
Copyright

by

Jackson Lee Salling

2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211342903?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Report Committee for Jackson Lee Salling

certifies that this is the approved version of the following report:

Control flow graph visualization and its application to

coverage and fault localization in Python

APPROVED BY

SUPERVISING COMMITTEE:

Sarfraz Khurshid, Supervisor

Christine Julien

Control flow graph visualization and its application to

coverage and fault localization in Python

by

Jackson Lee Salling, B.S.E.E.

REPORT

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2015

Dedicated to my parents and to my wife, for their love and support.

Acknowledgments

Thanks to my supervisor Professor Sarfraz Khurshid, who introduced

me to the concepts in software testing, including graph coverage, fault localiza-

tion, and mutation testing. For providing guidance, reading this report, and

encouraging this project, I am grateful. Thanks to Professor Christine Julien

for reading my report and teaching me about literature reviews. I’d also like

to thank several other faculty who influenced me greatly during my time in

graduate school. Thanks goes to Vijay Garg, Adnan Aziz, Bill Bard, and

Joydeep Ghosh. Several students I met in graduate school were particularly

impactful during my time there. They raised the bar for everyone, challenged

me, and made my work better; thank you to all of them.

v

Control flow graph visualization and its application to

coverage and fault localization in Python

Jackson Lee Salling, M.S.E.

The University of Texas at Austin, 2015

Supervisor: Sarfraz Khurshid

This report presents a software testing tool that creates visualizations

of the Control Flow Graph (CFG) from Python source code. The CFG is a

representation of a program that shows execution paths that may be taken by

the machine. Similar techniques to the ones here could be applied to many

other languages, but the CFGs in this tool are tailored to the Python language.

As computers get faster, tools to help programmers be effective at work can

become more complex and still give quick feedback, without causing an undue

performance burden. This tool explores several approaches to giving feedback

to developers through a visualization of the CFG. First, just the viewing of a

CFG gives a different perspective on the code. A programmer could choose

to juxtapose the CFG with complexity metrics during development, seeing

increased complexity as graphs grow larger. Second, the tool implements a

mechanism to provide code coverage to Python modules. This feature extends

the visualization to show code coverage as a highlighted CFG. Test coverage

vi

requirements are calculated to check node, edge, edge-pair, and prime path

coverage. From studying existing testing tools, it appears no existing tool for

Python provides all these test coverage levels. Third, the tool provides an

interface for adding custom highlighting of the CFG, used here to visualize

fault localization. Seeing the most suspicious locations from fault localization

techniques could be used to reduce debugging time.

The results of running the tool on several popular Python packages, and

on itself, show its performance is competitive with the most popular coverage

tool when measuring branch coverage. It is slightly slower on statement cover-

age alone, but much faster against an unoptimized version and a logic coverage

tool. This report also presents ideas for extensions to the tool. Among them is

to incorporate program repair using fault localization and mutation operators.

Visualizing code as a CFG provides interesting ways to look at many software

testing metrics.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables x

List of Figures xi

Chapter 1. Introduction 1

Chapter 2. Background 5

2.1 Python . 5

2.2 Compilation of Python . 6

2.3 Abstract Syntax Trees in Python 6

2.4 Control Flow Graphs and the DOT language 8

2.5 Coverage on graphs . 9

2.6 Instrumentation of code for coverage 10

2.7 Fault localization . 11

Chapter 3. Implementation 13

3.1 CFG design choices on Python structures 13

3.2 AST to CFG translation . 20

3.3 Instrumenting the AST for path information 22

3.4 Importing the instrumented code 23

3.5 Graph highlight visualization design choices 23

3.6 Gathering test run data for fault localization 26

viii

Chapter 4. Motivating Example 27

4.1 Control Flow Graph visualization 28

4.2 Coverage visualizations . 29

4.3 Fault localization visualization 32

Chapter 5. Results 34

5.1 Control Flow Graph creation 34

5.2 Comparison with coverage tools 34

5.3 Discussion of results . 35

5.4 Comparison of test coverage 37

Chapter 6. Related Work 39

6.1 Control Flow Graphs in software historically 39

6.2 Coverage tools for Python . 40

6.3 Fault localization . 41

6.4 Automatic program repair . 42

Chapter 7. Future Work 44

7.1 Using mutation testing for program repair 44

7.2 Import hook for instrumentation 47

7.3 Other general extensions . 47

Chapter 8. Conclusion 49

Bibliography 51

Vita 55

ix

List of Tables

5.1 Run times of various coverage tools on Python programs . . . 36

x

List of Figures

2.1 The CPython compilation process 6

2.2 Example of a Python AST . 7

3.1 Representations of if and if-else statements from Python . . . 15

3.2 Representations of while and for loops from Python 16

3.3 Abstract representation of while loop with a break 17

3.4 Concrete representation of while loop with a break 18

3.5 Representation of try-except-finally from Python 19

3.6 Representing edge-pairs independently in a graph 24

3.7 Representing prime paths independently in a graph 25

4.1 Motivating example CFG . 28

4.2 CFG with node and edge coverage information 29

4.3 CFG with uncovered edge pair information 30

4.4 CFG with uncovered prime path information 31

4.5 CFG with fault localization information 33

xi

Chapter 1

Introduction

Software has become a ubiquitous part of our daily lives. Every modern

car, home, and the myriad of mobile devices we carry rely on software systems

that are complex and costly to develop. Testing tools are an important part of

the software engineering lifecycle, as testing regularly consumes more than half

of development time. Testing attempts to provide information on the quality

of software and the relevance to its intended purpose. Quality improvements

may help reduce cost during the life of a software product. The testing tool

introduced here aims to give feedback to developers by visualizing the control

flow graph (CFG) of software, displaying code coverage on the CFG, and

highlighting the CFG to show fault localization information.

Popular tools targeted at professional software developers often aim to

make software simpler to test, or the development quicker and easier. One

example of a development tool already in use is the modern Integrated De-

velopment Environment (IDE). This type of application exists for almost any

programming language, and speeds development by packaging together a col-

lection of tools (e.g. a text editor, a compiler, tools for running tests, a de-

bugger). The IDE makes editing, compiling, testing, and debugging a single,

1

seamless workflow. Another type of tool that is often used is a static analyzer

of syntax. Across languages, you will find so-called lint tools [8] that help

a developer correct typical syntax errors. This class of tools provides quick

feedback to a developer to encourage learning and improvement of the code.

These tools focus on making software easier to develop and improving quality.

Test coverage or code coverage is an important software testing metric

quantifying how well a test suite exercises the code base [4]. Coverage infor-

mation gives a sense of the overall quality. Coverage can be defined on the

source code, e.g. as statement coverage, or equivalently on the CFG as node

coverage.

The tool presented in this report produces a visual representation of

a CFG, a novel way to display software metrics and provide feedback to de-

velopers. The primary role of a CFG is to represent the execution flow of a

program. A graphical view of the CFG can help programmers see the possible

execution paths of a program and develop an intuition of a program’s complex-

ity [18]. This tool was written in Python and works on Python programs, but

the concepts here apply to most computer languages. Python is an increas-

ingly popular language used across many industries such as web development,

scientific modeling, and data science.

In exploring uses of the CFG, this tool provides a code coverage re-

porting system that overlays coverage information onto the CFG. The code

coverage provided in this tool computes node, edge, edge-pair, and prime path

requirements on a graph [4]. It reports on coverage of these test requirements

2

on a CFG, making it easy to see which part of the graph is not covered. I am

aware of no other coverage tool that provides edge-pair or prime path coverage

for Python programs. As developers get more familiar with coverage metrics,

this tool can provide tougher requirements for testing code.

Coverage is becoming a more common requirement of the software life-

cycle, which grows the importance of representing coverage reports. The most

widely practiced way to visualize coverage information is to highlight the origi-

nal source code, line by line. Reports from coverage tools typically provide this

information, using green highlighting to represent coverage by a test, and red

highlighting to represent lines excluded. This tool adopts the red and green

color scheme for the visualizations of Python code. The graph representing

this information is drawn using mathematical directed graph notation, where

circles and arrows depict nodes and edges; each arrow shows a transition be-

tween two nodes. A major advantage of viewing code coverage information on

a CFG is the ease of seeing uncovered edges in that graph. Since the edges

and nodes can be highlighted orthogonally, two kinds of data can be displayed

at once. Edges that were excluded from execution can be highlighted red,

while preserving the statement coverage information on the nodes. As long as

the density of uncovered elements is low enough to distinguish them from one

another, several missing paths can be shown at once, including the uncovered

edge-pairs or prime paths.

A highlighted CFG can visually represent other testing information,

like fault localization. The tool provides an interface for adding custom high-

3

lighting to a CFG. Using the tool’s code coverage facilities, traces of passing

and failing tests provide the input to a fault localization formula, which assigns

a suspiciousness value to each line of code.

This report is organized as follows. Chapter 2 covers background infor-

mation on the Python language, compilation process, abstract syntax trees,

control flow graphs, code coverage, and fault localization concepts. Chapter

3, regarding implementation, provides an in-depth look at Python structures,

choices to represent CFGs, converting the AST to a CFG, instrumentation

of the code, coverage visualization overlays, and fault localization. Chapter

4 showcases the features of the tool, focusing on the central role of CFG vi-

sualizations. Chapter 5 outlines the results of running the tool on real world

programs and compares those results. Chapters 6 and 7 cover the established

literature relevant to the project and future work to be considered. I review

related work on control flow, fault localization and program repair, and then

present ideas on using these techniques with mutation testing to search the

program repair space and suggest repairs to a developer. Last, the conclusion

discusses achievements during the development of this project.

4

Chapter 2

Background

2.1 Python

The Python programming language is a general purpose, dynamically-

typed computer language. It uses mandatory whitespace indentation to desig-

nate blocks of code. The reference implementation, CPython, is open source

and written primarily in C. Other implementations exist including PyPy writ-

ten in RPython, IronPython written in C#, and Jython for the Java virtual

machine. The descriptions of Python in this report refer to the CPython

implementation version 2.7 [9].

In Python, functions are objects and may be defined at any point in the

code, including inside other functions. Python also has executable statements

at the module level mixed in with function definitions. A module is simply a

Python source file. It may be imported into another module using the import

process. A package is a folder, containing modules, that must have a file called

init .py to be recognized as a package. When a module is imported into

a running Python program, the code is compiled and top-level statements are

executed.

5

2.2 Compilation of Python

Source code Parse tree Python AST CPython CFG Bytecode

Figure 2.1: The CPython compilation process

Compiling Python code into bytecode is a four step process [9]. First,

the code is parsed into a parse tree. Second, an abstract syntax tree (AST) is

generated. The output of the AST step uses Python objects and the standard

library module ast. Third, the AST is converted to a CPython control flow

graph. This control flow graph is represented by C structures, and is CPython

specific. Finally, the complete bytecode is generated with offsets calculated

and inserted. Figure 2.1 shows this process.

During this compilation process, the easiest point to inspect is the AST

form of the code. The AST form has two advantages. One, the syntax has

already been parsed to verify the code is valid. Two, the AST can be read and

manipulated to productive ends. We convert the AST into a CFG by visiting

all the nodes in the AST and turning that into an internal graph format.

2.3 Abstract Syntax Trees in Python

Figure 2.2 shows an example of an AST. The tool presented in this re-

port uses the AST directly in converting to a CFG. It can also modify the AST

6

x = 1
Assign()

if x:
If()

f(x)
Expr()

g(x)
Expr()

body

y += 1
AugAssign()

orelse

y = 2
Assign()

Figure 2.2: Example of a Python AST

to instrument the code for coverage analysis, if that feature is invoked. Any

complete implementation of Python should provide an ast module interface,

therefore this step is implementation agnostic.

The AST is represented as a list of objects, where each object can

contain sublists or other object references. Each list, or sublist, contains an

arbitrary number of nodes, which represent statements from the code. These

nodes are instances of classes from the ast module in the standard library.

The If class represents if-else statements, where the body attribute contains a

sublist of nodes, and the orelse attribute contains another sublist for the else

clause. If the orelse attribute contains only an empty list, the else statement

was excluded from the code. Figure 2.2 shows this recursive tree-list struc-

ture. Each node in the AST has attributes for a line number and column offset.

7

These numbers map back to the original source and give a unique representa-

tion to each statement in the code. The tool uses this unique representation

for the node names in the CFG.

2.4 Control Flow Graphs and the DOT language

Control flow graphs represent the possible execution paths through a

program. They do this by relating each statement or expression in the code

with a node in the graph. A transition between statements is represented by

an edge in the graph connecting two nodes. Control flow structures introduce

choice into the execution, where one of two or more paths may be selected for

execution. This choice is shown on a CFG by two or more edges leaving a

node. Python does not have a switch-case statement, so a maximum of two

edges may leave a node. Incoming edges have no such restriction, e.g. a loop

with multiple break statements will have that many edges going to the same

node.

In Thomas McCabe’s seminal paper on program complexity, he argues

that programs that have ten or more branching points in them are complex [18].

He includes an analysis of FORTRAN programs from the era, where intuition

about program complexity seems to follow the number of branching points.

One of the valuable things about CFGs is their ability to show the complexity

of the functions in the software. McCabe found that high complexity in the

CFG was likely to imply difficulty in maintaining code.

The preferred visualization for drawing CFGs uses graph notation. The

8

DOT language (a human readable, text based format for graph description)

is the primary means used to represent directed graphs before they are trans-

formed into graphical visualizations. The graphviz package can render DOT

files into several file formats. The control flow tool uses DOT as both an in-

ternal and external intermediate form to describe the CFG and graphviz or

another package is required to render it.

2.5 Coverage on graphs

When coverage is defined on a graph directly, the criteria are node cov-

erage, edge coverage, edge-pair coverage, prime path coverage, and complete

path coverage [4]. Each are addressed in reverse order. First, if there are

any loops in the graph, complete path coverage is impossible as there are an

infinite number of paths. Prime path coverage is bounded, and thus solves the

infinite set issue. The set of prime paths in a graph contains all the longest

simple paths, that is, the set of all the simple paths which aren’t subpaths

of other simple paths. A simple path is one that contains no loops except if

it is a total loop, where the first and last element are equal. The number of

prime paths is between linear and exponential with the number of branches.

In software, there may be infeasible paths that cannot be executed in prac-

tice, which may prevent satisfying the requirements of prime path coverage.

Edge-pair coverage contains the set of all the consecutive edges of length two.

A CFG produced from Python code cannot have self loops and thus all edge-

pairs are simple paths. This means all the edge-pairs are subpaths of the prime

9

paths. Edge coverage requirements are to cover all edges in the graph. These

are a subset of edge-pairs. Node coverage is similar, but must cover all the

nodes specifically. Again, all the nodes in the graph are covered by the set of

all edges. These criteria form a hierarchy, with progressively stronger criteria

subsuming the previous ones. Prime path coverage is the strongest level of

coverage included in this tool.

In software, coverage metrics are evaluated on test suites. One goal

of the software tester is to get high levels of coverage, ideally attaining full

coverage on all criteria. While coverage alone does not guarantee quality,

having coverage may provide a chance of catching bugs. When a test suite is

run, the execution paths are recorded and compared to the desired coverage

criteria. If all the requirements of a criteria are satisfied, the test suite has

100% coverage on that criteria.

2.6 Instrumentation of code for coverage

Instrumentation of code refers to the inclusion of data gathering infras-

tructure into the executable program [4]. During execution, information on

the program is collected and retained for analysis. The canonical way to add

instrumentation is to set aside some memory to collect the data, perhaps an

array, and place checkpoints into the code which mark the memory. At the

end of execution, the memory is dumped to storage for later analysis. The

common concrete example of this is to put a boolean array into the program,

all values set to false, and place an assignment before each line in the code

10

that marks the line number in the array to true.

2.7 Fault localization

When code contains a fault, or an error during execution, finding the

source of that error is one of the core challenges in debugging. The field of

fault localization hopes to aid programmers in finding errors, by using auto-

matic analysis of the code and test suites. For the purposes of this paper,

we will restrict the scope of fault localization techniques to spectrum based

approaches, those that use the analysis of test coverage information on passing

and failing tests [20].

If a test suite has at least one passing and failing test, the coverage

information from those tests can help to find the location of faults in the source

code. For this report, fault means a defect in the code, error means an incorrect

state during execution, and failure refers to an error that propagates to produce

an incorrect output. For instance, only lines that were executed by the failing

test can contribute to a state of error or eventual failure. Furthermore, lines

executed by passing tests would seem to have a lower likelihood of containing

the fault than lines only executed by failing tests. Those principles, formulated

mathematically, conspire to give a suspiciousness rating to each line of code,

encapsulating the likelihood it contains an error. One such formula used is the

Tarantula technique, and is given by the equation:

suspiciousness(l) =

#failing(l)
totalfailing

#passing(l)
totalpassing

+ #failing(l)
totalfailing

(2.1)

11

There are many competing fault localization techniques, and comparison of

them is detailed in [1].

12

Chapter 3

Implementation

The tool presented in this report was written entirely in Python, to

inspect Python code. While most of the concepts here could be generally

applied, the focus will be on Python specific concerns. Where there could be

a universal treatment among languages, I attempted to keep the discussion

general enough that others could apply the concepts.

3.1 CFG design choices on Python structures

Design decisions made during the process of writing this tool are de-

tailed here. At the most basic level, decisions involve defining the control flow

graphs (CFGs) for Python syntax. To avoid any ambiguity I’ve noticed in the

literature, all the control flow structures are discussed and the representative

graph is given.

The Python language includes keywords for control flow that are fa-

miliar to those who have used other languages, with some notable differ-

ences. We start by cataloging the basic control flow structures available in

Python. The common structures included are while, for, if, if-else, and

try-except-finally. No switch-case statement exists in Python. Instead,

13

there is the if-elif+-else. This replaces the else if pattern used in C and

allows consistent indentation of Python statements. There is no do-while, the

looping construct that always executes the loop body once. The early exits

from loops are break and continue. Exiting from a function happens at the

return keyword or out of band, by an exception or using raise. The Python

language adds an else block to the while, for, and try structures. This block

executes if the structure is left in the standard way, i.e. by the loop predicate

becoming false or the try block finishing normally. When a loop exits by a

break statement, the else block is bypassed. For a try statement, the else

block is executed if no exception is raised. There are also with blocks, yield

statements, ternary operator expressions, anonymous lambda functions, and

generators. Each of these are mentioned, even though they need no special

treatment.

Each Python statement has a unique position in the code defined by

the line number and column of that statement. This information is captured

during compilation and each node in the CFG is labeled with a line:column

marker. The identifying information is visible in the CFG for reference. Also

the CFG can be annotated with the relevant source code. For clarity, the code

is added by default.

Figure 3.1a shows the CFG for an if without the else block. Control

flow falls through to the next statement, if there is one. Figure 3.1b includes

the else block. These are the basic conditionals which most languages employ.

14

1:0
if p:

2:4
'body'

(a)

1:0
if p:

2:4
'body'

4:4
'orelse'

(b)

Figure 3.1: Representations of if and if-else statements from Python

In Figures 3.2a and 3.2b we see the while and for structures are iso-

morphic, and identical in this case. Due to the similarity, further examples

only use a while. The predicate, p, is evaluated at the top of the first loop

and the beginning of each subsequent loop. The last statement in the body

of the loop flows back to the loop predicate, not to the first statement in the

body. This ensures we have no self-loops in a Python CFG and makes explicit

that the conditional is executed each time.

The CFG for a while with an else block is shown in Figure 3.3. When

a break statement is in the body of a loop, the CFG has an edge to the next

statement after the else block. Figure 3.4 shows a concrete example, where

the body has an if and break.

15

1:0
while p:

2:4
'body'

(a)

1:0
for i in iterable:

2:4
'body'

(b)

Figure 3.2: Representations of while and for loops from Python

The representation of try is without an arrow to the except block, as

shown in Figure 3.5. This is intended to illustrate that exceptions are special

circumstances, and arrival into an except block is out of band, not part of

normal control flow.

An important point to note is that functions are treated as isolated,

disjoint subgraphs. In Python, a function definition can happen anywhere,

whether it is inside a module, a class, or another function. These functions are

not executed as encountered, of course, but rather they are parsed and saved

to be called later. Each function is a separate object that can be covered by

tests but is not covered just by executing its definition line. Special control

flow considerations are made when a function definition is encountered in the

code to keep the subgraph disjoint. Function decorators are designated as

part of the function definition code block. Classes are also shown as disjoint

subgraphs with member methods, in turn, being separate graphs from the

16

1:0
while p:

2:4
'body'

4:4
'orelse' break

Figure 3.3: Abstract representation of while loop with a break

class. Only class-level data are connected to the class definition in the graph.

Only code contained directly in a module is inspected and translated to

a CFG. Concepts like meta-programming or self-generated code, which create

Python code dynamically and execute it at run time, make accessing the source

code impossible in general.

All the other types of Python statements deserve mention. The yield

statement is not parsed as a return, but as just another statement. The reason

is that control flow will resume at this point if the generator is called to yield

another value. The CFG represents this behavior without specifying the exit

and reentry explicitly. A with block is represented as a simple statement. No

special control flow happens, but the language guarantees that an exit method

17

1:0
while p:

2:4
if q:

5:4
'orelse'

3:8
break

Figure 3.4: Concrete representation of while loop with a break

is called when the block is left. Ternary expressions are also not transformed

into special CFG representations, but just treated as expressions. The decision

not to show the ternary operator is due to keeping the CFG at the statement

level. These sub-statements do provide control flow internally, but as part of

one executable statement. In the AST, the ternary operator is allowed only one

subexpression per outcome of the predicate. It could be useful to mark each

of these as executable during instrumentation, for finer resolution of coverage.

In representing control flow, the granularity is kept at the statement level.

The and and or operators of boolean logic also represent lower level control

flow. Due to short-circuit evaluation of boolean clauses, these logic operators

are practically control flow. Still, boolean predicates are treated as being on

18

1:0
try:

2:4
'trybody'

6:4
'orelse'

3:0
except:

4:4
'exceptbody'

8:4
'finalbody'

Figure 3.5: Representation of try-except-finally from Python

the enclosing statement. One line generators and their variants, list, set, and

dictionary comprehensions, are a shorthand syntax for looping over an iterable

collection of items. A generator is effectively a function with looping semantics.

Again, we treat generators like calls into functions. They are not represented

by small control flow graphs, but only as part of the statement line on which

they reside. Creation of nodes and edges for a comprehension would mean the

introduction of “dummy nodes” to avoid adding self-loops, since the line and

offset is the same for the generator as for the whole statement. The case can

be made for any of these syntax elements to have small CFGs generated. The

approach taken here is to keep the CFG at the statement level.

19

3.2 AST to CFG translation

The translation algorithm uses the AST representation of Python code

to create a CFG. To convert an AST into a CFG requires domain specific

knowledge about control flow statements in that language. The previous sec-

tion contains all the rules that our algorithm must follow. The next step is to

process AST objects to create the intermediate representation of the graph in

DOT syntax. The Python objects that represent statements in the AST follow

a pattern of having sublists of objects if they are a control flow statement. The

AST is effectively a tree of lists. The objects While and If have body and orelse

attributes that contain sublists. The rules of control flow must be captured by

the algorithm to correctly connect nodes of the CFG. For example, a While

node should contain an edge from the body exit back to the While node.

The algorithmic approach is walking the AST node by node as a list,

and recursively calling each sublist to be walked. Appropriate information

about edges going from predecessors to successors is maintained and passed

up or down the stack recursively. Simply put, add a node to the CFG for each

statement, and add edges to successor statements or sublists. Special casing

is required for break and continue, as well as looping constructs. The exit of

a body sublist must return information back up the stack to the appropriate

successor object. Edges are added from the tail of body and orelse attributes,

to the next node. The main challenge in writing the AST to CFG translation

algorithm is in maintaining control flow information for the edges of the graph.

The nodes are easily identified as they map one-to-one with AST objects,

20

which map to code statements. If the edges follow the control flow rules of the

language, the resultant graph will be a valid CFG. A more succinct description

of the algorithm is this:

1) Add a node at each AST object by looking at the line and

column number

2) Add an edge to each successor node in current list, in sublists

by recursive call, and to parent list successor by recursive return

3) Process Return and Raise to have no edges outgoing

4) Pass Break and Continue up the call stack until a loop is found

A valid CFG can be produced from the AST even in the presence of

faults or code that is semantically invalid. Dynamic typing can sometimes lead

to errors in a program at runtime, like undeclared variables or type mismatch.

These errors will not prevent the program from being parsed, converted to an

Abstract Syntax Tree (AST), and compiled. The parser requires valid syntax

to produce the AST, so any CFG will be valid in terms of syntax even if it

fails to run correctly.

Once the CFG is created, the tool can use the graph to compute test

requirements. We do this from the dictionary representation of the CFG that

is generated in AST to CFG conversion. The module uses the CFG dictionary

to compute the test requirements for node coverage, edge coverage, edge-pair

coverage, and prime-path coverage. Test requirements are returned as sets of

nodes or paths. Paths can be length one, two, or more corresponding to edges,

edge-pairs or prime paths. The calculation of coverage metrics given a set of

21

test paths is a comparison of the requirements for that coverage level to the

executed nodes or paths.

One may wonder why keeping the column number is useful for tracking

coverage. This is simply because more than one statement may appear on a

single line in Python code. Since this code idiom is infrequent, coverage tools

have ignored the subsequent statements, and mark the entire line as covered.

This tool can discern if each statement was really executed or not.

3.3 Instrumenting the AST for path information

To instrument the code, we use the fact that each statement has a

unique identifier from the original syntax, the line number and column number

of the statement. The algorithm extracts this information from the node

of the AST and inserts an instrumentation statement into the AST which,

when executed, records the line and column into a Python list. The inserted

statement adds the identifier to the list of visited nodes. This approach follows

a framework of instrumenting code for node coverage, but instead of marking

a binary variable in an array when the statement is executed, we maintain

the entire execution path in a list. The execution path gives deeper data on

how the program proceeded than would be given by a binary array. From

an execution path, all types of graph coverage can be computed including

nodes visited, edges or edge-pairs visited, and comparisons with prime path

requirements. Recording the execution path does take more memory, but

most test suites run for short periods of time and memory is not a constraint.

22

The last step of the process is to compile the new instrumented AST using

Python’s built in compile command. Following that, we can execute it in a

module namespace so that code is imported into the Python session.

3.4 Importing the instrumented code

After the AST is instrumented and compiled to a code object, the new

version is placed into a module namespace. Using the import process and

standard library in Python, the tool creates a new module and executes the

code object in that namespace. This binds all of the functions into the module

object and makes them available by the usual calling convention. The effect

is the same as a regular import statement, except we have the instrumented

module ready to track execution paths. Modules are placed in the system

module dictionary so that other modules can refer to them if needed. One

caveat is that forcing module imports like this, one at a time, can occasionally

run into import dependency issues. When multiple modules are instrumented

from a package, they may import each other and cases may arise where not

all run time functions are instrumented. The proposed solution is to use an

import hook to load any requested module as an instrumented module on an

as-needed basis. This extension is mentioned in future work.

3.5 Graph highlight visualization design choices

Visualizing node and edge coverage comes naturally on the CFG. Show-

ing edge-pair coverage is more difficult, since the concept of edge-pairs is not

23

displayed independently of edges. Several methods to show edge-pair coverage

were considered. In Figure 3.6, one way of showing all the edge-pairs is il-

1

2

3

4

Figure 3.6: Representing edge-pairs independently in a graph

lustrated. The figure represents edge-pairs as independent objects, but shows

the difficulty as colors are added to edge-pairs just to tell them apart. Show-

ing edge-pairs on normal single-arrow edges implies that for most edges we

represent them being the first edge in a pair and the second edge in a pair.

Any version of multi-purposing arrows begins to look cluttered. The com-

mon case for edge-pairs is that most will be covered along an execution path,

with some branched pairs remaining uncovered. By highlighting the uncovered

pairs in red, the graph visualization stays simple while some ambiguity may

24

be introduced. See Chapter 4 for an example.

Visualizing prime path coverage, the next stronger criteria, is similarly

difficult. Do we show the covered or uncovered paths, or both? Again the

choice is unclear, but to show all the information at once would require each

edge have a multiple part visualization that has number of parts equal to the

number of prime paths that include that edge. An example on the graph

{1->2->3->2->4} is shown in Figure 3.7. This simple graph has five prime

paths and is already cluttered.

1

2 3

4

Figure 3.7: Representing prime paths independently in a graph

The number of prime paths in a graph can be very large. Following the

25

design choices made for edge-pairs, we highlight the uncovered prime paths.

Cases where only a few prime paths span the entire edge set are common. In

a visualization, virtually no information is added when all the edges appear

uncovered. Use of more colors could map some of the information back onto the

CFG, but for simplicity let us use only red and green for coverage highlighting.

3.6 Gathering test run data for fault localization

With all the code coverage infrastructure written into this tool, the

ability to gather statement hit spectrum data already exists. When a failing

test indicates the presence of a bug, locating that fault in the code is the

next step. Most jUnit-style test frameworks support a setUp() or tearDown()

method. These methods are called before and after each test, respectively, by

the test framework. By adding a command for execution path logging into

the setup method, the path for each test is recorded. This path information

was gathered for offline analysis to produce statement suspicion ratings. Using

the Tarantula technique described in Section 2.7, each statement is assigned

a likelihood it contains the bug. From this information, the CFG can be

highlighted with the failing test’s execution path and the highest suspicion

statements. This view of the CFG gives a developer a quick glance at the

possible locations of the fault captured by the failing test. Chapter 4 shows

an example of this highlighting.

26

Chapter 4

Motivating Example

For this chapter, all the examples of control flow graphs derive from

this code snippet:

def sum_up_to(x):

y = 0

if x > 0:

y = x

while x > 1:

y += x

x -= 1

return y

The function returns the sum of positive integers up to x, inclusive. Inputs

less than zero return zero. This is also known as the arithmetic sum, and

it can easily be computed without a loop using a closed form solution. The

implementation has a bug in it – a rather serious bug – since it only gives the

correct values for inputs up to 0 and 1. We will investigate fault localization

on this bug in Section 4.3.

27

4.1 Control Flow Graph visualization

The CFG in Figure 4.1 was generated automatically using the control

flow tool. The visualization of a CFG easily shows the programmer that there

1:0
def sum_up_to(x):

2:4
y = 0

3:4
if x > 0:

4:8
y = x

8:4
return y

5:8
while x > 1:

6:12
y += x

7:12
x -= 1

Figure 4.1: Motivating example CFG

is one exit point from this code (the node in the graph that has no subsequent

edges). Using this CFG we can generate test requirement criteria for the graph.

These criteria include node coverage, edge coverage, edge-pair coverage, and

prime path coverage criteria. The next section discusses CFG visualizations

with these coverage metrics overlaid.

28

4.2 Coverage visualizations

For a test execution of input x = 2 we show the path and the highlighted

CFG illustrating coverage in Figure 4.2. The tool takes coverage information

and overlays it on the graph with color highlighting and bold lines. Both node

1:0
def sum_up_to(x):

2:4
y = 0

3:4
if x > 0:

4:8
y = x

8:4
return y

5:8
while x > 1:

6:12
y += x

7:12
x -= 1

Figure 4.2: CFG with node and edge coverage information

and edge coverage are displayed at the same time and the result is clear from

the CFG. We could choose to show only one or the other, but since the nodes

and edges are orthogonal sets, these two types of coverage lead to a natural

display of information on a visualization. All nodes are covered, resulting

in 100% statement coverage. Not all the edges are covered. This example

29

illustrates the usefulness of easily identifiable edge coverage metrics. The edge

from 3:4 to 8:4 remains uncovered. A test engineer could then add one test to

get full edge coverage.

The next CFG shows the edge-pair coverage, in Figure 4.3. The test

1:0
def sum_up_to(x):

2:4
y = 0

3:4
if x > 0:

4:8
y = x

8:4
return y

5:8
while x > 1:

6:12
y += x

7:12
x -= 1

Figure 4.3: CFG with uncovered edge pair information

inputs are x = 0, to cover the missed edge from Figure 4.2, and again x = 2. To

overlay edge-pair information, a decision was made to show uncovered edge-

pairs. The discussion in Chapter 3 explains this selection. The uncovered

edge-pair is (7:12, 5:8, 6:12). The test cases do not enter the loop twice, and

hence they miss this edge-pair.

30

To show prime path coverage we use the same test inputs, x = 0 and

x = 2. Two prime paths are missed: {(6:12, 7:12, 5:8, 6:12), (7:12, 5:8, 6:12,

7:12)} Both span the same edge subset. Both the missed prime paths imply

1:0
def sum_up_to(x):

2:4
y = 0

3:4
if x > 0:

4:8
y = x

8:4
return y

5:8
while x > 1:

6:12
y += x

7:12
x -= 1

Figure 4.4: CFG with uncovered prime path information

that the loop was not entered a second time. This is the same implication

that the edge-pair coverage provided. Therein lies is one of conclusions we can

draw about these criteria.

If testing loops with zero, one, and two or more trips through the

loop is important to your test team, the edge-pair coverage will do the job.

Prime path criteria tends to be verbose, including more paths and covering all

31

possible combinations of paths that do not have loops. Paths with loops have

a prime path for every node in the loop, at least. Sometimes, an edge-pair is

semantically infeasible, perhaps due to branch conditions that are dependent

with each other. This type of missing test requirement can confound attempts

to get full coverage. Picking the right criteria without creating an unnecessary

burden on the test team is at the core of software test strategy.

4.3 Fault localization visualization

Up until now, we have ignored the fact that input x = 2 produces the

wrong output. If this fact is written into an assertion in a test case, that

test will surely fail. To find the likely location of the fault in the code, each

statement is assigned a suspiciousness rating using the Tarantula technique.

The formula used requires at least one passing and failing test. Using test

inputs (0, 1, and 2), and expected values (0, 1, and 3), the most suspicious

lines are numbers six and seven. The CFG in Figure 4.5 shows the entire

failing test case execution path in orange, and the most suspicious statements

highlighted in red and bold. These are most suspicious since no passing test

executed them. The only edge remaining in green is the edge from 3:4 to

8:4 which was only executed by a passing test. The bug could be fixed by

adjusting the assignment to y at line six, but several other options exist.

Changing combinations of lines four, five, and six can all be made to fix this

bug. This small example serves to show the possibility of using CFGs for fault

localization. Caveats include that spectrum based localization does not always

32

1:0
def sum_up_to(x):

2:4
y = 0

3:4
if x > 0:

4:8
y = x

8:4
return y

5:8
while x > 1:

6:12
y += x

7:12
x -= 1

Figure 4.5: CFG with fault localization information

provide the best location to fix. Many classes of faults can execute the same

path for passing and failing tests, so no information is gained from the traces.

33

Chapter 5

Results

5.1 Control Flow Graph creation

The graph in Figure 4.1 is an example of the CFG our tool generates

from Python source. These CFGs are computationally inexpensive to produce.

The CFG for all the source files tested during data gathering took less than

90ms per file. Some of these were 600 lines or more, with complicated looping

and exception handling in the control flow. The process to create the CFG

includes using the built in Python parser and AST construction, followed by

walking the AST and outputting the graph. No optimization passes were made

on this code; it is measured here in its original form.

5.2 Comparison with coverage tools

Besides creating a CFG of a program, one of the major features is AST

instrumentation for gathering coverage information. Since several coverage

tools for Python already exist, benchmarks are an interesting way of comparing

them. I ran the coverage tools on four programs with test suites. The first

was a simple implementation of the middle function, taking in three numbers

as input and returning the middle of the three. The second of the benchmarks

34

shown is the control flow tool calculating the prime path requirements of its

own CFG. This function call takes over 6 seconds on the complex CFG input.

Third, the simplejson package is tested with its included test suite. Simplejson

is the library that outputs or parses JavaScript Object Notation (JSON) for

data interchange. Last, the benchmarks are run against the pyramid web

framework, which keeps a high level of test coverage on the project. All times

are from a 1.3 GHz Intel Core i5 processor in a mid 2013 laptop.

In Table 5.1, this report’s tool is called “controlflow”. The control flow

tool can be bootstrapped to run on itself. It is invoked to instrument the source

files and import them, so that coverage can be tracked. To give comparison,

data is shown for the run times using coverage.py and instrumental, the two

best known existing coverage packages. It is compared to coverage.py in three

modes. One is the basic coverage run tracer, two with the branch coverage

option turned on, and three with the C extension removed and running in pure

Python. The last comparison is to instrumental, which tracks modified con-

dition decision coverage (MCDC) for logic predicates and statement coverage.

Instrumental also uses the AST instrumentation approach.

5.3 Discussion of results

The first choice tool for covering Python code is coverage.py. Viewing

the timing results, it is the fastest on any program of reasonable size. It has a

tracer written in C for speed, which works well, delivering the fastest coverage

times except on a small example program. The branch coverage option is

35

middle primepaths simplejson pyramid
baseline 0.03s 6.4s 1.2s 10.0s
controlflow 0.04s 15.2s 2.6s 15.8s
coverage.py 0.1s 9.7s 2.3s 14.2s
coverage.py branch 0.1s 13.3s 3.6s 14.4s
coverage.py timid (no C) 0.11s 38.9s 22.2s 62.0s
instrumental 0.15s 48.5s 20.4s 41.7s

Table 5.1: Run times of various coverage tools on Python programs

slightly slower, while the “timid” option is much slower. The tool for CFGs

compares favorably to coverage.py run with the branch option.

The time for running the tool on pyramid is slightly suspect. Forcing

import of instrumented modules for the pyramid package appears to break

some internal dependencies. All the tests run, and times are probably compa-

rable, but several tests have issues. These issues include reporting the wrong

coverage information, due to reloaded modules not recording coverage. A likely

fix for this would be to use an import hook mechanism inside Python, instead

of forcing import of all modules before the test run. An extension using import

hooks is discussed in future work.

The good news is that my tool is faster than both coverage.py in the

slowest mode and instrumental. This execution speed is unoptimized, and as

such leaves room for improvement. The fact that the speed is as good as it

is bodes well for the coverage tool’s use in diverse applications. PyPy might

benefit from use of another coverage tool written in pure Python, suitable for

its JIT compiler.

36

An interesting advantage of the approach I took for coverage is that

only the modules requested for coverage are measured. Coverage.py’s use of

sys.settrace means that all of the execution is tracked. Tracking only one

module would lead to performance gains, if coverage was only needed for that

module.

5.4 Comparison of test coverage

In most cases all the coverage tools reported the same results, but some

notable differences arose. Those differences are discussed here.

A place where the AST instrumentation approach can shine is when

multiple statement are on one line. Since each statement has a unique line

number and column number from the original source, multiple statements

per line can all be treated separately. Neither of the two comparative tools

correctly identify uncovered branches from the same line of source. This gives

higher coverage totals to these tools, but it is incorrect to do so. Missing

statements are correctly handled and included in the report of the control

flow tool. This leads to better coverage of code written on one line, and less

ambiguity.

Among foremost differences, coverage.py and instrumental exclude count-

ing expressions containing only a string literal. String literal expressions in

Python code are often used for documentation. “Doc strings” are used as part

of standard coding idioms and relied upon for extracting documentation for

Python modules. Since these strings have no runtime effects, they are ignored

37

by coverage.py and instrumental. They are neither counted as coverable code,

nor marked as covered. The control flow tool does not ignore them, since they

appear as executable expressions in the AST. This leads to lower coverage to-

tals on files with frequent occurrences of documentation string literals, when

they are not executed. Lack of special treatment of string literal expressions

can be fixed as future work.

Next, the name of the function and its definition are counted as an

executed line by coverage.py. The line gets counted at load time, before the

function is called. As a Python program is executed, like at load time, defined

functions get added to the namespace as they are encountered, so it makes

sense to mark this line as executed when the function is reachable in the

namespace. Still, the same argument could be made about waiting to cover

any part of a function until it is called at run time. This choice is part of the

instrumentation step of the control flow tool. The default behavior is to wait

until a function is called to mark it’s definition line as covered. Again, this

design leads to lower coverage percentages in some cases.

The coverage.py tool supports a special type of comment in Python

code, the “pragma: no cover” option. If this comment is on a source line then

the associated code is not counted toward coverage. The count of excluded

lines is noted in the report, however. Since the tool does not support the

“pragma: no cover” comment, this line will count against coverage totals.

38

Chapter 6

Related Work

6.1 Control Flow Graphs in software historically

In 1970, F. Allen wrote a paper on control flow analysis of programs

which appears to be the first publication using directed graph notation to

illustrate control flow [3]. During this decade, debate was raging in the soft-

ware community about structured programming [17]. Structured program-

ming is the concept of relying on readable control flow structures and generally

avoiding the use of goto statements. The most basic structures were named

D-structures after Edsger W. Dijkstra, who promoted the use of structured

programming. The if, while loop, and for loop are all structured program-

ming elements. It was proved that any program could be transformed into

a structured program using only D-structures and adding boolean variables.

Despite this equivalence, there was concern that programs would be harder to

understand without more complex structures. [17] also argues that clarity in

programming is important, and that it could be achieved using D-structures

or variants like do-while and switch-case. That paper catalogs the control flow

graphs (CFGs) for each of the control structures from the literature circa 1975.

Thomas McCabe’s cyclomatic complexity paper presents on his well

39

known complexity metrics based on CFGs [18]. He covers other topics like

non-structured flow graphs and the defining traits of all non-structured pro-

gramming. He also proposes a testing methodology where code should be

simplified if the number of feasible independent paths is less than the cyclo-

matic complexity. This definition of complexity on a flow graph, one plus the

number of branch points, is equal to the number of linearly independent paths

needed to test the code.

6.2 Coverage tools for Python

Of all the tools in this area, coverage.py is the best known package for

Python. It is a mature, stable, and fast package, and the tracer that collects

data is written in C for speed. If you are testing Python code, this is likely

the package you use when measuring test coverage. It is recommended that

coverage.py be the default coverage tool when you need the information it

provides. It can track line coverage, as well as branch coverage, albeit at a

slower speed. In benchmarks for this report, branch coverage took an average

of about 25% more time to run.

Another Python tool is called instrumental. It uses the same architec-

tural approach, modifying the AST, as the tool presented here. The major

feature which instrumental adds is condition and decision coverage of predi-

cates. This is called MCDC, modified condition decision coverage. Each clause

in a predicate must be tested to both true and false when it determines the

predicate. In some industries, like aviation, testing of each clause in a pred-

40

icate is a requirement. The performance of instrumental is comparable to

turning off the C extension speedups in coverage.py. Against the fast version

of coverage, it takes about 5 times longer.

6.3 Fault localization

During software development or debugging, finding the location of

faults is one of the most time consuming processes. Automatic fault local-

ization refers to techniques used to help find the location of a software fault in

the code. Many techniques have been proposed and studied, and a good sum-

mary of the topic is in the survey paper [20]. Of interest to this report is the

effectiveness of fault localization techniques. To show fault localization I chose

the popular Tarantula formula for suspiciousness. This approach falls under

the category of executable statement hit spectrum analysis. These spectrum-

based techniques are compared and rated on effectiveness in [1]. The paper

concludes that for localizing faults, the Tarantula technique is not optimal and

the Ochiai coefficient performs consistently better. One application of these

localization methods is to evaluate the quality of automatic test generation.

[7] shows the relative effectiveness of several test generation techniques mea-

sured with fault localization. The better fault localization becomes, the more

likely it is to become a mainstream software testing component. Qi et al. [19]

compare localization techniques in the context of providing faster program

repair.

41

6.4 Automatic program repair

What if it was possible to automatically find ways of fixing faults in a

program? That is goal of research into automatic program repair. This section

reviews the existing literature on repair techniques, and sets the stage for the

ideas in the following chapter on program repair.

Much of the relevant work in this field uses a broad, but powerful,

approach of genetic programming. This can be viewed as a randomized algo-

rithm that tries many combinations of actions, hopefully working toward the

goal. Progress metrics are evaluated along the course of an algorithm, allowing

bad candidates to expire and more fit candidates to continue. The name, and

approach, comes from biology, and mimics the gene mutation and mixing pro-

cess and survival of the fittest selection process. The literature includes papers

on test generation and co-evolution of repairs [6], genetic program repair for

C programs, [13–16], and using program repair to evaluate fault localization

effectiveness [19]. The genetic programming approach is used on Python, with

a limited number of mutations, in [2].

Much of the literature uses a system called GenProg for C programs,

which is aptly named since it’s based on genetic programming. The approach

the authors of GenProg take is to use only three basic operators in the code.

Delete a line, add a line, or replace a line. Adds and replaces are done by

randomly selecting amongst the existing code base. This approach works well

and details of costs and effectiveness are in [14].

42

Using mutation testing for repair, combined with fault localization,

is argued to be an effective and efficient approach [10]. Debroy et al. uses

Tarantula and a significant number of operator mutations, and finds that about

1 in 5 bugs can be fixed with the system. A system for Python called MutPy

brings mutation testing to version 3 of Python [11].

43

Chapter 7

Future Work

7.1 Using mutation testing for program repair

I propose an extension to this work that provides suggestions for fixing

faults in the code. Since there are techniques for fault localization, the next

logical step is to automatically repair those faults. Providing automatically

generated corrections to the code would be a boon to programmers tasked with

debugging. Of course, providing a robust repair that passes all tests is the

best outcome of such a system. Existing literature has worked to provide such

repairs [14]. However, providing suggestions to the developer about candidate

fixes could be just as valuable in practice. A human generally has to review bug

fixes. If candidate repairs spur on inspiration for a robust fix, the end result is

the same as a programmatically generated one. Whereas automatic program

repair would seek to fix bugs independently, suggesting program repairs implies

a programmer that is aided by an algorithm.

The problem of program repair is considered a search problem. The

search space is all possible programs, which is an infinite set. Even the set

of all possible valid Python programs is still infinite. It makes intuitive sense

to start with the current faulty program and make changes to it. The set of

44

nearby Python programs is significantly smaller and is bounded depending on

how you define “nearby”. The search proposed here is based on the idea that

mutation operators are close to typical programmer errors. By performing a

bounded exhaustive search of possible mutant programs, we might find one

which survives the test suite. Even if we don’t find a candidate that passes

all tests, we can provide a list of best fitting candidates. If the usual goal

of mutation testing is to kill mutants, the goal here would be to survive. A

surviving mutant is defined as one that passes a failing test and the previously

passing tests, as well. The groundwork for this approach is in [10], which uses

mutation operators to find repairs on C and Java programs.

The task is a search problem amongst the set of candidate programs,

which is exponential with program length. The search space grows as O(mr)

with the number of mutations, m, and number of repairs chosen, r. To see

this, realize that there are
(
m
r

)
possible candidates at order r,(
m

r

)
=

m!

(m− r)!r!
(7.1)

so while r << m,(
m

r

)
=

m ∗ (m− 1) ∗ ... ∗ (m− r + 1)

r!
≈ mr/r! (7.2)

Let’s take an example program and say it has a fault on more than one

line, then allow 10 mutations to the original program. This means there are

210 = 1024 possible programs since each mutation can be on or off indepen-

dently. The correct program is the one candidate that is most preferred and

45

passes all tests. There are likely to be equivalent mutants to both the original

program and to the correct program. Killable mutants pervade the space, by

definition, otherwise software would be less error prone to write. If it takes

three mutations to produce the correct program, there are
(
10
3

)
= 120 possibil-

ities; for one and two mutations there are 10 and 45 candidates respectively.

To reduce the search time, keeping m and r small is required. Using fault

localization to selectively place the mutants targets the search, and restricting

the number of repairs limits the search. Finding a surviving mutant does not

guarantee the correct program, but might be a good place to start for human

intervention.

Comparing to a genetic algorithm, a bounded exhaustive search pro-

vides different qualities. GenProg samples each possible repair independently,

but aggregates these repairs into a candidate [14]. By the Central Limit The-

orem, we know the number of repairs per candidate will cluster around the

average in a normal distribution. This favors the candidates with close to the

average number of repairs. Weighted sampling biases the results toward lines

with a high suspiciousness weighting. Crossover of mutants, by mixing some

mutations of one candidate with another candidate, increases the number of

repairs per candidate and probably serves to increase the diversity of can-

didates. There is some finite probability of repeating tests against the same

candidate during this search. Whereas a bounded exhaustive search does away

with any random sampling, no candidates are repeated. There is no chance

for exploring deep into the search space, but on the other hand all the lower

46

order mutants can be tested. Number of candidate patches (NCP) is a metric

introduced in [19] to count candidates before a successful patch. An interesting

way of evaluating techniques against each other is to use this metric.

A development environment that automatically suggested repairs would

be highly valuable to most programmers. If some surviving mutants were

found, they might be close to the correct program. Even if no surviving mu-

tants are found, mutants that are closest to surviving could provide faster

insight into fixing faults manually. The repairs could be annotated onto the

CFG, starting from the fault localization highlighted version.

7.2 Import hook for instrumentation

Adding an import hook mechanism is a top priority for extending the

code. The Python import system supports registering custom import of mod-

ules. The existing code forces import of user specified modules for instrumen-

tation. This can lead to problems, as in the case of measuring coverage on

the pyramid package. If an import hook inserted into the process could catch

all specified module imports, the result would be cleaner and less likely to

encounter module override issues and dependencies.

7.3 Other general extensions

Adding “pragma: no cover” support would give this tool comparable

semantics to existing tools. Adding special case handling of string literals

47

used for documentation serves the same goal of producing familiar coverage

results. The coverage instrumentation part of this control flow tool is interest-

ing enough that it could find use as a stand alone tool. Splitting the project

into separate modules has not been considered up until now.

A general extension that may be useful is to visualize the CFG as a

text-based graph, thus allowing IDEs and editors to include CFGs alongside

the source code. This might bring the idea of visualizing CFGs more into the

mainstream of software testing.

48

Chapter 8

Conclusion

The software testing tool presented here explores visualization of code,

coverage, and fault localization. It produces a control flow graph (CFG) from

a Python source code file. It also includes an entire system for instrumenting

Python code to track execution paths. The visualization features provide an

interface to the intermediate representation of the CFG to provide highlighting

for coverage or fault localization. Test coverage of the code is reported from

the execution paths and can be compared to four graph coverage criteria.

The criteria are node, edge, edge-pair, and prime path coverage. Currently,

no other Python tool provides edge-pair or prime path criteria for coverage.

The entire Python syntax is faithfully translated into a CFG, following the

structures discussed in the implementation chapter. Even function decorators

are included in the CFG; however, no meta-programming or self-generated

code can be inspected.

Visualizations of the CFG provide an interesting perspective on the an-

alyzed program. The CFG was the canonical representation for exploring ways

of visualizing coverage and fault localization. I explored three categories of vi-

sualization, from the basic CFG, to a highlighted version illustrating coverage,

49

and finally a view of fault localization overlaid on the CFG. Special versions

of the coverage highlighted CFG display edge-pair or prime path coverage.

The hope is that this work will provide useful visual feedback to developers of

Python computer programs.

Testing speeds on a sample of popular packages show the system is

competitive with branch coverage measurement using the state of the art,

coverage.py. The system could be optimized further to increase speed. Future

extensions include a full system for fault localization and a repair suggestion

tool based on mutations. Integrating into the import hook process available for

Python would make this testing tool easier to use on large packages. Adding a

text based representation of the CFG might extend its usefulness by integrating

into the IDE.

I have shown that visualization of CFGs could provide interesting ways

of looking at commonly used software testing metrics. The tool described

by this report gives Python developers access to some of the formal coverage

criteria largely used in academic models. Python is a popular language, and

Python developers must have useful ways of testing and visualizing code.

50

Bibliography

[1] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. An evaluation

of similarity coefficients for software fault localization. In Dependable

Computing, 2006. PRDC’06. 12th Pacific Rim International Symposium

on, pages 39–46. IEEE, 2006.

[2] Thomas Ackling, Bradley Alexander, and Ian Grunert. Evolving patches

for software repair. In Proceedings of the 13th annual conference on

Genetic and evolutionary computation, pages 1427–1434. ACM, 2011.

[3] Frances E Allen. Control flow analysis. In ACM Sigplan Notices, vol-

ume 5, pages 1–19. ACM, 1970.

[4] Paul Ammann and Jeff Offutt. Introduction to software testing. Cam-

bridge University Press, 2008.

[5] Andrea Arcuri. Evolutionary repair of faulty software. Applied Soft

Computing, 11(4):3494–3514, 2011.

[6] Andrea Arcuri and Xin Yao. A novel co-evolutionary approach to au-

tomatic software bug fixing. In Evolutionary Computation, 2008. CEC

2008.(IEEE World Congress on Computational Intelligence). IEEE Congress

on, pages 162–168. IEEE, 2008.

51

[7] Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia. Directed test

generation for effective fault localization. In Proceedings of the 19th

international symposium on Software testing and analysis, pages 49–60.

ACM, 2010.

[8] Pylint contributors. Pylint - code analysis for python. http://www.pylint.org,

May 2015.

[9] Python contributors. Welcome to python.org. http://www.python.org,

May 2015.

[10] Vidroha Debroy and W Eric Wong. Using mutation to automatically

suggest fixes for faulty programs. In Software Testing, Verification and

Validation (ICST), 2010 Third International Conference on, pages 65–74.

IEEE, 2010.

[11] Anna Derezińska and Konrad Ha las. Analysis of mutation operators for

the python language. In Proceedings of the Ninth International Confer-

ence on Dependability and Complex Systems DepCoS-RELCOMEX. June

30–July 4, 2014, Brunów, Poland, pages 155–164. Springer, 2014.

[12] Ethan Fast, Claire Le Goues, Stephanie Forrest, and Westley Weimer.

Designing better fitness functions for automated program repair. In

Proceedings of the 12th annual conference on Genetic and evolutionary

computation, pages 965–972. ACM, 2010.

52

[13] Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues.

A genetic programming approach to automated software repair. In Pro-

ceedings of the 11th Annual conference on Genetic and evolutionary com-

putation, pages 947–954. ACM, 2009.

[14] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley

Weimer. A systematic study of automated program repair: Fixing 55

out of 105 bugs for $8 each. In Software Engineering (ICSE), 2012 34th

International Conference on, pages 3–13. IEEE, 2012.

[15] Claire Le Goues, Stephanie Forrest, and Westley Weimer. Current chal-

lenges in automatic software repair. Software Quality Journal, 21(3):421–

443, 2013.

[16] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer.

Genprog: A generic method for automatic software repair. Software En-

gineering, IEEE Transactions on, 38(1):54–72, 2012.

[17] Henry F Ledgard and Michael Marcotty. A genealogy of control struc-

tures. Communications of the ACM, 18(11):629–639, 1975.

[18] Thomas J McCabe. A complexity measure. Software Engineering, IEEE

Transactions on, (4):308–320, 1976.

[19] Yuhua Qi, Xiaoguang Mao, Yan Lei, and Chengsong Wang. Using auto-

mated program repair for evaluating the effectiveness of fault localization

53

techniques. In Proceedings of the 2013 International Symposium on Soft-

ware Testing and Analysis, pages 191–201. ACM, 2013.

[20] W Eric Wong and Vidroha Debroy. A survey of software fault localiza-

tion. Department of Computer Science, University of Texas at Dallas,

Tech. Rep. UTDCS-45, 9, 2009.

54

Vita

Jackson Salling was born and lives in Austin, Texas. He attended the

University of Texas at Austin for undergraduate studies where he received the

degree of Bachelor of Science in Electrical Engineering in 2003. He works for

Fluke Networks as a hardware and software engineer, designing test equipment

for fiber optics. In 2013, he started graduate school in software engineering.

Address: salling@utexas.edu

This report was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

55

