

Copyright

by

Timothy Michael Lambert

2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211342792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Report Committee for Timothy Michael Lambert

Certifies that this is the approved version of the following report:

Enterprise Platform Systems Management Security Threats and

Mitigation Techniques

APPROVED BY

SUPERVISING COMMITTEE:

Suzanne Barber

Elie Jreij

Supervisor:

Enterprise Platform Systems Management Security Threats and

Mitigation Techniques

by

Timothy Michael Lambert, B.S.E.E., M.B.A.

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

December 2016

 Dedication

For Jake Lambert, whose life and passing spurned the author’s commitment to enter and

dedication to complete this degree program.

v

Acknowledgements

I would like to express special thanks to my family and employer, Dell

Technologies, Inc., for allowing me the time to pursue my educational and professional

interests via this superb graduate program. Additionally, I would like to thank my

supervisor, Dr. Suzanne Barber, and reader, Elie Jreij, who is a professional mentor in

this research area.

vi

Abstract

Enterprise Platform Systems Management Security Threats and

Mitigation Techniques

Timothy Michael Lambert, MSE

The University of Texas at Austin, 2016

Supervisor: Suzanne Barber

 Developers and technologists of enterprise systems such as servers,

storage and networking products must constantly anticipate new cybersecurity threats and

evolving security requirements. These requirements are typically sourced from

marketing, customer expectations, manufacturing and evolving government standards.

Much ongoing major research focus has been on securing the main enterprise system

purpose functionality, operating system, network and storage. There appears, however, to

be far less research and a growing number of reports of vulnerabilities in the area of

enterprise systems management hardware and software subsystems. Many recent

examples are within types of subsystems such as baseboard management controllers

(BMCs), which are intricate embedded subsystems, independent of the host server system

functionality. A BMC is typically comprised of a specialized system-on-a-chip, RAM,

non-volatile storage, and sensors, and runs an embedded LINUX Operating System. The

BMC’s primary roles are always increasing in scope including managing system

inventory, system operational health, thermal and power control, event logging, remote

console access, provisioning, performance monitoring, software updates and failure

vii

prediction and remediation. To compromise or create a denial of service of such

subsystems has an increasing impact on equipment manufacturers and large and small

enterprises.

This report’s primary objective is to research real-world and theoretical hardware

and software cyber-attack vectors on enterprise product platforms, inclusive of BMCs,

BIOS and other embedded systems within such products. For each presented attack

vector, best practices and suggestions for effective avoidance and mitigation are

explored. Domains of particular interest are physical access security, hardware

manipulation and secure boot protections against software image manipulation, BIOS

recovery and secure field debug techniques.

viii

Table of Contents

List of Tables ...x

List of Figures .. xi

GLOSSARY .. XII

CHAPTER ONE: INTRODUCTION ...1

1.1 Motivation ..1

1.2 Vision ...2

1.3 Scope ...2

1.4 Report Organization ...3

1.5 How to Read this Report ..3

CHAPTER TWO: ATTACK VECTORS AND MITIGATION TECHNIQUES4

2.1 Local Access Security ..5

2.1.1 Physical Locks ...5

2.1.2 Chassis Intrusion ..6

2.1.3 Physical and SW Change Logging ..7

2.1.4 Physical- or Proximity-based External Interface Access7

2.2 Internal Physical Attacks ...11

2.2.1 Internal Port Access ...11

2.2.2 Silkscreen ...14

2.3 Remote Attacks ..16

2.3.1 Default Passwords ..16

2.3.2 Protocol Attacks ...17

2.3.2 Credential Vault ...19

2.4 Design for Manufacturing and Production Debug ...20

2.4.1 Field Service Debug Authorization ...21

ix

2.4.2 Manufacturing Mode ...22

2.5 Image Boot, Update and Protection Management ...24

2.5.1 Image Verification ...24

2.5.2 Secure Boot Path ..26

2.5.3 Embedded Non-Volatile Storage and I/O Protection29

2.5.3.1 SPI ROM Data Protection Methods ...29

2.5.3.2 Managed NAND Flash Data Protection Methods31

2.5.3.3 The “App Store” Concept in Embedded Systems....................34

2.5.3.4 Secure Peripheral and GPIO Access ..35

2.5.4 System Decommissioning or Re-provisioning36

2.6 BIOS Secure Boot, Failure Detection and Recovery37

2.6.1 UEFI Secure Boot ..37

2.6.2 BIOS Recovery ..38

2.6.3 Boot Measurement ...40

CHAPTER THREE: CONCLUSIONS ...41

CHAPTER FOUR: FUTURE WORK..42

REFERENCES ..43

VITA46

x

List of Tables

Table 1: Examples of a mainstream server’s non-obfuscated silkscreen labels on

critical circuits and improvement suggestions for manufacturers. ...15

Table 2: Example Secure Chain of Trust Boot Flow with Redundant or Alternate

Images. ..28

xi

List of Figures

Figure 1 Examples of Non-obfuscated Silkscreen at Critical Debug Ports 14

Figure 2 ROM Space Optimized Image Update and Verification Method 26

Figure 3 Example Secure Chain of Trust Boot Flow with Redundant Images 28

xii

Glossary

BIOS Basic Input / Output System

BMC Baseboard Management Controller

CPLD Complex Programmable Logic Device

DMA Direct Memory Access

eMMC embedded Multi Media Card

FPGA Field Programmable Gate Array

FSDAF Field Service Debug Authorization Facility

GPIO General Purpose Input Output

iDRAC Integrated Dell Remote Access Controller (Dell-specific BMC)

HRK Hidden Root Key

HTTPS Hypertext Transfer Protocol Secure

IPMI Intelligent Platform Management Interface

MCU Microcontroller

SMI System Management Interrupt

SOC System on a Chip

SSH Secure Shell

Uboot Universal Boot Loader

WS-MAN Web Services-Management

1

Chapter One: Introduction

1.1 Motivation

As enterprise systems serve more critical workloads, the enterprise cybersecurity

field exhibits a growing level of importance, particularly within local and remote access

and systems management. The impacts of enterprise system compromise or denial of

service can affect countless end users and astronomical economic impacts. Particular high

effect areas are to government and private entities responsible for the reliability,

availability, integrity and privacy of content of such systems. Evolving cybersecurity

threats require enterprise product developers and technologists to investigate, anticipate

and address requirements sourced from marketing, customer expectations, manufacturing

and evolving government standards. Although the area of primary focus is enterprise

equipment embedded systems, the types of explored attack vectors and suggested

mitigations are common to many industries such as client devices, Internet of Things

systems and commercial and industrial equipment.

Many recent examples of enterprise system vulnerabilities have been in the area

of service processors or baseboard management controllers (BMCs), an intricate

embedded subsystem, independent of the host system functionality. Industry experts

consider BMCs as high value targets because to compromise or create a denial of service

to a BMC can also affect the operation of the host server, inclusive of power down or

worse malware infection of the host system through functions such as virtual media

redirection.

The typical BMC subsystem is comprised of a system-on-a-chip, RAM, non-

volatile storage, and sensors, running an embedded LINUX or real time operating system.

The BMC’s primary roles are always increasing in scope such as managing system

2

inventory, operational health, thermal and power control, event logging, remote console

access, provisioning, performance monitoring, software updates and fault detection and

remediation. Additional examples include other embedded systems such as smart power

supplies, storage backplanes, smart fans, network managers and wireless controllers.

1.2 Vision

The vision for this report is to collect through research and experimentation recent

real world and hypothetical cyber-attack vectors toward enterprise equipment embedded

sub-systems. For each vector suggested techniques based on industry observation,

research, government standards or common sense are explored. The goal is to make

enterprise equipment manufacturers, customers of such systems and upstream supply

chain commodities more aware of and to adopt such requirements and practices. This

should significantly enhance the security of such sub-systems.

1.3 Scope

The scope of this report entails researching real world and theoretical enterprise

product systems management hardware and software cyber-attack vectors, inclusive of

BMCs, BIOS and other embedded systems within such products. For each explored

attack vector, best practices and suggested methods are presented for mitigating or

thwarting each problem. The domains of particular interest are hardware physical access,

including port security, hardware manipulation and secure boot protections against

embedded systems’ code image manipulation, BIOS recovery, and secure field debug

techniques. This report explores approximately 30 sub problem areas and 50 mitigating

techniques.

3

1.4 Report Organization

The organization of the remaining chapters is as follows. Chapter 2 is the large

bulk of the report exploring various classes of attack vectors with each finding

accompanied by one or more suggested techniques for mitigation. Major sections include

local physical attacks, compromised authentication attacks and image management.

Chapter 3 concludes the report. Finally, chapter 4 provides specific high interest future

work area proposals.

1.5 How to Read this Report

The report details 30 cybersecurity problems and 50 best practices and some

original solutions to mitigate such attacks. This makes for an average of 1.67 potential

solutions for each problem explored with a range of one to seven solutions. Each problem

presented will be highlighted and numbered for the reader as follows:

(Problem#). Proposed solutions for each problem will also be highlighted and numbered

for the reader where each solution will be matched to the respective problem that solution

addresses as follows: (Problem#: Solution#).

4

Chapter Two: Attack Vectors and Mitigation Techniques

According to a 2015 IT survey, 38% more security incidents were detected than in

2014 [1]. Protecting enterprise systems’ platform security is commonly a low priority or

flatly ignored with respect to physical one-to-one attacks. Many technologists make the

decree that if the attacker has physical access to the machine, then there is no security.

That is true in some aspects related to highly sophisticated attackers, such as nation

states. This paper describes common physical attack methods and ways that users and

Original Equipment Manufacturers (OEMs) can design in maximum physical security

and obscurity to thwart casual to moderately sophisticated attackers as well.

Next, a common mid-level priority is to protect from remote one-to-one attacks in

terms of either system compromise or the instigation of a denial of service. Beyond the

obvious perils of compromising that one system, attackers may learn of additional

weaknesses or details such as remote administrator login credentials that could lead to the

compromise of many more systems. This paper focuses on hardening against some

remote attack methods such as in relation to firmware updates and recovery.

Finally, it is a common top priority amongst systems management technologists to

protect from remote one-to-many attacks. This type of attack can have large-scale

adverse effects on Enterprises, including denial of service, persistent malware and

compromise of the host system credentials and data. For example, researchers in one

recent study stated: “We conservatively estimate that it would take less than an hour to

launch successful parallel attacks against all of the 40,000 ATEN-based Supermicro

Intelligent Platform Management Interface devices that we observed listening on public

IP addresses” [2].

5

2.1 Local Access Security

For many businesses, limiting room key or badge reader access and detection via

motion and surveillance systems provides sufficient security for physical business critical

system access. When such provisions cannot exist, or be trusted, such as in a non-

datacenter located server in a retail store, colocation center or even say the back of a

military vehicle, local access thwarting methods are critical.

2.1.1 Physical Locks

Most server vendors provide an optional key-locking front bezel or top/side cover.

One regular complaint is that the key is typically common between bezels of a given

model type, thus only thwarting casual attackers or accidental removal of front hot-

pluggable storage drives, button presses, etc. (Problem1). Manufacturers may offer re-

programmable physical locks, if demand is high enough to warrant such cost (Problem1:

Solution1). Also, manufacturers could implement a solution where an authenticated

remote administrator could physically unlock the system bezel or cover (Problem1:

Solution2). A quick search of the U.S. Patent Office reveals many applications for

remote access systems controlling a programmable electronic lock such as patent number

5,774,058 [3]. None of those found looked to be productized in mainstream enterprise

products presumably due to 1) higher cost 2) larger size of a solenoid or similar control

apparatus and remote (un)locking system and 3) the general burden of remote network

access coordination with the local operator. I believe these impediments could be

addressed by electro-mechanical designs which make the remotely controlled physical

lock an upsell option off of the base system, such as on a front bezel or cover add-on

versus within the base system.

6

2.1.2 Chassis Intrusion

Most enterprise systems, namely rack and tower servers that are more likely to be

located outside of a secure datacenter, support a battery-backed latch and mechanical

switch for detecting, logging and alerting administrators of a physical chassis intrusion.

When experimenting with a Dell PowerEdge R730 server, which is one of the top selling

worldwide systems at the time of this report, it was observed that a chassis cover

intrusion while AC power is absent resulted in an event log time-stamp of when AC

power was applied and not when the intruder actually removed the cover (Problem2). It

is a very useful forensic to know when a system cover was removed or replaced versus

when it was powered after an intrusion event, such as if there is a supply chain intercept

and hardware modification or implant installed. U.S. patent number 6,289,546 teaches a

method where a chassis intrusion causes the real-time clock to stop, such that it remains

stopped until a software entity acknowledges the intrusion [4] (Problem2: Solution1).

The only issue here is that time will remain out of date if the system does not have access

to a reliable time source such as a network time protocol server or another system within

a group (chassis, rack or local area network). It is recommended to use a low power,

battery-backed microcontroller or application specific integrated circuit (ASIC) with a

real-time clock (RTC), instead of the main chipset RTC, which also can wake and sleep

based on GPIO events related to the chassis intrusion assertion and de-assertion

(Problem2: Solution2). Such a device could log real time stamps of physical access

events into non-volatile memory while not losing track of the real world time. At this

time, in high volume, such a chip could be easily integrated for an approximately U.S.

$.30 per unit adder to the bill of materials. This concept could be extended to accurately

capture other useful forensic physical events such as time stamping when AC is lost,

which also through R730 system experimentation was not a locally logged event.

7

2.1.3 Physical and SW Change Logging

Detecting physical and software inventory changes over the life of a product at

boot and during runtime is a very useful attack forensic as well for detecting physical and

remote attacks (Problem3). Fortunately, as of this writing, all tier 1 server vendors have

improved on the basic Intelligent Platform Management Interface (IPMI) system Event

Log that for many years was limited to 512 system health related events [5]. For example,

H-P Enterprise offers an Active System Health Log and Dell offers a Lifecycle Controller

Log deep enough to track millions of minute changes over the life of the system [6]. By

exporting such logs, an administrator can easily automate the comparison of current and

past inventory and user setting changes over time. Additionally, whereas clearing an

IPMI system event log to cover an attacker’s tracks is very easy with one command, these

types of lifecycle logs are intentionally much harder to delete. For example, on Dell

servers, a full lifecycle controller wipe is required which is intended when a system is

being decommissioned or before being redeployed. Therefore, many other configuration

options such as BIOS settings are also purged making a log clearing event quite obvious

to administrators. System OEMs and users should constantly seek to enhance the

comprehensive event inclusion, protection and use of deep lifecycle logs (Problem3:

Solution1).

2.1.4 Physical- or Proximity-based External Interface Access

BIOS or firmware enablement/disablement or limited use of physical port access

is a common way to protect system operation from physical attacks. As an example, per

the Dell PowerEdge latest generation BIOS Setup Guide [7], an administrator can

enable/disable the following types of ports:

8

• Experimentation with a Dell PowerEdge R730 showed that disabling the physical

power button results in the server not able to be powered off but can be powered on

via the button (Problem4). The assumed premise is that interrupting a running

enterprise system is bad however booting a powered down system is not an issue due

to other assumed protections such as BIOS password or OS login authentication. That

may not also be true as a compromised, powered down server, when powered on,

could compromise the storage, network or other systems. To address this concern,

future systems could offer an additional power button disable option to not be auto-

enabled when the server is powered down without preceding authorization via the

BMC (Problem4: Solution1). This could be performed through remote network

interface or local interfaces such as direct connect managed USB, branded “iDRAC

Direct”, serial or wireless interfaces, if present.

• The non-mask-able interrupt (NMI) button is a common debug feature that can crash

the server operating system or interrupt critical processes such as a BIOS update. One

area of concern observed on the Dell R730 is that when the NMI button is disabled, a

remotely authenticated user can still invoke the NMI via the iDRAC command line or

GUI (Problem5). Thus, a compromised BMC could crash the host server. If this is a

sufficient area of concern, then an additional BIOS option could be added that

differentiates disablement of the local and remote NMI buttons (Problem5:

Solution1). Also during the firmware update procedure, BIOS could reconfigure the

NMI pin to disable the interrupt capability.

• External serial ports and managed network ports typically offer static enable or

disable options. One suggestion may be to offer an option for authenticated, dynamic,

run-time enable/disable of such ports. For example, via the Dell iDRAC, someone

9

can further disable additional ports and interactions such as whether the LCD is

enabled, read only or if it can be used to change configurations and operating states.

• Wireless interfaces such as the Dell Near Field Communication-based QuickSync [8]

are becoming more prevalent in enterprise equipment for easing at the box

interactions. Various enterprise segments, such as government intelligence agencies,

prohibit any wireless communication within datacenters (Problem6). With the

increasing importance of datacenter system administrator efficiency, it seems as

though other wireless or mobile interaction methods may become available in the

future. Such interfaces can be disabled within the BMC interfaces, which means they

could be dynamically re-enabled. No matter what security guarantees are made by a

server vendor, if standard or optional wireless communication features are present,

they must be able to be permanently disabled and use strong authentication and

encryption best practices in all communications (Problem6: Solution1).

• USB ports are an interesting attack vector because of the many use cases that desire

more than standard practice basic boot time enablement or disablement of all groups

of ports. Some administrators do not trust software disablement of USB ports and

physically plug them with hot glue. Where software disablement is trusted, many

systems offer BIOS boot menu options to disable all ports or just the rear ports, so

that a datacenter technician can use a “crash cart” for front, local interaction. A

primary usability issue observed through experimentation is that USB port

enablement can only be performed at server boot time via the BIOS setup menu

(Problem7). This is primarily due to added cost and space of BMC controlled switch

logic preventing server host USB controller connectivity to external ports. Vendors of

USB host controllers, systems-on-a-chip (SOCs) and CPUs/chipsets should provide

an ability via a sideband interface or logic that sits between the host controller and the

10

user port connector to dynamically control individual USB port enablement at run-

time (Problem7: Solution1). Thus an authenticated BMC session could enable or

disable each port on the fly.

• One solution that exists is the host operating system instituting a filter driver that

queries and only allows certain classes of devices such as Human Interface Devices to

be exposed to the general operating system. However, this solution is proprietary and

thus not available to all operating environments including LINUX [9]. A host OS and

driver agnostic solution is highly desired that includes far more powerful pass/fail

criteria than a USB device class (Problem8). With BMCs being powerful SOCs with

a secure root of trust, the BMC could easily play a role in enterprise host USB port

device screening (Problem8: Solution1). Advanced policies could be set in the BMC

to be applied at runtime on existing and newly attached devices. All modern BMCs

have at least one USB host controller which could take over external ports on the

system when coupled with multiplexer type logic and device attach/detach

notification methods. This would allow the BMC to verify, before attachment to the

host system, that each attached device meets specific criteria. Some examples include

1) white- or black-listing certain USB device classes such as only allowing a

keyboard or mouse and/or excluding mass storage devices, 2) allowing a certain USB

mass storage device brands (product ID = SanDisk) or capacities such as 16GB only,

or 3) retrieving and verifying from a mass storage device a particular file such as a

digital signature, authenticating the device and then allowing it to be attached to the

host.

This is a powerful solution but comes at the cost and space of intervening logic to

detect attach/detach events, etc. for possibly many USB ports on a system. A far

superior solution involves influencing chipset and USB host controller vendors to add

11

sideband access for a BMC or an internal configurable policy enforcement

management engine. This engine would perform these types of operations directly

through each USB host controller hardware, thereby eliminating the need for external

logic.

2.2 Internal Physical Attacks

Many leading security experts consistently take the stance that if an attacker has

physical access to the electronics or inside of a server, then achieving true security is not

possible. This section attempts to investigate and thwart some of those methods used by

casual to moderately advanced attackers. Physical attacks create the clear risk of one

physical attacker gaining persistent access to a machine that goes unnoticed, such as by

intercepting and implanting something within the supply chain or shipment of the system.

Such attacks also can enable learning the underlying implementation of an embedded

system, such as for gaining root access for launching further remote attacks to many like

systems.

2.2.1 Internal Port Access

Servers contain user settable switches or jumpers such as clearing non-volatile

RAM or disabling a BIOS password. Manipulation of those have clear effects and user

detection such as observed boot messages when testing a Dell R730. For example, the

R730 has a local video port disable feature such that local users with a monitor cannot see

the video that a remote user is viewing and manipulating. However, the system

information label states that the BIOS password enable jumper also re-enables the local

video (Problem9). This is presumably for cases where an admin loses remote access,

such as lost network connection or forgets the remote login and need to see local video in

order to reset the remote configuration or login. An enhancement would be to use a BMC

12

video overlay to require local user authentication before enabling the local host video

(Problem9: Solution1). The datasheets of mainstream BMCs, such as the Renesas

SH7758, describe this capability. Given an input method such as a managed USB port

accepting keyboard inputs, the BMC could offer an interactive menu that demands

physical access and knowledge such as an administrator password. A solution like this

could be used for various security and convenience enhancements. An example may be to

externally command operations, such as BIOS NVRAM clear via a local keyboard and

monitor versus a multi-step process involving physical dismantling of the system.

Almost all general purpose and application specific integrated circuits (ASICs)

have some sort of debug port, the most common being serial ports, Inter-Integrated

Circuit (I2C), JTAG (the IEEE 1149.1 standard) or Serial Peripheral Interface (SPI).

There is much research on authentication and encryption methods for use of these types

of ports but they are generally not in practice amongst most chips. Hardware designers

most often just depopulate the relevant connectors in the production printed wire

assembly (PWA) bill of materials. There were some recently highly publicized attacks on

such ports. For example, the US National Security Agency website published an example

implant placed in an intercepted server motherboard that required soldering the removed

JTAG connector of the main server CPU (Problem10). The same could apply for any

such debug port. The implant was an inexpensive, off-the-shelf microcontroller with

firmware to customize the exploit as a persistent software application and time delay for

launching an attack [10]. New systems should consider adding BMC authenticated

enablement of special circuitry that normally blocks electrical connectivity between a

target chip such as a CPU or other chip and the associated debug connectors, such as a

UART, I2C, or JTAG (Problem10: Solution1). Although considered obscurity, this can

easily be implemented in hardware, firmware or programmable logic, making it far more

13

difficult to circumvent than populating a clearly marked standard connector. Techniques

can also help obfuscate port enablement, such as embedding signal traces which require

X-ray and drilling, and populating false logic that defeats the bus, blowing production

fuses, etc.

An additional type of NSA published attack was code named IRONCHEF [10]

(Problem11). It “provides access persistence to target systems by exploiting the

motherboard BIOS and utilizing System Management Mode (SMM) to communicate

with a hardware implant that provides two-way RF communication”. A similar method

could help thwart problem where the BIOS must authenticate with the BMC before the

BMC enables circuitry that normally blocks signals as close to the source (chipset) as

possible (Problem11: Solution1). Since this type of exploit is for attacking the server

host during OS runtime, it would be ideal for the CPU/chipset or other IC vendors to

enable a lock pin configuration until reset type method (Problem11: Solution2). When

use of the attached device(s) is complete during boot, the BIOS could request the

hardware to lock the pin or bus functionality until a reset occurs. This would render a

runtime implant useless. If adopted by IC vendors, this method would require no bill of

materials cost adder or added board space.

Nowadays, it is possible for an inexpensive and very small microcontroller

(MCU) to be hardware connected to a debug port such as a serial port to listen for and

inject certain strings. Persistently implanted MCUs pose a threat if interaction is possible

such as stopping that target’s boot at a pre-boot prompt or if a root prompt is available via

a debug port (Problem12). Either pre-set interactions could occur or a bridge to say RF

could be part of the implant allowing ongoing remote interaction. Production level

firmware should prevent access to a root prompt or limit the capabilities of pre-boot

prompt, such as the universal boot loader (uboot) (Problem12: Solution1). Firmware

14

should at least notify another secure agent such as the host server BIOS if access is

attempted as detected on for example a receive UART signal.

2.2.2 Silkscreen

Across many industries, printed circuit board designers have a common practice

of clearly marking component and connector silkscreen names to meaningful terms.

Examples include J_CPU_JTAG or J_BMC_UART for a debug connector instead of

using a randomly named reference designator such as J123. Figure 1 shows a couple

examples from a Dell server where key UART and JTAG connections are very well

labeled for casual attackers.

Figure 1 Examples of Non-obfuscated Silkscreen at Critical Debug Ports

The practice of clearly silkscreen marking the purpose of such components eases

electronics validation, debug and manufacturing programming. The practice of well-

marked silkscreens on critical circuits creates a real threat to even casual attackers

(Problem13). In one such recent relevant example, a site called “The Ignorant Hack”

posted an article about easy hacking of the Dell iDRAC7 [11]. The author noticed the

clearly marked “DRAC UART” depopulated four pin connector, which hobbyists know

15

is almost always receive, transmit, power and ground signals. The attacker then installed

into the empty holes an inexpensive, widely available, off-the-shelf UART-to-USB

converter and was able to access the service processor debug serial port and discern

various details of the underlying hardware and embedded software details. Manufacturer

internal groups needing debug connector access possess the design files such as

schematics and board layout files with a minor lookup burden versus designing into

production a clear path for even casual attackers. Therefore, enterprise equipment

vendors should institute a process to obfuscate all critical component silkscreen names

either in early development or at least before production hardware release (Problem13:

Solution1). When surveying a mainstream, tier one server, Table 1 shows some example

finds and suggested improvements.

Current Silkscreen Suggested Obfuscation

U_PRIM_SPI_BIOS U# //BIOS ROM usually contains critical platform data

U_UBOOT U# //ROM containing bootloader, configuration and log data

P_BMC_UART P# //The BMC’s debug serial port input/output are possible

J_BMC_ARM_JTAG J# //BMC main JTAG

J_BMC_CP_JTAG J# //Co-processor JTAG

PEMMC_DBG P# //A port for accessing an eMMC Flash device that holds
the BMC’s operating system and other functions. A USB card
reader attached to this port could observe or manipulate the
Flash contents.

J_CPLD_JTAG J# // A middle man attack could overwrite a critical
programmable logic device.

SW_IDRAC_PORST SW# // An attacker could inject a BMC power on reset which
by experimentation shows to crash the host.

J_MFG_MODE TP# //Shorting such jumper holes with a paper clip or tweezer
may put a subsystem in a non-customer mode. Hardware
designs could randomly number or require something more
difficult than a simple ground, such as a specific pulse stream
or loadable license to enable.

Table 1: Examples of a mainstream server’s non-obfuscated silkscreen labels on critical circuits and

improvement suggestions for manufacturers.

16

2.3 Remote Attacks

As mentioned in the introduction, remote attack vectors can be far more severe

than physical attacks due to the one-to-many, parallel nature of such attacks and due to

possibly less detection forensics. This section discusses some of these attack vectors and

possible enhancements for manufacturers or end users.

2.3.1 Default Passwords

For many years, enterprise server systems would ship with BMCs and other

service processors with common default root passwords. Dell BMCs supported login of

“root” and password of “calvin”. Other vendors published similar defaults such as login

“admin” and password “admin”. This poses a problem when simple to obtain tools like

the one referenced here [12] are used to scan networks such as the open internet for BMC

interface protocol responses, such as HTTPS and SSH, and attempts to login with the

default credentials (Problem14). According to one research paper, one internet scan

revealed greater than 105,000 servers with their BMCs with default credentials connected

to the public internet and thus vulnerable [13]. Once a remote user has access to the

BMC, even without root level administrative rights, many possible attacks on the host

server are possible, even without host server credentials. For example, one could

remotely attach USB-based virtual media which could install malware or rootkits to the

host.

Besides using good networking techniques such as firewalls and VLANs and not

connecting subsystems such as BMCs directly to the public internet, manufacturers

should offer an ability to permanently alter the default password (Problem14:

Solution1). This helps such that a reset to factory defaults operation does not inherently

17

alter root access credentials to something widely known and common. Some vendors

such as H-P Enterprise look to already support such capability as described in [14].

Manufacturers should also consider making the default passwords unique to each

unit of each model shipped such as based on the unmodifiable service tag (Problem14:

Solution2). From some documentation such as a Dell OEM called ExtraHop’s

documentation [15], top tier server vendors already offer this capability, presumably in

response to thwarting the type of issue described here.

Anytime a default password is in place on a system, it should be made clear to the

user such as via BIOS boot messages, web GUIs, notifications and command line

interfaces upon logging in (Problem14: Solution3). Articles such as a Dell Techcenter

Blog article related to iDRAC7 [16] imply that such warnings are becoming more

prevalent in new generations of products and/or firmware releases. Some security

technologists that I interviewed about this topic have strong positions to absolutely force

the user to alter the default password before the system is fully usable versus just a

warning.

2.3.2 Protocol Attacks

In the early 2000’s, IPMI was the only widely used protocol for managing server

BMCs. Since then various other protocols have become prevalent, including web-based

HTTPS, secure shell (SSH), Web Services-Management (WS-MAN) and the emerging

Redfish standard [17] developed and managed by the Desktop Management Task Force

(DMTF). Insecure methods such as Telnet and HTTP have been almost entirely

deprecated within the enterprise systems industry, which is a very good thing for security.

Even standard secure network protocols suffer from evolving and more creative attack

18

vectors (Problem15). For example, the Heartbleed Bug [18], was a critical security bug

for all applications that used the affected standard protocols such SSH.

Manufacturers should be very wary about producing their own communication

methods versus leveraging the widespread diligence and patching on standard protocols

(Problem15: Solution1). The customization benefits seem to always get questioned

when any security vulnerability is discovered.

With constantly evolving attacks on standard protocols, it is extremely important

that manufacturers stay vigilant with releasing timely field programmable updates, such

as BIOS and BMC firmware (Problem15: Solution12. Customers should also frequently

monitor the change lists on releases, apply any updates/patches, even if say a server is

only on an internal network, and finally demand of enterprise manufacturers to patch

known vulnerabilities as soon as possible. A couple examples for firmware developers

are the always keeping up to date with kernel security patches and utilize the most recent

services such as the later Apache web server version.

Even within standard systems management methods such as IPMI, manufacturers

generally advise customers to not put IPMI enabled systems on the open internet but

instead on a firewall protected VLAN (Problem15: Solution3). A 2013 Arstechnica

article [19] referenced researchers estimating very easy wide-spread parallel attacks on

any thousands of IPMI devices on the public IP addresses.

Despite security sensitivities, there continues to be expansion of wireless

communication uses in datacenters for mobile device to server communication and for

functions such as asset location (Problem16). For example, Dell’s 13th Generation

servers offer Quick Sync which is an optional module that offers Near Field

Communication (NFC) between the BMC and mobile devices. It is conceivable as

evidenced in simple google searches that other standard wireless protocols could/will be

19

used in some datacenters. As stated in the physical port section, any wireless

communication method must be an optional upgrade and not a required capability as

many segments such as government may flatly outlaw wireless use (Problem16:

Solution1). Manufacturers who produce wireless solutions must keep up with the latest

wireless attack exploits and be quick to implement and roll out software/firmware fixes

(Problem16: Solution2). Additionally, best practices should be adopted for

authentication and pairing of the server and diverse types of client devices.

2.3.2 Credential Vault

Establishing secure protocol sessions such as remote SSH, HTTPS, etc. requires

key exchanges between the initiator and the BMC. BMCs must inherently store

cryptographic private keys in non-volatile memory which must remain secret even if

ROM access is achieved, such as by physically de-soldering and de-capping the ROM

device package (Problem17). Dell’s iDRAC Credential Vault and Hidden Root Key

(HRK) are good examples of embedded system capabilities that work in concert to 1)

establish a secure root-of-trust in the boot sequence, 2) provide assurance that code

running on the BMC is securely signed and 3) ensure that directly read ROM contents are

encrypted [20]. The hidden root key consists of each iDRAC containing a unique 256-bit

binary value burned into the silicon that is hidden from software and available as an input

key to internal cryptographic acceleration engines. The datasheet of a shipping,

mainstream BMC, the Renesas SH7758, was reviewed. If the boot sequence is

determined to not be a root of trust or if a JTAG connection is detected, then the Hidden

Root Key is disabled which prevents the credential vault from being decrypted.

Enterprise system manufacturers should use BMCs that provide the facilities for

hidden root keys, internal ROM code that can support a secure boot chain of trust and

20

facilities to detect common attack types and disable the hidden root key (Problem17:

Solution1). Security processor targeted SOCs have had this capability for a few years.

This capability definitely should propagate to many other chips and applications, such as

IOT targeted microcontrollers. This may seem like an obvious requirement going

forward, but as described in a later section, this capability is currently only in one of three

main shipping BMCs and in very few other SOCs and MCUs.

2.4 Design for Manufacturing and Production Debug

Balancing platform security with enterprise manufacturing and debug needs

during manufacturing, failure analysis of field returns and engineering sustaining efforts

with production level hardware, firmware, BIOS and other programmable images is a

significant development challenge. The impact of an enterprise device being

compromised can be much worse than on a client device, such as a notebook or desktop

computer. If a process or consistent portfolio guidance adopts a more inward focused

solution, then internal groups can be effective and streamlined when access is needed at

the detriment of production security exposures. Adoption of a security-focused

conservative approach creates more difficult and time consuming situations such as

requiring physical hardware manipulation and/or modification of loaded programmable

images to debug hardware or firmware issues or re-deploy field returned hardware.

Another big concern is that modifying the loaded programmable devices, such as by

creating and updating signed, non-production firmware images, loses the current failure

state of the suspect system or can easily make the issue no longer repeatable. Both of

these are problematic in emergency customer escalation type scenarios because of the

added debug and setup time. A hardware manipulation based method to invoke a debug

mode may not even be possible within the full system chassis unless very much focused

21

on during the early design phases. This section focuses on enabling enterprise system

developers to effectively and efficiently perform the necessary manufacturing functions

and issue resolution tasks, while balancing sufficient production system security tenets.

2.4.1 Field Service Debug Authorization

During enterprise systems development, firmware build flags are typically set that

enable full debug capabilities. Where security issues are anticipated, many debug

capabilities are turned off in production firmware so that attackers cannot for example 1)

access debug port inputs or outputs, 2) alter the boot path, such as stopping at a boot

loader prompt to manipulate states or implant malware or 3) gain root prompt access to

the embedded operating system as a whole.

Production support and engineering teams typically need to access advanced

debug capabilities with production hardware and firmware while not compromising mass

volume security (Problem18). For example, a difficult to debug issue in a customer’s

large datacenter may require access to special logs that are not normally customer

extractable. Furthermore, manufacturers enabling undocumented mechanisms to achieve

such backdoor type access violates the major tenet that obscurity is not security.

Dell has addressed this issue in a unique way that others may learn from with

their iDRAC Field Service Debug Authorization Facility (FSDAF) [20] (Problem18:

Solution1). This facility utilizes a mechanism where both the end customer and

manufacturer authorize specific debug capabilities, including up to root access, for

specific durations on a particular system. A signed certificate is then uploaded into the

iDRAC enabling the agreed upon features. Thus, the mutually agreed upon access level is

authorized and dynamically achieved for the agreed duration without having to modify

22

the firmware or even reboot. Through experimentation on a Dell R730, I observed that

FSDAF is enabled via an uploaded certificate into a fully operational and booted iDRAC.

FSDAF is great for debugging application level issues. However, various

common debug needs are not satisfied with FSDAF such as an embedded OS that crashes

or fails to boot or other low level issues (Problem19). Manufacturers should enable an

enhanced solution where a cryptographically sound method for debug capability

authorization can persist through a reboot or ideally be accomplished in the early boot

stage, such as the boot block (Problem19: Solution1). This would give field access, for

example, to a Universal Boot Loader (uboot) prompt to help debug low level types of

issues or recover a non-authentic or corrupt embedded subsystem OS image without

needing to update to a non-production, signed firmware image.

2.4.2 Manufacturing Mode

The manufacturing environment of complex enterprise printed circuit boards

requires special privileges that customers should never have, such as for setting persistent

networking MAC addresses and blowing one time programmable fuses such as

cryptographic keys. Note that it is typical to fuse several public keys in case, for example,

a corresponding private key is compromised, then the system can still be securely

updated with a new verified image utilizing an alternate key.

When production support for embedded systems’ elevated debug privileges are

required, then it is wise to provide an immutable indication to another secure entity, such

as BIOS (Problem20). That entity could then take appropriate actions like notifying the

end user and attempting to remedy the situation once the access window expires.

Examples of useful elevated privileges include 1) output debug serial port spew of the

boot block, uboot execution, LINUX OS boot, kernel panic messages and BIOS debug

23

boot messages and 2) interaction with a uboot prompt. Embedded OS root access should

not be supported through obscurity, not matter what. Thus, root access should be

excluded from production images and manufacturing planning.

The factory test and service support staff that I interviewed at Dell stated a clear

dissent of supporting multiple firmware images, especially a non-production, elevated

privilege version. The concern centers on the opportunity for a human mistake that lets

non-production code get out of the manufacturer’s control. Further, firmware capabilities

such as limited option menus or limited command line interfaces are possible for example

in uboot. This however creates extra development and validation effort and are limited to

the hard coded capabilities provided. Therefore, manufacturing enhancements would

require firmware changes.

As described earlier, an obscure physical manipulation to invoke manufacturing

mode should be avoided such as grounding a circuit board test point (Problem20:

Solution1). Early boot code, such as the mask ROM or hardware logic, should set a one-

time per boot immutable bit or flag to another secure agent, such as BIOS. This bit or flag

should ideally reside inside the BMC or embedded controller chip, to avoid external bus

manipulation or snooping, but optionally also in external logic such as discrete gates or a

CPLD or FPGA. This bit or flag should be clearable only by a power-on-reset. This is

because a power on reset guarantees all RAM is re-initialized, whereas a core reset does

not. If this bit could be cleared or the full RAM not re-initialized, then an attacker for

example could stop at a uboot prompt and alter the boot path or install malware into

memory before continuing the secure boot path. This mechanism allows the secure agent

to detect this operating state, notify the user of the possibly insecure operating state and

attempt to heal the situation by issuing a power on reset to the reporting entity.

24

2.5 Image Boot, Update and Protection Management

One of the most critical security areas of embedded systems in general, including

enterprise product subsystems such as BMCs, relates to image verification during the

updating and booting processes. This section explores issues and best practices related to

image verification, achieving a secure boot path, ROM protection and embedded data

handing during system decommissioning and re-provisioning. Even though BIOS is not

technically part of the systems management subsystem, a platform security treatment

would be incomplete with investigating BIOS secure boot issues and the BMC’s

involvement with BIOS recovery solutions.

2.5.1 Image Verification

It is highly valuable to adopt image signing and image verification as early as

possible in the software development cycle for practice with the build, signing and

verification procedures and to get the implementations for setting and revoking the proper

keys in place.

Image verification is important to be performed before being committed to non-

volatile storage (Problem21). Even though it is mostly standard practice to do this with

BMC firmware and BIOS, it is far from standard in other embedded systems. Released

images should always contain a public key and be signed by the manufacturers private

key through a tightly controller process. During update, the receiving firmware entity

verifies authenticity of the image utilizing the public key. Dell’s process for image

signing as described in [20] looks to conform to industry best practices. Manufacturers

should strive to have 100% coverage of image verification as the image arrives at the

destination or at least within the system (Problem21: Solution1). This should include

not just BMCs but also for example controllers with firmware in backplanes, power

25

supplies, voltage regulators, storage controllers, control panels, wireless controllers, etc.

Chip vendors more likely need pressure through request for information (RFI) and

request for quote (RFQ) efforts to add the necessary hooks for endpoint image

verification. Luckily such security capabilities are generally being requested of these

types of chips, ROMs and firmware as a basic need for many embedded applications

including Internet of Things (IOT) applications.

The entity being updated, whether it be a small microcontroller or a higher end

SOC, must verify the image upon receipt before committing to nonvolatile memory. This

is not always a possibility. For example, most microcontrollers possess a firmware binary

image larger than the amount of RAM available. Thus staging the entire image for an

authenticity check before writing to nonvolatile storage is not possible (Problem22). A

common challenge for hardware and system designers is right sizing the RAM and ROM

needs of embedded systems and specifically microcontrollers and SOCs such as those

used in enterprise systems like backplane controllers, power supplies, smart fan

controllers, etc. For example, it is very common to not have equal RAM and ROM space

as RAM is much costlier than FLASH in integrated circuit space. A 1:2 ratio of RAM to

ROM is very common in the current MCU industry. Additionally, system designers

usually cannot spend more money on a chip(s) with twice the ROM space than needed

under normal operation. It is not a good solution to verify the image by the receiving

device on one transfer, then request another transfer that gets committed to the ROM,

because the source updating entity could replace the image on the second transfer.

For controller/subsystems with enough non-volatile storage to store multiple

image copies, firmware could commit the image to the primary location (Problem22:

Solution1). If verification fails, then the embedded firmware could flag the failure but

26

then autonomously copy the previously verified backup image to heal the primary image

location with the original image.

Hardware applications that cannot stage the entire image before commitment to

the non-volatile storage could follow the original flow in figure 2 (Problem22:

Solution2). After a trust relationship is made between the updater entity and the updated

entity (endpoint), the updater could retrieve the current image from the endpoint to

heal/revert back to it if the new image fails to verify authenticity and integrity. This

allows the endpoint to commit the new image in chunks without fear of being persistently

without a bootable image.

Figure 2 ROM Space Optimized Image Update and Verification Method

2.5.2 Secure Boot Path

The importance was emphasized earlier of a hidden root key, internal security

ROM code and secure chain of trust boot sequence in the context of a credential vault.

These are also critical to achieving a secure boot path solution. In experimenting with a

27

mainstream server, a secure boot failure of the BMC image properly invalidated the

Credential Vault, protecting the secrets, but one of the firmware images booted anyway.

This may help with availability such as of thermal algorithms running in the main

operating system. It is not however the most secure behavioral policy such as halt on

failure, or try to auto-recover from a previously verified image.

Few BMCs in the industry nor many available microcontrollers support the

necessary hardware capabilities to inherently build a chain of trust. Even through BMCs

have such a pivotal role in the datacenter, I compared the datasheets of the three shipping

BMC vendors’ latest chip offerings which comprise an overwhelming majority of

enterprise systems in recent years: Aspeed AST2500, Emulex Pilot 3 and the Renesas

SH7758. Renesas was the only one with an HRK and internal ROM code on top of which

a secure boot chain-of-trust can be established. This means that much more of a

vulnerability exists on systems with BMCs without such capabilities. A cursory look

showed that many systems utilizing the non-secure boot capable Aspeed BMC were from

vendors such as SuperMicro and hyper scale systems such as from Facebook’s Open

BMC initiative effort [21].

Unlike less critical embedded systems, enterprise subsystem applications’ need

for high availability often warrants a redundant boot path. This is to account for possible

compromise or corrupt images in the boot path. Corruption could occur in cases such as

power loss during firmware update. The basic flow for figure 3 includes a primary and

secondary boot path where each entity verifies the authenticity, and inherently the

integrity, of the subsequent chain before passing off control. There are alternative paths

possible but this is one that prohibits altering the boot path mid-stream. That allows for

alternate versions of firmware between the two boot paths to facilitate features such as

version rollback.

28

Figure 3 Example Secure Chain of Trust Boot Flow with Redundant Images

Step Detail

1A Mask ROM validates the primary Boot Block before handing off control.

1B If 1A fails, Mask ROM validates the secondary Boot Block before handing off

control.

1C If 1B fails, Mask ROM must halt on fail, as jumping to untrusted code is

unacceptable.

2A Boot Block validates the primary Boot Loader before handing off control.

2B If 2B fails, Boot Block sets a flag and jumps back to Mask ROM to try the

secondary boot path.

3A Primary Boot Loader validates the Primary embedded OS before handing off

control.

3B If 3A fails, Primary Boot Loader sets a flag and jumps back to Mask ROM to try

the secondary boot path.

4A Secondary Boot Block validates secondary Boot Loader before handing off

control.

4B If 4A fails, Secondary Boot Block must halt on fail, as jumping to untrusted code

is unacceptable.

5A Secondary Boot Loader validates Secondary embedded OS before handing off

control.

5B If 5A fails, Secondary Boot Loader must halt on fail, as jumping to untrusted

code is unacceptable.

 Table 2: Example Secure Chain of Trust Boot Flow with Redundant or Alternate Images.

29

One alternative when using a BMC or embedded system which does not provide

internal root of trust capabilities, is to utilize external, intermediary chips that do. Such a

solution has the hardware root of trust sitting between the main processor and the non-

volatile storage such as the boot SPI ROM with a mechanism to reset the main processor

if not deemed secure. One such example is described in a recent Microsemi whitepaper

[22]. These solutions are very costly due to the dedicated silicon and package addition.

They are also physically large which hurts dense hardware applications. Finally, they hurt

overall reliability of the system by adding another active component with internal

firmware that could itself fail or need to be firmware updated.

2.5.3 Embedded Non-Volatile Storage and I/O Protection

During boot and runtime of an embedded system, protection of the non-volatile

memory locations where the boot image(s) and other static, non-volatile data reside is a

critical security need. In addition, in most modern chip and software architectures, code

running on a particular domain, such as a BMC CPU or host server main CPU, has

unrestricted access to the underlying hardware. In this section, we explore specifics in

these areas for common device types and architectures, as well as explore the “app store”

concept’s issues unique to embedded systems.

2.5.3.1 SPI ROM Data Protection Methods

In a large portion of embedded systems, all of the execution code is in an internal

or external ROM(s), which in most current applications, utilize ubiquitous serial

peripheral interface (SPI) ROMs with high endurance NOR FLASH technology. In

smaller embedded systems, the entire code base resides in the SPI ROM. In more

complex BMC type applications, such as those running embedded LINUX, the SPI ROM

is used to hold the boot block(s) and boot loader(s) and other user data such as logs. The

30

large operating system image(s) and other large partitions, which often approach or

exceed approximately 128MB, reside in managed NAND FLASH devices like eMMC.

Redundant code images are often utilized for high availability in case of software

corruption, bad FLASH cells in the hardware or malicious modification of the image(s)

(Problem23). However, that method cannot be a critical subsystem’s only defense.

System designers should definitely ensure the SPI ROM contents are write

protected by the boo tloader before handing off control to the operating system and that

the write protection cannot be circumvented until a reset occurs (Problem23: Solution1).

During firmware updates, uboot should be updated only from uboot. This guarantees

preventing a compromised OS or accidental firmware bug from being able to write to the

critical boot image locations.

The ideal SPI ROM write protection method is to include fixed logic in between

the internal chip CPU bus and a generic SPI controller (Problem23: Solution2). An

example is logic that allows firmware to populate a lock-until-reset whitelist (preferred)

or blacklist (if there is a sufficient number of op codes that can be blocked across

vendors) of SPI operation codes over specific address spaces of interest. For example, if a

4MB SPI ROM is used where the boot loader(s) reside in the first 1 MB, then such a

method could allow only intended write, program and erase commands to reach the ROM

if there is an address range match. This capability exists in some advanced chips, but is

very far from being standardized. Requests for quotes for new enterprise applications

should explicitly include this to get more vendors to add such capabilities.

When the chosen BMC, SOC or microcontroller does not provide the logic

highlighted above, then SPI ROMs themselves support write protections on a sector basis

(Problem23: Solution3). One major challenge for hardware and firmware developers is

that the SPI ROM industry has no standardization between vendors on methods to enable

31

such protections. In a review of five leading vendor datasheets for protection schemes,

each one had variations. For high volume production of long ship life enterprise products,

it is common practice to qualify at least three different vendors for cost and continuity of

supply. An example difference may be that one vendor part supports a full device erase

op code that would need to be blocked specific to that part. This appreciably complicates

the firmware and requires the developer to read through literally thousands of pages of

datasheets and compile comparison charts for firmware to code around. This is needed to

ensure security protections are covered and production affecting mistakes are not made

such as accidentally permanently write locking a sector versus only until the next power

cycle. Another challenge is that SPI ROMs generally do not have reset inputs to remove

the write protections. This implies the system orchestration or hardware such as localized

SPI ROM power cycle coincident with a processor reset is needed at extra cost, logic and

board space.

2.5.3.2 Managed NAND Flash Data Protection Methods

Many embedded systems such as BMCs also need large NAND flash devices,

which most of the time are soldered to an expensive motherboard. System designers need

to have utmost focus on the protection of non-replaceable embedded flash devices from

accidental or malicious overwrites, unsecure field firmware updates (FFUs) and partial

data extraction at any point (Problem24). At the time of this report, eMMC is the leading

standard for embedded NAND flash devices, where the smallest purchasable capacity is

4GB. These types of devices have internal controllers between the bus interface and the

actual NAND flash cells for performing security functions, wear leveling, error

correction, etc. In BMC type applications, the data stored in eMMC includes multiple

32

copies of the embedded LINUX operating systems (>100MB), system diagnostics,

lifecycle logs, OS device drivers and pre-boot utilities.

Firmware developers should use the well-established LINUX methods for

converting the necessary file systems to read only so that a compromised OS would still

block writes to critical areas (Problem24: Solution1).

The latest versions of the eMMC specification added permanent and power-on

eMMC sector based write protections [23] (Problem24: Solution2). Permanent write

protection should only be used when absolutely necessary due to possible field issues if

an update were needed. Write protect until power cycle is a very useful capability for

firmware updates.

In addition, the eMMC specification added a hardware reset pin. This can be

pulsed by system logic in conjunction with the BMC reset to intentionally remove power-

on write protections when needed (Problem24: Solution3).

System designers must guarantee that embedded NAND FLASH devices are not

excessively worn out (Problem24: Solution4). A wear model should be created to

understand the typical and worst case software use cases and how they affect writes to the

embedded flash device. Developers should beware of small and large size write patterns

and the file systems used as they can significantly affect write amplification. The

firmware device driver should instrument counters on reads and writes for validation of

real operations to the expectations in the model. Future methods and algorithms could be

implemented where run-time agents observe the statistics running on a BMC in real time

and then adjust the usages or warn users of excessive use beyond design expectations.

This helps thwart bugs and user unintended or attacker-initiated FLASH write abuse.

Finally, enterprise system(s) should be validated against an accurate intended wear model

33

to ensure excursions do not get into released code. This last part ideally is performed on a

regular, automated build verification test scenario.

Designers should increase part reliability by running eMMC devices in pseudo-

SLC mode (Problem24: Solution5). This provides more resilience to part write abuse

and means that a designer can use less expensive but less reliable multi-level cell (MLC)

devices in pseudo-single-level cell mode (pSLC). In pSLC, the analog to digital converter

can read a wider voltage to determine the intended value, thereby increasing the write

endurance significantly [24]. In comparing three leading eMMC device datasheets,

pseudo-SLC mode reduces overall capacity by approximately 60% which often is not an

issue at the embedded system storage needs pale in comparison to the smallest procurable

managed NCNAD devices. pSLC also improves the program/erase cycle guaranteed

limits from about 3,000 to 30,000-50,000, or more than 10X more reliability.

With managed NAND, wear leveling and bad block management abstracts

physical addresses from logical addresses and thus may leave partial files/data intact in

physical locations following logical address erases (Problem24: Solution6). During

system wipe type activities, firmware should take advantage of the eMMC secure erase

command, where “data in the specified memory addresses must be purged from the

physical memory array” [23]. An additional assistive feature is called secure trim which

is effectively secure erase performed at the sector level.

The latest eMMC revision also supports Field Firmware Update, where the device

manufacturer may want to, for example, improve their wear level algorithm after

shipment or fix a bug (Problem24: Solution7). Since these types of devices were not

updateable prior to this eMMC specification revision, this imposes a new security

concern. Like mentioned in an earlier section, system designers should ensure that the

updating entity such as the BMC verifies the signature of the eMMC field firmware

34

update image before applying it to the target device that cannot perform authentication

operations on its own.

2.5.3.3 The “App Store” Concept in Embedded Systems

Most embedded systems including enterprise BMCs are generally considered a

closed system. This means that a user cannot normally modify the operating environment.

However, there are markets such as amongst original equipment manufacturers (OEMs),

where generic enterprise systems are rebranded and settings customized. There are

recurring proposals for a BMC “app store”. A BMC “app store” where aftermarket code

would run on a BMC or other management controller that is not part of the base firmware

creates a significant security and system stability concern (Problem25). There is also a

real risk to the manufacturer, warranty and stability of the BMC and host system when

allowing running not thoroughly validated code on the same service processor and

embedded operating system that must also perform numerous critical near real-time

functions including power and thermal controls.

If an “app store” is a marketing requirement, designers should limit the “apps” to

scripts that are equivalent to calls that remote, authenticated users and consoles could

execute and thus validated as part of the base system (Problem25: Solution1). In an

extreme case, where injecting aftermarket code into a BMC domain must be supported,

ensure that it is a user space application without kernel space privileges. Also, consider

instituting an application monitor in the base firmware, which observes whether new

processes misbehave. A couple examples are the app consuming excess CPU cycles or

memory, inclusive of slow memory leaks for extended periods. Applying embedded

systems concepts such as virtualization or containers may prove valuable.

35

2.5.3.4 Secure Peripheral and GPIO Access

Many types of bus peripherals in most modern chips are memory-mapped

interfaces that are open for access by locally running software. One example is an I2C

bus controller that connects to sensors and control functions such as clock chips. Another

key example is a GPIO controller, which provides expandability to much control and

status instrumentation in a system. A typical server may have >256 GPIOs, where the

possible exposure of improper (re)configuration could be catastrophic to system

operation or performance. Finally, for maximum flexibility, almost all modern chips offer

multiple functions on one pin, whereas the control for changing that functionality at

runtime is not typically lockable. As an example, in the most recent shipping enterprise

chipsets from Intel [25], GPIOs are not lockable or protected and pin function is

changeable from a compromised operating system (Problem26).

For static GPIOs and pin functions whose is static at runtime, a granular lock-

until-reset control method is needed in silicon that make various register bits write once

instead of the typical free read/write capability (Problem26: Solution1). When utilizing

programmable devices, such as CPLDs and FPGAs, it is common practice to implement

this type of method with custom code. However, this capability is far from standard,

sufficiently granular, nor pervasive enough in today’s commodity microcontrollers, or

even more sophisticated BMC systems-on-a-chip or chipsets.

When silicon cannot be changed, then another solution is to rely on another secure

entity to monitor for state changes (Problem26: Solution2). For example, modern Intel

chipsets have a management engine running firmware inside that can also access various

registers such as GPIOs and I/O pin functions. Before handing off control to the host

operating system, booting BIOS could tell the management engine which I/O and pins

must be locked until the next platform reset. After that, if they are observed to be

36

changed, then the management engine could restore the unexpected modification and

alert the BMC for logging or other remediation. This would be an improvement but not

ideal due to the effects of momentary blips.

In some cases, local GPIO states need to legitimately be altered during runtime,

such as by BIOS while servicing a systems management interrupt (SMI) (Problem26:

Solution3). Cross domain authentication is ideal for an entity that wants to change its

local configuration to confirm permission from another secure domain. Development of a

request / grant protocol proving authenticity of the requesting entity would go a long way

to hardening this vulnerability. Such a solution would require modifications to the silicon

such as hiding the chipset GPIO register space from the host OS. How to ensure that the

request is from a trusted versus compromised source entity is the challenge. e.g., Could

the key for an encrypted command have been compromised? At a minimum, the BIOS

could send a subset list of pins/functions that need to be runtime modified to the

management engine at end of boot, thereby at least limiting the grants to those requests.

Exploring solutions from other domains should occur to create a foolproof solution.

2.5.4 System Decommissioning or Re-provisioning

Proper information handling toward the end of a system’s life or when being re-

deployed for alternate functions or refurbished is an opportune time for enterprise system

owners to make critical mistakes. There is much research and best practices related to

computer hard disk drive secure data wipes, disposal and self-encrypting drives to protect

the main server use data. Data sensitive customers also have great interest in the data held

in various other embedded system ROMs. Manufacturers are typically required to publish

a statement-of-volatility to provide such transparency. For system decommissioning

and/or re-deployment activities, system manufacturers must provide customer

37

satisfactory assurance that all non-volatile storage elements with end user modified data

have been thoroughly erased and settings reset back to factory defaults (Problem27).

For example, Dell not only publishes statements-of-volatility for all enterprise

systems but also provides a “System Erase feature as part of the iDRAC with Lifecycle

Controller (LC) embedded systems management solution” [26] (Problem27: Solution1).

The main capability is called System Wipe allowing granular and user-selectable

categories of deletion. Example categories of operations include erasing logs (including

the afore mentioned comprehensive lifecycle log), BIOS and BMC configuration data set

back to factory defaults, embedded RAID controller cache erase, and managed persistent

storage formatting.

2.6 BIOS Secure Boot, Failure Detection and Recovery

Though the majority of this paper revolves around enterprise server management

subsystems, it is also important to explore the system BIOS security protections. In recent

years, numerous articles discuss ever evolving attack methods on computer BIOS. The

protections explored include BIOS secure booting, executing only authentic code, BIOS

update, measurement, altered image detection and secure recovery.

2.6.1 UEFI Secure Boot

BIOS secure boot in the enterprise is a must have offering for practically all new

products (Problem28). Modern enterprise systems base their BIOS on the Unified

Extensible Firmware Interface (UEFI) specification [27]. An optional feature of the UEFI

specification is UEFI secure boot and is offered as a customer option in many modern

server systems, although the implementation specifics varies. Similar to secure boot in

38

embedded systems, the secure chain of trust starts with a small piece of immutable code

running typically on an embedded security processor inside the chipset. Then “each

subsequently-executed section of code is verified safe and unmodified before it is

executed” [28]. Reference 28 titled “UEFI Secure Boot in Modern Computer Security

Solutions” is an excellent overview of this area.

Intel’s commercial client and enterprise chipsets accomplish this via a feature

called Intel Boot Guard [29]. Controlling logic inside the silicon “verifies a signature

contained in the firmware image before executing it, using the hash of the public half of

the signing key, which is fused into the system’s Platform Controller Hub (PCH) by the

system manufacturer.” Other complex chip makers offer similar features.

System designers should take full advantage of these offerings when available, as

well as enterprise system administrators for ensuring optional security features are

enabled, which may not be the factory default mode of operation (Problem28:

Solution1). When these features are not available, technologists and business requests

for quote should demand these in additional applications.

2.6.2 BIOS Recovery

Modern chipset ROMs contain many critical functions needed by the CPUs and

chipset beyond just the BIOS image, including soft straps, management engine firmware,

network peripheral option ROMs, etc.

When a secure boot failure occurs, the policy is typically to halt-on-fail rendering

the system useless (Problem29). That is because the provision to have a recovery image

to autonomously failover and heal the primary image is complex. It also consumes large

amounts of storage space to house an additional redundant primary image. Most

enterprise systems have secure subsystems such as BMCs that should seemingly always

39

play a role in customer notification and user initiated or autonomous policy based BIOS

image recovery (Problem29: Solution1). Thus, secure failure detection should be

indicated through I/O or ideally through a sideband register or command, such as the

traditional port 80h codes used for host boot status with granular failure reasoning.

For various reasons promoting best cybersecurity practices, the U.S. National

Institute of Standards and Technology (NIST) has published the BIOS Protection

Guidelines for Servers [30]. These guidelines specifically place a couple key constraints

on a BMC or service processor that has access to the BIOS ROM device or contents for

purposes of BIOS update. The first is that the BMC environment may be employed as a

Root of Trust for Update (RTU) for the system BIOS if the BMC is guaranteed to be

updated and booted via authentic code. Authorization to execute such tasks is also

required. These are very important because BMC adding value in BIOS recovery cannot

open up new attack vectors. Since an earlier section suggested the BMC be a secure root

of trust for itself, the BMC’s need to be a (RTU) is not a unique suggestion here.

The second NIST requirement is that “the Service Processor [or BMC] shall not

have direct and unrestricted access to system memory on the server outside the control of

the host operating system, to prevent the SP from interfering with legitimate update

processes.” BMC and other embedded systems chip designers and hardware and system

designers must ensure that there is no direct host memory access in an unrestricted sense

in platforms where direct host interfaces exist such as PCI Express, USB, etc. or sideband

accesses such as via I2C (Problem29: Solution2). Direct Memory Access (DMA) is

possible if restricted such as for use by that peripheral only. For example, the BMC

cannot issue a PCI Express DMA request into host memory. If that were allowed, a

compromised BMC could implant malware, crash the host, or intervene with the BIOS

40

update process such as replacing the update image contents after it was verified and

before being written to the BIOS ROM.

2.6.3 Boot Measurement

Since platform security is typically not a one solution fits all area, additional

concurrent solutions can help assure the end user or administrator of intended operation

(Problem30). As an example, the Trusted Computing Group (TCG)‘s Trusted Platform

Management (TPM) Specification defines a TPM chip that securely stores critical

credentials and offers provision to perform a “measured boot to detect how and where

improper modifications have been made to a system” [28]. Customers are encouraged to

utilize TPM for boot code measurement as an additional, complementary security method

for verifying the UEFI code (Problem30: Solution1). It is complementary since it can

notify of a fault but does not prevent bad code execution per se.

41

Chapter Three: Conclusions

This report contributes to a generally under researched and poorly practiced area

of cyber-security in the area of embedded systems as they pertain to enterprise product

usage. The report’s logical bottoms-up sequence starts from local physical one-to-one

attack methods and moves to remote one-to-one and one-to-many software only attack

methods, including BMC and BIOS domains.

This report enumerated a total of 30 specific and practical security problems

currently observed in real-world enterprise products’ systems management and BIOS

subsystems. This report also offered a total of 50 practical, and in some cases new and

novel, suggestions to mitigate the explored problems. The author felt that this approach

creates a much more valuable survey to bound the leading problem areas than

exhaustively focusing on a single problem. The additional value of this research was that

even though the focus was on enterprise product embedded systems, most of the

highlighted issues and suggested solutions apply directly to other industries and product

types and regardless of various evolving technologies.

The sources of this practically focused report included online research, first hand

experimentation with high volume, mainstream rack servers and interviews with

respected industry practitioners and experts. As a practitioner in this area, it is the

author’s sincere desire that readers can take away practices that can be immediately

implemented in their product portfolios and design processes. Interested readers should

also now have focus areas to further explore toward bolstering enterprise platform

security, while maintaining optimal design for manufacturing and debug with cost

effective designs.

42

Chapter Four: Future Work

Most of the highlighted areas within the enterprise platform cyber-security

domain can benefit from future research and work to extend the enablement, adoption

and proliferation of best practices at the silicon, circuit board, firmware/BIOS/software

and system levels. Solutions that require long lead time solutions and similar multi-

sourced solutions, such as silicon impacting or complex software designs, make it critical

to stay on top of quickly evolving attack methods. A few key areas where the most value

in future work lies related to enterprise products are:

1. To determine how these problems and suggested solutions can be maximally

applied to additional industries and applications including the Internet of Things,

where physical attacks are much easier.

2. To expand ways to get secure boot enabled in low end general purpose

microcontrollers and programmable devices such as CPLDs and FPGAs, which

today essentially only check for CRC-based integrity.

3. To explore how BMCs can play a more active role in verifying and recovering,

via manual user or automated policies, other active programmable image entities

in the system including BIOS, management engines and controllers within

commodities such as power supplies, backplanes, hard disk drives, eMMC type

flash devices and even more mundane ones such as smart fan controllers, or user

interaction LCDs. This includes RAM and ROM limited devices.

4. To explore methods to securely support a 3rd party “application store”, giving the

server administrator the ability to safely load and execute their own programs into

a management controller subsystem without affecting additional functionality.

5. To investigate optimal methods of requiring lightweight authentication to secure

GPIOs and memory mapped peripheral local access.

43

References

[1] “The Global State of Information Security Survey 2016”,

http://www.pwc.com/gx/en/issues/cyber-security/information-security-

survey.html.

[2] “Illuminating the Security Issues Surrounding Lights-Out Server Management”,

https://www.usenix.org/system/files/conference/woot13/woot13-bonkoski_0.pdf.

[3] “Remote Access System for a Programmable Electronic Lock”, US patent

number: 5,774,058.

[4] “Hood intrusion and loss of AC power detection with automatic time stamp”, US

patent number 6,289,546.

[5] IPMI Specification, V2.0, Rev. 1.1.

http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-second-gen-interface-

spec-v2-rev1-1.html.

[6] “Dell Lifecycle Controller Graphical User Interface, Version 2.00.00.00 For 13th

Generation Dell PowerEdge Servers User's Guide”, http://topics-

cdn.dell.com/pdf/integrated-dell-remote-access-cntrllr-8-with-lifecycle-controller-

v2.00.00.00_Connectivity%20Guide_en-us.pdf.

[7] “BIOS Setup User Guide for 13th Generation Dell PowerEdge Servers”,

http://en.community.dell.com/cfs-file/__key/telligent-evolution-components-

attachments/13-4491-00-00-20-44-05-27/BIOS-Setup-User-

Guide.pdf?forcedownload=true.

[8] “Intro to Dell PowerEdge iDRAC Quick Sync NFC Bezel”,

https://www.dell.com/learn/us/en/555/videos~en/documents~poweredge-idrac-

quick-sync-nfc-bezel.aspx.

[9] “Filter Driver”, https://en.wikipedia.org/wiki/Filter_driver.

[10] “ANT Catalog: Servers”, https://nsa.gov1.info/dni/nsa-ant-

catalog/servers/index.html#GODSURGE.

[11] “Hacking the Dell DRAC”, http://blog.ignoranthack.me/?p=86.

[12] “Owning Dell DRAC for ONE AWESOME HACK!”,

https://www.trustedsec.com/september-2012/owning-dell-drac-awesome-hack/.

44

[13] Bonkoski, Anthony J., Bielawski, Russ, Halderman, J. Alex, “Illuminating the Security

Issues Surrounding Lights-Out Server Management“,

https://www.usenix.org/system/files/conference/woot13/woot13-bonkoski_0.pdf.

[14] “ILO default password”, http://community.hpe.com/t5/Remote-Lights-Out-Mgmt-

iLO-2-iLO/ILO-default-password/td-p/4713914.

[15] “Configure the iDRAC Remote Access Console“,

https://docs.extrahop.com/current/configure-i-drac/.

[16] “iDRAC7 now supports Default Password Warning feature”,

http://en.community.dell.com/techcenter/b/techcenter/archive/2013/07/16/idrac7-

now-supports-default-password-warning-feature.

[17] “Redfish Developer Hub, http://redfish.dmtf.org/.

[18] “The Heartbleed Bug”, http://heartbleed.com/.

[19] ““Bloodsucking leech” puts 100,000 servers at risk of potent attacks”,

http://arstechnica.com/security/2013/08/remote-admin-tool-imperils-servers/.

[20] “Security Features in the integrated Dell remote Access Controller - April 2016

update”,

http://en.community.dell.com/techcenter/extras/m/white_papers/20095301/downl

oad.

[21] “Introducing “OpenBMC”: an open software framework for next-generation

system management”,

https://code.facebook.com/posts/1601610310055392/introducing-openbmc-an-

open-software-framework-for-next-generation-system-management/.

[22], “Microsemi Secure Boot Reference Design White Paper”,

http://www.microsemi.com/index.php?option=com_docman&task=doc_downloa

d&gid=133604.

[23], Tsai, V., “e·MMC v4.41 and v4.5 Architecture for High Speed Functions and

Features” http://www.jedec.org/sites/default/files/Victo_Tsai(1).pdf.

[24] Wong, Bill, “Pseudo-SLC Flash Provides Design Flexibility”,

http://electronicdesign.com/site-

files/electronicdesign.com/files/uploads/2013/09/FAQs-Toshiba-September.pdf.

[25] “Intel C610 Series Chipset and Intel X99 Chipset Platform Controller Hub",

http://www.intel.com/content/www/us/en/chipsets/x99-chipset-pch-

datasheet.html.

45

[26] “System Erase in Dell 13th Generation PowerEdge Servers”,

http://en.community.dell.com/techcenter/extras/m/white_papers/20440883.

[27] “Unified Extensible Firmware Interface Forum Specifications “,

http://www.uefi.org/specifications.

[28] “UEFI Secure Boot in Modern Computer Security Solutions “,

http://www.uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_

Computer_Security_Solutions_2013.pdf, 2013.

[29] “Intel Boot Guard” https://en.wikipedia.org/wiki/Intel_vPro#Intel_Boot_Guard.

[30] “BIOS Protection Guidelines for Servers”,

http://csrc.nist.gov/publications/drafts/800-147b/draft-sp800-147b_july2012.pdf.

46

Vita .

This report was typed by Timothy Michael Lambert, who can be contacted at the

permanent email address timlambert2@gmail.com. Timothy Michael Lambert wrote this

report in fulfillment of the requirements of the University of Texas at Austin Master’s in

Engineering focusing on Software Engineering.

