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This work consists of an investigation into the properties of unknown

words in HPSG, and in particular into the phenomenon of multi-word unknown

expressions consisting of multiple unknown words in a sequence. The work

presented consists first of a study determining the relative frequency of multi-

word unknown expressions, and then a survey of the efficacy of a variety of

techniques for handling these expressions. The techniques presented consist

of modified versions of techniques from the existing unknown-word prediction

literature as well as novel techniques, and they are evaluated with a specific

concern for how they fare in the context of sentences with many unknown

words and long unknown sequences.
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Chapter 1

Introduction

The way in which unknown words are handled during the evaluation

of syntactic parsing has a large impact on just how usable the final parser

ends up being. If a parser is unable to handle, or handles incorrectly, one or

more words in the input sentence, the output could potentially end up being

entirely unintelligible or no longer useful. As a result, the topic of unknown

word handling is an important one, particularly for those who wish to run

systems on low-resource languages or in new domains from which they were

developed or trained in. Both of those tasks introduce elements which are

likely to cause novel words to appear in evaluation data., either because the

training data simply did not include the type of data now being evaluated on,

or because there simply was not enough training data overall.

Additionally, unknown word models perhaps become increasingly im-

portant when applied to ‘real-world’, online settings; where the system is con-

stantly being fed a stream of novel ‘evaluation’ data, although no actual eval-

uation is done in this context.

Although the general topic of unknown word handling has received a

substantial amount of prior work (See Section 1.2), this work will focus on a
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subset of this problem that, in comparison to the general problem, has received

a relatively small amount of attention – the parsing of sentences containing

multiple unknown words.

Sentences containing multiple unknown words come in a variety of

forms that will be distinguished throughout this work. In particular, it is im-

portant to draw a distinction between sentences containing multiple unknown

words and sentences containing sequences of unknown words. When I refer to

sequences of unknown words, I am referring specifically to the situation where

multiple unknown words occur immediately adjacent to each other. However,

it is also possible for sentences, particularly longer sentences, to contain a

large number of unknown words and not contain any unknown sequences. I

also consider these highly degraded sentences with many unknowns, as they

many also pose an issue for previously investigated unknown word handlers.

This study is intended to make two main contributions. I will first

present the results of a corpus study calculating basic statistics regarding the

prevalence of unknown word sequences. This will attempt to be as unbiased

as possible in the sense that I make use of a corpus that was not used in

the development of the Head-driven Phrase Structure Grammar (HPSG) [26]

being used in this work. This is intended to give an accurate sense of how

common unknown word sequences might be in a real-world setting making

use of highly lexicalized grammar such as HPSG or Combinatory Categorial

Grammar (CCG) [27].

Additionally, I present the evaluation of two types of unknown word
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handlers (described in Chapter 3) that have been modified with the goal of

working specifically on unknown word sequences. These are evaluated on three

separate metrics in order to determine which major class of handlers could be

best for dealing with long unknown sequences. This is the main evaluation

task that I focus on, where the task is predicting the HPSG lexical type for

unknown words in the corpus, which allow the parser to make correct decisions

about the unknown words even though they have not been previously seen.

1.1 HPSG Parsing

In this section, I present an overview of the current state of the art

for various aspects of HPSG parsing. HPSG is a highly lexicalized grammar

formalism in the sense that the lexical entries for the grammar include a wide

variety of information about different features of a lexical item, for instance

gender of nouns, subcategorization frames for verbs, etc. An example of a

basic HPSG-style lexical entry for a simple pronoun is in Figure 1.



word

phon
〈

‘it’
〉

synsym



synsym

cat
[
head noun

]

cont


ref-index

pers 3rd

num sing.

gend neut.






Figure 1: Example HPSG Lexical Entry
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HPSG is the parsing framework which I use to evaluate the different

unknown word handlers, but it is important to note that the techniques used

here are not specific to HPSG and could be used in any lexically rich syntactic

framework.

1.1.1 ERG/Redwoods

For performing the actual parsing work needed by this project, I make

use of the PET Parser [6] and the English Resource Grammar (ERG) [12].

The ERG is a wide-coverage HPSG grammar for English, and was chosen

specifically because of this large coverage. The PET Parser is a development

of the LKB Grammar Development Environment, which on its own serves as

a grammar engineering setup; the PET Parser is perhaps best viewed as a

batch-processing setup on top of the LKB. The ERG is considered to be the

state of the art for HPSG parsing in English and has a long history of use in

many HPSG-based parsing tasks.

From the ERG, a corpus known as Redwoods was created. This corpus

is built directly from the predictions that the ERG makes for the sentences

contained in the corpus. The ERG provides all possible parses for a given

sentence in the corpus, and then a human annotator manually confirms that

the top-ranked parse matches with what the true parse should be. In this way,

Redwoods is unique in that it provides a dynamic treebank; the analysis of

sentences in the corpus is allowed to evolve over time as the ERG is developed

as well.
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The success of the Redwoods corpus has led to the development of

similarly structured corpora for both other languages and other domains of

English. One of these is Wikiwoods, a Redwoods-style corpus of HPSG anno-

tations for the English version of Wikipedia [17]. This is the corpus that I use

for this project, and a more detailed discussion of the reasons for its selection

may be found in Chapter 2.

1.1.2 Corpus Conversion

An alternative to the ERG/Redwoods approach is that of Miyao et al.

[23], who opt to learn HPSG grammars from converted versions of standard

Context-Free Grammar (CFG) corpora. In this approach, the Penn Treebank

[21] is converted into an HPSG-based corpus, from which a grammar is in-

duced. One major difference of this method of treebanking as opposed to the

Redwoods method is that the resulting HPSG corpus is static due to the static

nature of the original Penn Treebank. This means that the corpus suffers from

many of the problems Redwoods was intended to solve, most notably the lack

of the ability to adapt the analysis as the grammar develops.

Corpus conversion does have a major benefit over the Redwoods style of

Treebanking when it comes to beginning development of an HPSG grammar.

The method of Miyao et al. [23] allows an HPSG grammar to be induced

effectively from no annotated HPSG trees. This perhaps makes it more suited

for initial creation of grammars, rather than the continuing development of

those grammars.
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1.1.3 Deep Semantics

One of the major benefits to parsing with a lexically-rich framework

such as HPSG is the ability to more easily parse semantics simultaneously

with the syntax. Today, most state of the art HPSG parsing that includes se-

mantic analysis makes use of Minimal Recursion Semantics (MRS) [11]. MRS

is a very useful representation which factors semantics into elementary predi-

cations, and also crucially allows for underspecification of scope ambiguities.

An example of an MRS representation of the sentence “Every dog chases some

white cat” is shown in Figure 2, and is taken from Copestake et al. (2005)

some(y,white(y) ∧ cat(y), every(x, dog(x), chase(x, y)))

Figure 2: Example MRS Representation

While MRS is not specifically HPSG-based, it is most widely used by

HPSG parsers. A variant of MRS called Robust Minimal Recursion Semantics

(RMRS) [10] is also used, and due to its ability to underspecify relational infor-

mation in addition to scope, RMRS is able to be used in shallower techniques

like part-of-speech tagging or noun phrase chunking.

In this project, I evaluate HPSG parses in terms of their MRS repre-

sentations. This choice was made so as to privilege the semantics, rather than

the syntax, since many times the choice to use HPSG is motivated by a desire

to include deep semantics in the parse. See Section 4.3 for further discussion

of the MRS evaluation setup.
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1.1.4 Supertagging

The task that I will be adopting for this work is primarily that of

predicting lexical types for words that the grammar has not seen previously.

In this case, a lexical type is an abbreviated version of the lexical entry for

an HPSG lexical item. For instance, a typical noun may have the lexical type

‘n - c-pl le’ – indicating that it is a countable, plural noun such as ‘cattle’.

This task is commonly known as supertagging, after Bangalore and Joshi [2].

Supertagging is essentially identical to the more well-known task of

part-of-speech tagging, but supertags of any variety (HPSG, CCG, etc.) are

much more detailed and numerous than part-of-speech tags, which makes su-

pertagging a much harder task in general. Bangalore and Joshi initially worked

with Tree-Adjoining Grammars, although others have extended the idea to

other lexically rich frameworks like HPSG and CCG [8][30][1].

A variety of approaches to supertagging exist in the literature, and

for the work at hand (predicting HPSG types for unknown words) I will be

using a method described by Blunsom [5] for supertagging for Deep Lexical

Acquisition using a Conditional Random Field (CRF) classifier [19]. This

method has the advantage of being able to take arbitrary features from the

input sequence, making it highly adaptable. See Section 3.1 for details on the

features chosen for the present work.
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1.2 Previous Work on Unknown Words

As a basic component of HPSG parsing, the topic of unknown-word

prediction has been previously tackled by a large number of authors, who

have formulated a variety of different solutions to the problem. The majority

of approaches found in previous work can be classified into one of two major

areas: either direct sequence-based classifiers, or some kind of generic-type

instantiation.

1.2.1 Direct Sequence-Based Classifiers

Direct sequence-based classifiers are likely the most common unknown-

word prediction solution of the last few years. Solutions of this variety predict

the type for an unknown word by extracting features from the surrounding

context and building a model to predict the most likely type for the unknown

word. Usually this prediction takes the form of a Maximum-Entropy (MaxEnt)

model, with the extracted features as inputs. Zhang et al. lay out the basic

form of this type of classifier in the context of unknown-word prediction, as

well as some of the more common features that are used [31]. The features

themselves vary between authors, but often include the types of surrounding

words, morphological features of the unknown word or surrounding words [7],

or syntactic features derived from partial parsing of the sentence in question

[31]. For example, consider the sentence shown in Figure 3: ‘the dogs bark’.

The HPSG types for the first two words are listed below the lexical item,

but the third type is being considered unknown. Under the direct, sequence
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classification approach, features from the surrounding types and lexical items

are used to make a best prediction for the unknown type. These features

(here in abstract) are represented by the arrows in the figure, showing that

the model uses features from them to infer a type for the unknown word. For

more details about the exact lexical features used in this current work, see

Section 3.1.

Figure 3: Direct unknown type prediction model

1.2.2 Classifiers with Generics

The generic type instantiation techniques make use of a mapping be-

tween more classic Part-of-Speech (POS) Tags, and the more rich set of HPSG

types. These approaches essentially bypass the difficult task of actually pre-

dicting HPSG types, and instead transform the sequence into POS tags. As

POS-tagging is a problem for which high-precision solutions exist, and for

which such solutions can be constructed quite rapidly even for previously un-

worked languages [18], this task is typically much easier than straight HPSG

type prediction. Once the POS tags for the sequence are found, the mapping

from POS tags to HPSG types is relatively straightforward, with individual

POS tags mapping onto underspecified, generic versions of HPSG types. Al-
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ternatively, some versions of this technique have the mapping of POS tag to

HPSG type map not to a generic version of an HPSG type, but rather some

particular fully specified HPSG type – usually the most common HPSG type

for a particular POS tag. This is the model I adopt for this work, particularly

because it makes the comparison of type accuracy results more meaningful;

there are no gold generic types, so any unknown word handler using generic

types has no real way of calculating type accuracy.

Figure 4: Indirect unknown type prediction model

An example of this type of model is shown in Figure 4, where the same

sentence is being considered as in Figure 3. Notice that here, first the POS

tags for all the lexical items are determined, leading to the third line in the

figure. This process relies primarily on the lexical item itself, rather than the

HPSG types, which make it possible to run on words for which the HPSG type

is still unknown. Once the POS tag for the unknown word is determined, a

final mapping from the POS tag to HPSG type is made – this is shown by the

arrow from the third line to the second. As shown, this method allows us to

bypass the HPSG types as much as possible in favor of the radically simpler

POS tags.

10



1.2.3 Lexical Acquisition Approaches

A third area of unknown-word prediction found in previous work is

automated Lexical Acquisition. While all forms of unknown-word prediction

can, in some sense, be thought of as lexical acquisition, this class of techniques

aims to perform this learning by modeling the human lexical acquisition pro-

cess to greater or lesser degrees. For instance, Barg describes a system which

can gradually learn more specific representations for a given unknown lexical

item by considering the full range of contexts in which that unknown word

occurs [3]. The system learns all the information it can from a particular con-

text, and makes use of other contexts to fill in additional information or refine

existing information.

For instance, a verb may be used intransitively in one context, and

later could also be used transitively; the system would update the lexical en-

try for this verb to reflect the fact that it may optionally take an object. As

an unknown word handler, lexical acquisition based models have become less

popular in recent years, perhaps due to the rise of simpler, more straight-

forward statistical methods such as Maximum-Entropy models that perform

just as well, if not better, while also being less dependent on the frequency of

the unknown word itself. Lexical acquisition techniques are dependent on the

actual unknown word being relatively common. This makes them useful for

things like grammar learning, where one might expect common words to still

be unknown, but in most applications of unknown word handling the unknown

words are low-frequency items.
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Chapter 2

Datasets

For this project, multiple data sources were used, corresponding to the

multiple aims of the project. Because a major concern of this work was de-

termining the frequency of contiguous unknown word sequences and sentences

containing multiple unknown words in general, it was determined that a data

source not directly involved in the development of the grammar being used for

parsing should be considered. As a result, the Penn Treebank (PTB) [21] was

selected as the primary corpus used for collecting these corpus statistics. The

PTB was not explicitly used during the development of the HPSG grammar

used in this project – the English Resource Grammar (ERG)[12]. By selecting

a corpus that the grammar was not specifically developed against, we are able

to collect more relevant statistics that are more likely to match the statistics

we would find if using this system in a real-world context against a potentially

live data stream that would be constantly generating novel data.

In particular, the Wall-Street Journal (WSJ) [21] section of the PTB

was used for collecting the corpus statistics. The fact that this data is biased in

the sense that it is all from a single source with a single dominant genre (namely

financial news) was considered, particularly with regard to the proliferation of
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proper names. Section 2.1 contains the details on how the analysis took these

particular biases into consideration during the corpus study.

However, as the PTB is not annotated for HPSG types and trees, eval-

uating the accuracy of the parser on that corpus is impossible; an additional

corpus was needed for the analysis of the benefits of the various unknown-word

prediction methods. There are a limited number of HPSG corpora available,

with perhaps the most common being Redwoods [25]. However, once again,

being a de-facto standard for HPSG evaluation was not ideal because the

grammar has been developed against this corpus. While the grammar could

be altered to introduce more unknowns, in essence simulating an earlier state

of development by removing random lexical entries, this was considered a poor

alternative. If at all possible, a corpus with more naturally occurring unknowns

would be preferred over one with entirely artificially constructed unknowns.

For this reason, the WikiWoods corpus [17] was chosen as the corpus for evalu-

ation. WikiWoods is a similar corpus to Redwoods, but is newer and has been

developed less than Redwoods. As a result, WikiWoods is likely to be closer

to the ideal of having never seen the corpus before that would more accurately

simulate a real-word use case of this grammar. That is to say, WikiWoods

has more naturally occurring unknown words than Redwoods, which makes

for more representative data even though eventually synthetic unknowns will

need to be introduced in the course of experimentation.

An alternative to picking a corpus already annotated for HPSG would

be to utilize a conversion process on a differently annotated treebank. Miyao

13



Corpus Sentences Word Types Word Tokens
Wall-Street Journal 47k 50k 1253k

WikiWoods 54723k 1954k 769535k

Table 1: Raw count data for corpora

et al. [23] describe a conversion process for transforming the WSJ into an

HPSG annotated treebank. This type of conversion could potentially allow

HPSG grammar development to take place much earlier in a languages an-

notation effort. For instance, if a more standard treebank had already been

developed, this conversion could provide a method of jump-starting HPSG

grammar building. However, for languages that lack any substantial treebank

this method provides little help. These languages would benefit much more

from a jump-start that doesn’t rely on heavy statistical inference, perhaps

making use of linguistic universals to inform the early stages of grammar en-

gineering instead. This is the goal of an alternative approach to grammar

engineering that has been developed by Bender et al. called the Linguistic

Grammars Online (LinGO) Grammar Matrix [4]. Because the goal of this

project is not inducing or building grammars, but rather simply exploring

the properties of unknown words in existing grammars, neither the treebank

conversion nor the LinGO Matrix was used during this project.

The version of WikiWoods used in this project was Version 12121, dated

October 23, 2013. This version of the corpus contains roughly 1.3 million

Wikipedia articles annotated for HPSG types. See Table 1 for details on the

1Available at http://moin.delph-in.net/WikiWoods
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exact sizes of the two corpora.

The training of the parser for the determination of parse accuracy was

done on a 70/15/15 percentage split of the WikiWoods corpus, making use of a

development set during the course of the project, and with the final evaluation

numbers reported in this paper being obtained from a completely held out test

set.

The type accuracy of the individual unknown word handling strategies

was evaluated on the type sequences extracted from the WikiWoods corpus,

for precisely the same reasons as above, and was also subject to a 70/15/15

percentage-based split into training, development, and test sets.

2.1 Corpus Statistics

In order to determine the prevalence of unknown word sequences of

varying lengths, a study was conducted on the Penn Treebank Wall Street

Journal (WSJ) corpus, as described above. To accomplish this, the PET

parser [6] using the ERG grammar [12] was run on the raw text version of the

corpus, with no unknown word handling enabled. This mode thus represents

the baseline coverage of the ERG grammar, and was intended to determine

how common it is to encounter both sequences of multiple unknown words,

and sentences containing multiple unknown words in general.

As the data in Figure 5 show, the occurrence of unknown words in the

WSJ data was very frequent. In fact, over the entire corpus, a total of 67.5%
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of sentences contained at least one unknown word. This result is an excellent

demonstration of the fact that unknown word handling is a vital part of any

parser that hopes to handle a wide variety of sentences. The WSJ data is

presumably somewhat (intentionally for the purposes of this study) out-of-

domain for the ERG grammar, as most of its development was likely done

in contexts where the evaluation of progress was made on corpora featuring

existing HPSG annotations. This out-of-domain effect is likely to blame for the

rather high percentage of sentences containing unknown words. Additionally,

the specific genre of the WSJ (namely, financial news) may be playing a role,

as named entities such as people or business names may be somewhat inflating

these numbers.

Figure 5: Percentage of sentences in WSJ with a given number of unknown
words.
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N 0 1 2 3 4 5 6

Sentences with N Unknowns 15213 15494 8238 4629 2289 931 285

Table 2: Absolute counts of sentences in WSJ with a given number of unknown
words.

Notice also in Figure 5 that there are still a significant number of sen-

tences that contain up to perhaps four unknown words. After this, the numbers

start to tail off rapidly; absolute numbers are available in Table 2. In total,

the percentage of sentences containing more than one unknown word is 34.4%.

This is essentially equivalent to the percentages of sentences containing both

zero unknowns (32.5%) and one unknown (33.1%). The existence of these sen-

tences featuring multiple unknowns implies that the possibility for sequences

of consecutive unknown words, at least of a few words long, should be quite

substantial. Indeed, this is what we find in the WSJ data; consider the results

in Table 3 below.

Longest Unknown Sequence Percentage of Sentences
No Unknowns 32.5

Single Unknown 55.3
Double Unknown 10.2
Triple Unknown 1.9

Quadruple Unknown 0.1
Double or More Unknown 12.2

Single or No Unknown 87.8

Table 3: Unknown sequence lengths in WSJ.

The data in Table 3 shows the existence of sequences containing up to

four consecutive unknown words, with a total of 12.2% of sentences containing

an unknown sequence with a length greater than one. This is perhaps more
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than we might expect, given the number of sentences containing two or more

unknown words.

With 34.4% of sentences containing at least two unknowns (Figure 5)

and 12.2% of sentences containing a sequence of two or more unknowns, this

means that 35.6% of sentences containing two or more unknown words contain

a sequence of two or more unknowns. With the average sentence length of the

WSJ section of the Penn Treebank around 23 words, it seems likely that there

is some effect driving the occurrence of unknown sequences other than pure

chance. For instance, perhaps multiword expressions where multiple portions

of the expression are all unknown; proper names would be a likely candidate

for this type of error, with both first and last names.

Unfortunately, examination of these sequences showed very few consis-

tent patterns. For instance, no single sequence of two unknowns occurred more

than three times, making analysis of ‘common’ unknown sequences impossible

at this time. Some of the sequences that did occur were things like ‘grassroots

newsprint’ and ‘the Keenan affidavit’. Obviously there are some proper names

that do occur, and acronyms also seemed to be troublesome, but there was

little indication of systemic failures. Perhaps evaluating on a larger corpus,

to allow for more instances of natural unknown sequences, could reveal more

significant patterning.

The data above demonstrate just how significant a problem the issue

of unknown words and unknown word sequences can be, particularly when

switching domains or corpora. The problems inherent in switching corpora

18



between training and testing are well-known and previously described in the

literature of domain-adaptation. Relevant to this study are prior results show-

ing that unknown words are one of the most challenging issues in this domain-

shift. For instance, Daumé III and Jagarlamudi found that unknown words

accounted for the majority of the errors (roughly 50%) they encountered when

changing domains in a machine translation task [13]. Perhaps the most in-

teresting result from their analysis was the very common words that failed to

occur in their source corpus of European Parliament proceedings; words like

‘behavior’, ‘favorite’, and ‘boring’. While it is certainly possible to imagine

reasons why these words fail to occur (alternative spellings, for instance), it

shows that words need not be rare in the general language to be unknown in

certain domains or contexts.

McClosky et al., in developing a model to predict syntactic parser per-

formance on a particular corpus, found that the number of unknown words in

the corpus was one of the most useful features [22] for predicting the difficulty

of that corpus. Of course there are other issues at work in these studies of

domain adaptation that are unrelated to the unknown words (register, fluency,

sentence lengths/complexities, etc.) but it seems clear that the design of any

system that will be encountering unknown words on a frequent basis should

heavily prioritize the handling of those unknowns.
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Chapter 3

Experiments

Having established the existence of sequential unknowns, and the rela-

tive prevalence of sentences with multiple unknowns in general, the question

of how best to handle these obstacles to parsing could rightly be raised. Much

of the previous literature on unknown-word handling evaluates either on con-

structed corpora featuring a single unknown word per sentence, or are unclear

about the extent of the unknowns handled in their evaluation set. Refer back

to Section 1.2 for details of this previous work.

Accordingly, this work sets out to evaluate unknown-word handlers

with a particular focus on their performance during the parsing of both se-

quential unknowns and sentences featuring multiple unknowns. To do this,

the Wikiwoods corpus (See Chapter 2 for details) was used due to the fact

that it already contains the required HPSG type annotations; this allowed for

easy evaluation. However, because the Wikiwoods corpus was used during

the development of the ERG grammar being used here, the occurrence of un-

known words is far too low. Additionally, the unknown words that are present

are likely to be non-representative of the types and distributions of unknown

words in a neutral, previously unseen corpus like the WSJ.

20



To better simulate the conditions found in the neutral WSJ corpus,

the following procedure was followed to modify the WikiWoods corpus: First,

all the sentences with true unknown words were removed, leaving a corpus

that was able to be fully parsed by the PET parser with no active unknown

word handling; this did not significantly reduce the size of the corpus. Next,

random words were selected for being marked as ‘unknown’. This was done in

a weighted fashion, by type; this means that the more uncommon words were

more likely to be marked as unknown than common words. The unknown

word selection process was run several times in an effort to match the basic

statistics of the unmodified WSJ Corpus. These basic statistics are shown

in Table 4, in comparison with the statistics for the unmodified WSJ corpus

found in Chapter 2.1.

Longest Unknown Sequence Modified WikiWoods WSJ
No Unknowns 32.3 32.5

Single Unknown 55.4 55.3
Double Unknown 11.1 10.2
Triple Unknown 1.0 1.9

Quadruple Unknown 0.2 0.1

Table 4: Unknown Sequence Length Comparison

As seen in Table 4, the modified Wikiwoods corpus matches the ba-

sic statistics of the neutral WSJ corpus quite well, although there are some

discrepancies in the percentage of double and triple unknowns. The fact that

Wikiwoods is many times larger than the WSJ means that even with slightly

lower percentages, the total number of sentences with double and triple un-

knowns is still quite high. Accordingly, there will still be ample opportunity to
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evaluate the performance of the various unknown-word handlers on sequential

unknown data. Table 5 shows the same comparison, although in terms of un-

knowns per sentence rather than the length of the unknown sequence. Again,

the two corpora show a relatively high amount of similarity.

N Modified WikiWoods WSJ
0 32.3 32.5
1 34.0 33.1
2 16.8 17.3
3 10.1 9.5
4 5.7 5.2
5 0.9 1.1

Table 5: Percent of Sentences with N Unknowns – Cross-Corpus Comparison

This modified WikiWoods corpus is used as the input for the evaluation

of two separate unknown-word handlers. Both of these techniques are modifi-

cations of techniques previously explored in the literature, but I use them here

(in slightly modified forms) with the intent to evaluate their performance on

unknown sequences.

3.1 One-Sided Classification Model – CRF

The first unknown word handler I evaluate is essentially a restricted

version of a typical sequence classification model. Previous versions of di-

rect HPSG type sequence prediction typically make use of features from a

fairly wide context; that is, they use features from words on both sides of

the unknown word in question, and in general features from anywhere in the

sentence. These include features such as those syntactic features derived from
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partial parsing results, which depend on being able to parse the rest (or at

least a large portion) of the sentence. This is the Conditional Random Field

classifier described in Section 1.1, used by Blunsom for doing supertagging in

the Deep Lexical Acquisition task [5].

The type sequence classifier created for this work makes use of features

that are derived entirely from words on the left-hand side of the unknown word

in question. In particular, the two words immediately preceding the unknown

word are potential sources of features, which are summarized in Table 6. The

benefit of such a restriction is that this classifier can in effect be moved from

left to right over a sentence, and no matter how degraded the sentence was

originally, all of the classifications will be done with all of the features available.

Although at the start an unknown word may have another unknown to its left,

potentially limiting the available features, this sliding method ensures that the

unknowns fill in left to right, making those originally unknown types known

by the time they are needed.

While this restriction on the directionality of features almost certainly

does reduce performance slightly, and is primarily an artificial limitation, sim-

ilar real-world tasks and situations do exist in real-time streaming processing

type systems. In these instances, the end of the sentence being processed is

still unknown or uncertain, and so reasoning using only features from the pre-

ceding words is both useful and required in many circumstances. For instance,

Lison and Kruijff describe just such a system for speech processing in a CCG

framework during human-robot interaction [20], where predictions about the
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Classification Features Example
Lexical Word cancel
HPSG Type v np* le

POS Tag V
Subcategorization Frame np*

Table 6: Classification Model Features

word currently being processed relies only on those features from prior words

in the sentence.

Additionally, this may be especially useful in the context of sequential

unknowns. For instance, in a sequence of three unknowns, the classifier first

considers the left-most unknown, for which all of the features are known (from

the two known types to the left). Next, the classifier moves to the second

unknown in the sequence, for which all of the features are now known (from

the known type two to the left, and the predicted type immediately preced-

ing). Finally, the third unknown is predicted using the features from both of

the predicted types to its left. For unknown words at the beginning of a sen-

tence, dummy type-values signaling the beginning of a sentence are inserted

as preceding material.

The features extracted from the preceding words are used as the input

to a Conditional Random Field (CRF) classifier, which produces a prediction

for the type of the unknown word under consideration[19].
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3.2 Alternative Sequence Modeling

This unknown word handling strategy is very similar to the commonly

used approach involving ‘generic’ lexical entries. Under these types of handlers,

a mapping is established between part-of-speech tags and specially created

HPSG types which is are generic as possible for an entry of that part-of-speech.

For instance, if a given unknown word is found to have a Noun part-of-speech, a

generic lexical entry for ‘noun-ness’ is selected as the HPSG type for that word.

I refer to this type of approach as an alternative sequence model because the

heavy lifting is done in an entirely separate domain (parts-of-speech) from the

target (HPSG types), while the transformation from part-of-speech to HPSG

type is trivial once established.

However, the instantiation of an alternative sequence model used here

differs from the generic strategy in an important way. The alternative sequence

model used in this work selects the most common HPSG type for a given POS

tag rather than selecting a specially created generic entry. This approach has

been used before, although usually the mapping from POS to HPSG tag is

specified by hand since the set of POS tags is small enough to allow for this

[31].

The mapping of POS tag to the most common HPSG type for that POS

tag was created by POS tagging the training section of the Wikiwoods corpus

and considering the HPSG types that occurred most commonly for a given

POS tag. For instance, the POS tag ‘NNS’ occurred most frequently with

the HPSG type ‘n - c le’, corresponding to a countable noun. Other possible
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HPSG types that occur with ‘NNS’ include things like ‘n - m le’, which denotes

a mass noun.

This change was intended to potentially increase the overall parse ac-

curacy of the trees built on the predicted types, as generics sometimes suffer

from issues related to parse accuracy. Additionally, evaluating type accuracy

(percentage of unknown types correctly predicted) is essentially meaningless

in a generic setup, because no gold HPSG type is annotated with a generic

entry. Using the ‘most common’ rather than the generic allows for somewhat

meaningful comparison with the other unknown word handlers in the context

of type accuracy.

I use the Stanford POS tagger of Toutanova et al. [28] to provide the

POS tags for the input sentences, making use of the provided model for English

rather than re-training.
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Chapter 4

Results

This section contains the results of the experiments conducted on the

two constructed unknown word handlers described in Chapter 3. The han-

dlers were evaluated under three separate metrics, designed to determine their

suitability for handling data featuring large numbers of unknown words and

potentially lengthy unknown sequences. These metrics included coverage, type

accuracy, and parse accuracy; each will be addressed individually.

4.1 Parse Coverage

As can be seen clearly in Table 7, both methods are quite successful in

terms of overall coverage for parsing, where coverage is defined at the sentence

level. To be considered in the coverage, the PET parser must produce at least

one parse tree for that sentence. Recall that the modified Wikiwoods corpus

was pruned prior to inducing the artificial unknowns such that every sentence

was originally parsable by the ERG grammar; thus, the theoretical maximum

for the coverage percentage is 100%, since the grammar is guaranteed to con-

tain the higher level rules need to combine the true types. In other words, the

failure of the parser to produce a tree can be attributed to the newly tagged
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Unknown Word Handler Coverage (at least one valid parse)
None 34.9

One-Sided CRF 91.3
Alternative Sequence 93.9

Table 7: Sentence Coverage Statistics – Modified Wikiwoods Corpus

unknown words rather than some other part of the parser. Note that the base-

line is really simply a measure of the percentage of sentences containing no

unknowns, as described in previous Chapters, rather than an actual tagging

technique.

Since both of the unknown word handlers never fail to produce some

HPSG type for every unknown word presented to them, their failure to reach

100% is indicative of their failure to produce some type that allows at least

one analysis of the parse tree to be produced. There is no guarantee (and it

is in fact often not the case) that the parse produced is the correct one, but

even in these cases it is often the case that the grammar is able to find some

interpretation for the sentence. See Section 4.3 for a discussion of the parse

accuracy, which seeks to specifically measure this.

The fact that the alternative sequence model outperforms the one-sided

CRF may be demonstrating, at least in part, the ability of the alternative

sequence model to handle longer unknown sequences and the fact that it con-

sistently produces very common types. The one-sided CRF has the potential

to produce rare types, whereas the alternative sequence model is limited to

the most common type for each POS tag; the grammar is more likely to be

able to produce some interpretation for a common type (even the wrong one)
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Unknown Word Handler 1st Position 2nd Position 3rd Position
One-Sided CRF 41.6 34.3 11.8

Alternative Sequence 21.0 20.6 20.6

Table 8: Type Accuracy

than a rare, specialized type.

4.2 HPSG Type Accuracy

HPSG type accuracy was determined by calculating the percentage of

the induced unknown HPSG types that the two unknown word handlers were

able to accurately reproduce. Note that this was over the full ERG type

dictionary, which contains 1100 types, and not any reduced type set. In

Table 8, the ‘positions’ indicate the position in an unknown word sequence,

and these percentages are calculated over just the unknown words rather than

all of the tokens. For instance, 34.3% of unknown words in the 2nd position

of an unknown word sequence had their types correctly predicted. The results

in Table 8 show several important facts.

First, in general the alternative sequence model performs worse than

the one-sided CRF, and neither perform amazingly well. However, the perfor-

mance of the CRF is in line with previous results for type accuracy on the full

type set using a sequence classifier [14][5]; other previous work limits the type

set in various ways, which make them poor comparisons.

One interesting result is the sharp falloff of the CRF accuracies on

longer unknown sequences. This can likely be attributed to the fact that
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at the end of longer sequences (3rd position), the classifier is totally relying

on features extracted from previously predicted types. Basing predictions

on predictions is rarely a successful strategy, and this is further evidence of

that. It seems likely that a CRF making use of additional features, perhaps

a bi-direction model using features from both sides of an unknown word for

instance, may do slightly better.

On the other hand, the alternative sequence model suffers essentially no

degradation over the longer spans, although it is never that great to begin with.

Both of these effects can be predicted from the fact that the determination of

the HPSG type in this model is essentially a local operation, dependent only

on the predicted POS tag for that word. With the prediction of POS tags

for English a very high precision operation, we are almost always assured an

accurate POS tag, from which to map into an HPSG type; it is not dependent

on previous HPSG type predictions for prior words.

The fact that the alternative sequence model eventually overtakes the

one-sided CRF is particularly interesting, and may mean that the determina-

tion of which type of unknown word handling to use could be dependent on

the corpus being used and the type of data expected to appear. Alternatively,

it may be the case that both methods or some combination of them could

be used to take advantage of their relative strengths at the appropriate times

through the use of an ensemble type classifier.
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4.3 Parse Accuracy

The evaluation of the final parses associated with HPSG trees is slightly

complicated by the question of whether to evaluate the syntax or the semantics

primarily. Here, I follow the precedent set by Dridan and Oepen [16] by

using the metric of Elementary Dependency Matching (EDM). This metric

is essentially equivalent to the PARSEVAL metric, except it is defined over

the Minimal Recursion Semantics (MRS) [11] representation of the semantics

of the sentence rather than the constituents of a syntactic tree. As with

PARSEVAL, a perfect match scores a 100.0.

These metrics operate by breaking down the gold standard parse into

small, self-contained units. Then, the scoring metric is simply defined as the

percentage of these smaller units which the system output correctly predicts.

In the case of PARSEVAL, each node of a syntactic parse tree covers a certain

set of words from the sentence, and these nodes serve as the small units. A

system output tree that also contains a node with the same constituent words

will score as a match. In the case of EDM, the small units are elementary

pieces of semantic structure, for instance if the sentence contains ‘she’, one

piece of elementary semantics will be the property that ‘she’ has a gend

(gender) feature of f.

As described previously, the actual parsing was done with the PET

parser [6]. In the cases where multiple possible parses for a given input sentence

were returned, the top ranked parse as determined by PET was chosen as the

representative parse.

31



Unknown Word Handler 1-2 UNK 3-4 UNK 5+ UNK Overall
One-Sided CRF 81.5 78.2 72.1 78.5

Alternative Sequence 79.1 76.1 73.1 77.3

Table 9: Parse Accuracy

The data in Table 9 shows parse accuracies that are slightly below that

of previous work, although this is probably to be expected given that the

predicted types themselves were slightly less accurate. Note that the table

here is showing accuracies over varying total numbers of unknown words in

a sentence, and not sequences. This choice was made to avoid the fact that

simply selecting sentences with a double unknown sequence doesn’t control for

the total number of unknown words in the sentence. Since parse accuracy is a

whole-sentence metric, controlling for the total number of unknowns is more

appropriate. Also note that although there were a relatively small percentage

of sentences in the 5+ category, the massive scale of the Wikiwoods corpus

means that there are still almost one million sentences in that category.

As in the type accuracy numbers, the alternative sequence model even-

tually overtakes the one-sided CRF as the number of unknowns increases.

Unlike the type accuracy numbers however, there is not as sharp of a falloff,

although it is clear that the one-sided CRF begins to struggle on more highly

degraded sentences.
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Chapter 5

Conclusion

The primary goals of this work were to answer a number of questions

related to the prediction of detailed syntactic types for unknown words, and

the behavior of unknown words in general, in HPSG and other lexically rich

syntactic representations.

It was determined that, in a neutral corpus for which the grammar being

used was not specifically developed against, over 12% of sentences contain

sequences of two or more unknown words, and many sentences were found

to contain a high number of unknowns. However, the percentage of sentences

containing an unknown sequence is perhaps higher than would be predicted by

random chance, given the statistics related to the total number of unknown

words in a sentence. Thus, it seems likely that there is some other factor

making it more likely for unknown words to occur in pairs or triples. On

inspection, it is not immediately apparent that these sequences fall into one

particular category such as proper names. Together, these facts suggest that

evaluation of unknown word handling should explicitly deal with such highly

degraded sentences and that evaluation setups featuring sentences with just a

single unknown may not be accurately modelling the situations encountered
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by parsers in real-world environments.

With a substantial portion of sentences containing either sequences of

unknowns or a large total number of unknowns, the question of what type of

unknown word handler performs best on the these highly degraded sentences

was investigated. Two strategies were considered that were intended to be

representative of the two major classes of unknown word handlers previously

proposed in the literature; these strategies included a direct sequence classifier

in the form of a CRF that used features from only one side of the unknown

word, along with an alternative sequence model that was intended to mimic

the behavior of generic lexical entries.

It was determined that, in general, the direct sequence classifier using

a CRF achieved higher scores in both type and parse accuracy, while the alter-

native sequence model achieved slightly higher coverage. The performance of

the direct sequence classifier fell off sharply in the context of longer unknown

sequences, while the alternative sequence model was able to provide consis-

tent (though slightly lower performance) results even in these long unknown

sequences.

With the results being variable on the total number of unknowns and

unknown sequences, it seems plausible that a setup might make use of both

strategies; the direct one-sided CRF for isolated unknowns, or unknowns in

shorter sequences, and the alternative sequence model for unknowns in longer

sequences. Alternatively, an examination of the corpus or an analysis of the

type of data the parser expects to encounter should drive the selection of
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unknown word handler.
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