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ABSTRACT

Magnetorotational instability (MRI) is the most promising mechanism behind accretion in low-mass protostellar
disks. Here we present the first analysis of the global structure and evolution of non-ideal MRI-driven T-Tauri
disks on million-year timescales. We accomplish this in a 1+1D simulation by calculating magnetic diffusivities
and utilizing turbulence activity criteria to determine thermal structure and accretion rate without resorting to a
three-dimensional magnetohydrodynamical (MHD) simulation. Our major findings are as follows. First, even for
modest surface densities of just a few times the minimum-mass solar nebula, the dead zone encompasses the giant
planet-forming region, preserving any compositional gradients. Second, the surface density of the active layer is
nearly constant in time at roughly 10 g cm~2, which we use to derive a simple prescription for viscous heating in
MRI-active disks for those who wish to avoid detailed MHD computations. Furthermore, unlike a standard disk
with constant-« viscosity, the disk midplane does not cool off over time, though the surface cools as the star evolves
along the Hayashi track. Instead, the MRI may pile material in the dead zone, causing it to heat up over time. The
ice line is firmly in the terrestrial planet-forming region throughout disk evolution and can move either inward
or outward with time, depending on whether pileups form near the star. Finally, steady-state mass transport is an
extremely poor description of flow through an MRI-active disk, as we see both the turnaround in the accretion flow
required by conservation of angular momentum and peaks in M (R) bracketing each side of the dead zone. We
caution that MRI activity is sensitive to many parameters, including stellar X-ray flux, grain size, gas/small grain
mass ratio and magnetic field strength, and we have not performed an exhaustive parameter study here. Our 1+1D
model also does not include azimuthal information, which prevents us from modeling the effects of Rossby waves.
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1. INTRODUCTION

A typical, low-mass T-Tauri star accretes mass at a rate
of 107% M yr~'—one Jupiter mass every 100,000 yr (e.g.,
Hartmann et al. 1998; Sicilia-Aguilar et al. 2004). Balbus
& Hawley (1991) put forth the magnetorotational instability
(MRI) as the most likely driver of accretion in T-Tauri disks,
followed by Brandenburg et al. (1995), Hawley et al. (1995),
Balbus et al. (1996), and Balbus & Hawley (1998). Before
a first-principles physical description of angular momentum
transport was available, accretion was often modeled using the
a-prescription (Shakura & Syunyaev 1973),

Vv =uacH. @))]

The «-prescription relates turbulent viscosity to length and
velocity scales in the disk based on dimensional analysis. In
Equation (1), v is the turbulent viscosity, c; is the sound speed
and H is the pressure scale height. « is a dimensionless efficiency
that is often assumed, without physical motivation, to be uniform
throughout the disk.

The first numerical investigations of MRI-driven turbulence
were local shearing box simulations (Hawley et al. 1995), which
treat a box of approximate size 2t H x H x H centered at a given
distance from the star. The shearing box is still a useful technique
for investigating detailed properties of turbulence. However,
more recent investigations computed turbulent viscosity from
first principles for global disk models, which were previously

the domain of the «-prescription. Such global simulations
confirmed that the MRI can lead to turbulence-driven accretion
matching observed rates of 1078 My yr~! in either unstratified
disks (Hawley 2001; Steinacker & Papaloizou 2002; Lyra et al.
2008) or thin, stratified disks (Sorathia et al. 2010). MRI
turbulence is self-sustaining for the simulation timeframe of
around 1000 orbits near the inner boundary (Fromang & Nelson
2006; Flock et al. 2011).

In parallel with the development of global accretion disk
models came investigations of the behavior of the MRI in non-
ideal, partially ionized fluids. Gammie (1996) was the first to
point out that protostellar disks have surface layers ionized
well enough to couple to magnetic fields, and an interior dead
zone where extremely low ionization levels prevent magneti-
cally driven turbulence. Subsequent investigations incorporat-
ing Ohmic resistivity into the magnetohydrodynamical (MHD)
equations confirmed Gammie’s prediction that a high enough
resistivity would dampen the growth of the MRI (Jin 1996;
Sano & Miyama 1999). Numerical simulations showed a “dead
zone” near the midplane and near the star, where the surface
density is high enough to shield the disk interior from ionizing
radiation (Fleming et al. 2000; Sano et al. 2000). Recent re-
search has revealed that the dead zone is not entirely dead: the
shielded interior still experiences a shear stress only about an
order of magnitude less than the active layer due to propagating
acoustic waves (Fleming & Stone 2003) and smooth, large-
scale magnetic fields (Turner et al. 2007; Turner & Sano 2008).
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Other non-ideal effects that affect the MRI include the Hall cur-
rent (e.g., Wardle 1999; Balbus & Terquem 2001; Sano & Stone
2002) and ambipolar diffusion (e.g., Blaes & Balbus 1994; Mac
Low et al. 1995; Kunz & Balbus 2004; Bai & Stone 2011; see
Section 2.1 for a more complete description of each effect).
Improved understanding of both non-ideal MRI and ionization
in disks (Igea & Glassgold 1999; Ilgner & Nelson 2006) has
provided the tools to describe the MRI in gas of any ionization
fraction or density that can be found in a protostellar disk.

Detailed short-timescale snapshots have now been con-
structed of angular momentum transport in a protostellar
disk, including the dead zone, turbulent layers and corona
(Dzyurkevich et al. 2010; Kretke & Lin 2010; Bai 2011; Flaig
etal. 2012). Yet it is possible that MRI-active T-Tauri disks may
not be in steady state due to (1) the dead zone and its resulting,
radially varying accretion rate and (2) the lack of a protostellar
envelope to provide material to maintain steady, inward mass
transport. Our protostellar disk snapshot, then, must change
over the million-year timescales on which the star/disk system
evolves. The goal of this work is to illustrate how disk interior
structure and angular momentum transport change over the en-
tire, multi-million-year lifetime of the T-Tauri phase. We extend
the work of Armitage et al. (2001) and Zhu et al. (2010), who
also performed million-year simulations, by calculating a radi-
ally and vertically varying o based on the ionization state rather
than assuming a constant «a-value in the active zone. Martin
et al. (2012b) also modeled FU Orionis outbursts using time-
dependant global simulations of MRI-active disks, including
Ohmic resistivity, using one-dimensional (1D) layered models
which used the a-prescription for the active layer, and an analyt-
ical approximation for the active layer surface density (Martin
etal. 2012a). Our models build on their work by adding a vertical
dimension to the disk structure.

Our evolving model of a magnetically turbulent T-Tauri disk
answers the following questions.

1. How do the relative sizes of the dead zone and active layers
change over time?

2. How does M vary with radius and time?

3. How can disk modelers parameterize heating in the active
layers and dead zone without resorting to a 3D MHD
simulation?

4. Does the disk midplane heat up or cool off over time?

5. Where is the ice line in an MRI-active disk and how does
its location change over time?

Questions 1, 2 and 3 elucidate basic properties of an MRI-
turbulent accretion disk. Questions 4 and 5 highlight fundamen-
tal ways in which disk models based on the standard viscosity
prescription with constant « lead us astray. Note that our disk
model does not include photoevaporation, which is another pro-
cess that operates on million-year timescales that can produce
radially varying accretion rates.

Our ability to simulate an entire T-Tauri disk lifetime is due
to a new MRI activity prescription that allows us to compute the
thermal and viscous effects of MRI turbulence without resorting
to 3D MHD simulations of the turbulence itself. We can thus
reduce our computational domain from three spatial dimensions
to 1+1 spatial dimensions—1D vertical structures representing
axisymmetric disk annuli that are connected only by a 1D
radial mass transport equation (Dodson-Robinson et al. 2009).
Sacrificing information about small-scale turbulent fluctuations,
we retain our ability to accurately describe large-scale structures
such as the dead zone and active layers while dramatically
improving our ability to simulate long timescales.
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Our paper is organized as follows. In Section 2 we discuss
the basic equations governing the MRI under non-ideal MHD
conditions and give our prescription for determining turbulent
viscosity. We present our method of computing vertical structure
and mass transport in Section 3. We outline a basic picture of
MRI-turbulent disk evolution and answer Questions 1, 2 and 3
in Section 4. In Section 5, we discuss the differences in thermal
structure between our model and constant-o disk models, which
leads us to answer Questions 4 and 5. We discuss the limitations
of our model in Section 6 and present our conclusions in
Section 7. Readers who wish to skip over the details of the
computations may wish to proceed directly to Section 4.

2. SIMULATING MAGNETOROTATIONAL
INSTABILITY-DRIVEN TURBULENCE
IN PARTIALLY IONIZED GASES

When an accretion disk is fully ionized and the magnetic field
is weak, the entire disk is MRI turbulent. Yet when a disk is only
partially ionized, as is the case for a protoplanetary disk, there is
an incomplete coupling between the disk gas and the magnetic
field, and non-ideal effects become important to the growth of
MRI-driven turbulence. In this section, we describe how we treat
angular momentum transport from MRI turbulence in non-ideal,
partially ionized gases. We begin by describing our turbulence
criterion in Section 2.1, then list our method for determining the
diffusion regime and resulting turbulent stress in Section 2.2.

2.1. MRI Activity Criteria in the Three Non-ideal Regimes

The non-ideal magnetic induction equation has three extra
terms corresponding to the three non-ideal effects (Wardle
2007), Ohmic resistivity, the Hall effect and ambipolar diffusion:

oB
E=Vx(v><B)—Vx[nOVxB+nH(VxB)

x B+n4(V x B).]. 2)

In Equation (2), v is the gas velocity, B and B are the
magnetic field and magnetic field unit vector, and _L refers to the
component perpendicular to B. n¢, ny, and 1,4 are the Ohmic,
Hall, and ambipolar diffusivities, respectively. Ohmic resistivity
dominates other non-ideal effects when collisions with neutrals
cause both electrons and ions to decouple from field lines. When
collisional drag is sufficient to decouple ions and grains from the
magnetic field, but not electrons, the relative velocity between
the ions and electrons is non-negligible and the Hall effect is
dominant. In the ambipolar diffusion regime, electrons and ions
decouple from the neutral gas and the magnetic field lines are
frozen to the charged species and drift through the neutral gas.

When Ohmic resistivity is the largest non-ideal effect, the
MRI will only occur if the Elsasser number,

2

vAz
= —, 3)
no<2

is at least of order unity (Sano & Stone 2002; Turner et al. 2007).
In Equation (3), vy, is the Alfvén speed in the vertical direction
and Q is the Keplerian angular velocity. Physically, A is the
ratio of the wavelength of maximum growth to the diffusive
scale length. The tangled magnetic fields in MRI turbulence
usually have a toroidal component with pressure 10-30 times
greater than the pressure in the vertical component (Turner &
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Sano 2008), so the Alfvén speed in the vertical direction used
to calculate A is

1
vi, ~ Euﬁ, 4)
where vy = B/+/4mp is the total Alfvén speed. The A 2 1
criterion ensures that the most unstable mode can grow more
quickly than the charged particles can diffuse across magnetic
field lines. Simulations by Sano & Stone (2002) suggest the Hall
effect does not change the conditions for turbulence if Ohmic
diffusion is also present. Further work is required to determine
the growth of the MRI in regimes where the Hall term is much
stronger than other terms (Wardle & Salmeron 2012).
Ambipolar diffusion arises from the relative motion of ions
and neutral particles in the disk gas. In the “strong coupling”
limit, in which ion density is negligible and electron recombi-
nation time is much smaller than the orbital time 1/€, as is gen-
erally the case for protoplanetary disks (Bai 2011), ion density
cannot be assumed to follow the continuity equation. Instead,
the ion density is determined by the ionization—recombination
equilibrium, and characterized by the parameter Am (Chiang &

Murray-Clay 2007):
YPi
Am = —, 5
m= -5 )
where p; is the ion density and y is the neutral-ion drag
coefficient,
(Uniwni>

m, +m;

(6)

y:

In Equation (6), 0y, is the effective cross section for neutral-ion
collision and w,; is the relative velocity between neutrals
and ions. Physically, Am is the ratio of the orbital period
to the collisional timescale between ions and neutrals. Since
na = vf\ /yp; (Bai & Stone 2011), one can rewrite Equation (5)

as
2

Am = —A %)
naQ’
which is equivalent to the Elsasser number A in the Ohmic
regime. Similarly then, Am is the ratio of the wavelength of
maximum growth to the ambipolar diffusive scale length.

In their 3D shearing-box simulations exploring the effect of
ambipolar diffusion on MRI turbulence, Bai & Stone (2011)
determine that heavily ionized yet tenuous disks can only
sustain turbulence when threaded by weak magnetic fields. The
magnetic field strength is characterized by the plasma g, the
ratio of the gas pressure to the magnetic pressure:

_ 87 P

P="1pr

®)

The requirement that the magnetic field energy be small in
comparison to the gas thermal energy (a “weak” field) restricts
MRI turbulence to values of the plasma B that are greater than
a minimum (Bai & Stone 2011):

50 1\’ 8 27
Bmin(Am) = [(m) + <m + 1) :| )

The maximum field strength, beyond which the field is too
strong to be destabilized for any given field geometry, decreases
the more important ambipolar diffusion becomes (smaller Am).
However, for a sufficiently weak field, MRI can be sustained
even for Am < 1.

LANDRY ET AL.

In a protoplanetary disk, ambipolar diffusion dominates in
the atmosphere, which is diffuse and highly ionized by stellar
X-rays and cosmic rays. Ambipolar diffusion is also important
in the outer disk where the surface density is very low. Ohmic
resistivity dominates in the dense inner region shielded from
ionizing radiation. Ignoring the effects of the Hall diffusivity,
which are unlikely to alter either the conditions required for MRI
or the strength of the turbulence where Ohmic dissipation is also
present (Sano & Stone 2002), a non-ideal protoplanetary disk
differs from an ideal accretion disk through the possibility of a
dead zone in the inner disk. The dead zone would remain cold
and would not efficiently transport angular momentum. The
accretion efficiency in the upper, ionized layers of non-ideal
disks also lags behind ideal disks due to ambipolar diffusion
effects.

In order to compute the disk viscosity and angular momentum
transport properties, we need to know (1) whether the MRI is
operating, and (2), if so, how strong the turbulence is. Since the
MRI growth timescale is roughly 1/€Q, hundreds of thousands of
times shorter than our ~1 Myr simulation timescale, we assume
the MRI is either fully saturated or completely damped. Our
MRI turbulence criterion is therefore equivalent to that of Bai
(2011).

1. If A > 1 and B8 > Bnin, neutral gas couples to the magnetic
field and MRI is saturated.

2.If A < 1 or B < PBmin, neutral gas decouples from the
magnetic field and MRI is damped.

In the next section, we discuss the computation of the magnetic
diffusivities that determine A and Am.

2.2. The Diffusion Regime and Turbulent Stress

We cannot apply our turbulence criterion without knowing
the values of np, ny and n4. For a given charged species j, the
ratio of Lorentz force to the neutral drag force is

gy = % (10)
J

—mjeyp’

where Zje is the charge of j (negative or positive), B is the
magnitude of the magnetic field, m; is the mass of j, ¢ is the
speed of light, and y; is defined according to Equation (6).
(Note that g; is not the same as the plasma 8 of Equation (8).)
For each diffusion regime, one can define a conductivity by
summing over all charged species:

ec

0o = Ezn_izjﬁj, (11)
J

ec I/lij
op =—y —=5, (12)

B r 1+ B;

ec anj,Bj

=) 2 13

7" =g Z 1+8 (13)

(Wardle 2007). In Equations (11)—(13), n; is the number density
of species j. Finally, one can write the diffusivities according to

2

C
= , 14
no Inoy (14)
2
C o
N = £, (15)
dmo| o)
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Table 1
Parameters in Protostellar Disk Model
Name Value Description Reference
Ionization parameters
g‘c“l‘{f 10717 571 Cosmic ray ionization rate at disk surface Umebayashi & Nakano (1981)
ACR 96 g cm™> Cosmic ray penetration depth Umebayashi & Nakano (1981)
Lx 2% 103 erg s~! Stellar X-ray luminosity Garmire et al. (2000)
&1 6.0 x 10712 571 Ionization rate coefficient for absorbed X-rays Bai & Goodman (2009)
& 1.0 x 10715 571 Tonization rate coefficient for scattered X-rays Bai & Goodman (2009)
Al 25%x 1073 gem™2 Penetration depth of absorbed X-rays Bai & Goodman (2009)
A2 1.2gcem™2 Penetration depth of scattered X-rays Bai & Goodman (2009)
D1 0.4 Exponent of absorbed X-ray attenuation Bai & Goodman (2009)
223 0.65 Exponent of scattered X-ray attenuation Bai & Goodman (2009)
Ambient medium
Tamb 20 K Ambient temperature set by remnant molecular cloud Peretto et al. (2010)
Dust grains
Ogr 30gem™ Internal grain density Standard
G/S 1000 Gas/small grain mass ratio Augmented from standard 100 to approximate grain growth
a 1 pm Grain size Oliveira et al. (2010)
Gas composition
Nmg 10’4NMg.@ Magnesium abundance in disk gas Turner & Sano (2008)
" 2.33 g mol ™! Mean molar weight standard
Maxwell stresses
Omin 1073 Minimum stress in dead zone from large-scale fields Turner & Sano (2008)
That is, each energetic particle striking a hydrogen molecule
2 op (16) yields one ion and one electron. In constructing the conductivity
Na = 4o, o) o lookup tables we therefore approximate Equations (17)—(21) by

where 0| = ‘/0121 + 01%.

To determine the equilibrium abundances of charged species
n;, we solve a simplified set of chemical reactions from Model 4
of Ilgner & Nelson (2006), which we briefly motivate here. The
set is derived from the following reactions:

Hy+X — H} +e” a7

HS +H, - H +H (18)

H} + CO - HCO" + H, (19)
2H+g - Hy+¢g (20)
HCO* +¢~ — CO+H @1
HCO* + Mg — Mg* +CO + H (22)
Mg* +e~ — Mg, (23)

where HCO™ is a representative molecular ion, Mg™" is a repre-
sentative metal ion and g is a grain. Here every species (except
the energetic particle X—a cosmic ray, X-ray or radionuclide
decay product) is created in at least one reaction, and destroyed
in at least one other. Over the whole set, no species is produced
or consumed on balance. The subset producing the ions and
electrons reduces to

2H, + 2X +2CO — H, + 2HCO* + 2¢. 24)

H; + X — HCO" + e~ (25)

HCO* +e~ — Ho, (26)

neglecting the fact that the molecular ion contains just one hy-
drogen atom. Since HCO" is orders of magnitude less abun-
dant than H,, forming ions leaves the H, density unchanged.
Similarly, we do not model CO destruction and reformation
because the ion is so much less abundant than the molecule.
Equation (22) then becomes

HCO* + Mg — Mg* + H,. Q27)

The simplified network consists of Equations (25), (26), (27)
and (23), together with the grain surface reactions described by
Ilgner & Nelson (2006). The metal atoms’ thermal adsorption
and desorption on the grains is included. Ilgner & Nelson (2006)
found that this reduced network yields similar results to a de-
tailed version including hundreds of species and thousands of
reactions, in the most common situation where the recombina-
tion occurs mostly on the grains.

The internal grain density, gas/small grain ratio, and grain
size used in the chemical reaction network are listed in Table 1.
Here we deviate from the standard interstellar gas/small grain
mass ratio of 100 and assume some grain growth has occurred,
so that 90% of the grain mass is in grains larger than 1 pum.
Using the standard gas/dust ratio of 100 resulted in no MRI
turbulence (see Section 4.1). To avoid having to run the
chemical reaction network at every timestep of our million-
year simulations, we followed the approach of Flaig et al.
(2012) and created a look-up table of magnetic diffusivities
as a function of temperature 7T, gas density p, ionization
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Figure 1. Plots showing the multi-layered structure of evolved, magnetically active disks. Besides the dead zone and the active layer, both disks have a corona near
the star and at the surface where the magnetic field is too strong for the tenuous gas to create turbulence. Disks may also have a double-layered active zone with a dead
slice in some locations. Top left: «(z), B;(z) and ¢ (z) of Model 1 at 1.5 AU after 1 Myr. Top right: Model 1 at 10 AU. Bottom left: Model 2 at 1.5 AU, 1 Myr. Bottom
right: Model 2 at 10 AU. In each panel, the active region with A > 1 and 8 > B is shaded with red dots.

(A color version of this figure is available in the online journal.)

rate ¢ and plasma B. To generate the look-up table, we ran
the chemical reaction network until it reached equilibrium
abundances of all species for each combination of 7, p, ¢ and 8.
We then computed the conductivities and tabulated diffusivities
according to Equations (10)—(16).

The rate coefficient for the reaction H, + X — HJ + e~
is, of course, the ionization rate ¢. To determine ¢, we con-
sider cosmic rays, stellar X-rays, and short-lived radionuclides
(e K 103 yr), including °Al. Following Umebayashi &
Nakano (2009), we take the ionization rate from short-lived
radionuclides as ¢ = 7.6 x 107! s7! and calculate the atten-
uated cosmic ray ionization as

. -~ —4/3
ey i) )\
ferl) = 2 exp( ACR > |:1 ¥ < ACR >

(2) 5@\
- 1 , (28
+exp< )\CR>|:+()\CR> ] @9
surf

where {&y" is the unattenuated cosmic ray ionization rate, Acg
is the cosmic ray penetration depth (Umebayashi & Nakano
1981), and X; »(z) are the mass columns above and below the
vertical height z. Values of {3%', Acr and all other numerical
inputs to our model are listed in Table 1. Finally, following Bai
& Goodman (2009), we calculate the stellar X-ray ionization
rate x as

R \22 _(Zlm)pl _(m)”'
— Ly | —— n) o pe Ui

{x(2) X.29 <1 AU) {(1 [e e ]
2\ 72 2\ P2

+ & |:e_(2’l\<2)) + e_(z%)> :|} s

where Ly = Lx/(10% erg s™!), and Ly is the stellar X-ray

luminosity. We take Lx 9 = 20 to match the young solar-
mass stars observed in the Orion Nebula (Garmire et al. 2000).

(29)

Here we keep the stellar X-ray flux constant in time, though
it could certainly vary in either a smooth, systematic way
with age or stochastically with accretion bursts. All parameters
in Equation (29) are listed in Table 1. The first exponential
represents attenuation of X-rays by absorption, and the second
represents the contribution from scattered X-rays. We show
vertical profiles of the ionization rate at two different disk radii
in Figure 1.

After the ionization rate is determined at each (R, z) zone
in our disk model, an interpolation through the look-up table
can return the magnetic diffusivities. We can then compute
the Elsasser number A and Am and determine whether MRI
turbulence in the zone is active or not, according to our
turbulence criterion (Section 2.1). The last remaining ingredient
in our MRI prescription is a rule for determining the strength of
the turbulence, where it is present. Where MRI is saturated, we
use the scaling relations

a=— (30)

v=oac,H = 31

16 pQ2

found between turbulent stress and magnetic field strength in a
variety of shearing-box simulations (Hawley et al. 1995; Sano
et al. 2004; Bai & Stone 2011). Note that Equation (31) applies
no matter the field geometry or value of A or Am.

Since there is an accretion flow caused by large-scale mag-
netic fields even in the dead zone (Turner & Sano 2008; Nelson
& Gressel 2010), we set a minimum value of o where the MRI
is damped. In the active layer, « is close to its maximum value
of ~0.5, set by the cessation of MRI in the strong-field limit
of B > 1 (Hawley et al. 1995; Balbus & Hawley 1998). Bai
& Stone (2011) found a similar result in the ambipolar regime,
a ~ 0.4 for Am — oo. The shear stress in the dead zone is
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an order of magnitude less than in the active layer (Fleming
& Stone 2003; Turner et al. 2007; Turner & Sano 2008), and
the plasma B at the midplane is typically two to three orders of
magnitude higher than at the top of our grid (see Figure 1, which
shows profiles of the vertical component of 8, §, = 87 P/ Bf,
for two different disk radii). o, must be therefore be roughly
four orders of magnitude less than o, to produce an appro-
priate level of dead zone shear stress. We take o/pi, = 1077
(Table 1).

3. DISK STRUCTURE AND MASS TRANSPORT

With our method of computing turbulent viscosity at any
location in a protostellar disk, we may now simulate how the
disk re-distributes its mass throughout its multi-million-year
existence. Since our viscosity prescription depends on the four
inputs T, p, B and ¢, which are functions of radius and vertical
height (R, z), we must compute the detailed vertical and radial
structure of the disk. Our computational setup, similar to the
disk models of Dodson-Robinson et al. (2009), is based on the
following simplifying assumptions.

1. The disk is axisymmetric and symmetric about the mid-
plane.

2. The disk is geometrically thin, H/R < 1.

3. Heat escapes in the vertical direction much faster than it is
carried with the gas flow in the radial direction.

Assumption 1 reduces the physical 3D disk to a 2D quadrant
with zero flux at the midplane (required for symmetry). Ne-
glecting the azimuthal dimension is a critical step in speeding
up the code to allow long-timescale simulations. Assumption 2
allows the vertical and radial dimensions to be decoupled in a
1+1D framework, so that energy transport proceeds only in the
vertical direction. Each radial gridpoint contains an independent
vertical structure model. Assumption 2 is valid as long as the
vertical sound-crossing time (of order the orbital timescale) is
much less than the accretion timescale, which is generally true
in T-Tauri disks.

In Section 3.1 we describe our vertical structure model, while
in Section 3.2 we discuss our mass transport parameterization.
Section 3.3 contains a description of our computational methods.

3.1. Vertical Structure

Hydrostatic equilibrium and the thermal balance between
stellar irradiation, radiative cooling and viscous heating govern
the vertical structure of our disk. We use the flux-limited
diffusion approximation for the transport of viscously generated
energy. The accretion flux gradient is determined by the viscous
energy generation rate per unit volume (Pringle 1981):

0Fee 9
= ZvQ%p. 32
0z 4v p (32)

In Equation (32), Q2 is the height-dependent Keplerian frequency

1/2
Q= [&] . (33)

(R% + 7232

Temperature and pressure are related by the ideal gas equation
of state,

R,
P = <—) eT, (34
n
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where 11 = 2.33 g mol~! is the mean molar weight of the disk
gas (Table 1). The temperature and pressure gradients are

T, oP_T

_ace 77 — (35)
0z dz P
oP
— = —pQ?z. (36)
0z

In Equation (35), T, is the temperature contribution from vis-
cous heating only—stellar irradiation and the ambient molecular
cloud also contribute some of the thermal energy. T is the true
temperature and includes all heat sources.

To calculate V = dIn T /d In P, the thermodynamic gradient,
we use the Schwarzschild criterion for stability against convec-

tion:
vV — {Vrads Vrad < Vad
Vcoan Vrad > vad '

V.4 = 2/7 is the adiabatic thermodynamic gradient for diatomic
gas and

(37)

3 «PF
4acQ?zT*
is the radiative thermodynamic gradient, where a is the radiation
density constant and « is the local Rosseland mean opacity. For
full details on how to compute V.o, in the disk’s convective
zone, see Kippenhahn & Weigert (1994). Computing V requires
the local Rosseland mean opacity, k. At low temperatures, T <
700 K, we use the opacities of Semenov et al. (2003) calculated
for a five-layered sphere topology. At higher temperatures where
molecular gas dominates opacity (77 > 1000 K), we use the
tables of Ferguson et al. (2005). For 700 K < T < 1000 K,
we interpolate between the two tables using a weighted average
in log(T) space. For more details, and plots of the resulting
opacities, see Dodson-Robinson et al. (2009).

Integrating the coupled ordinary differential equations
(ODEs) in Equations (32), (35) and (36) requires two different
temperatures: T, the true temperature resulting from all sources
of thermal energy, and T, the component from viscous heat-
ing only. The other heat sources are the central star, which
sets an equilibrium temperature component Tq, and the ambi-
ent star-forming region, from which long-wavelength radiation
that penetrates the disk sets a minimum temperature 7. To
compute T, we begin by assuming the disk surface is flared
as a result of hydrostatic equilibrium and radiative equilibrium
with the star. Following the models developed by Chiang &
Goldreich (1997), we calculate the grazing angle 6 at which
stellar energy enters the disk:

8 /TA\Y 7 R\
~3(5) (%) (39

where R, and T, are the star’s radius and effective temperature
and T, is a measure of the gravitational potential at the surface
of the star:

Viad = (38)

T, = GM1

o R,
In Equation (40), M, is the star’s mass and o is the
Stefan—Boltzmann constant. As the disk evolves, we determine
the star’s temperature and radius as a function of age from the pre
main-sequence evolutionary tracks of D’Antona & Mazzitelli
(1994). Since the star’s luminosity decreases as it moves down
the Hayashi track, the disk flaring becomes less pronounced
over time and the disk surface, where T ~ T, cools.

(40)
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In the direction parallel to the disk midplane, the stellar
radiation penetrates to an optical depth ) ~ 1. The asterisk
subscript denotes that this optical depth is measured at the peak
wavelength of the starlight, near 1 wm. Measured perpendicular
to the disk midplane, stellar radiation is mostly attenuated by
optical depth 7}t ~ t)o ~ 0. The equilibrium temperature
between the stellar heating and radiative cooling at the disk

surface—neglecting viscous heating—is (D’ Alessio et al. 2006;
Natta et al. 2000)

0 1/4 R, 1/2
Teq,surfko-8 Tourt ? T*, (41)

where tq,¢ is the Rosseland mean optical depth at the disk
surface for blackbody radiation at Tiq qs. The top surface of
our vertical grid is defined by 74+ = 0.2. Since half of the
stellar radiation absorbed by grains at the disk surface is re-
radiated into space, the equilibrium temperature with the star
as a function of height in the disk—again, neglecting viscous
heating—is

4 1 4 -1,
Te(2)" = B T gt (42)
where 7, is the Rosseland mean optical depth to height z:

Zsurf
.= / «p dz. @3)
Z

Finally, the true temperature 7 simply the flux sum of the
individual temperature components:

4 4 4 4

T" =T+ Ty + 1T,

acc amb*

(44)

3.2. Radial Diffusion

Since the radial and vertical dimensions of our disk model are
decoupled, we must treat mass transport as a 1D problem. Yet
the MRI-active, partially ionized disk is vertically layered, with
the most active accretion occurring at the surface. The key to
a successful 1D description of layered accretion is the fact that
vertical re-distribution of mass within an annulus occurs more
quickly than accretion in the active layers: 1/Q < R?/Vactive.
By computing a mass-weighted, vertically averaged value of
turbulent viscosity in each annulus,

2 Zsurf
V== / vodz, 45)
z z=0
where X is the surface density in the annulus, we can describe
mass transport using the radial diffusion equation:
X 30
at  ROR
In each (R, z) zone, we compute viscosity according to

Equation (1). We use a height-dependent modified scale height
H,

3
1/2 - pl)2
[R 7 ZR )] . (46)

cs/Q

J 1+ (222Q2/¢2) ’

softened into a non-singular form (Milsom et al. 1994). In

MRI-active zones, « is given by Equation (31), while in inactive

zones we set « to our chosen value of oy, (Table 1). The sound

speed used to compute v(R, z) is

ct = &T. (48)
nw

H= 47)
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3.3. Computational Methods and Initial Conditions

To initialize the disk evolution model, we compute the vertical
structure of a disk with the following features.

1. A surface density profile £ o« R~%/2, predicted by Zhu et al.
(2010) for layered accretion disks in the T-Tauri phase.

2. A pre-main-sequence star with a mass of 0.95 My and
an initial age of 0.1 Myr, which roughly coincides with
the beginning of the T-Tauri phase (Dunham & Vorobyov
2012). The star will continue to accrete a small amount of
mass from the disk during the ~3 Myr T-Tauri phase.

3. An ambient temperature of 20 K (Table 1) to match the
typical background temperatures of infrared dark clouds
(Peretto et al. 2010).

4. An outer radius of 70 AU, set by the 80 AU solar nebula size
limit of Kretke et al. (2012). (Note that the disk expands
from its initial radius.) Kretke et al. show that a solar nebula
with R, > 80 AU would excite Kozai oscillations in
some of the planetesimals scattered by Jupiter and Saturn,
stranding them in stable, high-inclination, low-eccentricity
orbits that surveys have not detected.

5. An inner radius of Ry, = 0.5 AU. The requirement that
the disk stay below the dissociation temperature of Hj, so
that the ideal gas equation holds, dictates our choice of Rj,.
Ruden & Lin (1986) find that the exact value of R;, does
not affect the overall disk structure as long as Roy > Ri.

6. A disk mass of either 0.015 Mg (Model 1) or 0.03 Mg
(Model 2). Our disk masses are designed to be comparable
to previous global-disk MRI simulations (e.g., Lyra et al.
2008; Dzyurkevich et al. 2010; Bai 2011), almost all of
which use minimum-mass solar nebulae (MMSNe). Note
that such low-mass disks are probably not viable giant
planet-forming environments (e.g., Thommes et al. 2008).
In a forthcoming study, we will examine the evolution of
MRI-active, high-mass, planet-forming disks.

We then evolve the disk forward in time using Equation (46).
We use fully implicit finite differencing, adjusting the timestep
At so that surface density varies by a maximum of 1.0% during a
single timstep. The inner boundary R;, experiences zero stress,
such that matter falls directly from Rj, onto the star. The disk is
allowed to expand freely from the outer boundary Ry, with four
new zones added to the disk each diffusion time of Rﬁut /V(Rout)-

At each timestep, we independently calculate the vertical
structure for each zone in the radial grid. We begin the vertical
structure solver with initial guesses of T, p and vertical
component of the magnetic pressure Pp, = BZ2 /8m at the top
of our grid, defined by 7y, = 0.2. We find the height of the grid
surface by
k(p, T)P

szsurf

The accretion flux at the grid surface is Fyec(Zsurf) = aTa‘ic. We
use a fourth-order Runge—Kutta integrator with adaptive stepsize
control to integrate the coupled ODEs in Equations (32), (35)
and (36) from the surface to the midplane. The vertical magnetic
pressure stays constant in height, though it varies with radius.

A solved vertical structure model has the properties

Zsuf = (49)

Facc(z = O) =0, (50)

required to keep the disk symmetric about the midplane,

Zsurf
2 / pdz =Z, (51)
z=0
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Figure 2. Viscosity as a function of (R, z) at two timepoints during disk evolution. The more massive Model 2 disk has the larger dead zone, which extends past
20 AU. In both models, the radial extent of the dead zone stays approximately constant with time. Top left: Model 1 (disk mass 0.015 M), 10* yr of simulation time
(star age 0.11 Myr). Top right: Model 1 after 1 Myr of simulation time. Bottom left: Model 2 after 10* yr of simulation time. Bottom right: Model 2 after 1 Myr of

simulation time.
(A color version of this figure is available in the online journal.)

so that the volume densities add up to the surface density in the
annulus, and

B(z = 0) = 1000. (52)

Equation (52) requires that the plasma § be constant throughout
the disk midplane. After turbulence is established, Fromang &
Nelson (2006) find midplane values of 100 < 8 < 1000 for
a wide range of vertical box sizes, resolutions and boundary
conditions in global ideal MHD calculations. We use the
Newton—Raphson algorithm (Press et al. 1992) to adjust the
initial guesses of Ty, p and Pg . until a solution is found that
satisfies Equations (50)—(52).

The on—off nature of the MRI creates discontinuities in and
v(z) and F,..(z) that can cause the Newton—Raphson algorithm
to oscillate between two sets of input parameters that bracket
the correct solution of Equations (50)—(52). To avoid such
oscillations in the Ohmic regime, we decrease the value of «
gradually in the range 1.6 > A > 0.4, using a sigmoid function:

oa— a/(l +e_k(A_l)),

(53)
where k = 1.5In(1/(&minB) — 1). We use a similar sigmoid
function to smooth « in the ambipolar regime for 0.48min <

:8 < 1-6ﬂmin-

4. MASS TRANSPORT IN MRI-ACTIVE DISKS

Here we present our simulations of the evolution of mag-
netically turbulent disks over million-year timescales. In
Section 4.1, we discuss the relative sizes of the dead zone and
active layers (Question 1 in Introduction). In Section 4.2, we
demonstrate how the shrinking of the active layer over regions
of high density enhances mass pileup in the dead zone. We also

analyze the radial mass flow M(R) through the disk and show
that the disk never reaches a steady state, even on million-year
timescales (Question 2 in Introduction). In Section 4.3, we give
a simple prescription for accretional heating due to MRI for
use with semi-analytical, non-evolving disk models to predict
observables (Question 3 in Introduction).

4.1. Turbulent Structure

Figure 2 shows viscosity as a function of (R, z) for the inner
30 AU of Model 1 (0.015 Mg, top) and Model 2 (0.03 Mg,
bottom). Outside of 30 AU, viscosity is almost independent of
height z. The left-hand panels of Figure 2 show the disks after
10* yr of simulation time—a star age of 0.11 Myr, since we
began the simulations with a star at the beginning of the T-Tauri
phase, age 0.1 Myr (Dunham & Vorobyov 2012). The right-
hand panels show both model disks after 1 Myr of simulation
time. The plots reveal two important features of the evolution of
low-mass, MRI-active disks.

1. A midplane dead zone, where Ohmic diffusion quenches
the MRI and restricts viscosity, extends to 16 AU in Model
1 and 21 AU in Model 2.

2. Although the vertical heights of both the dead zone and the
overall disk shrink with time as the disk loses mass and
cools (see Section 5), the radial extent of the dead zone
stays approximately constant in time.

The radial size of the dead zone is larger than the ~5 AU
typically quoted for disks similar to the MMSN (Matsumura
& Pudritz 2003; Salmeron & Wardle 2008; Flaig et al. 2012).
Here we define the dead zone as the region of the disk where
A < 1. The primary reason our dead zone is so extensive is
the surface density of our disks: the MMSN contains 0.01 M
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within 100 AU of the Sun, while our least massive disk contains
0.015 M, within 70 AU. Our dead zone is also extensive because
we treat ambipolar diffusion, as well as Ohmic diffusion. Sano
et al. (2000) use the same 10-fold dust depletion we do, but
treat only Ohmic diffusion and find a dead zone that extends
5-10 AU.

Dead zones with & ~ 107> are required for maintaining
compositional gradients such as the ice gradient in the asteroid
belt, which would radially diffuse on million-year timescales
for fully turbulent disks (Nelson & Gressel 2010). The fact
that Uranus and Neptune have atmospheres with higher carbon
enrichment than Jupiter and Saturn provides some evidence
that the solar nebula had compositional gradients covering the
entire giant planet-formation region (Encrenaz 2005). Given that
the dead zone in a disk of just 0.015 M can reach ~15 AU,
the outer boundary of the giant planet-formation region in the
Nice model (Tsiganis et al. 2005), the solar nebula could have
supported such a compositional gradient. The lack of change
in the dead zone radius over time suggests that compositional
gradients are stable over million-year timescales.

Figure 1 gives further insight into the vertical structures of
Model 1 (top) and Model 2 (bottom). In each panel, the active
layer is shaded with red dots. At 10 AU, both disks show the
classical layered structure of an MRI-active zone on top of a
dead zone. At 1.5 AU, however, we see additional complexity
in the disk’s vertical structure. At 45 mG (Model 1) and 70 mG
(Model 2), the magnetic tension is strong enough to prevent
MRI from bending the field lines in the low-density surface gas
despite a high ionization rate of 107' s~!, forming a stable
corona (e.g., Miller & Stone 2000). Our stabilizing magnetic
field values are roughly consistent with those of Salmeron &
Wardle (2008), who calculated that unstable MRI modes can
only grow for B < 80 mG in the presence of 1 pm grains. (See
Section 2.2 and Table 1 for more on the grain properties used
in our models.) Figure 3 is a zoom-in on the stress coefficient
a(R, z), viscosity V(R, z) and ionization rate ¢ (R, z) in the inner
4 AU of Model 2 after 1 Myr. The inactive corona is apparent for
radii R < 3 AU, but moves above our computed disk surface (the

location where 7, ~ 1) as the magnetic field strength decreases
with radius.

Also noticeable in Figures 1 and 3 is a split active layer in
the inner part of Model 2. MRI-active regions of high « and v
sandwich a “dead slice” that has reduced stress and viscosity by
an order of magnitude. (The fact that & does not immediately
plunge to its minimum value in the dead slice is a result of the
sigmoid smoothing described in Section 3.3.) While not present
at the start of our simulations, the split active layer appears after
only 5000 yr of disk evolution and persists until the end of the
simulation at 3 Myr. The split active layer extends from roughly
1.2 AU < R < 1.7 AU (Figure 3), though its radial extent
shrinks slightly as the disk evolves.

The dead slice, in the part of the disk where ambipolar dif-
fusion is the strongest non-ideal MHD term, is the result of
two competing effects. First, MRI in the ambipolar regime re-
quires high ionization: decreasing ¢ toward the disk midplane
reduces Am and shuts down turbulence. Yet ambipolar diffusion
is quenched at high densities: increasing p toward the midplane
increases Am, favoring turbulence. In the dead slice, the drop-
ping ¢ temporarily dominates over the increasing p and shuts
down the MRI. Model 1 does not have a dead slice because its
surface density is about 1/2 that of Model 2: ¢ can stay high
enough for the MRI to operate until very near the midplane,
where Ohmic diffusion begins to dominate. An open question
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Figure 3. Plots of viscosity v (top), turbulent stress coefficient & (middle), and
ionization rate ¢ (bottom) for the inner 4 AU of Model 2 at 1 Myr. In the inner
3 AU, a stable corona where ambipolar diffusion shuts down MRI sits on top of
the active layer. Note the thinness of the active layer over the pileup at 1 AU.
The dead slice seen in Figure 1 is also visible between 1.2 AU and 1.7 AU.

(A color version of this figure is available in the online journal.)

is whether or not a dead slice would be present in a fully 3D
simulation with identical vertical profiles of p, ¢ and 8 to our
disk: the thickness of the dead slice is smaller than the MRI
wavelength by a factor of 2—-10, so turbulence would very likely
erase it.

We have seen that MRI-active disks may have complex
vertical structure, with multiple layers of turbulent and non-
turbulent zones. In the next section we explore the overall mass
flow through the disk and discuss its evolution on million-year
timescales.

4.2. Mass Flow

As might be expected for a layered disk with a dead zone,
radial mass transport is not in steady state for either Model 1 or
Model 2. The left-hand panel of Figure 5 shows

M(R) = 27 RZvg (54)
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Figure 4. Volume density as a function of (R, z) at two timepoints during disk evolution. In the more massive Model 2, the density in the pileup at 1 AU noticeably
grows with time. Top left: Model 1 (disk mass 0.015 M), 10* yr of simulation time (star age 0.11 Myr). Top right: Model 1 after 1 Myr of simulation time.
Bottom left: Model 2 after 10* yr of simulation time. Bottom right: Model 2 after 1 Myr of simulation time.

(A color version of this figure is available in the online journal.)

for both models after 1 Myr of evolution, where vy is a
density-weighted, vertically averaged gas radial velocity. The
convention in Equation (54) is that vg is positive when gas
flows toward the star and negative when gas flows away from
the star. In the inner part of the disk, where gas flows inward,
the highest accretion rates occur (1) at the outer edge of the
dead zone (at 21 AU for Model 1 and 16 AU for Model 2), and
(2) at the inner disk boundary. There is a clear drop in M(R)
associated with the dead zone. (The noisy M profile where the
disk has two or more layers is a reflection of the root-finding
tolerance in our Newton—Raphson algorithm. Fluctuations in
the location of the boundary between dead and active zones are
random and average out over time.)

The potential for the dead zone to become gravitationally un-
stable, given enough time to accumulate mass, is clear (Gammie
1996; Armitage et al. 2001; Zhu et al. 2010)—though we
see only a slow, steady density growth at ~1-4 AU over
the course of 3 Myr in Model 2 (Figure 4). We will ex-
amine the potential for gravitational instability in high-mass,
MRI-active disks in a forthcoming paper. One important caveat
is that the accumulation of mass in the dead zone is unstable
to the Rossby wave instability (Hawley 1987; Li et al. 2001;
Meheut et al. 2012), which triggers spiral density waves. With-
out azimuthal information in our model, we cannot model the
effect of the Rossby wave instability on dead-zone overdensity.
Ultimately, the overdensity may not survive and may break up
into large-scale vortices (Papaloizou & Pringle 1985; Lovelace
et al. 1999).

At ¢t = 1 Myr, there is turn-around in the accretion flow near
40 AU in each model. The outward mass flow outside 40 AU
is necessary for overall conservation of angular momentum
as material in the inner disk moves toward the star. The fact
that there must be a change in the accretion flow direction
also follows directly from the diffusive nature of T-Tauri disks
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(e.g., Lynden-Bell & Pringle 1974), which lack a circumstellar
envelope to feed steady-state inward accretion. In both models,
the disk has expanded beyond its initial 70 AU size after 1 Myr.
Note that the 40 AU region of the disk does not drain, as the
“turn-around radius” where the accretion flow changes direction
moves inward with time (right-hand panel of Figure 5). We
heartily discourage the use of a steady-state accretion rate for
any reasonable description of angular momentum transport in
T-Tauri disks. However, for predicting observables to order-
of-magnitude using a static, non-time-varying disk model, we
suggest approximating the accretional heating in MRI-active
disks with a constant M ~ 107 My, yr~'. Figure 5 suggests
that at a given time, M has a modest dependence on disk mass.

How consistent are our modeled accretion rates with observa-
tions? An oft-quoted value of M, the T-Tauri star accretion rate,
is 1078 My yr~! (Sicilia-Aguilar et al. 2004). Accretion rates
in transitional disks are roughly 3 x 107° Mg yr~! (Espaillat
etal. 2012). Our simulations achieve an accretion rate of roughly
M, ~ 107 Mg yr~!, more consistent with the median tran-
sitional disk accretion rate. Reproducing high accretion rates
in the inner regions of MRI-active disks is a delicate balance
between magnetic field strength, X-ray ionization, grain size,
and gas/small grain mass ratio. For example, we performed
simulations using the same disk masses and X-ray luminosity
(0.015 Mg, and 0.03 M; 2 x 10°° erg s™!, respectively) but a
grain size of 0.1 um instead of 1 um and a standard gas/small
grain mass ratio of 100, and quenched all MRI activity in the disk
entirely. However, as models by Zsom et al. (2011) show grain
growth and settling within 1000 yr, it is reasonable to assume the
gas/small grain mass ratio has evolved from the interstellar
value by the T-Tauri phase. In our simulations, a stronger mag-
netic field (lower value of § at the midplane) also suppressed
MRI-driven accretion, which occurs in regions of the disk dom-
inated by ambipolar diffusion. Most simulations of non-ideal
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Figure 5. Left: a plot of M(R) for both disk models after 1 Myr of disk evolution reveals that low-mass MRI-driven accretion disks have not reached steady state
after 1 Myr. As required by conservation of angular momentum, there is a turn-around in the mass flow between inward accretion and outward decretion. The highest
accretion rates in the inner disk, where mass moves toward the star, occur on either side of the dead zone. Right: the location of the turn-around radius as a function of

time for both models. The turn-around radius moves inward over time.

(A color version of this figure is available in the online journal.)
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Figure 6. Z,.ive(R) for four time snapshots of Model 1 (left) and Model 2 (right). The active column depth as a function of radius changes very little as the disk
evolves, making it possible to approximate Z,ctive(R) for use in a semi-analytical viscosity prescription.

(A color version of this figure is available in the online journal.)

MRI-driven accretion have difficulty reaching the 1078 M yr~!
benchmark (e.g., Zhu et al. 2010; Bai 2011), though there is a
substantial amount of scatter in both T-Tauri and transitional
disk accretion rates (Romero et al. 2012).

4.3. Simple Prescription for Accretional Heating
in an MRI-active Disk

Previous studies have often relied on static, non-evolving
disk models to connect measured line fluxes, velocities or spec-
tral indices to physical properties of disks (e.g., D’Alessio
et al. 2006; Pinte et al. 2010). Unfortunately the constant-o
prescription for turbulent angular momentum transport leads
to unphysical thermodynamic descriptions of disk midplanes.
Predicted midplane temperatures in a constant-o model, where
most turbulence is concentrated at the midplane, are too high.
The poor match of the constant-o model to realistic proto-
stellar disk accretion is definitely a problem for observations
that trace disk midplanes, such as submillimeter measurements
of continuum emission from large grains or surveys of rare
molecules like HCO* or HD. However, the problem also affects
observations that trace surface layers, such as Spitzer emission
lines, infrared spectral energy distributions and submillimeter
maps of abundant gases like CO. If a significant subset of
T-Tauri disks rely on MRI to drive accretion, overestimating
their midplane temperatures leads to overpredicting the photo-
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sphere and pressure scale heights, underpredicting the optical
depths of low-excitation lines such as CO (J = 2 — 1), and
possibly underpredicting the rates of grain settling and growth.

Here we use our simulation results to present a simple
prescription for @ in an MRI-active disk. First we determine
the depth of the MRI-active layer. Figure 6 shows the surface
density of the active layer as a function of radius for four
time snapshots of Model 1 (left) and Model 2 (right). Clearly,
the functional form of X,..(R) is the same for both models
and does not vary significantly with time. Near the star, where
X-ray ionization is important, ,.ve 1S high but falls off quickly
as X-ray irradiation declines (see Equation (29)). Over the
dead zone, in the region where only cosmic-ray ionization is
important, X,.ve(R) increases as the magnetic field weakens,
shrinking the inactive corona. Z,.ve(R) reaches its maximum at
the outer edge of the dead zone. Here, where the entire vertical
column is active, the decreasing depth of the active layer simply
reflects the fact that X(R) is a decreasing function.

Although X, does vary with R in the parts of the disk with
a dead zone, the variation is less than a factor of two for both
models presented here. Similarly, X,.ve (R) is slightly higher for
Model 2 than for Model 1, suggesting that the active column
may increase modestly with disk mass. Zaive = 10 g cm2isa
good approximation for low-mass disks with surface density less
than about four times the MMSN. The semi-analytical viscosity
prescription is then simple.
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Figure 7. Although the surface of the disk cools over time, as the T-Tauri star moves down the Hayashi track, parts of the midplane of an MRI-active disk may heat up
over time as mass piles up in the dead zone. Top left: temperature at the surface (top curves) and the midplane (bottom curves) of Model 1 (red dotted) and Model 2
(black solid) after 10,000 yr. Top right: surface and midplane temperatures of Models 1 and 2 after 1 Myr. Note the increase in midplane temperature at the edge of the
dead zone in each model. Bottom left: contour plot of T(R, z) in the inner 4 AU of Model 2 after 10,000 yr of evolution. Temperature units are Kelvins. Bottom right:
contour plot of T(R, z) in the inner 4 AU of Model 2 after 1 Myr of evolution. Note how the pileup of material centered at 1 AU (see Figure 4) has heated up over time.

(A color version of this figure is available in the online journal.)

1. Set the depth of the active column to X4y =~ 10 g cm~2.
Seta & 0.01 in the active column and & & 107 in the dead
zone. While there may be a corona on the inner disk surface,
it contains very little mass and may safely be ignored as long
as the disk model includes stellar heating.

. Smooth the transition between the active layer and the dead
zone if desired.

. The entire vertical column will be active where X
20 g cm~2, such that the two active layers meet at the
midplane. Outside the outer radius of the dead zone, where
2~20¢g cm~2, use o ~ 0.01.

. Calculate viscosity v at each (R, z) in the disk using
Equation (1).

~
~

5. THERMAL EVOLUTION OF MRI-ACTIVE DISKS

Now that we understand how mass moves through a disk
where accretion is driven by MRI, we turn our attention to the
thermal structure and evolution of the disk. Here we see some
important differences from disk models that use a constant-o
viscosity prescription. In Section 5.1 we discuss how different
parts of MRI-active disks heat up and cool off over time
(Question 4 in Introduction). In Section 5.2 we investigate the
location of the ice line and its motion through an MRI-active
disk (Question 5 in Introduction).

5.1. Disk Heating and Cooling

The top panels of Figure 7 show the surface and midplane
temperatures of Models 1 and 2 after 10,000 yr of evolution (left)
and 1 Myr of evolution (right). First, note the obvious feature
that the surface is far hotter than the midplane throughout most
of the disk. Disk models with constant-a viscosity prescriptions
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usually have warm midplanes, 7 2, 100 K, in the inner 5 AU. In
the inner 1 AU of constant-a models, the midplane temperature
can even exceed the surface temperature, approaching 1000 K
(e.g., Hersant et al. 2001; D’Alessio et al. 2006; Dodson-
Robinson et al. 2009). In our models, there is so little turbulent
energy generated in the dead zone that the disk midplane falls to
20 K—the ambient temperature of the remnant molecular cloud
surrounding the disk. Here we assume the disk is optically thin
to long-wavelength radiation from the ambient cloud and cannot
cool below the ambient temperature. Only in the inner ~2 AU
does residual mass transfer by large-scale magnetic fields lift
the midplane temperature above the minimum value.

Moving outward through the disk, the midplane temperature
rises modestly until it equalizes with the surface temperature
where the disk becomes optically thin to stellar radiation. Both
of our models, despite their modest masses (0.015 My and
0.03 My,), are optically thick to stellar radiation inside ~70 AU,
decoupling the surface and midplane temperatures. Passively
heated disk models (e.g., Woitke et al. 2009) are therefore
poor approximations to the midplane temperatures of our model
disks, as are constant-o models in which T decreases with R at
the midplane. Instead, coupling the simple viscosity prescription
in Section 4.3 with a radiative transfer scheme is preferable for
modeling observables that trace the inner ~70 AU.

Figure 7 shows that the disk surface cools off over time, as
expected for any disk being irradiated by a T-Tauri star evolving
along the Hayashi track. The surface cooling affects the disk
structure as follows.

1. The overall photosphere height of the disk decreases with
time (Equation (39); Figures 2, 4 and 7).

2. The viscosity in the surface layers decreases with time
(Equation (31); Figure 2).
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Figure 8. In the inner 2 AU of Model 2, we see that the disk surface cooling and midplane heating both affect the structure of the ice line. Each plot shows T(R, z)
with the ice line at 160 K indicated by the blue contour (temperature units are Kelvins). Simulation times are 100 yr (top left), 1000 yr (middle left), 10,000 yr (bottom
left), 100,000 yr (top right), I Myr (middle right) and 3 Myr (bottom right). Recall that the star age is already 0.1 Myr at the beginning of the simulation.

(A color version of this figure is available in the online journal.)

The decrease in surface viscosity with time is due to the
increasing density in the surface layers as the disk cools.

Despite the fact that the disk surface cools with time, the
tendency of the MRI to pile up mass unevenly leads the
temperature to increase with time in certain parts of the disk.
The bottom panels of Figure 7 show the temperature increase in
the pileup at 1 AU in Model 2. Though modest, the temperature
increase does affect the location of the ice line, which we discuss
in the next section.

5.2. The Ice Line in MRI-active Disks

Ice forms in protoplanetary disks when the temperature falls
below 145-170 K, depending on the water vapor’s partial pres-
sure (Podolak & Zucker 2004; Lecar et al. 2006). Observations
of the outer asteroid belt place the ice line in today’s solar sys-
tem at 2.7 AU. Theoretical estimates of the ice line location in
the solar nebula place it a minimum of 0.6 AU from the Sun
(Davis 2005; Garaud & Lin 2007) and a maximum of 6 AU at
the beginning of the T-Tauri phase, moving inward as the disk
evolves (Dodson-Robinson et al. 2009). In constant-« disks, the
ice line moves inward with time as the optically thick disk radi-
ates away its accretion energy. At late times, however, the inner
disk loses enough mass to become optically thin to stellar irra-
diation, causing the ice line to move outward with time (Garaud
& Lin 2007; Oka et al. 2011). The more massive a constant-«
disk, the higher its midplane temperature will be. Taking the
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Davis (2005), Garaud & Lin (2007) and Oka et al. (2011) disk
models up to a reasonable planet-forming mass of 0.04 M, or
higher (Thommes et al. 2008) would push their ice lines outside
the terrestrial planet-forming region, more in agreement with
the results of Dodson-Robinson et al. (2009).

In an MRI-active disk, the overall thermal evolution is
determined by the dimming of the parent star, which causes
viscosity in the active surface layers to decrease with time (see
Section 5.1). Figure 8 shows the 2D structure of the ice line in
Model 2 at timepoints 100 yr, 1000 yr, 10,000 yr, 100,000 yr,
1 Myr and 3 Myr. At early times, we recover the “two-branch”
structure of the ice line seen by Davis (2005), in which a nearly
horizontal ice line divides the hot surface from the cool interior
and amidplane ice line separates the warm midplane near the star
from the cool midplane far away from the star. After 10,000 yr
of evolution, the inner edge of the disk at 0.5 AU cools enough
for ice to freeze at the midplane, causing a “pinch-off” in the
midplane branch of the ice line that leaves an H,O gas bubble at
0.6 AU. This pinch-off is probably a boundary effect: since mass
flows freely from our inner boundary at 0.5 AU onto the star,
the disk near our inner boundary loses mass and cools quickly.

By 1 Myr, mass loss from the inner edge of our grid combined
with less activity in the surface layers cools the disk enough to
push the midplane ice line inside 0.5 AU, the inner boundary of
our computation. Here our results are still consistent with the
low-mass models of Davis (2005), Garaud & Lin (2007) and Oka
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et al. (2011), who all show the ice line moving inside 1 AU for
accretion rates M ~ 107!% Mg yr~!. An important difference
between our models and those of Davis (2005), Garaud & Lin
(2007) and Oka et al. (2011) is that the accretion rate does not
have to drop extremely low for the terrestrial planet-forming
region to cool enough to freeze ice: both Models 1 and 2 have
active layers that drive M ~ 10™° Mg yr~! through the disk
surface. Our model disks predict colder midplanes in the inner
10 AU than those of Terquem (2008) due to the lower minimum
o assumed here (¢in = 107 for our work versus ap = 1073 or
ap = 10~* in Figure 3 of Terquem (2008), where o the value
of « in the dead zone). Unlike Terquem (2008), our disk has a
colder midplane than surface because we include the effects of
stellar heating.

The MRI can also create local regions that heat up with time
not because the disk becomes optically thin, but because mass
piles up in the dead zone. Between 1 Myr and 3 Myr of evolution,
the pileup at 1 AU of Model 2 heats up enough for the midplane
ice line to reappear—a real physical effect. Model 1, which
does not show any such pileup, follows a similar evolutionary
path as Model 2 up to 1 Myr. In an MRI-active disk, water
ice in the terrestrial planet-forming region may be transient.
Understanding which parts of the inner disk have water ice
available for planet formation requires a careful comparison of
the planetesimal growth timescale, the star cooling timescale
and the growth timescale of any pileups deposited in the dead
zone. In Model 2, the pileup grows and the star dims on a
timescale similar to the disk lifetime. We will examine high-
mass MRI-active disks, in which dead-zone pileups can grow
much more quickly, in a forthcoming paper.

6. MODEL LIMITATIONS

Although our model incorporates much of the physics of disk
evolution during the T-Tauri phases of stars, our long-timescale
computation requires a number of simplifications. Our disk
accretion model suffers from the following limitations, which
may affect our conclusions.

1. We model our disks as 1+1D instead of 3D. We assume ra-
dial symmetry, and that the vertical structure is not coupled
to the radial mass transport. This ignores the possibility
of accretion driven by non-axisymmetric instabilities not
represented by our parameterization of stress from MHD
turbulence, such as the Rossby wave instability (Hawley
1987; Li et al. 2001; Meheut et al. 2012). We may then
underestimate accretion rates in some regions of the disk.

2. We do not model the effects of gravitational instability on
momentum transport, as is done by Martin et al. (2012b),
but instead limit our simulations to those disks which
are gravitationally stable for their entire lifetime. To test
whether a disk is gravitationally stable to axisymmetric
perturbations, we calculate the Toomre Q parameter at every
radial grid point. Stability requires that

s Q N
= > Qe ~ 1.

(55)

Note that for disks more massive than those we have
simulated, the disk does eventually become gravitationally
unstable to axisymmetric perturbations within the dead
zone (see Section 4.2).

3. We do not model the effects of Hall diffusivity, which is the
least well understood magnetic diffusion regime. However,
it is unlikely to alter either the conditions required for MRI
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or the strength of the turbulence where Ohmic dissipation
is also present (Sano & Stone 2002).

4. We make several assumptions about the magnetic field
strength and presence of grains. The activity of MRI driven
turbulence is very sensitive to these parameters. First, we
deviate from the standard interstellar gas/small grain mass
ratio of 100 and instead assume a ratio of 1000. This is
equivalent to assuming that 90% of the grain mass is either
in grains larger than 1 um (Oliveira et al. 2010; Scaife et al.
2012), which do not significantly affect electron density, or
has settled below the dead zone. Mohanty et al. (2013) find
that grain depletion through growth or settling is required
to account for the observed accretion rates of low mass
protostars. Without the high gas/small grain mass ratio, the
inner Ohmic dead zone and the upper ambipolar dead zone
overlap, producing a passive thermal structure for much of
the radial extent of the disk (see Section 4.1).

We also assume a vertically constant magnetic pressure
with a midplane plasma g of 1000. This is at the upper end
of the range for midplane plasma g found by Fromang &
Nelson (2006) in global MHD simulations with saturated
turbulence. Without a sufficiently weak magnetic field, the
ambipolar diffusivity can be large enough that there is once
again an overlap in the dead zones and an at least partially
passive disk.

5. We assume a zero stress boundary condition at the inner
radius of our disks (see Section 3.3). This creates a non-
realistic boundary effect in which mass is rapidly depleted
from the inner annuli. One result of this can be seen in
Figure 8, as the midplane within 0.6 AU becomes cold due
to the loss of surface density.

Due to computational convergence difficulties in our model,
at any particular timestep there are a few annuli with verti-
cal structures which do not meet one or more of our midplane
boundary conditions (Equations (50)—(52)), due to the discon-
tinuous nature of the MRI and opacity. We do not consider this
to be a limitation on our simulations, as the unsolved annuli’s
contribution to the viscosity profile is smoothed with a Gaus-
sian filter before being used to update the surface density profile
(Equation (46)). Although there are always a few “bad” annuli
present, at any particular radius the lack of convergence for the
vertical structure persists for only a few timesteps. The uncon-
verged annuli can be seen as occasional incongruous vertical
bars in our contour plots (Figures 2, 3, 4, 7, and 8).

7. CONCLUSIONS

In the Introduction, we asked five questions about the struc-
ture and evolution of MRI-active disks. Here we summarize our
findings and answer each question.

1. How do the relative sizes of the dead zone and active layers
change over time?

The radial size of the dead zone is almost constant in
time, while the vertical height of the dead zone shrinks
over time. What was surprising about our results was not
the evolution of the dead zone, but the complexity of the disk
structure. Between 1.2 AU and 1.7 AU, Model 2 has a five-
layer structure throughout most of its evolution: inactive
corona, active layer, dead slice, active layer, dead midplane
(see Section 4.1 and Figures 1 and 3). Note, however, that
detailed 3D simulations would likely show no dead slice
since the MRI wavelength in the active layers bracketing
the dead slice is of order the dead slice thickness. The
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lower-mass Model 1 has at most three layers: inactive
corona, active layer, dead midplane. Throughout this work,
we have seen that increasing disk mass leads to increasing
complexity in the disk structure and accretion flow.

Finally, the radial size of the dead zone was somewhat
higher than predicted in previous work: 16 AU for Model 1
and 21 AU for Model 2. Previous papers reporting a ~5 AU
dead zone used the MMSN (e.g., Matsumura & Pudritz
2003; Salmeron & Wardle 2008; Flaig et al. 2012), but the
modestly higher surface densities of our disks expanded the
dead zone. There is some evidence that the solar nebula had
a large dead zone consistent with our findings—the giant
planets have an atmospheric composition gradient that, if
primordial, would have diffused on million-year timescales
if not protected by a dead zone (Nelson & Gressel 2010).
One caveat, though, is that we have assumed that the stellar
X-ray flux is constant in time, as is the cosmic ray flux.
A decreasing stellar X-ray flux, which ionizes mainly the
inner ~3 AU of the disk surface, might erase the dead
slice over time, while changing the cosmic ray flux as the
ambient molecular cloud disperses would certainly change
the radial extent of the dead zone.

. How does M vary with radius and time?

Throughout the disk evolution, | M| is highest at the inner
and outer boundaries of the dead zone. The lowest | M | in the
inner disk, where gas flows toward the star, is in the middle
of the dead zone. | M| is about 50% higher for Model 2 than
Model 1, suggesting that higher-mass disks support higher
MRI-driven accretion rates—though the increase in M with
Misk is modest. | M ()| decreases extremely slowly: though
the depth of the active layer does not change with time
(Figure 6), the viscosity in the active layer drops modestly
as the star cools.

As required by conservation of angular momentum, both
model disks expand as they evolve, creating a turn-around in
the accretion flow. The turn-around radius is almost entirely
determined by R, at # = 0 and moves inward as the disk
evolves. Here, with Ry, = 70 AU at ¢t = 0, the turn-around
radius eventually reaches 40 AU after 1 Myr of evolution.
Note that the turn-around radius moves steadily inward
in both models and does not converge toward a particular
location (Figure 5). One expects the turn-around radius to
move steadily inward because mass must continually join
the outward “decretion” flow in order to keep transporting
angular momentum outward.

Our models predict M ~ 10~ Mg yr~! in the planet-
forming region of the disk, but the exact value of M depends
on many free parameters such as grain size, gas/small
grain mass ratio and magnetic field strength. We have not
attempted an exhaustive parameter study of M as a function
of all variables. We merely note that for a gas/small grain
mass ratio of 100 and a grain size of 0.1 um, all MRI
activity in the disk was suppressed. Likewise, decreasing
plasma § at the midplane from 1000 to 100 suppressed MRI
turbulence, though not as severely as small grains.

. How can disk modelers parameterize heating in the active
layers and dead zone without resorting to a 3D MHD
simulation?

The value of non-evolving, “snapshot” disk mod-
els is inarguable, particularly for modeling observables.
Section 4.3 presents a simple modification of the standard,
constant-« irradiated disk that approximates the thermal
structure of the disk where the dead zone is present. Sim-
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ply set the surface density of the active layer to 10 g cm™2
and use o & 0.01 (see Figures 1, 3 and 6). For the dead
zone, use ¢ ~ 107°. For numerical models, we recom-
mend smoothing the transition between the dead zone and
the active layer. While the depth of the active layer does
vary across the dead zone, its variation is at most a factor
of two in a given disk. The fact that the active layer depth
is almost constant in time for both Models 1 and 2 makes
our simple prescription applicable to any stage of T-Tauri
disk evolution, provided that stellar irradiation is included.

. Does the disk midplane heat up or cool off with time?

In both models, the midplane temperature varies little
with time, but the disk surface cools as the star evolves
down the Hayashi track. Despite the modest masses of our
model disks, the optical depth of both to stellar irradiation
is enough to thermally decouple the surface from the
midplane. Most of the dead zone is so lacking in energy
generation that it falls to the assumed ambient temperature
of surrounding molecular cloud material, 20 K in these
models. Since the radial extent of the dead zone changes
little with time, the disk midplane temperature remains
static except at R = 60 AU, where the disk thins enough
over time to become optically thin to stellar irradiation
(Figure 7).

In the midplane, there are two possible locations where
the temperature is not static but increases with time
(Figure 7). The first is at the outer edge of the dead zone.
A slight decrease in surface density with time pushes the
dead zone boundary modestly inward, allowing material at
the edge of the dead zone to become turbulent and heat up.
The other location of increasing temperature with time is
the pileup at 1 AU of Model 2. Lower-mass Model 1 does
not develop any such pileups on million-year timescales.
To the extent that MRI-driven accretion deposits piles of
material in the dead zone, the disk midplane may heat up.

Note, however, that the thermal properties of the disk
depend on the ionizing radiation it receives. Near the star,
the disk structure would evolve if the X-ray flux were to
change with time. In future work, it would be interesting to
let Ly scale with bolometric luminosity on the Hayashi
track. A spike in cosmic ray ionization from a nearby
supernova would affect the global disk structure (Fatuzzo
et al. 2006).

. Where is the ice line in an MRI-active disk and how does

its location change over time?

Due to the paucity of energy generation in the dead zone,
the midplane ice line falls somewhere inside the terrestrial
planet-forming region. In our models, the midplane ice line
actually moves off the inner edge of our grid at 0.5 AU
after 10° yr of disk evolution, reappearing in Model 2
after the pileup at 1 AU reheats the midplane. Despite the
different physics used in computing the ice line location,
our results roughly agree with those of Davis (2005),
Garaud & Lin (2007) and Oka et al. (2011) in that the
midplane ice line is inside 1 AU for most of the disk’s
evolution. Determining whether and when ice is available
for terrestrial planet formation requires carefully comparing
the disk cooling timescale, planetesimal growth timescale
and the timescale on which MRI-deposited pileups grow.
An important difference between our model and standard,
constant-or disk models is that the accretion rate does
not have to drop extremely low to move the ice line
inside 1 AU: throughout their evolution, our disks have
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M > 10~° Mg yr~! moving through the active layers that
sandwich the icy inner disk.

Here we have presented the first analysis of the structure
and evolution of an entire MRI-active disk on million-year
timescales. While we have chosen to focus on low-mass disks
in this work in order to compare with previous studies, we will
expand our analysis to include high-mass, planet-forming disks
in a forthcoming paper. Already, at My;sx = 0.03 Mo—just short
of the minimum 0.04 M required for giant planet formation
(Thommes et al. 2008)—Model 2 exhibits some new features
such as the split active layer and the re-heating midplane.
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