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Abstract 

 

Fracture Spatial Arrangement in Tight Gas Sandstone and  

Shale Reservoir Rocks 

 

John Zihong Li, M.S. Geo. Sci. 

The University of Texas at Austin, 2017 

 

Supervisor:  Stephen E. Laubach 

Co-Supervisor:  Julia F. W. Gale 

 

A new statistical analytical method was applied to quantify the spatial arrangement 

of fractures in sandstones and shales. Results show that spatial arrangements of fractures 

in the subsurface have a wide range of patterns and that fracture clusters are prevalent. The 

Upper Cretaceous Frontier Formation is a naturally fractured gas-producing sandstone in 

Wyoming. East-west-striking regional fractures sampled using image logs and cores from 

three horizontal wells exhibit clustered patterns, whereas data collected from outcrop have 

patterns that are indistinguishable from random. Image log data analyzed with the 

correlation count method shows clusters ~35 m wide and spaced ~ 50 to 90 m apart as well 

as clusters up to 12 m wide with periodic inter-cluster spacings. A hierarchy of cluster sizes 

exists; arrangement within clusters is likely fractal. Regionally, random and statistically 

more clustered than random patterns exist in the same upper to lower shoreface 

depositional facies. These rocks have markedly different structural and burial histories, so 

regional differences in degree of clustering are unsurprising. Application to shale reservoirs 
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further link fracture clusters and spatial arrangements with reservoir mechanical 

stratigraphy: Vaca Muerta Formation shale shows strong control of fracture cluster locality 

by reservoir mechanical properties; Middle Devonian shales in the Horn River Basin 

identify spatial arrangement and cluster dimensions associated with preferred wellbore 

intervals; Marcellus Formation shale shows spatial arrangement controlled by mechanical 

bed thickness. Our results show that quantifying and identifying patterns as statistically 

more or less clustered than random delineate differences in fracture patterns that are not 

otherwise apparent but that may influence petroleum and water production, and therefore 

may be economically important. 
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SECTION I: OVERVIEW 

Chapter 1: Fracture Spatial Arrangement 

Natural opening-mode fractures are widespread in unconventional reservoirs. In 

tight gas sandstones, differences in fracture attributes profoundly influence fluid flow and 

associated gas and water producibility (Laubach, 2003; Cumella and Scheevel, 2008; Olson 

et al., 2009; Solano et al., 2011). Fractures are also widespread in shales (Gale et al., 2014). 

Yet obtaining representative subsurface data on opening-mode fractures by sampling is 

extremely challenging, and serious inherent limitations of sampling diffuse fracture arrays 

lead to data that are commonly biased and incomplete. In particular, although vertical 

fractures may have lengths of hundreds of meters or more, their narrow widths and spacings 

of centimeters to tens or hundreds of meters apart leads them being readily missed by 

vertical wells. In contrast, wells drilled approximately in the plane of bedding – ‘horizontal 

wells’ – and outcrops sample fracture occurrence more systematically and provide valuable 

information. Collecting data from horizontal wells is expensive, and such data sets in the 

public domain are rare, leading to reliance on outcrop observations despite concerns that 

differences in loading histories may make some outcrops unreliable guides to the 

subsurface fracture orientations, densities, and spatial distributions. 

Fracture spacing is defined as the perpendicular distance between two fractures in 

the same set (Price, 1966; Priest and Hudson, 1976). Commonly, spacings for a system of 

near-vertical fractures are measured along a straight line of observation (scanline) 

orthogonal to fracture strike. Descriptive statistics, frequency distributions (e.g. Narr and 

Suppe, 1991), coefficient of variation, a measure of the irregularity of fracture spacing (e.g. 

Gillespie et al., 1999; 2001), and interval counting (e.g. Gillespie et al., 1993; Walsh and 

Contents in this chapter appear in Li, J.Z., Laubach, S.E., Gale, J.F.W., and Marrett, R.A., 2017. Quantifying opening-mode fracture 
spatial organization in horizontal wellbore image logs, core and outcrop: application to Upper Cretaceous Frontier Formation tight gas 
sandstones, USA. Journal of Structural Geology, in press. Li collected and analyzed the data presented and performed primary writing. 
Other authors contributed to the article’s review and editing. 
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Watterson, 1993) provide numerical characterization of fracture spacings. These methods 

do not account for sequences of spacings along the scanline.  

Spatial arrangement describes fracture positions in space, including whether 

fractures are clustered, randomly placed or evenly spaced, fundamental attributes that need 

assessment to help guide many subsurface engineering practices such as well planning and 

hydraulic fracture treatment design. In Section II, I investigate opening-mode fracture 

spatial arrangement patterns within Upper Cretaceous Frontier Formation tight gas 

sandstones using data acquired from horizontal image logs as well as from cores and 

outcrop. I analyze fracture occurrence data with the Normalized Correlation Count method 

(NCC; Marrett et al., 2017; including CorrCount software), which accounts for the 

sequences of spacings, and compare results with conventional spacing analysis methods 

(descriptive statistics; coefficient of variation). Previous examination of the cores and well 

logs used in this study identified that the fractures are unevenly spaced (Lorenz et al., 

2005), but the patterns have not previously been quantified. In Section III, I further 

investigate opening-mode fracture spatial arrangement patterns in three different shale 

reservoir rocks – the Vaca Muerta Formation shale, the Evie, Otter Park, and Muskwa shale 

members of the Horn River Formation and the Woodbend/Winterburn Group, and the 

Marcellus Formation shale – similarly through analyzing image log fracture sequential 

spacings with NCC. My results for a sandstone example (Li et al., 2017 and Section II) and 

for shales (Section III) show regional contrasts in fracture clustering patterns as well as 

contrast between fracture sets by degree of sealing and strike, and help illuminate why 

differing clustering patterns exist in fracture arrays.  
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SECTION II: FRACTURE SPATIAL ARRANGEMENT IN A TIGHT 
GAS SANDSTONE 

The Upper Cretaceous Frontier Formation is a naturally fractured gas-producing 

sandstone in Wyoming. For east-striking regional fractures sampled using image logs and 

cores from three horizontal wells and from outcrop, NCC results show that clustered 

patterns characterize deep-seated fractures whereas patterns indistinguishable from random 

occur in outcrop. A hierarchy of cluster sizes exists, and arrangement within clusters is 

likely fractal. Random and statistically more clustered than random patterns exist in the 

same upper to lower shoreface depositional facies, but from rocks having markedly 

different structural and burial histories. Although the origins of regional differences in 

degree of clustering are unknown, our results show that quantifying spatial arrangement 

delineates potentially economically important differences in fracture patterns that are not 

otherwise apparent. 

 

Chapter 2: Geologic Setting of Tight Gas Sandstone Example 

The Greater Green River Basin in southwestern Wyoming, USA was part of the 

foreland basin of the east-vergent, Mid- to Late Cretaceous Sevier (or western Wyoming) 

thin-skinned fold and thrust belt (Jordan, 1981; Wiltschko and Dorr, 1983) (Figure 2-1). 

Basement-involved (Laramide) folds and faults subdivided the foreland during the Tertiary 

(English and Johnson, 2004). DeJarnett et al. (2001) provide an east-west seismic line 

across the basin, and Dutton et al.  (1995) show a basin-wide structure map. 

Contents in this chapter appear in Li, J.Z., Laubach, S.E., Gale, J.F.W., and Marrett, R.A., 2017. Quantifying opening-mode fracture 
spatial organization in horizontal wellbore image logs, core and outcrop: application to Upper Cretaceous Frontier Formation tight gas 
sandstones, USA. Journal of Structural Geology, in press. Li collected and analyzed the data presented and performed primary writing. 
Other authors contributed to the article’s review and editing. 
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Figure 2-1 Greater Green River Basin, Wyoming, showing Well VM-A outcrop 
locations, scanline dimensions, and representative image log. (a) Sub-basins, 
uplifts and Well VM-And outcrop locations. Wells: Rock Island 4-H 
(RI4H), Sidewinder 1-H (SW1H), Sidewinder 2-H (SW2H), Table Rock 
(TR) field, Sweetwater County, Wyoming. NNE well trajectories are 
indicated. Rose diagrams show fractures strikes (from Laubach et al., 2016). 
Outcrops Oc1 and Oc2 shown in Figures 2-2 and 2-3 respectively. 
Orientation diagram shows main fracture strikes in Kemmerer section, 
Hogsback outcrop belt. K, Kemmerer, Wyoming. Inset: Location of Greater 
Green River Basin in western U.S. Background image: Google Earth. (b) 
Representative lengths of observation scanlines: outcrop scanline length 
from Oc2; image log length from RI4H and core lengths from RI4H. For the 
Rock Island 4-H well, readily interpreted image log data exists from 
measured depth (MD) 4663.4 m to 5025.2 m. (c) Representative section of 
FMI image log from RI4H showing fracture traces (F) and bedding (B). 

My data come from directionally drilled horizontal wells in the Greater Green River 

Basin in a distal foreland setting, and from outcrops on the western side of the basin 
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adjacent to the thrust front (Figures 2-1 to 2-3). Both data sets are from areas of gently 

dipping beds. The wells target the Upper Cretaceous (Cenomanian-Turonian) Frontier 

Formation, which comprises multiple fluvial and marine shoreface sandstone members that 

are mainly very fine to medium-grained litharenites to sublitharenites (Cobban and 

Reeside, 1952; Merewether, 1983; DeJarnett et al., 2001). The marine shoreface sandstones 

range from 9 to more than 35 m thick and have blanket geometry. The relatively quartz-

rich and clay-mineral-poor upper shoreface intervals are typically less than 6 m thick 

(Cobban and Reeside, 1952; Dutton et al., 1995). On the western side of the basin, in 

outcrop, the Frontier Formation is about 90 m thick, underlain by the Mowry Shale and 

overlain by the Hilliard Shale. Our outcrop and core data are from similar Frontier 

Formation facies, but considerable regional stratigraphic variations and differences in 

burial history need to be accepted (i.e., Dutton et al., 1995). 

Sandstone members of the Frontier Formation are of interest in petroleum 

exploration and development (Dutton et al., 1995; Hennings et al., 2000). In 1998 and 

1999, the Greater Green River Basin Production Improvement Project (GGRBPIP) led by 

the U.S. Department of Energy and Union Pacific Resources drilled the slant wells Rock 

Island 4-H (RI4H) and Sidewinder 1-H and 2-H (SW1H and SW2H) in the Frontier 

sandstone in the Table Rock Field in east-central Green River Basin (DeJarnett et al., 2001; 

Lorenz et al., 2005; Laubach et al., 2016). Beds here are nearly flat lying and well 

trajectories in zones of interest are nearly horizontal. RI4H, SW1H, and SW2H were 

investigated with image logs, but only RI4H and SW1H were cored. RI4H set a record of 

having the highest gas flow capacities up to then in the Frontier (DeJarnett et al., 2001) and 

ended up producing approximately 10.1 BCF of natural gas by 2007 (Coleman, 2008). 
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SW1H intersected the same fracture sets but had high water production. Engineering and 

geological context for these wells is described by DeJarnett et al. (2001).  

In RI4H, image logs were collected in the measured depth (MD) interval from 

4581.1 m to 5025.2 m, have clear resistivity contrast features first appearing at 4663.4 m 

(Figure 2-2). Three cores were retrieved from within this interval: two from the mid to 

upper shoreface facies of the Frontier (Cores 1 and 2) and one from the lower shoreface 

facies (Core 3) (Lorenz et al. 2005; Laubach et al., 2016). The core in SW1H (Core 4) was 

taken from the lower shoreface of the Frontier Formation (DeJarnett et al., 2001). All cores 

contain opening-mode fractures that are primarily subvertical and bed-normal. Fractures 

have a range of opening displacement sizes – kinematic aperture, the perpendicular 

distance from one fracture wall to the other – and are variably lined or filled with quartz 

cement. Two sets of fractures are present. Set 1 strikes approximately east-west and Set 2 

strikes approximately north-south (Lorenz et al., 2005; Laubach et al., 2016). Based on 

crosscutting relations, Set 1 is older than Set 2. Set 1 has slightly more quartz cement, but 

fractures of both sets retain open pore space in these wells (Laubach et al., 2016). Some 

Set 1 fractures have been reactivated in shear and a few small (>5 m offset) oblique-slip 

faults are present in core and more are evident on image logs (DeJarnett et al., 2001). Wells 

were drilled at a high angle to Set 1, which are thus more completely sampled than Set 2; 

most of our analysis focuses on the older Set 1 fractures.  
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Figure 2-2 Fractures in outcrop and core, Frontier Formation. (a) Fracture traces in 
north-northeast trending outcrop (Oc1), west-dipping pavement northeast of 
Kemmerer, Wyoming, Google Earth dated 9/1/2014. Three main fracture 
trends are evident. Spacings of east- or east-northeast-striking fractures (F) 
were measured here and in Oc2, directly north along the outcrop belt. L1, 
L2 mark separate marine sandstone lenses. Part of contact is dashed. (b) 
Fracture face, east-northeast striking fracture from outcrop south of 
Kemmerer. Calcite (cc) filling fractures is compatible with formation of 
these fractures in the subsurface. Comparator is 10 cm long. (c) Same 
outcrop as in b; F, fracture face. Tall fractures (H) span the thickness of the 
sandstone; entire thickness of which is not shown. (d) Frontier Formation 
bed surface with fractures traces (F), Muddy Gap, Wyoming, northeast of 
core location. Fractures have trace lengths many tens of meters long. Here, 
spacing between traces (arrow) is ca. 5 m. Fractured bed thickness is ca. 20 
m. (e) Core from Rock Island 4-H horizontal core, in the depth interval 
15454-15464 ft (4710-4713 m) (Core 2). Beds are approximately parallel to 
the long dimension of the core; arrow marks top of core, core diameter ca. 4 
inches (10 cm). 
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I selected north-south-striking Frontier Formation outcrops on the western margin 

of the basin to sample fractures having the same generally east-west strike as those most 

prevalent in core (Figure 2-3). Previous studies of the outcrops concluded that north-south 

and east-west-striking fracture sets are regional in extent and, based on local calcite mineral 

fills, likely formed in the subsurface (Laubach, 1992; Lorenz and Laubach, 1994). For 

outcrops, I examined fractures in the same depositional facies as those in core, mid- to 

upper and lower shoreface marine sandstones. Outcrop fractures are, however, above the 

easternmost thrust of the western Wyoming fold-and-thrust belt, whereas our core samples 

are more than 170 km east in a distal foreland basin setting on the Wamsutter arch. 

Outcrops are in the west-dipping (ca. 15 degrees) limb of an asymmetric east-vergent 

syncline above the easternmost frontal thrust of the fold-and-thrust belt. These west-

dipping beds likely tilted without passing through a fold hinge (Delphia and Bombolakis, 

1988). Cores are from the backlimb of a gentle, west-vergent anticline.  

Outcrop and core fractures also differ in cement petrology (Laubach et al., 2016). 

Calcite fill is prevalent in outcrop fractures although it may postdate fracture opening, 

whereas quartz is the primary and earliest cement in both cored fracture sets. This quartz 

was deposited during and after fracture opening. The relative timing of north-south- and 

east-west-striking fractures in outcrop is opposite to that found in cores, suggesting that the 

east-west-striking fractures in outcrop and core are not the same age despite sharing 

common orientations. Absolute timing of cored fractures has been estimated using fluid 

inclusion trapping temperatures tied to thermal history (Laubach et al., 2016), but no 

comparable estimates exist for the outcrop fractures. 
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Figure 2-3 Fracture traces, western Green River Basin, outcrop 2 (Oc2 in Figure 2-1). 
Background Google Earth image where fractures were traced. Red lines 
mark fracture traces, black lines represent scanlines. Location map after 
Lorenz and Laubach (1994). Fracture clusters (called swarms; Laubach, 
1992, their Figures 4 and 9) are visible in other outcrops on the opposite, 
steeply east-dipping fold limb. 
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Though opening-mode fractures have been documented at outcrop using trace maps 

and for core using occurrence or aperture versus distance plots (e.g. Laubach, 1992; Lorenz 

and Laubach, 1994; Laubach et al., 2016), spatial arrangement of fractures has not been 

quantified at any scale prior to this study.  
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Chapter 3: Datasets and Methods for Sandstone Study 

Subsurface data comprises observations of fracture traces on paper image logs that 

were collected in the late 1990s (DeJarnett et al., 2001) (Figure 2-1c) as well as fracture 

sequences measured in core (Laubach et al., 2016) (Figure 2-2e). Outcrop fractures were 

sequentially measured on Google Earth images (sub-meter resolution; narrow fractures are 

clearly visible; Figures 2-2, 2-3) in areas where fractures had previously been measured in 

the field (Laubach 1992; Lorenz and Laubach, 1994). Comparison of outcrop-based 

measurements with Google Earth-based measurements for this location indicates that, in 

this case, detection of fractures is not markedly degraded by using remote images to 

measure spacing values compared to measurements made on the ground. Opening 

displacements and mineral fills, however, are rarely clearly preserved owing to weathering 

and resolution. Fractures in the cored interval and the outcrops, at least locally, have similar 

kinematic aperture size ranges. In both cases, fractures are large enough to be readily 

visible without microscopy; microfractures are rare (e.g. Copley, 2015; Anders et al., 2014) 

and can be omitted from assessment of size distributions. 

3.1 HORIZONTAL WELL IMAGE LOGS, WYOMING 

Electrical and acoustic image logs are widely used in the oil and gas industry for 

reservoir characterization (e.g. Pöppelreiter et al., 2010). Our source of fracture spatial 

observations in uncored wells are horizontal image logs – that is, image logs from well 

segments that are approximately parallel to bedding, collected using Schlumberger’s 

Formation MicroImager (FMI) at 5 and 25 inch scales from wells RI4H, SW1H, and SW2H 

(DeJarnett et al., 2001). An electrical image log is a map of micro-resistivity variations 

along a borehole wall (Ekstrom et al., 1987; Lofts and Bourke, 1999). In horizontal image 

Contents in this chapter appear in Li, J.Z., Laubach, S.E., Gale, J.F.W., and Marrett, R.A., 2017. Quantifying opening-mode fracture 
spatial organization in horizontal wellbore image logs, core and outcrop: application to Upper Cretaceous Frontier Formation tight gas 
sandstones, USA. Journal of Structural Geology, in press. Li collected and analyzed the data presented and performed primary writing. 
Other authors contributed to the article’s review and editing. 
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logs, fractures intersecting the wellbore at high angles can be distinguished from low angle 

bedding planes by their appearance as low-amplitude sinusoids cutting across bedding 

(Lofts et al., 1997) (Figure 2-1c). Compared to vertical wells, slant and horizontal wells 

can capture more vertical or steeply dipping fractures, allowing measurement of fracture 

spatial arrangement provided that those fractures strike at a high angle to the wellbore. A 

horizontal image log can therefore be used as a scanline to calculate subsurface fracture 

spacings using measured depths and appropriate geometrical corrections.  

I picked traces by hand and compiled fracture measured depths in spreadsheets. 

Modern workstation-based image log analysis (e.g., Ponziani et al., 2013) is more efficient 

than extraction of data from paper logs, and manipulation of the resistivity data can in some 

circumstances yield aperture estimates (Luthi and Souhaité, 1990), but these capabilities 

were unavailable for our vintage observational dataset. The lack of modern workstation 

trace picking capability may have slightly reduced the lateral accuracy of our picks, 

although discrepancies are probably too small to affect our results. Each paper image log 

came with annotations of the calculated strikes and dips of features crossing wellbores, as 

well as a classification of features, e.g. conductive, resistive, or drilling-induced fractures; 

faults; bedding planes. Image log fractures are categorized using this classification. 

Although interpreting the origin of different types of fractures on image logs is subject to 

uncertainty, the most prevalent type of fracture in each well is sufficiently pervasive to 

govern our results; combining or separating conductive or resistive fractures for example 

does not change the spatial patterns substantially. Comparing image logs with core shows 

that the distinction between conductive versus resistive fractures in my example does not 

reliably differentiate degree of open fracture pore space visible in core. For Set 1, 
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comparison of cores and logs suggests that resistive fractures include those that were 

reactivated in shear and consequently have negligible continuous open pore space. 

Once sorted and separated by orientations and types, the measured depths for 

neighboring features were used to calculate spacings and spatial patterns (Figures 3-1, 3-

2). The Terzaghi (1965) correction was applied to each fracture strike to account for 

obliquity bias. The correction resulted in insignificant changes in the large majority of the 

distances between east-west-striking Set 1 fractures in RI4H and SW1H, most of which 

strike within +/- 10 degrees of perpendicular to the wellbore. The correction resulted in 

significant changes in the distances between Set 2 fractures striking approximately north-

south at low angles to the horizontal wellbores (e.g. Figures 4-1c and 4-2c). 

Although fracture kinematic apertures can be physically measured in outcrops and 

sometimes in cores, apertures cannot be measured on the paper image logs used in our 

study. I used a single nominal size of 1 mm as the aperture input, a dimension compatible 

with core observations (Laubach et al., 2016) and approximately an order of magnitude 

smaller than the smallest spacing measured in the image log, and thus too small to affect 

analysis results using the CorrCount software. Both the calculated spatial patterns and the 

preselected aperture were used as inputs for the Normalized Correlation Count 

calculations. Lack of aperture data precluded using some of the capabilities of the Marrett 

et al. (2017) analysis protocol, or of comparing results with fracture size distribution 

frequency as discussed by Putz-Perrier and Sanderson (2008).  
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Figure 3-1 Occurrence versus distance (stick) plots of fractures visible in image logs, 
core and outcrop. Zero represents beginning of scanline. Black vertical lines 
are opening-mode fractures (some with evidence of reactivation in core data 
sets); FL, red lines are faults recognized by offset beds on image logs. 
Horizontal scale in meters. Vertical dimension of lines is arbitrary; Laubach 
et al. (2016) report aperture size versus distance plots for cored intervals 
(their figure 4). Inset numbers are fractures per meter (F/m).  
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Figure 3-2 Fracture spacing histograms for image logs, cores, and outcrop. Image log 
and core plots generated from spacing of conductive fractures aggregated 
from all wells. A few very low frequencies (0 to 1) for large spacings (> 10 
m) omitted for clarity. All show high frequency of sub-meter spacings with 
varying degrees of distribution spread.  
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3.2 HORIZONTAL WELL VM-CORES, WYOMING 

Three horizontal cores (Cores 1, 2, 3) were taken in RI4H and one horizontal core 

(Core 4) was taken in SW1H. Laubach et al. (2016) documented measured and true vertical 

depths at which fractures occur in each core, with results comparable to the previous core 

description of Lorenz et al. (2005) where uneven spacing was noted. Cores 1, 2, and 3 total 

23.9 m long and contain 76 discrete fractures, whereas Core 4 is 18.3 m long and contains 

40 discrete fractures (Copley, 2015; Laubach et al., 2016).  

3.3 OUTCROP DATA, WYOMING 

At least three sets of fractures are visible in Frontier Formation sandstone outcrops 

along the ca. 100-km long Hogsback escarpment (Laubach, 1991; 1992; Lorenz and 

Laubach, 1994) (Figure 2-3). Some sandstones in these outcrops are in the same part of the 

Frontier Formation stratigraphic section and are of the same facies as those penetrated by 

the Rock Island and the Sidewinder wells, although rocks in these widely separated 

localities have experienced different depositional, burial and tectonic histories. In outcrop, 

fractures in the east-west-striking and locally younger set, termed “J2” by Lorenz and 

Laubach (1994), are prevalent through the entire length of Hogsback exposure. J2 fractures 

are variable in length, ranging from sub-meter to many tens of meters long (Laubach et al., 

2016) although in the outcrops where we measured spacing, fracture lengths are censored 

by outcrop widths of 200 m or less. Fractures in the east-west-striking J2 set are well 

captured in satellite images (Figures 2-2, 2-3). 

Fracture patterns along the Hogsback escarpment have substantial diversity and are 

locally complex (Lorenz and Laubach, 1994). Two outcrops, Oc1 and Oc2, having fairly 

simple patterns, were selected for fracture spacing characterization (Figures 2-1 and 2-3). 
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According to the interpretation of Lorenz and Laubach (1994), these outcrops have the 

least overprint from thrust-related folding. I focus on the pattern in Oc2, which is 

representative of both outcrops. Using Google Earth’s built-in tools, I traced fractures in 

outcrops, drew NNE-trending scanlines perpendicular to the traces (Figure 2-2), and 

recorded consecutive distances between fractures. Sandstones along the outcrop are 

subdivided into well-defined lenticular bodies or lenses (Merewether, 1983) (Figure 2-2) 

that are smaller than outcrop dimensions, but image resolution of sandstone internal 

structure is sufficient to draw scanlines that are entirely within a given sandstone lens. 

Aperture sizes are of course not visible on the images, and apertures also are only rarely 

measurable in these outcrops. Therefore a nominal fracture aperture (1 mm) compatible 

with sparse outcrop observations and matching that used in image log analysis was used in 

my spatial analysis.  

3.4 GENERAL SPATIAL ANALYSIS METHODS 

The Normalized Correlation Count technique (NCC; Marrett et al., 2017) provides 

a quantitative analysis of the degree to which fractures are clustered, and can distinguish 

between even spacing (periodic or anticlustered), clusters arising due to random fracture 

arrangement, and clustering that is stronger than a random signal. NCC uses distances 

between all pairs of fractures including non-nearest neighbors and thus accounts for the 

sequence of fracture spacings along the scanline. Accounting for sequential positions and 

sizes of fractures provides information on cluster distribution to cluster internal structure. 

I also used a standard measure of spatial clustering, coefficient of variation (Cv) (e.g. 

Gillespie et al., 1999). Cv equals σ/μ where σ is the standard deviation of spacings and μ 
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is the mean. Perfectly periodic fracture spacing produces a Cv of zero, and Cv increases 

with increasing irregularity of spacing (Tables 1 and 2; Figures 3-1 to 3-3). 

NCC is based on correlation sum, or the two-point correlation function (Bonnet et 

al., 2001), that calculates the proportion of fracture pairs in a set, including pairs of non-

neighboring fractures, separated by a distance less than each given length scale λk in a 

logarithmically or linearly graduated series of length scales. A correlation count assigned 

for a given λk is defined as the fraction of all fracture pairs for which the pair’s spacing 

falls between λk+m and λk-m (Marrett et al., 2017), essentially the difference between the 

correlation sum of λk+m and that of λk-m. The Marrett et al. (2017) NCC computer program, 

CorrCount, also provides analytical and Monte Carlo solutions for randomized input 

spacings (the program is freely available online; Marrett et al., 2017). A 95% confidence 

interval is constructed for the randomized sequence. If a length scale’s corresponding 

correlation count falls either above or below the upper or lower confidence limits, the 

corresponding fracture spacing can be interpreted to be statistically significant.  



 
 
 

19 

 
Set 

# 
Fractures, 

(total) 

# Fractures, 
Upper 

Shoreface 

# Fractures, 
Lower 

Shoreface 
# Fault # Conductive 

Fractures 
# Resistive 
Fractures 

Set 1 (EW) 413 204 209 7 369 37 

Set 2 (NS) 86 29 57 1 17 68 

 
Set 

 
Fracture 
Intensity, 
Overall 

(fractures/m) 

 
Fracture 
Intensity, 

U. Shoreface 
(fractures/m) 

 
Fracture 
Intensity, 

L. Shoreface 
(fractures/m) 

 
Spacing 

Range (m) 

 
Spacing 
Average 

(m) 

 
Spacing 

Median (m) 

Set 1 (EW) 1.25 1.67 1.01 
0.015 

- 14.25 
 

0.81 0.29 

Set 2 (NS) 0.26 0.24 0.27 0.0346 
- 50.91 2.51 0.27 

Table 3-1 Descriptive statistics of fractures in Rock Island 4-H image log. Upper 
shoreface approximately 4663.4 m – 4785.4 m; lower shoreface 
approximately 4785.4 m – 5025.2 m. Fracture intensity values normalized to 
correct for difference in facies’ interval length.  
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Figure 3-3 Cumulative frequency versus fracture spacing for all data sets. Frequencies 
approaching zero beyond 1 m, 5 m, and 10 m omitted for optimal display as 
in Figure 5.  
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Chapter 4: Results: Wyoming 

In the Frontier Formation sandstone, fracture spacings range from a few tens of 

centimeters to several meters in cores, approximately 100-300 centimeters in image logs 

and more in outcrop (Table 2; Figures 3-1 to 5-1). I measured and calculated 499, 733, and 

382 spacings for all types and sets of fractures in RI4H, SW1H, and SW2H image logs, 

respectively. Only the spacings of fractures having a conductive image log response are 

presented. These are the most abundant in each of the wells. Although in general this 

selection might introduce bias, for this data set any bias is small for this data set owing to 

the predominance of this category of fracture as well as the close match between fractures 

visible in core and on image logs. Fracture spacings in core are markedly less numerous, 

with 40 spacings in Cores 1 and 2, 40 in Core 3, and 45 in Core and 4, respectively owing 

to shorter lines of observation compared to image logs. The outcrop data set includes 389 

fracture spacing measurements rom scanline sampling of 390 fractures. 

Spatial distributions show high occurrence of sub-meter to meter scale inter-

fracture distances in all datasets, with outcrop having the largest range of spacing 

distribution from 0.3 m to 16 m (Figure 3-2). The NCC plots presented by Marrett et al. 

(2017) are generated from hundreds of fracture spacings. Null correlation counts at certain 

length scales arise if there are too few spacing measurements, leading to incomplete 

correlation count plots, and a less meaningful analysis of fracture spatial arrangement 

patterns. In this study, image log and outcrop scanlines are long and numbers of spacing 

measurements are comparable to those of Marrett et al., and therefore I conclude that the 

image logs and outcrops have enough data to reveal spatial patterns. Compared to the image 

log and outcrop scanlines, core scanlines are short and core data may be insufficient to 

Contents in this chapter appear in Li, J.Z., Laubach, S.E., Gale, J.F.W., and Marrett, R.A., 2017. Quantifying opening-mode fracture 
spatial organization in horizontal wellbore image logs, core and outcrop: application to Upper Cretaceous Frontier Formation tight gas 
sandstones, USA. Journal of Structural Geology, in press. Li collected and analyzed the data presented and performed primary writing. 
Other authors contributed to the article’s review and editing. 
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reveal patterns evident in longer scanlines. I used core data to interpret and calibrate image 

log fracture picks. Core data provide essential information on relative timing and fracture 

aperture information absent in image logs, and illuminate aspects of fine-scale spacing not 

apparent in image log data because these tools miss some of the narrowest fractures that 

are preferentially sealed (Lander and Laubach, 2015). 

 
      Source, 

Set 
 
Statistics 

4H, 
Set 1 

1H, 
Set 1 

1H, 
Set 2 

2H, 
Set 1 

2H, 
Set 2 

CR1&2, 
Set 1 

CR3, 
Set 1 

CR4, 
Set 1 

Oc2, 
Set J2 

Total 
corrected 

spacing (m) 
426 402.9 172.3 149.5 45.63 16.80 6.097 13.15 1138 

Spacing count 370 533 99 108 109 40 40 45 389 

Mean spacing 
(m) 1.15 0.76 1.74 1.38 0.42 0.42 0.15 0.29 2.93 

Standard 
deviation (m) 4.83 1.66 3.49 5.1 1.72 0.69 0.22 0.41 2.58 

Cv 4.20 2.19 2.00 3.69 4.11 1.65 1.45 1.41 0.88 

Table 4-1 Descriptive statistics for conductive fracture spacings in Frontier Formation 
acquired from wells, outcrop images, and cores. 4H = Rock Island 4H; 1H = 
Sidewinder 1H; 2H = Sidewinder 2H. CR = Core; CR1, 2, and 3 from 4H (1 
and 2 in upper shoreface, 3 in lower shoreface); CR4 from 1H. Oc2 = 
Hogsback outcrop. Coefficient of variation, Cv, calculated as σ/μ, where σ is 
the standard deviation of fracture spacings and μ is the mean (Gillespie et 
al., 1993); if coefficient of variation is near 1 then fracture arrangement is 
indistinguishable from random, but a value greater than 1 indicates 
clustering and a value less than 1 indicates anti-clustering. 
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4.1 ROCK ISLAND 4-H OBSERVATIONS 

A total of 499 fractures, including conductive and resistive opening-mode fractures 

as well as faults, were documented in the RI4H image log. Of the 499 fractures, 413 belong 

to the east-west-striking and locally oldest Set 1 and the other 86 fractures to the north-

south-striking Set 2. The majority, 369 of the 413 Set 1 fractures, are conductive, whereas 

the majority (68 of 86) of Set 2 fractures are resistive (Table 1). Core analysis shows that 

fractures of both sets retain porosity (Laubach et al., 2016). Seven of the eight faults visible 

in the image log strike east-west, and all but one fault is in the lower shoreface facies of 

the Frontier sandstone beyond approximately MD 4801 m. No obvious systematic increase 

in fracture intensity (decrease in spacing) is evident near identified faults (Figure 3-1), 

unsurprising in that crosscutting relations in core show that faults postdate Set 1 fractures.  

4.2 SIDEWINDER 1-H OBSERVATIONS 

SW1H was drilled to the northeast of RI4H and targeted the Second Member of the 

Frontier Formation. DeJarnett et al. (2001) reported that the well was sidetracked after 

initially drilling out of Frontier sandstones into overlying shales. FMI logs are from the 

third lateral in the interval between 4724.7 m and 5135.9 m MD. The 18 meter-long 

horizontal core is from a different lateral (DeJarnett et al., 2001). Image logs record 721 

fractures and 12 faults. Of the 630 conductive fractures, 532 are east-west-striking Set 1 

fractures, and the other 98 are north-northwest-striking Set 2 fractures.  

4.3 SIDEWINDER 2-H OBSERVATIONS 

SW2H was drilled to the northeast of SW1H also into the Second Frontier 

sandstone in the backlimb of the Table Rock anticline. Cuttings indicate that much of the 

well was in the stratigraphically higher fluvial portion of the Second Frontier instead of the 
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marine sandstone drilled into by RI4H and SW1H (DeJarnett et al., 2001). No core was 

taken from this well. I documented 368 fractures and 13 faults from the FMI log from the 

5044.4 m – 5193.8 m MD interval. A category of fracture pick that only appears in the 

SW2H report labeled “LQ” or “Low Quality”, meaning that they are indistinct and 

potentially not correctly identified as fractures. I separated these fractures from the more 

reliable conductive and resistive fractures. Unlike RI4H and SW1H, the number of 

conductive and resistive fractures for both sets is similar: 107 conductive fractures in Set 

1 and 108 in Set 2.  

4.4 CORE OBSERVATIONS, WYOMING 

Four horizontal cores were collected. Cores 1 and 2 were taken in the mid- to upper 

shoreface Frontier sandstone whereas Cores 3 and 4 were taken in the lower shoreface 

facies (DeJarnett et al., 2001). In the four cores, Laubach et al. (2016) documented 121 Set 

1 fractures and 12 Set 2 fractures. The number of Set 1 fractures is approximately an order 

of magnitude higher than the number of Set 2 fractures primarily owing to sampling bias 

as a result of set orientation relative to the wellbore. Spacing measurements were corrected 

for this effect. 

Comparison shows that fractures in core are generally visible in image logs. 

Discrepancies between fracture occurrence in image logs and cores over the same interval 

of rock can occur owing to the fact that image logs (borehole wall) and cores sample 

slightly different rock volumes. The differences between core fracture observations from 

RI4H and SW1H and the corresponding image log intervals could also arise from under-

picked image log fractures, as a result of variation in log resolution along or between wells 

that cannot be assessed for these vintage logs. Moreover, conductive and possibly wider 
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fractures, which are likely open and contain fluids, may be more readily visible on image 

logs than are mostly sealed narrow fractures. Set 1 fractures have a range of aperture sizes 

and concomitant range of degree of quartz fill (Laubach et al., 2016). On the other hand, 

as noted by Lorenz et al. (2005) for these cores, in some cases where closely spaced 

fractures occur in core and core integrity is degraded, image logs over the same interval 

may find more fractures than are readily distinguished in core. Obviously, where both are 

available, cores should be examined alongside image logs to confirm what types of 

fractures are being identified with the logging tool and to provide information on fracture 

apertures.  

Quality or reliability of fracture picks affects spacing outcomes if picking biases 

are systematic. For large data sets of generally reliable image log, core, or outcrop data, 

problems with a few interpretations are unlikely to affect the overall pattern. Cores have 

the potential to reveal more narrow fractures and thus can be expected to differ somewhat 

from patterns on image logs.  

4.5 OUTCROP OBSERVATIONS, WYOMING 

Frontier Formation west-dipping outcrops along the Hogsback escarpment (Figure 

2-1) have fractures are clearly visible in satellite imagery. At least three fracture sets are 

distinguishable by orientation and cross-cutting relationships (Laubach, 1992) (Figures 2-

2 to 2-3); I focused on the broadly east-west-striking set that roughly parallels the best 

sampled set in our image log and core data sets.  

Approximately 500 east-west-striking fractures with low (<10 percent) deviation in 

strike are visible in a single continuous Frontier sandstone depositional body (or lens) 

(Figure 2-3). I confined data collection to the lens, although fractures appear to be 
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contained within the overall sandstone interval, rather than being localized in the lens. Field 

work shows that the sandstone is about 15 m thick, and fractures span the sandstone layer, 

that is, the fractures are perfectly bed-bounded in the nomenclature of Hooker et al. (2013). 

In other words, fractured layer thickness here is about 15 m. 

To document fracture spacing, I drew ten parallel, en echelon scanlines orthogonal 

to fracture strike over a total scanline interval of approximately 1138 m (Figure 2-3), 

intersecting 390 fractures. The direction normal to fracture strike is not exactly parallel to 

the long dimension of the outcrop (divergence ca. 20 degrees), and the purpose of the en 

echelon arrangement of scanlines is to remain within the sandstone. At each en echelon 

step the scanline terminates against the fracture on which the next scanline begins, allowing 

the measurement of a long, continuous spacing sequence with no missing fractures or 

double counting.  

4.6 INTENSITY AND SPATIAL ARRANGEMENT, WYOMING 

Occurrence versus distance (stick) diagrams (Figure 3-1), spacing histograms 

(Figure 3-2), and cumulative frequency (Figure 3-3) document a range of spacing sizes. 

Occurrence versus distances plots document a degree of uneven spacing in all data sets 

(Figure 3-1) and some high Cv values (Tables 2) suggest clustering. Here I present an 

analysis based on Normalized Correlation Count (Marrett et al., 2017) aimed at assessing 

whether these patterns can be quantified and distinguished from each other, and 

distinguished from random clustering. 

The computer program CorrCount (Marrett et al., 2017) calculates fracture intensity 

and correlation count from measured spacings for selected, computer-generated length 

scales. The results are normalized by comparison to results for randomized spacings (See 
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Marrett et al. (2017) for explanation of the normalization method). Figures 4-1 to 4-5 show 

results for both Set 1 and Set 2 conductive fractures, except in the case of RI4H where only 

a few conductive fractures were sampled in Set 2 (17 versus 369 in Set 1). 

In a normalized fracture intensity plot, the horizontal axis represents the distance in 

meters along the wellbore or scanline. The vertical axis represents fracture intensity. The 

calculated intensity values are normalized by expected intensity for randomly spaced 

fractures. Normalized fracture intensity that peaks above the upper 95% confidence limit 

(highlighted in the Figures) suggests that the intensity, at the 95% confidence level, is 

higher than it would be under the null hypothesis of random spatial arrangement. 

In a Normalized Correlation Count plot (Figures 4-1 to 4-5), the vertical axis 

represents the degree to which the spacings at given length scales (horizontal axis) are more 

(peaks) or less (troughs) common than would be seen in a random distribution. All log-log 

scale NCC plots have uniform axis values for ease of comparison and interpretation. 

Marrett et al.. (2017) identified and interpreted a range of pattern types including peaks, 

troughs, slopes, and plateaus, which we discuss after describing the patterns in our data. 

The descriptive statistics and the coefficients of variation Cv calculated using 

CorrCount for the spacings in each of the fracture sets analyzed are summarized in Table 

2 and Figures 3-1 and 3-2. The average spacings between image log fractures, ranging from 

0.75 m in SW1H Set 1 to 1.74 m in SW1H Set 2, are at least twice as large as the average 

spacings of 0.15, 0.29, and 0.42 m for Cores 1, 2, 3, and 4, respectively. The average 

spacing of fractures in outcrop Oc1 and Oc2 is 2.93 m, nearly twice the largest image log 

average spacing. The coefficients of variations of all fracture sets except the Oc2 outcrop 
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set are above 1, with RI4H Set 1 having the largest value of 4.20, compatible with a range 

of degrees of clustering. 

In the following, we first describe the pattern of spatial variability on NCC plots. 

We then describe what these patterns likely mean in terms of fracture spatial arrangement. 

4.6.1 Intensity and correlation count, Wyoming subsurface data 

For Set 1 in the normalized fracture intensity plot of RI4H (Figure 4-1a), major 

peaks occur at 90, 180, and 270 m along the wellbore. Minor peaks occur at 140 m and 205 

m. Average peak width is approximately 35 m. Major troughs are observed at 230 and 310 

m, and minor troughs at 350 and 380 m. In the Normalized Correlation Count plot (Figure 

4-1b), there is a wide section elevated above the 95% confidence envelope with negative 

slope for length scales from 0.1 to approximately 35 m. Two overlapping peaks are 

observed at length scales of 50 m and 90 m. Normalized Correlation Count falls to 1 at the 

length scale of 145 m.  
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Figure 4-1 CorrCount result for Rock Island 4-H conductive fractures. (a) Normalized 
fracture intensity variation of Set 1. Fracture intensity is the number of 
fractures per unit length along a scanline (Ortega et al., 2006). (b) 
Normalized correlation count Set 1 fractures in RI4H. Length scales are 
logarithmically graduated. Sparse Set 2 observations precluded analysis. For 
this and subsequent figures, ‘0 m’ signifies arbitrary start of scanline. 
Highlighted areas mark parts of curve outside 95% confidence interval. 

Set 1 in SW1H has a broad, statistically significant interval of high fracture 

intensity that extends from 210 m to 280 m, combining subsidiary peaks at 230, 245, 260, 

and 270 m (Figure 4-2a). The largest peak is at 290 m. An additional minor peak is at 190 

m. A major trough beneath the lower confidence limit occurs at 80 m. A near-periodic 

distribution of troughs occurs at 310, 340, 365, and 385 m. Owing to overlaps it is difficult 

to quantify peak widths. The NCC plot is elevated for all length scales between 0.1 m and 

120 m (Figure 4-2b). The Normalized Correlation Count drops to 1 at the length scale of 

approximately 135 m. Unlike the RI4H normalized correlation curve, which has a 

relatively constant negative slope through the elevated interval, the SW1H curve’s slope 

remains negative before the length scale of 3 m, then flattens to zero until length scale of 

30 m where the slope becomes negative again. Several peaks are evident (Figure 4-2c). 
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Figure 4-2 Sidewinder 1-H conductive fracture sets CorrCount results. (a) Intensity of 
Set 1. (b) Correlation count of Set 1. (c) Intensity of Set 2. There is a peak at 
~100 m. The two largest peaks in the intensity plot are spaced ~100 apart, 
and the smaller peaks are spaced at ~15 m. (d) Correlation count of Set 2. 
Set 1 correlation count patterns exhibit low amplitude, and predominantly 
statistically significant patterns throughout. Set 2 correlation count results 
have a decreasing elevated section followed by peaks and troughs over 
larger length scales. Highlighted areas mark parts of curve outside 95% 
confidence interval. 

The largest peak for Set 1 fractures in SW2H (Figure 4-3a) is at the beginning of 

the scanline. Statistically significant peaks also appear at 39 m, 53 m, and 65 m, with 

diminishing peak magnitudes. A wide, near-zero intensity interval extends from 92 to 135 

m. In the NCC plot (Figure 4-3b), the statistically significant part of the curve is confined 
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between the length scales of 0.1 m and approximately 4 m and has a negative slope. Spatial 

correlation decreases to 1 after 4 m. Subsequent peaks appear at 6 m, 12 m, and 36 m with 

increasing amplitudes.  

 

 

Figure 4-3 Sidewinder 2-H conductive fracture sets CorrCount results. (a) Intensity of 
Set 1. (b) Correlation count of Set 1. There is a minor trough over 9.5 m and 
a major trough over 20 m. (c) Intensity of Set 2. (d) Correlation count of Set 
2. All correlation count results have a decreasing elevated section followed 
by peaks and troughs over larger length scales. Highlighted areas mark parts 
of curve outside 95% confidence interval. 
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Set 1 fracture intensities in Cores 1 and 2 from RI4H (Figure 4-4a) show a major 

peak near one end of the core. A minor peak is located at 14 m right before the major peak. 

The fracture intensity variation in approximately the first 13 m of the core is similar to that 

of a random fracture arrangement. In the NCC plot (Figure 4-4b), there are several peaks 

at 0.03 m, 0.04 m, 0.3 m, 0.6 m and two minor peaks at 1.2 m and 1.6 m. A trough is present 

over the length scale of 3.5 m. No significant elevated correlation count plateau is present. 

In Core 3 from RI4H (Figure 4-4c), the largest fracture intensity peak is at the 

beginning of the core, followed by two successive peaks at 0.4 m and at 1.3 m. The rest of 

the intensity curve is indistinguishable from that of a random fracture arrangement. In the 

NCC plot (Figure 4-4d), small length scales around 0.02, 0.035, and 0.9 m appear to be 

statistically significant. This pattern means that there is a significant lack of spacing values 

at the 2-3 m length scale. 

In the normalized fracture intensity plot of Core 4 from SW1H (Figure 4-4e), the 

largest intensity peak is at 9.8 m, followed by another peak at 11.8 m. These three peaks 

occur toward the end of the core. Minor peaks not exceeding the upper confidence limit 

appear periodic. In the NCC plot (Figure 4-4f), peaks for sub-meter scale spacings of 0.035 

m and 0.6 m are present; this pattern is similar to that of the other cores. A trough beneath 

the lower confidence limit appears at length scale of 5 m. Much of the curve is bounded 

within the 95% confidence limits. 
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Figure 4-4 Cores, Frontier Formation sandstone, CorrCount results. (a) Intensity for 
Cores 1 and 2. (b) Correlation count of Cores 1 and 2. (c) Intensity of Core 
3. (d) Correlation count of Core 3. (e) Intensity of Core 4. (f) Correlation 
count of Core 4. All correlation count results exhibit distinctive peaks for 
small length scales but are overall confined within the 95% confidence 
interval. Highlighted areas mark parts of curve outside 95% confidence 
interval.  



 
 
 

34 

Set 2 fractures strike at a low angle to wellbore trajectories, so fracture sampling 

per wellbore length is not as complete as for Set 1. The scanline of SW1H Set 2 corrected 

for obliquity is shorter than that for Set 1. The fracture intensity plot for SW1H Set 2 

(Figure 4-2c), shows major peaks at 12 m, 124 m, and 138 m and minor peaks at 38 m, 105 

m, 132 to 134 m, and 155 m. Unlike Set 1 fractures in SW1H, Set 2 fracture intensity peaks 

are bounded by near-zero intensity intervals; the peak edges are cluster boundaries. In the 

NCC plot (Figure 4-2d), the spatial correlation curve for length scales less than 0.9 m is 

above the upper confidence limit and has a generally negative slope. Spatial correlation 

decreases to 1 at approximately the 1 m length scale. Subsequent spatial correlation peaks 

center around the length scales of 3 m, 6 m, 15 m. A wide trough extends from 30 m to 90 

m. The last peak above the length scale of 100 m, which is larger than half of the total 

scanline length, arises due to two clusters of fractures near the ends of the analyzed section. 

The scanline for SW2H Set 2 (Figure 4-3c), also corrected for obliquity, has 

fracture intensity peaks around 9 and 18 m, with the latter formed by three closely spaced, 

overlapping peaks no more than 3 m apart. The normalized intensity falls to zero for most 

parts beyond 25 m. In the NCC plot (Figure 4-3d), a statistically significant elevated 

interval is present at length scales up to approximately 3.5 m. A trough extends from length 

scales of 4 to 8 m, followed by a single large peak at approximately 10 m.   
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4.6.2 Intensity and correlation count, Wyoming outcrop data  

Outcrops Oc1 and Oc2 are highly similar, and therefore our analysis presentation 

focuses on Oc2, which has a slightly simpler fracture pattern and longer scanline. Fracture 

intensity of the east-striking fractures in the Frontier Formation outcrop Oc2 (Figure 4-5a), 

varies along the outcrop, with peaks and troughs. However, the intensity plots mostly fall 

within the 95% confidence interval, making the intensity variation indistinguishable from 

random. Minor peaks are present between 280 and 320 m and there is a small trough around 

830 m. In the NCC plot (Figure 4-5b), the curve is also bounded within the 95% confidence 

interval for length scales over 0.45 m. Two very small peaks are present at 0.95 and 1.5 m. 

The curve dips sharply beneath the lower confidence limit for length scales less than 0.45 

m. The intensity patterns for each component scanline segment of the outcrop data are also 

indistinguishable from random. 

 

 

Figure 4-5 Outcrop, east-striking fractures, Frontier sandstone Oc2, CorrCount results. 
(a) Intensity result. (b) Correlation count result. Both plots Well VM-
Confined within upper- and lower confidence limits and are therefore 
practically indistinguishable from random. Highlighted areas mark parts of 
curve outside 95% confidence interval. 
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Chapter 5: Discussion: Tight Gas Sandstone  

5.1 CLUSTER PATTERNS IN SANDSTONE EXAMPLE 

A fracture set’s spatial arrangement can be inferred from the NCC curve. Marrett 

et al. (2017, their Figure 10) interpret eight characteristic patterns: indistinguishable from 

random, clustered individuals, anti-clustered individuals, regularly spaced individuals, 

fractal cluster (locally close spacings containing smaller self-similar spacing patterns), log-

periodic cluster, regularly spaced clusters, and regularly spaced fractal clusters. I interpret 

our NCC curves using the Marrett et al. terminology, and discuss the meaning of the curves 

in the context of the geology of the Frontier Formation in outcrop and the subsurface. 

I first discuss the NCC results for the image log and core data sets (Table 3). For 

RI4H Set 1 (Figure 4-1b), the elevated section with a broadly constant negative slope at 

small length scales followed by broad peaks at 50 m and 90 m indicates regularly spaced 

fractal clusters. The width of the largest cluster is given by the point at which the curve 

crosses the spatial correlation value of 1, which in this case is at 35 m. The spatial 

correlation peaks at length scales of 50 m and 90 m represent inter-cluster spacing values; 

the 90 m peak possibly being a harmonic of the 50 m peak. The 35 m-wide clusters spaced 

approximately 50 or 90 m apart are seen in the fracture intensity plot, but the NCC allows 

us to determine the pattern is statistically significant, and also signals that the internal 

structure of the clusters is fractal—a property not discernable from the intensity plot. 

Set 1 fractures in SW1H form a wide cluster with multiple internal intensity peaks 

spanning one third of the scanline (Figure 4-2a). This NCC curve is unlike the others in 

that a broad, statistically significant elevated peak occurs across length scales from 

approximately 0.08 m to 120 m, falling off to a trough at greater length scales (Figure 4-

Contents in this chapter appear in Li, J.Z., Laubach, S.E., Gale, J.F.W., and Marrett, R.A., 2017. Quantifying opening-mode fracture 
spatial organization in horizontal wellbore image logs, core and outcrop: application to Upper Cretaceous Frontier Formation tight gas 
sandstones, USA. Journal of Structural Geology, in press. Li collected and analyzed the data presented and performed primary writing. 
Other authors contributed to the article’s review and editing. 
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2b). This signal indicates one broad cluster about 120 m wide, within which there is a 

fractal arrangement at length scales below ~ 3 m, narrow clusters with fractal arrangement 

within the broad cluster of individuals. There are few fractures spaced at very small length 

scales below 7 cm or at long length scales above 120 m. The pattern is a hybrid between 

‘clustered individuals’ and ‘fractal clusters’ (Marrett et al., 2017). 

 

Data 
Type Data Set* Class† NCC Interpretation Cluster 

Width (m) 

Cluster 
Spacing 

(m) 

Image 
logs 

 

RI4H EW Set 1 Regularly spaced fractal clusters 35 50 & 90 

SW1H 
EW Set 1 Clustered individual  

(+ fractal clusters) 120 (3) one large 
cluster 

NS Set 2 Regularly spaced fractal clusters  
(+ log periodic cluster) 8.5 (1) 15 & 100 

SW2H 
EW Set 1 Regularly spaced fractal clusters 4 6, 12, 36 

NS Set 2 Regularly spaced fractal clusters 4 10 

Cores 
 

RI4H 
Core 1&2 EW Set 1 Indistinguishable from random 

(weak clusters?) — — 

Core 3 EW Set 1 
 

Indistinguishable from random 
(weak clusters?) — — 

SW1H 
Core 4 EW Set 1 Indistinguishable from random 

(weak clusters?) — — 

Outcrop Hogsback 
Oc2 EW ‘J2’ Anti-clustered individuals — — 

Table 5-1 Summary of NCC interpretation for fractures in Frontier image logs, cores, 
and outcrop. RI4H = Rock Island 4H; SW1H = Sidewinder 1H; SW2H = 
Sidewinder 2H. Cluster width within parenthesis indicates width of internal 
clusters. *Well name or outcrop locality. †Average orientation and local set 
classification.  
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The Set 1 NCC curve for SW2H also shows an elevated section with negative slope 

at small length scales. The curve crosses the spatial correlation value of 1 at 4 m length 

scale, which is the width of the largest clusters in this set (Figure 4-3b). Peaks in the NCC 

curve at 6, 12, and 36 m reflect the spacing of clusters, with the strongest signal at ~36 m. 

The largest two peaks in the intensity plot are spaced at ~36 m (Figure 4-3a). The spatial 

arrangement type resembles regularly spaced fractal clusters.  

Although Set 2 fractures and spacing values are less numerous owing to low angle 

of fracture strike to wellbore trajectory, some patterns are evident. The Set 2 NCC in SW1H 

is similar to that for RI4H Set 1 with an elevated section with negative slope at small length 

scales indicating regularly spaced fractal clusters. However, the slope has some internal 

peaks and troughs similar to Marrett et al. (2017)’s “log periodic cluster”. Some internal 

clusters are ~1 m wide, whereas the main clusters are ~8.5 m wide; these widths are 

indicated where the curve crosses the spatial correlation equal to 1 line (Figure 4-2d). An 

approximately periodic distribution of spatial correlation peaks at length scale > 8.5 m 

suggests periodically spaced fractal clusters with spacing of ~15 m. There is also a peak at 

~100 m. The two largest peaks in the intensity plot are spaced ~100 m apart, and the smaller 

peaks are spaced at ~15 m (Figure 4-2c). 

The Set 2 NCC pattern for SW2H is similar to SW2H Set 1 in the elevated section 

(Figure 4-3d), where the cluster width is also approximately 4 m, corresponding to the 

length scale at which the correlation count decreases to 1. The large peak after the elevated 

section at length scale 10 m represents the inter-cluster spacing, marked by the 

approximately 10 m gap between the two largest fracture intensity peaks (Figure 4-3c). 
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The discrepancy between the arrangement types inferred from the cores and the 

image logs may be because the cores are shorter so that the signal is weak. The Set 1 and 

2 NCC curves for the cores retrieved in the mid- to upper- and lower-shoreface sandstones 

differ from their image log counterparts in that they lack the elevated, negatively sloped or 

plateau-shaped portion over small length scales (Figure 4-4b, d, f). Instead, the patterns 

overall are indistinguishable from random, although there are weak peaks and troughs at 

all length scales. In each case, the smallest length scales plot just above the 95% confidence 

limit, indicating more common spacing on the centimeter scale than would be the case for 

a random distribution. So although the overall pattern is indistinguishable from random, 

there is a weak signal of regularly spaced clusters. The coefficients of variation of the core 

spacings average approximately 1.51, corroborating that fracture clusters are present. The 

combined length of Cores 1 and 2 in RI4H is 17.7 m, and the length of Core 3 is 6.2 m, 

distances that together are less than the 50 m inter-cluster spacing and the 35 m cluster 

width inferred from the image log correlation count result for RI4H. The latter result is 

obviously based on a much longer sampling interval. The scale of the pattern inferred from 

image log data implies that the cores are unlikely to capture sufficient data to define 

complete fracture clusters, at least for macro-fractures.  

East-west-striking fractures along the Oc2 outcrop have approximately the same 

orientation as Set 1 in core. For outcrop fractures, gradual variations are evident along 

strike. East-west fractures in Oc1 are dominantly ENE-striking (Figure 2-2), whereas ESE-

striking are prevalent in Oc2 (Figure 2-3). However, as noted, these outcrops differ in 

structural setting from the cored areas and outcrop sets differ in relative timing from those 
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in core. In outcrop at least some of the east-west-striking fractures are younger than north-

striking fractures based on crosscutting and abutting relations (Laubach and Lorenz, 1992). 

For east-west-striking fractures in outcrop the NCC signal is mostly confined 

within the 95% confidence interval, indicating a spatial arrangement indistinguishable 

from random (Figure 4-5b). The pattern is one of anti-clustered individuals if the lack of 

spacings at this small length scale is real. The statistically significant absence of fracture 

pairs at length scales less than 0.45 m might be an artifact from low satellite image 

resolution preventing observation of closely spaced fractures, but field observations in the 

area analyzed shows that here probably such closely spaced fractures have not been missed.  

A comparison of NCC results shows that image logs exhibit a common pattern: 

regularly spaced clusters where NCC decreases from length scales less than 0.1 m up to 

approximately 10 m (Table 3; Figure 5-1a). The peaks and troughs at length scales >10 m 

indicate periodic cluster spacing. The one exception is the pattern for Set 1 in the SW1H, 

which arises because the image log passes though one very wide (120 m) cluster. 
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Figure 5-1 Comparison of CorrCount results. Normalized correlation count = 1 
suggests correlation indistinguishable from random. Log scale, windowing 
set to 1. Highlighted areas mark parts of curve outside 95% confidence 
interval. (a) Comparison of normalized correlation count results between 
image logs. All results show similar exponential decrease in spatial 
correlation for length scales less than 10 m. RI4H = Rock Island 4-H, 
SW1H = Sidewinder 1-H, SW2H = Sidewinder 2-H. (b) Comparison of 
normalized correlation count results between cores and outcrop. Peak-and-
trough signals differ from the continuous interval pattern for image log 
results. 
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The cores (Figure 5-1b) show similar patterns to most of the image logs, but with a 

weaker signal at long length scales, and a stronger signal at centimeter length scales. For 

example, in Cores 1 and 2 from RI4H the spatial correlation over length scales <0.1 m is 

higher than the spatial correlation over the corresponding image log result interval. Image 

logs, when optimally positioned and of adequate resolution, have an advantage over cores 

in providing reliable and abundant spacing measurements over long distances, in this case 

hundreds of meters.  

I attribute the core NCC patterns to shorter scanlines, insufficient to give signals 

beyond random. However, cores capture a few more small fractures increasing resolution 

relative to image logs at small spacing values. The validity of correlation count inferences 

depends on the quality and quantity of input data. Correlation count for small length scales 

of meters to millimeters, depends on spacing resolution – results are valid down to the 

smallest measurable image log fracture spacing value. For large length scales of tens to 

hundreds of meters, output accuracy is controlled by the total scanline length, which limits 

the largest length scale – one half of the total scanline length – at which two or more pairs 

of fracture can be matched without any spacing overlap that violates the correlation sum 

principle. Correlation count for spacings larger than half the scanline are artifacts (e.g. 

Figure 4-2d). 

The NCC for outcrop Oc2 east-west-striking fractures, though covering a larger 

range of spacings from < 1 to 100s of meters, is statistically indistinguishable from random. 

However, the weak peaks and troughs, and the significant lack of spacings below 0.45 m 

suggest individual fractures spaced between 0.45 to 1 m apart with weak clusters spaced 
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on the 60 to 120 m scale. Marrett et al. (2017) class this pattern as anti-clustered 

individuals, a regular spacing pattern compatible with visual impressions (Figure 2-2). 

In addition to data quality, fracture spacing and intensity estimation can be affected 

by sampling bias and changing observation scales. For example, fracture sizes (height) can 

affect the number of fractures that intersect a scanline depending on scanline location 

(Ortega et al., 2006). If a wellbore trajectory is gradually cutting across a hierarchical 

fracture spacing pattern that varies with stratigraphy, this effect could be present in 

‘horizontal’ well data because such wells are rarely precisely in the same part of a bed. The 

effect of this bias is particularly acute if a wide fracture size range is present, since small 

fractures could be preferentially missed. Although in our example core data shows that a 

range of kinematic aperture sizes is present (Laubach et al., 2016), implying a range of 

heights and lengths, the kinematic aperture size range is narrow, and I infer that size-related 

sampling bias is probably not important.  

Though Cv values above 1 and the raw distributions and dimensions of fracture 

intensity peaks qualitatively indicate irregular fracture spacing, without aperture size 

information we could not quantify the heterogeneity of fracture strain with conventional 

approaches (i.e., Putz-Perrier and Sanderson, 2008). NCC analysis, however, rigorously 

quantifies statistically significant departures from randomness. Moreover, the NCC 

approach highlights the presence or absence of systematic clusters, cluster dimensions, 

cluster internal structures, and overall fracture spatial arrangement hierarchies.  
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5.2 CAUSES OF SPATIAL ARRANGEMENT PATTERNS, WYOMING  

Fractures can be arranged in apparent clusters even in a statistically random 

sequence (Priest and Hudson, 1976). Fractures in non-random arrangements can be 

statistically more strongly clustered, or they may have spacings that are more regular than 

expected for a random arrangement (Marrett et al., 2017). Non-random distributions imply 

mechanisms that either promote localized close spacing (clusters) or regular spacing 

(Marrett et al., 2017). Correlation count results for Frontier Formation image log data 

sets—but not the outcrop data set—document clustering too concentrated to be due to 

random arrangement, differences that are not apparent from other types of spacing analysis 

(Figures 3-1 to 3-3; Table 1). As Watkins et al. (2017) and Hooker et al. (2017) show, many 

structural processes can produce localized fractures and clustering. Regional fracture arrays 

are low-strain features potentially arising from a range of loading paths during burial and 

uplift (Engelder, 1985), so without fracture timing information mechanisms governing 

patterns are hard to pin down. Our results constrain why differing clustering patterns exist 

here. 

Our NCC patterns do not resemble those for ‘forced clustering’ (Marrett et al., 

2017) arguing against folding or faulting as the cause of spatial arrangements I found, 

despite the occurrence of the fractures within folds and near faults. This assessment is 

consistent with previous interpretations that the outcrop and cored fractures are not the 

result of folding. Although within the leading edge of the fold-thrust belt, west-dipping 

beds (ca. 10-15 degrees) of outcrop Oc2 were tilted and likely did not pass through a fold 

hinge (Delphia and Bombolakis, 1988). (Although not sampled by our limited field 

scanlines, the outcrops likely contain other types of clusters, including forced clusters. The 

pervasive non-clustered patterns we analyzed contrast with abruptly more concentrated 
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fractures in the steep east-dipping fold limb adjacent to tear faults and higher fracture 

densities associated with along-strike dip changes (Lorenz and Laubach, 1994). These east-

striking ‘J2’ fractures have been interpreted to result from deformation adjacent to the 

limits of thrusting (Laubach, 1991).  

Based on their orientation orthogonal to the thrust front and their timing, regional 

fractures in the Frontier Formation have been interpreted to result from regional 

deformation in the thrust belt foreland (Laubach, 1992; Hennings et al., 2000; Lorenz, 

2003; Laubach et al., 2016). Pervasive arrays having spatial arrangements 

indistinguishable from random may reflect stress fields associated with this structural 

setting, which also may exhibit mutual cross-cutting relations between orthogonal fracture 

sets as documented by Dunne and North (1990). 

Another factor that could influence these outcrop fracture patterns is uplift and 

unloading. The outcrop fractures I measured are probably not primarily the result of near-

surface unloading and weathering, based on calcite fracture fills of subsurface origin in 

fresh outcrops (Laubach, 1992) (Figure 2-2b), but such cements cannot be demonstrated 

for all fractures and I cannot rule out that some east-striking fractures formed after thrusting 

ceased, or even much later with exhumation. For outcrops fracture growth by thermoelastic 

contraction is likely, as this process affects other uplifted areas in the Rockies (English and 

Laubach, 2017). In our samples from the eastern Green River Basin, fluid inclusion 

sequences document late, probably uplift-related reactivation of some north-striking Set 2 

fractures (Laubach et al., 2016). Evidence from outcrop fracture petrology and thus fracture 

timing is needed to test this idea.  
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Another difference between outcrops and our subsurface example is likely to be 

rock mechanical properties at the time of fracturing. During slow, subcritical crack growth 

(Atkinson, 1984) where mechanical layer thickness are held constant, numerical 

simulations of propagation show that differences in total strain or in rock mechanical 

properties produce either evenly spaced or clustered patterns (Olson, 1993; 2004). 

Currently, induration and average mechanical properties of core and outcrop samples differ 

because of their differing burial and thermal histories. As is the case with other Cretaceous 

sandstones in the Rockies (e.g., Ozkan et al., 2011), sandstones in Late Cretaceous to early 

Tertiary uplifts now in outcrop experienced lower thermal exposure and generally have 

less cement than equivalent rocks that have been persistently at depth. Consequently, 

mechanical properties differ. Nevertheless, Frontier sandstone likely has similar within-

formation patterns of mechanical property variation. Rocks examined in this study are from 

the same part of the Frontier Formation stratigraphic section, deposited in shallow marine 

depositional environments, and have similar compositional range. Mechanical properties 

of the subsurface and outcrop sandstones at the time of fracture growth are needed to help 

test whether differences in mechanical properties in this case might account for differing 

spatial patterns. Contrasts in mechanical properties and loading history are likely part of 

the explanation for why the two areas differ. 

Speculatively, in the distal foreland basin setting of our cores, mechanisms 

promoting close spacing may include cement accumulation affecting fracture growth and 

spacing (Hooker et al., 2012; Hooker and Katz, 2015). Set 1 and Set 2 fractures formed at 

depth concurrently with copious quartz cement precipitation in the fractures (Laubach et 

al., 2016). Evidence for fracture timing from fluid inclusions suggests that Set 1, concurrent 
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with regional Eocene-Oligocene foreland shortening, involved slow, intermittent fracture 

growth over millions of years (Laubach et al., 2016). Clustering may be favored where 

uneven partitioning of progressive opening displacement occurs within a fracture spacing 

population as a result of the mechanical effects of different types and amounts of cement 

deposited during fracture. Reconstructed fracture histories and models suggest that the 

adhesion effects of cement can modify fracture spacing and other attributes (Caputo and 

Hancock, 1988; Hooker et al., 2012; 2013; 2017; Hooker and Katz, 2015). Differences in 

amounts of spanning quartz could reflect depth of burial and temperature at the time of 

fracture (Lander and Laubach, 2015), which fracture petrology indicates differed for east-

west-striking fractures in core and those fractures now in outcrop. For our Frontier 

Formation subsurface examples, clustered fractures of Set 2 and 2 have ample spanning 

quartz that could have interfered with fracture opening. In contrast, calcite-bearing outcrop 

fractures lack spanning quartz and have negligible quartz contemporaneous with fracture 

opening. 

5.3 COMMENT ON FRACTURED LAYER/BED THICKNESS FROM WYOMING OUTCROP 

Near-surface barren joints commonly show a proportionality between average 

fracture spacing and fractured-layer thickness (e.g. Ladeira and Price, 1981; Narr and 

Suppe 1991). Experiments and mechanical models have been proposed to explain the 

proportionality (e.g. Wu and Pollard, 1995; Bai et al., 2000). Observations of spacing-

thickness proportionality (Ladeira and Price, 1981) and mechanical models predict a 

spacing to layer thickness ratio of approximately 0.3 (Bai and Pollard, 2000). 

Proportionality varies over a wide range of values, partly as as a function of lithology (e.g., 
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Laubach et al., 2009; McGinnis et al., 2017), and some studies show absence of a consistent 

relationship (McGinnis et al., 2015). 

Distances between fractures in both horizontal wells and outcrop have a wide range 

of values, so using averages is of questionable value, but average spacing to layer thickness 

ratios are widely applied in reservoir characterization and flow modeling (Narr and Lerche, 

1984; Pan et al., 2017). In Frontier outcrops, fractures primarily terminate at shale beds 

that bound sandstones, defining fractured beds having thicknesses of tens of meters (about 

15 m for Oc2) (e.g. Laubach and Lorenz, 1992) (Figure 2-2c). Although in the Frontier 

Formation gross sandstone intervals can be thicker, fractured beds are this dimension or 

thinner. Some outcrops contain shorter fractures, defining thinner fractured layers, but 

these are generally barren, probably near-surface joints that do not extend away from 

outcrop margins and are not part of the array I measured.  

Intervals sampled with cores and image logs are in comparable stratigraphic 

settings and within-formation contrasts in mechanical stratigraphy are likely similar. Thus, 

fractured units and layer thicknesses are likely to be similar, with fractures layers as thick 

as those measured in outcrop. These inferences allow estimates of the relation of fracture 

spacing to fractured layer thickness. Using our averages, fracture spacing relative to layer 

thickness is narrower than predicted by the spacing/bed thickness relation of about 0.3 

(Figure 3-2) for both outcrop and subsurface examples. Even if assuming that fractured 

bed thicknesses are only one third of the value observed in Oc2 (5 m), the spacing/thickness 

ratio is markedly smaller than expected but within the wide range of ratio values from less 

than 0.1 to greater than 10 that have been reported (Bai et al., 2000). Cluster spacings, on 

the other hand, are generally wider than the ratio predicts (Table 3).  



 
 
 

49 

Subsurface spacing observations violate the assumption that an average spacing is 

meaningful. For subsurface data my observations do not of course rule out some form of 

fracture occurrence/bed thickness proportionality, since fracture height observations for 

horizontal wells are unobtainable. These findings together with evidence for non-trivial 

clustering suggests that for populating fracture models, a generalized fracture spacing/bed 

thickness relationship needs to be used with caution. Instead, more nuanced NCC spatial 

arrangement data could be useful for comparison with and improvement of mechanical 

models (e.g., Bai et al., 2000; Olson, 2004) and chemical-mechanical models (Hooker and 

Katz, 2015) that predict spacing patterns.  

5.4 IMPLICATIONS FOR RESERVOIR CHARACTERIZATION, FRONTIER FORMATION 
TGS 

Differences in spatial arrangement have implications for reservoir characterization. 

Fracture clusters, or corridors as these features are referred to in industry, have been 

identified as widespread features in reservoir rocks (e.g., Questiaux et al., 2010) that need 

to be accounted for in reservoir modeling (Panza et al., 2016). The Marrett et al. method 

provides a way to define rigorously what constitutes a corridor. In my subsurface example, 

core observations show that both Set 1 and Set 2 are open and potentially capable of 

contributing to fluid flow. Clustering characterizes both sets. Both sets are open in the 

subsurface, and the connections between clusters of the same or different sets could impact 

flow patterns. For example, clusters separated by unfractured or less fractured rock could 

explain differences between copious gas production from the RI4H and water production 

from the adjacent SW1H (DeJarnett et al., 2001; Coleman, 2008).  
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Chapter 6: Conclusions: Tight Gas Sandstone 

I found spatial arrangements that are more clustered than would be expected for 

random arrangements in some fracture arrays but not others in Cretaceous Frontier 

Formation marine sandstones. I use an analytical and statistical approach called 

Normalized Correlation Count (NCC) and associated NCC software (Marrett et al., 2017) 

that accounts for sequential fracture occurrence and that defines statistical significance of 

the calculated spatial correlation values. Subsurface fractures sampled using image logs 

and cores in three horizontal wells are clustered. For image logs, which have the largest 

spacing samples, the most extensively sampled east-west-striking Set 1 opening-mode 

fractures are arranged in clusters that are hierarchical and probably fractal with the largest 

clusters, from meters to tens of meters wide, possibly distributed periodically. This result 

is broadly consistent with elevated Cv values and previous qualitative observations of 

unevenly spaced fractures in the Rock Island 4-H and Sidewinder 1-H cores.  

Results from horizontal logs and cores contrast sharply with patterns of fractures of 

the same broadly east-west strike in outcrop, where spatial arrangements are 

indistinguishable from random. Although the origin of these differences is unknown, 

discrepancies could be due to contrasts in location-dependent burial and structural 

histories. Although sharing approximately the same strike, the fracture sets are from widely 

separated parts of the basin and likely formed under contrasting structural and diagenetic 

conditions. 

My results have implications for reservoir characterization. For these and other 

tight gas sandstones, quantitative information on fracture spatial arrangement can help 

constrain reservoir models and thus contribute to efficient resource extraction. By 

Contents in this chapter appear in Li, J.Z., Laubach, S.E., Gale, J.F.W., and Marrett, R.A., 2017. Quantifying opening-mode fracture 
spatial organization in horizontal wellbore image logs, core and outcrop: application to Upper Cretaceous Frontier Formation tight gas 
sandstones, USA. Journal of Structural Geology, in press. Li collected and analyzed the data presented and performed primary writing. 
Other authors contributed to the article’s review and editing. 
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demonstrating non-random clustering in subsurface fractures and by showing contrasts in 

spacing patterns between outcrops and reservoirs, my example underlines that outcrop 

analogs and fracture spacing/bed thickness proportionality need to be used carefully, and 

that they can be misleading, even where fractures in outcrop and core superficially 

resemble each other. Patterns of clustered open fractures in at least two nearly orthogonal 

orientations typify Frontier Formation tight gas sandstone in part of the Green River Basin. 

Patterns of similar complexity can be expected elsewhere. Assessment of fluid flow at 

depth needs to be account for the presence of such patterns.  
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SECTION III: FRACTURE SPATIAL ARRANGEMENT IN SHALES 

The Vaca Muerta Formation shale, the Devonian shales of the Horn River Basin, 

and the Marcellus Formation shale are prominent hydrocarbon bearing unconventional 

reservoirs in their respective basins. NCC analyses of image logs fractures in the three shale 

reservoirs provide further information on fracture clusters and spatial arrangements and the 

potential correlation with reservoir properties. Results from the Vaca Muerta Formation 

shale show strong control on fracture cluster locality by reservoir mechanical stratigraphy. 

In the Horn River Basins shales, statistically significant and commonly fractal fracture 

clusters concentrate in preferred wellbore intervals. Results of Marcellus Formation shale 

fractures show clusters correlated with mechanical bed thickness. 

 

Chapter 7: Geologic Backgrounds of Shale Studies 

7.1 VACA MUERTA FORMATION SHALE, ARGENTINA 

Vertical fractures were analyzed within three horizontal wells VM-A, VM-B, and 

VM-C (aliases due to confidentiality) drilled in the Neuquén Basin, Argentina targeting the 

Vaca Muerta Formation shale. The Neuquén Basin is a highly prolific oil and gas basin 

located in the eastern foothills of the Andes in west-central Argentina (Vergani et al., 1995; 

Howell et al., 2005) (Figure 7-1). Present-day SHmax in the basin broadly trends E-W 

(Guzmán et al., 2007). The Late Jurassic-Early Cretaceous Vaca Muerta Formation micritic 

shale ranges from 30 to 1200 m in thickness and is the primary hydrocarbon source rock 

in the Neuquén Basin (Rodrigues et al., 2009). Image log fracture depths and orientation 

information along with reservoir mechanical property categories – mechanical zones – to 

are used study fracture spatial arrangement in the Vaca Muerta Formation shale.  
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Figure 7-1 (a) Neuquén Basin location map with distribution of selected major 
compressional structures. Present-day SHmax trends approximately E-W. 
Modified from Howell et al. (2005) and Guzmán et al. (2007). (b) 
Generalized Early Jurassic to Early Cretaceous basinal stratigraphic column. 
Vaca Muerta Formation shale in red. Modified from Vergani et al. (1995). 
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At least two sets of vertical fractures are observed in selected Vaca Muerta 

Formation shale outcrops and cores. Optical microscopic examination of natural fractures 

captured in eight 3 in by 2 in petrographic thin-sections made from selected Vaca Muerta 

Formation shale cores confirms filling of fractures predominantly by anhedral calcite 

cements (Figure 7-2). Stylolites from dissolution are also observed. Fracture thin section 

and petrographic descriptions are provided in Appendix. 

 

 

Figure 7-2 Subvertical opening-mode natural fracture in Vaca Muerta Formation shale 
petrographic thin section under optical microscope in crossed polar view. 
Wall-to-wall distance in figure averages approximately 3.5 mm. Fracture is 
filled by twinned anhedral calcite cements. 
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7.2 MIDDLE AND LATE DEVONIAN SHALES, CANADA 

Vertical fractures were analyzed within horizontal wells HRB-1 and HRB-2 

(aliases due to confidentiality) drilled in the Horn River Basin in northeastern British 

Columbia, Canada. Significant shale gas reservoirs present in the Horn River Basin include 

the Middle Devonian Evie, Otter Park and the Late Devonian Muskwa siliceous organic-

rich black shales (e.g. Ross and Bustin, 2008; Reynolds and Munn, 2010; Dunphy and 

Campagna, 2011) (Figure 7-3). Present-day SHmax in the basin broadly trends NE-SW 

(Rogers et al., 2010). Two to three sets of natural fracture are present in outcrops and cores 

of the Horn River Basin shales depending on geographic location. Natural fractures in the 

Devonian shales are variably cemented by calcite, pyrite, and quartz (Ross and Bustin, 

2008; Dunphy and Campagna, 2011). Fracture spacing data analyzed with NCC are from 

horizontal wellbore image logs of HRB-1 and HRB-2. 

7.3 MARCELLUS FORMATION SHALE, USA 

Vertical fractures were analyzed within the horizontal well Gulla 10H by Range 

Resources Corporation in SW Pennsylvania in the Appalachian Basin, eastern USA; the 

well targets the gas-rich Middle Devonian Marcellus Formation marine black shale 

(Ciezobka, 2013; Engelder et al., 2009) (Figure 7-4). Two cross-cutting sets of vertical-to-

subvertical natural fractures, the ENE-striking J1 and the NW-striking J2 joint sets, are 

prevalent in Marcellus Formation shale outcrops; J1 is coincidentally along the direction 

of the present-day SHmax which trends NE-SW (Engelder et al., 2009). Petrographic 

examination of selected Marcellus Formation shale outcrop and core samples identify 

opening-mode natural fractures filled by crack-seal, fibrous, blocky, sub-euhedral, or 

amorphous calcite cements (Pommer, 2013). Stable isotope and fluid inclusion analyses of 
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Marcellus Formation shale fracture cements suggest fracture opening during Acadian or 

early Alleghenian burial (Pommer, 2013). Primary dataset used for NCC analysis is 

Marcellus Formation shale fracture information from the image log of Gulla 10H. 

 

 

Figure 7-3 (a) Horn River Basin and the Liard Basin to its west, northeastern British 
Columbia, western Canada. The west-dipping Bovie normal fault zone 
divides the two basins. Modified from Wright et al. (1994), Ross and Bustin 
(2008), and Dunphy and Campagna (2011). (b) Generalized Middle to Late 
Devonian stratigraphic section of the Horn River Basin. Muskwa, Otter 
Park, and Evie Shales highlighted in red. Modified from Ross and Bustin 
(2008).  
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Figure 7-4 (a) Location of the Appalachian Basin and the surface and subsurface extent 
of the Marcellus Formation shale, eastern USA. Modified from USGS 
Marcellus Shale Assessment Team (2011) and Ciezobka (2013) (b) 
Generalized Middle Devonian stratigraphic section of Northern Central 
Appalachian Basin. Marcellus Formation shale highlighted in red. Modified 
from USGS Marcellus Shale Assessment Team (2011).  
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Chapter 8: Datasets and Methods for Shale Studies 

Similar to the spatial arrangement analyses of fractures in the Frontier Formation 

tight gas sandstone presented in Section II, I use spacings of subsurface fracture sequences 

in shale reservoirs to analyze their spatial arrangement patterns. Horizontal cores are 

unavailable in the shale oil and gas wells of interests, and therefore focus is exclusive on 

analyzing horizontal image log data. Unlike the Frontier Formation fracture sequences 

derived from fracture trace measurements by hand using paper image logs, fracture 

sequences in the shale formations are based on operator-provided depth and orientation 

measurements directly from image log fracture traces picked originally using computer 

workstation. Quality control can be done when digital image logs are available for 

examination of the interpreted fractures such as in the case of the Vaca Muerta Formation 

shale. In the Horn River Basin wells, original image logs are unavailable for examination 

though the operator has provided additional information on fracture picking criteria and 

general observations of the image log fractures. For the shale reservoirs of interests, the 

pattern of fracture traces visible on the shale image logs as well as regional context (Gale 

et al., 2014) suggests that the features analyzed are predominantly near-vertical opening-

mode fractures.  

A given fracture sequences analyzed for spatial arrangement consists of fracture 

spacings calculated from image log fractures sorted and grouped by orientations and/or 

operator-classified feature types, e.g. conductive, resistive or “sealed”, or drilling-induced 

fractures; faults; bedding planes. A key methodological step is to identify discrete intervals 

of rock within each image log as a basis for parsing the fracture data. In other words, 

fracture populations along a long inclined wellbore are expected to vary depending on the 
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underlying mechanical property patterns of host shales, their mechanical stratigraphy 

(Laubach et al., 2009). Therefore fracture populations in each mechanically distinct 

interval should be analyzed separately. Provided in the case of the Vaca Muerta Formation 

shale, “mechanical zone” picks used to further parse fracture data are based on sonic logs 

and other operator-specific proprietary measurements, aimed at finding intervals of 

differing Young’s modulus, Poisson ratio and related factors (e.g., Bakulin et al., 2000; 

Rickman et al., 2008; Dunphy and Campagna, 2011). Mechanical zone picks are 

unavailable for the Horn River Basin’s Devonian shales though should be factor into 

consideration when interpreting fracture spatial arrangement and distribution along 

wellbores. The specific criteria for determining mechanical zones are outside the scope of 

this study. The major effect of changing such criteria would be to lengthen or shorten 

scanlines and increase or decrease fracture data included in my analysis. 

I use the Normalized Correlation Count (NCC) technique and the associated 

CorrCount software (Marrett et al, 2017) to analyzed and quantify spatial arrangements 

among fractures in shale reservoirs. The principles of NCC analysis and the interpretation 

of CorrCount results are discussed previously in Section II. As in the case of analyzing 

fracture sequences in the Frontier Formation tight gas sandstone, apertures and heights of 

subsurface fractures in shale formations cannot be reliably or systematically obtained using 

image logs, nor are fracture aperture information available through associated cores. 

Therefore the NCC analyses of the shale fracture spacings use preset nominal aperture 

values as arbitrary placeholders similar to the Frontier tight gas sandstone fracture study. 

These aperture values are at least an order of magnitude smaller than the smallest fracture 

spacing in each sequence and thus have minimal influence on the NCC results.  
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Chapter 9: Results and Discussion: Neuquén Basin 

9.1 INTENSITY AND SPATIAL ARRANGEMENT, NEUQUÉN BASIN  

Fracture sets in horizontal wells VM-A, VM-B, VM-C are categorized using 

fracture orientations and their designated mechanical zones. Analytical results from 

CorrCount and Microsoft Excel include descriptive statistics, coefficients of correlation 

(Table 4), as well as normalized fracture intensity and correlation count plots (Figures 9-1 

to 9-18). The Terzaghi correction has been applied to each fracture spacing dataset prior to 

correlation count analysis to adjust for fracture obliquity with respect to the wellbores 

approximately trend N-S. Since true fracture spacing is always less than or equal to the 

apparent spacing, the total scanline lengths calculated in the CorrCount application as the 

sum of the corrected spacings reflects distances less than the original interval along the 

wellbores. 

Schlumberger provides OBMI image logs for Well VM-A and Well VM-B, while 

Baker Hughes provides for Well VM-C. Image log data quality may vary due to different 

service providers. Qualitatively, the images seem to be comparable, but the potential for 

differences arising from any contrasts in image log resolution could not be assessed.  

9.1.1 Intensity and correlation count, Well VM-A 

Natural fractures in the image log of Well VM-A are located between MD 2690 m 

and 4591 m. Fractures in the log are found in in three mechanical zones: Zone 2, 3, and 4. 

Zone 3 appears in the log both before and after Zone 4 due to the trajectory of the horizontal 

wellbore shifting in and out of Zone 4 during drilling (J.F.W. Gale, personal 

communication, 2016). Zone 3, where it reappears after Zone 4, is labeled “Zone 3-2” in 

this study (Table 4). 
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Well VM-A’s image log contains a total of 514 natural fractures. Fractures that 

strike approximately WNW-ESE categorized as Set 1, and fractures that strike broadly 

ENE-WSW are as Set 2. Approximately 62% (319) of the fractures in Well VM-A are in 

Set 1. Fractures in each of Set 1 and 2 can be further divided into subsets by the mechanical 

zones they are found in. Here I present the fracture intensity and NCC results for the 

fracture sequences mostly with statistically meaningful plots. They include: Set 1 Zone 2, 

Set 1 Zone 4, Set 2 Zone 4, and Set 2 Zone 3-2. The sequences Set 1 All and Set 2 All that 

contain fractures in all mechanical zones are also analyzed and presented for reference. 

 

Well 
Fracture 

Set 
(strike) 

Fracture 
Zone 

# of 
fractures 

Scanline 
length 

(m) 

Mean 
spacing 

(m) 

Standard 
deviation 

(m) 

Min. 
spacing 

(m) 

Max. 
spacing 

(m) 
Cv 

NCC 
figure 

# 

VM-A 

Set 1 
(WNW-

ESE) 

All 319 2031.29 6.35 31.35 0.085 411.83 4.94 9-2 

2 30 514.68 16.60 58.93 0.094 326.46 3.55 9-4 

4 266 703.17 2.64 8.33 0.085 100.91 3.15 9-6 

Set 2 
(ENE-
WSW) 

All 195 1673.76 8.54 23.49 0.057 213.52 2.75 9-8 

4 148 601.14 4.06 5.65 0.057 30.22 1.39 9-10 

3-2 30 507.06 16.36 34.96 0.368 129.73 2.14 9-12 

VM-B 
One set 
(ENE-
WSW) 

All 79 1394.27 17.43 38.91 0.028 216.78 2.23 9-14 

5 68 1071.77 15.76 37.60 0.028 216.78 2.38 9-16 

VM-C 
Mixed 

(~ WNW-
ESE) 

Closed 77 1786.43 22.90 54.71 0.156 263.94 2.39 / 

Closed & 
in UVM 61 1344.83 21.69 52.27 0.156 263.94 2.41 9-18 

Table 9-1 Statistical summaries of selected image log fracture sets in Well VM-A, 
VM-B, and VM-C. UVM = Upper Vaca Muerta. 
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Set 1 fractures, VM-A 

Set 1 All has 319 fractures over a Terzaghi-corrected interval of 2031.29 m. The 

average fracture spacing is 6.35 m, and the Cv is 4.94. The normalized intensity plot 

(Figure 9-1) contains four statistically significant peaks above the upper 95% confidence 

limit at the positions of 550, 850, 1100, and 1400 m from the beginning of the interval. The 

broad central high intensity interval from 1000 to 1200 m is formed by at least three 

overlapped narrower intensity peaks. Intensity troughs are found between the large peaks. 

In the NCC plot (Figure 9-2), a broad, statistically significant correlation interval spans is 

present between the length scales of 0.15 m and 100 m. The curve dips to indistinguishable 

from random near 100 m. A broad correlation peak then reemerges centering at 300 m. 

 

 

Figure 9-1 Intensity of all Set 1 natural fractures, Well VM-A 
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Figure 9-2 Correlation count of all Set 1 natural fractures, Well VM-A. 

Set 1 Zone 2 contains 30 fractures over a Terzaghi-corrected interval of 514.68 m. 

The average fracture spacing is 16.60 m, and the Cv is 3.55. In the normalized intensity 

plot (Figure 9-3), three approximately periodically distributed intensity peaks with 

decreasing magnitudes are present at 340, 375, and 410 m. Another intensity peak also 

appears at the end of the interval. In the NCC plot (Figure 9-4), multiple statistically 

significant and consecutive correlation intervals are found before the 80 m length scale. 

The NCC curve intersects the randomized results at approximately 85 m. 
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Figure 9-3 Intensity of Set 1 natural fractures in Zone 2, Well VM-A. 

 

Figure 9-4 Correlation count of Set 1 natural fractures in Zone 2, Well VM-A. 
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Set 1 Zone 4 contains 266 fractures over a Terzaghi-corrected interval of 703.17 m. 

The average fracture spacing is 2.64 m, and the Cv is 3.15. In the normalized intensity plot 

(Figure 9-5), four peaks are found at 90 m, 280 m, 320 m, and 640 m, respectively. The 

two central peaks are approximately 50 m wide and may contain smaller overlapped peaks. 

Much of elsewhere along the intensity curve falls beneath the lower 95% confidences limit. 

The NCC plot of Set 1 Zone 4 fractures (Figure 9-6) resembles that of all Set 1 fractures. 

It similarly has a broad elevated section over smaller length scales before 80 m followed 

by a trough at 150 m and a significant peak at 300 m. 

 

 

Figure 9-5 Intensity of Set 1 natural fractures in Zone 4, Well VM-A. 
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Figure 9-6 Correlation count of Set 1 natural fractures in Zone 4, Well VM-A. 

Set 2 fractures, VM-A 

Set 2 contains a total of 195 fractures over a Terzaghi-corrected interval of 1673.76 

m. The average fracture spacing is 8.54 m, and the Cv is 2.75. In the normalized intensity 

plot (Figure 9-7), at least five intensity peaks concentrate in the middle third of the interval 

between 560 m and 1120 m. The NCC plot for all Set 2 fractures (Figure 9-8) remains 

above the upper 95% confidence limit for all length scales approximately less than 550 m 

and greater than 0.2 m. The trend of the curve roughly follows that of the upper confidence 

limit. 
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Figure 9-7 Intensity of all Set 2 natural fractures, Well VM-A. 

 

Figure 9-8 Correlation count of all Set 2 natural fractures, Well VM-A. 
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Set 2 Zone 4 contains 148 fractures over a Terzaghi-corrected interval of 601.14 m. 

The average fracture spacing is 4.06 m, and the Cv is 1.39. Two major normalized intensity 

peaks are present at positions 80 and 480, respectively (Figure 9-9). Each is about 20 m 

wide. A very minor peak is found at about 240 m. The NCC plot (Figure 9-10) is mostly 

bounded between the upper and the lower confidence limits for larger length scales. Small 

length scales up to 2 m exhibit multiple correlation peaks, however. 

 

 

Figure 9-9 Intensity of Set 2 natural fractures in Zone 4, Well VM-A. 
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Figure 9-10 Correlation count of Set 2 natural fractures in Zone 4, Well VM-A. 

Set 2 Zone 3-2 contains 30 fractures over a Terzaghi-corrected interval of 507.06 

m. The average fracture spacing is 16.36 m, and the Cv is 2.1377. The normalized intensity 

curve (Figure 9-11) contains four statistically significant peaks. The first three of which 

are almost periodically distributed at 135, 170, and 210 m. The last is at 425 m close to the 

end of the interval. All peaks are about 40 m wide. In the NCC plot (Figure 9-12), the 

correlation curve is statistically significant for length scales less than 9 m. The curve also 

peaks at 40 m and at about 220 m. Note that the curve is incomplete at length scales 

approximately between 11 m and 25 m. 
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Figure 9-11 Intensity of Set 2 natural fractures in Zone 3-2, Well VM-A. 

 

Figure 9-12 Correlation count of Set 2 natural fractures in Zone 3-2, Well VM-A. 
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9.1.2 Intensity and correlation count, Well VM-B 

In Well VM-B, 79 image log natural fractures are recorded between MD 3072 and 

4507 m within deepening mechanical zones 2, 3, 4, and 5. Unlike in Well VM-A, all the 

image log fractures are in one set striking ENE-WSW. Here I present results for all the 

fractures as well as for those exclusively in Zone 5 which contains about 86% of all the 

Well VM-B image log fractures. 

 A total of 79 image log natural fractures in Well VM-B are present over a 

Terzaghi-adjusted interval of 1394.27 m. The average fracture spacing is 17.43 m, and the 

Cv is 2.23. The normalized fracture intensity plot (Figure 9-13) contains high intensity 

peaks concentrating in the last 400 m of the interval. Two of the peaks at 1000 and 1080 m 

respectively, each 30 to 40 m wide, are followed by three overlapped narrow peaks between 

positions 1160 and 1240 m. The highest intensity interval is between positions 1300 and 

1360 m. The NCC plot (Figure 9-14) is almost entirely statistically between length scales 

1 and 200 m though the magnitude of correlation varies throughout. 

Zone 5 in Well VM-B contains 68 fractures over a Terzaghi-adjusted interval of 

1071.77 m. The average fracture spacing is 15.76 m, and the Cv is 2.38. The normalized 

fracture intensity plot (Figure 9-15) reveals the high intensity peaks that resemble those 

found in the last 400 m segment of the scanline for all fractures in Well VM-B. The shape 

of the NCC curve (Figure 9-16) is also similar to that for all the Well VM-B image log 

fractures. 
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Figure 9-13 Intensity of all image log natural fractures, Well VM-B. 

 

Figure 9-14 Correlation count of all image log natural fractures, Well VM-B. 
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Figure 9-15 Intensity of natural fractures in Zone 5, Well VM-B. 

 

Figure 9-16 Correlation count of natural fractures in Zone 5, Well VM-B. 
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9.1.3 Intensity and correlation count, Well VM-C 

A total of 103 natural fractures are present in the image log of Well VM-C. The 

measured depths of the first and the last image log fractures are 2255 and 4389 m, 

respectively. Among all image log natural fractures, 26 are picked as open and the other 

77 are as closed. The more abundant closed fractures have varying strikes with the majority 

striking broadly WNW-ESE. Natural image log fractures in VM-C are further classified by 

the geological formation such as the Quintuco formation that overlies the Vaca Muerta 

Formation (Rodrigues et al., 2009) and the upper member of the Vaca Muerta Formation 

(e.g. Garcia et al., 2013) (Upper Vaca Muerta hereinafter) where the fractures are located. 

In the image log are also seven drilling induced fractures striking E-W and 116 wellbore 

breakouts striking N-S.  

I present the NCC result for the 61 closed fractures in the Upper Vaca Muerta, the 

only geologically meaningful image log fracture sequence in Well VM-C that contains 

sufficient fractures for complete NCC evaluation. This fracture sequence present over a 

Terzaghi-corrected interval of 1344.83 m has an average fracture spacing of 21.69 m and 

a Cv of 2.41. In the normalized fracture intensity plot, two major intensity peaks, each 

about 70 m wide, are present in first 200 m of the scanline (Figure 9-17). Two minor peaks 

follow at 240 and 330 m. The remaining of the intensity interval is indistinguishable from 

random. The NCC plot (Figure 9-18) contains a negatively sloped elevated correlation 

interval for length scales less than approximately 35 m. It is followed by a double hump 

peaking at 60 and 90 m. Statistically significant troughs appear at 150, 250, and 500 m. 
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Figure 9-17 Intensity of Upper Vaca Muerta closed fractures, Well VM-C. 

 

Figure 9-18 Correlation count of Upper Vaca Muerta closed fractures, Well VM-C. 
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9.2 INTERPRETATION AND DISCUSSION, NEUQUÉN BASIN 

Interpretation of the NCC results for Vaca Muerta Formation shale fracture focuses 

on those within geologically meaningful sequences such that they represent fractures 

within the same strike set that are located in a single mechanical zone (and formation 

member). The NCC results for sequences Set 1 Zone 2 and Set 2 Zone 3-2 in Well VM-A, 

though are included in earlier results for completeness, do not reflect the true spatial 

arrangement of the fracture sequence due to few fractures available for complete NCC 

characterization and are not included for interpretation. 

9.2.1 Interpretation: Well VM-A 

Preliminary observation of the fracture intensity plot for the sequence Set 1 Zone 

containing 266 fractures suggests that fractures clusters are present throughout the scanline 

interval (Figure 9-5). The NCC pattern shows that the curve crosses the line corresponding 

to the spatial correlation value of 1 at the length scale of 80 m, which indicates the width 

of the largest fracture cluster present in the sequence (Figure 9-6). The peak at 

approximately 290 m indicates the value of the regular spacing between individual large 

clusters. Both attributes are broadly consistent with the widths of the corresponding 

fracture intensity peaks and the spacings between them. The consistently negative slope of 

the elevated NCC interval before length scale corresponding the largest cluster width 

suggest that the internal organization of the largest clusters is likely fractal. 

Approximately 76% (148) of the Set 2 image log fracture in Well VM-A are in 

Zone 4, which is in line with the high percentage of fractures present in Set 1 Zone 4 (Table 

4). The fracture intensity curve for the sequence of Set 2 Zone 4, largely bound within the 

upper and lower confidence limits, show fewer peaks and troughs relative to their Set 1 
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counterparts (Figure 9-9). Similarly, the corresponding NCC curve is largely bounded 

within the central 95% confidence interval for most length scales above 2 m. The spatial 

arrangement of fractures in this sequence is therefore best interpreted as statistically 

indistinguishable from random.  

Though as the second most numerous fracture sequences in each of Set 1 and Set 

2, fractures present in Zone 2 and Zone 3-2 are too few for their respective NCC results to 

be statistically meaningful. 

9.2.2 Interpretation: Well VM-B 

For the one set of ENE-striking fractures in Zone 5 of Well VM-B, the NCC pattern 

suggests that all fractures in Zone 5 may be considered part of a large cluster that is as wide 

as 350 m which is determined from the length scale where the NCC curve crosses the 

spatial correlation value of one (Figure 9-14). The broadly negative slope for the NCC 

curve segment before the length scale of 20 m indicates the presence of internally fractal 

clusters within the overarching cluster, and 20 m may be the width of such clusters. The 

interpretation of the 350-m-wide cluster is broadly consistent with width of the intensity 

interval bounding the four largest intensity peaks near the end of the scanline (Figure 9-

13), and that the 20 m width for potentially fractal clusters is consistent with the widths of 

the peaks inside the interval. The rise in spatial correlation near the length scale of 1000 m 

is from matching fractures within the small intensity peak at position 280 and fractures 

found near the end (Figure 9-13). 

9.2.3 Interpretation: Well VM-C 

In Well VM-C, the NCC pattern for the closed fractures in the Upper Vaca Muerta 

suggests that the fractures are arranged in regularly spaced fractal clusters that are up to 35 
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m in width with a common inter-cluster spacing of 90 m (Figure 9-18). The small 

statistically significant correlation signal at 180 m likely is a harmonic of the dominant 90 

m spacing. The interpretation of fracture cluster distribution is broadly consistent with the 

separation and dimension of the major intensity peaks in the associate plot (Figure 9-17). 

9.2.4 Discussion: Neuquén Basin wells 

The observation of the Cv’s of the Set 1 fracture sequences versus the Cv’s of the 

Set 2 sequences (Table 4) suggests that Set 1 fractures in each mechanical zone are 

statistically more clustered than the Set 2 fractures within the same zone. Interpretation of 

the respective NCC results for Set 1 and Set 2 fractures in Mechanical Zone 4 of Well VM-

A suggests drastically different fracture spatial arrangements: whereas the WNW-striking 

Set 1 fractures are concentrated in fractal clusters, no statistically significant cluster is 

formed by the ENE-striking Set 2 fractures (Table 5).  

 

Well Fracture Set Zone NCC Interpretation 
Cluster 
Width 

(m) 

Cluster 
Spacing 

(m) 

VM-A 

Set 1 
(WNW-ESE) 4 Regularly spaced fractal clusters 80 290 

Set 2 
(ENE-WSW) 4 Indistinguishable from random n/a n/a 

VM-B One set 
(ENE-WSW) 5 Clustered individuals 

(+ fractal clusters) 
350 
(20) One big cluster 

VM-C Mixed 
(~ WNW-ESE) 

Closed 
& in UVM Regularly spaced fractal clusters 3.5 9 

Table 9-2 Summary of NCC interpretation for selected fracture sequences in Vaca 
Muerta image logs. Numbers within parentheses indicates attributes of 
internal clusters. UVM = Upper Vaca Muerta. 
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For Well VM-A, the association wellbore mechanical stratigraphy from the 

operator suggests that Mechanical Zone 4 correlates with a carbonate bed beneath the 

targeted black shale. The horizontal wellbore of VM-A briefly deviated into this underlying 

limestone layer during drilling before subsequently returning to the shale above (personal 

communication, 2015), leading to Mechanical Zone 3 representing the black shale interval 

to appear both before and after the Zone 4 carbonate layer along the wellbore. The 

information on the wellbore trajectory of VM-A explains the reemergence of Mechanical 

Zone 3 behind Zone 4 that may otherwise be interpreted as due to lateral reservoir 

heterogeneity. It also allows for the interpretation of the origin behind the inferred fracture 

cluster exclusive to central scanline interval of VM-A (Figures 9-1 and 9-5). As discussed 

previously, a correlation exists between rock mechanical properties and fracture cluster 

styles and attributes (e.g. Laubach et al., 2009). In the case of Set 1 natural fractures, the 

mechanical contrast-driven preferred fracture clustering in VM-A is suggested through 

both the greater number of fracture clusters and the degree of statistically significant non-

random clustering within the fracture-prone carbonate of Zone 4 relative to conditions in 

the black shale of Zone 3, as indicated by the NCC results. For Well VM-C, the NCC 

results suggest that statistically significant, regularly spaced fractal clusters of closed 

natural fracture are present near the top of the Upper Vaca Muerta, the stratigraphically 

upper-most member of the Vaca Muerta Formation that represents a carbonate platform 

(Garcia et al., 2013). The style of clustering among the analyzed broadly WNW-striking 

fractures in the carbonate-rich Upper Vaca Muerta are in line with the presence similarly 

orientated fracture clusters inferred in the carbonate layer of Well VM-A, though fracture 

cluster dimensions and spacings differ likely due to differing subsurface conditions.  
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 Chapter 10: Results and Discussion: Horn River Basin 

10.1 INTENSITY AND SPATIAL ARRANGEMENT, HORN RIVER BASIN  

For spacing datasets of Well HRB-1 and HRB-2 categorized by fracture types and 

orientations, I present analytical results include descriptive statistics, Cv’s, as well as 

statistically meaningful normalized intensity and NCC plots from sufficient spacing input. 

The Terzaghi correction is not applied to datasets from Well HRB-1 or Well HRB-2 at the 

time of spacing collection. Fracture spacings or length scale values discussed in the results 

represent differences between the raw measured depths of two fractures in the image logs. 

In other words, the patterns are valid but the absolute values need correction for obliquity. 

10.1.1 Intensity and correlation count, Well HRB-1  

In Well HRB-1, a total of 6124 image log fractures are categorized as conductive, 

resistive, drilling induced, or as faults. The fractures can be subcategorized by their 

orientations: Set 1 for NE-striking fractures and Set 2 for NW-striking. In addition, the 

operator has pre-classified each image log fracture as continuous, discontinuous (fractures 

not conductive/resistive throughout its trace), or bed-bound (fracture terminating against a 

bedding plane). Spacings, descriptive statistics, and the coefficients of variation are 

calculated for the fracture sequences categorized by the scheme above (Table 6). Figure 

10-2 to Figure 10-34 show the normalized fracture intensity and the correlation count 

results for selected image fracture sequences in Well HRB-1. The scanline lengths of each 

fracture sequence, without the Terzaghi correction, represent true measured distances along 

the wellbore. The true vertical depths (TVD) of the image log’s interval is plotted against 

the associated measure depths (MD) for horizontal wellbore trajectory approximation and 

for reference of fracture intensity peak positions (Figure 10-1c).  
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Well Fracture 
type 

Set 
(average 
strike) 

# of  
fractures 

Scanline 
length 

(m) 

Mean 
spacing 

(m) 

Standard 
deviation 

(m) 

Min. 
spacing 

(m) 

Max. 
spacing 

(m) 
Cv 

NCC 
figure 

# 

HRB 
-1 

Conductive 

Continuous 
(NE-SW) 965 1104.64 1.14 3.05 0.015 61.48 2.68 10-3 

Discontinuous 
(NE-SW) 3052 1112.04 0.36 0.57 0.015 8.78 1.59 10-7 

Bed-bound 
(NE-SW) 113 919.44 8.13 22.44 0.028 105.34 2.76 10-9 

All 
(NE-SW) 4130 1112.10 0.27 0.42 0.013 8.76 1.56 10-11 

Resistive 

All 
(Mixed) 1188 1109.47 0.93 1.52 0.005 19.72 1.63 10-14 

Set 1 
(NE-SW) 872 1100.61 1.26 2.26 0.010 19.72 1.80 10-16 

Set 2 
(NW-SE) 497 990.07 1.99 4.21 0.015 39.72 2.12 10-18 

Continuous 
Set 2 

(NW-SE) 
293 988.25 3.38 7.11 0.015 68.11 2.10 10-21 

Discontinuous 
(~ NW-SE) 95 899.82 9.47 15.51 0.071 95.21 1.64 10-23 

Bed-bound 
(NW-SE) 133 915.00 6.88 12.61 0.048 59.59 1.83 10-25 

Natural 
(Conductiv

e w/ 
Healed) 

All 
Set 1 

(NE-SW) 
5002 1105.82 0.22 0.31 <0.001 8.78 1.39 10-32 

Drilling-
induced 

Single set 
(NE-SW) 556 1096.06 1.97 7.70 0.023 81.34 3.91 10-27 

w/ conductive 
continuous 
(NE-SW) 

1521 1099.42 0.72 2.00 0.015 52.23 2.77 10-30 

Fault Single set 
(~ NE-SW) 22 952.41 43.29 64.75 0.310 241.48 1.50 10-34 

Table 10-1 Statistical summaries on image log fracture sets in Horn River Basin Well 
HRB-1. Fracture sets in red contain NCC results for select internal high 
intensity interval(s) and are presented in Figures 10-64 to 10-67 for cross-
well comparison.  
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Figure 10-1 (a) Well HRB-1 inclination versus Measured Depth (m). (b) Change in 
inclination value with respect to best fit regression value. (c) True Vertical 
Depth (TVD) of the wellbore with respect to Measured Depth. Measured 
Depth interval begins at the first healed fracture observed. 
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Conductive fracture sets, HRB-1 

Conductive fractures in Well HRB-1 are divided into three subsets: continuous, 

discontinuous, and bed-bound. All conductive fractures broadly strike NE-SW and 

therefore there is no further need for set-subdivision by strikes.  

There are 965 conductive continuous fractures over an interval of 1104.64 m. The 

average fracture spacing is 1.14 m, and the Cv is 2.68. The normalized fracture intensity 

plot (Figure 10-2) shows four composite intensity peaks with 60 to 80 m widths. The first 

pair of peaks is located between 400 and 600 m in the middle of the scanline, and the 

second pair is near the end of the scanline after 900 m. Troughs appear semi-periodically 

between the peak pairs along the scanline. The NCC plot (Figure 10-3) is statistically 

significant and negatively sloped for length scales less than 20 m. The curve has a double 

hump interval over 50 and 90 m before it intercepts the randomized data curve at 

approximately 150 m. The curve also has an individual peak at 500 m. NCC analysis of the 

266 fractures in the high intensity interval between positions 200 m and 400 m reveals 

statistically significant high spatial correlation for length scales between 0.15 and 20 m 

(Figure 10-4). Two prominent peaks are present at the length scales 6 m and 12 m. The 

correlation peak at approximately 120 m should be regarded as an artifact, for the 

corresponding length scale over half of the total interval length. Correlation count analysis 

of the 351 fractures in high intensity interval between positions 900 m and 1100 m reveals 

a decreasing elevated interval between length scale 0.2 to 15 m and a single peak at 50 m 

(Figure 10-5). 
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Figure 10-2 Intensity of conductive continuous fractures, Well HRB-1. 

 

Figure 10-3 Correlation count of conductive continuous fractures, Well HRB-1. 
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Figure 10-4 Correlation count of conductive continuous fractures, intensity plot position 
400 to 600 m, Well HRB-1. 

 

Figure 10-5 NCC of conductive continuous fractures, intensity plot position 900 to 1100 
m, Well HRB-1. 
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There are 3052 conductive discontinuous fractures over an interval of 1112.04 m. 

The average fracture spacing is 0.36 m, and the Cv is 1.58. Discontinuous conductive 

fractures account for approximately 74% of all conductive fractures in Well HRB-1. The 

normalized fracture intensity plot (Figure 10-6) shows alternative placement of statistically 

significant peaks and troughs within the interval. Individual peaks and troughs are 

approximately 40 m wide on average. The NCC plot (Figure 10-7) remains statistically 

significant above the upper 95% confidence limit through approximately the 300 m length 

scale where it intercepts the randomized data curve. The correlation curve has a 

consistently negative slope for length scales less than 10 m. The trend of the curve flattens 

after 10 m, and multiple wide, statistically significant correlation humps subsequently 

appear centering above 30, 70, and 200 m.  

 

 

Figure 10-6 Intensity of conductive discontinuous fractures, Well HRB-1. 
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Figure 10-7 Correlation count of conductive discontinuous fractures, Well HRB-1. 

There are 113 conductive bed-bound fractures over an interval of 919.44 m. The 

average fracture spacing of 8.13 m, and the Cv is 2.76. The normalized fracture intensity 

plot (Figure 10-8) contains multiple narrow intensity peaks approximately at positions 280, 

520, 570, 690, 760, and 850 m. The peaks are approximately 30 m on average. The NCC 

curve (Figure 10-9) has a decreasing elevated portion before 6 m. Low amplitude yet 

statistically significant correlation peaks also appear at length scales 25, 50, 80, and 180 

m. A sharp drop in correlation count appears as a missing curve segment is present between 

length scales 30 and 40 m. 
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Figure 10-8 Intensity of conductive bed-bound fractures, Well HRB-1. 

 

Figure 10-9 Correlation count of conductive bed-bound fractures, Well HRB-1. 
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The fracture superset of all 4130 continuous, discontinuous, and bed-bound 

conductive fractures spans an interval of 1112.10 m. The average fracture spacing is 0.27 

m, and the Cv is 1.56. The normalized fracture intensity plot contains peak intervals 

separated by individual troughs (Figure 10-10). The two highest peaks concentrate in the 

end portion of the interval between 900 and 1100 m. The correlation curve in the NCC plot 

(Figure 10-11) remains statistically significant for all length scales up to approximately 

300 m where it intercepts the randomized data curve, and a peak reappears then at near 450 

m. The curve is negative in slope and approximately linear until length scale 6m, and peaks 

rise at 50 and 200 m in the flat-trending curve segment beyond. NCC analysis of the 936 

fractures in the high intensity peak interval between positions 900 and 1100 m (Figure 10-

12) reveals a low-amplitude, statistically significant spatial correlation curve segment 

decreasing to 1 between length scales 0.1 and 25 m. It then rises above the upper confidence 

limit and peaks at 50 m. 
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Figure 10-10  Intensity of all conductive fractures, Well HRB-1. 

 

Figure 10-11  Correlation count of all conductive fractures, Well HRB-1. 
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Figure 10-12  Correlation count of all conductive fractures, intensity plot position 900 to 
1100 m, Well HRB-1. 

Resistive fracture sets, HRB-1 

Resistive fractures in Well HRB-1 are categorized as two sets by fracture 

orientations: Set 1 for NE-striking fractures and Set 2 for NW-striking fractures. There are 

approximately twice as many Set 1 resistive fractures as Set 2 (Table 6). 

There is a total of 1188 resistive fractures of all orientations over an interval of 

1109.47 m. The average fracture spacing is 0.93 m, and the Cv is 1.63. The normalized 

fracture intensity plot (Figure 10-13) contains three large intensity peaks at 240, 640, and 

1080 m and multiple smaller peaks and troughs in between. The NCC curve (Figure 10-

14) is statistically significant and has a negative slope for length scales less than 30 m. 

After the two troughs at 40 and 90 m, the curve peaks at 200 and 400 m. 
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Figure 10-13  Intensity of all resistive fractures, Well HRB-1. 

 

Figure 10-14  Correlation count of all resistive fractures, Well HRB-1. 
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There are 872 resistive Set 1 fractures over an interval of 1100.61 m. The average 

fracture spacing is 1.26 m, and the Cv is 1.80. Both the normalized fracture intensity plot 

(Figure 10-15) and the NCC plot (Figure 10-16) mirror those for all resistive fractures. 

Note that an absolute majority (73.4%) of all the resistive fractures are in Set 1. Also note 

that, while fracture spacings in resistive Set 1 are geologically meaningful, those in 

resistive Set All (as analyzed in Figures 10-14 and 10-14) are not and are included for 

completeness sake.  

 

 

Figure 10-15  Intensity of resistive Set 1 fractures, Well HRB-1. 
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Figure 10-16  Correlation count of resistive Set 1 fractures, Well HRB-1. 

There are 497 resistive Set 2 fractures over an interval of 990.07 m. The average 

fracture spacing is 1.99 m, and the Cv is 2.12. The normalized fracture intensity plot 

(Figure 10-17) contains a large central high intensity interval between 500 and 600 likely 

formed by overlapped neighboring peaks. Three smaller peaks appear at 260, 680, and 970 

m along the scanline. Six major troughs are present centering positions 20, 220, 420, 620, 

820, and 900 m. The statistically significant elevated interval in the NCC plot (Figure 10-

18) ends approximately at length scale 50 m. It is followed by two troughs at 70 and 140 

m and two peaks at 200 and 430 m. NCC analysis of the 153 fractures in the peak intensity 

interval between positions 450 and 650 m reveals that the spatial correlation curve remains 

mostly statistically significant for all length scales between 0.06 and approximately 60 m 
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(Figure 10-19). The curve’s saw-tooth pattern for length scales less 2 m contrasts with the 

smooth plateau pattern for those exceeding 2 m. 

 

 

Figure 10-17  Intensity of resistive Set 2 fractures, Well HRB-1. 
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Figure 10-18  Correlation count of resistive Set 2 fractures, Well HRB-1. 

 

Figure 10-19  Correlation count of resistive Set 2 fractures, intensity plot position 450 to 
650 m, Well HRB-1. 
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The NW-SE striking Set 2 resistive fractures can be further categorized into three 

fracture subsets: continuous, discontinuous, and bed-bound. Note that certain resistive Set 

2 fractures have been assigned as both discontinuous and bed-bound by the operator, and 

therefore the sum of the fractures in the three subsets exceeds the number in the original 

undivided set.  

There are 293 resistive continuous fractures over an interval of 988.25 m. The 

average fracture spacing is 3.38 m, and the Cv is 2.10. The normalized fracture intensity 

plot (Figure 10-20) contains peaks in the intervals between positions 250 and 350 m, 500 

and 600 m, and 950 and 1000 m. The NCC curve (Figure 10-21) features a linearly 

decreasing elevated interval ending at length scale 10 m. Two singular peaks are then found 

at 40 and 450 m with a troughs appearing in between at 80 and 150 m.  

 

 

Figure 10-20  Intensity of Set 2 resistive continuous fractures, Well HRB-1. 
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Figure 10-21  Correlation count of Set 2 resistive continuous fractures, Well HRB-1. 

There are 95 resistive discontinuous fractures over an interval of 899.82 m. The 

average fracture spacing is 9.47 m, and the Cv is 1.64. The normalized fracture intensity 

plot (Figure 10-22) features a short, narrow peak at 160 m and two high and wide composite 

peak intervals centering over positions 600 and 840 m. The latter two are each 

approximately 70 m wide. The NCC curve (Figure 10-23) is statistically significant for 

most length scales less than 40 m except for close to 0.2 or 1.5 m. The curve first drops 

beneath the lower confidence limit into an extended trough from 50 to approximately 180 

m after crossing the randomized data curve at length scale 45 m. It then peaks at 

approximately 250 m and bottoms again at 350 m. 
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Figure 10-22  Intensity of resistive discontinuous fractures, Well HRB-1. 

 

Figure 10-23  Correlation count of resistive discontinuous fractures, Well HRB-1. 
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There are 133 resistive bed-bound fractures over an interval of 915.00 m. The 

average fracture spacing is 6.88 m, and the Cv is 1.83. The normalized fracture intensity 

plot (Figure 10-24) contains three large intensity peak intervals near positions 220 m, 520 

m, and 820 m with the middle one formed by at least two overlapped peaks. The NCC 

curve (Figure 10-25) contains a statistically significant and decreasing correlation interval 

that first crosses the randomized data curve approximately at length scale 45 m. The curve 

peaks at again near 300 m. 

 

 

Figure 10-24  Intensity of resistive bed-bound fractures, Well HRB-1. 
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Figure 10-25  Correlation count of resistive bed-bound fractures, Well HRB-1. 

Other fracture sets, HRB-1 

Other sinusoidal features classified in Well HRB-1’s image log include drilling 

induced fractures and faults. This study also creates and analyzes two fracture supersets. 

One superset includes all drilling induced fractures and all the conductive fractures that 

similarly strike NE-SW, and the other includes all NE-striking natural (i.e. non-drilling-

induced) fractures. 

There are 556 drilling induced fractures over an interval of 1096.06 m. The average 

fracture spacing is 1.97 m, and the Cv is 3.91. The normalized fracture intensity plot 

(Figure 10-26) contains a singular intensity peak at position 320 m that is approximately 

50 m wide. The central portion of the plot extending approximately from 560 to 720 m is 

a broad, high intensity band formed by at least three neighboring peaks with increasing 
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magnitude. Intensity troughs are present semi-regularly elsewhere in the plot. The NCC 

plot (Figure 10-27) contains a relatively smooth and negatively sloped high correlation 

interval. It crosses the random data curve at 150 m, bottoms into a trough at 200 m, and 

peaks again at 350 m. NCC analysis of the 289 fractures in the dominant peak intensity 

interval between positions 550 and 750 m reveals an elevated and decreasing correlation 

count curve that briefly dips beneath the upper confidence limit at 25 m before peaking 

again at 40 m (Figure 10-28). 

 

 

Figure 10-26  Intensity of drilling induced fractures, Well HRB-1. 
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Figure 10-27  Correlation count of drilling induced fractures, Well HRB-1. 

 

Figure 10-28  Correlation count of drilling induced fractures, intensity plot position 550 
to 750 m, Well HRB-1. 
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The fracture superset containing all drilling-induced and all continuous conductive 

fractures was created to investigate the hypothetical extreme case scenario where all 

continuous conductive fractures are in fact incorrectly categorized drilling induced 

fractures. The set contains 1521 fractures over an interval of 1099.42m. The average 

fracture spacing is 0.72 m, and the Cv is 2.77. The normalized intensity plot (Figure 10-

29) shows three statistically significant, high intensity portions separated by troughs: first 

an intensity peak at position 310 m after an extended saw-toothed trough interval, then a 

broad band of overlapping peaks between 520 and 720 m with the largest peak at 660 m, 

and lastly two adjacent peaks at 980 and 1030 m near the end of the scanline. The NCC 

plot (Figure 10-30) consists of a smooth, near-linearly decreasing and elevated interval. It 

crosses the randomized data at length scale 180 m, bottoms at 200 m, and then peaks again 

at 400 m after. The segment from 20 to 180 m appears to be have at least two peaks 

embedded within. 
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Figure 10-29  Intensity of drilling induced fractures and continuous conductive fractures, 
Well HRB-1. 

 

Figure 10-30  NCC plot of Well HRB-1 drilling fractures & continuous conductive 
fractures. 
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The superset of 5002 natural fracture in Well HRB-1 contains 4130 NE-striking 

conductive fractures and 872 NE-striking resistive fractures (few NW-striking Set 2 

conductive fractures are present) in a 1105.82 m interval. The average fracture spacing is 

approximately 0.22 m, and the Cv is approximately 1.39, which lower than those of the 

constituent sets. The normalized fracture intensity curve (Figure 10-31) contains primarily 

troughs between positions 0 and 200 m. The subsequent segment before 600 m containing 

is mostly bounded between the upper and lower 95% confidence limits with sporadic minor 

peaks and troughs. The first major peak is found at 640 m and is immediately followed by 

moderate troughs at 680 m and 750 m. Two intermediate peaks then follows at 800 and 

850 m, and the two largest peaks emerge lastly near positions 1000 and 1050 m. The highly 

smooth NCC curve (Figure 10-32) is above the upper 95% confidence limit everywhere 

between 0.09 and 550 m. The negatively sloped portion of the curve flattens for length 

scales over 8m. 

There are 22 faults over an interval of 952.41 m. The average spacing between the 

faults is 43.29 m, and the Cv is 1.49. Due to limited fault spacing data, the corresponding 

fracture intensity (Figure 10-33) and the NCC curves (Figure 10-34) are incomplete and 

are therefore uninformative. 
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Figure 10-31  Intensity of all natural Set 1 fractures, Well HRB-1. 

 

Figure 10-32  Correlation count of all natural Set 1 fractures, Well HRB-1. 



 
 
 

108 

 

Figure 10-33  Intensity of faults, Well HRB-1. 

 

Figure 10-34  Correlation count of faults, Well HRB-1. 
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10.1.2 Intensity and correlation count, Well HRB-2 

A total of 7086 fractures in Well HRB-2 are categorized as either conductive or 

‘healed’ in the original image log. The healed fractures are resistive image log fractures 

that are presumably sealed and will be referred to as “sealed” hereinafter. No fracture in 

Well HRB-2 was picked as “drilling induced”. Each conductive or sealed fracture can be 

further categorized into subsets by their strikes: Set 1 if striking NE-SW, Set 2 if NW-SE, 

and Set 3 if E-W. Table 7 summarizes the CorrCount-calculated statistics of the fracture 

subsets along with those of the three supersets containing all conductive and sealed 

fractures in the same strike subset. Figure 10-36 to Figure 10-63 show the normalized 

fracture intensity and the correlation count results for selected image fracture sequences in 

Well HRB-1. The true vertical depths (TVD) of the image log’s interval is plotted against 

the associated measure depths (MD) for horizontal wellbore trajectory approximation and 

for reference of fracture intensity peak positions (Figure 10-35).  
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Well Fracture 
type 

Set 
(average 
strike) 

# of 
fractures 

Scanline 
length 

(m) 

Mean 
spacing 

(m) 

Standard 
deviation 

(m) 

Min. 
spacing 

(m) 

Max. 
spacing 

(m) 
Cv 

NCC 
figure 

# 

HRB 
-2 

Conductive 

All 
(Mixed) 4416 1260.05 0.28 0.75 0.001 32.32 2.67 10-37 

Set 1 
(NE-SW) 3967 1250.45 0.31 0.84 0.007 32.32 2.68 10-39 

Set 2 
(NW-SE) 296 1246.77 4.19 16.39 0.031 204.19 3.91 10-42 

Set 3 
(E-W) 153 1246.63 8.09 16.62 0.026 121.64 2.05 10-45 

Healed 
(i.e. sealed) 

All 
(Mixed) 2670 1255.87 0.47 1.33 0.001 32.53 2.84 10-48 

Set 1 
(NE-SW) 118 1246.60 10.47 19.72 0.043 124.03 1.88 10-50 

Set 2 
(NW-SE) 1111 1247.59 1.12 5.36 0.002 141.00 4.78 10-53 

Set 3 
(E-W) 1441 1247.92 0.87 2.00 0.004 32.53 2.31 10-56 

Natural 
(Conductive 
w/ Healed) 

Set 1 
(NE-SW) 4085 1249.05 0.30 0.83 0.002 32.32 2.71 10-59 

Set 2 
(NW-SE) 1407 1106.88 0.79 2.06 0.002 34.94 2.62 10-61 

Set 3 
(E-W) 1594 1248.06 0.78 1.75 0.002 32.53 2.24 10-63 

Table 10-2 Statistical summaries on image log fracture sets in Horn River Basin Well 
HRB-2. Fracture sets in red contain NCC results for select internal high 
intensity interval(s) and are presented in Figures 10-64 to 10-67 for cross-
well comparison.  
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Figure 10-35  (a) Well HRB-2 inclination versus Measured Depth (m). (b) Change in 
inclination value with respect to best fit regression value. (c) True Vertical 
Depth of the wellbore with respect to Measured Depth. Measured Depth 
interval begins at the first sealed fracture observed. 
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Conductive fracture sets, HRB-2 

A total of 4416 conductive fractures in three subsets by strikes are present in a 

1260.05 m long wellbore interval. The average fracture spacing is 0.28 m, and the Cv is 

2.67. The normalized fracture intensity curve contains numerous neighboring peaks that 

form a statistically significant high intensity interval extending approximately from the 

beginning of the interval to position 500 m (Figure 10-36). The portion of the curve from 

600 m to the end largely fall beneath the lower confidence limit, indicating a statistically 

significant lack of fractures in the deeper half of the image log interval. The NCC curve 

(Figure 10-37) contains a single broad, smooth, and predominantly linearly decreasing 

elevated interval between length scales 0.07 m and 450 m. 

 

 

Figure 10-36  Intensity of all conductive fractures, Well HRB-2. 
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Figure 10-37  Correlation Count of all conductive fractures, Well HRB-2. 

Conductive fractures in Well HRB-2 are divided into the NE-striking Set 1, NW-

striking Set 2, or E-striking Set 3. Set 1 contains approximately 90% of all the conductive 

fractures whereas Set 3 only contains approximately 3.5%. Note that the Cv of Set 2 

fractures is the highest of the three sets while the Cv of Set 3 is the lowest (Table 7). 

There are 3967 conductive Set 1 fractures over an interval of 1250.45 m. The 

average fracture spacing is 0.31 m, and the Cv is 2.68. Both the normalized fracture 

intensity plot (Figure 10-38) and the NCC plot (Figure 10-39) for conductive Set 1 fractures 

mirror those for all conductive fractures (Figures 10-36, 10-37). Note that although the 

results for Set 1 and Set “All” of the conductive fractures (and of the sealed fractures to be 

presented soon) are visually similar, those for Set 1 are geologically meaningful while 

those for the latter are not and are included for completeness sake. NCC analysis of the 
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3066 conductive Set 1 fractures concentrated in high intensity interval between positions 

0 and 600 m reveals a negatively sloped elevated correlation interval from length scale 0.2 

to 15 m followed by a peak at 30 m (Figure 10-40). Note that the correlation count peak at 

30 m can be seen embedded in the NCC curve for the overall set (Figure 10-39). 

 

 

Figure 10-38  Intensity of conductive Set 1 fractures, Well HRB-2. 



 
 
 

115 

 

Figure 10-39  Correlation count of conductive Set 1 fractures, Well VM-A. 

 

Figure 10-40  Correlation count of conductive Set 1 fractures, intensity plot position 0 to 
600 m, Well HRB-2.  
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There are 296 conductive Set 2 fractures over an interval of 1246.77 m. The average 

fracture spacing is 4.19 m, and the Cv is 3.91. The normalized fracture intensity curve is 

mostly beneath the lower confidence limit in the 600 m of the interval (Figure 10-41). The 

first peak is located approximately at position 760 m, and the intensity curve remains above 

the upper limit from 840 m to 1040 m due to multiple overlapped tall peaks. The NCC plot 

(Figure 10-42) is statistically significant for all length scales greater than 0.06 m and less 

than 280 m. The curve overall trends negatively and has visible internal peaks at length 

scales 30 m, 60 m, and 200 m. NCC analysis of the 204 fractures (~70% of the 296 

fractures) in the high intensity interval between positions 820 and 1060 m reveals a 

negatively sloped correlation interval for length scales less than 10 m followed by a double 

hump at length scales 30 and 65 m (Figure 10-43). 

 

 

Figure 10-41  Intensity of conductive Set 2 fractures, Well HRB-2. 
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Figure 10-42  Correlation count of conductive Set 2 fractures, Well HRB-2. 

 

Figure 10-43  Correlation count of conductive Set 2 fractures, intensity plot position 820 
to 1060 m, Well HRB-2  
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There are 153 conductive Set 3 fractures over an interval of 1246.63 m. The average 

fracture spacing is 8.09 m, and the Cv is 2.05. The normalized fracture intensity curve 

(Figure 10-44) peaks greatly at the beginning of the scanline and, after four smaller yet still 

statistically significant peaks approximately at positions 90, 140, 190 m, and 280 m, 

becomes statistically indistinguishable from random in the remaining of the interval. The 

NCC plot (Figure 10-45) contains a broad elevated section for length scales less than 4 m. 

The slope of the interval rapidly decreases between 1 m and 4 m. Multiple statistically 

significant and sometimes overlapped peaks appear subsequently at 6, 7.5, 9, 20, 35, 70, 

100, and 170 m, and troughs appear near 45, 200, 350, and 500 m. NCC analysis of the 35 

fractures in the highest intensity peak before position 80 m reveals an elevated correlation 

region that crosses the random data curve at approximately 3.5 m and is followed by a 

broad peak near 8 m (Figure 10-46). There is a statistically significant lack of correlation 

count for length scales larger than approximately 22 m. 
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Figure 10-44  Intensity of conductive Set 3 fractures, Well HRB-2. 

 

Figure 10-45  Correlation count of conductive Set 3 fractures, Well HRB-2 
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Figure 10-46  Correlation count of conductive Set 3 fractures, intensity position 0 to 80 
m, Well HRB-2. 

Sealed fracture sets, HRB-2 

A total of 2670 sealed fractures were found over an interval of 1255.87 m. The 

average fracture spacing is 0.47 m, and the Cv is 2.84. The normalized fracture intensity 

plot (Figure 10-47) shows four high intensity intervals between 0 and 600 m with widths 

decreasing from 180 m for the first interval to 30 m for the last. An extended trough is 

present between position 760 m and the end of the interval. The NCC plot (Figure 10-48) 

shows a smooth, broad elevated section for length scales between 0.02 to 400 m. Spatial 

correlation for length scales less than approximately 0.002 m is statistically 

indistinguishable from random. 



 
 
 

121 

 

Figure 10-47  Intensity of all sealed fractures, Well HRB-2 

 

Figure 10-48  Correlation count of alls fractures, Well HRB-2. 
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Sealed fractures in Well HRB-2 can also be separated into three sets by fracture 

strikes similar to the categorization of the conductive fractures (Table 7). Opposite of the 

distribution of Well HRB-2’s conductive fractures where most of them are found in Set 1 

and fewest are in Set 3, less than 5% of all the sealed fractures in Well HRB-2 belong in 

Set 1 while more than half (54%) are in the E-striking Set 3. Note that, similar to how the 

Cv of conductive Set 2 fractures rank, sealed Set 2 fractures also has the highest Cv out of 

the three sets. 

There are 118 sealed Set 1 fractures over an interval of 1246.60 m. The average 

fracture spacing is 10.47 m, and the Cv is 1.88. The normalized fracture intensity plot 

(Figure 10-49) contains a single high intensity peak between positions 200 m and 300 m. 

Fracture intensity values elsewhere in the curve are statistically indistinguishable from 

those of a random set. The NCC curve is (Figure 10-50) statistically significant fore length 

scales less than 90 m that contains multiple internal peaks. Spatial correlation overall 

decreases steadily from length scale 0.4 m to 7 m, at which point the curve reverses the 

trend and rises to a significant peak at 14 m where it again begins descending. The curve 

crosses the randomized data curve at length scale 100 m and peaks afterward near 180 m. 

NCC analysis of the 71 fractures (60% of the original 118 fractures) in the high intensity 

interval between positions 100 and 350 m two elevated, decreasing correlation intervals 

(Figure 10-51). It resembles the shape of correlation curve from the complete set except 

that the length scales from 6 to 8 m are no long statistically significant and that the previous 

peak at length scale 180 m is absent. 
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Figure 10-49  Intensity of sealed Set 1 fractures, Well HRB-2. 

 

Figure 10-50  Correlation count of sealed Set 1 fractures, Well HRB-2. 
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Figure 10-51  Correlation count of sealed Set 1 fractures, intensity position 100 to 350 
m, Well HRB-2. 

There are 1111 sealed Set 2 fractures over an interval of 1247.59 m. The average 

fracture spacing is 1.12 m, and the Cv is 4.78. The normalized fracture intensity plot 

(Figure 10-52) contains multiple high intensity peaks in approximately four group before 

position 600 m. There is a statistically significant lack of fractures at the 95% confidence 

level beyond position 640 m. The NCC plot (Figure 10-53) is statistically significant for 

all length scales between approximately 0.03 and 450 m. NCC analysis of the high intensity 

zone before position 650 m that collectively contains 1043 fractures (~ 94% of all sealed 

Set 2 fractures) reveals an elevated, decreasing correlation interval that crosses the random 

data curve at 20 m before peaking again at 30 m (Figure 10-54). 
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Figure 10-52  Intensity of sealed Set 2 fractures, Well HRB-2. 

 

Figure 10-53  Correlation count of sealed Set 2 fractures, Well HRB-2 
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Figure 10-54  Correlation count of sealed Set 2 fractures, intensity position 0 to 650 m, 
Well HRB-2. 

There are 1441 sealed Set 3 fractures over an interval of 1247.92 m. The average 

fracture spacing is 0.87 m, and the Cv is 2.31. The normalized fracture intensity plot 

(Figure 10-55) contains three separate high intensity intervals with widths from 180 to 60 

m. The NCC plot (Figure 10-56) contains a wide elevated decreasing correlation interval 

from 0.05 to approximately 300 m. NCC analysis of the 495 fractures in the high intensity 

interval between positions 20 and 220 m reveals a saw-toothed and broad elevated 

correlation interval for length scales between 0.2 and 70 m (Figure 10-57). An off-trended 

drop in spatial correlation occurs for length scales between 10 and 20 m. 
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Figure 10-55  Intensity of sealed Set 3 fractures, Well HRB-2. 

 

Figure 10-56  Correlation count of sealed Set 3 fractures, Well HRB-2. 
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Figure 10-57  Correlation count of sealed Set 3 fractures, intensity position 20 to 220 m, 
Well HRB-2. 

Natural fracture supersets, HRB-2 

Three natural fracture supersets – Set 1, 2, and 3 – were created to study spacings 

between conductive and sealed fractures in Well HRB-2 that share similar orientations. 

The NE-striking superset, Set 1, contains 4085 fractures over a 1249.05 m interval. The 

average spacing is approximately 0.30 m, and the Cv is approximately 2.71. The 

Normalized intensity plot (Figure 10-58) contains a statistically significant high intensity 

interval from zero to approximately 550 m. A trough interval from near 600 m to the end 

of the scanline. The NCC curve (Figure 10-59) is above the upper 95% confidence limit 

for all length scales between 0.07 m and 400 m. The interval from 0.2 to 200 decreases 

near-linearly with a small internal peak visible at 30 m. Both the intensity and the NCC 

plots are similar in shapes to those of conductive Set 1 fractures (Figures 10-38, 10-39). 
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Figure 10-58  Intensity of all Set 1 natural fractures, Well HRB-2. 

 

Figure 10-59  Correlation count of all Set 1 natur al fractures, Well HRB-2. 
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The NW-striking superset Set 2 contains 1407 fractures over a 1106.88 m interval. 

The average spacing is approximately 0.79 m, and the Cv is approximately 2.62. The 

Normalized intensity plot (Figure 10-60) contains approximately 50-m-wide peaks 

distributed semi-periodically every 70 to 100 m in the first 600 m. Three troughs are present 

between the peaks. A wide trough interval extends from approximately 650 m to 850 m. 

The largest trough is present in the last 50 m of the scanline. The NCC curve (Figure 10-

61) decreases approximately linearly over length scales less than 20 m. Two peaks are 

present at 30 and 80 m before the curve intercepts the randomize data curve at 

approximately 180 m. A broad hump then reemerges in the curve between length scales 

300 and 400 m. This superset’s intensity and NCC plots resemble those of sealed Set 2 

fractures (Figures 10-52, 10-53). 

 

 

Figure 10-60  Intensity of all Set 2 natural fractures, Well HRB-2. 
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Figure 10-61  Correlation count of all Set 2 natural fractures, Well HRB-2. 

The EW-striking superset Set 3 contains 1594 fractures over a 1248.06 m interval. 

The average spacing is approximately 0.78 m, and the Cv is approximately 2.24. The 

Normalized intensity plot (Figure 10-62) contains three peak intervals formed by smaller 

overlapped neighboring peaks and are centered on 120, 320, and 720 m, respectively. The 

intensity curve is under the lower 95% confidence limit for the scanline portion beyond 

780 m. The NCC plot (Figure 10-63) contains a gradually decreasing elevated portion that 

crosses the randomized data curve at length scale 200 m and bottoms at 400 m 

subsequently. Both Figures resemble those of sealed Set 3 fractures (Figures 10-55, 10-

56). 
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Figure 10-62  Intensity of all Set 3 natural fractures, Well HRB-2. 

 

Figure 10-63  Correlation count of all Set 3 natural fractures, Well HRB-2. 
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10.2 INTERPRETATION AND DISCUSSION, HORN RIVER BASIN 

The NCC results for fracture sets in wells HRB-1 and HRB-2 allow us to interpret 

the spatial arrangement styles of fractures in the Devonian shales of the Horn River Basin. 

The fracture intensity and Normalized Correlation Count (NCC) plots for the geologically 

meaningful and singular-typed fracture sequences in both wells, with corresponding 

horizontal wellbore trajectory analogue plots for reference, are rescaled and compiled for 

ease of comparison and interpretation (Figures 10-64 to 10-67). My NCC interpretation 

primarily focus on the results for the selected conductive and resistive fracture sequences 

in each well, since the non-selected fracture sequences generally either 1) have NCC results 

that are geologically unmeaningful and are only included earlier for completeness (e.g. for 

the “All” sequences containing fractures with all different orientations), or 2) are sequences 

with more than one type of fractures (e.g. the “Natural” sequences containing both 

conductive and resistive fractures with similar orientations) whose NCC results in most 

cases simply resemble the NCC of each one’s most numerous constituent fracture 

sequence.  
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Figure 10-64  Comparing fracture intensities from conductive fracture sets in Wells 
HRB-1 and HRB-2. TVD vs MD plots (a) and (e) provided as horizontal 
wellbore trajectory approximation. N = number of fractures in a given 
sequence. Cv = coefficient of variation. Red boxes indicate high fracture 
intensity intervals further analyzed separately with NCC. Horizontal axes 
are column-wise aligned. Vertical axes are not aligned. 
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Figure 10-65  Comparing NCC results from conductive fracture sets in Wells HRB-1 
and HRB-2. N = number of fractures in a given sequence. Cv = coefficient 
of variation. Red insets show correlation count results from analyzing high 
fracture intensity intervals in individual sets. Horizontal axes are column-
wise aligned. Vertical axes not aligned.  
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Figure 10-66  Comparing fracture intensities from resistive or healed (i.e. sealed) 
fracture sets in Wells HRB-1 and HRB-2. TVD vs MD plots (a) and (d) 
provided as horizontal wellbore trajectory approximation. N = number of 
fractures in a given sequence. Cv = coefficient of variation. Red boxes 
indicate high fracture bintensity intervals further analyzed separately with 
NCC. Horizontal axes are column-wise aligned. Vertical axes not aligned.  
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Figure 10-67  Comparing NCC results from resistive or healed (i.e. sealed) Set 1, 2, 3 
fractures in Wells HRB-1 and HRB-2. N = number of fractures in a given 
sequence. Cv = coefficient of variation. Red insets show correlation count 
results from analyzing high fracture intensity intervals within individual 
sets. Horizontal axes are column-wise aligned. Vertical axes not aligned.  
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10.2.1 Interpretation: Well HRB-1 

Conductive fracture sets, HRB-1 

Analyzed all together, Well HRB-1’s 4130 conductive fractures (which all broadly 

strike NE-SW regardless of continuity) are reflected by the NCC result as a sequence of 

clusters that are individually as wide as approximately 300 m, the length scale at which the 

NCC curve crosses the spatial correlation value of 1 (Figure 10-65a). The largest clusters 

have a 450 m regular inter-cluster spacing based on the largest NCC peak length scale. 

Internal NCC analysis of the cluster with the highest intensity peaks near the end of the 

scanline (Figure 10-64b) suggests that within each 300-m-wide cluster are regularly spaced 

and internally fractal clusters that are as wide as 25 m individually, and that the regular 

spacings between individual fractal clusters are 50 and 200 m (Figure 10-65a inset). 

The 965 continuous conductive fractures, though much fewer than the 3052 

discontinuous fractures, are statistically more clustered as suggested by its higher Cv (2.68 

vs 1.59). The fracture intensity plot indicates two distinct high intensity intervals (Clusters 

1 and 2), each containing at least two narrower intensity peaks (Figure 10-64c). The overall 

NCC plot suggests that the two high intensity intervals represent two 500-m-apart fracture 

clusters that are each approximately 150 m wide (Figure 10-65b). The NCC result of 

Cluster 1 suggests that the cluster contains regularly spaced fractal clusters as wide as 30 

m (Figure 10-65b inset 1). The NCC result of Cluster 2 suggests the presence of 15-m-

wide, regularly spaced fractal clusters that are 50 m apart (Figure 10-65b inset 2). 

The analytical results of the drilling induced fractures (which are also conductive 

in image log), are shown along the results of the conductive natural fractures for 

comparison. The Cv of the drilling induced fractures (3.91) is the highest among all fracture 

sequences analyzed in HRB-1 which indicates a higher degree of statistically non-random 
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fracture clustering than the other types of fractures. The corresponding NCC plot (Figure 

10-65c) suggests that the drilling induced fractures are arranged in regularly spaced fractal 

clusters with a maximum cluster width of 150 m and a regular spacing of 350 m. NCC 

analysis of the largest drilling induced fracture cluster (Figure 10-64d) suggests that the 

fractal clusters within (corresponding to the three internal intensity peaks) are individually 

as wide as 50 m (Figure 10-65c inset). 

Resistive fracture sets, HRB-1 

For the 872 NE-striking Set 1 resistive fractures in Well HRB-1, peaks in the 

fracture intensity plot indicate that multiple statistically significant and narrow fracture 

clusters are present (Figure 10-66b). The length scale of 25 m where the NCC result has a 

spatial correlation of one suggests that the clusters are up to 25 m wide individually. The 

consistent negative slope following which the curve decreases suggests that the internal 

organization of the clusters is fractal. The double peak in the NCC curve following a period 

of statistical low indicates regular inter-cluster spacings of 200 m and 350 m (Figure 10-

67a). 

Contrasting with few conductive fractures in Well HRB-1 striking NW-SE, a total 

of 497 resistive fractures are in the broadly NW-striking Set 2 sequence. Though 

approximately 50% fewer than the NE-striking Set 1 fractures, resistive fractures in Set 2 

are statistically more clustered as indicated by a slightly higher Cv of 2.12 (Figure 10-66c). 

The overall shape of NCC result for the full sequence resembles that of Set 1 and suggests 

a spatial arrangement style of regularly spaced fractal clusters for Set 2. Individual fractal 

clusters are approximately up to 60 m wide, and the regular spacings among the largest 

clusters are 200 and 450 m (Figure 10-67b). NCC analysis for the central cluster as seen in 
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the corresponding intensity plot (Figure 10-66c) suggests a cluster width of approximately 

60 m which confirms earlier interpretation. The internal arrangement of the cluster is also 

implied to be fractal, and that the length scale of 2 m where the trend of the NCC curve 

changes could reflect the width of the most common smaller internal clusters (Figure 10-

66c inset). 

10.2.2 Interpretation: Well HRB-2 

Conductive fracture sets, HRB-2 

Visual comparison of the intensity plots for the NE-striking Set 1, NW-striking Set 

2, and E-striking Set 3 conductive fractures in Well HRB-2 indicate that fractures in each 

set are present within various clusters corresponding to the statistically significant peaks 

(Figure 10-64f-h). The peaks, or clusters, are visually the broadest within Set 1 and the 

narrowest in Set 3. The degree of statistically non-random clustering for each of the three 

fracture sets is indicated by the coefficient of variation, Cv, and is the highest (3.91) in Set 

2 and the lowest (2.05) in Set 3. 

In the NCC plot for the most numerous conductive Set 1 fractures in HRB-2, the 

length scale value where the curve intersects the spatial correlation of 1 suggests that the 

fractures are spatially arranged in an approximately 450-m-wide cluster (Figure 10-65d). 

The interpretation is supported by the approximate width of the continuous high fracture 

intensity interval (Figure 10-64f). The result of the NCC analysis on this interval alone 

suggests that the wide cluster is composed of fractal clusters that are individually up to 

approximately 15 m wide and have a regular inter-cluster spacing of 30 m (Figure 10-65d 

inset). 
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The NCC plot for the conductive Set 2 fracture sequence, statistically the most 

clustered among the three, suggests that the fractures are spatially organized in an 

approximately 280-m-wide cluster (Figure 10-65e). The interpretation matches the 

approximate width of the fracture intensity interval bounding the small and the broad 

separate high intensity bands (Figure 10-64g). NCC analytical result for the approximately 

250-m-wide broad intensity band alone suggests that the corresponding cluster is composed 

of regularly spaced fractal clusters that are individually up to approximately 10 m wide and 

have regular spacings of approximately 33 and 65 m (the latter significant spacing may 

simply be a harmonic signal of the former) (Figure 10-65e inset). 

The peaks in the intensity plot for conductive fractures in Set 3, the least abundant 

and statistically the least clustered set, suggest that fractures clusters are present 

predominantly within the first 300 m of the scanline (Figure 10-64h). The NCC plot 

suggests the presence of fractal clusters with multiple regular spacings e.g. 8 m, 20 m, 60, 

100, and 160 m (Figure 10-65f). NCC analysis for largest cluster corresponding to the 

tallest fracture intensity peak further confirms the presence of regularly spaced fractal 

clusters within that are up to approximately 3.5 m wide and have inter-cluster spacings of 

approximately 8 m and 20 m (Figure 10-65f inset). 

Sealed fracture sets, HRB-2 

Inspection of the fracture intensity plots for sealed (or resistive) fractures in HRB-

2 suggests that fracture clusters are present in all sets analyzed and are all present within 

the first 800 m of horizontal wellbore, or in other words there is statistically significant 

lack of sealed fractures in the last 400m of the wellbore (Figure 10-66e-g). Distribution of 



 
 
 

142 

the fracture intensity peaks varies from one tall narrow peak in Set 1, multiple widely 

distributed narrow peaks in Set 2, to multiple widely distributed wide peaks in Set 3. 

For Set 1 which has the fewest fracture and the lowest Cv among the three sealed 

sets, the NCC plot indicates the presence of a 100-m-wide fracture cluster which matches 

the characteristic of the one and only fracture intensity peak in the Set (Figure 10-67c, 10-

66e). The small NCC peak near 150 m may be from fractures within the cluster matching 

outside sparse fractures. NCC Analysis of the isolated intensity peak interval shows that 

within the cluster are regularly spaced fractal clusters that are proximately 7 m wide and 

have approximate inter-cluster spacings of 15, 25 and 35 m (Figure 10-66e inset). 

Sealed Set 2 fractures are not only statistically the most clustered among fractures 

in the three sealed sets, but are also the most clustered among all natural and induced 

fractures in both Well HRB-1 and HRB-2 as indicated by the highest Cv (4.78) among all 

sequences analyzed. Closely spaced peaks with similar amplitudes present in the intensity 

plot show that the fractures predominately concentrate in the first 650 m of the horizontal 

wellbore (Figure 10-66f), and the NCC analysis suggests that a 450-m-wide, statistically 

significant cluster is present within this interval (Figure 10-67d). NCC analytical result for 

the statistically significant subinterval suggests that the wide cluster internally consists of 

regularly spaced fractal clusters that are as wide as 20 m and have a common inter-cluster 

spacing of 30 m (Figure 10-67d inset). 

The intensity plot for sealed Set 3 fractures, the most abundant set among the three, 

suggests that the interval may contain multiple statistically significant wide fracture 

clusters with (Figure 10-66g). The NCC result suggests that a cluster with a width of 

approximately 300 m is present (Figure 10-67e). The cluster corresponds to the interval 
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between scanline positions 50 and 350 m that bounds the first two intensity peaks. The 

small NCC peak corresponding to the length scale of 600 m, which is less than half of the 

total scanline and therefore is not an artifact, indicates the statistically significant spacing 

between fractures in the first and the last intensity peak (Figure 10-66g). NCC Analysis of 

the part of identified cluster alone corresponding to the first peak suggests that the fractures 

within are organized in regularly spaced fractal clusters that are as wide as approximately 

15 m and have significant inter-cluster spacings of 20, 25 and 40 m (with the last spacing 

likely a harmonic of the first) (Figure 10-67e inset). 

10.2.3 Discussion: Horn River Basin wells 

For the selected Horn River Basin fracture sequences interpreted where statistically 

more significant than fractures intensity peaks are present (Table 8), NCC subinterval 

analysis can quantify the statistical significance of off-trended spatial correlation peaks or 

troughs embedded in elevated NCC portions of the overall curves (e.g. Figure 10-65a-f, 

10-67a-e). NCC subinterval analysis helps detecting the presence of statistically significant 

smaller clusters that is often overshadowed by spatial correlation signals of larger clusters, 

as well their internal organization which cannot be described through intensity plots. 

Detailed analysis generally requires a high number of fracture spacings available within 

the interval of interest in order to yield statistical meaningful NCC results. In cases such as 

the Frontier Formation cores or in Well VM-B and VM-C where the number of fractures 

present in the geologically meaningful sequences are fewer than 100 where fractures, 

individual fracture intensity peak or high intensity interval generally do not contain 

sufficient fracture for complete NCC plots.   
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Well Fracture 
Type 

Fracture 
Set NCC Interpretation 

Cluster 
Width 

(m) 

Cluster 
Spacing 

(m) 

HRB-1 
  

Conductive 

All 
Set 1 

(NE-SW) 

Clustered individual  
(+ regularly spaced fractal clusters) 

300 
(25) 

450 
(50, 200) 

Continuous 
Set 1 

(NE-SW) 

Clustered individual 
(+ regularly spaced fractal clusters) 

150 
(15, 30) 

500 
(50, 100) 

Drilling 
Induced 

Set 1 
(NE-SW) 

Regularly spaced fractal clusters 
(+ fractal clusters) 

150 
(50) 

350 
(fractal) 

Resistive 

Set 1 
(NE-SW) Regularly spaced fractal clusters 25 200, 350 

Set 2 
(NW-SE) 

Regularly spaced fractal clusters 
(+ fractal clusters) 

60 
(2) 

200, 450 
(fractal) 

HRB-2 
  

Conductive 

Set 1 
(NE-SW) 

Clustered individual 
(+ regularly spaced fractal clusters) 

450 
(15) 

one big cluster 
(30) 

Set 2 
(NW-SE) 

Clustered individual 
(+ regularly spaced fractal clusters) 

280 
(10) 

one big cluster 
(33, 65) 

Set 3 
(E-W) 

Regularly spaced fractal clusters 
(+fractal clusters) 

3.5 
(3.5) 

8, 20, 60, 100, 160 
(8,20) 

Healed 
(i.e. sealed) 

Set 1 
(NE-SW) 

Clustered individual 
(+ regularly spaced fractal clusters) 

100 
(7) 

one big cluster 
(15, 25, 35) 

Set 2 
(NW-SE) 

Clustered individual 
(+ regularly spaced fractal clusters) 

450 
(20) 

one big cluster 
(30) 

Set 3 
(E-W) 

Clustered individual 
(+ regularly spaced fractal clusters) 

300 
(15) 

one big cluster 
(20, 25, 40) 

Table 10-3 Summary of NCC interpretation for selected fracture sequences in Horn 
River Basin horizontal wellbore image logs. Spatial arrangement styles in 
parentheses are interpreted for NCC on selected internal clusters. Numbers 
within parentheses indicates attributes of internal clusters identified from 
corresponding NCC results. 
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Well HRB-1 

As summarized in Table 8, image log fractures in HRB-1 are predominantly 

arranged in regularly spaced fractal clusters in all types or sets. The widths and the inter-

cluster spacings of the fractal clusters within each sequence may vary but are generally on 

the order of tens of meters for the former and up to 100 to 200 meters for the latter (Table 

8). For the conductive fractures including the drilling induced fractures, the regularly 

spaced fractal clusters form statistically significant larger clusters that are up to 300 m wide 

each are that are up to 500 m apart. The continuous conductive fractures i.e. fractures that 

are mostly conductive throughout their image log traces are statistically more clustered 

than their more abundant discontinuous counterparts (which practically have the same 

NCC results as the “All” sequence interpreted earlier) as suggested both by the higher Cv 

and the NCC shape. It suggests a correlation between that the spatial clustering among 

conductive fractures in HRB-1 and the conductivity continuity (or resistivity discontinuity) 

along their image log traces which is an indicator of the porosity alone the fracture aperture. 

Though the spatial arrangement style for both the continuous conductive fractures 

and the drilling induced fractures the same that that their cluster dimensions, both on the 

order of a few tens of meters, appear to be comparable, the drilling induced fractures in 

HRB-1 are significantly more clustered as indicated by the sequence’s much higher Cv 

(Table 6). Though one may question the accuracy of picking drilling induced fractures 

among the background of similarly oriented conductive fractures, inspection of the 

intensity peak positions for both sequences suggest that clusters within the two sequences 

are offset (Figure 10-64c, d). The lack of overlapping between the sequences’ statistically 

significant clusters suggest that the conductive fractures and the drilling induced fracture 

picked in the original image log may indeed be fractures from distinct populations such 
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that the spatial organization of the drilling induced fractures is not a result of mispicked 

conductive natural fractures and vice versa.  

Observation of the fracture intensity plots for HRB-1’s resistive fractures in Set 1 

and in Set 2 suggests that the fractures in both sequences have similar intensity distributions 

along the well bore though Set 1 has nearly twice as many fractures as Set 2 (Figure 10-

66b&c). As observed, the spatial arrangement style of both set are also the same and that 

the cluster widths and spacings are on the same orders of magnitudes across the two sets. 

The largest fracture clusters in both sets are present within the same central interval around 

position 600 m along the horizontal wellbore, and similar central cluster is present within 

in Set 2 regardless of the type of fracture resistivity continuity (Figures 10-20, 22, 24). 

Also, it should be note that this shared cluster interval within both sets of resistive fractures 

coincides with the same wellbore interval where the largest NE-striking drilling induced 

fracture cluster is present (Figure 10-64d). These observations suggest that for all resistive 

fractures and drilling induced fractures present in HRB-1, the apparent source of regularly 

spaced fractal clustering comes from a localized, approximately 200-m-wide interval 

behind MD 2731 m within horizontal wellbore (Figures 10-64a, 10-66a). The interval 

corresponds to a TVD of 1884 m that is first reached here in HRB-1 directly after the 

interval where the horizontal wellbore has the largest decrease in inclination dropping 

approximately 5 m in vertical depth (Figure 10-1). This interval of rapid depth decline from 

TVD 1880 to 1884 m, on the other hand, corresponds with the occurrence of the first major 

cluster in the continuous conductive fracture sequence; the second occurs at the very end 

of the wellbore (Figure 10-64c). Overall, the results indicate that there is a statistically 

significant localization of fracture clusters along the horizontal wellbore of HRB-1, such 
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that the occurrence of drilling induced fractures coincide with a major resistive/sealed 

natural fracture cluster that is directly preceded by a zone approximately 5 m shallower in 

true vertical depth that contains large clusters of continuous conductive or open natural 

fractures.  

Well HRB-2 

In each of the interpreted major conductive and sealed fracture sequence of Well 

HRB-2, fractures are organized in a statistically significant, single large cluster that 

contains interval(s) of regularly spaced fractal clusters or is itself organized in such style 

(Table 8). The dimensions and the positions of the statistically significant clusters vary 

across fracture types and sets even the same well, however. For the conductive fractures, 

the interval where a Set 1 cluster that is nearly 500 m in width is present corresponds to a 

statistically significant lack of Set 2 fractures; the presence of a major Set 2 cluster in the 

second half of the wellbore similarly correlates with a statistical lack of Set 1 fractures 

(Figure 10-64f, g). Examination of the intensity plots show that localization of fracture 

cluster appears to link to certain regions within the horizontal wellbore (Figures 10-64e-h 

and 10-66d-g). Well HRB-2’s horizontal trajectory shows that the well travels from TVD 

2538 m down to 2548 m and back up to 2533 m between MD 2646 and 3346 m, after which 

it stays approximately within 1 m away from TVD 2535 until it begins to shallow near MD 

3750 m (Figure 10-64e). The wide cluster of conductive Set 1 fractures intercepted by the 

wellbore largely correspond to the interval where the well is beneath TVD 2535 m, and the 

cluster of conductive Set 2 fractures is broadly consistent to the wellbore that steadies 

around 2535 m. Current observation indicates that the end of the conductive Set 2 cluster 

correlates with a statistical lack of all other conductive and sealed fractures in the interval 
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beyond MD 3750 m that coincides within the rising of the wellbore above TVD 2535 m 

(Figure 10-64e). As for conductive Set 3 fractures, the clusters correlated exclusively with 

the interval of the wellbore approximately beneath TVD 2540, and that the fractal cluster 

at the beginning coincides with the most steepest portion of the wellbore analyzed (Figure 

10-64e, h). Note that this steep wellbore interval also associates with the highest intensity 

value in Set 1 (Figure 10-64f). 

The intensity plots for all three sealed fractures sets suggests that sealed fractures 

in HRB-2, regardless of orientations, predominantly concentrate in the first 800 m of the 

scanline that associates with the undulatory portion of the wellbore (Figure 10-66d-g). As 

for sealed Set 1 fractures, the single wide cluster is limited to the portion of the wellbore 

that rises from TVD 2548 to 2533 m. Fracture clusters in Set 2 are prevalent in the first 

600 m of the wellbore that coincide with occurrence of conductive Set 1 fractures (Figures 

10-66f, 10-64f) through the two fracture sequences have opposite types and approximately 

orthogonal orientations. Note that the fracture intensity peak in resistive Set 1 corresponds 

with intensity troughs in the other two sealed sets, which indicates that the corresponding 

interval is mechanically conducive to the growth of only the resistive fracture population 

that have a present-day strike of NE-SW.  

As for the overall distribution of HRB-2’s fractures that are within the same sets by 

strike, there is complete lack of overlap between the high intensity intervals or clusters of 

the conductive Set 2 and the sealed Set 2 fractures (Figures 10-64g, 10-66f). It indicates 

that the NW-striking conductive fractures in HRB-2 are different from their resistive 

counter parts internals of their origins. As discussed earlier, the latter appears to be 

physically associated with the conductive, NE-striking Set 1 fractures. The current lack of 
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cores from said interval hinders further understanding of any potential association between 

the two. Unlike Set 2 fractures, fractures in the other two sets all are concentrated in the 

first half of the wellbore. It has been observed previously that Set 1 fractures are 

predominantly conductive and that Set 3 fractures are predominantly sealed and that the 

number of fractures in the major type is approximately an order of magnitudes or above 

more than the minor type (Table 7). Unlike fractures in HRB-1, fractures in HRB-2 have 

not been categorized by the continuity or their trace resistivity, and therefore there’s no 

further information on the picking of the minor components of fractures in the same Set. 

However, since the NCC results for the Natural fracture superset #1 and 3 (Figures 10-59, 

63) indicate that combining each Set’s major and minor type components does not 

markedly affect the spatial arrangement outcome (which reflect the results of the major 

types), it may be safe to conclude that the sealed Set 1 fractures and the conductive Set 3 

fractures share origins with their conductive or sealed counterparts, respectively. Note that 

the statement does not apply to Set 2 fractures, for, other than our earlier discussion on the 

non-overlapping clusters between the two types, the NCC result (Figure 10-61) as well as 

the Cv (Table 7) also show significant increase in statistical randomness comparing the 

Natural superset #2 to each of its constituent sets. 

Causes of spatial arrangement patterns, Horn River Basin 

It is interpreted that fractures in the major conductive and resistive sequences in 

both HRB-1 and HRB-2 are preferentially arranged in wide clusters that contain regularly 

spaced fractal clusters within (Table 8). Whist conductive fractures in both wells 

preferentially strike NE-SW, resistive or sealed fractures in HRB-1 predominantly strike 

NE-SW while those in HRB-2 mostly strike E-W, a fracture set that is not present in HRB-
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1 (Table 6, 7). Though both wells target the Middle Devonian Evie, Otter Park and the Late 

Devonian Muskwa shales, note that the trajectory of the wells show that the target shales 

are present at drastically different depths (TVD 1884 m vs 2535 m) within each well (e.g. 

Figure 10-66a, d). It is likely that the marked differences in the orientations between the 

sealed fracture populations of the two wells are associated with varying diagenetic and 

burial histories experienced by the shales at different depths. The theory of multiple 

generations of fractures is supported by an unpublished study based on other confidential 

well logs and relevant outcrops, which suggests that an older set of orthogonal sealed 

fractures originally striking N-S and E-W may have formed during the initial burial of the 

shales and later rotated to NE-SW and NW-SE in places before the opening of a new set 

of NE-striking fractures during the Laramide burial (Hartwell, 2008) coincidentally along 

present-day SHmax as well as potential formation or reaction of orthogonal fractures (J.F.W. 

Gale and R. Dunphy, personal communication, 2010) 

As supported by observations of peaks in the fracture intensity plots, fracture cluster 

dimensions and localities inferred from the NCC patterns for fracture sequences in HRB-1 

and HRB-2 are strongly linked to high intensity interval(s) that of often preferentially 

located within each well. It is also observed that these high intensity intervals can overlap 

across fractures sequences differ by types and orientations, and that these intervals often 

correspond to portions of the wellbores with particular trajectories associated with drastic 

(or in certain case, the lack of) changes in true vertical depths. As discussed in earlier 

sections, localization of fracture cluster may be linked to reservoir mechanical property 

variation along well path. Since mechanical stratigraphic information are not made 

available for Wells HRB-1 and HRB-2 nor are relevant mud logs, further investigation in 
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this study on the potential correlation between the fracture cluster locality, dimension, and 

internal organization, and wellbore litho/mechanical stratigraphy is precluded. However, 

well log observation and core analyses from relevant studies suggest that changes in the 

Horn River Basin shales’ mechanical properties associate strongly with reservoir lithology, 

and that natural fracture density is the highest in the carbonate-rich shale intervals or 

limestones with high hardness measurements, such as the Evie shale with limestone 

interbedding and the Lower Keg River limestone beneath the Evie. (Dunphy and 

Campagna, 2011; Yang et al., 2015). The hypothesized association between preferential 

fracture clustering in the Devonian shales intervals in the Horn River Basin and reservoir 

lithology variation could be a result of lateral facies change (Dunphy and Campagna, 2011) 

or due to well path traveling through mechanically different shale beds with changing 

TVD, the latter of which is in line with the implication of the Vaca Muerta Formation shale 

NCC results such as in the case of Well VM-A where the carbonate-rich mechanical zone 

#4 correlates with the interval of strongly clustered WNW-striking natural fractures. 

Preferential clustering of natural fractures in the Devonian shales of the Horn River 

Basin suggests control on fracture spatial arrangements by lithology-based mechanical 

property variations along well paths. Interpretation of regional fracture set spatial 

arrangement should account for fracture sampling bias arise from undulations. As observed 

in HRB-1, fractures clusters potentially associated with mechanical stratigraphic variation 

appear to coincide with localized drilling induced fracture clusters (e.g. Figures 10-64d, 

10-66b,c). Reservoir characterization may benefit from full understanding of fracture 

spatial arrangement patterns associated with of rock mechanical property variation and 

reservoir heterogeneity in the context of regional diagenetic and burial histories.  
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Chapter 11: Results and Discussion: Appalachian Basin 

11.1 INTENSITY AND SPATIAL CORRELATION RESULTS, APPALACHIAN BASIN 

 Among a total of 103 opening-mode fractures in the 487-m-long image log of 

Gulla 10H, three are picked as WNW-striking conductive fractures, 59 as WNW-striking 

partially sealed fractures, 25 as WNW-striking resistive fractures, and 16 as ENE-striking 

drilling induced fractures. The spacing statistics as well as the coefficients of variation for 

each type of image log fractures are calculated using CorrCount and Microsoft Excel 

(Table 9). The results have also been discussed in part in a previously published extended 

abstract (Li et al., 2016) 

 

Well Fracture 
type 

Set 
(average 
strike) 

# of 
fractures 

Scanline 
length 

(m) 

Mean 
spacing 

(m) 

Standard 
deviation 

(m) 

Min. 
spacing 

(m) 

Max. 
spacing 

(m) 
Cv 

Gulla 
10H 

Natural 

All 
(~WNW-

ESE) 
88 

236.36 
(Terzaghi 
corrected) 

2.69 5.14 0.017 32.19 1.91 

Partially 
Healed 
(WNW-

ESE) 

59 487.47 8.26 13.68 0.210 66.41 1.66 

Resistive 
(WNW-

ESE) 
25 374.38 14.98 21.71 0.333 87.98 1.45 

Drilling 
Induced 

One set 
(ENE-
WSW) 

16 465.00 29.06 55.41 0.427 214.4 1.91 

Table 11-1 Statistical summaries on image log fracture sets in Gulla 10H. Note that the 
NCC results for sets other than Natural-All are omitted due to incomplete 
curves from small sample sizes. 

The largest single image log fracture sequence in Gulla 10H analyzed using is one 

containing all 88 WNW-striking, non-drilling-induced (or “natural”) fractures present 

along a Terzaghi-adjusted interval of 236.36 m. The adjustment for obliquity accounts for 

the 29 degree angle between the WNW-striking set and the horizontal wellbore. The 

Contents in this chapter appear in Li, J.Z., Gale, J.F.W., Marrett, R.A., and Laubach, S.E., 2016. Quantifying natural fracture spatial 
organization in horizontal image logs: Application in Unconventional Reservoirs. Presented at the Unconventional Resources 
Technology Conference, San Antonio, Texas, 1-3 August, 2016. URTEC-2456264-MS. Li performed data analyses and primary writing. 
Other authors contributed to the article’s review and editing. 
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scanline length before correction is approximately 487.5 m. Analysis of all natural fractures 

produces statistically similar yet more complete spatial correlation result than those from 

the partial healed or resistive subsequences. The average image log fracture spacing is 2.69 

m, and the Cv is 1.91. This Cv value is larger than those of the subsequences, and it is the 

same as the Cv of the much less abundant ENE-striking drilling induced set (Table 9). The 

normalized fracture intensity plot (Figure 11-1) contains few statistically significant 

intensity peaks other than two minor ones near the position of 160 m. The NCC plot (Figure 

11-2) contains five identifiable non-overlapped correlation peaks above the upper 

confidence limit at length scales 0.85, 3.5, 6.8, 12.5, and 100 m, respectively. 

 

 

Figure 11-1 Intensity of all natural fractures, Gulla 10H. 
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Figure 11-2 Correlation count of all natural fractures, Gulla 10H. 

Since few fractures are found in the drilling-induced fracture sequence, the 

corresponding intensity and NCC plots are incomplete and statistically meaningless and 

are omitted. 

11.2 INTERPRETATION: GULLA 10H 

The NCC peaks at length scales 0.85 m, 3.5 m and 12.5 m reflect statistically 

significant spacings among the image log fractures, whereas the peak at 6.8 m may likely 

a harmonic of the 3.5 m spacing (Figure 11-2). These meter to sub-meter statistically 

significant length scales reflect spacings within smaller fracture clusters present in the 

sequence. The small spatial correlation peak at length scale 100 m reflects the distance 

between the significant intensity peaks near position 160 m and the much smaller peak at 

60 m (Figure 11-1). The NCC curve intersects the spatial correlation value of 1 at the length 
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scale of 20 m which corresponds to a local maximum in fracture cluster width. The trough 

for length scales between 20 and 50 m suggests a statistically significant absence of fracture 

spacing values within this length scale range in this fracture sequence. Overall, the NCC 

result may indicate that evenly spaced fractured are in clusters with widths up to 

approximately 20 m that are spaced 50 to 100 m apart. 

11.3 DISCUSSION: GULLA 10H 

The 88 WNW-striking image log natural fractures are likely analogous to the 

WNW-striking J2 fractures observed in Marcellus Formation shale outcrops (e.g. Engelder 

et al., 2009). As noted by Gale et al. (2014), measurements of the subcritical crack index, 

a property that influences fracture clustering (Olson, 2004), from Marcellus core in a 

nearby well indicates a low degree of mechanical tendency for fractures to cluster. The 

observation is consistent with the interpreted fracture spatial arrangement patterns from 

image log data (Figure 11-2). Though fractures in the ENE orientation are picked as drilling 

induced because they coincide with the ENE-trending present day SHmax, image log 

interpretation is ambiguous such that uncertainty remains about whether the ENE-striking 

image log fractures are induced, natural, or reactivated natural fractures (Gale et al., 2012). 

As previously discussed, interpretation of subsurface fracture spatial arrangement 

origin should take into consideration reservoir geology along well path. In adjacent vertical 

wells, it is noted that the spacing at small length scales up to 12.5 m matches the thickness 

of shale intervals in facies interpretations (Gale et al., 2012). Assuming that fracture height 

is bound by the shale intervals as commonly observed in outcrop, fracture spacing at 

statistically significant length scales may be controlled predominantly by shale layer 

thickness, with carbonates acting as barriers to height growth (Gale et al., 2012).  
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SECTION IV: SUMMARY 

Chapter 12: Fracture Spatial Arrangement Insights through 
Normalized Correlation Count  

Using the Normalized Correlation Count (NCC) method and the associated 

CorrCount software by Marrett et al. (2017), I analyzed fracture spacing data from 

unconventional tight gas sandstone and shale reservoirs to statistically quantify spatial 

arrangement patterns among opening-mode reservoir fractures. Analyses of fracture spatial 

arrangement in the Frontier Formation tight gas sandstone based on image log, core, and 

satellite outcrop imageries show opening-mode fractures are arranged in clusters that are 

hierarchical and probably fractal with the largest clusters, from meters to tens of meters 

wide, possibly distributed periodically. Results from horizontal logs and cores contrast 

sharply with patterns of fractures of the same broadly east-west strike in outcrop, where 

spatial arrangements are indistinguishable from random. Although the origin of these 

differences is unknown, discrepancies could be due to contrasts in location-dependent 

burial and structural histories. 

I found more significant than random and commonly fractally organized fractures 

clusters prevalent in the image log fracture sequences within selected shale reservoirs. 

Results of the Vaca Muerta Formation shale in the Neuquén Basin suggest statistically 

significant fracture clustering along wellbore preferentially within high-hardness carbonate 

beds. Results of the Middle and Late Devonian shale reservoirs in the Horn River Basin 

similarly indicate preferential clustering of fractures in selected intervals likely linked to 

reservoir lithology and mechanical stratigraphy associated with vertical depth variation 

along well paths. Correlation between particular lithology and fracture cluster localization 
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cannot be pinpoint due to unavailable wellbore geological information though relevant 

studies observed preferential clustering of natural fractures within carbonate-rich reservoir 

members. In the Marcellus Formation shale in the Appalachian Basin, correlation count 

result suggests evenly spaced fracture clusters in shale with potential correlation with bed 

thicknesses and that fracture growth may be controlled by carbonate barriers. 

My results on fracture spatial arrangement in selected unconventional petroleum 

reservoirs demonstrated the analytical power of the Normalized Correlation Count method 

in inferring reservoir fracture array geometry through image log data that are commonly 

available in modern-day horizontal wells. The method of study avoids uncertainty in using 

outcrop analogues and provides direct quantitative information on subsurface fracture 

organization, and the accuracy of the results can be improved through calibration using 

cores when available. Quantitative information on fracture spatial arrangement from NCC 

can help constrain reservoir models and thus contribute to efficient resource extraction. 
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Appendix: Vaca Muerta Formation Shale Fracture Petrography 
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