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POST-PROCESSING TREATMENT OF

CONDUCTIVE POLYMERS TO ENHANCE

ELECTRICAL CONDUCTIVITY

This application is based upon and claims the benefit of

priority from U.S. Provisional Patent ApplicationNo. 61/102,

903, titled “Dichoroacetic Acid Treatment of Conductive

Polymers to Enhance Electrical Conductivity”filed on Oct.6,

2008,the entire contents ofwhich are incorporated herein by

reference.

Large-area displays based on organic materials, for

example, conductive polymers, promise low-cost fabrication,

lightweight construction, mechanical flexibility and durabil-

ity. Conductive polymers have been used as electrodes in

organic electronic devices, such as organic thin-film transis-

tors, solar cells, and organic light emitting diodes.

To realize low-cost aspects of organic electronics solution

processing methodologies such asinkjet printing orspin cast-

ing have been proposed. This need has in turn driven the

development of solution-processable organic semiconduc-

tors, and solution processable organic conductors.
Electronic devices made from spun-cast organic semicon-

ductors have previously been disappointing because their

carrier mobilities (<10-3 cm?/V-sec) are too low for any prac-
tical applications, and their current-voltage characteristics

are highly dependent on the processing conditions. There is,
thus, a need to provide low cost organic based semiconduc-

tors with characteristics, such as electric conductivity, that are
suitable for practical applications in electronic devices

includingsolarcells.

In accordancewiththe presentdisclosure, there is provided
a method for enhancing electrical conductivity of a film, the

method comprising: providing a film comprising at least one
conductive polymerandat least one polymer acid; agitating

the film in at least one reagent; and placing the film on a

heated surface, wherein the at least one reagent comprises a
reagentacidthat is stronger than the polymeracid, and further

wherein the conductivity, measured in S/cm,of the treated
film is significantly greater than the conductivity of the

untreated film.
There is also provided in accordance with the present dis-

closure a method for enhancing electrical conductivity of a

film, the method comprising: providing a film comprising at
least one conductive polymerandat least one polymeracid;

agitating the film in at least one reagent; and placing the film
on a heated surface, wherein the at least one reagent com-

prises a reagent acid that is stronger than the polymeracid,
and further wherein the conductivity, measured in S/cm, of

the treated film is at least 100 times greater than the conduc-

tivity of the untreated film.
In a further embodimentin accordance with the present

disclosure, there is provided a method for enhancing carrier
mobility of an electrode in an organic device, the method

comprising: providing a film comprising at least one conduc-
tive polymerandat least one polymeracid; agitating the film

in at least one reagent; placing the film on a heated surface;

and forming the electrode, wherein the at least one reagent
comprises a reagent acid that is stronger than the polymer

acid, and wherein the carrier mobility, measured in cm?/V-
sec, of the device comprising the electrode comprising the

treatedfilm is at least 10 times greater than the carrier mobil-
ity of a device comprising an electrode comprising the

untreated film. In certain embodiments, the electrode is made

from the treated conductive polymer film, and in other
embodiments,the electrode is formed by bringing the treated

conductive polymerfilm into contact with a substrate.
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In an additional embodiment in accordance with the

present disclosure, there is provided a method for enhancing

the on/off current ratio of an organic electronic device, the

method comprising: providing a film comprising at least one
conductive polymerandat least one polymer acid; agitating

the film in at least one reagent; placing the film on a heated
surface; and forming the organic electronic device, wherein

the at least one reagent comprises a reagent acid that is stron-
ger than the polymeracid, andwherein the on/offcurrentratio

ofthe device comprising the treatedfilm is at least 100 times

greater than the on/offcurrentratio ofa device comprising the
untreatedfilm.

In yet another embodimentin accordance with the present
disclosure, there is provided a treated conductive film pre-

pared by amethod comprising agitating in at least one reagent
aconductive film comprising at least one conductive polymer

and at least one polymeracid; and placingthe film on a heated

surface, wherein the at least one reagent comprises a reagent
acid that is stronger than the polymer acid, and further

wherein the treated conductive film has a conductivity, mea-
sured in S/cm, that is at least 100 times greater than the

corresponding property of the untreated conductive film.
A further embodimentin accordance with the presentdis-

closure is directed to an electrode in an organic device pre-

pared by a method comprising: providing a film comprising at
least one conductive polymerandat least one polymeracid;

agitating the film in at least one reagent; placing the film ona
heated surface; and forming the electrode, wherein the at least

one reagent comprises a reagentacid that is stronger than the
polymeracid, and wherein the carrier mobility, measured in

cm?/V-sec,ofthe device comprising the electrode comprising

the treated film is at least 10 times greater than the carrier
mobility of a device comprising an electrode comprising the

untreatedfilm.
Additionally provided in accordance with the presentdis-

closure is an organic electronic device prepared by a method

comprising providing a film comprising: at least one conduc-
tive polymerandat least one polymeracid; agitating the film

in at least one reagent; placing the film on a heated surface;
and forming the organic electronic device, wherein theat least

one reagent comprises a reagentacid that is stronger than the
polymer acid, and wherein the on/off current ratio of the

device comprising thetreated film is at least 100 times greater

than the on/off current ratio of a device comprising the
untreatedfilm.

An electrical device comprising any ofthe conductive films
as described herein is also an embodiment of the present

disclosure. Suitable electrical devices include, for example,
solar cells, organic thin-film transistors, photodetectors, pho-

tovoltaic devices, photoconductors, and organic light emit-

ting diodes.
It is to be understood that both the foregoing general

description and the following detailed description are exem-
plary and explanatory only and are not restrictive ofthe inven-

tion, as claimed.
The accompanying drawings, which are incorporated in

and constitute a part of this specification, illustrate embodi-

ments of the invention and, together with the description,
serve to explain the principles of the invention.

FIG.1 illustrates a post-processing treatment of the con-
ducting polymerfilm, in accordance with an embodiment.

FIG. 2 shows a current/voltage graph for a film before
post-processing treatment.

FIG. 3 showsa current/voltage graph ofa film after post-

processing treatment, in accordance with an embodiment.
FIG. 4 showsthe effect of post-processing treatment on

ultraviolet-visible-near-infra-red spectroscopy of a conduc-
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tive polymerfilm (402 refers to before treatment and 402

refers to after treatment), according to one embodiment.

FIG.5 illustrates the effect ofpost-processing treatment on

variable temperature conductivity measurements of a con-

ductive polymerfilm, according to one embodiment.

FIG.6 illustrates the effect ofpost-processing treatment on

the X-ray photoemission spectroscopy of a conducive poly-

merfilm, according to one embodiment.

FIG.7 illustrates the effect ofpost-processing treatment on

the electrodesin a thin film transistor (TFT) made from con-

ductive polymers, according to an embodiment.

FIGS. 8A and 8Billustrates the design of a thin film tran-

sistor built using a conductive polymerfilm, according to an

embodiment.

FIG.9 illustrates the structure ofa conductive polymerfilm

before post-processing treatment.

FIG. 10 illustrates the structure ofa same conductive poly-

merfilm depicted in FIG.9 after post-processing treatment, in

accordance with an embodiment.

FIGS. 11A and 11Billustrate the current density-voltage

characteristics of organic solar cells with post-processing
treated and untreated conducting polymerelectrodes.

Reference will now be made in detail to exemplary

embodiments of the present disclosure, examples of which
are illustrated in the accompanying drawings. Wherever pos-

sible, the same reference numberswill be used throughoutthe
drawings to refer to the sameorlike parts.

In accordance with some embodiments, an organic based
film is first prepared by a pre-processing method andis then

treated by being subjected to solvent exposure.

FIG.1 illustrates a post-processing treatment 100, in accor-
dance with an embodiment.In step 102, a conductive polymer

film is provided for post-processing treatment and in steps
104 and 106, the conductive polymer film is treated to

improve its conductivity. The conductive polymerfilm can,

for example, result from a pre-processing during which a
conductive polymeris doped with a polymeracid. In various

embodiments, the conductive polymerincludes a water dis-
persible polymer acid such that the conductive polymer can

be processed from dispersion.
Suitable conductive polymers include, for example, polya-

niline (PANI), poly(ethylene dioxythiophene) (PEDOT)and

polypyrrole. Further, the conductive polymer can be doped
with a polymeracid. The polymeracid can be, for example,

poly(2-acrylamido-2-methy1-1-propanesulfonic acid)
(PAAMPSA) or poly(styrene sulfonate) (PSS). In some

embodiments, PANIcanbe prepared by oxidatively polymer-
izing aniline monomersin the presence of a polymeric acid

dopant. In some embodiments, PAAMPSA,can be synthe-

sized via conventional free-radical polymerization and atom
transfer radical polymerization. Subsequently, the pre-pro-

cessing performs aniline polymerization in the presence of
PAAMPSA, which yields water dispersible, conductive

PANI-PAAMPSA.Other embodimentsofthe present disclo-
sure utilize a film comprising PEDOTand PSS.

In some embodiments, the pre-processing also includes

patterning the prepared conductive polymerfilm in the form
required for a specific electronic device. For example, in

some embodiments, the pre-processing includes creating a
PANI-PAAMPSAelectrode by drop-casting from the PANI-

PAAMPSAaqueousdispersion. In some embodiments,a pat-
terning technique, e.g., stamp-and-spin-cast,is used to fabri-

cate bottom-contact thin-film transistors with PANI

electrodes.
Generally, solution processable conductive polymers lack

the electrical conductivity necessary for a range of applica-
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4
tions. In orderto increase their conductivity, various embodi-

ments further treat the provided conductive polymer film

though steps 104 and 106.

In step 104, the conductive polymer film is exposed to a

reagent. Various embodiments select the reagent according to

criteria which makesthe reagent suitable forthe specific type

of conductive polymer. For example, in some embodiments,

the reagent is selected to include a plasticizer reagent. Fur-

ther, in some embodiments, the reagent is selected to include

an acid which hasa higheracidity (e.g., a lower pKa) com-

pared to the polymer acid dopantin the conductive polymer.

For example, in some embodiments which use PAAMPSAas

the polymer acid dopant, the reagent is selected to include

dichloroacetic acid (DCA). In some other embodiments, the

reagent is selected to includetrichloroacetic acid.

In certain embodiments, in step 104 the conductive poly-

merfilm is exposedto the reagent by being immersedinto the

solution for a time interval sufficient to cause the reagent

molecules to diffuse into the conductive polymer film. To

facilitate the diffusion in certain embodiments, the reagent

solution can be preheated and/or the immersed conductive

film is agitated. In certain embodiments, the conductive poly-

merfilm canbe agitated for several minutes ina DCA solution

that was preheated to a temperature ranging from 80° C.to

120° C., such as 90° C.

In step 106, the conductive film is removed from the

reagent solution and exposed to heat in order to remove the

excess reagent. In some embodiments, step 106 is performed

by placing the conductive film on a hotplate. The temperature

of the hotplate is selected to be below the glass transition of

the polymeracid dopant. Specifically, because the glass tran-

sition temperature of PAAMPSAis estimated to be around

180° C., in some embodiments which use PAAMPSA doped

conductive polymers, the hotplate temperatureis set to about

145° C. On the other hand, becausethe glass transition tem-

perature of PSS is estimated to be around 110° C., in some

embodiments which use PSS doped conductive polymers, the

hotplate temperature is set to about 90° C. In some embodi-

ments, the conductive film is placed on the hotplate for a time

interval sufficient to remove the extra reagent from the sur-

face. In one embodiment, PANI-PAAMPSAis removed from

the reagent solution andis placed for about thirty minutes on
a hotplate that is set to a temperature around 145° C.

Post-processing treatment 100 can improve dramatically
the electrical characteristics of conductive polymerfilms and

thus the performance characteristics of the devices which
employ those conductive polymerfilms. In certain embodi-

ments, the conductivity ofthe treated film (measured in S/cm)

is increased by more than 25 times comparedto the corre-
sponding conductivity of the untreated film, such as an

increase of more than 50 times, an increase of more than 75
times, an increase ofmore than 100 times, an increase ofmore

than 150 times, and an increase of more than 200 times. In
additional embodiments, the carrier mobility (measured in

cm?/V-sec) of a device comprising an electrode comprising

the treated film is at least 5 times greater than the carrier
mobility of a device comprising an electrode comprising the

untreated film, such as an increase ofan increase ofmore than
8 times, an increase of more than 10 times, an increase of

more than 15 times, and an increase ofmore than 20 times.In
further embodiments, the on/off current ratio of a device

comprising the treatedfilm is increasedby more than 25 times

compared to the corresponding on/offcurrent ratio ofa device
comprising the treated film or a device using an untreated

film, such as an increase ofmore than 50 times, an increase of
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more than 75 times, an increase of more than 100 times, an
increase ofmore than 150 times, and an increase ofmore than

200 times.

Additionally, post-processing treatment can improve the
characteristics ofthe device by a large reduction in the thresh-

old voltage and current hysteresis on cycling—observations
that imply trap reduction at the electrode-organic semicon-

ductor and dielectric semiconductorinterfaces, respectively.
The changes in electrical characteristics of the conductive

film can be directly correlated with changes in the morphol-

ogy ofthe conductive polymerfilm as shown,for example, in
FIGS.9 and 10.

FIGS. 2 and 3 show current/voltage graphs 200 and 300
whichillustrate the effect of post-processing treatment 100

on the electrical conductance measured for a PANI-
PAAMPSAfilm, in accordance with one embodiment. FIG. 2

correspondstothe film after it was prepared and before post-

processing treatment 100, while FIG. 2B correspondsto the
samefilm after post-processing treatment with DCA.To plot

each graph, different voltages were applied to a sample film
and, for each voltage, a resulting current was measured. The

voltage/current measurement was performed using a four-
point probe technique In the four-point probe technique four

equally-spaced gold strips are deposited directly onto the film

through a shadow mask. Theresistance is obtained by divid-
ing the applied current by the voltage drop between the two

inner goldstrips. Contact resistances betweenthefilm and the
gold strip, as well as those betweenthe probe tip and the gold

strip, is thus eliminated. The conductivity is then obtained by
normalizing the film resistance by the cross-sectional area

defined by the gold strip and the distance between two inner

gold strips.
FIG. 2, shows the current/voltage graph 200 for the film

before post-processing treatment 100. Graph 200 shows that
the current increased linearly from about -130 micro-am-

peres to about +130 micro-amperes, when the applied voltage

changed from -10 volts to +10 volts. These data indicate that,
before post-processing treatment 100, the sample had a con-

ductance (measured as the change in current divided by the
change in voltage) that is 100x less than the film after treat-

ment.

FIG.3, on the other hand, showsthe current/voltage graph

300 for the same film after post-processing treatment 100.

Graph 300 showsthat the current increased linearly from
about -16 mili-amperes to about +16 mili-amperes, when the

applied voltage changed from -10 volts to +10 volts. These
data indicate that, after post-processing treatment 100, the

sample had reached a conductance which is more than 100
timesthat of the conductance measured in graph 200. Same

amount of increase was shownby finding the conductivities

measured via normalizing each conductance by the length
and cross-sectional area of the film. These measurements

showed that the average conductivity for the sample was
0.16+0.11 S/cm in FIG.2 and 72.9244.6 S/cm in FIG.3.

Post-processor treatment 100 can achieve the abovelarge
change in conductivity by inducingstructural rearrangements

in the conductive polymer. For example the increase in con-

ductivities observed in FIGS. 2 and 3 is accompanied by
pronounced changes in the molecular structure of PANI-

PAAMPSAasshownin FIGS.9 and 10, respectively.
Investigating the interactions between PANI and

PAAMPSAhasshed somelight on understanding the origin
of the structural changes. Specifically, there are strong ionic

interactions between PANI and PAAMPSA whichlead to a

compact coil conformation of PANI-PAAMPSA. The
reagent, which in certain embodiments can be DCA,effec-

tively interrupts the ionic interactions between PANI and
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6
PAAMPSA. Due to moderated ionic interactions, PANI-
PAAMPSAcan rearrange its conformation from the “com-

pact coil” to the “extended chain”. In the extended chain

conformation, delocalized polarons and bipolarons that
enable moreefficient charge transport are increased, thereby

improving the-conductivity of PANI-PAAMPSA.
In order to understand the effect of the post-processing

treatment 100 on the electronic structure of a conductive
polymerfilm, film samples have been studied via spectros-

copy. FIG.4 includes graphs 402 and 404, which respectively

show the results of ultraviolet-visible-near-infra-red spec-
troscopy (UV-Vis-NIR) experiments on a PANI-PAAMPSA

film before post-processing treatment (untreated film) and
after post-processing treatment with DCA (treated film).

Graph 404, showing the UV-Vis-NIR spectrum forthe treated
film, reveals an absorption pattern thatis drastically different

from that of graph 402 for the untreated film.

Graph 402, for the untreated film, shows two distinct
absorption bands. The broad absorption ranging from 300 nm

to 450 nm is associated with a transition from the x band to the
z* band. The other narrow absorption at around 760 nm is

attributed to a transition from the x band to a narrow polaron
band. This optical spectrum is consistent with previously-

reported spectra ofPANI having low conductivities (0.01-0.1

S/cm), and is interpreted as PANI having a compact coil
conformation. On the other hand, graph 404, for the treated

film, does not show the narrow absorption at 760 nm, and
instead showsabroad absorptionbetween 1000 and 2000 nm.

This broad absorption is often referred to as the “free charge
carrier tail,” and correspondsto the transition from a broad

polaron band to the m* band stemming from an extended

chain conformation. The presence ofthis board absorption in
the near-IR region suggests that,as a result ofpost-processing

treatment, the chain conformation ofPANI-PAAMPSAprob-
ably changes from a compact coil conformation to an

extended chain conformation. Such extended chain confor-

mation is believe to improve charge transport. As a conse-
quence, DCA-treated PANI-PAAMPSAexhibits conductivi-

ties on the order of 100 S/cm.
To understandtheeffect ofpost-processing treatmentinthe

charge transport ofa conductive polymerfilm, FIG. 5 depicts
the results of variable temperature conductivity measure-

ments performed on the untreated andtreated films. Specifi-

cally, to derive FIG. 5, each ofthe untreated andtreated films
wasplaced in a cryostat and its conductivity was measured for

different temperature between 81 K and 298 K (room tem-
perature). In FIG. 5, graphs 502 and 504 showstheresults for

the untreated andtreated films, respectively.
To derive the data in graph 502, the conductivity of the

untreated film was measured using two-point probe tech-

nique—which is different from the four-point probe tech-
nique in that it employs two, not four, gold strip probes—

because the conductivity of the untreated film at low
temperatures wastoo low to be analyzedby a four-point probe

setup. Sincethebulk resistance ofthe untreated film washigh,
it was assumedthat the contact resistance between the probes

and the sample wasnegligible and the conductivity wascal-

culated based on the dimensionsofthe setup given the output
currents. No data was acquired below 130 K where the bulk

resistance of untreated film exceeded the instrumental limi-
tation. As seen in graph 502, the conductivity ofthe untreated

film decreased from 10-? S/cm at 298K (upperleft corer of
graph 502) to 10-° S/em at 130K (lower right corner of 502).

This graph indicatesthat the untreated film behaves morelike

a semiconductorthan a metal, for which, at low temperatures,
the scattering decreases and thus the conductivity increases

with decreasing temperature. The conductivity data in graph
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502 can be described by an Arrhenius fit, suggesting that

charge transport in the untreated film is enabled by a ther-

mally activated hopping process.

To derive the data in graph 504, the conductivity of the

treated film was measured using a four-point probe. Similar to

that of the treated film, the conductivity decreases as the

temperature is decreased, suggesting that charge transport in

the treated film is also enabled by a thermally-activated hop-

ping process. Both graphs 502 and 504 show a linear behavior

and werefit with the quasi one-dimensional variable hopping

model shown in Equation (1) below

| T, \Y2

o(T) = aoexp (| |

in which o is the conductivity; o, is a constant; T is the

temperature; and T,is the slope ofthe conductivity-tempera-

ture curve shown in each graph 502 and 504, and can be

thoughtofas an activation energy for charge hopping.Fitting

the data in graphs 502 and 504 to Equation (1) reveals that for

the untreated film of graph 502, T, is 19980K, while for the

treated film of graph 504, T, is 1690K. Therefore, T), repre-

senting the activation energy for charge hopping, decreases

more than ten timesas a result of post-processing treatment,

resulting in a drastic increase in the conductivity of the film.

To further examine the chemical changes in the conductive

polymerfilm as a result ofpost-processing treatment accord-

ing to an embodiment, X-ray photoemission spectroscopy

(XPS) experiments were conducted on the untreated and
treated films discussed above, and their results are shown in

FIG. 6. XPS spectra were collected at a take-off angle of 75°
to increase the depth sensitivity ofthe films. FIGS. 6a and 6b

show the XPS nitrogen spectra untreated and treated films,

respectively. The nitrogen spectra were deconvoluted into
three Gaussian peaks centered at 399.2 eV (NH,nitrogen in

amines), 400 AeV (N"*, protonated nitrogen), and 401.3 eV
(N**, protonatednitrogen). A full width halfmaximum inten-

sity (FWHM)of 1.4 eV is maintained for all three peaks.
FIGS.6c and 6d show the XPS sulfur spectra ofthe untreated

and treated films, respectively. The sulfur spectra were decon-

voluted into two doublets. Each doublet was fitted with two
singlets, i.e., S2p3,. and S2p,,.. One doublet wasfitted with

twosinglets, S2p;,. and S2p,,,. that are centered at 167.5 ev
and 168.7 eV, respectively (ionized PAAMPSA, SO3-N+)

and the other doublet with S2p,,, and S2p,,, that are centered
at 168.3 ev and 169.5 eV, respectively (neutral PAAMPSA,

SO,H). All four singlet peaks maintain a FWHM of1.0 eV.

No measurable amounts of chlorine was detected in the
treated film, suggesting that DCA was completely removed

from thetreatedfilm as a result ofheating the film in step 106.
To quantify the changes in the concentration of nitrogen

andsulfur atoms in neutral and ionic environments, it wasfirst
assumed that the concentration of total sulfur atoms in the

system (only PAAMPSAcontains sulfur) remains constant

before and after DCA treatment since PAAMPSAisnot vola-
tile. It was further assumedthat the nitrogen in PAAMPSAis

neutral. The peak associated with these neutral nitrogen
atomsis difficult to decouple from any neutral nitrogens in

PANIbecause they overlap. Also, the intensities of neutral
amine nitrogens of PANI-PAAMPSA,(NH,399.2 eV) were

integrated with that of protonated nitrogens (N'*, 400 AeV

and N?*, 401.3 eV) in PANI, that of the neutral sulfurs in
PAAMPSA(SOH, S2p3,. at 168.3 eV), andthat of sulfurs in

ionized sulfonic acid (SO,-N*, S2p,,. at 167.5 eV) in
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8
PAAMPSA.These integrated intensities are normalized by
the total concentration of sulfur atoms(S).

In these studies, N‘* is identified to be associated with

delocalized polaronsand bipolaronsthat enable charge trans-
port through PANI-PAAMPSA.N?*is identified as the posi-

tively charged amines that are more tightly bound to the
ionized sulfonic groups in PAAMPSA compared to N‘*.

Before treating PANI-PAAMPSA with DCA, it was found
that NH/S, N'*/S and N**/S wererespectively 1.08, 0.1, and
0.73. These observationsindicate that a large portion of pro-

tonated nitrogens is strongly associated with negatively
charged sulfonic acids groups in PAAMPSA.Consistent with

these observations, a large portion of sulfonic acid was
observed to be ionized,thatis 0.79 ofSO,-N*/S as opposed to

0.21 of SO3H/S. A low portion of N’*/S that is relevant to
charge transport is in agreement with a low electrical conduc-

tivity ofPANI-PAAMPSApriorto post-processing treatment

with DCA.
After post processing treatment, NH/S and N'*/S, (401.3

eV) increased from 1.08 to 1.25 and 0.10 to 0.30,respectively,
and N?*/S decreased from 0.73 to 0.23. Simultaneously, the

relative concentration of ionized sulfonic acid, SO,-N*/Sis
also decreased from 0.79 to 0.65. These observations suggest

that the strong ionic associations between PANI and

PAAMPSA,i.e., N**/S and SO,-N*/Sare reduced with the
post-processing treatment with DCA. As such, DCA “mod-

erates”the ionic interactions between PANI and PAAMPSA,
thereby allowing structural rearrangement of PANI-

PAAMPSA. Specifically, PANI-PAAMPSA adopts an
“extended chain” structure (as opposed to a “compactcoil’)

after post-processing treatment with DCA. Such DCA-

treated PANI-PAAMPSAhavingthe “extended chain”struc-
ture exhibits higher conductivities.

FIG. 7 illustratesthe effect ofpost-processing treatment on
the electrodes in a thin film transistor (TFT) made from con-

ductive polymers, according to an embodiment. More spe-

cifically, FIGS. 7a-7d show the behavior of source-drain cur-
rent as a function source-drain voltage andalso as a function

of gate voltage for the untreated and treated films. FIG. 7a
showsrepresentative I-V characteristics ofa DHT-ANT TFTs

with untreated PANI-PAAMPSAelectrode. This TFT exhib-
its significantly suppressed output currents and suffers from

serious current hysteresis. The transfer characteristics also

exhibit low source-drain currents with a roll-off at gate volt-
ages higher than -5V, as shown in FIG. 75. FIG. 7c reveals

drastically enhanced I-V characteristics fora DHT-ANT TFT
with DCA-treated PANI-PAAMPSA electrodes. The output

currents increase by more than an order ofmagnitude, relative
to those of devices with PANI-PAAMPSAelectrodes. FIG.

7d showsthat the transfer characteristics of the same device,

in which the source-drain currentis effectively modulated as
a function of the gate voltage without anyroll-off.

FIGS. 8A and 8Brespectively show a side view and a top
view of a semiconductor device 800 utilizing conductive

polymer films, according to one embodiment. Device 800
includes an SiO, gate dielectric layer 804 formed over a

doped Si gate layer 802. Further, device 800 includes drain

area 806 and source area 808 over the gate dielectric layer
804. In some embodiments, drain and source areas 804 and

806 each include conductive polymerfilms. In one embodi-
ment, the drain and source areas 806 and 808 are formedusing

a conductive polymer film including PANI doped with
PAAMPSA.Moreover device 800 includes an organic semi-

conductor layer 810 formed over the drain and source areas

806 and 808, and gate dielectric layer 804.
FIGS.9 and 10,illustrate the morphology of a conductive

polymer film, before and after post-processing treatment,
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according to one embodiment. Specifically, FIG.9 illustrates
the surface morphology of a PANI-PAAMPSA film after

preparation and before post-processing treatment. FIG. 10

illustrates the surface morphology of the same PANI-
PAAMPSAfilm of FIG. 9 after post-processing treatment.

FIG. 11A shows the JV characteristics of organic solar
cells in whichuntreated and treated conducting polymerfilms

were used as anodesin place of transparent metal oxide. The
relevant figures ofmerit are summarized in FIG. 11B. The use

of treated conducting polymerinstead of untreated conduct-

ing polymer dramatically decreases the internalseries resis-
tance ofthe device, effectively increasing short circuit current

density andefficiency.
The following represents additional testing in accordance

with embodiments within the scopeofthe present disclosure.
PANI-PAAMPSAfilms on Si/Si0, substrates were prepared

from a 5 wt % aqueous dispersion. The PANI-PAAMPSA

films were baked at 90° C. for 3 minutes to remove residual
water, and were subsequently immersed in pre-heated DCA

(Acros Organics, 99+%) at 80° C.for 10 minutes. After being
immersed in DCAwith agitation, the substrates were baked at

90-100° C. for 10-15 minutes to remove residual DCA. The
electrical conductivities of DCA-treated PANI-PAAMPSA

films were then measured using the four-point probe tech-

nique described above. In addition, PANI-PAAMPSA films
weretreated with other solvents, such as trichloroacetic acid

(TCA) and dimethyl sulfoxide (DMSO). The results from
these four experiments are summarized below.

 

 

Conductivity Solventacidity

(S/em) (pK,)

Untreated PAN-PAAMPSA. 0.16 £0.10 —
DCA-treated PANI-PAAMPSA 72 £43 1.3
TCA-treated PANI-PAAMPSA 64 + 34 0.77
DMSO-treated PANI-PAAMPSA 0.20 £0.01 35
 

A thin-film-transistor can be made using PANI-

PAAMPSAfilms described above, and having characteristics
summarized in the following table

 

 

Electrodes Mobility (em?/V-sec) on/off current

Untreated PAN-PAAMPSA. 0.007 + 0.03 10°
DCA-treated PANI-PAAMPSA 0.07 * 0.02 10°
 

Other embodiments of the invention will be apparent to
those skilled in the art from consideration ofthe specification

and practice of the invention disclosed herein. It is intended
that the specification and examples be considered as exem-

plary only, with a true scopeandspirit of the invention being

indicated by the following claims.

Whatis claimed is:

1.A methodfor enhancing electrical conductivity ofa film,

the method comprising:
providing an untreated film comprising a conductive poly-

mer and a polymeracid, the untreated film having a first
conductivity; and

treating the untreated film by exposing the untreatedfilm to
a plasticizer reagent and heating the film to remove

excess plasticizer reagent, the treated film having a sec-

ond conductivity;
wherein the plasticizer reagent comprises an acid that is

stronger than the polymeracid, and wherein the second
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10
conductivity of the treated film is at least 100 times

greaterthanthefirst conductivity of the untreated film.

2. The methodofclaim 1, further comprising agitating the

untreated film in the plasticizer reagent.

3. The method ofclaim 1, wherein the conductive polymer

is water dispersible.

4. The method of claim 1, further comprising preheating

the plasticizer reagent to a first temperature and heating the

film to a second temperature.

5. The method of claim 4, wherein the first temperature

ranges from 80° C. to 120° C.

6. The method ofclaim 1, wherein the second temperature

is below a glass transition temperature ofthe treated film.

7. The method of claim 1, wherein the heating step is

performed for a time interval sufficient for the at least one

reagentto diffuse through the conductive polymerfilm.

8. The method of claim 7, wherein the time interval is

dependent on one or more of a thickness of the conductive

polymerfilm, a temperature oftheplasticizer reagent, and an

extent of agitation ofthe plasticizer reagent.

9. The method of claim 1, wherein the heating step is
performed for about thirty minutes.

10. The method of claim 1, wherein the heating step com-

prises placing thefilm on a heated surface.
11. The method ofclaim 1, wherein the plasticizer reagent

is chosen from dichloroacetic acid andtrichloroacetic acid.
12. The methodof claim 1, wherein the conductive poly-

mer is chosen from polyaniline and polyethylene diox-
ythiophene).

13.A method for enhancing carrier mobility ofan electrode

in an organic device, the method comprising:
providing an untreated film comprising a conductive poly-

mer and a polymeracid, the untreated film having a first
carrier mobility; and

treating the untreated film by exposing the untreatedfilm to

a plasticizer reagent and heating the film to remove
excess plasticizer reagent, the treated film having a sec-

ondcarrier mobility;
forming the electrode from the treated film, wherein the

plasticizer reagent comprises an acid that is stronger
than the polymer acid, and wherein the secondcarrier

mobility of the treated film is at least 10 times greater

thanthefirst carrier mobility of the untreated film.
14. The methodofclaim 13, wherein the plasticizer reagent

is chosen from dichloroacetic acid andtrichloroacetic acid.
15. The methodofclaim 13, wherein the conductive poly-

mer is chosen from polyaniline and poly(ethylene diox-
ythiophene).

16. The method of claim 13, wherein the deviceis a thin-

film transistor.
17. A method for enhancing the on/off current ratio of an

organic electronic device, the method comprising:
providing an untreated film comprising a conductive poly-

mer and a polymeracid, the untreated film having a first
on/off current ratio; and

treating the untreated film by exposing the untreatedfilm to

a plasticizer reagent and heating the film to remove
excess plasticizer reagent, the treated film having a sec-

ond on/off current ratio;
forming the organic electronic device incorporating the

treated film, wherein the plasticizer reagent comprises a
reagent acid that is stronger than the polymeracid, and

wherein the on/off currentratio ofthe organic electronic

device comprising the treated film is at least 100 times
greater than the on/off current ratio of an organic elec-

tronic device comprising the untreated film.



US 8,093,098 B2

11 12
18. The methodofclaim 17, wherein the reagent is chosen 20. The method ofclaim 19, wherein the organic electronic

from dichloroacetic acid andtrichloroacetic acid. device is a thin-film transistor.

19. The method of claim 18, wherein the conductive poly-

mer is chosen from polyaniline and poly(ethylene diox-
ythiophene). # Oe OR OR Ok


