panels above represents an example considered
in this section. For each row the first column shows the true
density along with n = 4000 draws from the respective den-
sity. The second column shows the error for the solution
given by HTF(k=1). Similarly, the third column of panels rep-
resents the estimate error for W-N. 120

4.4 The left panel shows the binned counts for a training set con-
sisting of 75% of the subset of the NYC Taxi data that we
used. The right panel shows the counts for the respective
test set or remaining 25% of the data. 122

xix

5.1 Example of deconvolution with an `2 penalty on the discrete
first derivative (k = 1). The left panel shows the data his-
togram together with the fitted marginal density as a solid
curve. The right panel shows the histogram of the µi’s to-
gether with the estimated mixing measure as a solid curve. . . 138

5.2 Rows A–E show five points along the deconvolution path for
the prostate cancer gene-expression data. The regularization
parameter is largest in Row A and gets smaller in each suc-
ceeding row. 140

5.3 The first three panels show 95% confidence bands and poste-
rior mean from 15000 posterior samples from a mixture of 10
normals prior on the latent variables µ. Panels 4-7 then shows
the estimated mixing density using the kernel estimator with
different bandwidth choices. 141

5.4 The first panel shows a histogram of observed data {yi}ni=1

for our first example, and the L1-D marginal density esti-
mate plotted on top of the histogram. Here the data has been
generated as yi ∼ N(µi, 1) where µi is a draw from the mix-
ing density. The second panel shows, for this same example,
the histogram of {µi}ni=1 (unobserved draws from the mixing
density) and the L1-D estimate of the mixing density plotted
on top of it. Panels 3-6 show the respective cases of Examples
2 and 3. The last two panels show the corresponding plots
for the L2-D solution and Example 4. 147

5.5 For the mixing density illustrated in Example 1 of Figure 5.4
we show the estimated mixing densities of different methods.
The top two panels correspond to the estimated mixing den-
sities using L2-D and PR algorithms along with latent µ. Bot-
tom two panels show the estimated density using MN and
FTKD both with the latent µ. For all four panels n = 105 148

xx

Chapter 1

Introduction

In recent years there has been an increasing interest in the use of pe-

nalized methods for different statistical problems. Penalized methods are

characterized by providing models that balance between overfitting and

structural constrains on the estimators. This includes, fundamental work

in regression analysis, density estimation and dimension reduction. This

line of work differs from classical techniques, however, in the use of penalty

functions that encourage these estimated solutions to be sparse, structured,

or both. As previous work has demonstrated, such regularized estimators

usually exhibit a favorable bias-variance tradeoff and can also make the es-

timated models themselves much more interpretable to practitioners.

In the one-dimensional case, penalized regression problems have been

widely studied in the literature. In most previous work in this area, differ-

ent choices of penalties have proven to be successful for specific applica-

tions. One of these celebrated penalties is the fused lasso which constrains

solutions to be piecewise constants. This can be a very desirable feature

for different statistical problems where there is a natural ordering of the ob-

servations. For instance, in protein mass spectroscopy and gene expression

1

data measured from a microarray, the fused lasso has been used to obtain in-

terpretable results. Another widely used penalty is trend filtering that pro-

vides piecewise polynomial solutions. Such smooth estimators have found

applications in areas as diverse as image processing and demography.

This dissertation studies different statistical problems exploiting some

of the penalized likelihood techniques mentioned above, applying these to

specific problems particularly related to non-parametric regression, prin-

cipal component analysis and density estimation. The goals are twofold.

First, we study algorithms, using state of the art techniques from convex

optimization, that can provide accurate and fast solutions to the estimation

problems mentioned above. Secondly, we aim to study statistical guaran-

tees for our algorithms ensuring that with high probability the solutions

provided are close, in some metric sense, to the true parameters.

1.1 A regularized likelihood point of view of estimation

The typical framework of statistical inference consists of estimating

an unknown parameter θ from a set of observations y. In this work we

study different instances of this problem where the parameter lies in a high-

dimensional space, which makes estimation difficult, but there is an special

structure that can be exploited to perform estimation.

More precisely, we suppose that data y ∈ Rn is given, n ∈ N, and is

2

generated as

y ∼ f(θ0), (1.1)

where the true parameter satisfies θ0 ∈ Θ, and f is a joint density function

indexed by parameters in the space Θ. Moreover, we assume, in all the set-

tings considered here, that the observations yi, i ∈ {1, . . . , n}, are marginally

independent.

In many statistical frameworks, in addition to observing the data,

practitioners have some prior knowledge about the structure of the true

parameter giving rise to the data. We formalize this by saying that there

exists a known function J : Θ→ R which satisfies

J(θ0) ≤ c,

where c is an unknown positive constant, which satisfies c << n. Thus, c is

much smaller than the sample size.

In the statistics and machine learning communities, the function J is

often referred to as penalty, and it is used to incorporate prior beliefs about

the problem in hand. For instance, in certain applications one might want

to enforce spatial and/or temporal properties of the data.

The first natural question that arises with settings like the ones de-

scribed above is: how can the parameter θ0 be estimated? This is usually

important for interpretation, visualization, and also prediction tasks related

to the data in hand.

3

There are two traditional approaches for estimation: Bayesian infer-

ence, and regularized likelihood optimization. In this thesis we focus al-

most exclusively in the latter.

Consider the interpretation of the penalty J as the minus-logarithm

of a possibly improper prior. Thus, on the unknown true parameter, we

place the prior,

P (θ) ∝ exp(−λ J(θ)), (1.2)

for a tuning parameter λ > 0. Combining both (1.1) with (1.2) leads to a

Bayesian model which can, in principle, enable estimation via Markov chain

Monte Carlo (MCMC) methods. However, such approach might not gener-

ally be tractable nor computationally efficient. Hence, we mainly focus on

maximum a posteriori estimators. Thus, estimators arising as

θ̂ = argminθ∈Θ − logP(y | θ) + λ J(θ) . (1.3)

The above framework, in a very general way, encompasses the dif-

ferent estimation problems that concern the interest of this thesis. Our goal

is to provide computational efficient algorithms for solving problems of the

form (5.5), together with statistical guarantees that ensure validity of our

procedures. The specific focus of our study is on:

• Graph denoising This is a normal means estimation problem, where

the data y comes along with a graph structure G. The true parame-

ter θ0 lies in Rn, and the underlying assumption is that signal values

4

corresponding to connected nodes in the graph G tend to have similar

values. Loosely speaking, the signal θ0 is smooth along the graph G,

and we make use of this property for estimation purposes.

• Tensor decomposition In this setting the data is given in the form of

a three dimensional array, {yi,j,k} ∈ RL×T×S , with n = L× T × S. Our

goal is to design algorithms to extract low dimensional interpretable

features in the presence of noisy measurements.

• Density estimation For the classical problems of deconvolution and

density estimation, I study adaptive non-parametric estimators, em-

phasizing the natural assumption that the true model is somehow

smooth, but can also have sharp regions.

For all of the above research problems, the key to our work is to en-

force smoothness assumptions encoded through appropriate penalties J .

The penalties we use enjoy adaptivity to different degrees of smoothness.

1.2 Graph denoising

In many applications, one is given noisy measurements on a net-

work, and the goal is to estimate the underlying signal using the network

information. The main assumption of graph denoising methods is that the

true signal varies smoothly along the graph.

One of the most widely used methods for graph denoising problems,

given its attractive computational and statistical properties, is the fused

5

Figure 1.1: Example of image denoising, the left panel corresponds to a
noisy input image, the right panel consists of the fused lasso solution.

lasso estimator [137, 118]. This estimator is obtained as the solution of an

optimization problem, as (5.5). In such equation, the likelihood part comes

from a Gaussian model, while as we will see in Chapter 2, the penalty J

encourages neighboring nodes to have similar signal values.

An example of a graph denoising problem is illustrated in Figure 1.1.

There we see a noisy input image and the output of using total variation

denoising (fused lasso).

While the fused lasso has attracted great attention for the develop-

ment of algorithms [28, 74, 8, 136, 90, 87], it is still not known a unifying

fast algorithm that can scale well in practice, regardless of the graph. More-

over, it has remained as an open question to understand the convergence

rates of the fused lasso on general graphs. In this dissertation we fill this

6

gap and provide convergence results that hold for any connected graph and

any signal. Surprisingly, we will show that such universal guarantees can

be attained by a simple procedure that runs in linear time, on the number

of edges, for any graph structure.

1.3 Tensor decompositions

Given a data array Y = {ylts}, practitioners in statistics are often in-

terested in extracting low dimensional factors. This is typically done with

the purpose of interpretation and prediction. State of the art methods al-

low us to do so by using Parafac decompositions. However, an important

open question is to provide smooth Parafac decompositions. We address

this question by developing convex optimization algorithms that extract

smooth low rank decompositions. Such representations can be useful for

incorporating spatial and/or temporal information of the data.

The generative model that we study gives rise to a set of observations

yl,t,s, as

yl,t,s =
J∑
j=1

d∗j u
∗
lj v
∗
tj w

∗
sj+el,t,s, , l ∈ {1, . . . , L}, t ∈ {1, . . . , T}, s ∈ {1, . . . , S}

(1.4)

with unknown hidden vectors u∗:j ∈ RL, v∗:j ∈ RT , w∗:j ∈ RS , j = 1, . . . , J and

scalars d∗j , j = 1, . . . , J . Motivated for interpretation purposes, we make the

additional assumption that latent vectors are discrete evaluations of piece-

wise differentiable functions.

7

We answer the question of how to estimate these latent factors, by

solving a suitable optimization which is a special case of (5.5). The corre-

sponding penalty J is a convex non-differentiable function chosen to en-

courage sparse and/or smooth factors. However, care needs to be taken

as the likelihood is a non-convex function, which together with the non-

differentiability of the penalty posses an estimation challenge.

1.4 Density estimation and deconvolution

Density estimators are one of the most commonly used tools for data

exploration. They are widely used as first past tool for visualization, and

can also be used for predicting future events.

Formally, we study a non-parametric density estimator of a density

f0 that satisfies

yi, ∼i.i.d f0, i = 1, . . . , n. (1.5)

Most practitioners turn to kernel estimators when face with estimating f0.

However, it is well known that kernel estimators cannot properly adapt to

different levels of smoothness of the true density. See the first two panels

of Figure 1.2 for examples of f0 that have different levels of smoothness in

their domain.

One of the reasons why kernel estimators are widely used in prac-

tice is because adaptive estimators are computationally intense. This leads

to the natural question: can we provide a computationally efficient adap-

8

Figure 1.2: The first two panels show two examples of f0 in model (1.5)
plotted on top of the corresponding draws y, which are displayed as a nor-
malized histogram. The panels in the second row show from left to right (for
a different f0), respectively, the density φ ∗ f0 on top of the draws {yi}ni=1,
and the density f0 on top of the unobserved draws {µi}ni=1. Here φ is the
standard Gaussian density function.

y

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

12

y

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

y

D
en

si
ty

−5 0 5

0.00

0.05

0.10

0.15

mu

D
en

si
ty

−5 0 5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

tive density estimator? We propose a possible answer to this question in

Chapter 4.

A further difficulty to density estimation in practice occurs when an

additional noise level is added to model (1.5). Thus, the data y is actually a

9

noisy version of unobserved measurements {µi} from f0. Specifically,

yi | µi ∼i.i.d φ(yi |µi),
µi ∼i.i.d f0.

(1.6)

where φ is known distribution. In this modified context, estimating f0 is

known as deconvolution. And although (1.6) seems like a slightly more

complicated model than (1.5), it is well known that deconvolution is a much

more difficult problem. The author in [56] showed that the convergence

rates in deconvolution problems, in `2 loss function, are in the order of pow-

ers of (log n)−1 as opposed to powers of n−1, as it is the case for density

estimation.

While the theoretical results, in the way of convergence rates, are

very discouraging, deconvolution has been an extensively studied statisti-

cal problem [78, 58, 56, 107, 63, 39, 52]. One important question is: how can

we construct computationally feasible adaptive deconvolution estimators?

This is the focus of Chapter 5, where we propose a novel estimator that also

enjoys some desirable statistical properties.

Another important aspect of deconvolution is its connection with the

normal means estimation problem, a setting of interest in biological appli-

cations (e.g. [48, 123]). This consists in estimating {µi} in the case in which

φ is the standard Gaussian kernel.

The role of deconvolution in the normal means estimation problem

is understood through Tweedie’s formula which states that

E(µi | yi) = yi +
d

dy
logm(yi) = yi +

m′(yi)

m(yi)
, (1.7)

10

where m(·) := φ ∗ f0 =
∫
φ(· | µ) f0(µ) d µ is the marginal density of the

data. Thus, having an estimate of the mixing density (f0) immediately gives

estimates of {µi} by a straightforward application of Equation (1.7).

In this work we will provide a deconvolution estimator with strong

empirical evidence that can be competitive for the normal means estimation

problem. It is beyond the scope of our work to mathematically characterize

such performance, but rather to offer a reasonable well behave estimator.

We conclude this section with an example that illustrates the diffi-

culty of deconvolution. This is shown in the bottom two panels of Figure

1.5. The left panel shows the observed data {yi} as a histogram along with

the true marginal density. The right panel shows the latent variables {µi}

as a histogram with the true mixing density. It is clear from these plots that

the observed data significantly obscures the actually mixing density, exem-

plifying how challenging deconvolution can be.

1.5 Total variation penalties

As explained before, the focus of this thesis is to develop efficient al-

gorithms, with statistical guarantees, that overcome some of the challenges

and limitations of state of the art methods in the frameworks of graph de-

noising, low rank tensor decompositions, and deconvolution and density

estimation. We do so by proposing estimators that come as the solutions to

optimization problems of the form (5.5) using penalties that enforce smooth

11

solutions. The penalty functions that we use are extensions, or generaliza-

tions, of the fused lasso penalty introduced by [118, 102, 137]. This relies on

the idea of total variation, which we briefly depict next.

Given a function f : [0, 1]→ R, we define its total variation as

TV(f) := sup

{
N−1∑
i=1

|f(xi)− f(xi+1)| : x1 = 0 < x2 < . . . < xN = 1, N ∈ N

}
(1.8)

and if f is differentiable, then it can be proven that

TV(f) =

∫ 1

0

|f ′(t)| dt.

It is clear from its definition that “smoother” functions will tend to have

smaller total variation, hence that the total variation offers a natural alter-

native as regularization in statistical estimation. In such context, it was first

introduced by [101] for one-dimensional non-parametric regression. How-

ever, one of the possible limitations of using such penalties is that it re-

quires to have an interval, or topological space for the signal’s domains,

over which partitions are considered and a supremum is taken. This con-

strains the range of applicability of the TV penalty. This will be more ev-

ident in Chapter 2, where we deal with general graph structures. Fortu-

nately, [137] proposed a penalty function, which we refer to as the fussed

lasso, that is defined as

FL(θ) :=
N−1∑
i=1

|θi − θi+1|, ∀θ ∈ RN , N ∈ N. (1.9)

12

Hence, instead of working with a complicated definition as (1.8), the ex-

pression in (1.9) offers a discrete penalty that can easily be generalized to

more general contexts, which has led to more computationally efficient al-

gorithms, see [79, 74, 140, 149].

1.6 Outline

The rest of this thesis is organized as follows.

Chapter 2 starts by presenting a brief introduction, followed by a

statement of the general graph denoising problem. The chapter then sum-

marizes our contributions before moving to discuss modeling assumptions,

notation, and previous work. The latter includes an overview of the liter-

ature on the fused lasso focusing in computational and theoretical aspects.

All of this constitutes Section 2.1. From there, in Section 2.2, we prove a sim-

ple but key lemma relating the `1 norm (and `0) norm of differences on a tree

and a chain induced by running the depth-first search algorithm (DFS). We

then define the DFS fused lasso estimator. In Section 2.3, we derive mean

squared error (MSE) rates for the DFS fused lasso, and the fused lasso over

the original graph G in question, for signals of bounded variation. We also

derive lower bounds for the minimax MSE rate over trees. Section 2.4 pro-

ceeds similarly, but for signals with bounded differences. In Section 2.5, we

cover numerical experiments, and in Section 2.6, we summarize our work

and also describe some potential extensions.

13

Chapter 3 begins with a discussion of tensor decompositions in Sec-

tion 3.1, and an overview of previous work in Section 3.2. We then introduce

the basic notation on tensors in Section 3.3, which leads to our formulation

of rank-1 penalized tensor decomposition (PTD) in Section 3.4. From there,

Section 3.5 presents two formulations of our PTD: one with penalties as con-

strained set, and one with the penalties in the objective function. Section

3.6 provides a convergence analysis for the case of rank-1 decompositions.

In Section 3.7 we perform an extensive simulation study highlighting the

strengths and weaknesses of our approach. Section 3.8 validates our me-

thods on two real data examples. The first consists of flu hospitalizations in

Texas. The second example is based on motion capture data. Finally, Section

3.9 provides a brief discussion of what was presented in the chapter.

In Chapter 4 we study a novel approach for density estimation. Sec-

tion 4.1 summarizes our contributions. In one dimension, our approach

is introduced in Section 4.2. The chapter then discusses, relevant, previ-

ous work on non-parametric density estimation. This is the main focus of

Section 4.3. It includes aspects such as adaptive and penalized likelihood

estimators, log-density estimation, and Lindsey’s method. Section 4.4 pro-

vides our main theoretical result of the chapter. In Section 4.5, we discuss

model selection aspects of our proposed method. Extensions of our one di-

mensional approach are discussed in Sections 4.6 and 4.7, where we present

a Bayesian view and a 2-dimensional estimator respectively. In Section 4.8

we perform one-dimensional validations of our method versus kernel and

14

adaptive methods in the literature. This section also includes a real data ex-

ample on NYC taxi data. The conclusion of the chapter is given in Section

4.9.

Chapter 5 studies deconvolution problems. Section 5.1 presents the

statistical model of interest, and the relevant literature is discussed in Sec-

tion 5.2. Our approach is developed with great details in Section 5.3. A

sensitivity analysis with real data is performed in Section 5.4. Our consis-

tency result is the main theme of Section 5.6. We then provide simulation

experiments in Section 5.6. These consist of examples estimating the mix-

ing density, and also for the normal means estimation problem. We then

conclude the chapter with a discussion in Section 5.7.

Finally, our contributions are summarized in Chapter 6, where we

also present some open question that are left for future work.

15

Chapter 2

The DFS Fused Lasso: Linear-Time Denoising
over General Graphs

This chapter, based on the working paper [100], studies graph de-

noising estimators in general graphs. Specifically, the fused lasso, also known

as (anisotropic) total variation denoising, which is widely used for piece-

wise constant signal estimation with respect to a given undirected graph.

The fused lasso estimate is highly nontrivial to compute when the under-

lying graph is large and has an arbitrary structure. But for a special graph

structure, namely, the chain graph, the fused lasso—or simply, 1d fused

lasso—can be computed in linear time. In this chapter, we establish a sur-

prising connection between the total variation of a generic signal defined

over an arbitrary graph, and the total variation of this signal over a chain

graph induced by running depth-first search (DFS) over the nodes of the

graph. Specifically, we prove that for any signal, its total variation over

the induced chain graph is no more than twice its total variation over the

original graph. This connection leads to several interesting theoretical and

computational conclusions. Denoting by m and n the number of edges and

nodes, respectively, of the graph in question, our result implies that for

an underlying signal with total variation t over the graph, the fused lasso

16

achieves a mean squared error rate of t2/3n−2/3. Moreover, precisely the

same mean squared error rate is achieved by running the 1d fused lasso on

the induced chain graph from running DFS. Importantly, the latter estima-

tor is simple and computationally cheap, requiring only O(m) operations

for constructing the DFS-induced chain and O(n) operations for comput-

ing the 1d fused lasso solution over this chain. Further, for trees that have

bounded max degree, the error rate of t2/3n−2/3 cannot be improved, in the

sense that it is the minimax rate for signals that have total variation t over

the tree. Finally, we establish several related results—for example, a similar

result for a roughness measure defined by the `0 norm of differences across

edges in place of the the total variation metric.

2.1 Statistical model

We study the graph denoising problem, i.e., estimation of a signal

θ0 ∈ Rn from noisy data

yi = θ0,i + εi, i = 1, . . . , n, (2.1)

when the components of θ0 are associated with the vertices of an undirected,

connected graph G = (V,E).

Throughout, a graphG = (V,E) consists of two sets: a set of nodes V ,

and a set of edges E. Without loss of generality we assume V = {1, . . . , n}.

Moreover, E consists of unordered pairs (undirected), called edges, (i, j)

with i, j ∈ V . If (i, j) ∈ E, we say that i and j are connected. A path in G is

17

a sequence i1, . . . , iK , for some K, such that (il, il+1) ∈ E for l = 1, . . . , K−1.

The graph G is called connected if there is a path between any two pair of

nodes.

Versions of (2.1) arise in diverse areas of science and engineering,

such as gene expression analysis, protein mass spectrometry, and image de-

noising. The problem is also archetypal of numerous internet-scale machine

learning tasks that involve propagating labels or information across edges

in a network (e.g., a network of users, web pages, or YouTube videos).

Methods for graph denoising have been studied extensively in ma-

chine learning and signal processing. In machine learning, graph kernels

have been proposed for classification and regression, in both supervised

and semi-supervised data settings (e.g., [10, 130, 155, 154]). In signal pro-

cessing, a considerable focus has been placed on the construction of wavelets

over graphs (e.g., [30, 27, 60, 67, 125, 126]). We will focus our study on the

fused lasso over graphs, also known as (anisotropic) total variation denoising

over graphs. Proposed by [118] in the signal processing literature, and [139]

in the statistics literature, the fused lasso estimate is defined by the solution

of a convex optimization problem,

θ̂G = argmin
θ∈Rn

1

2
‖y − θ‖2

2 + λ‖∇Gθ‖1, (2.2)

where y = (y1, . . . , yn) ∈ Rn the vector of observed data, λ ≥ 0 is a tun-

ing parameter, and ∇G ∈ Rm×n is the edge incidence matrix of the graph

G. Note that the subscript on the incidence matrix ∇G and the fused lasso

18

solution θ̂G in (2.2) emphasize that these quantities are defined with respect

to the graphG. The edge incidence matrix∇G can be defined as follows, us-

ing some notation and terminology from algebraic graph theory (e.g., [64]).

First, we assign an arbitrary orientation to edges in the graph, i.e., for each

edge e ∈ E, we arbitrarily select one of the two joined vertices to be the

head, denoted e+, and the other to be the tail, denoted e−. Then, we define

a row (∇G)e of∇G, corresponding to the edge e, by

(∇G)e,e+ = 1, (∇G)e,e− = −1, (∇G)e,v = 0 for all v 6= e+, e−,

for each e ∈ E. Hence, for an arbitrary θ ∈ Rn, we have

‖∇Gθ‖1 =
∑
e∈E

|θe+ − θe−|.

We can see that the particular choice of orientation does not affect the value

‖∇Gθ‖1, which we refer to as the total variation of θ over the graph G.

2.1.1 Summary of results

We will wait until Section 2.1.3 to give a detailed review of litera-

ture, both computational and theoretical, on the fused lasso. Here we sim-

ply highlight a key computational aspect of the fused lasso to motivate the

main results in this chapter. The fused lasso solution in (2.2), for a graph

G of arbitrary structure, is highly nontrivial to compute. For a chain graph,

however, the fused lasso solution can be computed in linear time (e.g., using

dynamic programming or specialized taut-string methods).

19

The question we answer is: how can we use this fact to our advan-

tage, when seeking to solve (2.2) over an arbitrary graph? Given a generic

graph structure G that has m edges and n nodes, it is obvious that we can

define a chain graph by running depth-first search (DFS) over the nodes. Far

less obvious is that, for any signal, its total variation over the DFS-induced

chain graph never exceeds twice its total variation over the original graph.

This fact, which we prove, has the following three notable consequences

(the first being computational, and next two statistical).

1. No matter the structure of G, we can denoise any signal defined over

this graph in O(m+ n) operations: O(m) operations for DFS and O(n)

operations for the 1d fused lasso on the induced chain. We call the

corresponding estimator—the 1d fused lasso run on the DFS-induced

chain—the DFS fused lasso.

2. For an underlying signal θ0 that generates the data, as in (2.1), such

that θ0 ∈ BVG(t), where BVG(t) is the class of signals with total varia-

tion at most t, defined in (2.4), the DFS fused lasso estimator has mean

squared error (MSE) on the order of t2/3n−2/3.

3. For an underlying signal θ0 ∈ BVG(t), the fused lasso estimator over

the original graph, in (2.2), also has MSE on the order of t2/3n−2/3.

The fact that such a fast rate, t2/3n−2/3, applies for the fused lasso

estimator over any connected graph structure is somewhat surprising. It

20

implies that the chain graph represents the hardest graph structure for de-

noising signals of bounded variation—at least, hardest for the fused lasso,

since as we have shown, error rates on general connected graphs can be no

worse than the chain rate of t2/3n−2/3.

We also complement these MSE upper bounds with the following

minimax lower bound over trees.

4. When G is a tree of bounded max degree, the minimax MSE over the

class BVG(t) scales at the rate t2/3n−2/3. Hence, in this setting, the DFS

fused lasso estimator attains the optimal rate, as does the fused lasso

estimator over G.

Lastly, we prove the following for signals with a bounded number of

nonzero edge differences.

5. For an underlying signal θ0 ∈ BDG(s), where BDG(s) is the class of sig-

nals with at most s nonzero edge differences, defined in (2.5), the DFS

fused lasso (under a condition on the spacing of nonzero differences

over the DFS-induced chain) has MSE on the order of

s(log s+ log log n) log n/n+ s3/2/n.

When G is a tree, the minimax MSE over the class BDG(s) scales as

s log(n/s)/n. Thus, in this setting, the DFS fused lasso estimator is

only off by a log log n factor provided that s is small.

21

This DFS fused lasso gives us anO(n) time algorithm for nearly min-

imax rate-optimal denoising over trees. On paper, this only saves a factor of

O(log n) operations, as recent work (to be described in Section 2.1.3) has pro-

duced anO(n log n) time algorithm for the fused lasso over trees, by extend-

ing earlier dynamic programming ideas over chains. However, dynamic

programming on a tree is (a) much more complex than dynamic program-

ming on a chain (since it relies on sophisticated data structures), and (b) no-

ticeably slower in practice than dynamic programming over a chain, espe-

cially for large problem sizes. Hence there is still a meaningful difference—

both in terms of simplicity and practical computational efficiency—between

the DFS fused lasso estimator and the fused lasso over a generic tree.

For a general graph structure, we cannot claim that the statistical

rates attained by the DFS fused lasso estimator are optimal, nor can we

claim that they match those of fused lasso over the original graph. As an

example, recent work (to be discussed in Section 2.1.3) studying the fused

lasso over grid graphs shows that estimation error rates for this problem

can be much faster than those attained by the DFS fused lasso (and thus

the minimax rates over trees). What should be emphasized, however, is

that the DFS fused lasso can still be a practically useful method for any

graph, running in linear time (in the number of edges) no matter the graph

structure, a scaling that is beneficial for truly large problem sizes.

22

2.1.2 Assumptions and notation

Our theory will be primarily phrased in terms of the mean squared

error (MSE) an estimator θ̂ of the mean parameter θ0 in (2.1), assuming that

ε = (ε1, . . . , εn) has i.i.d. mean zero sub-Gaussian components, i.e.,

E(εi) = 0, and P(|εi| > t) ≤M exp
(
− t2/(2σ2)

)
, all t ≥ 0, (2.3)

for i = 1, . . . , n, and constants M,σ > 0. The MSE of θ̂ will be denoted, with

a slight abuse of notation, by

‖θ̂ − θ0‖2
n =

1

n
‖θ̂ − θ0‖2

2.

(In general, for x ∈ Rn, we denote its scaled `2 norm by ‖x‖n = ‖x‖2/
√
n.)

Of course, the MSE will depend not only on the estimator θ̂ in question but

also on the assumptions that we make about θ0. We will focus our study on

two classes of signals. The first is the bounded variation class, defined with

respect to the graph G, and a radius parameter t > 0, as

BVG(t) = {θ ∈ Rn : ‖∇Gθ‖1 ≤ t}. (2.4)

The second is the bounded differences class, defined again with respect to the

graph G, and a now a sparsity parameter s > 0, as

BDG(s) = {θ ∈ Rn : ‖∇Gθ‖0 ≤ s}. (2.5)

We call measure of roughness used in the bounded differences class the

cut metric, given by replacing the `1 norm used to define the total variation

23

metric by the `0 norm, i.e.,

‖∇Gθ‖0 =
∑
e∈E

1{θe+ 6= θe−},

which counts the number of nonzero edge differences that appear in θ.

Hence, we may think of the former class in (2.4) as representing a type of

weak sparsity across these edge differences, and the latter class in (2.5) as

representing a type of strong sparsity in edge differences.

When dealing with the chain graph, on n vertices, we will use the

following modifications to our notation. We write ∇1d ∈ R(n−1)×n for the

edge incidence matrix of the chain, i.e.,

∇1d =


−1 1 0 . . . 0

0 −1 1 . . . 0
...
0 0 . . . −1 1

 . (2.6)

We also write θ̂1d for the solution of the fused lasso problem in (2.2) over the

chain, also called the 1d fused lasso solution, i.e., to be explicit,

θ̂1d = argmin
θ∈Rn

1

2
‖y − θ‖2

2 + λ
n−1∑
i=1

|θi+1 − θi|. (2.7)

We write BV1d(t) and BD1d(s) for the bounded variation and bounded dif-

ferences classes with respect to the chain, i.e., to be explicit,

BV1d(t) = {θ ∈ Rn : ‖∇1dθ‖1 ≤ t},

BD1d(s) = {θ ∈ Rn : ‖∇1dθ‖0 ≤ s}.

Lastly, in addition to the standard notation an = O(bn), for sequences

an, bn such that an/bn is upper bounded for n large enough, we use an � bn to

24

denote that both an = O(bn) and a−1
n = O(b−1

n). Also, for random sequences

An, Bn, we useAn = OP(Bn) to denote thatAn/Bn is bounded in probability.

2.1.3 Related work

Since its inception in the signal processing and statistics communities

in [118] and [139], respectively, there has been an impressive amount of

work on total variation penalization and the fused lasso. We do not attempt

to give a complete coverage, but point out some relevant computational and

theoretical advances, covering the two categories separately.

Computational. On the computational side, it is first worth pointing out

that there are multiple efficient algorithms for solving the fused lasso prob-

lem over a chain graph, i.e., the 1d fused lasso problem. The authors in

[33] derived an algorithm based on a “taut string” perspective that solves

the 1d fused lasso problem in O(n) time (but, the fact that their taut string

method solves the 1d fused lasso problem was not explicitly stated in the

work). This was later extended by [28, 8] to allow for arbitrary weights in

both of the individual penalty and loss terms. The work in [74] proposed an

entirely different O(n) time algorithm for the fused lasso based on dynamic

programming. The taut string and dynamic programming algorithms are

extremely fast in practice (e.g., they can solve a 1d fused lasso problem with

n in the tens of millions in just a few seconds on a standard laptop).

More recently, [87] extended the dynamic programming approach of

25

[74] to solve the fused lasso problem on a tree. This algorithm is theoret-

ically very efficient, with O(n log n) running time, but the implementation

that achieves this running time (we have found) can be practically slow for

large problem sizes, compared to dynamic programming on a chain graph.

Alternative implementations are possible, and may well improve practical

efficiency, but as far as we see it, they will all involve somewhat sophisti-

cated data structures in the “merge” steps in the forward pass of dynamic

programming.

The authors in [8] extended (though not in the same direct manner)

fast 1d fused lasso optimizers to work over grid graphs, using operator

splitting techniques like Douglas-Rachford splitting. Their techniques ap-

pear to be quite efficient in practice, and the authors provide thorough com-

parisons and a thorough literature review of related methods. Over general

graphs structures, many algorithms have been proposed, e.g., to highlight

a few: [23] described a direct algorithm based on a reduction to paramet-

ric max flow programming; [70, 141] gave solution path algorithms (tracing

out the solution in (2.2) over all λ ∈ [0,∞]); [24] described what can be seen

as a kind of preconditioned ADMM-style algorithm; [88] described an ac-

tive set approach; [136] leveraged fast 1d fused lasso solvers in an ADMM

decomposition over trails of the graph; most recently, [90] derived a new

method based on graph cuts. We emphasize that, even with the advent of

these numerous clever computational techniques for the fused lasso over

general graphs, it is still far slower to solve the fused lasso over an arbitrary

26

graph than it is to solve the fused lasso over a chain.

Theoretical. On the theoretical side, it seems that the majority of statis-

tical theory on the fused lasso can be placed into two categories: analysis

of changepoint recovery, and analysis of MSE. Some examples of works fo-

cusing on changepoint recovery are [113, 68, 109, 116]. The statistical theory

will concern MSE rates, and hence we give a more detailed review of related

literature for this topic.

We begin with results for chain graphs. [102] proved, when θ0 ∈ BV1d(t),

that the 1d fused lasso estimator estimator θ̂1d with λ � t−1/3n1/3 satisfies

‖θ̂1d − θ0‖2
n = OP(t2/3n−2/3). (2.8)

This is indeed the minimax MSE rate for the class BV1d(t), as implied by

the minimax results in [45]. (For descriptions of the above upper bound

and this minimax rate in a language more in line with that of the current

paper, see [141].) Recently, [93] improved on earlier results for the bounded

differences class in [32], and proved that when θ0 ∈ BD1d(s), the 1d fused

lasso estimator θ̂1d with λ � (nWn)1/4 satisfies

‖θ̂1d − θ0‖2
n = OP

(
s

n

(
(log s+ log log n) log n+

√
n/Wn

))
, (2.9)

whereWn denotes the minimum distance between positions at which nonzero

differences occur in θ0, more precisely,

Wn = min{|i− j| : (∇1dθ0)i 6= 0, (∇1dθ0)j 6= 0}.

27

When these nonzero differences or “jumps” in θ0 are evenly spaced apart,

we have Wn � n/s, and the above becomes, for λ �
√
ns−1/4,

‖θ̂1d − θ0‖2
n = OP

(
s(log s+ log log n) log n

n
+
s3/2

n

)
. (2.10)

This is quite close to the minimax lower bound, whose rate is s log(n/s)/n,

that we establish for the class BD1d(s), in Theorem 2.4.3. (The minimax

lower bound that we prove this theorem actually holds beyond the chain

graph, and applies to tree graphs). We can see that the 1d fused lasso rate

in (2.10) is only off by a factor of log log n, provided that s does not grow too

fast (specifically, s = O((log n log log n)2)).

Beyond chain graphs, the story is in general much less clear, how-

ever, interesting results are known in special cases. For a d-dimensional

grid graph, with d ≥ 2, [71] recently improved on results of [149], showing

that for θ0 ∈ BVG(t) ∩ BDG(s), the fused lasso estimator θ̂G over G satisfies

‖θ̂G − θ0‖2
n = OP

(
min{t, s} loga n

n

)
. (2.11)

when λ � loga/2 n, where a = 2 if d = 2, and a = 1 if d ≥ 3. A minimax lower

bound on the MSE rate for the BVG(t) class over a gridG of dimension d ≥ 2

was established to be t
√

log(n/t)/n, by [119]. This makes the rate achieved

by the fused lasso in (2.11) nearly optimal for bounded variation signals, off

by at most a log3/2 n factor when d = 2, and a log n factor when d ≥ 3.

Other work in [149, 71] also derived MSE rates for the fused lasso

over several other graph structures, such as Erdos-Renyi random graphs,

28

Ramanujan d-regular graphs, star graphs, and complete graphs. As it is

perhaps the most relevant to our goals in this chapter, we highlight the MSE

bound from [149] that applies to arbitrary connected graphs. Their Theorem

3 implies, for a generic connected graph G, θ0 ∈ BVG(t), that the fused lasso

estimator θ̂G over G with λ �
√
n log n satisfies

‖θ̂G − θ0‖2
n = OP

(
t

√
log n

n

)
. (2.12)

(See Appendix A.1 for details.) In Theorem 2.3.2, we show that the uni-

versal tn−1/2 rate (ignoring log terms) in (2.12) for the fused lasso over an

arbitrary connected graph can be improved to t2/3n−2/3. In Theorem 2.3.1,

we show that the same rate can indeed be achieved by a simple, linear-time

algorithm: the DFS fused lasso.

2.2 The DFS fused lasso

In this section, we define the DFS-induced chain graph and the DFS

fused lasso.

2.2.1 Tree and chain embeddings

We start by studying some of the fundamental properties associated

with total variation on general graphs, and embedded trees and chains.

Given a graph G = (V,E), let T = (V,ET) be an arbitrary spanning tree

of G. It is clear that for any signal, its total variation of over T is no larger

29

than its total variation over G,

‖∇T θ‖1 =
∑
e∈ET

|θe+ − θe−| ≤
∑
e∈E

|θe+ − θe− | = ‖∇Gθ‖1, for all θ ∈ Rn.

(2.13)

The above inequality, albeit very simple, reveals to us the following impor-

tant fact: if the underlying mean θ0 in (2.1) is assumed to be smooth with re-

spect to the graph G, inasmuch as ‖∇Gθ0‖1 ≤ t, then it must also be smooth

with respect to any spanning tree T ofG, since ‖∇T θ0‖1 ≤ t. Roughly speak-

ing, computing the fused lasso solution in (2.2) over a spanning tree T , in-

stead of G, would therefore still be reasonable for the denoising purposes,

as the mean θ0 would still be smooth over T according to the total variation

metric.

The same property as in (2.14) also holds if we replace total variation

by the cut metric:

‖∇T θ‖0 =
∑
e∈ET

1{θe+ 6= θe−} ≤
∑
e∈E

1{θe+ 6= θe−} = ‖∇Gθ‖0, for all θ ∈ Rn.

(2.14)

Thus for the mean θ0, the property ‖∇Gθ0‖0 ≤ s again implies ‖∇T θ0‖0 ≤ s

for any spanning tree T of G, and this would again justify solving the fused

lasso over T , in place of G, assuming smoothness of θ0 with respect to the

cut metric in the first place.

Here we go one step further than (2.13), (2.14), and assert that anal-

ogous properties actually hold for specially embedded chain graphs. The

next lemma gives the key result.

30

Lemma 2.2.1. Let G = (V,E) be a connected graph, where recall we write V =

{1, . . . , n}. Consider depth-first search (DFS) run on G, and denote by v1, . . . , vn

the nodes in the order in which they are reached by DFS. Hence, DFS first visits v1,

then v2, then v3, etc. This induces a bijection τ : {1, . . . , n} → {1, . . . , n}, such

that

τ(i) = vi, for all i = 1, . . . , n.

Let P ∈ Rn×n denote the permutation associated with τ . Then it holds that

‖∇1dPθ‖1 ≤ 2‖∇Gθ‖1, for all θ ∈ Rn, (2.15)

as well as

‖∇1dPθ‖0 ≤ 2‖∇Gθ‖0, for all θ ∈ Rn. (2.16)

Proof. The proof is simple. Observe that

‖∇1dPθ‖1 =
∑

i=1,...,n−1

|θτ(i+1) − θτ(i)|, (2.17)

and consider an arbitrary summand |θτ(i+1) − θτ(i)|. There are now two cases

to examine. First, suppose τ(i) is not a leaf node, and τ(i+1) has not yet been

visited by DFS; then there is an edge e ∈ E such that {e−, e+} = {τ(i), τ(i+ 1)},

and |θτ(i+1) − θτ(i)| = |θe+ − θe− |. Second, suppose that either τ(i) is a leaf

node, or all of its neighbors have already been visited by DFS; then there is

a path p = {p1, . . . , pr} in the graph such that p1 = τ(i), pr = τ(i + 1), and

each {pj, pj+1} ∈ E, j = 1, . . . , r − 1, so that by the triangle inequality

|θτ(i+1) − θτ(i)| ≤
r−1∑
j=1

|θpj−1
− θpj |.

31

Applying this logic over all terms in the sum in (2.17), and invoking the

fundamental property that DFS visits each edge a most twice (e.g., Chapter

22 of [29]), we have established (2.15). The proof for (2.16) follows from

precisely the same arguments.

Example 1. The proof behind Lemma 2.2.1 can also be clearly demonstrated

through an example. We consider G to be a binary tree graph with n = 7

nodes, shown below, where we have labeled the nodes according to the

order in which they are visited by DFS (i.e., so that here P is the identity).

1

2

3 4

5

6 7

In this case,

‖∆1dθ‖1 =
6∑
i=1

|θi+1 − θi|

≤ |θ2 − θ1|+ |θ3 − θ2|+
(
|θ3 − θ2|+ |θ4 − θ2|

)
+(

|θ4 − θ2|+ |θ2 − θ1|+ |θ5 − θ1|
)

+ |θ6 − θ5|+
(
|θ6 − θ5|+ |θ7 − θ5|

)
≤ 2

∑
e∈G

|θe+ − θe−| = 2‖∇Gθ‖1,

where in the inequality above, we have used triangle inequality for each

term in parentheses individually.

32

2.2.2 The DFS fused lasso

We define the DFS fused lasso estimator, θ̂DFS, to be the fused lasso

estimator over the chain graph induced by running DFS on G. Formally,

if τ denotes the bijection associated with the DFS ordering (as described in

Lemma 2.2.1), then the DFS-induced chain graph can be expressed as C =

(V,EC) where V = {1, . . . , n} and EC = {{τ(1), τ(2)}, . . . , {τ(n− 1), τ(n)}}.

Denoting by P the permutation matrix associated with τ , the edge incidence

matrix ofC is simply∇C = ∇1dP , and the DFS fused lasso estimator is given

by

θ̂DFS = argmin
θ∈Rn

1

2
‖y − θ‖2

2 + λ‖∇1dPθ‖1

= P>

(
argmin
θ∈Rn

1

2
‖Py − θ‖2

2 + λ
n−1∑
i=1

|θi+1 − θi|

)
. (2.18)

Therefore, we only need to compute the 1d fused lasso estimator on a per-

muted data vector Py, and apply the inverse permutation operator P>, in

order to compute θ̂DFS.

Given the permutation matrix P , the computational cost of (2.18) is

O(n), since, to recall the discussion in Section 2.1.3, the 1d fused lasso prob-

lem (2.7) can be solved in O(n) operations with dynamic programming or

taut string algorithms. The permutation P is obtained by running DFS,

which requires O(m) operations, and makes the total computation cost of

the DFS fused lasso estimator O(m+ n).

It should be noted that, when multiple estimates are desired over the

33

same graphG, we must only run DFS once, and all subsequent estimates on

the induced chain require just O(n) operations.

The bounds in (2.15), (2.16) for the DFS chain are like those in (2.13),

(2.14) for spanning trees, and carry the same motivation as that discussed

above for spanning trees, beneath (2.13), (2.14): if the mean θ0 is assumed to

be smooth with respect to t, insofar as its total variation satisfies ‖∇Gθ0‖1 ≤ t,

then denoising with respect to C would also be reasonable, in that

‖∇1dPθ0‖1 ≤ 2t; the same can be said for the cut metric. However, it is the

rapid O(m+n) computational cost of the DFS fused lasso, and also the sim-

plicity of the dynamic programming and taut string algorithms for the 1d

fused lasso problem (2.7), that makes (2.15), (2.16) particularly appealing

compared to (2.13), (2.14). To recall the discussion in Section 2.1.3, the fused

lasso can in principle be computed efficiently over a tree, in O(n log n) op-

erations using dynamic programming, but this requires a much more cum-

bersome implementation and in practice we have found it to be noticeably

slower.

2.2.3 Running DFS on a spanning tree

We can think of the induced chain graph, as described in the last

section, as being computed in two steps:

(i) run DFS to compute a spanning tree T of G;

(ii) run DFS on the spanning tree T to define the chain C.

34

Clearly, this is the same as running DFS on G to define the induced chain

C, so decomposing this process into two steps as we have done above may

seem odd. But this decomposition provides a useful perspective because it

leads to the idea that we could compute the spanning tree T in Step (i) in

any fashion, and then proceed with DFS on T in Step 2 in order to define

the chain C. Indeed, any spanning tree in Step (i) will lead to a chain C that

has the properties (2.15), (2.16) as guaranteed by Lemma 2.2.1. This may be

of interest if we could compute a spanning tree T that better represents the

topology of the original graph G, so that the differences over the eventual

chain C better mimicks those over G.

An example of a spanning tree whose topology is designed to re-

flect that of the original graph is a low-stretch spanning tree. Current in-

terest on low-stretch spanning trees began with the breakthrough results

in [54]; most recently, [2] showed that a spanning tree with average stretch

O(log n log log n) can be computed in O(m log n log log n) operations. In Sec-

tion 5.6.1, we investigate low-stretch spanning trees experimentally.

In Section 2.6.4, we discuss a setting in which the fused lasso problem

(2.2) has arbitrary penalty weights, which gives rise to a weighted graph G.

In this setting, an example of a spanning tree that can be crafted so that its

edges represent important differences in the original graph is a maximum

spanning tree. Prim’s and Kruskal’s minimum spanning tree algorithms,

each of which takeO(m log n) time [29], can be used to compute a maximum

spanning tree after we negate all edge weights.

35

2.2.4 Averaging multiple DFS estimators

Notice that several DFS-induced chains can be formed from a single

seed graph G, by running DFS itself on G with different random starts (or

random decisions about which edge to follow at each step in DFS), or by

computing different spanning trees T of G (possibly themselves random-

ized) on which we run DFS, or by some combination, etc. Denoting by

θ̂
(1)
DFS, θ̂

(2)
DFS, . . . , θ̂

(K)
DFS the DFS fused lasso estimators fit toK different induced

chains, we might believe that the average estimator, (1/K)
∑K

k=1 θ̂
(k)
DFS, will

have good denoising performance, as it incorporates fusion at each node

in multiple directions. In Section 5.6.1, we demonstrate that this intuition

holds true (at least, across the set of experiments we consider).

2.3 Analysis for signals of bounded variation

Throughout this section, we assume that the underlying mean θ0 in

(2.1) satisfies θ0 ∈ BVG(t) for a generic connected graphG. We derive upper

bounds on the MSE rates of the DFS fused lasso and the fused lasso over G.

We also derive a tight lower bound on the minimax MSE when G is a tree

that of bounded degree.

2.3.1 The DFS fused lasso

The analysis for the DFS fused lasso estimator is rather straightfor-

ward. By assumption, ‖∇Gθ0‖1 ≤ t, and thus ‖∇1dPθ0‖1 ≤ 2t by (2.15) in

Lemma 2.2.1. Hence, we may think of our model (2.1) as giving us i.i.d.

36

data Py around Pθ0 ∈ BV1d(2t), and we may apply existing results from

[102] on the 1d fused lasso for bounded variation signals, as described in

(2.8) in Section 2.1.3. This establishes the following.

Theorem 2.3.1. Consider a data model (2.1), with i.i.d. sub-Gaussian errors as in

(2.3), and θ0 ∈ BVG(t), where G is a generic connected graph. Then for any DFS

ordering ofG yielding a permutation matrix P , the DFS fused lasso estimator θ̂DFS

in (2.18), with a choice of tuning parameter λ � t−1/3n1/3, has MSE converging in

probability at the rate

‖θ̂DFS − θ0‖2
n = OP(t2/3n−2/3). (2.19)

We note that, if multiple DFS fused lasso estimators θ̂(1)
DFS, θ̂

(2)
DFS, . . . , θ̂

(K)
DFS

are computed across multiple different DFS-induced chains on G, then the

average estimator clearly satisfies the same bound as in (2.19),∥∥∥∥∥ 1

K

K∑
k=1

θ̂
(k)
DFS − θ0

∥∥∥∥∥
2

n

= OP(t2/3n−2/3),

provided that K is held constant, by the triangle inequality.

2.3.2 The graph fused lasso

Interestingly, the chain embedding result (2.15) in Lemma 2.2.1 is not

only helpful for establishing the MSE rate for the DFS fused lasso estimator

in Theorem 2.3.1, but it can also be used to improve the best known rate

for the original fused lasso estimator over the graph G. In Section 2.1.3,

we described a result (2.12) that follows from [149], establishing an MSE

37

rate of tn−1/2 rate (ignoring log terms) for the fused lasso estimator over a

connected graph G, when ‖∇Gθ0‖1 ≤ t. In fact, as we will now show, this

can be improved to a rate of t2/3n−2/3, just as in (2.19) for the DFS fused

lasso.

[149] present a framework for deriving fast MSE rates for fused lasso

estimators based on entropy. They show in their Lemma 9 that a bound in

probability on the sub-Gaussian complexity

max
x∈SG(1)

ε>x

‖x‖1−w/2
2

, (2.20)

for some 0 < w < 2, where SG(1) = {x ∈ row(∇G) : ‖∇Gx‖1 ≤ 1}, leads to

a bound in probability on the MSE of the fused lasso estimator θ̂G over G.

([149] actually assume Gaussian errors, but their Lemma 9, Theorem 10,

Lemma 11, and Corollary 12 still hold for sub-Gaussian errors as in (2.3)).

The sub-Gaussian complexity in (2.20) is typically controlled via an entropy

bound on the class SG(1). Typically, one thinks of controlling entropy by

focusing on specific classes of graph structures G. Perhaps surprisingly,

Lemma 2.2.1 shows we can uniformly control the sub-Gaussian complexity

(2.20) over all connected graphs.

For any DFS-induced chain C constructed from G, note first that

row(∇G) = span{1}⊥ = row(∇C), where 1 = (1, . . . , 1) ∈ Rn is the vector

of all 1s. This, and (2.15) in Lemma 2.2.1, imply that

max
x∈SG(1)

ε>x

‖x‖1−w/2
2

≤ max
x∈SC(2)

ε>x

‖x‖1−w/2
2

.

38

Now, taking w = 1,

maxx∈SC(2)
ε>x

‖x‖1/22

= max
x : 1>x = 0,
‖∇1dPx‖1 ≤ 2

ε>x

‖x‖1/22

= max
x : 1>x = 0,
‖∇1dx‖1 ≤ 1

2−1/2(Pε)>x

‖x‖1/22

= OP(n1/4).

The last step (asserting that the penultimate term is OP(n1/4)) holds

by first noting that Pε is equal in law to ε (as we have assumed i.i.d. com-

ponents of the error vector), and then applying results on the chain graph

in Theorem 10, Lemma 11, and Corollary 12 of [149]. Applying Lemma 9 of

[149], we have now established the following result.

Theorem 2.3.2. Consider a data model (2.1), with i.i.d. sub-Gaussian errors as in

(2.3), and θ0 ∈ BVG(t), whereG is a generic connected graph. Then the fused lasso

estimator θ̂G over G, in (2.2), under a choice of tuning parameter λ � t−1/3n1/3,

has MSE converging in probability at the rate

‖θ̂G − θ0‖2
n = OP(t2/3n−2/3). (2.21)

In a sense, the above theorem suggests that the chain graph is among

the hardest graphs for denoising bounded variation signals, since the fused

lasso estimator on any connected graphGwill achieve an MSE rate in that is

at least as good as in the chain rate, if not better. In this vein, it is worth em-

phasizing that the MSE bound in (2.21) is not tight for certain graph struc-

tures; a good example is the 2d grid, where we must compare (2.21) from

39

the theorem to the known MSE bound in (2.11) from [71], the latter being

only log factors from optimal, as shown in [119]. It is natural for the 2d

grid graph to consider the scaling t �
√
n (as argued in [119]), in which case

the rates for the fused lasso estimator are n−1/3 from Theorem 2.3.2 versus

(log2 n)n−1/2 from [71].

2.3.3 Minimax lower bound over trees

We derive a lower bound for the MSE over the class BVG(t) when

G is a tree graph. The proof applies Assouad’s Lemma [152], over a dis-

crete set of probability measures constructed by a careful partitioning of the

vertices of G, that balances both the sizes of each partition element and the

number of edges crossing in between partition elements. It is deferred until

Appendx A.2.

Theorem 2.3.3. Consider a data model (2.1), with i.i.d. Gaussian errors εi ∼

N(0, σ2), i = 1, . . . , n, and with θ0 ∈ BVG(t), where G is a tree graph, having

maximum degree dmax. Then there exists absolute constants N,C > 0, such that

for n/(tdmax) > N ,

inf
θ̂

sup
θ0∈BVG(t)

E‖θ̂ − θ0‖2
n ≥ C

(
t

σd2
maxn

)2/3

. (2.22)

The theorem demonstrates that, for trees of bounded degree, such as

the chain and balanced d-ary trees, the fused lasso estimator over the tree

achieves achieves the minimax rate, as does the DFS fused lasso.

40

2.4 Analysis for signals with bounded differences

We assume that the underlying mean θ0 in (2.1) satisfies θ0 ∈ BDG(s)

for a generic connected graph G. We analyze the MSE of the DFS fused

lasso, as well as (a particular formulation of) wavelet denoising over G. We

again establish a lower bound on the minimax MSE when G is a tree.

2.4.1 The DFS fused lasso

As it was for the bounded variation case, the analysis for the DFS

fused lasso estimator is straightforward. By assumption, ‖∇Gθ0‖0 ≤ s, thus

‖∇1dPθ0‖0 ≤ 2s by (2.16) in Lemma 2.2.1, and we may think of our model

(2.1) as having i.i.d. data Py around Pθ0 ∈ BD1d(2s). Applying an existing

result on the 1d fused lasso for bounded differences signals, as described in

(2.9), from [93], gives the following result.

Theorem 2.4.1. Consider a data model (2.1), with i.i.d. sub-Gaussian errors as in

(2.3), and θ0 ∈ BDG(s), for a connected graph G. Consider an arbitrary DFS or-

dering ofG, that defines a permutation matrix P and the DFS fused lasso estimator

θ̂DFS in (2.18). Denote by

Wn = min{|i− j| : (∇1dPθ0)i 6= 0, (∇1dPθ0)j 6= 0}

the minimum distance between positions, measured along the DFS-induced chain,

at which nonzero differences or jumps occur in θ0. Then, under a choice of tuning

parameter λ � (nWn)1/4, the DFS fused lasso estimator has MSE converging in

41

probability at the rate

‖θ̂DFS − θ0‖2
n = OP

(
s

n

(
(log s+ log log n) log n+

√
n/Wn

))
. (2.23)

Hence, if the s jumps along the DFS chain are evenly spaced apart, i.e., Wn � n/s,

then for λ �
√
ns−1/4,

‖θ̂DFSr − θ0‖2
n = OP

(
s(log s+ log log n) log n

n
+
s3/2

n

)
. (2.24)

An undesirable feature of applying existing 1d fused lasso results for

signals with bounded differences, in the above result, is the dependence on

Wn in the DFS fused lasso error bound (2.23) (we applied the result (2.9)

from [93], but the bounds from [32] also depend on Wn, and as far as we can

tell, so should any analysis of the 1d fused lasso for signals with bounded

differences). In the 1d setting, assuming that Wn � n/s, which says that

jumps in θ0 occur at roughly equally spaced positions, is fairly reasonable;

but to assume the same when the jumps are measured with respect to the

DFS-induced chain, as we must in order to establish (2.24), is perhaps not.

Even if the differences apparent in θ0 over edges in G are somehow (loosely

speaking) spaced far apart, running DFS could well produce an ordering

such that jumps in Pθ0 occur at positions very close together. We reiterate

that the MSE bounds for the DFS fused lasso for bounded variation signals,

in Theorem 2.3.1, do not suffer from any such complications.

42

2.4.2 Graph wavelet denoising

We compare the performances of the DFS fused lasso and wavelet

denoising using spanning tree wavelets, for signals with bounded differ-

ences. For spanning tree wavelets, the construction starts with a spanning

tree and carefully defines a hierarchical decomposition by recursively find-

ing and splitting around a balancing vertex, which is a vertex whose adja-

cent subtrees are of size at most half of the original tree; this decomposition

is used to construct an unbalanced Haar wavelet basis, as in [128]. In [125],

it was shown that for any connected graph G, the constructed wavelet basis

W ∈ Rn×n satisfies

‖Wθ‖0 ≤ dlog dmaxedlog ne‖∇Gθ‖0, for all θ ∈ Rn, (2.25)

where dmax is the maximum degree of G, and the above holds regardless

of choice of spanning tree in the wavelet construction. Now consider the

wavelet denoising estimator

θ̂W = argmin
θ∈Rn

1

2
‖y − θ‖2

2 + λ‖Wθ‖1. (2.26)

The following is an immediate consequence of (2.25), the fact that the wavelet

basis W is orthonormal, and standard results about soft-thresholding (e.g.,

Lemma 2.8 in [75]).

Theorem 2.4.2. Consider a data model (2.1), with i.i.d. Gaussian errors εi ∼

N(0, σ2), i = 1, . . . , n, and with θ0 ∈ BVG(t), where G is a connected graph,

43

having maximum degree dmax. Then the spanning tree wavelet estimator θ̂W in

(2.26), with a choice λ �
√

log n, has MSE converging in expectation at the rate

E‖θ̂W − θ0‖2
n = O

(
s log dmax log2 n

n

)
. (2.27)

The result in (2.27) has the advantage over the DFS fused lasso result

in (2.23) that it does not depend on a hard-to-interpret quantity like Wn, the

minimum spacing between jumps along the DFS-induced chain. But when

(say) dmax � 1, s � 1, and we are willing to assume that Wn � n (meaning

the jumps of θ0 occur at positions evenly spaced apart on the DFS chain), we

can see that the spanning tree wavelet rate in (2.27) is just slightly slower

than the DFS fused lasso rate in (2.24), by a factor of log n/ log log n.

While the comparison between the DFS fused lasso and wavelet rates,

(2.23) and (2.27), show an advantage to spanning tree wavelet denoising, as

it does not require assumptions about the spacings between nonzero differ-

ences in θ0, we have found nonetheless that the DFS fused lasso to performs

well in practice compared to spanning tree wavelets, and indeed often out-

performs the latter in terms of MSE. Experiments comparing the two meth-

ods are presented Section 5.6.1.

2.4.3 Minimax lower bound for trees

We now derive a lower bound for the MSE over the class BDG(s)

when G is a tree graph. The proof relates the current denoising problem to

one of estimating sparse normal means, with a careful construction of the

44

sparsity set using degree properties of trees. It is deferred until Appendix

A.3.

Theorem 2.4.3. Consider a data model (2.1), with i.i.d. Gaussian errors εi ∼ N(0, σ2),

i = 1, . . . , n, and with θ0 ∈ BDG(s), whereG is a tree. Then there are absolute con-

stants N,C > 0, such that for n/s > N ,

inf
θ̂

sup
θ0∈BDG(s)

E‖θ̂ − θ0‖2
n ≥ Cσ2 s

n
log
(n
s

)
. (2.28)

The MSE lower bound in (2.28) shows that, when we are willing to

assume that Wn � n/s in the DFS-induced chain, the DFS fused lasso esti-

mator is a log log n factor away from the optimal rate, provided that s is not

too large, namely s = O((log n log log n)2). The spanning tree wavelet esti-

mator, on the other hand, is a log n factor from optimal, without any real

restrictions on s, i.e., it suffices to have s = O(na) for some a > 0. It is worth

remarking that, for large enough s, the lower bound in (2.28) is perhaps not

very interesting, as in such a case, we may as well consider the bounded

variation lower bound in (2.22), which will likely be tighter (faster).

2.5 Experiments

In this section we compare experimentally the speed and accuracy

of two approaches for denoising signals on graphs: the graph fused lasso,

and the fused lasso along the chain graph induced by a DFS ordering. In

our experiments, we see that the DFS-based denoiser sacrifices a modest

amount in terms of mean squared error, while providing gains (sometimes

45

considerable) in computational speed. This shows that our main theorem,

in addition to providing new insights on MSE rates for the graph fused

lasso, also has important practice consequences. For truly massive prob-

lems, where the full graph denoising problem is impractical to solve, we

may use the linear-time DFS fused lasso denoiser, and obtain a favorable

tradeoff of accuracy for speed.

2.5.1 Generic graphs

We begin by considering three examples of large graphs of (more or

less) generic structure, derived from road networks in three states: Califor-

nia, Pennsylvania, and Texas. Data on these road networks are freely avail-

able at https://snap.stanford.edu. In these networks, intersections

and endpoints are represented by nodes, and roads connecting these inter-

sections or endpoints are represented by undirected edges; see [92] for more

details. For each network, we use the biggest connected component as our

graph structure to run comparisons. The graph corresponding to California

has n = 1957027 nodes and m = 2760388 edges, the one for Pennsylvania

has n = 1088092 nodes and m = 1541898 edges, and the graph for Texas has

n = 1351137 nodes and m = 1879201 edges. We compare Laplacian smooth-

ing versus the fused lasso over a DFS-induced chain, on the graphs from

the three states. We do not compare with the fused lasso over the original

graphs, due to its prohibitive computational cost at such large scales.

We used the following procedure to construct a synthetic signal θ0 ∈

46

Rn on each of the road network graphs, of piecewise constant nature:

• an initial seed node v1 is selected uniformly at random from the nodes

V = {1, . . . , n} in the graph;

• a component C1 is formed based on the bn/10c nodes closest to v1

(where the distance between two nodes in the graph is given by the

length of the shortest path between them);

• a second seed node v2 is selected uniformly at random from G \ C1;

• a component C2 is formed based on the bn/10c nodes closest to v2

(again in shortest path distance);

• this process is repeated until we have a partition C1, . . . , C10 of the

node set V into components of (roughly) equal size, and θ0 ∈ Rn is

defined to take constant values on each of these components.

Note that when constructing each Ci, there might small spurious connected

components which we attach to the respective Ci.

In our experiments, we considered 20 values of the total variation

for the underlying signal. For each, the signal θ0 was scaled appropriately

to achieve the given total variation value, and data y ∈ Rn was generated by

adding i.i.d. N(0, 0.22) noise to the components of θ0. For each data instance

y, the DFS fused lasso and Laplacian smoothing estimators, the former de-

47

fined by (2.18) and the latter by

θ̂Lap = argmin
θ∈Rn

1

2
‖y − θ‖2

2 + λθ>LGθ, (2.29)

where LG = ∇>G∇G is the Laplacian matrix of the given graph G, and each

estimator is computed over 20 values of its own tuning parameter. Then,

the value of the tuning parameter minimizing the average MSE, over 50

draws of data y around θ0, was selected for each method. Finally, this op-

timized MSE, averaged over the 50 draws of data y, and further, over 10

repetitions of the procedure for constructing the signal θ0 explained above,

was recorded. Figure 2.1 displays the optimized MSE for the DFS fused

lasso and Laplacian smoothing, as the total variation of the underlying sig-

nal varies, for the three road network graphs.

As we can see from the figure, for low values of the underlying total

variation, i.e., low signal-to-noise ratio (SNR) levels, Laplacian smoothing

and the DFS fused lasso, each tuned to optimality, perform about the same.

This is because at low enough SNR levels, each will be approximating θ0 by

something like ȳ1, with ȳ being the sample average of the data vector y. But

as the SNR increases, we see that the DFS fused lasso outpeforms Lapla-

cian smoothing by a considerable amount. This might seem surprising, as

Laplacian smoothing uses information from the entire graph, whereas the

DFS fused lasso reduces the rich structure of the road network graph in each

case to that of an embedded chain. However, Laplacian smoothing is a lin-

ear smoother (meaning that θ̂Lap in (2.29) is a linear function of the data y),

48

Figure 2.1: The optimized MSE for the DFS fused lasso and Laplacian smoothing (i.e.,
MSE achieved by these methods under optimal tuning) is plotted as a function of the total
variation of the underlying signal, for each of the three road network graphs. This has been
averaged over 50 draws of data y for each construction of the underlying signal θ0, and 10
repetitions in constructing θ0 itself. For low values of the underlying total variation, i.e.,
low SNR levels, the two methods perform about the same, but as the SNR increases, the
DFS fused lasso outperforms Laplacian smoothing by a considerable margin.

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ●

5000 10000 15000 20000

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

California

Total variation

O
pt

im
iz

ed
 M

S
E

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●DFS fused lasso
Laplacian smoothing

●

●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ●

5000 10000 15000 20000

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Pennsylvania

Total variation

O
pt

im
iz

ed
 M

S
E

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●DFS fused lasso
Laplacian smoothing

●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

5000 10000 15000 20000

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Texas

Total variation
O

pt
im

iz
ed

 M
S

E

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●DFS fused lasso
Laplacian smoothing

and therefore it comes with certain limitations when estimating signals of

bounded variation (e.g., see the seminal work of [45], and the more recent

graph-based work of [119]). In contrast, the DFS fused lasso is a nonlin-

ear estimator, and while it discards some information in the original graph

structure, it retains enough of the strong adaptivity properties of the fused

lasso over the original graph to statistically dominate a linear estimator like

Laplacian smoothing.

Lastly, in terms of computational time, it took an average of 82.67 sec-

onds, 44.02 seconds, and 54.49 seconds to compute the 20 DFS fused lasso

solutions (i.e., over the 20 tuning parameter values) for the road network

49

graphs from California, Pennsylvania, and Texas, respectively (the averages

are taken over the 50 draws of data y around each signal θ0, and the 10 rep-

etitions in constructing θ0). By comparison, it took an average of 2748.26

seconds, 1891.97 seconds, and 1487.36 seconds to compute the 20 Laplacian

smoothing solutions for the same graphs. The computations and timings

were performed on a standard laptop computer (with a 2.80GHz Intel Core

i7-2640M processor). For the DFS fused lasso, in each problem instance, we

first computed a DFS ordering using the dfs function from the R package

igraph, which is an R wrapper for a C++ implementation of DFS, and ini-

tialized the algorithm at a random node for the root. We then computed the

appropriate 1d fused lasso solutions using the trendfilter function from

the R package glmgen, which is an R wrapper for a C++ implementation of

the fast (linear-time) dynamic programming algorithm in [74]. For Lapla-

cian smoothing, we used the solve function from the R package Matrix,

which is an R wrapper for a C++ implementation of the sparse Cholesky-

based solver in [35]. For such large graphs, alternative algorithms, such as

(preconditioned) conjugate gradient methods, could certainly be more ef-

ficient in computing Laplacian smoothing solutions; our reported timings

are only meant to indicate that the DFS fused lasso is efficiently computable

at problem sizes that are large enough that even a simple linear method like

Laplacian smoothing becomes nontrivial.

50

Figure 2.2: Underlying signal, data, and solutions from the 2d fused lasso and different
variations on the DFS fused lasso fit over a 1000× 1000 grid.

Figure 2.3: Optimized MSE and runtime for the 2d fused lasso and DFS fused lasso
estimators over a 2d grid, as the grid size n (total number of nodes) varies.

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

2e+03 1e+04 5e+04 2e+05 1e+06

0.
00

1
0.

00
2

0.
00

5
0.

01
0

0.
02

0

n

O
pt

im
iz

ed
 M

S
E

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
● ● ●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

2d fused lasso (slope: −0.58)
1 random DFS (slope: −0.39)
5 random DFS (slope: −0.40)
2 snake DFS (slope: −0.36)

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

2e+03 1e+04 5e+04 2e+05 1e+06

0.
01

0.
05

0.
50

5.
00

50
.0

0

n

R
un

tim
e

in
 s

ec
on

ds

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

2d fused lasso
1 random DFS
5 random DFS
2 snake DFS

51

2.5.2 2d grid graphs

Next we consider a denoising example on a 2d grid graph of dimen-

sion 1000×1000, so that the number of nodes is n = 1000000 and the number

of edges ism = 1998000. We generated a synthetic piecewise constant signal

θ0 ∈ R1000×1000 over the 2d grid, shown in the top left corner of Figure 2.2,

where a color scale (displayed in the accompanying color legend) is used,

with red denoting the smallest possible value and yellow the largest possi-

ble value. Data y ∈ R1000×1000 was generated by adding i.i.d. N(0, 1) noise

to the components of θ0, displayed in the top middle panel of Figure 2.2.

We then computed the 2d fused lasso solution (i.e., the fused lasso solu-

tion over the full 2d grid graph), as well as three DFS-based variations: the

DFS fused lasso solution using a random DFS ordering (given by running

DFS beginning at a random node), labeled as “1 random DFS” in the fig-

ure; the average of DFS fused lasso solutions over 5 random DFS orderings,

labeled “5 random DFS” in the figure; and the average of DFS fused lasso

solutions over 2 “snake” DFS orderings (one given by collecting and joining

all horizontal edges and the other all vertical edges) labeled “2 snake DFS”

in the figure. The tuning parameter for each method displayed in the fig-

ure was chosen to minimize the average MSE over 100 draws of the data y

from the specified model. Visually, we can see that the full 2d fused lasso

solution is the most accurate, however, the 1 random DFS, 5 random DFS,

and 2 snake DFS solutions all still clearly capture the structure inherent in

the underlying signal. Of the three DFS variations, the 5 random DFS esti-

52

mator is visually most accurate; the 1 random DFS estimator is comparably

“blotchy”, and the 2 snake DFS estimator is comparably “stripey”.

The left panel of 2.3 shows the optimized MSE for each method, i.e.,

the minimum of the average MSE over 100 draws of the data y, when we

consider 20 choices for the tuning parameter. This optimized MSE is plot-

ted as a function of the sample size, which runs from n = 2500 (a 50 × 50

grid) to n = 1000000 (a 1000 × 1000 grid), and in each case the underlying

signal is formed by taking an appropriate (sub)resolution of the image in

the top left panel of Figure 2.2. The 2d fused lasso provides the fastest de-

crease in MSE as n grows, followed by the 5 random DFS estimator, then

the 1 random DFS estimator, and the 2 snake DFS estimator. This is not a

surprise, since the 2d fused lasso uses the information from the full 2d grid.

Indeed, comparing (2.11) and (2.19), we recall that the 2d fused lasso enjoys

an MSE rate of t log2 n/n when θ0 has 2d total variation t, whereas the DFS

fused lasso has an MSE rate of only (t/n)2/3 in this setting. When t �
√
n,

which is a natural scaling for the underlying total variation in 2d and also

the scaling considered in the experimental setup for the figure, these rates

are (log2 n)n−1/2 for the 2d fused lasso, and n−1/3 for the DFS fused lasso.

The figure uses a log-log plot, so the MSE curves all appear to have lin-

ear trends, and the fitted slopes roughly match these theoretical MSE rates

(-0.58 for the 2d fused lasso, and -0.39, -0.40, and -0.36 for the three DFS

variations).

The right panel of Figure 2.3 shows the runtimes for each method

53

(averaged over 100 draws of the data y), as a function of the sample size

n. The runtime for each method counts the total time taken to compute so-

lutions across 20 tuning parameter values. The computations and timings

were carried out on a standard desktop computer (with a 3.40GHz Intel

Core i7-4770 processor). To compute 2d fused lasso solutions, we used the

TVgen function in the Matlab package proxTV, which is a Matlab wrapper

for a C++ implementation of the proximal stacking technique described in

[8]. For the DFS fused lasso, we computed initial DFS orderings using the

dfs function from the Matlab package MathBGL, and then, as before, used

the C++ implementation available through glmgen to compute the appro-

priate 1d fused lasso solutions. The figure uses a log-log plot, and hence we

can see that all DFS-based estimators are quite a bit more efficient than the

2d fused lasso estimator.

2.5.3 Tree graphs

We finish with denoising comparisons on tree graphs, for sample

sizes varying from n = 100 to n = 5300. For each sample size n, a random

tree is constructed via a sequential process in which each node is assigned a

number of children between 2 and 10 (uniformly at random). Given a tree,

an underlying signal θ0 ∈ Rn is constructed to be piecewise constant with

total variation 5
√
n (the piecewise constant construction here is made easy

because the oriented incidence matrix of a tree is invertible). Data y ∈ Rn

was generated by adding i.i.d. N(0, 1) noise to θ0. We compared the fused

54

Figure 2.4: The left panel shows the optimized MSE as a function of the sample size for the
fused lasso over a tree graph, as well as the 1 random DFS and 5 random DFS estimators,
and wavelet smoothing. The right panel

●

●
●

●

●
●

●
●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

100 200 500 1000 2000 5000

0.
00

2
0.

00
5

0.
01

0
0.

02
0

0.
05

0
0.

10
0

n

O
pt

im
iz

ed
 M

S
E

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●●

●

●
●
●

●

●

●
●

●

●

●

●

● ●

●
●

●
● ●

●
● ●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●●

●

●

●
●

●

●
●

●

●

Tree fused lasso
1 random DFS
5 random DFS
Wavelet smoothing

●

●

●

●

● ● ● ● ● ● ● ● ● ●
●

●
●

● ●

●
●

● ●

● ●
●

●
●

●

●
● ● ●

●
●

●

●

●
●

●
●

●
●

●

●
● ●

●

●
● ●

0 50 100 150 200 250
0.

02
0

0.
02

5
0.

03
0

0.
03

5
0.

04
0

Degrees of freedom

M
S

E

●

●

●

●
●

●
●

● ● ● ● ● ● ● ●
●

●

●

●
●

●
●

●
●

●
● ●

●
●

● ●

●
●

●
●

● ●

●

●

●
●

●
●

● ●

●

●
●

●

● ●

●

●

●
● ●

● ● ●
● ● ● ●

● ● ●
● ● ●

●
● ● ●

● ● ●
●

●
● ● ●

●

Tree fused lasso
1 random DFS
Wavelet smoothing

lasso estimator over the full tree, 1 random DFS and 5 random DFS esti-

mators (using the terminology from the last subsection), and the wavelet

smoothing estimator defined in (2.26). For each estimator, we computed

the entire solution path using the path algorithm of [141] implemented in

the R package genlasso, and selected the step along the path to minimize

the average MSE over 50 draws of data y around θ0, and 10 repetitions in

constructing θ0. (The full solution path can be computed here because each

estimator can be cast as a generalized lasso problem, and because the prob-

lem sizes considered here are not enormous.)

The left panel of Figure 2.4 plots this optimized MSE as a function

of the sample size n. We see that the fused lasso estimator over the full

tree and the 5 random DFS estimator perform more or less equivalently

55

over all sample sizes. The 1 random DFS estimator is slightly worse, and

the wavelet smoothing estimator is considerably worse. The right panel

shows the the MSE as a function of the effective degrees of freedom of each

estimator, for a particular data instance with n = 5300. We see that both

the tree fused lasso and 1 random DFS estimators achieve their optimum

MSEs at solutions of low complexity (degrees of freedom), whereas wavelet

smoothing does not come close to achieving this MSE across its entire path

of solutions.

2.6 Discussion

Recently, there has been a significant amount on interest on graph-

structured denoising. Much of this work has focused on the construction

of graph kernels or wavelet bases. We have proposed and studied a simple

method, defined by computing the 1d fused lasso over a particular DFS-

induced ordering of the nodes of a general graph. This linear-time algo-

rithm comes with strong theoretical guarantees for signals of bounded vari-

ation (achieving optimal MSE rates for trees of bounded degree), as well

as guarantees for signals with a bounded number of nonzero differences

(achieving nearly optimal rates under a condition on the spacings of jumps

along the DFS-induced chain). We summarize our theoretical results in Ta-

ble 2.1.

Practically, we have seen that the DFS fused lasso can often represent

a useful tradeoff between computational efficiency and statistical accuracy,

56

Table 2.1: A summary of the theoretical results derived in this chapter. All rates are on
the mean squared error (MSE) scale (E‖θ̂ − θ0‖2n for an estimator θ̂), and for simplicity,
are presented under a constant scaling for t, s, the radii in the BVG(t),BDG(s) classes,
respectively. The superscript “∗” in the BDG(s) rate for the DFS fused lasso is used to
emphasize that this rate only holds under the assumption that Wn � n. Also, we write
dmax to denote the max degree of the graph in question.

BVG(t), t � 1 BDG(s), s � 1

Fused lasso, θ̂G n−2/3 unknown

Spanning tree wavelets, θ̂W unknown (log2 n log dmax)/n

DFS fused lasso, θ̂DFS n−2/3 (log n log log n)/n∗

Tree lower bound n−2/3d
−4/3
max log n/n

versus competing methods that offer better statistical denoising power but

are more computationally expensive, especially for large problems. A sim-

ple trick like averaging multiple DFS fused lasso fits, over multiple random

DFS-induced chains, often improves statistical accuracy at little increased

computational cost. Several extensions along these lines, and other lines,

are possible. To study any of them in detail is beyond the scope of this

chapter. We discuss them briefly below, leaving detailed follow-up to fu-

ture work.

2.6.1 Beyond simple averaging

Given multiple DFS fused lasso estimators, θ̂(1)
DFS, . . . , θ̂

(K)
DFS, obtained

using multiple DFS-induced chains computed on the same graph G, there

are several possibilities for intelligently combining these estimators beyond

57

the simple average, denoted (say) θ̄(K)
DFS = (1/K)

∑K
k=1 θ̂

(k)
DFS. To better pre-

serve edges in the combined estimator, we could run a simple nonlinear

filter—for example, a median filter, over θ̂(1)
DFS, . . . , θ̂

(K)
DFS (meaning that the

combined estimator is defined by taking medians over local neighborhoods

of all of the individual estimators). A more sophisticated approach would

be to compute the DFS fused lasso estimators sequentially, using the (k−1)st

estimator to modify the response in some way in the 1d fused lasso problem

that defines the kth DFS fused lasso estimator. We are intentionally vague

here with the specifics, because such a modification could be implemented

in various ways; for example, it could be useful to borrow ideas from the

boosting literature, which would have us treat each DFS fused lasso estima-

tor as a weak learner.

2.6.2 Distributed algorithm

For large graphs, we should be able to both compute a DFS ordering

over G, and solve the DFS fused lasso problem in (2.18), in a distributed

fashion. There are many algorithms for distributed DFS, offering a variety

of communication and time complexities; see, e.g., [144] for a survey. Dis-

tributed algorithms for the 1d fused lasso are not as common, though we

can appeal to the now well-studied framework for distributed optimization

via the alternating direction method of multipliers (ADMM) from [13]. Dif-

ferent formulations for the auxiliary variables present us with different op-

tions for communication costs. We have found that, for a formulation that

58

requiresO(1)-length messages to be communicated between processors, the

algorithm typically converges in a reasonably small number of iterations.

2.6.3 Theory for piecewise constant signals

The bounded differences class BDG(s) in (2.5) is defined in terms of

the cut metric ‖∇Gθ‖0 of a parameter θ, which recall, counts the number of

nonzero differences occurring in θ over edges in the graphG. The cut metric

measures a notion of strong sparsity (compared to the weaker notion mea-

sured by the total variation metric) in a signal θ, over edge differences; but,

it may not be measuring sparsity on the “right” scale for certain graphs G.

Specifically, the cut metric ‖∇Gθ‖0 can actually be quite large for a parame-

ter θ that is piecewise constant overG, with a small number of pieces—these

are groups of connected nodes that are assigned the same constant value in

θ. Over the 2d grid graph, e.g., one can easily define a parameter θ that has

only (say) two constant pieces but on the order of
√
n nonzero edge differ-

ences. Therefore, for such a “simple” configuration of the parameter θ, the

cut metric ‖∇Gθ‖0 is deceivingly large.

To formally define a metric that measures the number of constant

pieces in a parameter θ, with respect to a graph G = (V,E), we introduce

a bit of notation. Denote by Z(θ) ⊆ E the subset of edges over which

θ exhibits differences of zero, i.e., Z(θ) = {e ∈ E : θe+ = θe−}. Also write

(∇G)Z(θ) for the submatrix of the edge incidence matrix ∇G with rows in-

59

dexed by Z(θ). We define the piece metric by

ρG(θ) = nullity
(
(∇G)Z(θ)

)
,

where nullity(·) denotes the dimension of the null space of its argument. An

equivalent definition is

ρG(θ) = the number of connected components in (V,E \ Z(θ)).

We may now define the piecewise constant class, with respect to G, and a

parameter s > 0,

PCG(s) = {θ ∈ Rn : ρG(θ) ≤ s}.

It is not hard to to see that BVG(s) ⊆ PCG(s) (assuming only that G is con-

nected), but for certain graph topologies, the latter class PCG(s) will be

much larger. Indeed, to repeat what we have conveyed above, for the 2d

grid one can naturally define a parameter θ such that θ ∈ BDG(
√
n) and

θ ∈ PCG(2).

We conjecture that the fused lasso estimator over G can achieve a

fast MSE rate when the mean θ0 in (2.1) exhibits a small number of constant

pieces, i.e., θ0 ∈ PCG(s), provided that these pieces are of roughly equal size.

Specifically, assuming ρG(θ0) ≤ s, let Wn denote the smallest size of a con-

nected component in the graph (V,E \ Z(θ0)). Then, for a suitable choice of

λ, we conjecture that the fused lasso estimator θ̂G in (2.2) satisfies

‖θ̂G − θ0‖2
n = OP

(
s

n

(
polylog n+ n/Wn

))
, (conjecture)

60

where polylog n is a shorthand for a polynomial of log n. This would sub-

stantially improve upon existing strong sparsity denoising results, such as

(2.11), (2.23), (2.27), since the latter results are all proven for the class BDG(s),

which, as we have argued, can be much smaller than PCG(s), depending on

the structure of G.

2.6.4 Weighted graphs

The key result in Lemma 2.2.1 can be extended to the setting of a

weighted graph G = (V,E,w), with we ≥ 0 denoting the edge weight asso-

ciated an edge e ∈ E. We state the following without proof, since its proof

follows in nearly the exact same way as that of Lemma 2.2.1.

Lemma 2.6.1. Let G = (V,E,w) be a connected weighted graph, where recall we

write V = {1, . . . , n}, and we assume all edge weights are nonnegative. Consider

running DFS on G, and denote by τ : {1, . . . , n} → {1, . . . , n} the induced per-

mutation, so that if v1, . . . , vn are the nodes in the order that they are traversed by

DFS, then

τ(i) = vi, for all i = 1, . . . , n.

Denote wmin = mine∈E we, the minimum edge weight present in the graph, and

define

w̃ij =

{
we if e = {i, j} ∈ E,
wmin otherwise,

for all i, j = 1, . . . , n. (2.30)

It holds that
n−1∑
i=1

w̃τ(i),τ(i+1)

∣∣θτ(i+1) − θτ(i)

∣∣ ≤ 2
∑
e∈E

we|θe+ − θe−|, for all θ ∈ Rn, (2.31)

61

as well as

n−1∑
i=1

w̃τ(i),τ(i+1)1
{
θτ(i+1) 6= θτ(i)

}
≤ 2

∑
e∈E

we1{θe+ 6= θe−}, for all θ ∈ Rn.

(2.32)

The bounds in (2.31), (2.32) are the analogies of (2.15), (2.16) but for

a weighted graph G; indeed we see that we can still embed a DFS chain

into G, but this chain itself comes with edge weights, as in (2.30). These

new edge weights in the chain do not cause any computational issues; the

1d fused lasso problem with arbitrary penalty weights can still be solved in

O(n) time using the taut string algorithm in [8]. Thus, in principle, all of the

results in this chapter should carry over in some form to weighted graphs.

2.6.5 Potts and energy minimization

Replacing the total variation metric by the cut metric in the fused

lasso problem (2.2) gives us

θ̃G = argmin
θ∈Rn

1

2
‖y − θ‖2

2 + λ‖∇Gθ‖0, (2.33)

often called the Potts minimization problem. Because the 1d Potts minimiza-

tion problem

θ̃1d = argmin
θ∈Rn

1

2
‖y − θ‖2

2 + λ‖∇1dθ‖0 (2.34)

can be solved efficiently, e.g., in worst-case O(n2) time with dynamic pro-

gramming [11, 74], the same strategy that we have proposed in this chap-

ter can be applied to reduce the graph Potts problem (2.33) to a 1d Potts

62

problem (2.34), via a DFS ordering of the nodes. This may be especially in-

teresting as the original Potts problem (2.33) is non–convex and generally

intractable (i.e., intractable to solve to global optimality) for an arbitrary

graph structure, so a reduction to a worst-case quadratic-time denoiser is

perhaps very valuable.

When the optimization domain in (2.33) is a discrete set, the problem

is often called an energy minimization problem, as in [15]. It has not escaped

our notice that our technique of denoising over DFS-induced chains could

be useful for this setting, as well.

63

Chapter 3

Tensor decomposition with generalized lasso
penalties

3.1 Structure and sparsity in multiway arrays

The work presented in this chapter is based on the paper [99]. We

study low rank tensor decompositions that are amenable for interpretation

purposes. These are particularly useful for incorporating temporal and/or

spatial information when analyzing multi–way array data.

Existing methods for penalized matrix decompositions have been

shown to outperform classical PCA in discovering patterns in application

areas such as genomics and neuroscience. Penalties that encourage struc-

ture (such as the fused lasso) provide interpretable results when there is a

natural order of the measurements, while penalties that encourage sparsity

are useful when there is no such ordering [151]. In the high-dimensional

tensor setting however, existing decomposition methods only enforce sparse

constraints. We address this gap by proposing a method for penalized ten-

sor decomposition (PTD) that allows arbitrary combinations of sparse or

structured penalties along different margins of a data array.

Given a data array Y = {ylts}, the statistical problem that we study

64

is to find a low-dimensional factor representation (also known as a Parafac

decomposition) such that the factors are constrained to be sparse and/or

smooth. For ease of presentation, we restrict attention to the three-way

case, but the generalization of our approach to arrays with more than three

modes is straightforward.

More explicitly, suppose we are given a set of observations yl,t,s, the

elements of a three dimensional tensor Y ∈ RL×T×S , that have been gener-

ated from the complete tensor model

yl,t,s =
∑J

j=1 d
∗
j u
∗
ljv
∗
tjw
∗
sj + el,t,s, , l ∈ {1, . . . , L}, t ∈ {1, . . . , T},

s ∈ {1, . . . , S} (3.1)

with unknown hidden vectors u∗:j ∈ RL, v∗:j ∈ RT , w∗:j ∈ RS , j = 1, . . . , J and

scalars d∗j , j = 1, . . . , J . We will later discuss the missing data problem. For

simplicity we assume that the variance σ2 of the error term el,t,s is constant.

Moreover, when J = 1 we suppress the index j. Our goal is to estimate

these latent factors, which can be challenging since we only have one ob-

servation for each combination u∗lj, v
∗
tj, w

∗
sj . However, we assume that this

task is aided by the presence of special structure in these true vectors. Ex-

plicitly, we assume that some of the vectors {u∗·,j}Jj=1, {v∗·,j}Jj=1,, {w∗·,j}Jj=1 are

restrictions of smooth functions defined in the interval [0, 1]. For instance, it

might be the case that u∗lj = u∗j(l/L) for l = 1, . . . , L, where u∗j is a piecewise

continuous or differentiable function on [0, 1].

A natural situation in which this would arise is when one of the

modes of the data array corresponds to a temporal or spatial axis. Our main

65

contribution is to provide optimization algorithms for finding Parafac de-

compositions that shrink towards such structure. To do so, we apply a gen-

eralized lasso penalty along each mode of the array. We refer to this class of

methods as penalized tensor decompositions (PTD).

We face two main challenges in estimating the factors. First, the re-

sulting optimization problem is non-convex. We propose to reach a sta-

tionary point using block coordinate descent, as in [3], and we provide

convergence rates for a single-block udpate. This leads us to the second

challenge: unlike in the sparse unconstrained problem formulated by [3],

for our case of a generalized lasso penalty, it is not clear how to make the

block-coordinate updates. Our results provide a novel way of doing so that

exploits the multi-convex structure of the problem, and that provides effi-

cient algorithms for finding the factors when formulating the problem either

in a penalized or constrained form.

3.2 Relation to previous work

Structurally constrained estimation is an active area of research, and

we do not attempt a comprehensive review. Our work draws heavily on ad-

vances in understanding the one dimensional case, where penalized regres-

sion has been widely studied in the literature [59, 80, 138, 139]. For instance,

in protein mass spectroscopy and gene expression data measured from a mi-

croarray, the fused lasso has been used to obtain interpretable results [139].

The fused lasso is a natural choice here, since it encourages neighboring

66

measurements to share the same underlying parameter. Similarly, to en-

force smoothness in the solution, trend filtering has been proposed by [80]

as a way to place one-dimensional function estimation within the convex

optimization framework. The trend filtering penalized-regression problem

has found applications in areas as diverse as image processing and demog-

raphy.

In the case of matrix decomposition, the need for penalized methods

arises in applications in genetic data, where there are multiple comparative

genomic hybridizations and we expect correlation among observations at

genetic loci that are close to each other along the chromosome. As shown in

[151], by considering different choices of penalties, we can recover different

kinds of structures along either the rows or the columns of a data matrix.

See the references in [151] for a much more comprehensive bibliography on

sparse principal components analysis.

In moving from matrices to multiway arrays, Parafac decomposi-

tions offer an attractive framework for recovering latent lower dimensional

structure. This is due to their easy interpretability as well as feasibility of

computation [4, 69, 76, 86, 89]. More generally, Tucker models have been

proposed as general models for multiway data and have been successfully

applied in many areas [25]. Other popular methods for tensor decomposi-

tions include those described in [12] and [36]. However, these approaches

do not provide structural or sparse solutions. This point was made by [3],

who proposed a sparse penalized Parafac decomposition method that out-

67

performs the classical Parafac decomposition when the true solutions are

sparse. More recently, [133] also considers sparse tensor recovery and pro-

vides statistical guarantees for such a task.

In this chapterf, we study methods for structured, as opposed to

sparse, tensor factorizations. Our approach is inspired by the penalized ma-

trix decomposition methods from [151]. We generalize the matrix-decomposition

problem to the framework of tensor Parafac decompositions while incorpo-

rating solution algorithms for a more broader class of penalties, including

trend filtering for factors that are smooth (e.g in space or time).

3.3 Basic definitions

We now introduce notation and definitions used throughout this chap-

ter. This material can be found in [26], to which we refer the reader for

more details. Let I1,I2..., IN , denote index N upper bounds. A tensor Y

∈ RI1×I2×...×IN of order N is an N−way array where elements yi1,i2...,iN are

indexed by in ∈ {1, 2,, In} , for n = 1, ...,N. Tensors are denoted by cap-

ital letters with a bar, e.g. Y ∈ RI1×I2×...×IN . Matrices are denoted by cap-

ital letters, e.g. Y , and for a matrix Y we denote by Y − its generalized

inverse. Vectors are denoted by lower case letters, e.g. y. The outer product

of two vectors a ∈ RI and b ∈ RJ yields a rank-one matrix A = a ◦ b =

abT ∈ RI×J , and the outer product of three vectors a ∈ RI , b ∈ RJ and

c ∈ RQ yields a third-order rank-one tensorA = a ◦ b ◦ c ∈ RI×J×Q. We

use ‖ · ‖F to indicate the usual Frobenius norm of tensors. The mode-

68

n multiplication of a tensor Y ∈ RI1×I2×...×IN by a vector a ∈ RIn is de-

noted by Z := Y ×n a ∈ RI1×...×In−1×In+1×...×IN , and element-wise we have

zi1...in−1in+1...iN =
∑In

i=1 yi1i2...iNain .

3.4 Penalized tensor decompositions

We first consider the case J = 1. Taking a point of view similar

to [151], for positive constants cu, cv and cw, we formulate the following

problem:

minimize
u∈RL,v∈RT ,w∈RS ,g∈R

‖Y − g u ◦ v ◦ w‖2
F

subject to ‖Duu‖1 ≤ cu, ‖Dvv‖1 ≤ cv, ‖Dww‖1 ≤ cw

uTu = 1, vTv = 1, wTw = 1 ,

(3.2)

where Du, Dv and Dw are matrices which are designed to enforce struc-

tural constraints. When the context is clear we will suppress the superscript

and simply use the notation D. We note that an alternative, although non-

equivalent, formulation is based on an unconstrained version of (3.2) given

as

minimize
uT u = 1, vT v = 1,

wTw = 1

‖Y − g u ◦ v ◦ w‖2
F + λu ‖Duu‖1 + λv ‖Dvv‖1 + λw ‖Dww‖1 ,

(3.3)

with the same unit-norm constraints on the factors. In Section 3, we will

discuss the computational differences between these formulations in detail.

We now briefly discuss a broad class of penalties of potential interest

to practitioners. We focus on choices that penalize first- and higher-order

69

differences in each factor, which correspond to the fused lasso and trend

filtering, respectively [141]. The fused lasso penalty was suggested in [151]

to detect regions of gain for sets of genes in matrix-decomposition problems.

For this penalty, the associated D matrix is the (S − 1) × S first-difference

matrix, Di,j = 1 if j = i, Di,j = −1 if j = i + 1 and Di,j = 0 otherwise. As

discussed in [141], this penalty gives a piecewise-constant solution to linear-

regression problems, and it is used in settings where the coordinates in the

true model are closely related to their neighbors. Related choices for D are

oriented incidence matrices of graphs; see, e.g. [6]. These are constructed as

generalizations of the 1-dimensional fused lasso on an underlying graph G.

Still other choices for D correspond to polynomial trend filtering,

which imposes a piecewise polynomial structure on the underlying object

of interest. These are constructed as follows. First define the polynomial

trend filtering of order 1 as Dtf,1 ∈ R(S−2)×S where Dtf,1 = (D(1))T D(1) and

D(1) ∈ R(S−1)×S is the first order difference matrix. Then, recursively con-

struct the polynomial trend filtering matrix of order k asDtf,k = D1,d·Dtf,k−1.

The polynomial trend filtering fits (especially for k = 3) are similar to

those that one could obtain using regression splines and smoothing splines,

However, the knots (changes in kth derivative) in trend filtering are selected

adaptively based on the data, jointly with the inter-knot polynomial esti-

mation [141]. A comprehensive study of polynomial trend filtering can be

found in [140]. We note that Problem (3.3) was already studied in [3] for

the case in which all the matrices Du, Dv and Dw are set to be the identity.

70

This is the case of having the L1 penalty on each mode. [3] also proposed a

fast algorithm to solve the problem. However, the L1 penalty has the disad-

vantage of encouraging only sparsity. If the true factors are not sparse, but

instead locally flat or smooth, then having sparse constraints on the factors

performs poorly. This phenomenon was observed in [151] in the context of

matrix decompositions, where the fused lasso penalty was shown to prop-

erly recover flat vectors in the factors of the decomposition when the L1

penalty failed to do so. We will extend these ideas to tensor decomposi-

tions, applying penalties from the generalized lasso class. We now turn to

the question of how to fit these models efficiently.

3.5 Solution algorithms
3.5.1 Constrained problem

Since (3.2) is a non-convex problem, we propose to consider a block

coordinate-descent routine. However, in order to have convex block-coordinates-

updates, we instead state the following problem:

maximize
u∈RL,v∈RT ,w∈RS

Y ×1 u×2 v ×3 w

subject to ‖Duu‖1 ≤ cu, ‖Dvv‖1 ≤ cv, ‖Dww‖1 ≤ cw

uTu ≤ 1, vTv ≤ 1, wTw ≤ 1.

(3.4)

This differs from (3.2) in two ways. First, the objective has been reformu-

lated in a more convenient way, but it is easy to show that this results in

an equivalent problem [86]. Secondly, the unit norm constraints have been

relaxed to the convex constraints that each factor falls into the unit ball.

71

Additionally, following [151], a simple modification can naturally handle

missing data. Denoting by M the set missing observations, we solve the

missing data problem by replacing the objective function in (3.4) with the

function

F (u, v, w) =
∑

(l,t,s)∈{1,...,L}×{1,...,T}×{1,...,S}−M

Yl,t,s ul vtws (3.5)

Note that (3.4) has a multilinear objective function in u, v, and w.

Since the penalties induced by Du, Dv and Dw are convex, we can use

coordinate-wise optimization in order to solve this problem. For example,

when v and w are fixed, the update for u is found by solving the following

problem:

maximize
u

(Y ×2 v ×3 w)T u subject to ‖u‖2
2 ≤ 1 , ‖Duu‖1 ≤ cu. (3.6)

It would seem that a solution to (3.6) would not in general have unit norm.

But it is possible to ensure that this will be the case—that is, to ensure the

solution falls on the boundary of the `2 constraint set—as long as cu is cho-

sen properly based on the KKT conditions. A similar phenomenon was

observed for the matrix case in [151]. One of our results is that the solu-

tion to (3.6) will very often turn out to have unit norm, despite our convex

relaxation. A rigorous statement of this result will be given later.

Our strategy to solve (3.4) is to sweep through the vectors iteratively

by proceeding with block coordinates updates. Thus starting from initials

u0, v0 and w0, we proceed by solving, at iteration m, the problems shown

72

Algorithm 1 Constrained problem block coordinate descent

um = arg min
u

{
(−Y ×2 v

m−1 ×3 w
m−1)

T
u

subject to ‖u‖2
2 ≤ 1 , ‖Duu‖1 ≤ cu.

}
vm = arg min

v

{
(−Y ×1 u

m ×3 w
m−1)

T
v

subject to ‖v‖2
2 ≤ 1 , ‖Dvv‖1 ≤ cv.

}
wm = arg min

w

{
(−Y ×1 u

m ×2 v
m)T w

subject to ‖w‖2
2 ≤ 1 , ‖Dww‖1 ≤ cw.

}

in Algorithm 1. It should be pointed out here that the best we can hope

with Algorithm 1 is to obtain a local minimum to (3.4). It will be shown

latter with our experiments that this local minimum provides interpretable

and accurate estimators. Note that while the algorithm is structurally quite

simple, the individual block-coordinate updates are non-trivial to solve ef-

ficiently. The remainder of this section discusses how this can be done.

Given the symmetry of the problem, without loss of generality, we

focus on the update for u. We notice that the constraint set involves a non-

differentiable function, implying that it is not possible to use a gradient-

based method. Before describing our approach, we first discuss two natural

possibilities and explain why they were ultimately rejected.

First, a simple approach is to include a slack variable z = Duu and

use the ADMM algorithm. However, the resulting update for u would re-

quire solving a constrained problem using, for example, an interior-point

73

method. This rapidly becomes infeasible, since it requires solving a large

dense linear system.

A second natural approach is to use the novel ADMM algorithm

from [156] to solve each of the block-coordinate updates. For instance, the

update for u would involve solving the problem

um = arg min
u

(−Y ×2 v
m−1 ×3 w

m−1)
T
u

subject to ‖u‖2
2 ≤ 1 , ‖z‖1 ≤ cu,

z = Duu, (Eu − (Du)TDu)1/2u = z̃ ,

(3.7)

where Eu is a matrix such that Eu � (Du)TDu. Then proceeding as in [156],

we observe that (3.7) the update for u is a simple projection on the unit

`2 ball, while the update for z requires projecting in a `1 ball with the al-

gorithm from [47]. (The actual updates for our problem are given in the

supplementary material.) However, while this algorithm indeed solves the

constrained-problem updates, we find in that practice the ADMM routine

requires a long time to converge. In particular, it presents problems enforc-

ing the constraint that ‖Duum‖1 ≤ cu, so that the solution returned after

reasonable runtimes is actually quite far from the feasible region.

This motivates us to consider a different approach to solve the block-

coordinate updates in (1). We appeal to the following theorem, which sug-

gests a simple method and also implies that, typically, the solution lies on

the boundary of the unit ball. That is, it satisfies the non-convex constraint

of problem (3.2), despite our relaxation.

74

Theorem 3.5.1. Assume that cu > 0 and Y ×2 v ×3 w /∈ Range
(
(Du)T

)
. Then

the solution to (3.6) is given by

u∗ =

(
Y ×2 v ×3 w − (Du)T γ̂λ∗

)
‖Y ×2 v ×3 w − (Du)T γ̂λ∗‖2

(3.8)

where

γ̂λ = arg min
‖γ‖∞≤λ

1

2
‖Y ×2 v ×3 w − (Du)Tγ‖2

2 (3.9)

λ∗ = arg min
0≤λ

[
‖Y ×2 v ×3 w − (Du)T γ̂λ‖2 + λcu

]
. (3.10)

Proof. See Appendix B.3.1.

As a direct consequence of the proof of Theorem 3.5.1, we can solve

(3.6) by first solving (3.9) with the solution-path algorithm from [141], then

finding λ∗ and finally u∗. The explicit algorithm is given in the supplemen-

tary material.

Unfortunately, there is no characterization available of the computa-

tional time to compute the solution path. It is only known the cost at each

iteration isO(L) in its worst case, but it is unknown how many kinksK that

a particular problem will have. Moreover, we notice that after the solution

path is computed, the next two steps require O(KL) cost. Therefore, the

total cost for updating u is O(KL).

3.5.2 Unconstrained version

The framework we have introduced for rank-1 approximations has

some nice features. In particular, the choice of tuning parameters is more

75

intuitive, since this directly imposes a constraint on the smoothness of the

solutions. However, the optimization routine derived from Theorem 3.5.1 is

computationally intensive. In particular, for large dimensions of the penalty

matrices, computing the entire solution path can still be somewhat slow. To

avoid this, we revisit (3.3) and consider a problem equivalent to its convex

relaxation:

minimize
u∈RL,v∈RT ,w∈RS

− Y ×1 u×2 v ×3 w + λu ‖Duu‖1 + λv ‖Dvv‖1 + λw ‖Dww‖1

subject to uTu ≤ 1, vTv ≤ 1, wTw ≤ 1 .
(3.11)

As in the constrained case, we solve (3.11) via block-coordinate updates.

Now the update for u is obtained by solving

minimizing
u

− (Y ×2 v ×3 w)T u+ λu‖Duu‖1 subject to ‖u‖2
2 ≤ 1 .

(3.12)

The solution to (3.12) can be characterized in the same manner as

for the constrained case. In fact, the proof of Theorem 3.5.1 automatically

implies the following corollary:

Corollary 3.5.2. With the notation and assumptions from Theorem (3.5.1), the

solution to

minimize
u∈RS

− (Y ×2 v ×3 w)T u+ λ ‖Duu‖1 subject to ‖u‖2
2 ≤ 1 (3.13)

has the following form, where γ̂λ is defined in (3.9):

u∗ =

(
Y ×2 v ×3 w − (Du)T γ̂λ

)
‖Y ×2 v ×3 w − (Du)T γ̂λ‖2

. (3.14)

76

An interesting consequence of the closed-form formula (3.14), and

the proof of Theorem 3.5.1, is that we can solve (3.12) by first solving a

generalized lasso problem and then projecting the solution into the unit ball.

Explicitly, we first find

û = arg min
u∈RL

{
‖u− Y ×2 v ×3 w‖2

2 + λ ‖Duu‖1

}
, (3.15)

and û/‖û‖2 becomes the solution to (3.12). Therefore, for trend-filtering

problems, we can solve the regression problem step with the fast ADMM

algorithm from [110]. Moreover, for the case of a fused lasso penalty, the

update for u can be done in linear time [74]. Because these two algorithms

are so efficient, the penalized formulation from (3.11) can be solved much

more cheaply than the constrained formulation from (3.4).

3.5.3 A toy example

We illustrate the advantage of problem (3.11) over the formulation

from (3.4) using a toy example. We consider u∗ ∈ R10 and w∗ ∈ R400 as the

size of v∗ varies. Here, u∗ and w∗ are as in Structure 2 in Figure 3.2, while v∗

is the function cos(9π t) evaluated at evenly spaced locations in [0, 1]. Tak-

ing initial values from the power method, we compare the solutions from

one iteration of the unconstrained formulation when choosing the penalty

parameters adaptively, versus an “oracle” version of the constrained prob-

lem with (cu, cv, cw) = (‖Duu∗‖1, ‖Dvv∗‖1, ‖Dww∗‖1). This choice of hyper-

parameters for the constrained problem is obviously optimal, but requires

knowledge of the true factors, and is therefore unrealistic in practice.

77

Figure 3.1 demonstrates the favorable trade-off offered by the un-

constrained formulation with adaptively chosen tuning parameters. We ob-

serve that while the constrained formulation algorithm based on the solution-

path computation is the most accurate, the unconstrained formulation is

competitive in terms of reconstruction error, and much more efficient. The

ADMM algorithm based on [156] is substantially less accurate than the

other two methods.

Moreover, in practice it would be necessary to solve the constrained

problem with more than one value of the tuning parameters, since we do

not know ‖Duu∗‖1. Hence the penalized version is strongly preferred: we

can do adaptive parameter choice more cheaply than solving the constrained

version for a single hyperparameter setting, without a major loss of perfor-

mance even under an optimal hyperparameter choice.

With regards to the choice of regularization, we can consider two al-

ternatives based on cross validation. The first of these follows [151]. This

procedure involves randomly deleting a percentage of the input data and

solves the problem on the resulting tensor. The estimated tensor produces

predicted values on the deleted entries, allowing one to compute mean

square error of prediction for these notionally missing values. The param-

eters λu, λv and λw are then chosen to minimize the prediction error. This

is particularly attractive when multiple processors are available, given that

independent problems with different tuning parameters can be solved in

parallel.

78

Figure 3.1: Panel (a): Frobenius error comparison of the of three differ-
ent methods for finding a rank-1 decomposition. These are: Algorithm 1
with the ADMM method from [156], block coordinate descent for solving
the unconstrained problem (3.11), and Algorithm 1 using the solution path
method as described in Section 3.1. Panel (b): For each of the methods, time
in seconds for solving one problem with a particular choice of tuning pa-
rameters. Our unconstrained formulation with adaptive chosen penalties
achieves nearly the reconstruction error of the unconstrained formulation
with optimal hyperparameter choice, but at far less computational cost.

●

● ●

●
●

●

●

●

●

●

●

●

● ● ●

●
●

●

●

●

20
30

40
50

size of v

er
ro

r

500 2500 5000 7500 10000

●

ADMM Constrained
Unconstrained version
Solution path constrained

●
●

●
● ●

●
● ● ●

●
● ●

●
●

● ●
● ●

●
●

0
50

10
0

15
0

20
0

25
0

size of v

tim
e

in
 s

ec
on

ds

500 2500 5000 7500 10000

●

ADMM Constrained
Unconstrained version
Solution path constrained

The other alternative for cross validation applies to (3.11) and it is

based on adaptively choosing the tuning parameters. Thus, before estimat-

79

ing each vector (say u), we obtain a generalized lasso regression problem

and hence we can choose λu by cross validation. We randomly separate

the coordinates of the response vector into training and test set, solving the

problem in the training set and computing the mean squared error of the

predicted solution on the test set. This exploits the fact that u is a smooth

function, and therefore given a solution based on the training set, we can

provide estimates at the locations in the test set by interpolation.

3.5.4 Multiple factors

In the case of multiple factors, the main difference of the tensor case

versus the matrix case is that we must find all the factors jointly [86], as

opposed to estimating factor k+1 using the residual from the fitted k-factor

model. Fortunately, it is straightforward to use any of the algorithms in the

previous section to handle multiple factors. Hence, to estimate the factors

in (3.1), we state the problem

minimize
uj ,vj ,wj

‖Y −
J∑
j=1

dj uj ◦ vj ◦ wj‖2
F +

J∑
j=1

[
λu,j‖Du

j uj‖1 + λv,j‖Dv
j vj‖1 + λw,j‖Dw

j wj‖1

]
subject to ‖uj‖2

2 ≤ 1 ‖vj‖2
2 ≤ 1 ‖wj‖2

2 ≤ 1 j = 1, ..., J,

(3.16)

where the matrices Du
j ,Dv

j and Dw
j are chosen to capture different structural

features desired for the solutions. Here, λu,j , λv,j and λw,j are tuning param-

eters. Now we solve (3.16) by starting with initial guesses {uj}, {vj}, {wj},

{dj} and applying the iterative updates listed in Algorithm 2 exploiting re-

80

Algorithm 2 Multiple factors
Loop for j0 = 1 : J ,

uj0 ← arg min
‖u‖22≤1

{∥∥∥u− Y ×2 v
j0 ×3 w

j0 +
∑

j 6=j0 d
j (vj0)T vj (wj0)T wj u

j
∥∥∥2

2
+

λu,j0 ‖Du
j0
u‖1,

}
vj0 ← arg min

‖v‖22≤1

{∥∥∥v − Y ×1 u
j0 ×3 w

j0 +
∑

j 6=j0 d
j (uj0)T uj (wj0)T wj v

j
∥∥∥2

2
+

λv,j0 ‖Dv
j0
v‖1,

}
wj0 ← arg min

‖w‖22≤1

{∥∥∥w − Y ×2 u
j0 ×3 v

j0 +
∑

j 6=j0 d
j (uj0)T uj (vj0)T vj w

j
∥∥∥2

2
+

λw,j0 ‖Dw
j0
w‖1.

}
dj0 ← Y ×1 u

j0 ×2 v
j0 ×3 w

j0 −
∑

j 6=j0 d
j (uj0)T uj (vj0)T vj (wj0)T wj.

End loop

sults from Section 3.2.

In practice the number of latent factors can be chosen with an ad-

hoc rule by looking at the proportion of the variance explained (as with

a scree plot in ordinary PCA). One can look at the solutions provided by

different values of J . The choice of J then corresponds to the number factors

such that the increase in variance explained that is obtained by solving the

problem with more factors is negligible. We illustrate this in our real data

example.

Finally, in situations where the number of factors is large, the number

of possible combinations of tuning parameters becomes challenging. One

possibility to address this is to choose the parameters adaptively as dis-

81

cussed in Section 3.2. Hence, every time a factor is to be updated we select

the parameter from a small grid of values. This ensures that, for instance,

when dealing with fused lasso penalties each block coordinated update can

be done in linear time. On the other hand, a different alternative is to use

the same penalty parameter for all the vectors corresponding to the same

level of smoothness. For instance, one can use λu, j = λu,i if Duj = Dui . This

reduces the burden of cross-validation.

3.6 Convergence analysis

We now examine the convergence of the block-coordinate algorithms

developed in the previous section. Here, we assume that J = 1 in Model

(3.1). In this case we recall that the underlying true tensor can be decom-

posed as the outer product of vectors u∗ ∈ RL, v∗ ∈ RT and w∗ ∈ RS, times

a constant d∗. Moreover, we assume that the matrices D are chosen to be ei-

ther fused lasso or trend filtering penalties. Thus, Du = D(ku+1) ∈ R(L−ku)×L,

Dv = D(kv+1) ∈ R(T−kv)×T and Dw = D(kw+1) ∈ R(S−kw)×S with ku, kv and kw

∈ {0, 1}.

Our proof is inspired by the work on convergence rates for general-

ized lasso regression problems from [149]. The theorem states that, when

starting with good initials, it is necessary to sweep through the data only

once. The proof of the claim is based on the identity

P(A ∩B ∩ C) = P(A)P(B | A)P(C | A ∩B),

82

for any events A, B and C. A related statement can be made in the case of

multiple factors for a single update depending on the other factors. See the

result in the supplementary material; the main difference there involves an

error measurement that depends on the factors taken as fixed.

Theorem 3.6.1. Let {u1, v1, w1} denote a one-step update from Algorithm 1, based

on initial values {u0, v0, w0}, and assume that ‖Duu∗‖1 ≤ cw, ‖Dvv∗‖1 ≤ cw, and

‖Dww∗‖1 ≤ cw. Then, there exists a constant c > 0 such that if t > 0 satisfies

max
{

4 t
d∗

+ c cu Lku+1/2
√

logL
d∗

, 4 t
d∗

+ c cv Tkv+1/2
√

log T
d∗

,

4 t
d∗

+ c cw Skw+1/2
√

logS
d∗

}
≤ 1

25
,

and ‖v0 − v∗‖2 < 2−1/2, ‖w0 − w∗‖2 < 2−1/2, then

P
(
‖u1 − u∗‖2

2 ≤ 16
(

4 t
d∗

+ c cu Lku+1/2
√

logL
d∗

)
, ‖v1 − v∗‖2

2 ≤

16
(

4 t
d∗

+ c cv Tkv+1/2
√

log T
d∗

)
, ‖w1 − w∗‖2

2 ≤ 16
(

4 t
d∗

+ c cw Skw+1/2
√

logS
d∗

))
≥ Ψ(t, L) Ψ(t, T) Ψ(t, S),

where

Ψ(t, x) =

(
1−

√
2

π

1

t
e−

t2

2 − 21/2

x3/2
√

5 π log(x)

)
.

Proof. See Appendix B.3.2.

Theorem 3.6.1 states that with good initials our rank-1 decomposi-

tion algorithm will be very close to the true factors under weak assump-

tions concerning the smoothness of the true factors. Thus, in practice before

running our algorithms, we can consider a simple initialization that con-

sists of solving Algorithm (1) for the case where the matrices Du, Dv and

83

Dw are all zero. This is known as the power method [86]. Moreover, statis-

tical guarantees for a closely related method to this procedure were studied

in [4].

Finally, it should be note that Theorem 3.6.1 implicitly suggests that

an appropriate choice of tuning parameter is

(cu, cv, cw) = (‖Duu∗‖1, ‖Dvv∗‖1, ‖Dww∗‖1),

which only involves the true latent vectors. In the case of the unconstrained

version, a very similar statement to Theorem 3.6.1 holds by taking λu =

O(Lku+1/2
√

log(L)), λu = O(T kv+1/2
√

log(T)) and λw = O(Skw+1/2
√

log(S)).

3.7 Experiments

Our experiments focus mainly on the task of rank-1 recovery, since

all of our algorithms are based on the development of a rank-1 PTD. For all

our simulations we use the Frobenius norm of the difference between the

estimated and true tensors as a measure of overall accuracy. The Frobenius

norm is a natural choice of model fit, since we also benchmark against a

recovery method that does not directly produce a rank-1 tensor but does

provide an estimate of the true mean tensor. This method is based on the

idea of stacking several penalized matrix decompositions using the tech-

nique from [151]. Specifically, we consider the tensor of observations X̃ as

a collection of 10 distinct 1000 × 400 matrices, each of which is estimated

via a rank-1 PMD. This will lead to 10 estimated rank-1 matrices which are

84

Figure 3.2: Each row gives rise to a different structure by taking the outer
product on the corresponding, horizontally plotted, vectors.

● ● ●

● ● ●

● ● ● ●

2 4 6 8 10

−
1

.5
1

.5

True u

index

●●●

●●●

●●

0 200 400 600 800 1000

−
0

.5
1

.5

True v

index

●●

●●

●●

0 100 200 300 400

−
1

.5
1

.5

True w

index
● ● ●

● ● ●

● ● ● ●

2 4 6 8 10

−
1

.5
0

.5

index

●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●

●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●

●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●

●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●

●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●

●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

0 200 400 600 800 1000

−
1

.5
1

.5

index

●●●
●●●●●●
●●●●●
●●●●●
●●●●●●●
●●●

●●●●●●
●●●●●
●●●●●
●●●●●●
●●●

●●●●●●
●●●●●
●●●●●
●●●●●●
●●●

●●●●●●
●●●●●
●●●●●
●●●●●●●
●●

0 100 200 300 400

−
1

.5
1

.5

index
● ● ● ●

● ●

● ● ● ●

2 4 6 8 10

−
1

.5
1

.5

index

●●
●●●

●●●
●●

0 200 400 600 800 1000

−
0

.5
2

.0

index

●●
●●●

●●●
●●

●●●●●●●●●●●●●●●●

0 100 200 300 400

−
0

.5
1

.5

index

● ● ● ● ●

● ● ● ● ●

2 4 6 8 10

−
0

.5
1

.5

index

●●
●●●

●●●
●●●

●●
●●●

0 200 400 600 800 1000

−
1

.0
2

.0

index

●●

●●

●●

●●

●●

0 100 200 300 400

−
0

.5
1

.5

index

● ●

● ●

● ● ●

● ● ●

2 4 6 8 10

−
1

.5
1

.5

index

●●●●●●●●●●●●
●
●●●●●

●

●
●
●●●●●●●●●●●●●●●●●
●
●●
●●

●
●●
●
●●●●●●●●
●
●●●●●●●●
●●
●●●●●●●●●●●●●●●●●
●●●●
●
●●●

●

●●●
●
●●●●●●●●●●●
●
●●●

●
●●●●●●●●●●●●●●●●●●●

●

●
●
●●●●●●●●●●●●●●●●●
●●●●●
●
●●
●
●●●●●●●●●●●●
●
●●●●
●
●●●●●●●●●●●●●
●
●

●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●●●●●●●

●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●
●
●●

●

●●●●●●●●●●●
●
●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●
●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●
●●●●●
●
●
●
●●●●●●●●●●●●
●
●

●

●●●●●●

●

●●●
●
●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●

●
●●
●
●●●●
●
●●●●●●●●●●●●●●●●●
●
●

●●●●●●●●
●
●●●

●

●

●●●●●●●

●

●●●●●
●
●●●●●●
●●●
●
●●●●●●●
●

●●
●
●●●●●●●●●●●●
●
●●●
●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●
●
●
●
●
●
●●
●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●
●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 200 400 600 800 1000

−
3

1

index

●●●●●●●●●●●●●●●●●

●

●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●

●
●●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●

●●

●

●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

0 100 200 300 400

−
2

1

index

concatenated to build a 10× 1000× 400 tensor. We call this procedure, with

an abuse of notation, PMD(Pv, Pw) where Pv and Pw are the penalties on v

and w, when computing the rank-1 PMD matrices. The other methods in-

cluded in the study are the PTD with different penalties Pu, Pv, Pw, denoted

as PTD(Pu, Pv, Pw). We consider choices such as the L1 penalty, the fussed

lasso (FL) and trend filtering of order k (TFk). Note that we are implicitly

85

comparing to the method from [4] since, for rank-1 recovery, this reduces to

the power method, and hence to PTD(L1,L1,L1) for appropriate parameters.

For our simulations, the tuning parameters are chosen by cross vali-

dation on a grid of possible values for each of the parameters λu, λv, and λw.

For every, we randomly select 10% of the data for testing, using the other

90% as training data. Out of a range of candidate tuning parameters we

select those that produce the smallest error on the 10% held-out set. This

process is repeated for each of 100 simulations, for different methods and

structures, in order to obtain average Frobenius errors for all the competing

methodologies with respect to every structure.

To see how different choices of penalties can behave under differ-

ent scenarios, we ran experiments using five different rank-1 tensors as the

true mean tensor. These choices are designed to explore a range of plau-

sible structures that we might find in real problems. For the first structure

both v and w are piecewise flat. For the second, both v and w are periodic

functions. For the third, both v and w are piecewise quadratic polynomials.

For the fourth, v is smooth and w is piecewise constant. For the fifth, both

v and w are sparse but with no specific structural pattern like smoothness

or flatness. The goal of this final scenario is to understand how structural

penalties perform in a data set where they are not warranted. Further de-

tails of this simulation are included in the supplementary material. Figure

3.2 also shows a plot of these different structures.

The results of our simulation study are shown in Table 3.1. In all

86

Table 3.1: Comparison of the Frobenius norm error between the true tensor
and the estimated tensor using different methods.

Method Structure 1 Structure 2 Structure 3 Structure 4 Structure 5

PTD(L1,L1,L1) 37.37 47.63 46.16 39.91 40.58
PTD(L1,FL,FL) 6.31 27.54 11.76 10.30 57.15
PTD(L1,TF1,FL) 15.07 20.49 11.55 9.00 70.32
PTD(L1,TF1,TF1) 17.61 14.40 11.85 12.40 79.25
PMD(L1,L1) 85.05 89.10 100.70 91.89 72.87
PMD(L1,FL) 49.09 50.14 52.70 22.73 92.20
PMD(FL,FL) 15.05 43.17 25.64 33.95 114.09

cases, PTD converged with few iterations, usually less than 10. From these

results, it is clear that different choices of penalty are suitable for differ-

ent problems. For structure 1, in which the true v and w are piecewise

flat, the combination PTD(L1, FL, FL) outperforms all the other choices that

we considered. Interestingly, PTD(L1,TF1,FL) and PTD(L1, TF1,TF1) pro-

vided better results than the “stacking” method PMD(FL,FL). Note also that

PTD(L1,TF1,FL) and PTD(L1,TF1,TF1) behave fairly similar to one another.

This is expected since a piecewise constant function is a special case of a

piecewise linear function and hence we would expect that TF1 would pro-

duce only slightly worse results than fused lasso.

Moreover, Table 3.1 also illustrates when our methodology should

not be expected to work. This is what happens with structure 5, where

there is no spatial pattern in the true vectors u, v and w, and instead they

are merely sparse (80% of their coordinates are zero). Here, as expected,

PTD(L1,L1,L1) outperforms any of our methods.

87

Table 3.2: Comparison of the Frobenius norm error between the true ten-
sor and the estimated tensor using for different levels of noise and a fixed
structure, averaging over 100 Monte Carlo simulations

Method σ = 1.25 σ = 1.50 σ = 1.75 σ = 2.00 σ = 2.25

PTD(L1,L1,L1) 62.66 81.66 80.46 99.50 94.37
PTD(L1,FL,FL) 32.61 38.80 41.63 46.32 49.33
PTD(L1,TF1,FL) 24.55 28.55 32.35 37.87 38.43
PTD(L1,TF1,TF1) 17.00 21.35 22.27 27.09 27.36
PMD(L1,L1) 116.19 139.57 158.71 185.05 209.45
PMD(L1,FL) 66.80 76.81 83.65 98.18 111.09
PMD(FL,FL) 52.43 57.52 65.36 83.98 92.71

In the previous experiment we simulated all data sets with the as-

sumption that the noise had variance 1. Now we fix the rank-1 tensor mean

of Structure 2, where both v and w are periodic functions, and then we

compare the performance of different methods as the standard deviation

of the noise changes. Recalling that in Structure 2 both v and w are periodic

smooth, it does not come as a surprise that PTD(L1,TF1,TF1) provides the

best performance in all situations considered in Table 3.2. In addition, it is

clear that the error of all methods increases as the variance of the noise does.

Nevertheless, the performance of our method seems to be the most stable.

Finally, we evaluate the recovery of mean tensors having multiple

factors, with σ = 1. Scenarios where the true model consists of J = 2 and

J = 3 are considered. Our comparisons are based on taking sums of dif-

ferent rank-1 tensors using the structures discussed before. The competing

methods are PTD(L1,FL,FL) and PTD(L1,TF1,TF1), versus Algorithm 1 from

88

Table 3.3: Comparison of the Frobenius norm error between the true ten-
sor and the estimated tensor using different methods, averaging over 100
Monte Carlo simulations

Method Structures
1,2 1,3 1,4 2,3 2,4 3,4 1,2,3 1,2,4 1,3,4 2,3,4

Anandkumar 544.0 310.5 85.4 121.0 128.9 273.4 534.9 555.3 346.6 350.3
PTD(L1,FL,FL) 55.3 46.5 27.1 71.2 59.7 107.3 184.2 48.3 102.8 126.1
PTD(L1,TF1,TF1) 51.7 71.6 67.8 49.2 50.9 94.0 120.3 75.2 141.6 120.8

[4]. For the latter, we set the number of initializations L = 30 and the num-

ber of iterations N = 10. The results in Table 3.3 show a clear gain for our

approach over the method from [4], which does not impose any smoothness

constraints on its solutions.

3.8 Real data examples
3.8.1 Flu hospitalizations in Texas

As a simple illustrative example, we consider measurements of flu

activity and atmospheric conditions in Texas; see the supplementary mate-

rial for information how to collect the data. There are 5 variables measured

daily across 24 cities in Texas from January 1, 2003 to December 31, 2009.

The variables are: maximum and daily average observed concentration of

particulate matter (air quality measure), maximum and minimum temper-

ature, and a measure of flu intensity capturing flu-related hospitalizations

per million people. The data tensor is thus a 5x24x2556 array where we

expect clear temporal patterns, along with correlations among the five vari-

89

Figure 3.3: (a) Time vector for the first factor (b) Loadings matrix for first
factor (c) Time vector for second factor (d) Loadings matrix for second fac-
tor.

0 500 1000 1500 2000 2500

−
0.

03
−

0.
01

0.
01

0.
03

index 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24

5

4

3

2

1

−
0.

20
−

0.
10

0.
00

0.
05

0 500 1000 1500 2000 2500

−
0.

10
−

0.
06

−
0.

02
0.

02

index 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24

5

4

3

2

1

−
0.

6
−

0.
4

−
0.

2
0.

0

ables. For example, during the winter months we would expect an increase

in flu-related hospitalizations, correlated with seasonal patterns of maxi-

mum and minimum daily temperatures.

To show the kind of interesting results that one can get with our

methods, we compute a two-factor Parafac decomposition. We use trend

filtering of order 2 in the temporal mode and no penalty on the other two

modes (although it would be straightforward to incorporate a penalty on

the spatial mode as well.) We use our main result (3.5.1) to find the factors

using coordinate-wise optimization. The tuning parameter for the trend-

filtering penalty is chosen by cross validation from a grid of values to ensure

that we get a smooth vector for the time mode.

90

We considered fitting models with different values of J , we found

that a model with one factor explains 36% of the variance, a model with two

factors explains 45% percent of the variance, and a model with three factors

results in increase in variance explained of less than 1% with respect to the

case J = 2. Moreover, the model with 3 factors results in highly correlated

factors. For this reason we use a model with 2 factors.

From Figure 3.3 we note a clear seasonal effect. In the first factor we

observed that the loadings for the flu intensity, minimum temperature, and

maximum temperature can be all explained in a similar way. For the first

of these three variable the loadings are all positive. Hence, given the shape

of the time vector we see a periodic pattern of flu cases across cities with

the highest during the winter months and the lowest during the summer

months.

3.8.2 Motion capture data

For a more challenging task, we evaluate the performance of our

PTD method using data from the motion capture (moCap) repository at

mocap.cs.cmu.edu. This consists of subjects performing different physi-

cal activities in repeated independent trials. We construct 3-array tensors by

taking sets of videos as one mode, 12 representative variables of the body

movements as the second mode, and data frames in time as the third mode.

The 12 variables are listed in the supplementary material.

We built 2 tensors each for 5 different tasks, with each task generat-

91

ing a training-set tensor and a test-set tensor. The training set tensor corre-

sponds to a single subject performing multiple repetitions of a single related

set of physical activities. Similarly, the corresponding test-set tensor corre-

sponds to that same subject performing further repetitions of those same

activities. For example, the first data set (comprising 1 tensor in the train-

ing set and 1 tensor in the test set) is called 126-swimming; this is formed

by looking at 8 videos of subject 126 performing different swimming styles.

In the moCap repository, videos 1,3,6,8 are used for training while videos

2,4,7,9 are used for testing. This results in both tensors having dimensions

4×253×12.

The other four data sets, explained in detail in the supplementary

material, are 138-story (subject 138 walking and moving arms); 107-walking

(subject 107 walking with obstacles); 9-running (subject 9 running); and 138-

marching (just like it sounds). For these data sets, the tensors dimensions

are 4×325×12, 4×828×12, 4×128×12, 4×371×12, respectively.

In this context, our PTD approach can be thought of as a smoothing

step applied to the training-set tensor, to yield better out-of-sample predic-

tions for the test-set tensor. We evaluate the performance of the method by

calculating the reconstruction error (again, by Frobenius norm) when using

the fitted/smoothed training-set tensor to predict the corresponding test-set

tensor.

We find that for the tensors considered here, rank-1 is the best Parafac

decomposition, since models with higher factors result in strongly corre-

92

Table 3.4: Comparison of the Frobenius norm error between the estimated
tensor and the test tensor for the moCap datasets

Method Task
126-swimming 138-story 107-walking 9-running 138-marching

Anandkumar 254.80 134.63 135.17 84.40 143.86
PTD(L1,TF2,TF2) 250.98 131.78 134.92 84.29 142.44
PMD(L1,TF2,TF2) 267.89 145.14 143.43 88.06 149.41

lated factors. We ran our rank-1 PTD with a trend-filtering penalty of order

2 on the second mode, and no constraints in the other modes. We com-

pare against the PMD using the same degree of smoothness, as well as the

classical PCA method from [4]. From Table 3.4 it is clear that PTD offers

the best performance. Thus we can see the gain of using smooth penalties,

reflecting the fact that physical movements involve motion-capture vari-

ables that change smoothly in time. Moreover, it is clearly favorable to pool

information across videos, as our method does, rather than treating them

independently, as with the PMD algorithm.

3.9 Discussion

In many problems, tensors offer a natural way to represent high-

dimen- sional, multiway data sets. However, tensors by themselves are dif-

ficult to interpret, creating the need for methods that shrink towards some

simpler, low-dimensional structure.

Parafac models have been widely used for this task, but existing

93

state-of-the-art methods typically constrain the factors to be orthogonal, or

simply do not enforce any constraints. As we have shown, this can be unde-

sirable in practice, especially if one is looking for more interpretable factors,

where there is a natural spatial or temporal relation between observation,

and it is expected that the factors will be smooth. We fill this gap by provid-

ing a set of methods that offer piecewise smooth Parafac decompositions.

Our methods exploit state–of–the–art convex optimization algorithms and

are shown to have excellent performance in our experiments.

Finally, we have shown two alternatives for finding our smooth ten-

sor decompositions with generalized lasso penalties. The constrained for-

mulation seems to be an attractive option for practitioners, with clear in-

tuitive control over the level of smoothness exhibited by the solutions. On

the other hand, in light of its computational advantages, the unconstrained

formulation offers a more practical approach, especially if there is no pre-

existing knowledge about the anticipated smoothness of the solutions.

94

Chapter 4

Nonparametric density estimation
by histogram trend filtering

4.1 Nonparametric density estimation

This chapter is devoted to the topic of density esimation, the work is

based on the working paper [98].

Consider the classic estimation problem in Rd, where we observe

yi ∼ f0 for i = 1, . . . , n and wish to estimate f0. Most data-analysis prac-

titioners that confront this problem turn to kernel density estimation, due

to its familiarity, its computational efficiency, and its well-understood sta-

tistical properties. Yet kernel methods are known to suffer from the local-

adaptivity problem, wherein the used of a fixed bandwidth parameter may

result in simultaneously undersmoothing and oversmoothing in different

regions of the density.

A huge variety of methods have been proposed that improve upon

basic kernel methods in a way that addresses this problem, from adaptive

kernel bandwidths to penalized-likelihood estimation. Yet these methods

typically either incur a much higher computational burden than basic ker-

nel methods, or else they involve hyperparameters that are difficult to spec-

95

ify and tune. The goal of this chapter is to address this gap. We propose a

method called histogram trend filtering, which solves the adaptivity prob-

lem while simultaneously satisfying the following criteria:

1. It is computationally efficient, even for large data sets.

2. It has strong statistical guarantees.

These two factors make our proposed method a strong candidate to re-

place ordinary kernel density estimation as the default “first pass” for data-

analysis practitioners.

In the real line, the histogram trend-filtering estimator is related to

the following variational optimization problem based on penalizing the log

likelihood g = log f :

minimize
g

−
n∑
i=1

g(yi)

subject to
∫
R
eg = 1

J(g) ≤ t ,

(4.1)

where J(g) is a known penalty functional. Imposing an appropriate penalty

can encourage smoothness and avoids estimates that are sums of point

masses.

Specifically, we consider solutions to (4.1) for penalties based on total

variation, as proposed by [83]. We provide conditions under which explicit

rates of convergence can be obtained for these estimators. We also study

a finite-dimensional version of this variational problem—histogram trend

96

filtering—which involves two conceptually simple steps. First, partition the

observations into Dn histogram bins with centers ξ1 < · · · < ξDn and counts

x1, . . . , xDn . Then assume the surrogate model xj ∼ Poisson(λj) and esti-

mate the λj’s via polynomial trend filtering [79, 140] applied to the Poisson

likelihood. The renormalized λj’s then may be used to form an estimate of

f0.

Our results show that this simple, computationally efficient proce-

dure yields excellent performance for density estimation. Our main the-

orem characterizes how the optimal bin size must shrink as a function of

n to ensure consistency for estimating f0, and provide bounds on the pro-

posed procedure’s reconstruction error under the assumption that the bins

are chosen accordingly. Our empirical results also show that the histogram

trend-filtering estimator is adaptive to changes in smoothness of the un-

derlying density when familiar information criteria are used to choose the

method’s single tuning parameter. Put simply, it can yield an estimate that

is simultaneously smooth in some regions and spiky in others. This be-

havior contrasts favorably with kernel density estimation, where the band-

width parameter governs the global smoothness of the estimate.

4.2 Histogram trend filtering in one dimension

The idea of histogram trend filtering is to reduce the density estima-

tion problem to that of a nonparametric Poisson regression problem, which

is solved by trend filtering [79, 141]. The method is so computationally

97

efficient for two reasons: (1) because binning the data results in a huge re-

duction from data points to bin counts, and (2) because the trend-filtering

estimator for a Poisson regression can be obtained so cheaply, using the ex-

traordinarily fast ADMM algorithm of [110]. An important point for us to

demonstrate is that the data reduction step can be done without losing too

much information; we address this concern later.

Let us now construct in detail the histogram trend-filtering estimator

for one-dimensional problems, which can be viewed as a discrete approxi-

mation to Problem (5.3) when J penalizes the total variation of g or higher-

order versions thereof. We begin with several assumptions made for ease

of exposition. Let X ⊂ R denote the support of f0. Suppose that X is a com-

pact set that it is partitioned into Dn disjoint intervals Ij with midpoints ξj ,

such that
⋃
j Ij = X. We assume that the intervals are of equal length δn and

ordered so that ξ1 < · · · < ξDn . Any of these assumptions can be relaxed in

practice.

Now consider a histogram of the observations using bins Ij . Let xj =

#{yi ∈ Ij} denote the histogram count for bin j, and consider the surrogate

model

xj ∼ Poisson(λj) , λj = nδnf0(ξj) ≈ n

∫
Ij

f0(y) dy . (4.2)

Let θj = log λj be the log rate parameter for bin j, let θ = (θ1, . . . , θDn), and

define the loss function

l(θ) =
Dn∑
j=1

{
eθj − xjθj

}
,

98

as the negative log likelihood corresponding to Model (4.2). We propose to

estimate θ using the solution to the unconstrained optimization problem

minimize
θ∈RD

l(θ) + τ‖∆(k+1)θ‖pq , (4.3)

where ∆(k+1) is the discrete difference operator of order k. Concretely, when

k = 0, ∆(1) is the matrix encoding the first differences of adjacent values:

∆(1) =


1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
...
0 · · · 0 1 −1

 . (4.4)

For k ≥ 1 this matrix is defined recursively as ∆(k+1) = ∆(1)∆(k), where ∆(1)

from (5.9) is of the appropriate dimension.

We focus on problem (4.3) when q = p = 1, which corresponds to

the polynomial trend-filtering estimator under a Poisson likelihood. Intu-

itively, the trend-filtering estimator is similar to a locally adaptive spline

model: it places a lasso penalty on a discrete analogue of the order-k deriva-

tive of the underlying log-density, resulting in a piecewise polynomial es-

timate whose degree depends on k. From the point of view of splines, the

trend-filtering penalty appeared in the work of [102] for the context of non-

parametric regression. With the language just used above, trend filtering

has been studied extensively in the context of function estimation, general-

ized linear models, and graph denoising [79, 141, 149, 100].

From a computational perspective, we emphasize that in the case of

interest here, (4.3) with q = p = 1, the histogram trend filtering estimator

99

can be found efficiently. If k = 0, for a fixed value of the tuning parameter

the estimator can be found with O(Dn) cost, see [74]. In the more general

case, k > 0, (4.3) with q = p = 1 can be efficiently solved using the recent

developments in ADMM algorithms for trend filtering problems [110]. Such

approach is based on introducing a convenient slack variable that then leads

to an ADMM in which each update can be done with O(Dn) cost.

4.3 Previous work
4.3.1 Other adaptive and penalized likelihood density estimators

In this section we present a brief review of density estimators related

to our methods. We begin by discussing the seminal work from [65] which

can be motivated from a Bayesian perspective. This starts by considering

the prior

p(f) ∝ exp (−Φ(f)) I (f ∈ A) ,

where Φ is a roughness penalty and A is some class of density functions.

Then, given the usual likelihood

p(y | f) =
n∏
i=1

f(yi),

the authors in [65] produce a maximum a posteriori (MAP) estimate of f0

by solving

f̂ = argminf∈A − log p(y | f) + Φ(f) . (4.5)

This is the main focus of study in [65], where different roughness penalties

were considered.

100

In a variation of the estimator from [65], [127] works within the frame-

work of penalized likelihood. However, rather than penalties directly im-

posing constraints on the density space, [127] proposes to penalize the log

density. This is immediately attractive since it automatically imposes a pos-

itive constraint in the estimates, with the formal formulation given as

minimize
g

− 1
n

∑n
i=1 g(yi) + 1

2
τ Φ(g)

subject to
∫
eg(µ)dµ = 1.

(4.6)

The roughness penalties studied in [127] are of the form

Φ(g) =

∫ 1

0

[D(g)(µ)]2 d(µ),

where D(g) is a function of the first m derivatives of g, see [127] for the

specific construction. There, Theorem 3.1 also shows that (4.6) is equivalent

to the unconstrained problem

minimize
g

− 1

n

n∑
i=1

g(yi) +
1

2
τ Φ(g) +

∫
eg(µ)dµ. (4.7)

This alternative formulation has the nice feature that can be formulated as

a convex optimization problem, see [108].

It turns out that a similar result can easily be proven for our Poisson

surrogate problem. This is given in the following Theorem.

Theorem 4.3.1. With the notation from Section 4.2, it can be proven that there

exists a constant c > 0 such that θ̂ solves (4.3) if and only if ĝi = θ̂i − log(n δn)

solves
minimize

g
− 1
n

∑Dn
i=1 xi gi

subject to
∑Dn

i=1 δn e
gi = 1, ‖∆(k+1)g‖pq ≤ c.

(4.8)

101

Proof. See Appendix C.1.

Thus, we have shown that our Poisson surrogate problem is indeed a

discretization of problem (5.3), where we replace the classical likelihood by

a cross entropy objective, the integrability constraint by a constraint on the

midpoint rule for the estimator, and the total variation penalty by a discrete

version using difference matrices.

While our histogram trend filtering approach to density estimation

might seem closely related to the estimator from [127], there are two signifi-

cant differences. First, as pointed out by [120], the estimator given by prob-

lem (4.6) tends to over-smooth, since non-smoothness is penalized more

heavily at low density values than at high density values, which may lead

to estimation problems. The authors in [120] address this problem by im-

posing a a total variation penalty. Thus, giving rise to the problem

minimize
f

− 1
n

∑n
i=1 log(fi) + τ

∑n
i=2 |fi − fi−1|

subject to aT f = 1,
(4.9)

for some integration coefficient vector a and parameter τ > 0. The main mo-

tivation for this problem is to avoid the over-smooth solutions from solving

(4.6). Hence, given the flexibility of imposing ‖ · ‖pq , our histogram trend

filtering estimators are also expected to avoid over-smoothing by taking

p = q = 1. However, the other important issue associated with the esti-

mator given by (4.6) is the computational complexity. This is also shared by

the estimator from [120] since both of these procedures require to estimate a

102

vector in Rn. In contrast, we solve optimization problems in a significantly

lower dimensional space, RDn .

Next we observe that by its mere definition in Problem 4.3, when

p = q = 1 our density estimator provides piecewise polynomial solutions

in the log-space. Here, the parameter k in the difference matrix indicates

the degree of the polynomial approximation used. For instance, k = 0 cor-

responds to piecewise constant solutions, while k = 1 to piecewise linear

solutions. An attractive feature of our method is that it is not necessary to

specify the the locations of break points; this is done adaptively by solving

a convex optimization problem. In contrast, [9] considered fitting splines

in the log-space but this requires specification of the locations of the of the

knots. Moreover, [9] provides rates of convergence for such spline estima-

tors, in terms of the Kullback-Leiber divergence, when the true density sat-

isfies ∫
| (log f0)(k+1) |2 <∞, (4.10)

with the superscript (k + 1) denoting the (k + 1)-the derivative.

Next, we review the penalized estimator from [150]. This is obtained

by solving the problem

f̂W = arg min
f

− 1
n

∑n
i=1 log(f(yi)) + pen(f)

subject to
∫
f = 1, f ∈ C

(4.11)

where C is a class of non-negative piecewise polynomials and pen(f) is a

functional that penalizes the complexity of polynomials. The solution to

103

(4.11) enjoys attractive theoretical properties, and [150] shows that if f0 is a

member of the Besov space Bα
q (Lp([0, 1])) where α > 0, 1/p = α + 1/2 and

0 < p < q, then,

E
[
‖f 1/2

0 − f̂ 1/2
W ‖

2
2

]
≤ C

(
log2

2(n)

n

) 2α
2α+1

.

Moreover, the estimator f̂W involves using recursive dyadic partitions in

order to produce near-optimal, piecewise polynomial estimates, analogous

to the methodologies in [16, 85] and [44]. Also, this multiscale method pro-

vides spatial adaptivity similar to wavelet-based techniques [46, 77], with a

notable advantage. Wavelet-based estimators can only adapt to a functions

smoothness up to the wavelets number of vanishing moments; thus, some

a priori notion of the smoothness of the true density or intensity is required

in order to choose a suitable wavelet basis and guarantee optimal rates. The

estimator f̂W , in contrast, automatically adapts to arbitrary degrees of the

functions smoothness without any user input or prior information. How-

ever, this penalized method requires elevated computational effort. Specif-

ically, it it involves O(n log2(n)) calls to a convex minimization routine and

O (n log2(n)) comparisons of the resulting (penalized) likelihood values.

104

4.3.2 Log-Density estimation by total variation

Finally, we recall the estimator from [82] which solves a discrete vari-

ant of (5.3). This is written as

minimize
g∈Rn

− 1

n

n∑
i=1

gi +
m∑
i=1

ci e
gi + τ ‖D g‖1, (4.12)

where the constants {ci} are used to encode the integrability constraint,

and D is matrix that encodes the smoothness of the desired solution. We

notice that (4.12) looks similar to our formulation in (4.3), however there

are some important differences. First, rather than working with the full

likelihood as (4.12), we focus on weighted likelihood which as discussed

earlier reduces the computation complexity significantly. Interestingly, [82]

did briefly mentioned a weighted version of the problem though not based

in binning the observations. Moreover, [82] proposed to handle the non-

differentiable penalty ‖ · ‖1 using a combination of two differentiable con-

straints. This makes their problem hard to solve hence having to rely on

general software for convex optimization. In contrast, we have shown that

our formulation is still amenable for “Silverman’s” trick which allows us to

put the integrability constraint as part of the objective. Thanks to the latter,

we were then able to propose the fast algorithm from [110] which exploits

the structure of the problem.

105

4.3.3 Lindsey’s method

One of the key aspects behind our histogram trend filtering proce-

dure is the Poisson surrogate model (or weighed likelihood in the optimiza-

tion problem) implied by binning the data. Here, we emphasize that this

”binning” idea is actually quite old in the statistics literature. Originally, the

Poisson approximation to the data appeared in [94, 95]. This was then thor-

oughly discussed for density estimation problems in [53]. More recently,

[17] considered a variant of the Poisson surrogate model (4.2). The authors

perform the transformation

x̃j =

√
xj +

1

4
, j = 1, . . . , Dn,

and show that the variance of each x̃j is roughly constant. Hence, [17] ar-

gues that it is attractive to fit a non-parametric regression model to the ob-

servations {x̃j}Dnj=1, since it is also true that E(x̃j) ≈
√
λj . The resulting

method from [17] proceeds by choosing the wavelet block thresholding for

estimating {
√
λj}Dnj=1 (for a description of the general block thresholding

method see [19]). After {
√
λj

Dn

j=1
} have been estimated, one can square such

estimates and rescale them in order to get an estimate of truth density at

each bin.

4.4 Statistical convergence

Next we focus on the version of the estimator where we approximate

the function on the discrete grid. This is necessary for finding the solution

106

by numerical optimization, and is analogous to the approach taken by [83],

who started with a variational problem and then moved to an approximate

solution on a grid. However, they did not provide any statistical guarantees

for either of their formulations.

We now denote the regularization parameter as τn and define the

vectors

θ0 := {logn− logDn + logf0(ξ1), . . . , logn− logDn + logf0(ξDn)} , (4.13)

and θ̂ as the solution to Problem (4.3). Thus up to a known constant of pro-

portionality, θ0 and θ̂ are the true and estimated log densities, respectively.

Our next theorem provides a bound on estimation error that refers to

the penalty explicitly. The state result can also be extended to densities of

unbounded support.

Theorem 4.4.1. Let ξ′j be the point in Ij satisfying

δn f0(ξ′j) =

∫
Ij

f0(t)dt.

Let us also take b ∈ (0, 1/2) and define θ̂ as the solution to the convex optimization

problem
minimize

θ

∑Dn
j=1

{
eθj − xjθj

}
+ τ ‖∆(k+1)θ‖1

subject to |θj − log(n δn)| ≤ nb, j = 1, . . . , Dn.
(4.14)

Let us assume that (f0(ξ′j), . . . , f0(ξ′Dn)) belongs to the constraint set of (4.14).

Then

f̂(ξ′j) =
exp

(
θ̂j

)
n δn

, j = 1, . . . , Dn,

107

satisfies

Dn∑
j=1

δn f0(ξ′j) log

(
f0(ξ′j)

f̂(ξ′j)

)
= OP

(
‖
(
∆(k+1)

)− ‖∞
Dr
n

‖∆(k+1) log (f0(ξ′)) ‖1 +
1

nr/s−b

)
,

(4.15)

where we choose Dn = Θ
(
n1/s

)
and τ = Θ

(
n1−r/s‖

(
∆(k+1)

)− ‖∞), where s > 1

and r ∈ (0, s/2).

Proof. See appendix C.1.1.

Theorem 4.4.1 states convergence rates for our Poisson surrogate model

estimator. In particular, the bound in (4.15) controls the Kullback-Leibler

divergence between our estimator and a discretized version of the true den-

sity. Moreover, the constraint on the supremum norm in the log-space space

ensures that the optimization is over a compact set. Hence, it is not restric-

tive given that this bound tends to infinity as n increases.

Finally, we emphasize that ‖
(
∆(k+1)

)− ‖∞ = O(Dn). This is a conse-

quence of the proof of Corollary 4 in [149]. In practice, we have found that

‖
(
∆(k+1)

)− ‖∞D−1
n ∈ (.1474, .1482) if if Dn is chosen between 500 and 10000.

4.5 Model selection

We know turn to the discussion of the parameters Dn and τ when

p = q = 1. For the former of these parameters, we see from the results in the

previous section that Dn = O(n1/s), for s > 2, seems a reasonable choice. In

our experience, the rule Dn = 10n1/2.5 performs excellently. On the other

108

hand, for the choice of τ , we see from Theorem 4.4.1 that

τ = Θ
(
n1−r/s‖

(
∆(k+1)

)− ‖∞) ,
is a candidate choice with r satisfying the constraint from Theorem 4.4.1. In

particular, this choice ensures consistency for the trivial case in which the

true density f0 is uniform, the precise definition of the universal penalty

required in [120].

Finally, on the choice of τ , we also consider an add-hoc rule inspired

by the work of [142] on regression problems with generalized lasso penal-

ties. This consists of computing the solution path of the problem 4.3 and

then considering a surrogate AIC approach by computing

AICτ = l(θ̂τ) + k + 1 +
∣∣∣{i : (∆(k+1)θ̂τ)i 6= 0

}∣∣∣ .
The parameter τ is then chosen to minimize the expression above.

4.6 Bayesian histogram trend filtering

In the previous section we discussed a very natural alternative for

model selection. Here, we present a Bayesian perspective of our histogram

trend filtering method which is amenable to standard Bayesian model se-

lection criteria.

We write the probability model

xj ∼ Poisson
(
eθj
)
, j = 1, . . . , D,

109

Figure 4.1: Left panel depicts the estimated density provided by our
Bayesian HTF, with τ selected using DIC, on top of data generated using
the density on the third panel. For purposes of comparison, we also display
the Bayesian HTF by itself in the second panel. In this example n = 4000.

Example of Bayesian HTF fit, n = 4000

y

D
e

n
si

ty

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

0.0 0.2 0.4 0.6 0.8 1.0

0
5

1
0

1
5

Bayesian HTF estimate

D
e

n
si

ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

1
0

1
5

True density

D
e

n
si

ty

and place the prior

P (θ) ∝ exp
(
−τ (θ∆(k+1))T Ω ∆(k+1)θ

)
,

where Ω is a diagonal matrix in whose diagonal entries we place indepen-

dent gamma priors. We notice that while the prior is improper, as the matrix

∆(k+1))T Ω ∆(k+1) is not full rank, the posterior is well defined since the log

110

likelihood,

logP (x|θ) =
Dn∑
j=1

(
eθj − θj xj

)
,

is a convex function of θ. Using this fact, our Bayesian model is fitted thor-

ough standard Hamiltonian MCMC, see [106]. This can be done with mul-

tiple choices of τ , after which we chose the model that minimizes the De-

viance Criterion Information (DIC) computed as in [61], by defining

D(θ) = −2 logP (x|θ),

and then setting

DIC = D(θ̂bayes) + 2
[
Eθ∼P (θ|x)(D(θ))−D(θ̂bayes)

]
.

4.7 Histogram trend filtering for 2D density estimation

In this section we show how our histogram trend filtering estimator

can be extended to handle multivariate data. We focus on estimation of

densities with support on [0, 1]× [0, 1] although our discussion can easily be

extended to higher dimensions.

The non-parametric density estimation problem in [0, 1] × [0, 1] can

be stated as follows. We are given measurements

yi ∼i.i.d f0, support(f0) ⊂ [0, 1]× [0, 1],

and the goal is to estimate f0.

111

Similarly, to the univariate case, given Dn ∈ {1, . . . , n}we define

xj,k = #

{
yi ∈

[
j − 1

Dn

,
j

Dn

]
×
[
k − 1

Dn

,
k

Dn

]}
,

for j, k ∈ {1, . . . , Dn}. Considering the surrogate model

xj,k ∼ Poisson
(
eθj,k

)
,

we solve the penalized likelihood problem

θ̂ = arg min
θ

Dn∑
j=1

Dn∑
k=1

(
eθj,k − xj,k θj,k

)
+ τ‖∆(2d,k+1)θ‖1, (4.16)

where τ > 0 is a tunning parameter, and ∆(2d,k+1) is defined as in [149],

proceeding as follows. First, let ∆(2d,1) be the incidence matrix of the 2D

grid graph, G. Thus, the l−th row of ∆(2d,1) corresponds to the l−th edge

of G given by el = (i, j) and ∆
(2d,1)
l,i = 1, ∆

(2d,1)
l,j = −1 and ∆

(2d,1)
l,m = 0 for all

m 6= i, j. Having constructed ∆(2d,1), we iteratively define ∆(2d,k+1) as

∆(2d,k+1) =

{
−
(
∆(2d,1)

)T
∆(2d,k) if k is odd

∆(2d,1) ∆(2d,k) if k is even.

After θ̂ is obtained, we estimate the density at the centers of bins as

f̂

(
j − 1/2

Dn

,
k − 1/2

Dn

)
=

eθ̂j,k D2
n∑Dn

j′=1

∑Dn
k′=1 e

θ̂j′,k′
,

for j, k ∈ {1, . . . , Dn}.

Next we discuss how problem (4.16) can be solved in practice. The

first natural alternative is simply to use the ADMM algorithm from [13] as

the objective function in (4.16) is the sum of convex functions (the surrogate

112

log-likelihood and the penalty). Thus, we introduce the slack variable z and

rewrite the problem as

θ̂ = arg min
θ

∑D
j=1

∑D
k=1

(
eθj,k − xj,k θj,k

)
+ τ‖z‖1,

subeject to z = ∆(k+1)θ.
(4.17)

The ADMM proceeds with standard updates which we include in the ap-

pendix. The only difference with a typical ADMM implementation is that

for the update of θ we consider a Taylor approximation around the previous

iterate and so we have closed form update for θ at each iteration.

An alternative ADMM can be implemented in the same spirit of

[110], by rewriting (4.16) as

θ̂ = arg min
θ

∑D
j=1

∑D
k=1

(
eθj,k − xj,k θj,k

)
+ τ‖∆(1)z‖1,

subeject to z = ∆(k)θ.
(4.18)

and then exploiting the fused lasso trail decomposition algorithm from [136].

4.8 Examples and discussion
4.8.1 Comparison with kernel methods

We conducted a simulation study to examine the performance of his-

togram trend filtering versus some common methods for density estima-

tion. Our first example is a three-component mixture of normals

f1(y) = 0.9N(y | 0, 1) + 0.1N(y | −2, 0.12) + 0.1N(y | 3, 0.52)

113

shown in the top left panel of Figure 4.2. The second example is a five-

component mixture of translated exponentials:

f2(y) =
7∑
c=1

wc Ex(y −mc | 2) ,

where the weight vector is w = (1/7, 2/7, 1/7, 2/7, 1/7) and the translation

vector is m = (−1, 0, 1, 2, 3). Here Ex(y | r) means the density of the expo-

nential distribution with rate parameter r. This density is shown in the top

right panel of Figure 4.2.

Our simulation study consisted of 25 Monte Carlo replicates for each

of six different sample sizes: n = 500, 1000, 2500, 5000, 10000, and 50000.

For each simulated data set, we ran histogram trend filtering with k = 1 and

k = 2. We benchmarked the approach against three other methods: kernel

density estimation with the bandwidth chosen by five-fold cross-validation,

kernel density estimation with the bandwidth chosen by the normal refer-

ence rule, and local polynomial density estimation with smoothing param-

eter chosen by cross-validation. In the reference-rule version of kernel den-

sity estimation, the bandwidth is chosen to be 0.9 times the minimum of the

sample standard deviation and the interquartile range divided by 1.06n−1/5

[124]. We used the version of local polynomial density estimation imple-

mented in the R package locfit.

Tables 4.1 and 4.2 show the average mean-squared error of recon-

struction of all methods for both f1 and f2. Order-1 trend filtering has the

lowest mean-squared error across all situations. Figure 4.2 provides a de-

114

Figure 4.2: Top two panels: the true densities f1 (left) and f2 (right) in the
simulation study, together with samples of n = 2500 from each density.
Middle two panels: results of histogram trend filtering for the f1 sample
(left) and the f2 sample (right). Bottom two panels: results of kernel density
estimation for the f1 sample (left) and the f2 sample (right). In the bottom
four panels the reconstruction results are shown on a log scale.

Example 1: data and true density

y

D
en

si
ty

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

−4 −2 0 2 4

1e−06

1e−04

1e−02

Histogram trend filtering

y

D
en

si
ty

−4 −2 0 2 4

1e−06

1e−04

1e−02

Kernel density estimation

y

D
en

si
ty

Example 2: data and true density

y

D
en

si
ty

0 2 4 6 8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8

5e−05

1e−04

5e−04

1e−03

5e−03

1e−02

5e−02

1e−01

5e−01

Histogram trend filtering

y

D
en

si
ty

0 2 4 6 8

5e−05

1e−04

5e−04

1e−03

5e−03

1e−02

5e−02

1e−01

5e−01

Kernel density estimation

y

D
en

si
ty

115

Table 4.1: Mean-squared error × 100 on example 1 for histogram trend
filtering with k = 1 and k = 2 versus three other methods: kernel den-
sity estimation with bandwidth chosen by cross-validation, kernel density
estimation using the normal reference rule, and local polynomial density
estimation.

n HTF (k = 1) HTF (k = 2) KDE (CV) KDE (ref) LP
500 2.5 4.9 3.1 4.0 3.3
1000 1.8 2.8 2.2 3.8 2.3
2500 1.3 1.6 1.7 3.3 1.6
5000 1.1 1.1 1.3 3.1 1.2
10000 0.7 0.7 0.9 2.8 0.9
50000 0.3 0.3 2.5 2.2 0.4

Table 4.2: Mean-squared error × 100 on example 2 for the same five meth-
ods in Table 4.1.

n HTF (k = 1) HTF (k = 2) KDE (CV) KDE (ref) LP
500 5.7 6.8 5.5 8.8 6.2
1000 4.0 4.6 4.5 8.5 4.9
2500 3.0 3.3 3.7 7.9 3.5
5000 2.4 2.9 3.2 7.6 2.9
10000 2.0 2.9 2.8 7.0 2.6
50000 1.6 2.9 6.1 5.9 2.3

tailed look at the two simulated data sets. The top two panels show f1 and

f2 together with a single simulated data set of n = 2500 from each density.

The middle two panels show the reconstruction results for histogram trend

filtering with k = 1, while the bottom two panels show the reconstruction

results for kernel density estimation with the bandwidth chosen by cross

validation. The trend-filtering estimator shows excellent adaptivity; it cap-

tures the sharp jumps in each of the true densities, without suffering from

pronounced under-smoothing in other regions.

116

Table 4.3: Mean-squared error × 10 on example 1, averaging over 50 MC
simulations

n
HTF
(k = 1)

RU TV Taut
string

W-N MAPT
Bayesian
HTF
(k = 1)

500 1.2 11.1 3.4 3.4 3.7 1.3 1.0
1000 0.9 9.6 2.4 3.8 1.1 0.9 0.8
2000 0.4 7.3 1.2 1.7 0.5 0.5 0.6
3000 0.3 2.8 0.9 1.1 0.4 0.4 0.3
4000 0.2 1.6 0.7 0.7 0.2 0.3 0.3

4.8.2 Comparison with other adaptive and penalized methods

So far we have considered comparisons of HTF versus estimation

methods that scale well with the number of samples. We now conclude with

examples comparing our HTF against other penalized methods that face

problems with large numbers of samples, or approaches that enjoy adap-

tivity to different degrees of smoothness of the true density. These methods

are the the penalized likelihood approach from [150] (W-N), the total varia-

tion approach from [120] (TV) using their universal penalty, the taut string

method from [34] (which is closely related to the estimator from [120]), the

root–unroot algorithm for density estimation via wavelet block threshold-

ing from [17] (RU), and the Markov adaptive Pólya tree method from [96]

(MAPT).

Using the methods described above as benchmarks, we assess the

performance of our histogram trend filtering selecting the parameter as in

Section 4.5, and also using the Bayesian perspective from Section 4.6. To

117

Table 4.4: Mean-squared error × 100 on example 2, averaging over 50 MC
simulations.

n
HTF
(k = 1)

RU TV Taut
string

W-N MAPT
Bayesian
HTF
(k = 1)

500 3.4 4.1 6.0 10.0 1.3 5.6 1.0
1000 1.6 2.3 3.6 5.4 0.8 3.5 0.8
2000 1.1 1.7 2.2 3.2 0.3 2.2 0.6
3000 0.9 1.4 1.8 2.5 0.2 1.6 0.3
4000 0.2 1.3 1.5 2.3 0.2 1.2 0.3

Table 4.5: Mean-squared error × 10 on example 3, averaging over 50 MC
simulations.

n
HTF
(k = 1)

RU TV Taut
string

W-N MAPT
Bayesian
HTF
(k = 1)

500 1.7 23.8 6.1 5.3 1.8 2.4 1.9
1000 1.1 17.8 3.4 2.1 0.9 1.4 1.6
2000 0.5 5.6 2.1 0.9 0.6 0.9 0.7
3000 0.4 4.5 1.4 0.7 0.5 0.6 0.5
4000 0.3 1.7 1.0 0.5 0.4 0.4 0.4

evaluate the quality of these methods, we borrow some challenging density

estimation examples from the literature. Particularly, Example 1 in Figure

4.3 is taken from [150], and Examples 2, 3 and 4 in Figure 4.3 are taken from

[96].

For all the methods that require binning the data we choose Dn = 210

to be fixed, and compute the mean square error of the estimates on the cen-

ters of evenly spaced bins of size D−1
n . This is the measure of performance

that we use in order to have a fair comparison between the different meth-

118

Table 4.6: Mean-squared error × 10 on example 4, averaging over 50 MC
simulations.

n
HTF
(k = 1)

RU TV Taut
string

W-N MAPT
Bayesian
HTF
(k = 1)

500 1.8 26.0 8.7 5.3 3.5 2.7 2.0
1000 1.1 22.0 5.2 2.1 1.5 1.7 1.1
2000 0.6 6.3 2.9 0.9 0.9 1.0 0.6
3000 0.4 2.2 2.0 0.7 0.7 0.7 0.5
4000 0.3 1.9 1.5 0.5 0.7 0.6 0.4

Table 4.7: Time in seconds for Example 1, averaging over 50 MC simula-
tions.

n HTF (k = 1) RU TV Taut string W-N
500 12.2 0.04 7.4 0.01 1.1
1000 10.4 0.03 20.2 0.02 4.4
2000 8.3 0.03 45.1 0.05 22.1
3000 6.9 0.03 85.2 0.05 37.2
4000 6.3 0.03 135.6 0.07 117.4

ods.

Considering different sample sizes and the densities in Figure 4.3, the

results in Tables 4.3, 4.4, 4.5, and 4.6 show that, generally, histogram trend

filtering outperforms the competing approaches. This is particularly true

in the examples involving true densities which present different degrees of

smoothness in domain. However, in the case of Example 2 which is just a

beta distribution and not a mixture, we observe that the method W-N is in

most cases better than our HTF, but even then HTF is still quite competitive.

119

Figure 4.3: Each row of panels above represents an example considered
in this section. For each row the first column shows the true density along
with n = 4000 draws from the respective density. The second column shows
the error for the solution given by HTF(k=1). Similarly, the third column of
panels represents the estimate error for W-N.

Example 1, n = 4000

y

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

12

●●
●●●

●●●●●●●●●
●●●

●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●
●●●●●●
●●

●●●●
●●●●
●●●

●●●
●●
●
●
●
●●●●

●

●

●
●

●
●

●
●

●

●

●
●

●

●
●●●
●
●●

●●●●
●●
●●
●
●
●

●
●
●
●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

Example 1, HTF error

er
ro

r

●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●

●

●●
●●●●
●

●

●

●●

●

●

●

●
●

●

●

●●●
●
●●●

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●●
●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

Example 1, W−N error

er
ro

r

Example 2, n = 4000

y

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

●

●

●
●
●
●
●
●
●
●
●
●●
●●
●●●
●●●●
●
●
●
●
●●
●●
●●
●●●●
●●●●●●●●●●●●
●
●
●
●
●
●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●
●●

●●●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●
●●●●●
●●●

●●●●●●●●●●●●
●●●

●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

Example 2, HTF error

er
ro

r

●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

Example 2, W−N error

er
ro

r

Example 3, n = 4000

y

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

●●
●●●●●●●●
●●
●●
●
●

●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●
●●●●●●●
●
●
●
●●●●●●●●●●●●
●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●●
●●
●●●
●●
●
●●

●●
●●
●●●●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●●

●

●●

●

●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

Example 3, HTF error

er
ro

r

●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●
●

●

●
●
●
●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●

●
●●
●
●

●
●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

Example 3, W−N error

er
ro

r

Example 4, n = 4000

y

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

●●●
●●
●●
●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●
●
●●●●●●●●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●●
●
●
●
●●●
●
●
●●●●●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●
●●
●

●
●
●

●

●●●●
●●●●●●●●●
●●●●●●●
●●●

●●●●●
●●●●●●●●●●●●●●●●
●
●
●
●

●
●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

Example 4, HTF error

er
ro

r

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●

●●●●●●
●●●●●
●●●●●
●●●●●
●●●

●

●

●

●

●

●
●
●

●

●

●
●●●
●

●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●
●●●
●

●

●
●●●
●
●●
●

●
●
●
●
●
●●

●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

Example 4, W−N error

er
ro

r

120

To give a visual comparison between W-N and HTF, Figure 4.3 il-

lustrates that for Examples 1,3, and 4, HTF captures the peaks of the true

density better than W-N. This fact then reflects in better performance by

HTF.

On the other hand, we also emphasize that despite its accuracy, HTF

also enjoys low computational complexity. This is seen in Table 4.7 where

we notice that HTF is much more computationally efficient than W-N, which

as discussed above was the most competitive method in our experiments.

An additional interesting feature in Table 4.7 is that HTF is faster as n in-

creases and the number of bins remains fixed. Suggesting the optimization

problem (4.3) becomes easier as Dn remains fixed and n increases.

4.8.3 NYC Taxi Data

Our final experiment consists of a prediction task of 2D density esti-

mation. We use data from the NYC Taxi & Limousine Commission, which

consists of information about trips of taxis in New York city.

In order to explore an interesting 2D density estimation problem, we

construct a matrix X ∈ R5000×2 where each column represents one of two

variables: fare amount of a taxi trip and the respective distance of the trip

(these have both been normalized to be between 0 and 1). Moreover, the

rows of X represent different taxi trips along different locations of New

York city. We selected the trips that happened in June 1, 2016 between

roughly 2:45 am and 6:00 pm, a normal day in New York, NY.

121

Figure 4.4: The left panel shows the binned counts for a training set consist-
ing of 75% of the subset of the NYC Taxi data that we used. The right panel
shows the counts for the respective test set or remaining 25% of the data.

Training set

Trip distance

Fa
re

 a
m

ou
nt

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Counts

 0 80 160

Test set

Trip distance

Fa
re

 a
m

ou
nt

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Counts

 0 55

122

Table 4.8: Average log-likelihood on test set times 10−3, averaging over 50
random training and test sets of sizes s% and (100− s)% respectively.

(100-s)% HTF (k = 0) HTF(k = 1)
Multivariate
Kernel

15% 2.58 2.73 2.33
20% 3.11 3.61 3.11
25% 4.14 4.52 3.95
30% 5.02 5.42 4.39

To evaluate the performance of our HTF on the data set described a

above, we consider splitting the data X into training and test set. Thus, for

different choices of s, we randomly choose s% of the rows of X for training,

and (100 − s)% for testing. See Figure 4.4 for an example of training and

testing sets. There, for each of these two sets, we display the counts after

binning the data according to the Section 4.7 with Dn = 100.

We then measure the performance of different methods, fitted on the

training set, by simply computing the log-likelihood of the corresponding

test set. The methods we consider are our HTF with k = 0, 1, and multivari-

ate kernel density estimation. For the latter, we select the bandwidth matrix

as in [49], while for our HTF methods we select the tuning parameter by

BIC. The proposed BIC is based on using Lemma 1 from [149], where the

authors provided an unbiased estimator of the degrees of freedom for trend

filtering problems. However, this does not necessarily provide and unbi-

ased estimator in our context, although it seems to give good results based

on our experience.

After considering splitting X into multiple training and test sets, we

123

obtain the results illustrated in Table 4.8. These show that our HTF method

outperforms the standard and widely used multivariate kernel density es-

timation, hence, once again showing the value of our approach.

4.9 Conclusion

In summary, we have shown that histogram trend filtering can be

successfully applied to the problem of density estimation. This estimator

enjoys both computational and theoretical attractive properties. On the

computational side, our experiments suggests that histogram trend filter-

ing scales remarkably well with sample size, and that in practice it is just as

computationally efficient as widely used methods based on kernel density

estimation (KDE). However, unlike such methods, histogram trend filtering

does not suffer from simultaneous over- and under-smoothing. Rather, our

estimator can easily adapt to different levels of smoothness of the unknown

true density.

Many methods have been proposed in the literature to deal with the

problem of local adaptivity, e.g [150, 120]. As we have shown, these meth-

ods face challenges specifically in regions where the smoothness of true

density changes rapidly. We have shown that histogram trend filtering can

better adjust to such situations, while overcoming the scalability problems

also inherent in other penalized methods. Thus histogram trend filtering

enjoys both the computational efficiency of KDE methods and the adap-

tive properties of penalized estimators. Finally, our risk bound provides

124

strong theoretical guarantee of good performance for histogram trend fil-

tering. This combination of practicality with strong statistical guarantees

makes histogram trend filtering an ideal candidate for use in routine data-

analysis applications that call for a quick, efficient, accurate density esti-

mate.

125

Chapter 5

A deconvolution path for mixtures

The contents of this chapter are based on the working paper [97].

5.1 Deconvolution in mixture models

Suppose that we observe y = (y1, . . . , yn) from the model

yi | µi ∼ φ(yi | µi) , µi
i.i.d.∼ f0 , (5.1)

where φ(· | µ) is a known distribution with location parameter µ, and f0 is

an unknown mixing distribution. Marginally, we have specified a mixture

model for yi:

m(yi) =

∫
R
φ(yi − µi) f0(µi) dµi = (φ ∗ f0)(yi) . (5.2)

The problem of estimating the mixing distribution f0 is commonly referred

to as deconvolution: we observe draws from the convolution m = φ ∗ f0,

rather than from f0 directly, and we wish to invert this blur operation to re-

cover the distribution of the latent location parameters. Models of this form

have been used in a wide variety of applications and have attracted signifi-

cant attention in the literature [e.g. 78, 58, 56, 107, 63]. Yet the estimation of

126

f0 continues to pose both theoretical and practical challenges, making it an

active area of statistical research [e.g. 39, 52, 40].

In this chapter, we propose a nonparametric method for deconvo-

lution that is both statistically and computationally efficient. Our method

can be motivated in terms of an underlying Bayesian model incorporating

a prior into model (5.1), but it does not involve full Bayes analysis. Rather,

we use a two-step “bin and smooth” procedure. In the “bin” step, we form

a histogram of the sample, yielding the number of observations xj that fall

into the jth histogram bin. In the “smooth” step, we use the counts xj to

compute a maximum a posteriori (MAP) estimate of f0 under a prior that

encourages smoothness.

We show that this nonparametric empirical-Bayes procedure yields

excellent performance for deconvolution, at reduced computational cost

compared to full nonparametric Bayesian methods. Our main theorems

establish conditions under which the method yields a consistent estimate

of the mixing distribution f0, and provide a concentration bound for recov-

ery of the marginal distribution m. We also provide simulation evidence

that the method offers practical improvements over existing state-of-the-art

methods.

5.1.1 Methodological issues in deconvolution

To complement these theoretical results, we address two main method-

ological themes. First, we emphasize the importance of sensitivity analysis:

127

that is, characterizing how the deconvolution estimate changes with respect

to the assumed smoothness of f0. Inverting the blur operation m = φ ∗ f0 is

typically ill-posed, in that large changes in f0 produce only small changes

in m. The role of prior assumptions matters a great deal here. But for many

methods, the mapping between tuning parameters and the smoothness of

the estimate is not apparent. Our solution-path approach makes this map-

ping very explicit, since it returns a range of estimates that are all compati-

ble with a given marginal.

The secondary theme we emphasize is the connection between de-

convolution (5.1) and the canonical normal-means problem. Here (yi | µi) ∼

N(µi, 1), and the object of inferential interest is the vector of means (µ1, . . . , µn)

rather than the mixing measure f0. A classic result known as Tweedie’s for-

mula [114, 51] makes this connection explicit in exponential-family models.

Although our main goal is to provide a good estimate for f0, we also high-

light the advantages of using our method in conjunction with Tweedie’s

formula in the normal-means problem. This is made explicit in the experi-

ments sections.

5.2 Connections with previous work

We first recall the work by [78], who consider estimating f0 using the

nonparametric maximum likelihood estimation. The Kiefer–Wolfowitz es-

timator (KW) has some appealing features: it is completely nonparametric

and invariant to translations of the data, it requires no tuning parameters,

128

and it is consistent under fairly general conditions. Balanced against these

desirable features is one significant disadvantage: f̂ is a discrete distribu-

tion involving as many as n+ 1 point masses. [83] refer to this phenomenon

as a “Dirac catastrophe,” for the reason that in most settings f0 will be rela-

tively smooth, and the discreteness of the KW estimator is unappealing. A

related consistent estimator was studied in [62].

Deconvolution has also been studied using Bayesian methods. In

the context of repeated measurements, or multivariate deconvolution, we

highlight recent work by [121, 122, 131]. Moreover, for the one dimensional

density estimation problem, a flexible choice is the Dirichlet Process (DP)

studied in [58] and [55]. For a Dirichlet prior in deconvolution problems,

concentration rates were recently studied in [43]. Related models were con-

sidered by [42] and [105] for finite mixture of normals.

The DP provides a very general framework for estimating the mixing

density f0. However, as [103] argue, fitting a Dirichlet process mixture does

not scale well with the number of observations n. For microarray studies, n

ranges from thousands to tens of thousands, whereas for more recent stud-

ies of fMRI data or single-nucleotide polymorphisms, n can reach several

hundreds of thousands [e.g. 135]. For such massive data sets, fitting a DP

mixture model can be very time-consuming.

To overcome this difficulty, [107], [143], [104], and [103] studied a pre-

dictive recursive (PR) algorithm. The resulting estimator scales well with

large data sets while remaining reasonably accurate, thereby solving one

129

the main challenges faced by the fully Bayesian approach.

Finally, we note the work by [21, 132, 153, 56, 57, 66, 20, 39], among

others, who considered kernel estimators. Their idea is motivated by (5.1)

after taking the Fourier transform of the corresponding convolution of den-

sities, then solving for the unknown mixing density using kernel approxi-

mations for the Fourier transform of the true marginal density. The resulting

kernel estimator enjoys attractive theoretical properties: for each µ0 ∈ R, the

estimator has optimal rates of convergence towards f0(µ0) for squared-error

loss when the function f0 belongs to a smooth class of functions [56].

5.3 A deconvolution path
5.3.1 Overview of approach

We now described our proposed approach in detail. We study de-

convolution estimators related to the variational problem

minimize
f

−
n∑
i=1

log(φ ∗ f)(yi) subject to
∫
R
f(µ) dµ = 1, J(f) ≤ t,

(5.3)

where J(f) is a known penalty functional. The choices of J we consider

include `1 or `2 penalties on the derivatives in the log-space to encourage

smoothness:

‖ log f (k)‖qs =

∫
R
| log f (k)(µ)|s dµ, (5.4)

with s = q = 1 or s = q = 2 and where log f (k) is the derivative of order k

of the log prior. The penalty involving the first derivative is an especially

130

interpretable one, as d log f(µ)/dµ = f ′(µ)/f(µ) is the score function of the

mixing density.

Note that an alternative interpretation of our approach is as a MAP

estimator. To see this we consider the (possibly improper) prior on the mix-

ing density

p(f) ∝ exp (−J(f)) I (f ∈ A) ,

where A is an appropriate class of density functions. The posterior distri-

bution is p(f | y) ∝ p(y | f)p(f), and our MAP estimator therefore solves,

for an appropriate τ > 0,

argminf∈A − log p(y | f) +
τ

2
J(f) . (5.5)

This belongs to a general class of MAP estimators that have been studied

in [65] and [127] for the classical problem of density estimation. For de-

convolution problems we note the recent work by [147] which penalizes

the marginal density rather than the derivatives of the mixing density as

we propose. Moreover such penalization is not motivated to encourage

smoothness. Rather, it is an `2 projection on to the space of acceptable

marginal densities. An alternative penalized likelihood method was stud-

ied in [91] in the different context where the marginal density has atoms.

There the authors use the roughness penalty J(f) =
∫
|f ′(µ)|2dµ which dif-

fers from our approach that penalizes the log-mixing density and hence en-

sures that the solutions will be positive. Also, we allow different degrees of

smoothness depending on the choice of k. Moreover, while [91] only con-

131

sidered sample sizes in the order of hundreds, we show in the next sections

that our estimator can scale to much larger data sets while still enjoying

attractive statistical properties.

More recently, [52] proposed a penalized approach to deconvolu-

tion that is also based on regularization but differs from ours. Such ap-

proach proceeds by assuming that the mixing density is discrete with sup-

port {θ1, . . . , θN}. Then [52] specified a parametric model on the mixing

density of the form

f(θj) = exp
(
QT
j,·α− c(α)

)
, j = 1, . . . , N,

where Qj,· is the j − th row of the matrix Q ∈ RN×p, for some p > 0, which

is used to encourage structure on the mixing density. Moreover, c(α) is a

normalizing constant satisfying

c(α) = log

(
N∑
j=1

exp
(
QT
j,· α
))

.

Then summing over all the {θj}Nj=1 and considering the contribution of the

different samples, [52] arrives to the minus log-likelihood

l(α) = −
n∑
i=1

log

(
N∑
j=1

N(yi|θj) exp
(
QT
j,·α− c(α)

))
.

The estimator from [52] results from solving

minimize
α

l(α) + c0

(
p∑

h=1

α2
h

)1/2

. (5.6)

where c0 is either 1 or 2.

132

We note that the estimator (5.6) is possibly limited by the following

aspects. First, the choice of the matrix Q, which [52] recommends to be

a spline basis representation, will produce estimates that suffer from local

adaptivity problems. Moreover, there is no theoretical support of choosing

c0 ∈ {1, 2}. In our experiments section we will present experimental com-

parisons between the estimator (5.6) and our approach.

Finally, we emphasize that our approach is not, in any sense, related

to the ridge parameter deconvolution estimator from [66]. Such estimator

does not penalizes that log-likelihood as we propose, but rather is designed

to avoid the need to choose a kernel function, in the original kernel estima-

tor from [56], by ridging the integral in its definition with a positive func-

tion.

5.3.2 Binned counts problem

Throughout this section we assume that φ corresponds to the pdf

of the standard normal distribution, although the arguments can easily be

generalized to other distributions.

To make estimation efficient in scenarios with thousands or even mil-

lions of observations, we actually fit a MAP estimator based on binning the

data. First, we use the sample to form a histogram {Ij, xj}Dj=1 with D bins,

where Ij is the j−th interval in the histogram and xj = #{yi ∈ Ij} is the

associated count. For ease of exposition, we assume that the intervals take

the form Ij = ξj ± ∆/2, i.e. have midpoints ξj and width ∆, although this

133

is not essential to our analysis. To arrive to a discrete estimator, instead of

Problem (5.3), we consider an approximation, a reparametrization g = log f ,

and put the penalty in the objective function with a regulariation parameter

τ > 0,

minimize
g∈RD

− 1
n

∑D
j=1 xj log (φ ∗ eg(ξj)) + τ

2
J(eg) subject to

∫
eg(µ)dµ = 1.

(5.7)

We then approximate (5.7) by solving

minimize
g∈RD

− 1
n

∑D
j=1 xj log

(∑D
i=1 ∆φ(ξj − ξi)egi

)
+ τ

2
‖∆(k+1)g‖sq

subject to
∑Dn

i=1 ∆ egi = 1,
(5.8)

where s = q = 1 or s = q = 2, and ∆(k+1) is the k-th order discrete difference

operator. Concretely, when k = 0, ∆(1) is the (D − 1) × D matrix encoding

the first differences of adjacent values:

∆(1) =


1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
...
0 · · · 0 1 −1

 . (5.9)

For k ≥ 1, ∆(k+1) is defined recursively as ∆(k+1) = ∆(1)∆(k), where ∆(1)

from (5.9) is of the appropriate dimension. Thus when k = 0, we penalize

the total variation of the vector θ [c.f. 117, 137] and should expect estimates

that are shrunk towards piecewise-constant functions. When k ≥ 1, the

estimator penalizes higher-order versions of total variation, similar to the

polynomial trend-filtering estimators studied by [140].

Interestingly, following the proof of Theorem 4.3.1 we find that (5.8)

134

is equivalent to

minimize
θ∈RD

l(θ) +
τ

2
‖∆(k+1)θ‖sq , (5.10)

where

l(θ) =
D∑
j=1

{λj(θ)− xj log λj(θ)} ,

with λj =
∑D

j=1Gije
θi , Gij = ∆φ(ξj − ξi), and θ̂ solves (5.10) if only if

θ̂ − log(n∆)1 solves (5.8). Hence, in practice we solve the unconstrained

optimization Problem (5.10).

5.3.3 Solution algorithms

We start discussing the implementation details for solving (5.10) in

the case s = q = 1. To solve this problem, motivated by the work on trend

filtering for regression by [110], we rewrite the problem as

minimize
θ

l(θ) + τ
2
‖∆(1)α‖1 subject to α = ∆(k)θ. (5.11)

Next we proceed via the alternating-direction method of multipli-

ers (ADMM), as in [110]. [See 13, for an overview of ADMM.] By exploiting

standard results we arrive at the scaled augmented Lagrangian correspond-

ing to the constrained problem (5.11):

Lρ(θ, α, u) = l(θ) +
τ

2
‖∆(1)α‖1 + ρuT

(
α−∆(k)θ

)
+
ρ

2
‖α + u−∆(k)θ‖2

2 .

This leads to the following ADMM updates at each iteration j:

θj+1 ← argmin
θ

(
l(θ) + ρ

2

∥∥αj + uj −∆(k)θ
∥∥2

2

)
,

αj+1 ← argmin
α

(
1
2
‖α−∆(k)θj+1 + uj‖2

2 + τ
2ρ
‖∆(1)α‖1

)
uj+1 ← uj + αj+1 −∆(k)θj+1.

(5.12)

135

Note that in (5.12) the update for θ involves solving a sub-problem

whose solution is not analytically available. To deal with this, we use the

well known Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, which

is very efficient because the gradient of the θ sub-problem objective is avail-

able in closed form. The update for α can be computed in linear time by

appealing to the dynamic programming algorithm from [74].

In the case p = q = 2, both components of the objective function in

(5.10) have closed-form gradients, see the appendix. Thus we can solve the

problem using any algorithm that can use function and gradient calls. In

particular, we use BFGS.

5.3.4 Solution path and model selection

One of the major advantages of our approach is that it yields an en-

tire deconvolution path, comprising a family of estimates f̂(τ) over a grid

of smoothness parameters. This path is generated efficiently using warm

starts. We initially solve (5.11) for a large value of τ , for which the result es-

timate is nearly constant. We then use this solution to initialize the ADMM

at a slightly smaller value of τ , which dramatically reduces the computa-

tion time compared to an arbitrarily chosen starting point. We proceed iter-

atively until solutions have been found across a decreasing grid of τ values

(which are typically spaced uniformly in log τ).

The resulting deconvolution path can be used to inspect a range of

plausible estimates for f0, with varying degrees of smoothness. This allows

136

the data analyst to bring to bear any further prior information (such as the

expected number of modes in f0) that was not formally incorporated into

the loss function. It also enables sensitivity analysis with respect to different

plausible assumptions about the smoothness of the mixing distribution. We

illustrate this approach with a real-data example in Section 5.4.

However, in certain cases—for example, in our simulation studies—

it is necessary to select a particular value of τ using a default rule. We now

briefly describe heuristics for doing so based on `1 and `2 penalties with

k = 1. These heuristics are used in our simulation studies. For the case of `1

regularization, motivated by [142], we consider a surrogate AIC approach

by computing

AICτ = l(θ̂τ) + k + 1 +
∣∣∣{i : (∆(k+1)θ̂τ)i 6= 0

}∣∣∣ ,
and choosing the value of τ that minimizes this expression. Here, θ̂τ denotes

the solution given by L1-D with regularization parameter τ .

In the case of `2 regularization the situation is more difficult, since

there is not an intuitive notion of the number of parameters of the model.

Instead, we consider an ad-hoc procedure based on cross validation. This

solves the problem for a grid of regularization parameters and chooses the

parameter the minimizes l(θ̂held out
τ) + ‖∆(k+1)θ̂held out

τ ‖1, where θ̂held out
τ is de-

fined as

θ̂held out
τ = θ̂τ − log(n∆) + log(nheld out∆),

with θ̂τ the solution obtained by fitting the model on the training set which

137

Figure 5.1: Example of deconvolution with an `2 penalty on the discrete
first derivative (k = 1). The left panel shows the data histogram together
with the fitted marginal density as a solid curve. The right panel shows the
histogram of the µi’s together with the estimated mixing measure as a solid
curve.

Histogram of y

y

D
en
si
ty

-10 -5 0 5 10

0.00

0.05

0.10

0.15

Histogram of mu

mu
D
en
si
ty

-10 -5 0 5

0.00

0.05

0.10

0.15

0.20

consists of 75% of the data. Here, l(θ̂held out
τ) is evaluated using the counts

from the held out set which has 25% of the data, and nheld out is the number

of observations in such set. Our motivation for using the additional term

‖∆(k+1)θ̂held out
τ ‖1 is that `0 works well when the problem is formulated with

`1 regularization. However, when (5.10) is formulated using `2, the penalty

`0 is not suitable so instead we use `1. Our simulations in the experiments

section will show that this rule works well in practice.

5.3.5 A toy example

We conclude this section by illustrating the accuracy of our regular-

ized deconvolution approach on a toy example. In this example we draw

105 samples {yi}with the corresponding {µi} drawn from a mixture of three

normal distributions. Figure 5.1 shows the samples of both the observations

138

yi (left panel) and the means µi (right panel), together with the reconstruc-

tions provided by our method. Here, we solve the `2 version of problem

(5.10) by using the BFGS algorithm and choose τ using the heuristic just

described.

It is clear that regularizing with an `2 penalty provides an excellent

fit of the marginal density. Surprisingly, it can also capture all three modes

of the true mixing density, a feature which is completely obscured in the

marginal). Our experiments in Section 5.6.1 will show in a more compre-

hensive way that our method far outperforms other approaches in its ability

to provide accurate estimates for multi-modal mixing distributions.

5.4 Sensitivity analysis across the path

In this section, we provide an example of a sensitivity analysis using

our deconvolution path estimator. We examine data originally collected and

analyzed by [129] on gene expression for 12,600 genes across two samples:

9 healthy patients and 25 patients with prostate tumors. The data come as a

set of 12,600 t-statistics computed from gene-by-gene tests for whether the

mean gene-expression score differs between the two groups. After turning

these 12,600 t-statistics into z-scores via a CDF transform, we estimate a

deconvolution path assuming a Gaussian convolution kernel. We use an

`2 penalty and a grid of τ values evenly spaced on the logarithmic scale

between 107 and 10−3.

139

Figure 5.2: Rows A–E show five points along the deconvolution path for
the prostate cancer gene-expression data. The regularization parameter is
largest in Row A and gets smaller in each succeeding row.

Estimate of mixing distribution

D
en
si
ty

−6 −4 −2 0 2 4 6 8
0.0
0.1
0.2
0.3
0.4
0.5
0.6

Fit to data histogram

−6 −4 −2 0 2 4 6 8
0.00

0.05

0.10

0.15

0.20

Estimate of marginal (log scale)

1e−04

1e−03

1e−02

1e−01

−6 −4 −2 0 2 4 6 8

τ = 200

Estimate of mixing distribution

D
en
si
ty

−6 −4 −2 0 2 4 6 8
0.0
0.1
0.2
0.3
0.4
0.5
0.6

Fit to data histogram

−6 −4 −2 0 2 4 6 8
0.00

0.05

0.10

0.15

0.20

Estimate of marginal (log scale)

1e−04

1e−03

1e−02

1e−01

−6 −4 −2 0 2 4 6 8

τ = 8700

Estimate of mixing distribution

D
en
si
ty

−6 −4 −2 0 2 4 6 8
0.0
0.1
0.2
0.3
0.4
0.5
0.6

Fit to data histogram

−6 −4 −2 0 2 4 6 8
0.00

0.05

0.10

0.15

0.20

Estimate of marginal (log scale)

1e−04

1e−03

1e−02

1e−01

−6 −4 −2 0 2 4 6 8

τ = 1300

Estimate of mixing distribution

D
en
si
ty

−6 −4 −2 0 2 4 6 8
0.0
0.1
0.2
0.3
0.4
0.5
0.6

Fit to data histogram

−6 −4 −2 0 2 4 6 8
0.00

0.05

0.10

0.15

0.20

Estimate of marginal (log scale)

1e−04

1e−03

1e−02

1e−01

−6 −4 −2 0 2 4 6 8

τ = 3.2

Estimate of mixing distribution

D
en
si
ty

−6 −4 −2 0 2 4 6 8
0.0
0.1
0.2
0.3
0.4
0.5
0.6

Fit to data histogram

−6 −4 −2 0 2 4 6 8
0.00

0.05

0.10

0.15

0.20

Estimate of marginal (log scale)

1e−04

1e−03

1e−02

1e−01

−6 −4 −2 0 2 4 6 8

τ = 2400000A

B

C

D

E

140

Figure 5.3: The first three panels show 95% confidence bands and posterior
mean from 15000 posterior samples from a mixture of 10 normals prior on
the latent variables µ. Panels 4-7 then shows the estimated mixing density
using the kernel estimator with different bandwidth choices.

0.
0

0.
1

0.
2

0.
3

α = 0.01

'

−6 −4 −2 0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

α = 1

'

−6 −4 −2 0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

α = 100

'

−6 −4 −2 0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

bandwith = 0.20

−4 0 4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

bandwith = 0.225

−4 0 4

0.
00

0.
05

0.
10

0.
15

0.
20

bandwith = 0.25

−4 0 4

0.
00

0.
05

0.
10

0.
15

bandwith = 0.5

−4 0 4

Each row of Figure 5.2 shows five points along the deconvolution

path; the regularization parameter is largest in Row A and gets smaller in

each successive row. Within each row, the left column shows the estimated

mixing distribution f̂ for the given value of τ . The middle column shows

the histogram of the data together with the fitted marginal density m̂ = φ∗f̂ .

The right column shows the fitted marginal density on the log scale, with a

regular grid to facilitate comparison of the results across different values of

τ .

The figure shows that, while the estimate of the mixing distribu-

141

tion changes dramatically across the deconvolution path, the estimate of

the marginal density is much more stable. Even on the log scale (right col-

umn), the differences among the fitted marginal densities are not visually

apparent in Panels B through E, even as the regularization parameter varies

across three orders of magnitude.

This vividly demonstrates the well-known fact that deconvolution,

especially of a Gaussian kernel, is a very ill-posed inverse problem. There

is little information in the data to distinguish a smooth mixing distribution

from a highly multimodal one, and the model-selection heuristics described

earlier are imperfect. A decision to prefer Panel B to Panel E, for instance, is

almost entirely due to the effect of the prior. Yet for most common deconvo-

lution methods, the mapping between prior assumptions and the smooth-

ness of the estimate is far from intuitive. By providing a full deconvolution

path, our method makes this mapping visually explicit.

For reference, it is interesting to compare our deconvolution path to

the results of other methods. Figure 5.3 shows the result of using MCMC

to fit a 10-component mixture of normals to the mixing distribution. The

weights in the Gaussian mixture were assigned three different symmetric

Dirichlet priors, with concentration parameter α ∈ {0.01, 1, 100}. Panels 1-3

in Figure 5.3 show the posterior mean and posterior 95% credible envelopes

for f0; these settings span a wide range of expected degrees of smoothness

for f0, and they yield a correspondingly wide range of posterior estimates.

Comparing figures 5.2 and 5.3, we see that the deconvolution path spans

142

essentially the entire range of plausible posterior estimates for f0 arising

under any of the concentration parameters. In contrast, Panels 4-7 in Figure

show that the kernel estimates are either overly smooth or wiggly.

5.5 Theoretical properties

In this section we establish some important theoretical properties of

our estimators by thinking of them as approximations to sieves problems.

We start by showing consistency of the mixing density in L1 norm. We do

not provide convergence rates since, unlike the kernel estimator from [56]

and the predictive recursion from [107], our method cannot be expressed in

analytical form. This is out of the scope of our work, but we do provide

evidence in the later sections that our estimator can outperform existing

non-parametrics methods.

Throughout we consider k ∈ N − {0} and q > 0 to be fixed. We also

denote by P the set of densities in R, thus P := {f :
∫
R f(µ)dµ = 1; f ≥ 0},

where dµ denotes Lebesgue measure. Moreover, given any non-negative

function f we say that b ∈ Tf if

max
(
‖f‖∞, ‖ (logf)(k+1) ‖∞, | (logf)(k) (0)|, . . . , | (logf) (0)|

)
≤ b,

and (logf)(k+1) is b-Lipschitz. Here, given an arbitrary function g, we use

the notation ‖ · ‖∞ to indicate the usual supremum norm on the support of

g. Moreover g is called Tm−Lipschitz if it satisfies |g(x) − g(y)| ≤ Tm |x − y|,

for all x and y.

143

In this section two metrics of interest will be repeatedly used. The

first one is the usual `1 distance d(f, g) =
∫
R |f − g|. The other metric of

interest will be the Hellinger distance whose square is given as H2 (f, g) :=∫
R |
√
f(µ)−√g(µ)|2dµ. We also use the notation

DKL (f |g) =

∫
f(µ) log(f(µ)/g(µ))dµ.

Finally, for q ∈ N, we define the functional Jk,q which will be a generaliza-

tion of the usual total variation. We set Jk,q (f) :=
∫
R |f

(k+1) (µ) |qdµ.

Next we state some assumptions for our first consistency result. Our

approach is to consider the objective function in (5.3) restricted to a smaller

domain than that of its original formulation. This will then allows to prove

that the new problem is not ill defined and also its solutions enjoy asymp-

totic properties of convergence towards the true mixing density. We refer to

[62] for a general perspective on sieves.

Assumptions and definitions Let A be a set of functions that satisfies the

following.

Assumption 1. Any function f ∈ A satisfies that f ∈ P, f > 0, Jk,q (log f) <

∞, and there exists a constant tf ∈ Tf .

Assumption 2. For allm ∈ N, the exists a set Sm ⊂ A and constants Tm, Km >

0 such that for all f ∈ Sm it holds that tf = Tm and Jk,q (log f) ≤ Km.

Moreover, for all m, the set Sm induces a tight set of of probability measures

in (R,B(R)) satisfying Sm ⊂ Sm+1. In addition, ∪m Sm is dense in A with

respect to the metric d.

144

Assumption 3. Data model: we assume that y1, . . . , yn are independent draws

from the density φ ∗ f0, f0 ∈ A, with φ being an arbitrary density function

satisfying max (‖φ‖∞, ‖φ′‖∞) <∞ and
∫
R log (φ ∗ f0(µ))φ ∗ f0(µ)dµ <∞.

Assumption 4. The set

Am =

{
α ∈ Sm : DKL (φ ∗ f0||φ ∗ α) = inf

β∈Sm
DKL (φ ∗ f0||φ ∗ β)

}
,

satisfies d(f0, α) → 0 as m → ∞ for all α ∈ Am, where the convergence is

uniform in Am.

Assumption 5. We assume that the y1, . . . , yn are binned into Dn different

intervals with frequency counts {xj}j=1,...,Dn such that n−1 ‖x‖∞ → 0 a.s.,

and we denote by ξj an arbitrary point in interval j. Note that this trivially

holds for the case where Dn = n and xj = 1f for all j.

Assumption 6. There exists fm ∈ Am such that

Dn∑
j=1

xj
n

log (φ ∗ fm(ξj))→
∫
R

log (φ ∗ fm(ξ))φ ∗ f0(ξ)dξ a.s. as n→∞.

If the xj = 1 and ξj = yj for all j = 1, . . . , this condition can be disregarded.

Assumptions (1)-(3) are natural for the original variational problem

proposed earlier. The Lipschitz condition, the bounds on the behavior of

the functions at zero, and the tightness of distributions are merely used to

ensure that the sieves will indeed be compact sets with respect to the metric

d. Moreover, Assumption (4) tell us that the sieves Sm are rich enough to

approximate the true mixing density sufficiently well. The last two assump-

tions can be disregarded when the counts in the bins are all one.

145

We are now ready to state our first consistency result. Its proof gen-

eralizes ideas from Theorem 1 in [62].

Theorem 5.5.1. If Assumptions (1-6) hold, then, the problem

minimize
f∈Sm

−
Dn∑
j=1

xj log (φ ∗ f) (ξj)

has solution setMn
m 6= ∅. Moreover, for any sequencemn increasing slowly enough

it holds that

sup
β∈Mn

mn

d (β, f0) → 0 a.s.

Proof. See Appendix D.1.1.

In Theorem 5.5.1, the sequence Tmn is arbitrary and can grow as fast

as desired. Moreover, the a.s statement is on the probability space

(R∞,F, F0 × F0 × F0, . . .) ,

with F0 the measure on (R,B(R)) induced by φ ∗ f0, and with F the comple-

tion of B (R)∞.

5.6 Experiments
5.6.1 Mixing density estimation

In this section we show the potential gain given by our penalized

approaches. We start by considering the task of recovering the true mix-

ing distribution. We evaluate the performance of our methods described in

146

Figure 5.4: The first panel shows a histogram of observed data {yi}ni=1 for
our first example, and the L1-D marginal density estimate plotted on top
of the histogram. Here the data has been generated as yi ∼ N(µi, 1) where
µi is a draw from the mixing density. The second panel shows, for this
same example, the histogram of {µi}ni=1 (unobserved draws from the mixing
density) and the L1-D estimate of the mixing density plotted on top of it.
Panels 3-6 show the respective cases of Examples 2 and 3. The last two
panels show the corresponding plots for the L2-D solution and Example 4.

Example 1, data with L1−D solution

−5 0 5

0.00
0.05
0.10
0.15

Example 1, latent mu with L1−D solution

−5 0 5

0.0
0.2
0.4
0.6
0.8
1.0

Example 2, data with L1−D solution

−5 0 5 10

0.00
0.05
0.10
0.15

Example 2, latent mu with L1−D solution

−5 0 5 10

0.0
0.1
0.2
0.3
0.4

Example 3, data with L1−D solution

−15 −10 −5 0 5 10 15

0.00
0.05
0.10
0.15
0.20
0.25

Example 3, latent mu with L1−D solution

−15 −10 −5 0 5 10 15

0.0
0.1
0.2
0.3
0.4
0.5

Example 4, data with L2−D solution

−5 0 5 10

0.00
0.05
0.10
0.15

Example 4, latent mu with L2−D solution

−5 0 5 10

0.00
0.05
0.10
0.15
0.20

147

Figure 5.5: For the mixing density illustrated in Example 1 of Figure 5.4 we
show the estimated mixing densities of different methods. The top two pan-
els correspond to the estimated mixing densities using L2-D and PR algo-
rithms along with latent µ. Bottom two panels show the estimated density
using MN and FTKD both with the latent µ. For all four panels n = 105

L2−D solution

−5 0 5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

PR solution

−5 0 5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

MN solution

−5 0 5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

FTKD solution

−5 0 5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Section 5.3 which we call L1-deconvolution (L1-D) and L2-deconvolution

(L2-D) depending on the regularization penalty used in the estimation. As

competitors we consider a mixture of normals model (MN), the predictive

recursion algorithm (PR) from [107], the Fourier transform kernel deconvo-

lution method (FTKD) from [56], and the “g-modeling” method from [52]

(g-M). Our comparisons are based on four examples which are shown in

Figure 5.4. These examples are intended to illustrated the performance un-

der different scenarios involving smooth and sharp densities. Next we de-

scribe the simulation setting and as well as the implementation details of

the competing methods.

As a flexible Bayesian model we decided to use a prior for the mixing

density based on a mixture of 10 normals (MN). Here, the weights of the

148

mixture components are drawn from a Dirichlet prior with concentration

parameter 1. This is done in order to have a uniform prior on the simplex.

For the locations of the mixture we consider non-informative priors given

as N(0, 102) while for the variances of the mixture components we place a

inverse gamma prior with shape parameter 0.01 and rate 0.01. The complete

model can be then thought as a weak limit approximation to the Dirichlet

process, [72]. Also, Gibss sampling is accomplished straightforwardly by

introducing a data augmentation with a variable zi indicating the compo-

nent to which µi belong.

The next competing model is the predictive recursion algorithm from

[107] for which we choose the weights wi as in [103], close to the limit of the

upper bound of the convergence rate for PR given in [143]. Moreover we

average the PR estimator over 10 different permutations of the input data

in order to obtain a smaller expected error [143].

On the other hand, for the Fourier transform kernel deconvolution

method, we consider different choices of bandwidth: the rule of thumb from

[56], the plug in bandwidth from [132], and the 2-stage plug-in bandwidth

from [38]. Our estimates are obtained using the R package fDKDE available

at http://www.ms.unimelb.edu.au/˜aurored/links.html, which

addresses the main concerns associated with the R package decon, see [37].

For the final competitor, the “g-modeling” approach from [52], we

use the newly released R package deconvolveR.

149

Table 5.1: Mean squared error (MSE) between the true and estimated mixing
densities, averaging over 100 Monte Carlo simulations, for different meth-
ods given samples from density Example 1. The acronyms here are given
the text. The MSE is multiplied by 102 and reported over two intervals con-
taining 95% and 99% of the mass of the mixing density.

n
MN
95%

PR
95%

L2-D
95%

L1-D
95%

FTKD
95%

g-M
95%

2000 9.47 9.12 9.39 9.69 8.89 9.27
10000 8.43 8.72 8.64 7.44 8.87 9.22
25000 8.34 8.46 7.27 5.54 8.88 9.32
50000 8.21 8.23 5.80 4.15 8.85 9.40
100000 8.34 8.05 4.79 3.38 8.69 9.50

n
MN
99%

PR
99%

L2-D
99%

L1-D
99%

FTKD
99%

g-M
99%

2000 9.26 8.91 9.18 9.48 8.89 9.01
10000 8.24 8.52 8.44 7.28 8.87 9.00
25000 8.15 8.27 7.13 5.43 8.16 9.09
50000 8.03 8.04 5.71 4.09 8.66 9.18
100000 8.14 7.86 4.69 3.35 8.49 9.28

We now state the simulation setting for recovering the mixing den-

sity. Given the densities from Figure 5.4, we consider varying the number of

samples n and for each fixed n we run 100 Monte Carlo simulations. More-

over, for our methods we set D, the number of evenly space points in the

grid, to 250. See the appendix for a sensitivity example of this parameter.

The results on Table 5.1 illustrate a clear advantage of our penalized

likelihood approaches over MN, PR and FTKD which seems even more sig-

nificant for larger samples size. The estimated mixing density by L1-D is

shown in Figure 5.4 where we can clearly see that L1-D can capture the

peaks of the unknown mixing density. Moreover, Figure 5.5 shows that L2-

150

Table 5.2: Mean squared error (MSE) between the true and estimated mixing
densities, averaging over 100 Monte Carlo simulations, for different meth-
ods given samples from density Example 2. The acronyms here are given
the text. The MSE is multiplied by 103 and reported over two intervals con-
taining 95% and 99% of the mass of the mixing density.

n
MN
95%

PR
95%

L2-D
95%

L1-D
95%

FTKD
95%

g-M
95%

2000 6.20 2.54 2.74 2.38 6.07 8.23
10000 3.45 1.75 1.60 1.68 5.98 5.82
25000 2.31 1.46 1.19 1.35 5.99 5.01
50000 1.24 1.28 0.89 1.18 5.89 4.68
100000 0.78 1.07 0.74 0.87 4.97 4.03

n
MN
99%

PR
99%

L2-D
99%

L1-D
99%

FTKD
99%

g-M
99%

2000 5.47 2.37 2.49 2.13 5.86 7.06
10000 3.05 1.60 1.46 1.49 5.76 5.45
25000 2.20 1.35 1.09 1.19 5.70 4.77
50000 1.10 1.17 0.81 1.05 5.66 4.39
100000 0.69 0.98 0.67 0.77 4.85 3.85

D can also capture the structure of the true density. In contrast, MN, PR and

FTKD all fail to provide reliable estimators.

For our example density 2, we observe from Table 5.2 that in general

L2-D and L1-D offer the best performance. In the case of example 3 (see

Table 5.3), we observe that the L1-D again provides better results than the

competitors in all the scenarios of sample sizes considered. Even with only

10000 samples L1-D is closer to the true density than all the other methods

with more samples. Moreover, L2-D performs much better than PR and

FTKD. Also, L2-D seems to be a clear competitor to MN. In the final exam-

ple density 4, we observe that L2-D is the best method in all the scenarios

151

Table 5.3: Mean squared error (MSE) between the true and estimated mixing
densities, averaging over 100 Monte Carlo simulations, for different meth-
ods given samples from density Example 3. The acronyms here are given
the text. The MSE is multiplied by 103 and reported over two intervals con-
taining 95% and 99% of the mass of the mixing density.

n
MN
95%

PR
95%

L2-D
95%

L1-D
95%

FTKD
95%

g-M
95%

2000 5.28 1.83 2.09 0.96 4.95 7.16
10000 3.06 1.38 1.46 0.61 4.86 1.45
25000 1.51 1.16 1.18 0.47 4.61 1.18
50000 0.95 1.06 1.00 0.42 3.77 1.13
100000 0.72 0.95 0.86 0.38 3.48 2.42

n
MN
99%

PR
99%

L2-D
99%

L1-D
99%

FTKD
99%

g-M
99%

2000 3.45 1.21 1.37 0.63 3.25 4.54
10000 1.99 0.90 0.95 0.40 3.18 9.49
25000 0.99 0.72 0.77 0.31 3.01 7.75
50000 0.62 0.70 0.66 0.28 2.47 9.11
100000 0.47 0.62 0.56 0.25 2.29 1.58

considered as shown in Table 5.4.

Overall, we have shown that for estimating the mixing density, L1-

D and L2-D can perform well under different settings, even when other

methods exhibit notable deficiencies. The advantage is amplified by the

fact that both of our methods are less computationally intensive that MN,

with L2-D requiring around 40 seconds to handle problems with D = 250,

and L1-D under the same problem conditions typically requires around 5

minutes for a full solution path across 50 values of the tuning parameter.

152

Table 5.4: Mean squared error (MSE) between the true and estimated mixing
densities, averaging over 100 Monte Carlo simulations, for different meth-
ods given samples from density Example 4. The acronyms here are given
the text. The MSE is multiplied by 104 and reported over two intervals con-
taining 95% and 99% of the mass of the mixing density.

n
MN
95%

PR
95%

L2-D
95%

L1-D
95%

FTKD
95%

g-M
95%

2000 20.6 4.75 1.82 3.48 3.25 7.06
10000 7.64 1.89 0.65 1.93 2.87 4.20
25000 2.04 1.10 0.48 2.19 2.57 2.34
50000 1.03 0.69 0.36 1.20 2.02 1.95
100000 0.50 0.55 0.39 0.90 1.36 1.49

n
MN
99%

PR
99%

L2-D
99%

L1-D
99%

FTKD
99%

g-M
99%

2000 16.8 4.03 1.15 2.88 3.00 5.88
10000 6.23 1.60 0.53 1.60 2.67 3.53
25000 1.67 0.93 0.39 1.80 2.37 1.95
50000 0.85 0.58 0.30 1.00 1.86 1.62
100000 0.40 0.46 0.32 0.85 1.25 1.22

5.6.2 Normal means estimation

After evaluating our proposed methodology for the task of estimat-

ing the mixing density, we now, for the case of standard normal kernel,

focus on the estimation of the normals means {µi}. For this, we consider

comparisons using the best four among the methods used before in addi-

tion to other procedures that we briefly discuss next.

As it is well known (see for instance [51] for description and refer-

ences), assuming that the marginal density is known, one can use Tweedie’s

formula to estimate {µi}. For all the methods here this is the approach that

we take, except for MN in which case we use the posterior means resulting

153

from Gibss sampling inference. For the methods depending on grid estima-

tor, the number of bins is set to 250.

For the method of [51], we set to 5 the degree of the polynomial ap-

proximation to the logarithm of the marginal true density (we found larger

values to be less numerically stable). The Poisson surrogate model is then

fit in R using the command glm. We also compare against the general max-

imum likelihood empirical-Bayes estimator (GMLEB) from [73], which is

a discretized version of the original Kiefer–Wolfowitz estimator. For our

comparisons we use the algorithm proposed in [84] based on an interior

point method algorithm (GMLEBIP). We use the R package REBayes in or-

der to obtain this estimator ([81]). On the other hand, for the shape con-

strained (SC) estimator from [84], we rely on a binned count approach based

on a weighted likelihood using R code proived by the authors. Moreover,

we consider the estimator from [18] using the default choice of bandwidth

hn = (log n)−1/2, which we refer to as BG. The finally competitor is the non-

linear projection (NLP) estimator from [147].

From Table 5.5 it is clear that the best methods for example 1 are

L1-D, L2-D, GMLEBIP, and NLP. Moreover, it is not surprising that GM-

LEBIP provides good estimates given that the true mixing density has mix-

ture components that have small variance.

For example 2, we can see from Table 5.6 that again L2-D and L1-D

provide competitive estimates. The other suitable methods for this exam-

ple seem to be PR and GMLEBIP. With slightly worse estimates MN, BG

154

Table 5.5: Mean squared error, of the normal means estimates, times 100 ,
averaging over 100 Monte Carlo simulations, for different methods given
samples from example 1.

n L2-
D

L1-
D

PR MN Efron GMLEBIP SC BG NLP

2000 64.31 64.29 64.16 67.50 70.27 64.48 68.24 65.57 64.11
10000 63.89 63.68 63.86 63.18 70.00 63.80 65.56 64.06 63.27
25000 63.52 63.37 63.69 63.84 69.96 63.39 64.66 63.65 63.60
50000 63.27 63.21 63.55 65.20 69.85 63.23 64.15 63.44 63.26
100000 63.27 63.23 63.59 63.79 69.89 63.21 63.86 63.39 63.18

Table 5.6: Mean squared error, of the normal means estimates, times 100,
averaging over 100 Monte Carlo simulations, for different methods given
samples from example 2.

n L2-
D

L1-
D

PR MN Efron GMLEBIP SC BG NLP

2000 65.42 65.46 65.36 64.33 69.97 66.20 69.60 66.99 65.75
10000 64.98 65.06 65.08 65.66 69.75 65.29 67.10 65.54 65.95
25000 65.19 65.08 65.32 65.21 69.94 65.12 66.42 65.49 65.09
50000 64.99 65.08 65.13 65.44 69.93 65.03 65.97 65.19 65.24
100000 65.02 64.95 65.14 65.03 69.84 65.02 65.69 65.14 64.96

and SC provide results that are still competitive, with SC being particularly

attractive given its computational speed to provide solutions.

Finally, for examples 3 and 4 we can see in Tables 5.7 and 5.8 respec-

tively that L1-D and L2-D are the best or among the best methods in terms of

mean squared distance when recovering the unknown means µi. Table 5.8

also suggests that Efron’s estimator is more suitable when the true mixing

density is very smooth with no sharp peaks.

155

Table 5.7: Mean squared error, of the normal means estimates, times 100,
averaging over 100 Monte Carlo simulations, for different methods given
samples from example 3.

n L2-
D

L1-
D

PR MN Efron GMLEBIP SC BG NLP

2000 64.99 64.96 65.41 69.05 70.54 65.74 69.70 66.99 65.77
10000 64.73 64.76 64.96 64.21 71.34 64.85 66.92 65.36 64.81
25000 64.52 64.57 64.75 64.97 71.42 64.65 66.62 64.82 64.62
50000 64.51 64.61 64.73 65.38 71.52 64.64 66.60 64.67 64.57
100000 64.54 64.41 64.76 64.54 71.96 64.56 65.17 64.62 64.46

Table 5.8: Mean squared error, of the normal means estimates, times 100,
averaging over 100 Monte Carlo simulations, for different methods given
samples from example 4.

n L2-
D

L1-
D

PR MN Efron GMLEBIP SC BG NLP

2000 79.63 80.20 79.89 78.68 80.00 80.97 85.47 81.58 80.01
10000 79.32 79.35 79.42 79.34 79.99 79.74 82.18 79.89 79.64
25000 79.39 79.31 79.48 78.79 79.96 79.30 80.98 79.65 79.39
50000 79.21 79.25 79.29 79.85 79.82 79.40 80.58 79.36 79.39
100000 79.29 79.22 79.37 79.51 79.91 79.30 80.15 79.37 79.36

5.7 Discussion

In many problems in statistics and machine learning, we observe a

blurred version of an unknown mixture distribution which we would like

to recover via deconvolution. The main challenge is to find an approach

that is computationally fast but still possesses nice statistical guarantees in

the form of rates of convergence. We propose a two-step “bin-and-smooth”

procedure that achieves both of these goals. This reduces the deconvolu-

tion problem to a Poisson-regularized model would can be solved either

156

via standard methods for smooth optimization, or with a fast version of

the alternating-direction method of multipliers (ADMM). Our approach re-

duces the computational cost compared to a fully Bayesian method and

yields a full deconvolution path to illustrate the sensitivity of our solution

to the specification of the amount of regularization. We provide theoretical

guarantees for our procedure. In particular, under suitable regularity con-

ditions, we establish the almost-sure convergence of our estimator towards

the mixing density. We also characterize convergence rates for recovery of

marginal density and illustrate the type of sensitivity analysis that can be

performed in our framework.

There are a number of directions for future inquiry, including multi-

variate extensions and extensions to multiple hypothesis testing. These are

active areas of current research.

157

Chapter 6

Concluding remarks

6.1 Summary

This thesis has presented novel contributions to the statistical area of

regularized likelihood estimation, particularly through new methodologies

using ideas of total variation and its generalizations. Two important aspects

have been emphasized throughly: practicality of algorithms, and statistical

accuracy.

One of the main contributions of this work is to prove universal con-

vergence rates for the fused lasso, regardless of the graph structure. This has

been done in the form of an upper bound on the mean squared error per-

formance of the fused lasso, as described in Chapter 2. Perhaps strikingly,

this has been showed with a previously unknown connection between the

widely used depth first search algorithm and the notion of total variation

on graphs. This has led us to provide a simple two–step estimator: first

run the DFS algorithm to obtain an ordering of nodes, and then use such

ordering to run the 1d fused lasso. While this might seem unintuitive at

first sigh, we have proven that such simple procedure actually achieves the

same universal upper bound that holds for the fused lasso, which we also

158

proved.

In Chapter 3, we have presented a general framework for smooth

low rank tensor decompositions, which is based on trend filtering, the higher

order version of the fused lasso. Importantly, our methodology is amenable

for interpretation and prediction purposes as illustrated y the real data ex-

amples we have considered. Another attractive aspect in our methods has

been the substitution of a non-convex optimization problem by a simple al-

gorithm that only involves solving convex problems, exploiting state of the

art advances in trend filtering regression.

Finally, we have shown how the ideas of trend filtering regression

can be used to effectively perform non-parametric deconvolution and den-

sity estimation. A key insight behind our construction is how the idea of

binning the data can be combined with new optimization algorithms to

lead to low cost algorithms. In a addition to being computational attrac-

tive, a more important feature of our deconvolution and density estimators

is their adaptivity to functions with different degrees of smoothness in their

domain. Thus, our proposed approaches offer a useful combination of local

adaptivity and low computational cost.

6.2 Future work
6.2.1 DFS fused lasso

In Section 2.6 we have presented many different lines of work for the

chaining idea introduced in Chapter 2. In all these discussions, we proposed

159

to consider somehow running the DFS algorithm to get an ordering and

then run a optimization algorithm, depending on the context, using such

ordering. It is left for future work to actually validate whether such idea

would work in practice for Energy minimization and the Potts model.

Another possibility for DFS fused lasso is the idea of boosting. Thus,

somehow combining different iterations of DFS fused lasso, hence going

beyond averaging.

Finally, a further direction of work could be to understand the con-

vergence rates of trend filtering, the higher order version of the fused lasso,

on generic graphs. This seems to be plausible, given the optimistic results

we have shown in this thesis for the fused lasso.

6.2.2 Tensor decompositions

In Chapter 3 we have been interested in Parafac models for tensor

decompositions, which are special cases of general Tucker models. A penal-

ized Tucker model was proposed in [25] in which the goal was to maximize,

with respect to U (n) ∈ RIn×Jn , n = 1, . . . , N , the cost function

DF (Y ‖G, {U}) = ‖Y −G× {U} ‖2
F +

∑
n

αnCn
(
U (n)

)
, (6.1)

where Y is a given data tensor, andC1, . . . , Cn are penalties on U (1), . . . , U (n).

Here, α1, . . . , αn are positive tuning parameters. It is a natural extension to

the framework in Chapter 3 to consider decompositions similar to (6.1). This

is something that we leave for future work.

160

6.2.3 Density estimation and deconvolution

One natural extension of our histogram trend filtering density es-

timator is to consider the problem of non-parametric conditional density

estimation. For instance, for the case univariate random variables this is

immediate from Section 4.7 .

A perhaps more challenging extension would be to consider the task

of spatial density estimation, as in the context of [134]. This would require to

construct a penalty that not only encourage smooth densities but allows to

incorporate spatial information across different sites of the spatial network.

On the other hand, for deconvolution there are some important ques-

tions that we have not explored and that would be of interest in practice and

also from a theoretical point of view. These are briefly described next.

In many biological applications one is interested in multiple testing

problems, where samples are tested to be draws from a theoretical null ver-

sus the alternative of being from some other distribution, see [50]. However,

in practice, [50] points that the theoretical null, which is usually assumed

to be standard Gaussian, needs to be estimated. Thus, we can envision to

construct a deconvolution estimator, inspired by Chapter 5, that jointly es-

timates the null and alternatives in the two group model. This would then

allow us to preform false discovery rate. Some preliminary results are en-

couragingly suggesting that this could be a fruitful research problem that is

left for future work.

161

Finally, we have empirically shown in Section 5.6.2 that our decon-

volution estimator can be useful for the normal means estimation problem.

However, we have not characterized in any mathematical way the perfor-

mance of our approach within that context. It is out of the scope of this

thesis to answer such question.

162

Appendices

163

Appendix A

Proofs for Chapter 2

A.1 Derivation of (2.12) from Theorem 3 in [149]

We first establish a result on the exact form for the inverse of (an aug-

mented version of) the edge incidence matrix of a generic tree T = (V,ET),

where, recall V = {1, . . . , n}. Without a loss of generality, we may assume

that the root of T is at node 1. For m ≤ n, we define a path in T , of length m,

to be a sequence p1, . . . , pm such that {pr, pr+1} ∈ ET for each r = 1, . . . ,m−1.

We allow for the possibility that m = 1, in which case the path has just one

node. For any j, k, ` = 1, . . . , n, we say that j is on the path from k to ` if

there exists a path p1, . . . , pm such that p1 = k, pm = ` and pr = j for some

r = 1, . . . ,m. For each node i = 2, . . . , n (each node other than the root), we

define its parent p(i) to be the node connected to i which is on the path from

the root to i.

We can also assume without a loss of generality that for each i =

2, . . . , n, the (i − 1)st row of ∇T corresponds to the edge {p(i), i}, and thus

we can write

(∇T)i−1,j =


−1 if j = p(i),

1 if j = i,

0 if j ∈ {1, . . . , n} \ {i, p(i)}.

164

for each j = 1, . . . , n. The next lemma describes the inverse of ∇T , in the

appropriate sense.

Lemma A.1.1. Let e1 = (1, 0, . . . , 0) ∈ Rn, and define the matrix AT ∈ Rn×n by

(AT)i,j =

{
1 if j is on the path from the root to i,
0 otherwise,

(A.1)

for each i, j = 1, . . . , n. Then

AT =

(
e>1
∇T

)−1

.

Proof. We will prove that the product

B =

(
e>1
∇T

)
AT

is the identity. As the root of T corresponds to node 1, we have that by

definition of AT that its first column is

(AT)·,1 = (1, . . . , 1),

which implies that the first column of B is

B·,1 = e1.

Moreover, by definition of AT , its first row is

(AT)1,· = e>1 ,

which implies that the first row of B is

B1,· = e>1 .

165

Let us now assume that i, j are each not the root. We proceed to consider

three cases.

Case 1. Let j 6= i, and j be on the path from the root to i. Then j is also on

the path from the root to p(i). This implies that

Bij =

(
e>1
∇T

)
i,·

(AT)·,j = (∇T)i−1,·(AT)·,j = 1− 1 = 0.

Case 2. Let j 6= i, and j not be on the path from the root to i. Then j is not

on the path from the root to p(i), which implies that

Bij =

(
e>1
∇T

)
i,·

(AT)·,j = (∇T)i−1,·(AT)·,j = 0− 0 = 0.

Case 3. Let j = i. Then j is on the path from the root to i, and j is not on the

path from the root to p(i). Hence,

Bij =

(
e>1
∇T

)
i,·

(AT)·,j = (∇T)i−1,·(AT)·,j = −1 · 0 + 1 · 1 = 1.

Assembling these three cases, we have shown thatB = I , completing

the proof.

We now establish (2.12).

Proof of (2.12). The proof of Theorem 3 in [149] proceeds as in standard basic

inequality arguments for the lasso, and arrives at the step

‖Π⊥(θ̂G − θ0)‖2
2 ≤ 2ε>Π⊥(θ̂G − θ0) + 2λ‖∇Gθ0‖1 − 2λ‖∇Gθ̂G‖1,

166

where Π⊥ is the projection matrix onto the space 1⊥, i.e., the linear space of

all vectors orthogonal to the vector 1 = (1, . . . , 1) ∈ Rn of all 1s. The proof in

[149] uses the identity Π⊥ = ∇†G∇G, where∇†G denotes the pseudoinverse of

∇G. However, notice that we may also write Π⊥ = ∇†T∇T for any spanning

tree T of G. Then, exactly the same arguments as in [149] produce the MSE

bound

‖θ̂G − θ0‖2
n = OP

(
M(∇T)

√
log n

n
‖∇Gθ0‖1

)
,

whereM(∇T) is the maximum `2 norm among the columns of∇†T . We show

below, using Lemma A.1.1, that M(∇T) ≤
√
n, and this gives the desired

MSE rate.

For any b ∈ Rn−1, we may characterize ∇†T b as the unique solution

x ∈ Rn to the linear system

∇Tx = b,

such that 1>x = 0, i.e., the unique solution to the linear system(
e>1
∇T

)
x =

(
a
b

)
,

for a value of a ∈ R such that 1>x = 0. By Lemma A.1.1, we may write

x = AT

(
a
b

)
,

so that the constraint 0 = 1>x = na+ 1>(AT)·,2:nb gives a = −(1/n)>(AT)·,2:nb,

and

x = (I − 11>/n)(AT)·,2:nb.

167

Evaluating this across b = e1, . . . , en, we find that the maximum `2 norm of

columns of∇†T is bounded by the maximum `2 norm of columns of (AT)·,2:n,

which, from the definition in (A.1), is at most
√
n.

A.2 Proof of Theorem 2.3.3

We first present two preliminary lemmas.

Lemma A.2.1. Let S1, . . . , Sm be a partition of the nodes of G such that the total

number of edges with ends in distinct elements of the partition is at most s. Let

k ≤ mini=1,...,m |Si|. Then

inf
θ̂

sup
θ0∈BVG(t)

E‖θ̂ − θ0‖2
2 ≥

kmt2

4σ2s2
exp

(
− kt2

σ2s2

)
.

Proof. For each η ∈ {−1, 1}m, define

θη =
δ

2

m∑
i=1

ηi
1Si√
|Si|

,

where δ > 0 will be specified shortly. Also define the class

P = {N(θη, σ
2I) : η ∈ {−1, 1}m}.

Note that ‖∇Gθη‖1 ≤ δs/
√
k, so to embed P into the class {N(θ, σ2I) : θ ∈ BVG(t)},

we set δ = t
√
k/s.

Let η, η′ ∈ {−1, 1}m differ in only one coordinate. Then the KL diver-

gence between the corresponding induced measures in P is ‖θη − θη′‖2
2/σ

2 ≤ δ2/σ2.

Hence by Assouad’s Lemma [152], and a well-known lower bound on the

168

affinity between probability measures in terms of KL divergence,

inf
θ̂

sup
θ0∈BVG(t)

E‖θ̂ − θ0‖2
2 ≥

δ2m

4σ2
exp

(
− δ2

σ2

)
.

The result follows by plugging in the specified value for δ.

Lemma A.2.2. Let G be a tree with maximum degree dmax, and k ∈ {1, . . . , n} be

arbitrary. Then there exists a partition as in Lemma A.2.1, s = m− 1, and

k ≤ min
i=1,...,m

|Si| ≤ k(dmax + 1).

Proof. Our proof proceeds inductively. We begin by constructing S ′1, the

smallest subtree among all those having size at least k, and generated by a

cut of size 1 (i.e., separated from the graph by the removal of 1 edge). Note

that |S ′1| ≤ kdmax, because if not then S ′1 has at least k internal nodes, and

we can remove its root to produce another subtree whose size is smaller but

still at least k.

For the inductive step, assume S ′1, . . . , S ′` have been constructed. We

consider two cases. (For a subgraph G′ of G, we denote by G−G′ the com-

plement subgraph, given by removing all nodes inG′, and all edges incident

to a node in G′.)

Case 1. If |G− ∪`i=1S
′
i| > k, then we construct S ′`+1, the smallest subtree of

G− ∪li=1S
′
i among all those having size at least k, and generated by a cut of

size 1. As before, we obtain that |S ′`+1| ≤ kdmax.

169

Case 2. If |G− ∪`i=1S
′
i| ≤ k, then the process is stopped. We define Si = S ′i,

i = 1, . . . , ` − 1, as well as S` = S ′` ∪ (G− ∪`i=1S
′
i). With m = `, the result

follows.

We now demonstrate a more precise characterization of the lower

bound in Theorem 2.3.3, from which the result in the theorem can be de-

rived.

Theorem A.2.3. Let G be a tree with maximum degree dmax. Then

inf
θ̂

sup
θ0∈BVG(t)

E‖θ̂ − θ0‖2
2 ≥

t2

4eσ2n

((
σn

2t(dmax + 1)

)2/3

− 1

)2

.

Proof. Set s = m− 1 and

k =

⌊(
σn

2t(dmax + 1)

)2/3
⌋
.

By Lemmas A.2.1 and A.2.2,

inf
θ̂

sup
θ0∈BVG(t)

E‖θ̂ − θ0‖2
2 ≥

kmt2

4σ2s2
exp

(
− kt2

σ2s2

)
≥ kt2

4σ2m
exp

(
− kt2

σ2(m− 1)2

)
≥ kt2

4σ2m
exp

(
− t2k3(dmax + 1)2

σ2n2

m2

(m− 1)2

)
≥ kt2

4σ2n
exp

(
− 4t2k3(dmax + 1)2

σ2n2

)
≥ k2t2

4σ2n
exp(−1).

In the above, the third line uses n/m ≤ kdmax as given by Lemma A.2.2, the

fourth line simply uses m ≤ n and m2/(m− 1)2 ≤ 4 (as m ≥ 2), and the last

170

line uses the definition of k. Thus, because

k ≥
(

σn

2t(dmax + 1)

)2/3

− 1,

we have established the desired result.

A.3 Proof of Theorem 2.4.3

First we establish that, as G is a tree, the number of nodes of degree

at most 2 is at least n/2. Denote by di be the degree of the node i, for each

i = 1, . . . , n. Then

2(n− 1) =
∑n

i=1 di =
∑

i : di≤2 di +
∑

i : di≥3 di
≥ |{i : di ≤ 2}|+ 3|{i : di ≥ 3}|
= 3n− 2|{i : di ≤ 2}|.

Hence, rearranging, we find that |{i : di ≤ 2}| ≥ n/2 + 1.

Let I = {i : di ≤ 2} so that |I| ≥ dn/2e and stipulate that |I| is

even without loss of generality. Let k be the largest even number such that

k ≤ s/2. Define

B = {z ∈ Rn : zI ∈ {−1, 0,+1}|I|, zIc = 0, ‖z‖0 = k}.

Note that by construction B ⊆ BDG(s).

Assume s ≤ n/6. Then this implies k/2 ≤ n/6 ≤ |I|/3. By Lemma 4

in [111], there exists B̃ ⊆ B such that

log |B̃| ≥ k

2
log

(
|I| − k
k/2

)
,

171

and ‖z − z′‖2
2 ≥ k/2 for all z, z′ ∈ B̃. Defining B0 = 2δB̃, for δ > 0 to be

specified shortly, we now have ‖z − z′‖2
2 ≥ 2δ2k for all z, z′ ∈ B0.

For θ ∈ B0, let us consider comparing the measure Pθ = N(θ, σ2I)

against P0 = N(0, σ2I): the KL divergence between these two satisfies

K(Pθ||P0) = ‖θ‖2
2/σ

2 = 2δ2k/σ2.

Let δ =
√
ασ2/(2k) log |B0|, for a parameter α < 1/8 that we will specify

later. We have
1

|B0|
∑
θ∈B0

K(Pθ||P0) ≤ α log |B0|.

Hence by Theorem 2.5 in [145],

inf
θ̂

sup
θ0∈BDG(s)

P(‖θ̂ − θ0‖2
2 ≥ δ2k) ≥

√
|B0|

1 +
√
|B0|

(
1− 2α−

√
2α

log |B0|

)
. (A.2)

It holds that

δ2k =
ασ2

2
log |B0| ≥

ασ2k

4
log
|I| − k
k/2

≥ Cσ2s log

(
n

s

)
,

for some constant C > 0 depending on α alone. Moreover, the right-hand

side in (A.2) can be lower bounded by (say) 1/4 by taking α to be small

enough and assuming n/s is large enough. Thus we have established

inf
θ̂

sup
θ0∈BDG(s)

P

(
‖θ̂ − θ0‖2

2 ≥ Cσ2s log

(
n

s

))
≥ 1

4
,

and the result follows by Markov’s inequality.

172

Appendix B

Proofs and experiments details for Chapter 3

B.1 ADMM algorithm to solve the constrained updates

In this section we discuss how to find the updates for Algorithm 1

from the main document using the ADMM algorithm from [156]. Since

these are symmetric we focus on the particular update um. In this case the

problem is

um = arg min
u

(−Y ×2 v
m−1 ×3 w

m−1)
T
u

subject to ‖u‖2
2 ≤ 1 , ‖z‖1 ≤ cu,

z = Duu, (Eu − (Du)TDu)1/2u = z̃.

(B.1)

We define y as

y = Y ×2 v
m−1 ×3 w

m−1

and solve (B.1), using the ADMM algorithm from [156], by considering the

iterative updates

uk+1 = arg min
‖u‖22≤1

{
1
2
‖y − u‖2

2 + (2αk − αk−1)T Du u+ ρ
2
(u− uk)T Eu (u− uk)

}
=

y
2
−(Du)T (αk−αk−1/2)+ ρ

2
Eu uk

‖ y
2
−(Du)T (αk−αk−1/2)+ ρ

2
Eu uk‖2

zk+1 = arg min
‖z‖1≤cu

{‖Du uk+1 + ρ−1 αk − z‖2
2}

αk+1 = αk + ρ (Du uk+1 − zk+1),

where the update for zk+1 can be done using the algorithm from [47].

173

As explained in the main manuscript, in practice, using this update

as part of an ADMM algorithm leads to difficulty enforcing the `1 constraint

in reasonable runtimes, and results in larger reconstruction error than the

technique we have recommended.

B.2 Solution path algorithm for finding the constrained up-
dates

We now discuss the optimization procedure based on Theorem 3.5.1

to solve (3.6).

• First, using the solution path algorithm from [141], solve for every λ

> 0,

γ̂λ = arg min
‖γ‖∞≤λ

1

2
‖Y ×2 v ×3 w − (Du)Tγ‖2

2.

This will produce a finite sequence of values λ1 ≥ λ2 ≥≥ λK that are

the kinks of the coordinates of γ̂λ, which are piecewise linear functions

(of λ).

• Next, construct the partition Γ = {[0, λK), [λK , λK−1),, [λ2, λ1]} and

for every interval I ∈ Γ, solve the following problem:

minimize
λ∈I

[
‖Y ×2 v ×3 w − (Du)Tγλ‖2 + λcu

]
.

To do so, we exploit the fact that λ ∈ I satisfies

γλ =
λ

λi+1 − λi
(γλi+1 − γλi) .

174

• Then, set

λ∗ = arg min
0≤λ

[
‖Y ×2 v ×3 w − (Du)T γ̂λ‖2 + λcu

]
.

Finally, the solution to (3.6) is

u∗ =

(
Y ×2 v ×3 w − (Du)T γ̂λ∗

)
‖Y ×2 v ×3 w − (Du)T γ̂λ∗‖2

.

B.3 Proof of technical results
B.3.1 Proof of Theorem 3.5.1

Throughout we define

x = Y ×2 v ×3 w,

and D = Du .

Next we note that the Lagrange dual function of the original problem

is given by

L (λ, µ) = minimize
u

[
−xTu+ λ (‖Du‖1 − cS) + µ

(
‖u‖2

2 − 1
)]

= minimize
u

[
−xTu+ λ‖Du‖1 + µ‖u‖2

2

]
− µ− λcS

subject to λ, µ ≥ 0.

Next, define for fixed λ, µ ≥ 0, the function gλ,µ: RS −→ R given by

gλ,µ (u) = −xTu+ λ‖Du‖1 + µ‖u‖2
2. (B.2)

From (D.2) we need to solve the following problem:

minimize
u

gλ,µ (u) , (B.3)

175

which can be rewriten as

minimize
u,z

[
−xTu+ λ‖z‖1 + µ‖u‖2

2

]
subject to z = Du .

This problem has the following Lagrangian:

Lλ,µ (z, u, γ) = −xTu+ λ‖z‖1 + µ‖u‖2
2 + γT (Du− z) ,

which is nicely separable in u and z.

Let us now consider some special cases of µ and λ. First, if λ = 0 and

µ = 0, then clearly,

min
z,u

Lλ,µ (z, u, γ) = −∞ ∀γ.

Second, if λ = 0 and µ > 0, then

min
u

[
−xTu+ λ‖Du‖1 + µ‖u‖2

2

]
= − 1

4µ
xTx.

Next, if λ > 0 and µ = 0, then

min
z,u

Lλ,µ (z, u, γ) = −∞ ∀γ with DTγ 6= x,

and

min
z,u

Lλ,µ (z, u, γ) = 0 ∀γ with DTγ = x and ‖γ‖∞ ≤ λ.

Thus

min
u

[
−xTu+ λ‖Du‖1

]
=

{
−∞ if x /∈ Range

(
DT
)

0 if ∃γ with DTγ = x and ‖γ‖∞ ≤ λ.

176

Finally, let us now focus on µ > 0 or λ > 0. Then

min
u

[
−xTu+ µ‖u‖2

2 + γTDu
]

= − 1

4µ
‖x−DTγ‖2

2,

while (see [141])

min
z

[
λ‖z‖1 − γT z

]
=

{
0 if ‖γ‖∞ ≤ λ ,

−∞ otherwise.

Hence, the dual problem to (B.3) is equivalent to

minimize
γ

1

4µ
‖x−DTγ‖2

2

subject to ‖γ‖∞ ≤ λ .

But for µ > 0 fixed, this is equivalent to solving the problem

minimize
γ

1

2
‖x−DTγ‖2

2

s.t ‖γ‖∞ ≤ λ , (B.4)

which can be solved for every λ ≥ 0 using the solution path algorithm from

[141].

Let us denote by γ̂λ the solution to (B.4) for a fixed λ. Therefore,

L (λ, µ) = − 1

4µ
‖x−DT γ̂λ‖2

2 − µ− λcS,

which implies that the dual to the original problem becomes

maximize
λ,µ≥0

[
− 1

4µ
‖x−DT γ̂λ‖2

2 − µ− λcS
]
. (B.5)

177

Finally, recall from [14] that any u∗ solution to the original problem must

also solve

u∗ = arg min
u

[
−xTu+ λ∗‖Du‖1 + µ∗‖u‖2

2

]
,

for λ∗ and µ∗ that are optimal for (B.5). However, the objective function in

(B.3) is strictly convex since µ∗ > 0, and so its solution u∗ is unique and also

solves

minimize
u,z

[
−xTu+ λ∗‖z‖1 + µ∗‖u‖2

2

]
subejct to z = Du.

The KKT optimality conditions for this problem imply that

0 =

(
−x+ 2µ∗u∗

λ∗α

)
+

(
DTγλ∗
−γλ∗

)
,

for some α subgradient of the function z→ ‖z‖1 at z∗ = Du∗. Therefore

u∗ =

(
x−DT γ̂λ∗

)
‖x−DT γ̂λ∗‖2

,

and the result follows.

The consequence for Corollary 3.5.2 comes from the fact that λ∗ equals

to the given λ in the unconstrained formulation of the problem. We also no-

tice that, as in [141], x−DT γ̂λ∗ is the solution to

min
β
‖x− β‖2

2 + λ‖Dβ‖1.

178

B.3.2 Proof of Theorem 3.6.1

Proof. Here we assume that data is generated as

Y = d∗ u∗ ◦ v∗ ◦∗ w + ε

and

‖v̂ − v∗‖2 <
1√
2
, ‖ŵ − w∗‖2 <

1√
2
.

Under these conditions we show that û defined as

û = arg min
u∈RS

− Y ×2 v̂ ×3 ŵ

subject to ‖u‖2
2 ≤ 1, ‖D(ku+1)u‖1 ≤ cu

satisfies

P
(

1
2
‖u∗ − û‖2

2 ≤ 1
2

4 t
d∗+ c cu L

ku+1/2√logL
d∗

〈v∗,v̂〉 〈w∗,ŵ〉−2−1

)
≥

1−
√

2
π

exp(−t2/2)
t

− 1
L3/2

√
logL

√
2

5π
.

for some constant c > 0. The proof will then follow by an application of this

claim after each block update, and applying the identity for the intersection

of such events.

To prove the claim above, we start by noticing that

û = arg min
u∈RS

− (d∗)−1uTY ×2 v̂ ×3 ŵ

subject to ‖u‖2
2 ≤ 1, ‖D(ku+1)u‖1 ≤ cu.

Next we use the notation R for the row space of D: R = row(D) and R⊥ =

null(D). Moreover, PV denotes the perpendicular projection onto the space

179

V . Hence, by sub-optimality,

1
2
‖û− u∗‖2

2 ≤ 1− ûTu∗ + 1
d∗

(Y ×2 v̂ ×3 ŵ)T (û− u∗)
= 1− ûTu∗ + 1

d∗
((d∗ u∗ ◦ v∗ ◦∗ w + ε)×2 v̂ ×3 ŵ)T

(PR + PR⊥) (û− u∗)
= 1− ûTu∗ + 〈v̂, v∗〉 〈ŵ, w∗〉 (u∗)T (û− u∗) +

1
d∗
ε×2 v̂ ×3 ŵ (PR + PR⊥) (û− u∗) .

(B.6)

Let us now bound the terms in the expression above. First, let a1, . . . , aku+1

be an orthonormal basis of R⊥. Then

1
d∗

(ε×2 v̂ ×3 ŵ)T PR⊥ (û− u∗) = 1
d∗

∑ku+1
j=1

(
(ε×2 v̂ ×3 ŵ)T aj

)
(aTj (û− u∗))

≤ 2
d∗

∑ku+1
j=1 | (ε×2 v̂ ×3 ŵ)T aj|

≤ 2
d∗

((ku + 1) t)
(B.7)

for some constant c with probability at least

1− (ku + 1)

√
2

π

exp (−t2/2)

t
.

Here we have used Mill’s inequality.

Next we bound the term involving the projection operator onto the

space R in (B.6). By Holder’s inequality,

1
d∗

(ε×2 v̂ ×3 ŵ)T PR (û− u∗) ≤ 1
d∗

∥∥∥(ε×2 v̂ ×3 ŵ)T (D(ku+1))−
∥∥∥
∞
·(

‖D(ku+1)û‖1 + ‖D(ku+1)u∗‖1

)
,

and hence, as in Corollary 4 from [149], we find that there exists a constant

c > 0 such that

P

(
1

d∗
ε×2 v̂ ×3 ŵ PR (û− u∗) ≤ c

Lku+1/2
√

log(L)cu
d∗

)
≥ 1− 1

L3/2
√

logL

√
2

5 π
.

(B.8)

180

On the other hand, by the Cauchy–Schwarz inequality and the hy-

pothesis, we have

1− ûTu∗ + 〈v̂, v∗〉 〈ŵ, w∗〉 (u∗)T (û− u∗) = (1− 〈v̂, v∗〉 〈ŵ, w∗〉) ·
(‖u∗‖2

2 − 〈û, u∗〉)
≤ (1− 〈v̂, v∗〉 〈ŵ, w∗〉) ‖û− u∗‖2

2

≤ 7
16
‖û− u∗‖2

2.
(B.9)

Combining (B.6), (B.7), (B.8), (B.9), and proceeding in similar fashion for the

other updates, the identity

P(A ∩B ∩ C) = P(A)P(B | A)P(C | A ∩B)

for any events A,B and C implies the result.

For the case of multiple factors, we have the following result. Sup-

pose that the data is generated as

Y =
J∑
j=1

d∗j u
∗
j ◦ v∗j , ◦, w∗j + Ē

where E is tensor of white noise. Suppose that we have current parameters

estimates of {u∗j}j 6=j0 , {v∗j}j , {w∗j}j , {d∗j}j which we denote by {ûj}j 6=j0 , {v̂j}j ,

{ŵj}j , {d̂j}j .

Let us now provide an error bound for the estimate of u∗j0 given all

181

the other estimates. To that end, define

ûj0 =

arg min
u∈RL

1

2

∥∥∥∥∥u−
(
Y ×2 v̂j0 ×3 ŵj0 −

∑
j 6=j0

d̂j (v̂j0)
T v̂j (ŵj0)

T ŵj ûj

)∥∥∥∥∥
2

F

subject to ‖Duu‖1 ≤ cu

uTu = 1,

and assume that ‖Duu∗j0‖1 ≤ cu and

‖v̂j0 − v∗j0‖2 <
1√
2
, ‖ŵj0 − w∗j0‖2 <

1√
2

This leads to the following lemma.

Lemma B.3.1. Under the definitions just given,

P
(
‖u∗j0 − ûj0‖

2
2 ≤ 16

(
4 t
d∗j0

+ c cu Lku+1/2
√

logL
d∗j0

)
+ 16U

)
≥ 1−

√
2
π

exp(−t2/2)
t

− 1
L3/2

√
logL

√
2

5π
,

where

U = 2

∥∥∥∥∥ 1

d∗j0

∑
j 6=j0

(
−d̂j (v̂j · v̂j0) (ŵj · ŵj0) ûj + d∗j

(
v∗j · v̂j0

) (
w∗j · ŵj0

)
u∗j

)∥∥∥∥∥
2

.

Proof. Follows immediately by sub-optimality.

B.4 Simulation details

In our set of experiments we considered 5 different hidden rank-1

tensors constructed as u ◦ v ◦ w where the vectors u, v and w are described

below. The notation {x}ji indicates that components i through j of the vector

are all equal to the value x.

182

Structure 1

• u = {1, 1, 1,−1,−1,−1, 0, 0, 0, 0}.

• v = {0}100
1 , {1}500

101, {0}1000
501 .

• w = {−1}100
1 , {0}200

101, {1}400
201.

Structure 2

• u = {0, 0, 0,−1,−1,−1, 0, 0, 0, 0}.

• v = {vi}1000
i=1 with vi = cos

(
12π (i−1)

999

)
for i = 1, 2, . . . , 1000.

• w = {wi}400
i=1 with wi = cos

(
9 π (i−1)

399

)
for i = 1, 2, . . . , 400.

Structure 3

• u = {0, 0, 0, 0,−1,−1, 1, 1, 1, 1}.

• v = {vi}1000
i=1 with vi =

(
(i−1)
999
− 0.7

)2

+
(

(i−1)
999

)2

for i = 1, 2, . . . , 1000.

• Define w′i = i−1
399

for i = 1, . . . , 400. Then, set wi = w′i (0.05− w′i) for

i = 1, . . . , 200 and wi = (w′i)
2 for i = 201, . . . , 400.

Structure 4

• u = {0, 0, 0, 0, 0, 1, 1, 1, 1, 1}

183

• Define v′i = i−1
999

for i = 1, . . . , 1000. Then,

vi = cos(π v′i) + .65.

• w = {0}100, {1}150
101, {0}300

151, {1}350
301, {0}400

351.

Structure 5

• u = {−1,−1, 0, 0, 1, 1, 1,−1,−1,−1}.

• v has 80% of its entries equal to zero and the remanining 20% are ran-

dom numbers drawn from a standar normal distribution.

• w has 92.5% of its entries equal to zero and the remanining 7.5% are

random numbers drawn from a standar normal distribution.

B.5 Real data examples additional details
B.5.1 Flu hospitalizations

Our flu example uses aggregate, non-identifiable hospitalization records

from each of the eight largest counties in Texas from January 1, 2003 to De-

cember 30, 2009. Our data-use agreement does not permit dissemination

of these hospital records. We also use data on temperature and air quality

(particulate matter) in these counties, which can be obtained directly from

CDC Wonder (http://wonder.cdc.gov/).

184

B.5.2 Motion capture

To construct the tensors involved in the five task considered, we use

the variables: the second coordinate for root (variable 2), the first coordi-

nate for upperback (variable 10), the first coordinate for upperneck (vari-

able 19), the first coordinate for head (variable 22), the second coordinate

for rhumerus (variable 28), rradius (variable 30), the second coordinate for

lhumerus (variable 40), lradius (variable 42), the second coordinate for lhand

(variable 44), lfingers (variable 45), rtibia (variable 52), ltibia (variable 59).

For task 138–story we use videos corresponding to subject 138 in the

moCap repository. Videos 11-14 are used to construct the training tensor

while 15-18 are used to build the test tensor.

To build task 107 walking we use videos from subject 107. For train-

ing we use videos 1-4 for training while videos 5-8 are used for testing.

For task 09-run we use videos corresponding to subject 9. Videos 1-4

are used for training, and videos 5-8 are used for testing.

To construct task 138 marching we take videos from subject 138. For

training we use videos 1-4 for training while videos 5-8 are used for testing.

Finally, for task 126, the training set is built using videos 1,3,6,8 while

the test set uses videos 2,4,7,9.

185

Appendix C

Proofs of theorems for Chapter 4

C.1 Proof of Theorem 4.3.1

Proof. Let us assume that θ̂ solves (4.3). Then, we define ĝi = θ̂i − log(n δn)

and c = ‖∆(k+1)θ̂‖pq . Hence from the KKT conditions (4.3) is equivalent to

minimize
θ

∑Dn
i=1 {exp(θi)− xiθi}

subject to ‖∆(k+1)θ‖pq ≤ c.

Now, with the change of variable θ = g + log(n δn) and dividing by n this is

equivalent to

minimize
g

δn
∑Dn

i=1 exp(gi)− 1
n

∑Dn
i=1 xi gi

subject to ‖∆(k+1)g‖pq ≤ c.
(C.1)

Next we define the function

G(g) = δn

Dn∑
i=1

exp(gi)−
1

n

Dn∑
i=1

xi gi.

and for an arbitrary g ∈ RDn we define g′ ∈ RDn as

g′i = gi − log

(
δn

Dn∑
j=1

exp(gj)

)
.

Then

G(g′) = G(g) + 1− δn
Dn∑
j=1

exp(gj) + log

(
δn

Dn∑
j=1

exp(gj)

)
≤ G(g),

186

since t− log(t) ≥ 1 for all t > 0. Moreover,

‖∆(k+1)g‖pq = ‖∆(k+1)g′‖pq .

Therefore, problem (C.1) is equivalent to

minimize
g

− 1
n

∑Dn
i=1 xi gi

subject to δn
∑Dn

i=1 exp(gi) = 1
‖∆(k+1)g‖pq ≤ c,

and the claim follows.

C.1.1 Proof of Theorem 4.4.1

Before beginning the proof of the claim we start by proving an auxil-

iary lemma.

Lemma C.1.1. With the notation from Theorem 4.4.1, if a ∈ RDn , then

P
(
|
(
x− exp(θ0)

)T
a| ≥ Cr

n ‖a‖∞
Dr
n

)
≤ 4 exp

(
−cr

n

D2r
n

)
for all r > 0 and some positive constants Cr and cr depending on r.

Proof. Our proof is inspired by the construction in Lemma 3 from [41]. We

start by denoting pi =
exp(θ0i)

n
, i = 1, . . . , Dn. Then we can think of xi as the

occurrences of value i among u1, . . . , un where P(uk = j) = pj for j = 1, ...Dn

and k = 1, 2, Next, we define N ∼ Poisson (n), and x′i as the occurrences

of value i among u1, . . . , uN . Clearly, x′i ∼ Poisson (n pi). Moreover,∣∣∣∣∣
Dn∑
i=1

ai (xi − n pi)

∣∣∣∣∣ ≤
∣∣∣∣∣
Dn∑
i=1

ai (x
′
i − n pi)

∣∣∣∣∣+

∣∣∣∣∣
Dn∑
i=1

ai (xi − x′i)

∣∣∣∣∣ ,
187

form which

P
(∣∣∣∑Dn

i=1 ai (xi − n pi)
∣∣∣ ≥ 2ε

)
≤ P (‖a‖∞|N − n| ≥ ε) +

P
(∣∣∣∑Dn

i=1 ai (x
′
i − n pi)

∣∣∣ ≥ ε
) (C.2)

for all ε > 0. We now bound both terms in (C.2). First, we proceed using

Hoeffding’s inequality,

P
(∑Dn

i=1 ai (x
′
i − n pi) ≥ ε

)
≤ inf

t>0
exp

(
−ε t+

∑Dn
i=1 n pi (exp(t ai)− 1− t ai)

)
≤ inf

t>0
exp (−ε t+ n (exp(t ‖a‖∞)− 1− t ‖a‖∞))

≤ exp
(
− ε
Drn ‖a‖∞

+ n
(

exp(1
Drn

)− 1− 1
Drn

))
≤ exp

(
− ε
Drn ‖a‖∞

+ c n
D2r
n

)
for some positive constant c if Dr

n is large enough. Therefore, setting ε =

c1 n ‖a‖∞D−rn with c1 > c, we obtain

P

(
Dn∑
i=1

ai (x
′
i − n pi) ≥ c1

n ‖a‖∞
Dr
n

)
≤ exp

(
−(c1 − c)n

D2r
n

)
.

With union bound inequality and repeating the same argument from above,

we arrive to

P

(
|
Dn∑
i=1

ai (x
′
i − n pi) | ≥ c1

n ‖a‖∞
Dr
n

)
≤ 2 exp

(
−(c1 − c)n

D2r
n

)
.

Finally, from the proof of Lemma 3 in [41] we have

P
(
‖a‖∞|N − n| ≥ c1

n ‖a‖∞
Dr
n

)
≤ 2 exp

(
−c

2
1

4

n

D2r
n

)
and the result follows.

188

Proof. Let e1 an element of the canonical basis in RDn and let us denote by

P the orthogonal projection onto R, the row space of ∆k+1. We start by

noticing that from sub-optimality we have

l(θ̂) + τ ‖∆(k+1)θ̂‖1 ≤ l(θ0) + τ ‖∆(k+1)θ0‖1.

Hence, we obtain∑Dn
j=1 δn f0(ξ′j) log

(
f0(ξ′j)

f̂(ξ′j)

)
≤ 1

n
(x− exp(θ0))

T
((

∆(k+1)
)−

∆(k+1) + PR⊥
)
·(

θ̂ − θ0
)

+ τ
n

(
‖∆(k+1)θ0‖1 − ‖∆(k+1)θ̂‖1

)
.

(C.3)

Next we bound each of the terms on the right hand side of (C.3). First, define

v1, . . . , vk+1 to be an orthonormal basis of R⊥ such that v1 = D
−1/2
n (1, . . . , 1).

Then, it is not difficult to see that these vectors can be chosen to satisfy

‖vj‖∞ = O(D
−1/2
n) for j = 1, . . . , k + 1. Therefore, by Holder’s inequality

1
n

(x− exp(θ0))
T
PR⊥

(
θ̂ − θ0

)
= 1

n

∑k+1
j=1

[
(x− exp(θ0))

T
vj

] [
vTj

(
θ̂ − θ0

)]
≤ 1

n

∑k+1
j=1

[
(x− exp(θ0))

T
vj

]
D

1/2
n

·
(
‖ log(f0(ξ′))‖∞ + ‖ log(f̂(ξ′))‖∞

)
.

(C.4)

It follows form the previous lemma that

1

n

(
x− exp(θ0)

)T
PR⊥

(
θ̂ − θ0

)
= OP

(
1

nr/s−b

)
.

assuming that we constraint ‖θ̂ − log(n δn)‖∞ ≤ nb.

On the other hand,

1
n

(x− exp(θ0))
T
((

∆(k+1)
)−

∆(k+1)
)(

θ̂ − θ0
)
≤

1
n
‖ (x− exp(θ0))

T (
∆(k+1)

)− ‖∞ (‖∆(k+1)θ0‖1 + ‖∆(k+1)θ̂‖1

)
.

(C.5)

189

Moreover, from the previous lemma we obtain

P
(∥∥∥(x− exp(θ0))

T (
∆(k+1)

)−∥∥∥
∞
≥ Cr

n ‖(∆(k+1))
−
‖∞

Dr

)
≤

4 exp
(
−cr n

D2r
n

+ log(Dn)
)

Therefore, combining (C.3), (C.4) and (C.5), if

τ ≥ ‖
(
x− exp(θ0)

)T (
∆(k+1)

)− ‖∞,
then,

∑D
j=1 δ f(zj) log

(
f(zj)

f̂(zj)

)
≤ OP

(
‖(∆(k+1))

−
‖∞

Drn
‖∆(k+1)θ0‖1 + nb

Drn

)
(C.6)

190

Appendix D

Proofs and experiments details for Chapter 5

D.1 Gradient expression for `2 regularization

Here we write the mathematical expressions for the gradient of the

objective function when performing L2 deconvolution, As in Section 3.3 of

the main document. Using the notation there, we have that

[∇l(θ)]j =
D∑
i=1

Gije
θj

(
xi
λi(θ)

− 1

)
,

and

∇‖∆(k+1)θ‖2
2 = 2

(
∆(k+1)

)T
∆(k+1)θ .

D.1.1 Proof of Theorem 5.5.1

Proof. Motivated by [62], given α ∈ A we define the function F (ξ, α) =

(φ ∗ α) (ξ) for µ ∈ R. Clearly, F (ξ, α) is a density that induces a measure in

R that is absolutely continuous with respect to the Lebesgue measure in R.

Also, we observe that if α, β ∈ A, then, for any Borel measurable set E, we

have by Tonelli’s theorem that∣∣∫
E
φ ∗ α(µ)dµ−

∫
E
φ ∗ β(µ)dµ

∣∣ =
∣∣∫

R

(∫
E
φ(µ− y)dµ

)
(α(y)− β(y)) dy

∣∣
≤ d(α, β).

191

Hence d(α, β) = 0 implies that φ ∗ α and φ ∗ β induce the same probability

measures in (R,B (R)).

Next we verify the assumptions in Theorem 1 from [62]. This is done

into different steps below. Steps 1-4 verify the assumptions B1-B4 in Theo-

rem 1 from [62]. Steps 5-6 are needed in the general case in which the data

is binned. These are also related to ideas from [148].

Step 1

Given α ∈ A and ε > 0, the function

ξ → sup
β∈Sm:d(α,β)<ε

(φ ∗ β) (ξ)

is continuous and therefore measurable on ξ. To see this, simply note that

for any β ∈ A we have that

‖ (φ ∗ β)′ ‖∞ = ‖ (φ′ ∗ β) ‖∞ ≤ ‖φ′‖∞
∫
R

β(µ)dµ = ‖φ′‖∞.

Hence all the functions β ∈ Sm are (‖φ′‖∞ + 1)-Lipschitz and the claim fol-

lows. Also, we note that

lim
ε→0

sup
β∈Sm:d(α,β)<ε

(φ ∗ β) (ξ) = φ ∗ α(ξ).

This follows by noticing that∣∣∣∣∣ sup
β∈Sm:d(α,β)<ε

(φ ∗ β) (ξ) − φ ∗ α(ξ)

∣∣∣∣∣ ≤ sup
β∈Sm:d(α,β)<ε

|(φ ∗ (β − α)) (ξ)|

≤ ‖φ‖∞ sup
β:d(α,β)<ε

d (α, β)

≤ ε ‖φ‖∞.

192

Step 2

Define Eα (g) :=
∫
R g(ξ) (φ ∗ α) (ξ)dξ for any function g. Then for any

α ∈ A and ε > 0 we have

Ef0

(
log

(
sup

β∈Sm:d(α,β)<ε

(φ ∗ β) (ξ)

))
≤ Ef0

(
log

(
sup

β:d(α,β)<ε

(φ ∗ β) (ξ)

))
≤

∫
R

log (‖φ‖∞) φ ∗ f0(ξ) dξ
< ∞.

Step 3

Next we show that Sm is compact on (A, d). Throughout, we use the

notation →u to indicate uniform convergence. To show the claim, choose

{αl} a sequence in Sm. Then since {(log(αl))
(k+1)} are Tm−Lipschitz and

uniformly bounded it follows by Arzela-Ascoli Theorem that there exists a

sub-sequence {α1,l} ⊂ {αl} such that (log(α1,l))
(k+1) →u gk+1 in [−1, 1] for

some function gk+1 : [−1, 1] → R which is also Tm−Lipschitz. Note that we

can again use Arzela-Ascoli Theorem applied to the sequence {α1,l} to en-

sure that there exists a sub-sequence {α2,l} ⊂ {α1,l} such that (log(α1,l))
(k+1)

→u gk+1, in [−2, 2]. Thus we extend the domain of gk+1 if necessary.

Proceeding by induction we conclude that for every N ∈ N there

exists a sequence {αN,l}l∈N ⊂ {αN−1,l}l∈N such that

(log(αN,l))
(k+1) →u gk+1, as l → ∞,

in [−N,N] as l→∞. Hence with Cantor’s diagonal argument we conclude

that there exists a sub-sequence {αlj} ⊂ {αl} such that(
log(αlj)

)(k+1) →u gk+1 as j → ∞,

193

in [−N,N] for all N ∈ N. Since |
(
log(αlj)

)(k)
(0)| ≤ Tm for all j. Then

without loss of generality, we can assume that

(
log(αlj)

)(k) →u gk as j → ∞,

in [−N,N] for all N ∈ N and where the function gk satisfies g′k = gk+1.

Continuing with this process we can assume, without loss of generality, that

log(αlj) →u g as j → ∞,

in [−N,N] for all N ∈ N for some function g satisfying g(j) = gj for all

0 ≤ j ≤ k + 1. Therefore,

αlj →u exp(g) as j → ∞, (D.1)

in [−N,N] for all N ∈ N.

Let us now prove that exp(g) ∈ Sm. First, we observe by the Fatou’s

lemma eg is integrable in R with respect to the Lebesgue measure. since Sm

is tight and, we obtain

d
(
exp(g), αlj

)
→ 0.

This clearly also implies that exp(g) integrates to 1 or exp(g) ∈ P. Note that

also by Fatou’s lemma we have that Jk,q(g) ≤ Km and by construction,

max
(
‖ exp(g)‖∞, ‖g(k+1)‖∞, |g(k)(0)|, . . . , |g(0)|

)
≤ Tm.

Finally, combining all of this with gk+1 being Tm-Lipschitz, we arrive to

exp(g) ∈ Sm.

194

Step 4 By assumption (4), we have that

sup
α∈Am

d (f0, α)→ 0, as m→∞.

Step 5

Let us show that

lim
ε→0

Ef0

(
sup

d(α,β)<ε,β∈Sm
log (φ ∗ β)

)
= Ef0 (log (φ ∗ α))

for all α ∈ Sm. First, note that for all ξ

0 ≤ max

{
0, sup

d(α,β)<ε,β∈Sm
log (φ ∗ β) (ξ)

}
≤ max {0, log (‖φ‖∞)} .

Hence, by Step 1 we obtain

0 ≤ lim
ε→0

Ef0

(
max

{
0, sup

d(α,β)<ε,β∈Sm
log (φ ∗ β)

})
= Ef0 (max {log (φ ∗ α) , 0})

<∞.

Now we observe that

0 ≤ −min

{
0, sup

d(α,β)<ε,β∈Sm
log (φ ∗ β) (ξ)

}
≤ −min {0, log (φ ∗ α(ξ))} ,

and the claim follows from the monotone convergence theorem.

If xj = 1 and ξj = yj for all j = 1, . . . , Dn, the claim of Theorem 5.5.1

follows from Theorem 1 from [62]. Otherwise, we continue the proof below.

In either case we can see that the solution set Mn
m is not empty given that

the map α→ φ ∗ α(ξ) is continuous with respect to the metric d for any ξ.

Step 6

195

Note that, by Glivenko-Cantelli Theorem and our assumption on the

maximum number of bins, we have that, almost surely, the random distri-

bution

Gn(ξ) =
Dn∑
j=1

xj
n
I(−∞,ξ])(ξj)

converges weakly to the distribution function associated with φ∗f0. Hence,

almost surely, from the Portmanteau theorem we have for any α ∈ Smn and

any δ > 0 it holds that

lim sup
l→∞

Dl∑
j=1

xj
l

sup
d(α,β)<δ,β∈Sm

log (φ ∗ β) (ξj) ≤ Ef0

(
sup

d(α,β)<δ,β∈Sm
log (φ ∗ β) (ξ)

)
,

(D.2)

since the function

ξ → sup
d(α,β)<δ,β∈Sm

log (φ ∗ β) (ξ),

is continuous and bounded by above.

Next we define

m1 = min

{
m : sup

α∈Am
d (α, f0) <

1

2

}
.

Clearly, β1, β2 ∈ Am1 implies d(β1, β2) < 1. Also, we see that the set Π1 :=

{α ∈ Sm1 : d (α, f0) ≥ 1} ⊂ Sm1 − Am1 is d-compact. Hence, there exists

α1
1, . . . , α

1
h1

in Π1 such that Π1 ⊂ ∪h1l=1{α ∈ Π1 : d (α, α1
l) < δ1,l} for positive

constants {δ1,l} satisfying that

Ef0

(
sup

d(α,α1
l)<δ1,l,α∈Π1

log (φ ∗ α)

)
< Ef0 (log (φ ∗ fm1))

196

for l = 1, . . . , h1. Therefore from our assumptions on the sets Am and also

from (D.2), we arrive at

lim sup
r→∞

Dr∑
j=1

xj
r

(
sup

d(α,α1
l)<δ1,l,α∈Π1

log (φ ∗ α) (ξj)− log (φ ∗ fm1(ξj))

)

≤ Ef0

(
sup

d(α,αl)<δl,α∈Π1

log (φ ∗ α)

)
− Ef0 (log (φ ∗ fm1))

< 0, a.s.

Hence

lim sup
r→∞

Dr∑
j=1

xj

(
sup

d(α,α1
l)<δ1,l,α∈Π1

log (φ ∗ α) (ξj)− log (φ ∗ fm1(ξj))

)
= −∞ a.s.

This implies

lim
r→∞

sup
α∈Π1

∏Dr
j=1 φ ∗ α(ξj)

xj∏Dr
j=1 φ ∗ fm1(ξj)

xj
= 0 a.s.

Next we define

k1 = min

k0 : r ≥ k0 implies
sup
α∈Π1

∏Dr
j=1 φ ∗ α(ξj)

xj∏Dr
j=1 φ ∗ fm1(ξj)

xj
< 1


and we set mk1 = m1. Therefore,

sup
α∈Mk1

mk1

d (α, f0) < 1.

Next we define m2 as

m2 = min

{
m ≥ m1 : sup

α∈Am
d (α, f0) <

1

4

}
+ 1

Then, β1, β2 ∈ Am2 implies d(β1, β2) < 1/2. We also see that Π2 := {α ∈ Sm2 :

d (α, f0) ≥ 1/2} ⊂ Sm2 − Am2 is d-compact. Hence there exists α2
1, . . . , α

2
h2

197

in Π2 such that Π2 ⊂ ∪h2l=1{α : d (α, α2
l) < δ2,l} for positive constants {δ2,l}

satisfying

Ef0

(
sup

d(α,α2
l)<δ2,l,α∈Π2

log (φ ∗ α)

)
< Ef0 (log (φ ∗ fm2))

for l = 1, . . . , h2. Therefore,

lim sup
r→∞

Dr∑
j=1

xj
r

(
sup

d(α,α2
l)<δ2,l,α∈Π2

log (φ ∗ α) (ξj)− log (φ ∗ fm2(ξj))

)

≤ Ef0

(
sup

d(α,α2
l)<δ2,l,α∈Π2

log (φ ∗ α)

)
− Ef0 (log (φ ∗ fm2))

< 0 a.s.

So proceeding as before we obtain

lim
r→∞

sup
α∈Π2

∏Dr
j=1 φ ∗ α(ξj)

xj∏Dr
j=1 φ ∗ fm2(ξj)

xj
= 0 a.s

Finally we define

k2 = min

k0 : k0 ≥ k1 and r ≥ k0 implies
sup
α∈Π2

∏Dr
j=1 φ ∗ α(ξj)

xj∏Dr
j=1 φ ∗ fm2(ξj)

xj
< 1


and we set mk = m1 for all k1 ≤ k < k2 and mk2 = m2. By construction, we

have that

sup
α∈Mk2

mk2

d (α, f0) < 1/2.

Thus an induction argument allow us to conclude the proof.

198

Bibliography

[1] Carnegie mellon university. graphics lab motion capture database.

[2] Ittai Abraham and Ofer Neiman. Using petal-decompositions to build

a low stretch spanning tree. ACM Symposium on Theory of Computing,

44:395–406, 2012.

[3] Genevera Allen. “Sparse higher-order principal components analy-

sis”. In International Conference on Artificial Intelligence and Statistics,

pages 27–36, 2012.

[4] Animashree Anandkumar, Rong Ge, and Majid Janzamin. “Guaran-

teed Non-Orthogonal Tensor Decomposition via Alternating Rank-1

Updates”. arXiv preprint arXiv:1402.5180, 2014.

[5] Taylor Arnold, Veeranjaneyulu Sadhanala, and Ryan J.

Tibshirani. glmgen: Fast generalized lasso solver.

https://github.com/statsmaths/glmgen, 2014. R package ver-

sion 0.0.2.

[6] Taylor Arnold and Ryan Tibshirani. “Efficient Implementations of the

Generalized Lasso Dual Path Algorithm”. Journal of Computational and

Graphical Statistics, (just-accepted), 2015.

199

[7] Taylor B. Arnold and Ryan J. Tibshirani. genlasso: Path algorithm for

generalized lasso problems, 2014. R package version 1.3.

[8] Álvaro Barbero and Suvrit Sra. Modular proximal optimization

for multidimensional total-variation regularization. arXiv preprint

arXiv:1411.0589, 2014.

[9] Andrew R Barron and Chyong-Hwa Sheu. Approximation of density

functions by sequences of exponential families. The Annals of Statistics,

pages 1347–1369, 1991.

[10] Mikhail Belkin and Partha Niyogi. Using manifold structure for par-

tially labelled classification. Advances in Neural Information Processing

Systems, 15, 2002.

[11] Richard Bellman. On the approximation of curves by line segments

using dynamic programming. Communications of the ACM, 4(6):284,

1961.

[12] Aditya Bhaskara, Moses Charikar, Ankur Moitra, and Aravindan Vi-

jayaraghavan. “Smoothed analysis of tensor decompositions”. pages

594–603, 2014.

[13] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan

Eckstein. Distributed optimization and statistical learning via the al-

ternating direction method of multipliers. Foundations and Trends in

Machine Learning, 3(1):1–122, 2011.

200

[14] Stephen Boyd and Lieven Vandenberghe. “Convex optimization ”.

Cambridge Univ. Pr, 2004.

[15] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate en-

ergy minimization via graph cuts. IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, 23(11):1–18, 2001.

[16] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Ol-

shen. Classification and regression trees. CRC press, 1984.

[17] Lawrence Brown, Tony Cai, Ren Zhang, Linda Zhao, and Harrison

Zhou. The root–unroot algorithm for density estimation as imple-

mented via wavelet block thresholding. Probability theory and related

fields, 146(3-4):401–433, 2010.

[18] Lawrence D Brown and Eitan Greenshtein. Nonparametric empirical

bayes and compound decision approaches to estimation of a high-

dimensional vector of normal means. The Annals of Statistics, pages

1685–1704, 2009.

[19] Tony Cai. Adaptive wavelet estimation: a block thresholding and

oracle inequality approach. Annals of statistics, pages 898–924, 1999.

[20] Raymond Carroll, Aurore Delaigle, and Peter Hall. Deconvolution

when classifying noisy data involving transformations. Journal of the

American Statistical Association, 107(499):1166–1177, 2012.

201

[21] Raymond J Carroll and Peter Hall. Optimal rates of convergence for

deconvolving a density. Journal of the American Statistical Association,

83(404):1184–1186, 1988.

[22] Gilles Celeux, Florence Forbes, Christian P. Robert, and D. Michael

Titterington. Deviance information criteria for missing data models.

Bayesian analysis, 1(4):651–673, 2006.

[23] Antonin Chambolle and Jérôme Darbon. On total variation minimiza-

tion and surface evolution using parametric maximum flows. Inter-

national Journal of Computer Vision, 84(3):288–307, 2009.

[24] Antonin Chambolle and Thomas Pock. A first-order primal-dual al-

gorithm for convex problems with applications to imaging. Journal of

Mathematical Imaging and Vision, 40:120–145, 2011.

[25] Andrzej Cichocki. “Tensor Decompositions: A New Concept in Brain

Data Analysis?”. Journal of Control Measurement, and System Integra-

tion, 7:507–517, 2011.

[26] Andrzej Cichocki, Rafal Zdunek, Anh Huy Phan, and Shun-ichi

Amari. “Nonnegative matrix and tensor factorizations: applications to ex-

ploratory multi-way data analysis and blind source separation”. John Wiley

& Sons, 2009.

[27] Ronald Coifman and Mauro Maggioni. Diffusion wavelets. Applied

and Computational Harmonic Analysis, 21(2):53–94, 2006.

202

[28] Laurent Condat. A direct algorithm for 1d total variation denoising.

HAL preprint hal-00675043, 2012.

[29] Thomas Cormen, Clifford Stein, Ronald Rivest, and Charles Leiser-

son. Introduction to Algorithms. McGraw-Hill Higher Education, 2nd

edition, 2001.

[30] Mark Crovella and Eric Kolaczyk. Graph wavelets for spatial traffic

analysis. Annual Joint Conference of the IEEE Computer and Communica-

tions IEEE Societies, 3:1848–1857, 2003.

[31] Gabor Csardi and Tamas Nepusz. The igraph software package for

complex network research. InterJournal, Complex Systems:1695, 2006.

[32] Arnak Dalalyan, Mohamed Hebiri, and Johannes Lederer. On the

prediction performance of the lasso. To appear, Bernoulli, 2014.

[33] P. Laurie Davies and Arne Kovac. Local extremes, runs, strings and

multiresolution. Annals of Statistics, 29(1):1–65, 2001.

[34] P. Laurie Davies and Arne Kovac. Densities, spectral densities and

modality. The Annals of Statistics, pages 1093–1136, 2004.

[35] Timothy Davis and William Hager. Dynamic supernodes in sparse

Cholesky update/downdate and triangular solves. ACM Transactions

on Mathematical Software, 35(4):1–23, 2009.

203

[36] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. “A multi-

linear singular value decomposition”. SIAM journal on Matrix Analysis

and Applications, 21(4):1253–1278, 2000.

[37] Aurore Delaigle. Nonparametric kernel methods with errors-in-

variables: Constructing estimators, computing them, and avoiding

common mistakes. Australian & New Zealand Journal of Statistics,

56(2):105–124, 2014.

[38] Aurore Delaigle and Irène Gijbels. Estimation of integrated squared

density derivatives from a contaminated sample. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 64(4):869–886, 2002.

[39] Aurore Delaigle and Peter Hall. Parametrically assisted nonparamet-

ric estimation of a density in the deconvolution problem. Journal of the

American Statistical Association, 109(506):717–729, 2014.

[40] Aurore Delaigle and Peter Hall. Methodology for non-parametric de-

convolution when the error distribution is unknown. Journal of the

Royal Statistical Society: Series B (Statistical Methodology), 78(1):231–252,

2016.

[41] Luc Devroye. The equivalence of weak, strong and complete conver-

gence in l1 for kernel density estimates. The Annals of Statistics, pages

896–904, 1983.

204

[42] Kim-Anh Do, Peter Muller, and Feng Tang. A Bayesian mixture model

for differential gene expression. Journal of the Royal Statistical Society,

Series C, 54(3):627–44, 2005.

[43] Sophie Donnet, Vincent Rivoirard, Judith Rousseau, and Catia Scric-

ciolo. Posterior concentration rates for empirical bayes proce-

dures, with applications to dirichlet process mixtures. arXiv preprint

arXiv:1406.4406, 2014.

[44] David L Donoho. Cart and best-ortho-basis: a connection. The Annals

of Statistics, 25(5):1870–1911, 1997.

[45] David L Donoho and Iain M. Johnstone. Minimax estimation via

wavelet shrinkage. Annals of Statistics, 26(8):879–921, 1998.

[46] David L Donoho, Iain M Johnstone, Gérard Kerkyacharian, and Do-

minique Picard. Wavelet shrinkage: asymptopia? Journal of the Royal

Statistical Society. Series B (Methodological), pages 301–369, 1995.

[47] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra.

Efficient projections onto the l 1-ball for learning in high dimensions.

In Proceedings of the 25th international conference on Machine learning,

pages 272–279. ACM, 2008.

[48] Sandrine Dudoit and Mark J. Van Der Laan. Multiple testing procedures

with applications to genomics. Springer Science & Business Media, 2007.

205

[49] Tarn Duong and Martin L. Hazelton. Cross-validation bandwidth ma-

trices for multivariate kernel density estimation. Scandinavian Journal

of Statistics, 32(3):485–506, 2005.

[50] Bradley Efron. Microarrays, empirical bayes and the two-groups

model. Statistical science, pages 1–22, 2008.

[51] Bradley Efron. Tweedie’s formula and selection bias. Journal of the

American Statistical Association, 106(496):1602–14, 2011.

[52] Bradley Efron. Empirical bayes deconvolution estimates. Biometrika,

103(1):1–20, 2016.

[53] Bradley Efron and Robert Tibshirani. Using specially designed ex-

ponential families for density estimation. The Annals of Statistics,

24(6):2431–2461, 1996.

[54] Michael Elkin, Yuval Emek, Daniel Spielman, and Shang-Hua Teng.

Lower-stretch spanning trees. SIAM Journal on Computing, 38(2):608–

628, 2008.

[55] Michael D. Escobar and Mike West. Bayesian density estimation and

inference using mixtures. Journal of the American Statistical Association,

90:577–88, 1995.

[56] Jianqing Fan. On the optimal rates of convergence for nonparametric

deconvolution problems. The Annals of Statistics, pages 1257–1272,

1991.

206

[57] Jianqing Fan and Ja-Yong Koo. Wavelet deconvolution. IEEE Transac-

tions on Information Theory, 48(3):734–747, 2002.

[58] Thomas S. Ferguson. A Bayesian analysis of some nonparametric

problems. The Annals of Statistics, 1:209–30, 1973.

[59] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. “Applica-

tions of the lasso and grouped lasso to the estimation of sparse graph-

ical models”. Technical report, Stanford University, 2010.

[60] Matan Gavish, Boaz Nadler, and Ronald Coifman. Multiscale

wavelets on trees, graphs and high dimensional data: Theory and

applications to semi supervised learning. International Conference on

Machine Learning, 27, 2010.

[61] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin.

Bayesian data analysis, volume 2. Chapman & Hall/CRC Boca Raton,

FL, USA, 2014.

[62] Stuart Geman and Chii-Ruey Hwang. Nonparametric maximum like-

lihood estimation by the method of sieves. The Annals of Statistics,

10(2):401–14, 1982.

[63] Subhashis Ghosal and Aad W. Van Der Vaart. Entropies and rates of

convergence for maximum likelihood and bayes estimation for mix-

tures of normal densities. The Annals of Statistics, pages 1233–1263,

2001.

207

[64] Chris Godsil and Gordon Royle. Algebraic Graph Theory. Springer,

2001.

[65] I. J. Good and R. A. Gaskins. Nonparametric roughness penalties for

probability densities. Biometrika, 58(2):255–77, 1971.

[66] Peter Hall and Alexander Meister. A ridge-parameter approach to

deconvolution. The Annals of Statistics, 35(4):1535–1558, 2007.

[67] David Hammond, Pierre Vandergheynst, and Rémi Gribonval.

Wavelets on graphs via spectral graph theory. Applied and Compu-

tational Harmonic Analysis, 30(2):129–150, 2011.

[68] Zaid Harchaoui and Celine Levy-Leduc. Multiple change-point esti-

mation with a total variation penalty. Journal of the American Statistical

Association, 105(492):1480–1493, 2010.

[69] Richard A. Harshman. “Foundations of the parafac procedure: mod-

els and conditions for an ”explanatory” multimodal factor analysis”.

1970.

[70] Holger Hoefling. A path algorithm for the fused lasso signal approxi-

mator. Journal of Computational and Graphical Statistics, 19(4):984–1006,

2010.

[71] Jan-Christian Hutter and Philippe Rigollet. Optimal rates for total

variation denoising. Annual Conference on Learning Theory, 29:1115–

1146, 2016.

208

[72] Hemant Ishwaran and Mahmoud Zarepour. Exact and approximate

sum representations for the dirichlet process. The Canadian Journal of

Statistics/La Revue Canadienne de Statistique, pages 269–283, 2002.

[73] Wenhua Jiang and Cun-Hui Zhang. General maximum likelihood

empirical bayes estimation of normal means. The Annals of Statistics,

37(4):1647–1684, 2009.

[74] Nicholas A. Johnson. “A Dynamic Programming Algorithm for the

Fused Lasso and L 0-Segmentation”. Journal of Computational and

Graphical Statistics, 22(2):246–260, 2013.

[75] Iain Johnstone. Gaussian estimation: sequence and wavelet models.

Unpublished manuscript, 2011.

[76] Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and

Nuria Oliver. “Multiverse recommendation: n-dimensional tensor

factorization for context-aware collaborative filtering”. In Proceed-

ings of the fourth ACM conference on Recommender systems, pages 79–86.

ACM, 2010.

[77] Gérard Kerkyacharian, Dominique Picard, and Karine Tribouley. Lp

adaptive density estimation. Bernoulli, pages 229–247, 1996.

[78] J. Kiefer and J. Wolfowitz. Consistency of the maximum likelihood

estimator in the presence of infinitely many incidental parameters.

The Annals of Mathematical Statistics, 27:887–906, 1956.

209

[79] S.-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky. `1 trend filtering. SIAM

Reviews, 51:339–60, 2009.

[80] Seung-Jean Kim, Kwangmoo Koh, Stephen Boyd, and Dimitry

Gorinevsky. “`1 Trend Filtering”. Siam Review, 51(2):339–360, 2009.

[81] Roger Koenker. Rebayes: empirical bayes estimation and inference in

r. R package version 0.41, 2013.

[82] Roger Koenker and Ivan Mizera. Density estimation by total variation

regularization. Advances in Statistical Modeling and Inference, Essays in

Honor of Kjell A. Doksum, pages 613–634, 2006.

[83] Roger Koenker and Ivan Mizera. Density estimation by total varia-

tion regularization. In V Nair, editor, Advances in Statistical Modeling

and Inference: Essays in Honor of Kjell A. Doksum, chapter 30. World

Scientific, 2007.

[84] Roger Koenker and Ivan Mizera. Convex optimization, shape con-

straints, compound decisions, and empirical bayes rules. Journal of

the American Statistical Association, 109(506):674–685, 2014.

[85] Eric D. Kolaczyk and Robert D. Nowak. Multiscale likelihood anal-

ysis and complexity penalized estimation. The Annals of Statistics,

pages 500–527, 2004.

[86] Tamara G. Kolda and Brett W. Bader. “Tensor decompositions and

applications”. SIAM review, 51(3):455–500, 2009.

210

[87] Vladimir Kolmogorov, Thomas Pock, and Michal Rolinek. Total vari-

ation on a tree. SIAM Journal of Imaging Sciences, 9(2):605–636, 2016.

[88] Arne Kovac and Andrew Smith. Nonparametric regression on a

graph. Journal of Computational and Graphical Statistics, 20(2):432–447,

2011.

[89] Pieter M. Kroonenberg. “Applied multiway data analysis”, volume 702.

John Wiley & Sons, 2008.

[90] Loic Landrieu and Guillaume Obozinski. Cut pursuit: fast algorithms

to learn piecewise constant functions on general weighted graphs.

HAL preprint hal-01306779, 2015.

[91] Mihee Lee, Peter Hall, Haipeng Shen, James Stephen Marron, Jon

Tolle, and Christina Burch. Deconvolution estimation of mixture dis-

tributions with boundaries. Electronic journal of statistics, 7:323, 2013.

[92] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Ma-

honey. Community structure in large networks: Natural cluster sizes

and the absence of large well-defined clusters. Internet Mathematics,

6(1):29–123, 2009.

[93] Kevin Lin, James Sharpnack, Alessandro Rinaldo, and Ryan J. Tibshi-

rani. Approximate recovery in changepoint problems, from `2 estima-

tion error rates. arXiv preprint arXiv:1606.06746, 2016.

211

[94] JK Lindsey. Comparison of probability distributions. Journal of the

Royal Statistical Society. Series B (Methodological), pages 38–47, 1974.

[95] JK Lindsey. Construction and comparison of statistical models. Jour-

nal of the Royal Statistical Society. Series B (Methodological), pages 418–

425, 1974.

[96] Li Ma. Adaptive shrinkage in pólya tree type models. Bayesian Anal-

ysis, 2016.

[97] Oscar-Hernan Madrid-Padilla, Nicholas G. Polson, and James G.

Scott. A deconvolution path for mixtures. arXiv preprint

arXiv:1511.06750, 2015.

[98] Oscar-Hernan Madrid-Padilla and James G. Scott. Nonparamet-

ric density estimation by histogram trend filtering. arXiv preprint

arXiv:1509.04348, 2015.

[99] Oscar-Hernan Madrid-Padilla and James G. Scott. Tensor decompo-

sition with generalized lasso penalties. Journal of Computational and

Graphical Statistics, (just-accepted), 2016.

[100] Oscar-Hernan Madrid-Padilla, James G. Scott, James Sharpnack, and

Ryan J. Tibshirani. The dfs fused lasso: Linear-time denoising over

general graphs. arXiv preprint arXiv:1608.03384, 2016.

[101] Enno Mammen. Nonparametric regression under qualitative smooth-

ness assumptions. The Annals of Statistics, pages 741–759, 1991.

212

[102] Enno Mammen and Sara van de Geer. Locally apadtive regression

splines. Annals of Statistics, 25(1):387–413, 1997.

[103] R. Martin and Surya T. Tokdar. A nonparametric empirical Bayes

framework for large-scale multiple testing. Biostatistics, 13(3):427–39,

2012.

[104] Ryan Martin and Surya T. Tokdar. Semiparametric inference in mix-

ture models with predictive recursion marginal likelihood. Biometrika,

98(3):567–582, 2011.

[105] Omkar Muralidharan. An empirical bayes mixture method for effect

size and false discovery rate estimation. The Annals of Applied Statis-

tics, pages 422–438, 2010.

[106] Radford M. Neal. Mcmc using hamiltonian dynamics. Handbook of

Markov Chain Monte Carlo, 2:113–162, 2011.

[107] Michael A. Newton. On a nonparametric recursive estimator of the

mixing distribution. Sankhyā: The Indian Journal of Statistics, Series A,

pages 306–322, 2002.

[108] Finbarr O’Sullivan. Fast computation of fully automated log-density

and log-hazard estimators. SIAM Journal on scientific and statistical

computing, 9(2):363–379, 1988.

[109] Junyang Qian and Jinzhu Jia. On pattern recovery of the fused lasso.

arXiv preprint arXiv:1211.5194, 2012.

213

[110] Aaditya Ramdas and Ryan J. Tibshirani. Fast and flexible admm algo-

rithms for trend filtering. Journal of Computational and Graphical Statis-

tics, 25(3):839–858, 2016.

[111] Garvesh Raskutti, Martin Wainwright, and Bin Yu. Minimax rates of

estimation for high-dimensional linear regression over `q-balls. IEEE

Transactions on Information Theory, 57(10):6976–6994, 2011.

[112] Pradeep Ravikumar, Martin J. Wainwright, and John D. Lafferty.

High-dimensional ising model selection using l1-regularized logistic

regression. The Annals of Statistics, 38(3):1287–1319, 2010.

[113] Alessandro Rinaldo. Properties and refinements of the fused lasso.

The Annals of Statistics, 37(5):2922–2952, 2009.

[114] Herbert Robbins. An empirical Bayes approach to statistics. In Pro-

ceedings of the Third Berkeley Symposium on Mathematical Statistics and

Probability, 1954–1955, volume 1, pages 157–63. University of Califor-

nia Press, Berkeley and Los Angeles, 1956.

[115] Herbert Robbins. The empirical bayes approach to statistical decision

problems. The Annals of Mathematical Statistics, pages 1–20, 1964.

[116] Cristian R. Rojas and Bo Wahlberg. On change point detection using

the fused lasso method. arXiv preprint arXiv:1401.5408, 2014.

214

[117] L. Rudin, S. Osher, and E. Faterni. Nonlinear total variation based

noise removal algorithms. Physica D: Nonlinear Phenomena, 60(259–

68), 1992.

[118] Leonid Rudin, Stanley Osher, and Emad Faterni. Nonlinear total vari-

ation based noise removal algorithms. Physica D: Nonlinear Phenom-

ena, 60(1):259–268, 1992.

[119] Veeranjaneyulu Sadhanala, Yu-Xiang Wang, and Ryan J. Tibshirani.

Total variation classes beyond 1d: Minimax rates, and the limitations

of linear smoothers. To appear, Neural Information Processing Systems,

2016.

[120] Sylvain Sardy and Paul Tseng. Density estimation by total variation

penalized likelihood driven by the sparsity 1 information criterion.

Scandinavian Journal of Statistics, 37(2):321–337, 2010.

[121] Abhra Sarkar, Bani K Mallick, John Staudenmayer, Debdeep Pati, and

Raymond J Carroll. Bayesian semiparametric density deconvolution

in the presence of conditionally heteroscedastic measurement errors.

Journal of Computational and Graphical Statistics, 23(4):1101–1125, 2014.

[122] Abhra Sarkar, Debdeep Pati, Bani K. Mallick, and Raymond J. Carroll.

Bayesian semiparametric multivariate density deconvolution. arXiv

preprint arXiv:1404.6462, 2014.

215

[123] Juliane Schäfer and Korbinian Strimmer. An empirical bayes ap-

proach to inferring large-scale gene association networks. Bioinfor-

matics, 21(6):754–764, 2005.

[124] D.W. Scott. Multivariate Density Estimation: Theory, Practice, and Visu-

alization. Wiley, 1st edition, 1992.

[125] James Sharpnack, Akshay Krishnamurthy, and Aarti Singh. Detect-

ing activations over graphs using spanning tree wavelet bases. In-

ternational Conference on Artificial Intelligence and Statistics, 16:536–544,

2013.

[126] David Shuman, Sunil Narang, Pascal Frossard, Antonio Ortega, and

Pierre Vandergheynst. The emerging field of signal processing on

graphs: Extending high-dimensional data analysis to networks and

other irregular domains. IEEE Signal Processing Magazine, 30(3):83–98,

2013.

[127] Bernard W. Silverman. On the estimation of a probability density

function by the maximum penalized likelihood method. The Annals

of Statistics, pages 795–810, 1982.

[128] Aarti Singh, Robert Nowak, and Robert Calderbank. Detecting weak

but hierarchically-structured patterns in networks. International Con-

ference on Artificial Intelligence and Statistics, 13:749–756, 2010.

216

[129] Dinesh Singh, Phillip G. Febbo, Kenneth Ross, Donald G. Jackson,

Judith Manola, Christine Ladd, Pablo Tamayo, Andrew A. Renshaw,

Anthony V. D’Amico, Jerome P. Richie, Eric S. Lander, Massimo Loda,

Philip W. Kantoff, Todd R. Golub, and William R. Sellers. Gene ex-

pression correlates of clinical prostate cancer behavior. Cancer Cell,

1(2):203–9, 2002.

[130] Alexander Smola and Risi Kondor. Kernels and regularization on

graphs. Annual Conference on Learning Theory, 16, 2003.

[131] John Staudenmayer, David Ruppert, and John P. Buonaccorsi. Den-

sity estimation in the presence of heteroscedastic measurement error.

Journal of the American Statistical Association, 103(482):726–736, 2008.

[132] Leonard A. Stefanski and Raymond J. Carroll. Deconvolving kernel

density estimators. Statistics, 21(2):169–184, 1990.

[133] Wei Sun, Junwei Lu, Han Liu, and Guang Cheng. “Provable Sparse

Tensor Decomposition”. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 2016.

[134] Wesley Tansey, Alex Athey, Alex Reinhart, and James G. Scott. Mul-

tiscale spatial density smoothing: an application to large-scale radio-

logical survey and anomaly detection. arXiv preprint arXiv:1507.07271,

2015.

217

[135] Wesley Tansey, Oluwasanmi Koyejo, Russell A. Poldrack, and

James G. Scott. False discovery rate smoothing. Technical report,

University of Texas at Austin, 2014. http://arxiv.org/abs/1411.6144.

[136] Wesley Tansey and James G. Scott. A fast and flexible algorithm for

the graph-fused lasso. arXiv preprint arXiv:1505.06475, 2015.

[137] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Spar-

sity and smoothness via the fused lasso. Journal of the Royal Statistical

Society (Series B), 67:91–108, 2005.

[138] Robert Tibshirani. “Regression shrinkage and selection via the lasso”.

Journal of the Royal Statistical Society. Series B (Methodological), pages

267–288, 1996.

[139] Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and

Keith Knight. “Sparsity and smoothness via the fused lasso”. Jour-

nal of the Royal Statistical Society(Series B), 67(1):91–108, 2005.

[140] Ryan J. Tibshirani. Adaptive piecewise polynomial estimation via

trend filtering. The Annals of Statistics, 42(1):285–323, 2014.

[141] Ryan J. Tibshirani and Jonathan Taylor. The solution path of the gen-

eralized lasso. The Annals of Statistics, 39:1335–71, 2011.

[142] Ryan J. Tibshirani and Jonathan Taylor. Degrees of freedom in lasso

problems. The Annals of Statistics, 40(2):1198–1232, 2012.

218

[143] Surya T. Tokdar, Ryan Martin, and Jayanta K. Ghosh. Consistency of

a recursive estimate of mixing distributions. The Annals of Statistics,

pages 2502–2522, 2009.

[144] Y. H. Tsin. Some remarks on distributed depth-first search. Information

Processing Letters, 82:173–178, 2002.

[145] Alexander Tsybakov. Introduction to Nonparametric Estimation.

Springer, 2009.

[146] Sara Van de Geer. Estimating a regression function. The Annals of

Statistics, pages 907–924, 1990.

[147] Stefan Wager. A geometric approach to density estimation with addi-

tive noise. Statistica Sinica, 2013.

[148] Abraham Wald. Note on the consistency of the maximum likelihood

estimate. The Annals of Mathematical Statistics, pages 595–601, 1949.

[149] Yu-Xiang Wang, James Sharpnack, Alex Smola, and Ryan J. Tibshi-

rani. Trend filtering on graphs. Journal of Machine Learning Research,

17(105):1–41, 2016.

[150] Rebecca M Willett and Robert D Nowak. Multiscale poisson inten-

sity and density estimation. Information Theory, IEEE Transactions on,

53(9):3171–3187, 2007.

219

[151] Daniela M. Witten, Robert Tibshirani, and Trevor Hastie. “A pe-

nalized matrix decomposition, with applications to sparse princi-

pal components and canonical correlation analysis”. Biostatistics,

10(3):515, 2009.

[152] Bin Yu. Assouad, Fano, and Le Cam. In Festschrift for Lucien Le Cam,

pages 423–435. Springer, 1997.

[153] Cun-Hui Zhang. Fourier methods for estimating mixing densities and

distributions. The Annals of Statistics, pages 806–831, 1990.

[154] Dengyong Zhou, Jiayuan Huang, and Bernhard Scholkopf. Learning

from labeled and unlabeled data on a directed graph. International

Conference on Machine Learning, 22:1036–1043, 2005.

[155] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Semi-supervised

learning using Gaussian fields and harmonic functions. International

Conference on Machine Learning, 20:912–919, 2003.

[156] Yunzhang Zhu. An augmented admm algorithm with application to

the generalized lasso problem. Journal of Computational and Graphical

Statistics, (just-accepted), 2015.

220

Vita

Oscar Hernan Madrid Padilla was born in May 18, 1991. He was

raised in Honduras, in the rural areas of both regions Santa Barbara, and

Olancho. Oscar is the oldest son of Alejandrina Padilla and Jose Ramon

Madrid. At an early age, Oscar was encouraged by his parents to study

mathematics. This led him to compete in the International Mathematical

Olympiad in 2008.

Oscar earned a bachelor degree in mathematics from the Universi-

dad de Guanajuato, in Mexico in April, 2013. He then moved to the United

states, in August of 2013, to study a PhD in Statistics at The University of

Texas at Austin.

To continue his statistical research, Oscar has accepted an offer to

be “Neyman Visiting Assistant Professor” at the University of California,

Berkeley, with expected start date of July 1, 2017.

Permanent email: oscar.madrid@utexas.edu

This dissertation was typed by the author.

221

