
Copyright

by

Hyunbae Park

2014



The Thesis Committee for Hyunbae Park 
Certifies that this is the approved version of the following thesis : 

 
 

The Kinetic Sunyaev-Zel’dovich effect as a probe of the 
physics of cosmic reionization: the effect of 

self-regulated reionization 
 
 
 
 
 

 

 

APPROVED BY 
SUPERVISING COMMITTEE: 

 

 

 
Paul R. Shapiro 

Milos Milosavljevic 

 

  

Supervisor: 



The Kinetic Sunyaev-Zel’dovich effect as a probe of the

physics of cosmic reionization: the effect of

self-regulated reionization

by

Hyunbae Park, B.S.

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF ARTS

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2014



Acknowledgments

We are indebted by D. Munshi for pointing out typos now corrected,

in the intermediate steps in Appendix A. KA was supported in part by NRF

grant funded by the Korean government MEST (No. 2012R1A1A1014646,

2012M4A2026720). ITI was supported by The Southeast Physics Network

(SEPNet) and the Science and Technology Facilities Council grants ST/F002858/1

and ST/I000976/1. This study was supported in part by the Swedish Research

Council grant 2009-4088, U.S. NSF grants AST-0708176 and AST-1009799,

NASA grants NNX07AH09G, NNG04G177G and NNX11AE09G, and Chan-

dra grant SAO TM8-9009X. The authors acknowledge the TeraGrid and the

Texas Advanced Computing Center (TACC) at The University of Texas at

Austin (URL: http://www.tacc.utexas.edu), and the Swedish National Infras-

tructure for Computing (SNIC) resources at HPC2N (Ume̊a, Sweden) for pro-

viding HPC and visualization resources that have contributed to the results

reported within this paper.

iv



The Kinetic Sunyaev-Zel’dovich effect as a probe of the

physics of cosmic reionization: the effect of

self-regulated reionization

Hyunbae Park, M.A.

The University of Texas at Austin, 2014

Supervisor: Paul R. Shapiro

We calculate the angular power spectrum of the Cosmic Microwave

Background (CMB) temperature fluctuations induced by the kinetic Sunyaev-

Zel’dovich (kSZ) effect from the epoch of reionization (EOR). We use detailed

N -body+radiative transfer simulations to follow inhomogeneous reionization

of the intergalactic medium (IGM). For the first time we take into account

the “self-regulation” of reionization: star formation in low-mass dwarf galax-

ies (108 M⊙ ! M ! 109 M⊙) or minihalos (105 M⊙ ! M ! 108 M⊙) is

suppressed if these halos form in the regions that were already ionized or

Lyman-Werner dissociated. Some previous work suggested that the amplitude

of the kSZ power spectrum from the EOR can be described by a two-parameter

family: the epoch of half ionization and the duration of reionization. How-

ever, we argue that this picture applies only to simple forms of the reionization

history which are roughly symmetric about the half-ionization epoch. In self-

regulated reionization, the universe begins to be ionized early, maintains a
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low level of ionization for an extended period, and then finishes reionization

as soon as high-mass atomically-cooling halos dominate. While inclusion of

self-regulation affects the amplitude of the kSZ power spectrum only modestly

(∼ 10%), it can change the duration of reionization by a factor of more than

two. We conclude that the simple two-parameter family does not capture the

effect of a physical, yet complex, reionization history caused by self-regulation.

When added to the post-reionization kSZ contribution, our prediction for the

total kSZ power spectrum is below the current upper bound from the South

Pole Telescope. Therefore, the current upper bound on the kSZ effect from

the EOR is consistent with our understanding of the physics of reionization.
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Chapter 1

Introduction

1

How was the intergalactic medium (IGM) reionized before z = 6? The

secondary anisotropy of the cosmic microwave background (CMB) at l > 3000

allows us to probe the physics of cosmic reionization via the kinetic Sunyaev-

Zel’dovich (kSZ) effect [30]. The temperature of the CMB changes as free

electrons in ionized gas Compton scatter CMB photons: the bulk peculiar

velocity of electrons induces Doppler shifts in the energy of the CMB photons.

While the spectrum of the CMB remains that of a black body, its temperature

changes.2

Inhomogeneity in the density and velocity of electrons, as well as inho-

mogeneity in ionization fraction, will induce temperature fluctuations in the

1The main contents of this thesis have been published as [22]. Among the co-authors
of [22], Paul R. Shapiro and Eiichiro Komatsu contributed to the project by adivsing the
author and Ilian T. Iliev, Garrelt Mellema and Kyungjin Ahn generated and provided the
scientific data used in the work.

2A related effect results from the thermal motions of free electrons in the hot intracluster
gas, called the thermal SZ effect (tSZ). Multiwavelength observations allow a distinction
between the kSZ and tSZ effects on the CMB. Here, we shall focus on the kSZ signal alone.
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CMB, ∆T/T , given by

∆T (γ̂)

T
= −

∫

dτe−τ γ̂ · v
c

, (1.1)

where γ̂ is the line-of-sight unit vector, v the peculiar velocity field, and τ the

optical depth to Thomson scattering integrated through the IGM from z = 0

to the surface of last scattering at zrec ≈ 103, where

dτ = c ne(z)σT(
dt

dz
)dz. (1.2)

There are two contributions to the kSZ signal:

1. Post-reionization contribution. This is the contribution from red-

shifts below z = zov, where zov is the redshift at which reionization is

finished, when individual H II bubbles fully overlap with one another.

While the post-reionization contribution depends upon the value of zov,

for which quasar absorption spectra suggest zov ∼ 6 − 7, it is not too

sensitive to the exact value of zov. We shall not discuss this contribu-

tion in this paper, but discuss it in a subsequent paper (Park et al., in

preparation).

2. Reionization contribution. This is the contribution from redshifts

above z = zov, where the ionization was patchy and incomplete. This

contribution depends not only on zov, but also on the details of the time

and spatial variation of inhomogeneous reionization, which are not yet

well constrained; thus, we must explore how predictions vary for different

2



models of reionization. The reionization contribution is the main focus

of this paper.

Modeling the reionization contribution is a challenge, as the universe

was not ionized homogeneously, but in patches. These patches grow over time

until they overlap, finishing reionization of the universe. The distribution of

these patches is determined by non-linear physics: non-linear clustering of the

sources of ionizing photons; non-linear clumping of gas in the IGM; and com-

plex morphologies of patches resulting from propagation of ionization fronts in

the clumpy IGM. Accurately calculating the reionization contribution thus re-

quires numerical simulations of cosmological structure formation coupled with

radiative transfer.

To model the formation and spatial clustering of the sources of ion-

izing photons, cosmological simulations must be performed in a volume large

enough to capture the crucial spatial variations of this process in a statistically

meaningful way. This requires a volume greater than ∼ 100 comoving Mpc

across, because H II bubbles can typically grow as large as ∼ 20 comoving

Mpc in size. These simulations must also have a high enough mass resolution

to resolve the formation of the individual galaxies which are the sources of ion-

izing radiation; thus, billions of particles are required. The radiative transfer

of ionizing photons is then calculated on the IGM density and velocity fields

computed by the cosmological simulation.

What do current observational data tell us? The South Pole Telescope
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(SPT) experiment has detected an excess temperature anisotropy for the CMB

on small angular scales, which they attribute to the SZ effect. By subtract-

ing the dominant contribution from the tSZ effect by using multiwavelength

observations to distinguish it from the kSZ effect, the SPT detection yields

an upper limit to the total kSZ contribution. The measurements are usually

reported in terms of the angular power spectrum, Cl ≡ 1
2l+1

∑

m |alm|2. Here,

alm ≡
∫

d2γ̂∆T (γ̂)Y ∗
lm(γ̂) is the coefficient of spherical-harmonics mode, Ylm,

of ∆T . The SPT collaboration reports their measurements in terms of the

quantity

Dl ≡
l(l + 1)Cl

2π
, (1.3)

which we shall compute in this paper. SPT has placed an upper bound on the

kSZ Dl at l = 3000 of DkSZ
l=3000 < 2.8 µK2 [24]. The detection of the total SZ

effect is complicated by the possible contamination of the fluctuating signal

caused by the cosmic infrared background (CIB) from individual galaxies. The

kSZ limit loosens to 6.7 µK2 when allowance is made for a possible correlation

between the thermal Sunyaev-Zel’dovich effect (tSZ) [37] and the CIB. 3Our

goal is to see whether these current upper bounds are consistent with our

models of reionization.

3After our paper was written, a new paper was posted with SZ results from the Atacama
Cosmology Telescope (ACT) [5]. These new results have higher uncertainty than those
quoted above from SPT, but when they are combined with those of SPT and allowance is
made for a more limited tSZ-CIB correlation than that allowed by [24], the ACT+SPT kSZ
upper limit quoted by [5] is 5.0 µK2 (i.e. between the SPT values with and without tSZ-CIB
correlation, of 6.7 µK2 and 2.8 µK2, respectively). Recently, [4] refined their separation of
the tSZ and kSZ contribution to the total SZ power spectrum by using the tSZ bispectrum
to derive the tSZ power spectrum. With allowance for tSZ-CIB correlation, they now report
DkSZ

l=3000
= 2.9± 1.5 µK2 (1σ error bars), or a 95% confidence upper limit of 5.5 µK2.
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Following the early analytical calculation done by Vishniac for linear

density and velocity perturbations in a fully ionized medium [16, 32], calcu-

lations of the kSZ effect by cosmic reionization have steadily improved over

time. Further analytical calculations later incorporated the effects of inhomo-

geneous reionization in an approximate manner [9, 26]. A “semi-numerical”

approach was also developed by combining the simulated density and veloc-

ity fields from N-body simulations with an analytical ansatz for tracking the

reionization process [19, 36].

Early, pioneering calculations using structure formation simulations

coupled with radiative transfer to model inhomogeneous reionization numer-

ically [8, 25] underestimated the amplitude of the kSZ signal, as they used

computational boxes too small to capture the impact of large-scale velocity

modes and H II bubbles or an accurate measure of the duration of the global

EOR. This was demonstrated by the first calculations of reionization based on

truly large-scale (> 100 Mpc) radiative transfer simulations, which resolved

the formation of all galactic halo sources above 2×109 M⊙ [11, 14]. These later

simulations demonstrated the importance of a large enough simulation volume

to capture the effects of long-wavelength fluctuations properly. They were also

the first to realize that it is necessary to correct the kSZ power spectrum for

the missing velocity power due to the finite box size of the simulations.

For the mass range of galactic halos resolved by these simulations,

" 109 M⊙, stars – the sources of reionization – were able to form when the

primordial composition gas inside the halos cooled radiatively by atomic pro-

5



cesses involving H atoms. They are known as “atomic cooling halos” to dis-

tinguish them from minihalos of mass M ! 108 M⊙, with virial temperature

Tvir ! 104K, for which star formation is possible only if H2 molecules form

in sufficient abundance to cool the gas below Tvir by rotational-vibrational

line excitation. Atomic-cooling halos with 108 M⊙ ! M ! 109 M⊙ also exist

and are even more abundant than those with M " 109 M⊙. These low-mass

atomic-cooling halos (“LMACHs”), however, are prevented from forming stars

if they form within an ionized patch of the IGM, where the gas pressure of

the photoheated IGM opposes the accretion of baryons onto these halos. This

“self-regulates” their contribution to reionization as the global ionized frac-

tion grows with time and more and more of these halos are born within the

ionized zones [12, 27]. While the precise value of halo mass which defines the

upper edge of this “Jeans-filtered” mass-range is still uncertain, the high-mass

atomic-cooling halos (“HMACHs”) above ∼ 109 M⊙ are generally free of this

suppression.

To simulate the impact of both LMACHs and HMACHs on reioniza-

tion, it was necessary for [12] to increase their halo mass resolution so as to

resolve all the LMACHs, too, by reducing the simulation box size to 53 Mpc

on a side at fixed N-body particle number. This led to the first radiative

transfer simulations of “self-regulated” reionization, which demonstrated the

importance of including and then suppressing the LMACHs to start reion-

ization earlier and extend its duration [12]. While the end of reionization is

still set by the rapid rise of the HMACHs, in that case, when they eventually
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surpass the saturated contribution of the suppressible LMACHs, the effect of

the LMACHs is to boost the electron-scattering optical depth, τ , integrated

through the EOR. Such an effect can be important for the kSZ fluctuations

from the EOR, too, but simulating this required us to increase the simulation

volume again while retaining the high mass resolution required to resolve the

LMACHs, too.

Our next generation of simulations involved boxes 163 Mpc on a side,

a volume large enough to predict observables like the kSZ effect, but with

N-body simulations large enough to resolve all halos down to 108 M⊙ and

incorporate ionization suppression (“Jeans-filtering”) of the halos of mass be-

tween 108 M⊙ and 109 M⊙ [13]. These smaller-mass halos (LMACHs) are

more abundant and likely to be more efficient ionizing sources, as they may

have higher escape fraction and emissivity [13]. However, as described above,

they may be suppressed as sources if they form inside ionized regions, where

ionization heats the gas and makes its pressure high enough to resist gravita-

tional collapse into such small galaxies. Recently, an additional simulation was

performed, including this new physics, in an even larger volume (∼ 600 Mpc)

(Iliev et al. in preparation).

[1] expanded the mass range even further by accounting for starlight

emitted by minihalos (105− 108 M⊙), as well. In addition to their Jeans-mass

filtering in ionized regions, they may also be suppressed if molecular hydrogen

in minihalos is photo-dissociated by Lyman-Werner band photons in the UV

background below 13.6 eV also emitted by the sources of reionization. We

7



thus have a simulated model which takes into account all the halos down to

105 M⊙ as sources of reionization.

It is important now to determine if and how the kSZ fluctuations from

the epoch of reionization are different from the previous predictions when this

“self-regulated” reionization is taken into account. That is the prime focus of

this paper. Some of our results were first summarized in [28].

Recently, [21], [35] and [2] compared the predicted kSZ power spectra

from their semi-numerical calculations, to the upper bounds from the SPT

data [24], obtaining limits on the epoch and the duration of the reionization.

Those studies concluded that, for a given value of the total Thomson-scattering

optical depth, the reionization contribution to the kSZ signal is mostly sensitive

to the duration of the reionization defined as∆z ≡ z99%−z20% [35] or z75%−z25%

[2, 21]. [35] claim that the upper bound on DkSZ
l=3000 from the SPT data implies

∆z < 4 (95% CL) for no tSZ-CIB correlation, and ∆z < 7 (95% CL) for the

maximum possible tSZ-CIB correlation. However, as their methods are based

on an analytical ansatz for the reionization process, it is necessary to use

more self-consistent calculations of radiative transfer such as our simulation

results to revisit this issue. We note that [34] compared their semi-numerical

approach to their own numerical simulations using radiative transfer, finding

an agreement at the level of 50%.

The remainder of this paper is organized as follows. In Section 2, we

express the kSZ power spectrum in terms of a line-of-sight integral of the trans-

verse momentum power spectrum, and show how the transverse momentum

8



power spectrum is related to the statistics of the density and velocity fields

of ionized gas. In Section 3, we describe the details of the simulations used

for our study. In Section 4, we present our predictions for the kSZ power

spectrum and discuss the effects of inhomogeneous reionization as well as of

self-regulated reionization. In Section 5, we compare our results with the

recent semi-numerical calculations, and show that inclusion of self-regulated

reionization qualitatively changes the parameter dependence of the kSZ power

spectrum from that without self-regulation. In Section 6, we summarize our

conclusions. In Appendix A, we give the derivation of the kSZ power spectrum

written in terms of the transverse momentum power spectrum. In Appendix B,

we show how to correct for the missing power due to a finite box size of sim-

ulations in our method.
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Chapter 2

Basics

2.1 Angular power spectrum of the kSZ effect

As the Thomson-scattering optical depth, τ , is proportional to the free

electron number density, the kSZ effect given by Equation (1.1) depends mainly

on the specific ionized momentum field of the ionized medium,

q ≡ χv(1 + δ), (2.1)

henceforth referred to only as “momentum”. Here, χ ≡ ne/(nH + 2nHe) is the

ionization fraction, and δ ≡ (ρ − ρ̄)/ρ̄ is the density contrast of baryons. In

general, the baryon density is different from the dark matter density, especially

on scales smaller than the Jeans length. In this paper, we shall assume that

baryons trace dark matter particles, as we are interested in scales bigger than

the Jeans length of gas at 104 K.

We rewrite Equation (1.1) using q as

∆T

T
(γ̂) = −

σT n̄e,0

c

∫

ds

a2
e−τq · γ̂. (2.2)

Here, σT is the Thomson scattering cross section, n̄e,0 = n̄H,0 + 2n̄He,0, is the

mean number density of electrons at the (fully-ionized) present epoch, and s

10



is the distance travelled by photons from a source to the observer in comoving

units.

The kSZ angular power spectrum is given by1 [See Appendix A for

derivation; also see [18], but note that their Equation (4) contains a typo: it

is off by a factor of (c/H0)2]:

Cl =
(σT n̄e,0

c

)2
∫

ds

s2a4
e−2τ Pq⊥(k = l/s, s)

2
, (2.3)

where q̃⊥(k) = q̃(k)− k̂[q̃(k) · k̂] is the projection of q̃(k) ≡
∫

d3x eik·xq(x) on

the plane perpendicular to the mode vector k (i.e., q̃⊥ · k = 0), k̂ ≡ k/|k| is a

unit vector, and Pq⊥ is the power spectrum of q̃⊥ defined by (2π)3Pq⊥(k)δ
D(k−

k′) ≡ ⟨q̃⊥(k) · q̃∗
⊥(k

′)⟩. Note that q̃⊥ is often called a transverse (or curl)

mode. A longitudinal (or gradient) mode is parallel to k and is given by

q̃∥(k) = k̂[q̃(k) · k̂].

As we show in Appendix A, in the small-angle approximation, the line-

of-sight integral cancels out the contribution from q̃∥ and a half of the power

of q̃⊥, leaving only the remaining half of Pq⊥. This explains a factor of two in

the denominator of Equation (2.3).

Helium atoms are assumed to be singly ionized where hydrogen atoms

1All previous numerical calculations of the kSZ power spectrum first created maps using
Equation (2.2) and then measured Cl from the two-dimensional Fourier transform of the
simulated maps. In this paper, we shall use Equation (2.3) to compute Cl using Pq⊥ mea-
sured from three-dimensional simulation boxes at various redshifts, without ever creating
maps. While we are the first to apply this method to the computation of the kSZ power
spectrum, this method has been applied successfully to the computation of the tSZ power
spectrum [23] as well as to that of the power spectrum of anisotropy of the near infrared
background [6, 7].
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are ionized at least until zov, the redshift which all the H II bubbles overlap to

finish the ionization of hydrogen atoms due to the similar ionization potential

of H I and He I. Helium atoms remain singly ionized until much later, z ≈ 3,

after which they are thought to be doubly ionized. As we are interested only

in the epoch of hydrogen-reionization, z " 6, we shall assume that the ionized

fraction, χ, is given by χ = (0.92)X , where X is the hydrogen ionized fraction

at each point in our radiative transfer simulation: χ saturates at 0.92 in fully

ionized regions during hydrogen reionization, as 8% of the electrons are left

bound in singly-ionized helium atoms.

2.2 Power spectrum of the curl of the momentum

Table 2.1: Reionization simulation parameters and global reionization history
results

Label Sources gγ,H gγ,L gγ,MH
2 τes z10% z90% zov

(fγ,H) (fγ,L) (fγ,MH)
L1 HMACHs+LMACHs 8.7(10) 130(150) - 0.080 13.3 8.6 8.3
L2(XL2) HMACHs+LMACHs 1.7(2) 8.7(10) - 0.058 9.9 6.9 6.8
L2M1J1 HMACHs+LMACHs+MHs 1.7(2) 8.7(10) 5063(1030) 0.086 17.4 6.9 6.8
L3 HMACHs only 21.7(25) - - 0.070 10.3 9.1 8.4

Our goal is to compute the power spectrum of the curl of the momentum

field, Pq⊥, and evaluate Equation (2.3) to obtain Cl.

Assuming that the velocity field stays longitudinal, i.e., parallel to k,

Pq⊥ is given by the second-order term in the momentum: q⊥ = (
∫

d3k′

(2π)3 δ(k −

k′)v(k′))⊥. This assumption is exact in the linear regime and is approximately

12



true in the non-linear regime, as this second-order term dominates in the non-

linear regime anyway. This gives [18]

Pq⊥(k, z) =

∫

d3k′

(2π)3
(1− µ′2) [Pδδ(|k− k′|)Pvv(k

′)

−
k′

|k− k′|
Pδv(|k− k′|)Pδv(k

′)

]

, (2.4)

where µ′ ≡ k̂ · k̂′. Here, PδδPvv term gives a positive contribution, whereas

PδvPδv term gives a negative contribution from the density field correlated with

the velocity field that does not have a curl component.

Due to a finite box size of simulations, we must correct for the miss-

ing velocity power coming from modes whose wavelength is longer than the

size of the simulation box [14]. We shall describe our correction method in

Appendix B.

At high redshift where the density and velocity fields are still in the

linear regime, the velocity power spectrum is related to the linear density

power spectrum by Pvv(k) = (ȧf/k)2P lin
δδ (k), where f ≡ d ln δ/d ln a and a(t) is

the Robertson-Walker scale factor. This gives the so-called Ostriker-Vishniac

(OV) spectrum [32]:

POV
q⊥

(k, z) = ȧ2f 2

∫

d3k′

(2π)3
P lin
δδ (|k− k′|, z)P lin

δδ (k
′, z)

×
k(k − 2k′µ′)(1− µ′2)

k′2(k2 + k′ − 2kk′µ′)
. (2.5)

The OV spectrum provides a useful check of the numerical simulation and the

way we correct for the missing velocity. In the left panel of Figure 2.1, we show
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an excellent agreement between the OV spectrum and the simulation result at

z = 9, after correcting for the missing velocity power due to a finite box size

of the simulation.

Finally, one can incorporate the effect of inhomogeneous reionization

into the equation by replacing δ in Equation (2.4) by χ(1 + δ):

Pq⊥(k, z)

=

∫

d3k′

(2π)3
(1− µ′2)

[

Pχ(1+δ),χ(1+δ)(|k− k′|)Pvv(k
′)

−
k′

|k− k′|
Pχ(1+δ),v(|k− k′|)Pχ(1+δ),v(k

′)

]

. (2.6)

Note that we do not use this equation to compute Pq⊥, but compute Pq⊥

directly from the simulation. However, we use this equation to estimate and

correct for the missing power due to a finite box size of the simulation as

described in Appendix B. We then use the corrected Pq⊥ in Equation (2.3) to

compute the angular power spectrum. As shown in the right panel of Figure

2.1, the effect of reionization inhomogeneity substantially boosts the power

spectrum relative to the homogeneously-ionized case, while correcting for the

missing velocity power of the finite simulation volume boosts it even further.
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Figure 2.1: Dimensionless power spectra of the curl of the momentum field,
k3Pq⊥(k)/(2π

2), at z = 9 calculated from the simulation with 114 h−1 Mpc
in a side. The black solid lines show the raw power spectrum obtained from
the N -body simulation, while the blue lines show the power spectrum after
corrected being for the missing velocity power due to a finite box size of the
simulation. The red lines show the missing power added to the black solid lines.
The dotted lines show the analytical OV spectrum given in Equation (2.5).
Left: fully ionized case. An excellent agreement between the OV spectrum
and the corrected power spectrum shows the validity of our simulation as well
as that of our method to correct for the missing velocity power. Right: inho-
mogeneously ionized case, L3. The power spectrum is significantly enhanced
at k ! 1 h Mpc−1.
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Chapter 3

Reionization Simulation

3.1 Basic simulation parameters

The simulations that we shall use in this paper consist of two parts: (1)

cosmologicalN -body simulations of collisionless particles using the “CubeP3M”

N -body code [10]; and (2) radiative-transfer of H-ionizing photons in the den-

sity and source fields created from this N-body simulation results using the

“C2-Ray” (Conservative, Causal Ray-tracing) code [20]. The details of the

simulations that we shall use in this paper are described in [13] and [1].

Unless specified otherwise, the reionization simulations are run on the

density and source fields from the same N-body results with 30723 particles

in a comoving box of 114 h−1 Mpc on a side. Halos are identified down to

108 M⊙ with at least 20 particles, using a spherical overdensity halo finder

with overdensity of 178 times the mean cosmic density. One of the models

uses another N-body simulation with a larger box of 425 h−1 Mpc, with 54883

particles, resolving halos down to 109 M⊙. The background cosmology is based

on the WMAP 5-year data combined with constraints from baryonic acoustic

oscillations and high-redshift Type Ia supernovae (ΩM = 0.27,ΩΛ = 0.73, h =

0.7,Ωb = 0.044, σ8 = 0.8, ns = 0.96; [17]).
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For the 114 h−1 Mpc, we then calculate the IGM density field from the

particle data with halos excluded adaptively-smoothed on to a 2563 radiative-

transfer grid in order to generate ionization maps using the C2-Ray code.

Therefore, the final physical length resolution of the reionization models is

dcell = 0.45 h−1 Mpc. The highest l-mode that we can calculate from the

simulation is given by llimit = kNyqs(zov), where kNyq = π/(2dcell) is the Nyquist

frequency, and s(zov) is the comoving distance out to the end of reionization.

For example, zov = 6.6 gives llimit = 22000.

The new simulations also incorporate the effects of even smaller halos

in 105 M⊙ < M < 108 M⊙, using a sub-grid prescription calibrated by smaller-

box N-body simulations with higher-resolution having 17283 particles in a box

of 6.3 h−1 Mpc [1]. Specifically, we find that there is a correlation between

the number of these small-mass halos in each cell and the total matter density

averaged over that cell, with cells of size 0.45 h−1 Mpc, which coincides with

the size of the radiative transfer cells in our 114 h−1 Mpc C2-ray simulations.

We then use this correlation to calculate the number of small-mass halos in

each of the radiative-transfer cells in our 114 h−1 Mpc simulations.

For our most recent simulation, in a box 425 h−1 Mpc on a side, the

RT grid has 5043 cells, so dcell = 0.84 h−1 Mpc, slightly larger than that for

the other simulations, and llimit ∼ 12000. In this larger-box simulation, low-

mass halos between 108 and 109 M⊙ are included by a subgrid model like that

described above for MHs.
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3.2 Varying physics of reionization

What kind of sources are responsible for reionization? In this section,

we consider a set of reionization simulations based on source models of increas-

ing sophistication from the one with only high-mass sources to the one with

all kinds of sources down to least massive halos in our models.

For each halo identified in our simulation, we calculate the number of

ionizing photons which escape from it into the IGM per unit time, Ṅγ , which

is assumed to be proportional to the halo mass, M :

Ṅγ =
fγMΩb

∆tΩ0mp
, (3.1)

where mp is the proton mass, ∆t is the duration of each star-forming episode

(i.e. which corresponds in practice to the radiative transfer simulation time-

step), and fγ = fescf⋆N⋆ is the number of ionizing photons produced and

released by the halo over the lifetime of the stars which form inside it in this

time step, per halo atom, if f∗ is the fraction of the halo atoms which form

stars during this burst, fesc is the fraction of the ionizing photons produced by

these stars which escapes into the IGM and the integrated number of ionizing

photons released over their lifetime per stellar atom is given by N⋆. The latter

parameter depends on the assumed IMF for the stellar population and can

range from ∼ 4, 000 (e.g. for Pop II stars with a Salpeter IMF) to ∼ 100, 000

(e.g. for a top-heavy IMF of Pop III stars). Halos were assigned different

efficiencies according to their mass, grouped according to whether their mass

was above (“HMACHs”) or below (“LMACHs”) 109M⊙ (but above 108M⊙, the
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minimum resolved halo mass). Low-mass sources are assumed to be suppressed

within ionized regions (for ionization fraction higher than 10%), through Jeans-

mass filtering, as discussed in [12].

In addition to the source efficiency parameter, fγ , we also define a

slightly different factor, gγ, that is given by

gγ = fγ

(

10 Myr

∆t

)

(3.2)

where ∆t is the time between two snapshots from the N-body simulation. The

new factor gγ reflects the fact that a given halo has a luminosity which depends

on the ratio of fγ to ∆t, so gγ has the advantage that it is independent of the

length of the time interval between the density slices, and as such it allows a di-

rect comparison between runs with different ∆t. For the reader’s convenience,

we listed the values of both parameters in Table 2.1. The specific numerical

values of the efficiency parameters are strongly dependent on the background

cosmology adopted and the minimum source halo mass. Therefore, parame-

ter values for simulations based on different underlying cosmology and halo

mass resolution should not be compared directly, but require cosmology and

resolution-dependent conversion coefficients to achieve the same reionization

history.

3.2.1 HMACHs-only model

In our simplest model (labeled as L3; see Table 2.1 for the details. Note

that “L” stands for a “large volume”), we only use HMACHs as the sources of
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Figure 3.1: Cuts through the N -body+Radiative Transfer simulations used in
this work. See Table 2.1 for the parameters of models L1, L2, L2M1J1, and
L3. While these runs have the box size of 114 h−1 Mpc, the model XL2 has
the box size of 425 h−1 Mpc and has the same model parameters as the model
L2. Each panel shows the matter density distribution multiplied by spatially-
varying ionization fractions. For example, it just shows the matter density
when a given region is fully ionized, while it shows nothing (i.e., white) when
a given region is fully neutral. The density fields are color-coded such that
overdense regions are red and underdense regions are blue. We create this
figure by interpolating between adjacent snapshots at a given lookback time.
The length scale is linear in the co-moving units. The x-axis shows redshifts,
while the y-axis shows h−1 Mpc.
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Figure 3.2: The global mean ionization history of our models (see Table 2.1 for
the parameters of models). The mass-averaged hydrogen ionization fraction,
X̄ , is plotted against z. Note how self-regulation results in an extended period
of low-level ionization by comparing the case without self-regulation (L3 =
HMACHs only) and that with self-regulation (L1 = HMACHs + LMACHs)
[13]. A further extension occurs when MH sources are included, as well (i.e.
compare L2 = HMACHs + LMACHs and L2M1J1 = L2 + MHs) [1].
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reionization. These sources are defined as the halos with M > 2.2×109M⊙ for

L3; and with M > 109 M⊙ (corresponding to Tvir " 8 × 104 K at z = 9 from

the TIS model of [15]) for the other configurations. These sources are believed

to form stars even when immersed in ionized regions, due to the fact that their

gravitational potential wells are deep enough to overcome Jeans-mass filtering.

3.2.2 HMACHs+LMACHs models

What about smaller-mass halos? LMACHs are more abundant; how-

ever, if they form inside the regions that have already been ionized, they would

not act as sources of ionizing photons. This is because ionization heats the gas

and makes its pressure too high for the gas to collapse into such small halos

[12, and references therein].

When we include LMACHs and account for this “self-regulation” of

reionization, we give LMACHs a higher efficiency, gγ, than for HMACHs, as

presumably it is easier for ionizing photons to escape from LMACHs than from

HMACHs, and Pop III stars with a top-heavy initial mass function (IMF),

which are capable of producing more ionizing photons than Pop II stars with

a Salpeter IMF, are more likely to form in LMACHs. If HMACHs are formed

by mergers of smaller-mass halos, for example, they are more likely to have

enough metallicity to make the transition from Pop III to Pop II star formation

and, hence, to a less efficient IMF.

There are two cases which have both HMACHs and LMACHs, and we

shall call them L1 and L2. For L1, the efficiency parameter, gγ, is chosen such
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that the overlap redshift, zov = 8.3, is similar to that of L3, zov = 8.4 (see

Table 2.1). For L2, gγ is chosen such that zov is between 6 and 7, as suggested

by the quasar absorption line observations.

For L2, we have another run with a much larger volume (425 h−1 Mpc)

with 5043 of radiative-transfer grids. Although it does not resolve LMACHs,

we include LMACHs as a sub-grid model using correlation between average

density of radiative transfer cells and number density of LMACHs similarly

to how [1] included MHs in the simulation (Iliev et al. and Ahn et al. in

preparation). This run gives llimit ∼ 12000. We shall call this configuration

“XL2”, as the volume for this run is bigger (hence the name, XL) than those

runs with “L.” This run will be used to check our method to correct for the

missing velocity power.

3.2.3 HMACHs+LMACHs+MHs model

What about even smaller-mass sources? Gas in halos of masses between

105 M⊙ and 108 M⊙ is thought to cool via rotational and vibrational transitions

of hydrogen molecules and form stars, until hydrogen molecules are dissociated

by Lyman-Werner photons in the UV background from other sources [see [1]

and references therein].

The MHs form earlier than LMACHs or HMACHs, and thus can start

reionization of the universe earlier. However, as the star formation in MHs is

vulnerable to Lyman-Werner photons, it gets suppressed wherever the intensity

of the LW background rises above the threshold for suppression, locally at first,
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and eventually globally. This adds another kind of “self-regulation” to the

reionization history, with an even more extended phase of low-level ionization

before MHs are eventually suppressed completely [1].

The effects of MHs have been added to L2 by [1], and we take one

of the cases simulated there, L2M1J1, as our fiducial case with MHs. See

Table 2.1 for the efficiency of MHs. “M” denotes the mass spectrum of Pop

III stars in MHs, and “J” the threshold intensity of the Lyman-Werner photon

background, above which the star formation in MHs is suppressed. In L2M1J1,

each halo is assumed to host one Pop III star with mass of 300 M⊙, and the

assumed LW threshold is JLW,th = 10−22 ergs−1cm−2sr−1.

This parameter choice for M∗ and JLW,th is only illustrative. As we dis-

cussed in [1], the nature of the self-regulated suppression of MH star-formation

is such that the contribution of MH stars to reionization rises to the point at

which the global mean LW intensity reaches the threshold value for suppres-

sion. As long as MH stars dominate reionization (i.e. early phase), they

continue to form at the global rate necessary to keep JLW at this level, regard-

less of the value of M∗. For M∗ " 100 M⊙, the ratio of ionizing to dissociating

photons emitted per MH star is fixed, so their early contribution to reioniza-

tion is also fixed by this self-regulation effect. Eventually, the LMACH and

HMACH populations grow to dominate the LW background and suppress star

formation inside MHs completely, thereafter. The value adopted for JLW,th

only affects the transition redshift at which this occurs somewhat (i.e. higher

values allow MHs to contribute longer). In short, the reionization history is
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relatively insensitive to the value adopted for M∗, if M∗ " 100 M⊙, but some-

what more sensitive to JLW,th. Recent suggestion that MH stars may form with

lower values of M∗ (e.g. 40 M⊙), perhaps with more than one star at a time,

may alter some of these details, but the qualitative effect of self-regulation

should remain. Similarly, the effect of a relative drift velocity between dark

matter and baryons identified by [31], which tends to raise the minimum mass

of MHs which typically form stars, is offset by a small shift in the timing of

the early phase of MH-dominated reionization, as the exponential rise of MH

abundances compensates at lower redshift.
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Chapter 4

Results

Before presenting and discussing our predictions for the kSZ power spec-

trum, let us briefly comment on the global ionization history of the universe,

which is the key to understanding the difference between our results and the

previous ones. For more detailed discussion on the effects of self-regulation,

see [12, 13] and [1].

Figure 3.1 shows how the reionization proceeds in our simulation boxes,

while Figure 3.2 shows the mass-averaged ionization fraction of the universe

as a function of redshift. Both figures show that inclusion of low-mass halos

(LMACHs and MHs), which are self-regulated, significantly extends the ion-

ization history of the universe toward higher redshift. Let us compare L1 and

L3. As LMACHs form earlier, the universe begins to be ionized earlier in L1

than in L3. However, the universe does not get reionized quickly but keeps a

low level of ionization for an extended period due to self-regulation of sources.

Only after HMACHs start to dominate, at z ∼ 10, does reionization proceed

rapidly and finishes soon thereafter. In L3, with no LMACHs, by contrast,

reionization proceeds rapidly from beginning to end because the abundance

of HMACHs, the only sources, grows exponentially without any suppression
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effects to self-regulate them. When MHs are included (L2M1J2), the universe

begins to be ionized even earlier than the cases with HMACHs and LMACHs,

and keeps a low-level ionization for a longer period.

These physically motivated yet somewhat complex reionization histo-

ries were not considered in any of the previous calculations of the kSZ power

spectrum. In this section, we show that it is these new features in the reioniza-

tion history that invalidate simple two-parameter descriptions of the amplitude

of the kSZ power spectrum proposed by the previous study [2, 21, 35].

4.1 Impact of Inhomogeneous Reionization

First, it is useful to understand how important it is to include inhomo-

geneity (or patchiness) of reionization when computing the kSZ power spec-

trum. In order to see this, we create a homogeneous version of L3 (“L3-

homogeneous”), in which we wipe out inhomogeneity of reionization by re-

placing the ionization fraction, χ, with its global average, χ̄ (see Figure 3.2).

This then gives the transverse momentum power spectrum as Pq⊥ = χ̄2POV
q⊥

,

where POV
q⊥

is the OV spectrum given by Equation (2.5). We remind reader

that, on the scales of interest to us in this power spectrum (k ! 1 h Mpc−1),

the degree of non-linearity of the underlying density and velocity fields of the

IGM is small enough that we can well approximate the kSZ power spectrum for

this “homogeneous” ionization case by the assumption of linear perturbations

inherent in Equation (2.5) (see Section 2.2 and the left panel of Figure 2.1).

We use this momentum power spectrum in Equation (2.3) to obtain the kSZ
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power spectrum for “L3-homogeneous.” Thus, “L3” and “L3-homogeneous”

have exactly the same average reionization history, while spatial fluctuations

of ionization fraction are included only in L3. We find that L3 yields an order-

of-magnitude larger power spectrum than L3-homogeneous that is consistent

with findings in [14](see Figure 4.1).

In order to see the effect of inhomogeneous reionization on the kSZ

power spectrum in more detail, we show the contribution from a given comov-

ing distance to the kSZ power spectrum at l = 3000, dCkSZ
l=3000/ds, in Figure

4.2. While both L3 and L3-homogeneous converge to the same dCkSZ
l=3000/ds

after the universe becomes fully ionized, we find a clear enhancement of the

power when the ionization fraction is less than unity, z > zov = 8.4. The max-

imum contribution occurs when the universe is half ionized. One can see this

visually in the middle (L3) and bottom (L3-homogeneous) panels of Figure

4.2: L3 is clearly more patchy than L3-homogeneous.

The angular scale for l = 3000 roughly corresponds to the co-moving

length of 15 h−1 Mpc during the reionization era (z ∼ 10). The contribution

to the kSZ power spectrum continues to grow until the typical comoving size

of ionized bubbles reaches 15 h−1 Mpc. In our models, this occurs when the

universe is half ionized. After this epoch bubbles grow bigger than 15 h−1 Mpc,

and thus the ionization field is no longer patchy on the scale of 15 h−1 Mpc.

This explains why the contribution to the kSZ power spectrum at l = 3000

decreases after the half-ionization epoch. (By the same token, a plot like

that for the inhomogeneous case L3 in Figure 4.2 but for l > 3000 would

28



look similar but with the peak shifted to higher z, when ionized patches were

smaller-scale.)

4.2 Impact of LMACHs

How does the presence of LMACHs and self-regulation affect the kSZ

power spectrum? To answer this we compare L1 and L3, which are mostly

similar except that L1 has low-mass halos (108 M⊙ < M < 2.2 × 109 M⊙)

with most of them being LMACHs. While they finish reionization at nearly

the same redshift, L1 begins ionization earlier due to LMACHs and gives an

extended period of low ionization due to self-regulation (see Figure 3.2).

Figure 4.1 shows that L1 and L3 give similar kSZ power spectra at

l ! 3000, while at higher multipoles L1 becomes significantly greater than

L3. This is because there are numerous ionized bubbles created by LMACHs

at high redshifts, which give significant contributions to the small-scale kSZ

power spectrum. Although it would be a challenge for current surveys, future

measurements of DkSZ
l with 10% accuracy over a wide range of multipoles can

distinguish between the predictions of L1 and L3, shedding light on the roles

of LMACHs during the reionization.

We compare the contributions from a given comoving distance to the

kSZ power spectrum at l = 3000, dCkSZ
l=3000/ds, for L1 and L3 in Figure 4.3.

As expected, L1 has larger contributions at higher redshifts (z " 10) due to

LMACHs. On the other hand, L3 has larger contributions at lower redshifts

(z ! 10), as it is more patchy due to the absence of smaller bubbles around
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LMACHs (see the middle (L3) and bottom (L1) panels of Figure 4.3). In L1,

bubbles around LMACHs do not grow much because of self-regulation.

In the left panel of Figure 4.4, we show the cumulative contributions

to the kSZ power spectrum at l = 3000 below a given maximum redshift,

z. This also shows that L1 receives larger contributions from higher redshifts

than L3: 20% of the total power in L1 comes from z > 11, while only a few

percent of the total power in L3 comes from z > 11. Similarly, the right panel

of Figure 4.4 shows that 20% of the total power in L1 comes from when the

ionization fraction is less than 0.25, which is consistent with the ionization

history above z = 11 shown in Figure 3.2. This extended tail has important

implications for the interpretation of the kSZ power spectrum, as we shall

discuss in Section 5.

4.3 Impact of Minihalos

What about MHs? We compare L2 and L2M1J1, which have the same

efficiency parameters for HMACHs and LMACHs, but only L2M1J1 consid-

ering MHs. While L2 and L2M1J1 finish reionization at almost the same

redshift, L2M1J1 begins ionization much earlier due to MHs and gives a sig-

nificantly more extended period of low ionization due to self-regulation (see

Figure 3.2).

Figure 4.1 shows that L2 and L2M1J1 give similar kSZ power spectra

at l ! 5000, while at higher multipoles L2M1J1 becomes greater than L2.

The reason is the same as that for L1 versus L3: there are numerous ionized
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bubbles created by MHs at high redshifts, which contribute to the small-scale

kSZ power spectrum.

While L2M1J1 begins reionization much earlier and thus has more con-

tribution from high redshifts to the kSZ power spectrum, the actual magnitude

of the high-redshift contribution is modest. This is because of self-regulation:

self-regulation prevents bubbles around MHs from growing, and thus we end

up having numerous small bubbles filling space nearly uniformly. This results

in a lesser degree of patchiness, hence a modest contribution to the kSZ power

spectrum at l = 3000. One can see this visually in the middle (L2M1J1) and

bottom (L2) panels of Figure 4.5. As a result, the situation is similar to that

for L1 versus L3: 20% of the total power at l = 3000 in L2M1J1 comes from

z > 10, while only 5% of the total power in L2 comes from z > 10.

It is interesting that all the models with self-regulation (L1, L2, and

L2M1J1) lie on top of each other when the cumulative contribution is shown

as a function of the mean ionization fraction (see the right panel of Figure 4.4),

whereas the model that does not have self-regulation (L3) is a clear outlier.

Whether this is merely a coincidence or a unique feature of self-regulation is

unclear due to the limited number of samples.
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Figure 4.1: Predicted kSZ power spectra, DkSZ
l , from z > zov for the models

discussed in this work (see Table 2.1 for the parameters of models). zov =
8.3, 6.8, 6.8, 6.8 and 8.4 for L1, L2, XL2, L2M1J1 and L3, respectively. The
box size of L1, L2, L2M1J1 and L3 is 114 h−1 Mpc, while that of XL2 is
425 h−1 Mpc. The model parameters of XL2 are the same as those of L2,
and thus XL2 provides a useful check of the way we correct for the missing
velocity power in 114 h−1 Mpc-box simulations (see Appendix B for details).
The primary CMB power spectrum is also shown.
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Figure 4.2: Left: The top panel shows the contribution from a given comoving
distance to the kSZ power spectrum at l = 3000, dCkSZ

l=3000/ds. The solid
line with a peak shows L3, the dashed line shows L3-homogeneous, and the
nearly-horizontal solid line shows the fully-ionized case. The middle panel
is the same as the bottom panel of Figure 3.1. The bottom panel shows L3-
homogeneous, i.e., the density distribution multiplied by the average ionization
fraction. Right: A snapshot of L3 at z = 9.3, which gives the maximum
contribution to the kSZ power spectrum at l = 3000.
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Figure 4.3: Same as the left panel of Figure 4.2, but for comparing L1 (bottom
panel) and L3 (middle panel). See Table 2.1 for the parameters of L1 and L3.

Figure 4.4: Cumulative reionization kSZ power spectrum at l = 3000 as a
function of the maximum redshift (Left) and the mean ionization fraction
(Right).
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Figure 4.5: Same as the left panel of Figure 4.2, but for comparing L2 (bottom
panel) and L2M1J1 (middle panel). See Table 2.1 for the parameters of L2
and L2M1J1.
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Chapter 5

Spot checking the previous constraints on the

duration of reionization: more extended

histories can give similar kSZ signals

What determines the amplitude of the kSZ power spectrum? Recent

studies using semi-numerical reionization models [2, 21, 35] claim that the am-

plitude of the kSZ power spectrum at l = 3000 can be described by a two-

parameter family: the redshift of half-ionization, z50%, and the duration of

reionization defined as ∆z ≡ z99%−z20% [35] or ∆z ≡ z75%−z25% [2, 21]. None

of these studies included the effects of self-regulated reionization, and thus the

reionization histories explored in these studies are roughly symmetric about

the epoch of half-ionization.

Figure 2 of [35] shows that the kSZ power spectrum at l = 3000 in-

creases by a factor of two as the duration of reionization increases from ∆z = 2

to 4. Figure 10 of [21] shows that, for a half-ionization redshift of z50% = 9, the

kSZ power spectrum at l = 3000 increases by a factor of 1.4 as the duration

of reionization increases from ∆z = 1.3 to 2.6. The former gives a scaling of

DkSZ
l=3000 ∝ (z99% − z20%), whereas the latter gives DkSZ

l=3000 ∝ (z75% − z25%)0.5,

for a fixed half-ionization redshift. More recently, using a new semi-numerical

method based on a correlation between the smoothed density field and the
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redshift-of-reionization field found from radiation-hydro simulations of [3], [2]

calculate the kSZ power spectrum coming from z > 5.5 and obtain the follow-

ing scaling relation:

DkSZ,z>5.5
l=3000 = 2.02 µK2

[(

1 + z̄

11

)

− 0.12

](

∆z

1.05

)0.47

, (5.1)

where ∆z = z75%− z25% and z̄ is the mean value of the redshift-of-reionization

field, which is approximately equal to the half-ionization redshift, z50%.

Table 5.1: Global reionization history and kSZ signal

Label z50% z99% − z20% z75% − z25% zov DkSZ,z>5.5
l=3000

DkSZ,z<zov
l=3000

1 DkSZ,z>zov
l=3000

DkSZ,total
l=3000

L1 9.5 3.2 2.2 8.3 1.27 1.94 0.83 2.77
L2 7.6 2.1 1.4 6.8 0.87 1.69 0.66 2.35
L2M1J1 7.7 6.5 2.1 6.8 0.90 1.69 0.69 2.38
L3 9.1 1.3 0.9 8.4 1.20 1.96 0.75 2.71

Our predictions for DkSZ
l=3000 are summarized in Table 5.1. Among the

models we have explored in this paper, L3 (which contains only HMACHs

and does not have self-regulation) closely matches the scenarios explored in

the above studies. Using z50% = 9.1 and z75% − z25% = 0.9 we find for L3,

Equation (5.1) gives DkSZ,z>5.5
l=3000 = 1.5 µK2. This is in a reasonable agreement

with our result,2 DkSZ,z>5.5
l=3000 = 1.2 µK2.

However, the above formula significantly overestimates the amplitude

of the kSZ power spectrum for L1: Equation (5.1) gives DkSZ,z>5.5
l=3000 = 2.4 µK2,

2In order to compute DkSZ,z>5.5
l=3000

, we calculate the contribution from z between 5.5 and

zov using the fully-ionized formula, Pq⊥ = POV
q⊥

, and add it to DkSZ,z>zov
l=3000

shown in the
seventh column of Table 5.1.
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whereas we find DkSZ,z>5.5
l=3000 = 1.3 µK2. In other words, despite the fact that L1

has a significantly more extended duration of reionization than L3 (by a factor

of more than two), z75%−z25% = 2.2, the amplitude of the kSZ power spectrum

increases only by 8%. Similarly, Equation (5.1) gives DkSZ,z>5.5
l=3000 = 1.5 and

1.9 µK2 for L2 and L2M1J1, respectively, whereas we find 0.9 µK2 for both

cases. Therefore, we conclude that Equation (5.1) is valid only for simple

scenarios where the reionization history is roughly symmetric about the half-

ionization redshift, but is invalid when self-regulation is included. Similar

conclusions apply to [35] and [21].

Our results show that self-regulation makes the duration of reionization

significantly more extended without changing the amplitude of the kSZ power

spectrum very much. In other words, an extended period of low-level ionization

in z > z50% does not make much contribution to the kSZ power spectrum at

l = 3000.
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Chapter 6

Conclusion

In this paper, using the state-of-the-art reionization simulations incor-

porating the effects of self-regulated reionization [1, 13], we have computed

the power spectrum of the kSZ effect from the EOR. Unlike the previous work

which created maps and computed two-dimensional Fourier transforms from

the maps, we have computed the kSZ power spectrum from a line-of-sight in-

tegral of the transverse momentum power spectrum of ionized gas. We present

a method to statistically correct for the missing velocity power in Appendix B,

and verify the accuracy of our method by comparing the results from large-

(425 Mpc/h) and small-box (114 Mpc/h) simulations.

We find that the kSZ power spectrum is a sensitive probe of patchiness

of reionization: patchiness increases the amplitude of the kSZ power spec-

trum by an order of magnitude. The maximum contribution occurs when the

angular sizes of ionized bubbles are close to those corresponding to a given

multipole.

While inclusion of small-mass halos such as LMACHs and MHs makes

the beginning of reionization earlier, self-regulation significantly slows down

the progress of reionization [1, 12, 13]. This results in an extended period of
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low-level ionization before more massive HMACHs dominate and finish reion-

ization. We find that such an extended period of low-level ionization does

not, however, make much of a contribution to the kSZ power spectrum at

l = 3000: DkSZ
l=3000 changes only by ∼ 10% despite the fact that the duration of

reionization increases by a factor of more than two.

Our results qualitatively change the conclusions reached by the previ-

ous work which did not include self-regulation. Recent work [2, 21, 35] assumes

thatDkSZ
l=3000 can be adequately parameterized by the redshift of half-ionization,

z50%, and the duration of reionization, ∆z. While our result for the simplest

model of reionization without self-regulation (L3) agrees with the scaling for-

mula of [2] (Equation 5.1), our results for the models with self-regulation do

not agree with it: specifically, the amplitude of the kSZ effect is no longer corre-

lated well with the duration of the reionization. This is because self-regulation

gives an extended period of low-level reionization only for z > z20%, while the

simple models adopted by these other treatments have a roughly symmetric

reionization history about z = z50%, for which a longer duration thus implies

a longer period of patchy state with a significant ionization across z = z50%.

Therefore, a more accurate scaling formula is required to take into account the

asymmetric reionization history typical of self-regulated reionization.

Going beyond l = 3000, we find that LMACHs and MHs do have a

considerable impact on the kSZ power spectrum on smaller angular scales.

For example, DkSZ
l=10000 is boosted by 60% and 25% when LMACHs and MHs

are included, respectively. Even though measurements of the kSZ power spec-
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trum at l > 3000 would be a challenge for the moment due to contamination

by extragalactic point sources and tSZ, future multi-wavelength observations

may allow us to determine the kSZ power spectrum from the EOR over a

wide range of multipoles. Such measurements will provide us with valuable

additional information on the nature of the ionizing sources and the history of

reionization.

How do our calculations compare with these current observational con-

straints? In order to obtain the total kSZ signal from both reionization

and post-reionization contributions, we take the “CSF” (cooling and star for-

mation) post-reionization model of [29] that approximately incorporates the

Jeans-filtering of Pq⊥ due to shock heating in halos and in the IGM. The post-

reionization kSZ signal computed from their scaling relation and the total kSZ

signal (i.e., the sum our reionization calculation and their post-reionization

calculation) are shown in the sixth and seventh columns of Table 5.1, respec-

tively. We find that all of our predictions are consistent with the 95% CL

upper bound on the total signal from SPT, DkSZ,total
l=3000 < 2.8 µK2 [24]. There-

fore, we conclude that the current data are consistent with our understanding

of the physics of reionization.
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Appendix A

Derivation of the power spectrum of the kSZ

effect

A.1 Suppression of longitudinal modes

An important observation of the nature of kSZ is that it is given by

the transverse (vector-mode or spin-1) momentum field, and the longitudinal

contribution is suppressed. To show this, we Fourier transform Equation (2.2):

∆T

T
(γ̂) = −

σTne,0

c

∫

ds

a(s)2
e−τ

∫

d3k

(2π)3
[γ̂ · q̃(k, s)]e−ik·(sγ̂). (A.1)

Decomposing the momentum vector in Fourier space, q̃, into the longitudinal

component, q̃∥ ≡ q̃ · k̂, and the transverse component, q̃⊥ ≡ |q̃− k̂(q̃ · k̂)|, we

obtain

∆T

T
(γ̂) = −

σTne,0

c

∫

ds

a(s)2
e−τ

∫

d3k

(2π)3

[

xq̃∥(k, s) + cos(φq̂ − φγ̂)(1− x2)1/2q̃⊥(k, s)
]

e−iksx, (A.2)

where x ≡ k̂ · γ̂, and φq̂ and φγ̂ are the angles that k makes with q̃ and γ̂,

respectively.

If the factor eiksx oscillates much more rapidly than the other quantities,

the integral over s will be small due to cancellation. Recalling that a(s), τ(s),
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and q̃ all vary over the Hubble length scale, kx should be much smaller than

H/c in order to avoid the cancellation. Namely, either the wavelength should

be longer than the Hubble length, i.e., k ! H/c, or the mode should be nearly

perpendicular to the line-of-sight direction, i.e., x ≈ 0. The former does

not contribute much because the amplitude of such a long-wavelength mode

is small. Thus, only the modes that are perpendicular to the line-of-sight

direction, x ≈ 0, have a chance to contribute to the kSZ signal.

However, in this configuration, the longitudinal component of the mo-

mentum field is also perpendicular to the line-of-sight, and vanishes when

taken a dot-product with the line-of-sight, i.e., xq̃∥ ≈ 0. Therefore, only the

transverse mode survives in the integral, giving

∆T

T
(γ̂) = −

σTne,0

c

∫

ds

a(s)2
e−τ

∫

d3k

(2π)3
cos(φq̂ − φγ̂)(1− x2)1/2q̃⊥(k, s)e

−iksx.

(A.3)

A.2 Angular Power Spectrum

Here, we follow steps similar to those in Chapter 7.3 of [33] to derive

the angular power spectrum of CMB fluctuations induced by the kSZ effect.
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Spherical harmonic decomposition of Equation (A.3) gives

alm =

∫

d2γ̂ Y m
l

∗(γ̂)
∆T

T
(γ̂)

= −
σTne,0

c

∫

d2γ̂ Y m∗
l (γ̂)

∫

ds

a(s)2
e−τ

∫

d3k

(2π)3
cos(φq̂ − φγ̂)(1− x2)1/2q̃⊥(k, s)e

−iksx

≡ −
σTne,0

c

∫

d3k

(2π)3
flm(k), (A.4)

where

flm(k) ≡
∫

d2γ̂ Y m∗
l (γ̂)

∫

ds

a(s)2
e−τ cos(φq̂ − φγ̂)(1− x2)1/2q̃⊥(k, s)e

−iksx

=

∫

d2γ̂ Y m∗
l (γ̂)

∫

ds

a(s)2
e−τ cos(φq̂ − φγ̂)(1− x2)1/2q̃⊥(k, s)

×4π
∑

LM

(−i)LjL(ks)Y
M
L (γ̂)Y M∗

L (k̂). (A.5)

We first choose a convenient coordinate system in which the z-direction

lies on that of the mode vector, i.e., k̂ = ẑ, and the azimuthal direction is the

same as the direction of the momentum vector, i.e., φq̂ = 0. In this case,
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Y M∗
L (k̂) simplifies to Y M∗

L (ẑ) = δM0

√

2L+1
4π , giving

flm(kẑ) =
√
4π

∫

ds

a(s)2
e−τ q̃⊥(k, s)

∑

L

(−i)L
√
2L+ 1jL(ks)

∫

d2γ̂ Y 0
L (γ̂) cosφ sin θ Y m∗

l (γ̂)

=

√

8π2

3

∫

ds

a(s)2
e−τ q̃⊥(k, s)

∑

L

(−i)L
√
2L+ 1jL(ks)

∫

d2γ̂ Y 0
L (γ̂)

[

Y −1
1 (γ̂)− Y 1

1 (γ̂)
]

Y m∗
l (γ̂), (A.6)

where θ and φ = φγ̂ determine the line-of-sight vector as γ̂ = (cos θ sinφ, sin θ sinφ, cosφ).

The integral over γ̂ can be computed using,

∫

d2γ̂ Y M
L (γ̂) Y µ

Λ (γ̂) Y
m∗
l (γ̂) =

√

(2Λ+ 1)(2l + 1)

4π(2L+ 1)

×ClΛ(L,M ;m,−µ)ClΛ(L, 0; 0, 0)δM,m−µ, (A.7)

where ClΛ(L,M ;m,µ) is the Clebsch-Gordan coefficient for adding the angular

momentum quantum numbers (l,m) and (Λ, µ) and for forming (L,M). In

our case, we have

fl,m=±1(kẑ) =
√

2π(2l + 1)

∫

ds

a(s)2
e−τ q̃⊥(k, s)

∑

L

(−i)LjL(ks)×

[ ± Cl1(L, 0;±1,∓1)Cl1(L, 0; 0, 0)) ] . (A.8)
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Thus, the relevant coefficients are

Cl1(l + 1, 0; 0, 0) =

√

l + 1

2l + 1
,

Cl1(l + 1, 0;±1,∓1) =

√

l

2(2l + 1)
,

Cl1(l, 0; 0, 0) = 0,

Cl1(l − 1, 0; 0, 0) =

√

l

2l + 1
,

Cl1(l − 1, 0;±1,∓1) =

√

l + 1

2(2l + 1)
. (A.9)

Putting these together gives

fl,m=±1(kẑ) = (−i)l+1

√

πl(l + 1)

2l + 1

∫

ds

a(s)2
e−τ q̃⊥(k, s) [jl+1(ks) + jl−1(ks)]

= (−i)l+1
√

πl(l + 1)(2l + 1)

∫

ds

a(s)2
e−τ q̃⊥(k, s)

jl(ks)

ks
. (A.10)

Now, we get back to the observer’s frame by applying the standard rotation

operator, S(q̂), that takes the z-direction into k̂. This gives

flm(k) =
∑

m′=±1

Dl
m,m′(S(k̂))flm′(kẑ), (A.11)

where Dl
mm′ = ⟨l,m′|S|l,m⟩ is the matrix representation of the finite rotation
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of an initial state (l,m) into a final state (l,m′). We obtain

alm = −
σTne,0

c

∫

d3k

(2π)3

∑

m′=±1

Dl
m,m′(S(k̂))

(−i)l+1
√

πl(l + 1)(2l + 1)

∫

ds

a(s)2
e−τ q̃⊥(k, s)

jl(ks)

ks
. (A.12)

Finally, we calculate the angular power spectrum from ⟨alma∗l′m′⟩ =

Clδll′δmm′ and obtain

Cl =
l(l + 1)

π

(σTne,0

c

)2
∫

ds

a(s)2
e−τ(s)

∫

ds′

a(s′)2
e−τ(s′)

∫

k2dk
jl(ks)

ks

jl(ks′)

ks′
Pq⊥(k, s),

(A.13)

where Pq⊥ is the power spectrum of q̃⊥ defined by (2π)3Pq⊥(k)δ
D(k − k′) =

⟨q̃⊥(k)q̃∗
⊥(k

′)⟩. Here, we have used the identity,

∫

d2k̂ Dl
m,±1(S(k̂))D

l′∗
m′,±1(S(k̂)) =

4π

2l + 1
δmm′δll′. (A.14)

The integral over k can be performed with Limber’s approximation:

when a function g(k, s) varies much more slowly than the spherical Bessel

function, one can approximate the integral as

∫

k2dkjl(ks)jl(ks
′)g(k, s) ≈

π

2

δD(s− s′)

s2
g

(

k =
l

s
, s

)

. (A.15)

With this approximation, we finally obtain the desired formula for the kSZ

power spectrum:

Cl =
(σTne,0

c

)2
∫

ds

s2a(s)4
e−2τ(s)Pq⊥(k = l/s, s)

2
. (A.16)

This is Equation (2.3).
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Appendix B

Correcting for the Missing Power in

Simulations

The transverse momentum power spectrum at a given wavenumber,

Pq⊥(k), receives contributions from the density and velocity auto/cross power

spectra at various wavenumbers via Equation (2.6). As a result, Pq⊥ computed

from a simulation with a finite box suffers from a loss of power due to the lack

of modes whose wavelength is greater than the size of the box [14].

The missing power arises because we do not have Pχ(1+δ),χ(1+δ)(k),

Pvv(k), or Pχ(1+δ),v(k) for k < kbox ≡ 2π/lbox, where lbox is the size of the

box. In Equation (2.6), this leads to the missing contributions in |k′| < kbox

and |k− k′| < kbox. Estimating and correcting for the missing power thus re-

quires the knowledge of the large-scale limit of Pχ(1+δ),χ(1+δ), Pvv, and Pχ(1+δ),v.

For the homogeneous reionization case, it is straightforward to recover

the missing power, as the large-scale limits of Pvv, Pχ(1+δ),χ(1+δ)(= χ̄2Pδδ),

and Pχ(1+δ),v(= χ̄Pδv) are precisely known by the cosmological linear per-

turbation theory. Using Pδδ from the linear theory and the linear relation,

Pvv = (ȧf/k)2Pδδ, we find that the missing-power-corrected momentum power

spectrum from the N -body simulation agrees precisely with the expected OV
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spectrum (see Figure 2.1). Note that most of the missing power comes from

Pδδ(|k−k′|)Pvv(k′) in k′ < kbox because of the relation, v(k) ∝ δ(k)/k, in the

large-scale limit.

For the inhomogeneous reionization case, we do not have a precise way

to calculate the ionized density power, Pχ(1+δ),χ(1+δ), in the large-scale limit;

however, we expect that the density field and the ionization field are reasonably

flat at the scales larger than the box size, and correct for the missing bulk

velocity of the box. Therefore, we expect that the term Pχ(1+δ),χ(1+δ)(|k −

k′|)Pvv(k′) in k′ < kbox captures most of the missing power, as we have seen

from the homogeneous reionization case above. With this approximation, the

missing power in the inhomogeneously ionized regime is given by

PMissing
q⊥

(k, z) =

∫

k<kbox

d3k′

(2π)3
(1− µ′2)Pχ(1+δ),χ(1+δ)(|k− k′|)Pvv(k

′). (B.1)

In order to check the accuracy of Equation (B.1), we compare the missing-

power-corrected momentum power spectrum from the box of 114 h−1 Mpc

(black solid line; denoted as L2) with that from a larger box of 425 h−1 Mpc

(black dashed line; XL2) in Figure 4.1. We find a very good agreement between

the two, confirming the robustness of our correction for the missing power.
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