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Abstract 

 

Enterprise Platform Systems Management Security Threats and 

Mitigation Techniques 

 

Timothy Michael Lambert, MSE 

The University of Texas at Austin, 2016 

Supervisor:  Suzanne Barber 

 

 Developers and technologists of enterprise systems such as servers, 

storage and networking products must constantly anticipate new cybersecurity threats and 

evolving security requirements. These requirements are typically sourced from 

marketing, customer expectations, manufacturing and evolving government standards. 

Much ongoing major research focus has been on securing the main enterprise system 

purpose functionality, operating system, network and storage. There appears, however, to 

be far less research and a growing number of reports of vulnerabilities in the area of 

enterprise systems management hardware and software subsystems. Many recent 

examples are within types of subsystems such as baseboard management controllers 

(BMCs), which are intricate embedded subsystems, independent of the host server system 

functionality. A BMC is typically comprised of a specialized system-on-a-chip, RAM, 

non-volatile storage, and sensors, and runs an embedded LINUX Operating System. The 

BMC’s primary roles are always increasing in scope including managing system 

inventory, system operational health, thermal and power control, event logging, remote 

console access, provisioning, performance monitoring, software updates and failure 
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prediction and remediation. To compromise or create a denial of service of such 

subsystems has an increasing impact on equipment manufacturers and large and small 

enterprises. 

This report’s primary objective is to research real-world and theoretical hardware 

and software cyber-attack vectors on enterprise product platforms, inclusive of BMCs, 

BIOS and other embedded systems within such products. For each presented attack 

vector, best practices and suggestions for effective avoidance and mitigation are 

explored. Domains of particular interest are physical access security, hardware 

manipulation and secure boot protections against software image manipulation, BIOS 

recovery and secure field debug techniques. 
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Chapter One: Introduction 

1.1 Motivation 

As enterprise systems serve more critical workloads, the enterprise cybersecurity 

field exhibits a growing level of importance, particularly within local and remote access 

and systems management. The impacts of enterprise system compromise or denial of 

service can affect countless end users and astronomical economic impacts. Particular high 

effect areas are to government and private entities responsible for the reliability, 

availability, integrity and privacy of content of such systems. Evolving cybersecurity 

threats require enterprise product developers and technologists to investigate, anticipate 

and address requirements sourced from marketing, customer expectations, manufacturing 

and evolving government standards. Although the area of primary focus is enterprise 

equipment embedded systems, the types of explored attack vectors and suggested 

mitigations are common to many industries such as client devices, Internet of Things 

systems and commercial and industrial equipment. 

Many recent examples of enterprise system vulnerabilities have been in the area 

of service processors or baseboard management controllers (BMCs), an intricate 

embedded subsystem, independent of the host system functionality. Industry experts 

consider BMCs as high value targets because to compromise or create a denial of service 

to a BMC can also affect the operation of the host server, inclusive of power down or 

worse malware infection of the host system through functions such as virtual media 

redirection. 

The typical BMC subsystem is comprised of a system-on-a-chip, RAM, non-

volatile storage, and sensors, running an embedded LINUX or real time operating system. 

The BMC’s primary roles are always increasing in scope such as managing system 
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inventory, operational health, thermal and power control, event logging, remote console 

access, provisioning, performance monitoring, software updates and fault detection and 

remediation. Additional examples include other embedded systems such as smart power 

supplies, storage backplanes, smart fans, network managers and wireless controllers.  
 

1.2 Vision 

The vision for this report is to collect through research and experimentation recent 

real world and hypothetical cyber-attack vectors toward enterprise equipment embedded 

sub-systems. For each vector suggested techniques based on industry observation, 

research, government standards or common sense are explored. The goal is to make 

enterprise equipment manufacturers, customers of such systems and upstream supply 

chain commodities more aware of and to adopt such requirements and practices. This 

should significantly enhance the security of such sub-systems.  

 

1.3 Scope 

The scope of this report entails researching real world and theoretical enterprise 

product systems management hardware and software cyber-attack vectors, inclusive of 

BMCs, BIOS and other embedded systems within such products. For each explored 

attack vector, best practices and suggested methods are presented for mitigating or 

thwarting each problem. The domains of particular interest are hardware physical access, 

including port security, hardware manipulation and secure boot protections against 

embedded systems’ code image manipulation, BIOS recovery, and secure field debug 

techniques. This report explores approximately 30 sub problem areas and 50 mitigating 

techniques. 
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1.4 Report Organization 

The organization of the remaining chapters is as follows. Chapter 2 is the large 

bulk of the report exploring various classes of attack vectors with each finding 

accompanied by one or more suggested techniques for mitigation. Major sections include 

local physical attacks, compromised authentication attacks and image management. 

Chapter 3 concludes the report. Finally, chapter 4 provides specific high interest future 

work area proposals. 

 

1.5 How to Read this Report 

The report details 30 cybersecurity problems and 50 best practices and some 

original solutions to mitigate such attacks. This makes for an average of 1.67 potential 

solutions for each problem explored with a range of one to seven solutions. Each problem 

presented will be highlighted and numbered for the reader as follows: 

(Problem#).  Proposed solutions for each problem will also be highlighted and numbered 

for the reader where each solution will be matched to the respective problem that solution 

addresses as follows: (Problem#: Solution#). 
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Chapter Two: Attack Vectors and Mitigation Techniques  

According to a 2015 IT survey, 38% more security incidents were detected than in 

2014 [1]. Protecting enterprise systems’ platform security is commonly a low priority or 

flatly ignored with respect to physical one-to-one attacks. Many technologists make the 

decree that if the attacker has physical access to the machine, then there is no security. 

That is true in some aspects related to highly sophisticated attackers, such as nation 

states. This paper describes common physical attack methods and ways that users and 

Original Equipment Manufacturers (OEMs) can design in maximum physical security 

and obscurity to thwart casual to moderately sophisticated attackers as well.  

Next, a common mid-level priority is to protect from remote one-to-one attacks in 

terms of either system compromise or the instigation of a denial of service. Beyond the 

obvious perils of compromising that one system, attackers may learn of additional 

weaknesses or details such as remote administrator login credentials that could lead to the 

compromise of many more systems. This paper focuses on hardening against some 

remote attack methods such as in relation to firmware updates and recovery.  

Finally, it is a common top priority amongst systems management technologists to 

protect from remote one-to-many attacks. This type of attack can have large-scale 

adverse effects on Enterprises, including denial of service, persistent malware and 

compromise of the host system credentials and data. For example, researchers in one 

recent study stated: “We conservatively estimate that it would take less than an hour to 

launch successful parallel attacks against all of the 40,000 ATEN-based Supermicro 

Intelligent Platform Management Interface devices that we observed listening on public 

IP addresses” [2].  
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2.1 Local Access Security  

For many businesses, limiting room key or badge reader access and detection via 

motion and surveillance systems provides sufficient security for physical business critical 

system access. When such provisions cannot exist, or be trusted, such as in a non-

datacenter located server in a retail store, colocation center or even say the back of a 

military vehicle, local access thwarting methods are critical. 

 

2.1.1 Physical Locks 

Most server vendors provide an optional key-locking front bezel or top/side cover. 

One regular complaint is that the key is typically common between bezels of a given 

model type, thus only thwarting casual attackers or accidental removal of front hot-

pluggable storage drives, button presses, etc. (Problem1). Manufacturers may offer re-

programmable physical locks, if demand is high enough to warrant such cost (Problem1: 

Solution1). Also, manufacturers could implement a solution where an authenticated 

remote administrator could physically unlock the system bezel or cover (Problem1: 

Solution2). A quick search of the U.S. Patent Office reveals many applications for 

remote access systems controlling a programmable electronic lock such as patent number 

5,774,058 [3]. None of those found looked to be productized in mainstream enterprise 

products presumably due to 1) higher cost 2) larger size of a solenoid or similar control 

apparatus and remote (un)locking system and 3) the general burden of remote network 

access coordination with the local operator. I believe these impediments could be 

addressed by electro-mechanical designs which make the remotely controlled physical 

lock an upsell option off of the base system, such as on a front bezel or cover add-on 

versus within the base system. 
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2.1.2 Chassis Intrusion 

Most enterprise systems, namely rack and tower servers that are more likely to be 

located outside of a secure datacenter, support a battery-backed latch and mechanical 

switch for detecting, logging and alerting administrators of a physical chassis intrusion. 

When experimenting with a Dell PowerEdge R730 server, which is one of the top selling 

worldwide systems at the time of this report, it was observed that a chassis cover 

intrusion while AC power is absent resulted in an event log time-stamp of when AC 

power was applied and not when the intruder actually removed the cover (Problem2). It 

is a very useful forensic to know when a system cover was removed or replaced versus 

when it was powered after an intrusion event, such as if there is a supply chain intercept 

and hardware modification or implant installed. U.S. patent number 6,289,546 teaches a 

method where a chassis intrusion causes the real-time clock to stop, such that it remains 

stopped until a software entity acknowledges the intrusion [4] (Problem2: Solution1). 

The only issue here is that time will remain out of date if the system does not have access 

to a reliable time source such as a network time protocol server or another system within 

a group (chassis, rack or local area network). It is recommended to use a low power, 

battery-backed microcontroller or application specific integrated circuit (ASIC) with a 

real-time clock (RTC), instead of the main chipset RTC, which also can wake and sleep 

based on GPIO events related to the chassis intrusion assertion and de-assertion 

(Problem2: Solution2). Such a device could log real time stamps of physical access 

events into non-volatile memory while not losing track of the real world time. At this 

time, in high volume, such a chip could be easily integrated for an approximately U.S. 

$.30 per unit adder to the bill of materials. This concept could be extended to accurately 

capture other useful forensic physical events such as time stamping when AC is lost, 

which also through R730 system experimentation was not a locally logged event.  
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2.1.3 Physical and SW Change Logging 

Detecting physical and software inventory changes over the life of a product at 

boot and during runtime is a very useful attack forensic as well for detecting physical and 

remote attacks (Problem3). Fortunately, as of this writing, all tier 1 server vendors have 

improved on the basic Intelligent Platform Management Interface (IPMI) system Event 

Log that for many years was limited to 512 system health related events [5]. For example, 

H-P Enterprise offers an Active System Health Log and Dell offers a Lifecycle Controller 

Log deep enough to track millions of minute changes over the life of the system [6]. By 

exporting such logs, an administrator can easily automate the comparison of current and 

past inventory and user setting changes over time. Additionally, whereas clearing an 

IPMI system event log to cover an attacker’s tracks is very easy with one command, these 

types of lifecycle logs are intentionally much harder to delete. For example, on Dell 

servers, a full lifecycle controller wipe is required which is intended when a system is 

being decommissioned or before being redeployed. Therefore, many other configuration 

options such as BIOS settings are also purged making a log clearing event quite obvious 

to administrators. System OEMs and users should constantly seek to enhance the 

comprehensive event inclusion, protection and use of deep lifecycle logs (Problem3: 

Solution1). 

 

2.1.4 Physical- or Proximity-based External Interface Access 

BIOS or firmware enablement/disablement or limited use of physical port access 

is a common way to protect system operation from physical attacks. As an example, per 

the Dell PowerEdge latest generation BIOS Setup Guide [7], an administrator can 

enable/disable the following types of ports: 
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• Experimentation with a Dell PowerEdge R730 showed that disabling the physical 

power button results in the server not able to be powered off but can be powered on 

via the button (Problem4). The assumed premise is that interrupting a running 

enterprise system is bad however booting a powered down system is not an issue due 

to other assumed protections such as BIOS password or OS login authentication. That 

may not also be true as a compromised, powered down server, when powered on, 

could compromise the storage, network or other systems. To address this concern, 

future systems could offer an additional power button disable option to not be auto-

enabled when the server is powered down without preceding authorization via the 

BMC (Problem4: Solution1). This could be performed through remote network 

interface or local interfaces such as direct connect managed USB, branded “iDRAC 

Direct”, serial or wireless interfaces, if present.   

• The non-mask-able interrupt (NMI) button is a common debug feature that can crash 

the server operating system or interrupt critical processes such as a BIOS update. One 

area of concern observed on the Dell R730 is that when the NMI button is disabled, a 

remotely authenticated user can still invoke the NMI via the iDRAC command line or 

GUI (Problem5). Thus, a compromised BMC could crash the host server. If this is a 

sufficient area of concern, then an additional BIOS option could be added that 

differentiates disablement of the local and remote NMI buttons (Problem5: 

Solution1). Also during the firmware update procedure, BIOS could reconfigure the 

NMI pin to disable the interrupt capability. 

• External serial ports and managed network ports typically offer static enable or 

disable options. One suggestion may be to offer an option for authenticated, dynamic, 

run-time enable/disable of such ports. For example, via the Dell iDRAC, someone 
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can further disable additional ports and interactions such as whether the LCD is 

enabled, read only or if it can be used to change configurations and operating states. 

• Wireless interfaces such as the Dell Near Field Communication-based QuickSync [8] 

are becoming more prevalent in enterprise equipment for easing at the box 

interactions. Various enterprise segments, such as government intelligence agencies, 

prohibit any wireless communication within datacenters (Problem6). With the 

increasing importance of datacenter system administrator efficiency, it seems as 

though other wireless or mobile interaction methods may become available in the 

future. Such interfaces can be disabled within the BMC interfaces, which means they 

could be dynamically re-enabled. No matter what security guarantees are made by a 

server vendor, if standard or optional wireless communication features are present, 

they must be able to be permanently disabled and use strong authentication and 

encryption best practices in all communications (Problem6: Solution1).  

• USB ports are an interesting attack vector because of the many use cases that desire 

more than standard practice basic boot time enablement or disablement of all groups 

of ports. Some administrators do not trust software disablement of USB ports and 

physically plug them with hot glue. Where software disablement is trusted, many 

systems offer BIOS boot menu options to disable all ports or just the rear ports, so 

that a datacenter technician can use a “crash cart” for front, local interaction. A 

primary usability issue observed through experimentation is that USB port 

enablement can only be performed at server boot time via the BIOS setup menu 

(Problem7). This is primarily due to added cost and space of BMC controlled switch 

logic preventing server host USB controller connectivity to external ports. Vendors of 

USB host controllers, systems-on-a-chip (SOCs) and CPUs/chipsets should provide 

an ability via a sideband interface or logic that sits between the host controller and the 
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user port connector to dynamically control individual USB port enablement at run-

time (Problem7: Solution1). Thus an authenticated BMC session could enable or 

disable each port on the fly. 

• One solution that exists is the host operating system instituting a filter driver that 

queries and only allows certain classes of devices such as Human Interface Devices to 

be exposed to the general operating system. However, this solution is proprietary and 

thus not available to all operating environments including LINUX [9]. A host OS and 

driver agnostic solution is highly desired that includes far more powerful pass/fail 

criteria than a USB device class (Problem8). With BMCs being powerful SOCs with 

a secure root of trust, the BMC could easily play a role in enterprise host USB port 

device screening (Problem8: Solution1). Advanced policies could be set in the BMC 

to be applied at runtime on existing and newly attached devices. All modern BMCs 

have at least one USB host controller which could take over external ports on the 

system when coupled with multiplexer type logic and device attach/detach 

notification methods. This would allow the BMC to verify, before attachment to the 

host system, that each attached device meets specific criteria. Some examples include 

1) white- or black-listing certain USB device classes such as only allowing a 

keyboard or mouse and/or excluding mass storage devices, 2) allowing a certain USB 

mass storage device brands (product ID = SanDisk) or capacities such as 16GB only, 

or 3) retrieving and verifying from a mass storage device a particular file such as a 

digital signature, authenticating the device and then allowing it to be attached to the 

host.  

This is a powerful solution but comes at the cost and space of intervening logic to 

detect attach/detach events, etc. for possibly many USB ports on a system. A far 

superior solution involves influencing chipset and USB host controller vendors to add 
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sideband access for a BMC or an internal configurable policy enforcement 

management engine. This engine would perform these types of operations directly 

through each USB host controller hardware, thereby eliminating the need for external 

logic. 

2.2 Internal Physical Attacks 

Many leading security experts consistently take the stance that if an attacker has 

physical access to the electronics or inside of a server, then achieving true security is not 

possible. This section attempts to investigate and thwart some of those methods used by 

casual to moderately advanced attackers. Physical attacks create the clear risk of one 

physical attacker gaining persistent access to a machine that goes unnoticed, such as by 

intercepting and implanting something within the supply chain or shipment of the system. 

Such attacks also can enable learning the underlying implementation of an embedded 

system, such as for gaining root access for launching further remote attacks to many like 

systems.  

 

2.2.1 Internal Port Access 

Servers contain user settable switches or jumpers such as clearing non-volatile 

RAM or disabling a BIOS password. Manipulation of those have clear effects and user 

detection such as observed boot messages when testing a Dell R730. For example, the 

R730 has a local video port disable feature such that local users with a monitor cannot see 

the video that a remote user is viewing and manipulating. However, the system 

information label states that the BIOS password enable jumper also re-enables the local 

video (Problem9). This is presumably for cases where an admin loses remote access, 

such as lost network connection or forgets the remote login and need to see local video in 

order to reset the remote configuration or login. An enhancement would be to use a BMC 
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video overlay to require local user authentication before enabling the local host video 

(Problem9: Solution1). The datasheets of mainstream BMCs, such as the Renesas 

SH7758, describe this capability. Given an input method such as a managed USB port 

accepting keyboard inputs, the BMC could offer an interactive menu that demands 

physical access and knowledge such as an administrator password. A solution like this 

could be used for various security and convenience enhancements. An example may be to 

externally command operations, such as BIOS NVRAM clear via a local keyboard and 

monitor versus a multi-step process involving physical dismantling of the system. 

Almost all general purpose and application specific integrated circuits (ASICs) 

have some sort of debug port, the most common being serial ports, Inter-Integrated 

Circuit (I2C), JTAG (the IEEE 1149.1 standard) or Serial Peripheral Interface (SPI). 

There is much research on authentication and encryption methods for use of these types 

of ports but they are generally not in practice amongst most chips. Hardware designers 

most often just depopulate the relevant connectors in the production printed wire 

assembly (PWA) bill of materials. There were some recently highly publicized attacks on 

such ports. For example, the US National Security Agency website published an example 

implant placed in an intercepted server motherboard that required soldering the removed 

JTAG connector of the main server CPU (Problem10). The same could apply for any 

such debug port. The implant was an inexpensive, off-the-shelf microcontroller with 

firmware to customize the exploit as a persistent software application and time delay for 

launching an attack [10]. New systems should consider adding BMC authenticated 

enablement of special circuitry that normally blocks electrical connectivity between a 

target chip such as a CPU or other chip and the associated debug connectors, such as a 

UART, I2C, or JTAG (Problem10: Solution1). Although considered obscurity, this can 

easily be implemented in hardware, firmware or programmable logic, making it far more 
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difficult to circumvent than populating a clearly marked standard connector. Techniques 

can also help obfuscate port enablement, such as embedding signal traces which require 

X-ray and drilling, and populating false logic that defeats the bus, blowing production 

fuses, etc.  

An additional type of NSA published attack was code named IRONCHEF [10] 

(Problem11). It “provides access persistence to target systems by exploiting the 

motherboard BIOS and utilizing System Management Mode (SMM) to communicate 

with a hardware implant that provides two-way RF communication”. A similar method 

could help thwart problem where the BIOS must authenticate with the BMC before the 

BMC enables circuitry that normally blocks signals as close to the source (chipset) as 

possible (Problem11: Solution1). Since this type of exploit is for attacking the server 

host during OS runtime, it would be ideal for the CPU/chipset or other IC vendors to 

enable a lock pin configuration until reset type method (Problem11: Solution2). When 

use of the attached device(s) is complete during boot, the BIOS could request the 

hardware to lock the pin or bus functionality until a reset occurs. This would render a 

runtime implant useless. If adopted by IC vendors, this method would require no bill of 

materials cost adder or added board space. 

Nowadays, it is possible for an inexpensive and very small microcontroller 

(MCU) to be hardware connected to a debug port such as a serial port to listen for and 

inject certain strings. Persistently implanted MCUs pose a threat if interaction is possible 

such as stopping that target’s boot at a pre-boot prompt or if a root prompt is available via 

a debug port (Problem12).  Either pre-set interactions could occur or a bridge to say RF 

could be part of the implant allowing ongoing remote interaction. Production level 

firmware should prevent access to a root prompt or limit the capabilities of pre-boot 

prompt, such as the universal boot loader (uboot) (Problem12: Solution1).  Firmware 
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should at least notify another secure agent such as the host server BIOS if access is 

attempted as detected on for example a receive UART signal. 
    

2.2.2 Silkscreen 

Across many industries, printed circuit board designers have a common practice 

of clearly marking component and connector silkscreen names to meaningful terms. 

Examples include J_CPU_JTAG or J_BMC_UART for a debug connector instead of 

using a randomly named reference designator such as J123. Figure 1 shows a couple 

examples from a Dell server where key UART and JTAG connections are very well 

labeled for casual attackers. 

 

 
Figure 1 Examples of Non-obfuscated Silkscreen at Critical Debug Ports 

 

The practice of clearly silkscreen marking the purpose of such components eases 

electronics validation, debug and manufacturing programming. The practice of well-

marked silkscreens on critical circuits creates a real threat to even casual attackers 

(Problem13).  In one such recent relevant example, a site called “The Ignorant Hack” 

posted an article about easy hacking of the Dell iDRAC7 [11]. The author noticed the 

clearly marked “DRAC UART” depopulated four pin connector, which hobbyists know 
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is almost always receive, transmit, power and ground signals. The attacker then installed 

into the empty holes an inexpensive, widely available, off-the-shelf UART-to-USB 

converter and was able to access the service processor debug serial port and discern 

various details of the underlying hardware and embedded software details. Manufacturer 

internal groups needing debug connector access possess the design files such as 

schematics and board layout files with a minor lookup burden versus designing into 

production a clear path for even casual attackers. Therefore, enterprise equipment 

vendors should institute a process to obfuscate all critical component silkscreen names 

either in early development or at least before production hardware release (Problem13: 

Solution1). When surveying a mainstream, tier one server, Table 1 shows some example 

finds and suggested improvements. 
 
 

Current Silkscreen Suggested Obfuscation 

U_PRIM_SPI_BIOS U# //BIOS ROM usually contains critical platform data 

U_UBOOT U# //ROM containing bootloader, configuration and log data 

P_BMC_UART P# //The BMC’s debug serial port input/output are possible 

J_BMC_ARM_JTAG     J# //BMC main JTAG 

J_BMC_CP_JTAG J# //Co-processor JTAG 

PEMMC_DBG P# //A port for accessing an eMMC Flash device that holds 
the BMC’s operating system and other functions. A USB card 
reader attached to this port could observe or manipulate the 
Flash contents. 

J_CPLD_JTAG                J#  // A middle man attack could overwrite a critical 
programmable logic device. 

SW_IDRAC_PORST SW# // An attacker could inject a BMC power on reset which 
by experimentation shows to crash the host. 

J_MFG_MODE TP# //Shorting such jumper holes with a paper clip or tweezer 
may put a subsystem in a non-customer mode. Hardware 
designs could randomly number or require something more 
difficult than a simple ground, such as a specific pulse stream 
or loadable license to enable.  

Table 1: Examples of a mainstream server’s non-obfuscated silkscreen labels on critical circuits and 

improvement suggestions for manufacturers. 
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2.3 Remote Attacks 

As mentioned in the introduction, remote attack vectors can be far more severe 

than physical attacks due to the one-to-many, parallel nature of such attacks and due to 

possibly less detection forensics. This section discusses some of these attack vectors and 

possible enhancements for manufacturers or end users.  

 

2.3.1 Default Passwords 

For many years, enterprise server systems would ship with BMCs and other 

service processors with common default root passwords. Dell BMCs supported login of 

“root” and password of “calvin”. Other vendors published similar defaults such as login 

“admin” and password “admin”. This poses a problem when simple to obtain tools like 

the one referenced here [12] are used to scan networks such as the open internet for BMC 

interface protocol responses, such as HTTPS and SSH, and attempts to login with the 

default credentials (Problem14). According to one research paper, one internet scan 

revealed greater than 105,000 servers with their BMCs with default credentials connected 

to the public internet and thus vulnerable [13]. Once a remote user has access to the 

BMC, even without root level administrative rights, many possible attacks on the host 

server are possible, even without host server credentials. For example, one could 

remotely attach USB-based virtual media which could install malware or rootkits to the 

host.  

Besides using good networking techniques such as firewalls and VLANs and not 

connecting subsystems such as BMCs directly to the public internet, manufacturers 

should offer an ability to permanently alter the default password (Problem14: 

Solution1). This helps such that a reset to factory defaults operation does not inherently 
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alter root access credentials to something widely known and common. Some vendors 

such as H-P Enterprise look to already support such capability as described in [14].  

Manufacturers should also consider making the default passwords unique to each 

unit of each model shipped such as based on the unmodifiable service tag (Problem14: 

Solution2). From some documentation such as a Dell OEM called ExtraHop’s 

documentation [15], top tier server vendors already offer this capability, presumably in 

response to thwarting the type of issue described here.  

Anytime a default password is in place on a system, it should be made clear to the 

user such as via BIOS boot messages, web GUIs, notifications and command line 

interfaces upon logging in (Problem14: Solution3). Articles such as a Dell Techcenter 

Blog article related to iDRAC7 [16] imply that such warnings are becoming more 

prevalent in new generations of products and/or firmware releases. Some security 

technologists that I interviewed about this topic have strong positions to absolutely force 

the user to alter the default password before the system is fully usable versus just a 

warning. 

 

2.3.2 Protocol Attacks 

In the early 2000’s, IPMI was the only widely used protocol for managing server 

BMCs. Since then various other protocols have become prevalent, including web-based 

HTTPS, secure shell (SSH), Web Services-Management (WS-MAN) and the emerging 

Redfish standard [17] developed and managed by the Desktop Management Task Force 

(DMTF). Insecure methods such as Telnet and HTTP have been almost entirely 

deprecated within the enterprise systems industry, which is a very good thing for security. 

Even standard secure network protocols suffer from evolving and more creative attack 
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vectors (Problem15).  For example, the Heartbleed Bug [18], was a critical security bug 

for all applications that used the affected standard protocols such SSH.  

Manufacturers should be very wary about producing their own communication 

methods versus leveraging the widespread diligence and patching on standard protocols 

(Problem15: Solution1). The customization benefits seem to always get questioned 

when any security vulnerability is discovered. 

With constantly evolving attacks on standard protocols, it is extremely important 

that manufacturers stay vigilant with releasing timely field programmable updates, such 

as BIOS and BMC firmware (Problem15: Solution12.  Customers should also frequently 

monitor the change lists on releases, apply any updates/patches, even if say a server is 

only on an internal network, and finally demand of enterprise manufacturers to patch 

known vulnerabilities as soon as possible. A couple examples for firmware developers 

are the always keeping up to date with kernel security patches and utilize the most recent 

services such as the later Apache web server version. 

Even within standard systems management methods such as IPMI, manufacturers 

generally advise customers to not put IPMI enabled systems on the open internet but 

instead on a firewall protected VLAN (Problem15: Solution3). A 2013 Arstechnica 

article [19] referenced researchers estimating very easy wide-spread parallel attacks on 

any thousands of IPMI devices on the public IP addresses. 

Despite security sensitivities, there continues to be expansion of wireless 

communication uses in datacenters for mobile device to server communication and for 

functions such as asset location (Problem16). For example, Dell’s 13th Generation 

servers offer Quick Sync which is an optional module that offers Near Field 

Communication (NFC) between the BMC and mobile devices. It is conceivable as 

evidenced in simple google searches that other standard wireless protocols could/will be 
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used in some datacenters. As stated in the physical port section, any wireless 

communication method must be an optional upgrade and not a required capability as 

many segments such as government may flatly outlaw wireless use (Problem16: 

Solution1). Manufacturers who produce wireless solutions must keep up with the latest 

wireless attack exploits and be quick to implement and roll out software/firmware fixes 

(Problem16: Solution2). Additionally, best practices should be adopted for 

authentication and pairing of the server and diverse types of client devices. 

 

2.3.2 Credential Vault 

Establishing secure protocol sessions such as remote SSH, HTTPS, etc. requires 

key exchanges between the initiator and the BMC. BMCs must inherently store 

cryptographic private keys in non-volatile memory which must remain secret even if 

ROM access is achieved, such as by physically de-soldering and de-capping the ROM 

device package (Problem17). Dell’s iDRAC Credential Vault and Hidden Root Key 

(HRK) are good examples of embedded system capabilities that work in concert to 1) 

establish a secure root-of-trust in the boot sequence, 2) provide assurance that code 

running on the BMC is securely signed and 3) ensure that directly read ROM contents are 

encrypted [20]. The hidden root key consists of each iDRAC containing a unique 256-bit 

binary value burned into the silicon that is hidden from software and available as an input 

key to internal cryptographic acceleration engines. The datasheet of a shipping, 

mainstream BMC, the Renesas SH7758, was reviewed. If the boot sequence is 

determined to not be a root of trust or if a JTAG connection is detected, then the Hidden 

Root Key is disabled which prevents the credential vault from being decrypted.  

Enterprise system manufacturers should use BMCs that provide the facilities for 

hidden root keys, internal ROM code that can support a secure boot chain of trust and 
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facilities to detect common attack types and disable the hidden root key (Problem17: 

Solution1). Security processor targeted SOCs have had this capability for a few years. 

This capability definitely should propagate to many other chips and applications, such as 

IOT targeted microcontrollers. This may seem like an obvious requirement going 

forward, but as described in a later section, this capability is currently only in one of three 

main shipping BMCs and in very few other SOCs and MCUs.  

 

2.4 Design for Manufacturing and Production Debug 

Balancing platform security with enterprise manufacturing and debug needs 

during manufacturing, failure analysis of field returns and engineering sustaining efforts 

with production level hardware, firmware, BIOS and other programmable images is a 

significant development challenge. The impact of an enterprise device being 

compromised can be much worse than on a client device, such as a notebook or desktop 

computer. If a process or consistent portfolio guidance adopts a more inward focused 

solution, then internal groups can be effective and streamlined when access is needed at 

the detriment of production security exposures. Adoption of a security-focused 

conservative approach creates more difficult and time consuming situations such as 

requiring physical hardware manipulation and/or modification of loaded programmable 

images to debug hardware or firmware issues or re-deploy field returned hardware.  

Another big concern is that modifying the loaded programmable devices, such as by 

creating and updating signed, non-production firmware images, loses the current failure 

state of the suspect system or can easily make the issue no longer repeatable. Both of 

these are problematic in emergency customer escalation type scenarios because of the 

added debug and setup time. A hardware manipulation based method to invoke a debug 

mode may not even be possible within the full system chassis unless very much focused 
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on during the early design phases. This section focuses on enabling enterprise system 

developers to effectively and efficiently perform the necessary manufacturing functions 

and issue resolution tasks, while balancing sufficient production system security tenets.  

 

2.4.1 Field Service Debug Authorization 

During enterprise systems development, firmware build flags are typically set that 

enable full debug capabilities. Where security issues are anticipated, many debug 

capabilities are turned off in production firmware so that attackers cannot for example 1) 

access debug port inputs or outputs, 2) alter the boot path, such as stopping at a boot 

loader prompt to manipulate states or implant malware or 3) gain root prompt access to 

the embedded operating system as a whole.  

Production support and engineering teams typically need to access advanced 

debug capabilities with production hardware and firmware while not compromising mass 

volume security (Problem18).  For example, a difficult to debug issue in a customer’s 

large datacenter may require access to special logs that are not normally customer 

extractable. Furthermore, manufacturers enabling undocumented mechanisms to achieve 

such backdoor type access violates the major tenet that obscurity is not security.  

Dell has addressed this issue in a unique way that others may learn from with 

their iDRAC Field Service Debug Authorization Facility (FSDAF) [20] (Problem18: 

Solution1). This facility utilizes a mechanism where both the end customer and 

manufacturer authorize specific debug capabilities, including up to root access, for 

specific durations on a particular system. A signed certificate is then uploaded into the 

iDRAC enabling the agreed upon features. Thus, the mutually agreed upon access level is 

authorized and dynamically achieved for the agreed duration without having to modify 



 

22 

the firmware or even reboot. Through experimentation on a Dell R730, I observed that 

FSDAF is enabled via an uploaded certificate into a fully operational and booted iDRAC.  

FSDAF is great for debugging application level issues. However, various 

common debug needs are not satisfied with FSDAF such as an embedded OS that crashes 

or fails to boot or other low level issues (Problem19). Manufacturers should enable an 

enhanced solution where a cryptographically sound method for debug capability 

authorization can persist through a reboot or ideally be accomplished in the early boot 

stage, such as the boot block (Problem19: Solution1).  This would give field access, for 

example, to a Universal Boot Loader (uboot) prompt to help debug low level types of 

issues or recover a non-authentic or corrupt embedded subsystem OS image without 

needing to update to a non-production, signed firmware image. 
 

2.4.2 Manufacturing Mode 

The manufacturing environment of complex enterprise printed circuit boards 

requires special privileges that customers should never have, such as for setting persistent 

networking MAC addresses and blowing one time programmable fuses such as 

cryptographic keys. Note that it is typical to fuse several public keys in case, for example, 

a corresponding private key is compromised, then the system can still be securely 

updated with a new verified image utilizing an alternate key.   

When production support for embedded systems’ elevated debug privileges are 

required, then it is wise to provide an immutable indication to another secure entity, such 

as BIOS (Problem20). That entity could then take appropriate actions like notifying the 

end user and attempting to remedy the situation once the access window expires. 

Examples of useful elevated privileges include 1) output debug serial port spew of the 

boot block, uboot execution, LINUX OS boot, kernel panic messages and BIOS debug 
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boot messages and 2) interaction with a uboot prompt. Embedded OS root access should 

not be supported through obscurity, not matter what. Thus, root access should be 

excluded from production images and manufacturing planning. 

The factory test and service support staff that I interviewed at Dell stated a clear 

dissent of supporting multiple firmware images, especially a non-production, elevated 

privilege version. The concern centers on the opportunity for a human mistake that lets 

non-production code get out of the manufacturer’s control. Further, firmware capabilities 

such as limited option menus or limited command line interfaces are possible for example 

in uboot. This however creates extra development and validation effort and are limited to 

the hard coded capabilities provided. Therefore, manufacturing enhancements would 

require firmware changes. 

As described earlier, an obscure physical manipulation to invoke manufacturing 

mode should be avoided such as grounding a circuit board test point (Problem20: 

Solution1).  Early boot code, such as the mask ROM or hardware logic, should set a one-

time per boot immutable bit or flag to another secure agent, such as BIOS. This bit or flag 

should ideally reside inside the BMC or embedded controller chip, to avoid external bus 

manipulation or snooping, but optionally also in external logic such as discrete gates or a 

CPLD or FPGA. This bit or flag should be clearable only by a power-on-reset. This is 

because a power on reset guarantees all RAM is re-initialized, whereas a core reset does 

not. If this bit could be cleared or the full RAM not re-initialized, then an attacker for 

example could stop at a uboot prompt and alter the boot path or install malware into 

memory before continuing the secure boot path. This mechanism allows the secure agent 

to detect this operating state, notify the user of the possibly insecure operating state and 

attempt to heal the situation by issuing a power on reset to the reporting entity. 
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2.5 Image Boot, Update and Protection Management 

One of the most critical security areas of embedded systems in general, including 

enterprise product subsystems such as BMCs, relates to image verification during the 

updating and booting processes. This section explores issues and best practices related to 

image verification, achieving a secure boot path, ROM protection and embedded data 

handing during system decommissioning and re-provisioning. Even though BIOS is not 

technically part of the systems management subsystem, a platform security treatment 

would be incomplete with investigating BIOS secure boot issues and the BMC’s 

involvement with BIOS recovery solutions. 
 

2.5.1 Image Verification 

It is highly valuable to adopt image signing and image verification as early as 

possible in the software development cycle for practice with the build, signing and 

verification procedures and to get the implementations for setting and revoking the proper 

keys in place. 

Image verification is important to be performed before being committed to non-

volatile storage (Problem21). Even though it is mostly standard practice to do this with 

BMC firmware and BIOS, it is far from standard in other embedded systems. Released 

images should always contain a public key and be signed by the manufacturers private 

key through a tightly controller process. During update, the receiving firmware entity 

verifies authenticity of the image utilizing the public key. Dell’s process for image 

signing as described in [20] looks to conform to industry best practices. Manufacturers 

should strive to have 100% coverage of image verification as the image arrives at the 

destination or at least within the system (Problem21: Solution1).  This should include 

not just BMCs but also for example controllers with firmware in backplanes, power 
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supplies, voltage regulators, storage controllers, control panels, wireless controllers, etc. 

Chip vendors more likely need pressure through request for information (RFI) and 

request for quote (RFQ) efforts to add the necessary hooks for endpoint image 

verification. Luckily such security capabilities are generally being requested of these 

types of chips, ROMs and firmware as a basic need for many embedded applications 

including Internet of Things (IOT) applications. 

The entity being updated, whether it be a small microcontroller or a higher end 

SOC, must verify the image upon receipt before committing to nonvolatile memory. This 

is not always a possibility. For example, most microcontrollers possess a firmware binary 

image larger than the amount of RAM available. Thus staging the entire image for an 

authenticity check before writing to nonvolatile storage is not possible (Problem22).  A 

common challenge for hardware and system designers is right sizing the RAM and ROM 

needs of embedded systems and specifically microcontrollers and SOCs such as those 

used in enterprise systems like backplane controllers, power supplies, smart fan 

controllers, etc. For example, it is very common to not have equal RAM and ROM space 

as RAM is much costlier than FLASH in integrated circuit space. A 1:2 ratio of RAM to 

ROM is very common in the current MCU industry. Additionally, system designers 

usually cannot spend more money on a chip(s) with twice the ROM space than needed 

under normal operation. It is not a good solution to verify the image by the receiving 

device on one transfer, then request another transfer that gets committed to the ROM, 

because the source updating entity could replace the image on the second transfer. 

For controller/subsystems with enough non-volatile storage to store multiple 

image copies, firmware could commit the image to the primary location (Problem22: 

Solution1).  If verification fails, then the embedded firmware could flag the failure but 
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then autonomously copy the previously verified backup image to heal the primary image 

location with the original image. 

Hardware applications that cannot stage the entire image before commitment to 

the non-volatile storage could follow the original flow in figure 2 (Problem22: 

Solution2). After a trust relationship is made between the updater entity and the updated 

entity (endpoint), the updater could retrieve the current image from the endpoint to 

heal/revert back to it if the new image fails to verify authenticity and integrity.  This 

allows the endpoint to commit the new image in chunks without fear of being persistently 

without a bootable image. 

 

 
Figure 2 ROM Space Optimized Image Update and Verification Method 

   

2.5.2 Secure Boot Path 

The importance was emphasized earlier of a hidden root key, internal security 

ROM code and secure chain of trust boot sequence in the context of a credential vault. 

These are also critical to achieving a secure boot path solution. In experimenting with a 
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mainstream server, a secure boot failure of the BMC image properly invalidated the 

Credential Vault, protecting the secrets, but one of the firmware images booted anyway. 

This may help with availability such as of thermal algorithms running in the main 

operating system. It is not however the most secure behavioral policy such as halt on 

failure, or try to auto-recover from a previously verified image. 

Few BMCs in the industry nor many available microcontrollers support the 

necessary hardware capabilities to inherently build a chain of trust. Even through BMCs 

have such a pivotal role in the datacenter, I compared the datasheets of the three shipping 

BMC vendors’ latest chip offerings which comprise an overwhelming majority of 

enterprise systems in recent years: Aspeed AST2500, Emulex Pilot 3 and the Renesas 

SH7758. Renesas was the only one with an HRK and internal ROM code on top of which 

a secure boot chain-of-trust can be established. This means that much more of a 

vulnerability exists on systems with BMCs without such capabilities. A cursory look 

showed that many systems utilizing the non-secure boot capable Aspeed BMC were from 

vendors such as SuperMicro and hyper scale systems such as from Facebook’s Open 

BMC initiative effort [21]. 

Unlike less critical embedded systems, enterprise subsystem applications’ need 

for high availability often warrants a redundant boot path. This is to account for possible 

compromise or corrupt images in the boot path. Corruption could occur in cases such as 

power loss during firmware update. The basic flow for figure 3 includes a primary and 

secondary boot path where each entity verifies the authenticity, and inherently the 

integrity, of the subsequent chain before passing off control. There are alternative paths 

possible but this is one that prohibits altering the boot path mid-stream. That allows for 

alternate versions of firmware between the two boot paths to facilitate features such as 

version rollback.  
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Figure 3 Example Secure Chain of Trust Boot Flow with Redundant Images 

Step Detail 

1A Mask ROM validates the primary Boot Block before handing off control. 

1B If 1A fails, Mask ROM validates the secondary Boot Block before handing off 

control. 

1C If 1B fails, Mask ROM must halt on fail, as jumping to untrusted code is 

unacceptable. 

2A Boot Block validates the primary Boot Loader before handing off control. 

2B If 2B fails, Boot Block sets a flag and jumps back to Mask ROM to try the 

secondary boot path. 

3A Primary Boot Loader validates the Primary embedded OS before handing off 

control. 

3B If 3A fails, Primary Boot Loader sets a flag and jumps back to Mask ROM to try 

the secondary boot path. 

4A Secondary Boot Block validates secondary Boot Loader before handing off 

control. 

4B If 4A fails, Secondary Boot Block must halt on fail, as jumping to untrusted code 

is unacceptable. 

5A Secondary Boot Loader validates Secondary embedded OS before handing off 

control. 

5B If 5A fails, Secondary Boot Loader must halt on fail, as jumping to untrusted 

code is unacceptable. 

 Table 2: Example Secure Chain of Trust Boot Flow with Redundant or Alternate Images. 
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One alternative when using a BMC or embedded system which does not provide 

internal root of trust capabilities, is to utilize external, intermediary chips that do. Such a 

solution has the hardware root of trust sitting between the main processor and the non-

volatile storage such as the boot SPI ROM with a mechanism to reset the main processor 

if not deemed secure. One such example is described in a recent Microsemi whitepaper 

[22]. These solutions are very costly due to the dedicated silicon and package addition. 

They are also physically large which hurts dense hardware applications. Finally, they hurt 

overall reliability of the system by adding another active component with internal 

firmware that could itself fail or need to be firmware updated.  
 

2.5.3 Embedded Non-Volatile Storage and I/O Protection 

During boot and runtime of an embedded system, protection of the non-volatile 

memory locations where the boot image(s) and other static, non-volatile data reside is a 

critical security need. In addition, in most modern chip and software architectures, code 

running on a particular domain, such as a BMC CPU or host server main CPU, has 

unrestricted access to the underlying hardware. In this section, we explore specifics in 

these areas for common device types and architectures, as well as explore the “app store” 

concept’s issues unique to embedded systems.   

 

2.5.3.1 SPI ROM Data Protection Methods 

In a large portion of embedded systems, all of the execution code is in an internal 

or external ROM(s), which in most current applications, utilize ubiquitous serial 

peripheral interface (SPI) ROMs with high endurance NOR FLASH technology. In 

smaller embedded systems, the entire code base resides in the SPI ROM. In more 

complex BMC type applications, such as those running embedded LINUX, the SPI ROM 

is used to hold the boot block(s) and boot loader(s) and other user data such as logs. The 
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large operating system image(s) and other large partitions, which often approach or 

exceed approximately 128MB, reside in managed NAND FLASH devices like eMMC. 

Redundant code images are often utilized for high availability in case of software 

corruption, bad FLASH cells in the hardware or malicious modification of the image(s) 

(Problem23). However, that method cannot be a critical subsystem’s only defense.  

System designers should definitely ensure the SPI ROM contents are write 

protected by the boo tloader before handing off control to the operating system and that 

the write protection cannot be circumvented until a reset occurs (Problem23: Solution1). 

During firmware updates, uboot should be updated only from uboot. This guarantees 

preventing a compromised OS or accidental firmware bug from being able to write to the 

critical boot image locations. 

The ideal SPI ROM write protection method is to include fixed logic in between 

the internal chip CPU bus and a generic SPI controller (Problem23: Solution2).  An 

example is logic that allows firmware to populate a lock-until-reset whitelist (preferred) 

or blacklist (if there is a sufficient number of op codes that can be blocked across 

vendors) of SPI operation codes over specific address spaces of interest. For example, if a 

4MB SPI ROM is used where the boot loader(s) reside in the first 1 MB, then such a 

method could allow only intended write, program and erase commands to reach the ROM 

if there is an address range match. This capability exists in some advanced chips, but is 

very far from being standardized. Requests for quotes for new enterprise applications 

should explicitly include this to get more vendors to add such capabilities.    

When the chosen BMC, SOC or microcontroller does not provide the logic 

highlighted above, then SPI ROMs themselves support write protections on a sector basis 

(Problem23: Solution3). One major challenge for hardware and firmware developers is 

that the SPI ROM industry has no standardization between vendors on methods to enable 
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such protections. In a review of five leading vendor datasheets for protection schemes, 

each one had variations. For high volume production of long ship life enterprise products, 

it is common practice to qualify at least three different vendors for cost and continuity of 

supply. An example difference may be that one vendor part supports a full device erase 

op code that would need to be blocked specific to that part. This appreciably complicates 

the firmware and requires the developer to read through literally thousands of pages of 

datasheets and compile comparison charts for firmware to code around. This is needed to 

ensure security protections are covered and production affecting mistakes are not made 

such as accidentally permanently write locking a sector versus only until the next power 

cycle. Another challenge is that SPI ROMs generally do not have reset inputs to remove 

the write protections. This implies the system orchestration or hardware such as localized 

SPI ROM power cycle coincident with a processor reset is needed at extra cost, logic and 

board space.   

 

2.5.3.2 Managed NAND Flash Data Protection Methods 

Many embedded systems such as BMCs also need large NAND flash devices, 

which most of the time are soldered to an expensive motherboard. System designers need 

to have utmost focus on the protection of non-replaceable embedded flash devices from 

accidental or malicious overwrites, unsecure field firmware updates (FFUs) and partial 

data extraction at any point (Problem24). At the time of this report, eMMC is the leading 

standard for embedded NAND flash devices, where the smallest purchasable capacity is 

4GB. These types of devices have internal controllers between the bus interface and the 

actual NAND flash cells for performing security functions, wear leveling, error 

correction, etc. In BMC type applications, the data stored in eMMC includes multiple 
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copies of the embedded LINUX operating systems (>100MB), system diagnostics, 

lifecycle logs, OS device drivers and pre-boot utilities. 

Firmware developers should use the well-established LINUX methods for 

converting the necessary file systems to read only so that a compromised OS would still 

block writes to critical areas (Problem24: Solution1). 

The latest versions of the eMMC specification added permanent and power-on 

eMMC sector based write protections [23] (Problem24: Solution2). Permanent write 

protection should only be used when absolutely necessary due to possible field issues if 

an update were needed. Write protect until power cycle is a very useful capability for 

firmware updates. 

In addition, the eMMC specification added a hardware reset pin. This can be 

pulsed by system logic in conjunction with the BMC reset to intentionally remove power-

on write protections when needed (Problem24: Solution3).   

System designers must guarantee that embedded NAND FLASH devices are not 

excessively worn out (Problem24: Solution4). A wear model should be created to 

understand the typical and worst case software use cases and how they affect writes to the 

embedded flash device. Developers should beware of small and large size write patterns 

and the file systems used as they can significantly affect write amplification. The 

firmware device driver should instrument counters on reads and writes for validation of 

real operations to the expectations in the model. Future methods and algorithms could be 

implemented where run-time agents observe the statistics running on a BMC in real time 

and then adjust the usages or warn users of excessive use beyond design expectations. 

This helps thwart bugs and user unintended or attacker-initiated FLASH write abuse. 

Finally, enterprise system(s) should be validated against an accurate intended wear model 
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to ensure excursions do not get into released code. This last part ideally is performed on a 

regular, automated build verification test scenario. 

Designers should increase part reliability by running eMMC devices in pseudo-

SLC mode (Problem24: Solution5). This provides more resilience to part write abuse 

and means that a designer can use less expensive but less reliable multi-level cell (MLC) 

devices in pseudo-single-level cell mode (pSLC). In pSLC, the analog to digital converter 

can read a wider voltage to determine the intended value, thereby increasing the write 

endurance significantly [24]. In comparing three leading eMMC device datasheets, 

pseudo-SLC mode reduces overall capacity by approximately 60% which often is not an 

issue at the embedded system storage needs pale in comparison to the smallest procurable 

managed NCNAD devices. pSLC also improves the program/erase cycle guaranteed 

limits from about 3,000 to 30,000-50,000, or more than 10X more reliability. 

With managed NAND, wear leveling and bad block management abstracts 

physical addresses from logical addresses and thus may leave partial files/data intact in 

physical locations following logical address erases (Problem24: Solution6). During 

system wipe type activities, firmware should take advantage of the eMMC secure erase 

command, where “data in the specified memory addresses must be purged from the 

physical memory array” [23]. An additional assistive feature is called secure trim which 

is effectively secure erase performed at the sector level. 

The latest eMMC revision also supports Field Firmware Update, where the device 

manufacturer may want to, for example, improve their wear level algorithm after 

shipment or fix a bug (Problem24: Solution7).  Since these types of devices were not 

updateable prior to this eMMC specification revision, this imposes a new security 

concern. Like mentioned in an earlier section, system designers should ensure that the 

updating entity such as the BMC verifies the signature of the eMMC field firmware 



 

34 

update image before applying it to the target device that cannot perform authentication 

operations on its own. 

  

2.5.3.3 The “App Store” Concept in Embedded Systems 

Most embedded systems including enterprise BMCs are generally considered a 

closed system. This means that a user cannot normally modify the operating environment. 

However, there are markets such as amongst original equipment manufacturers (OEMs), 

where generic enterprise systems are rebranded and settings customized. There are 

recurring proposals for a BMC “app store”. A BMC “app store” where aftermarket code 

would run on a BMC or other management controller that is not part of the base firmware 

creates a significant security and system stability concern (Problem25).  There is also a 

real risk to the manufacturer, warranty and stability of the BMC and host system when 

allowing running not thoroughly validated code on the same service processor and 

embedded operating system that must also perform numerous critical near real-time 

functions including power and thermal controls. 

If an “app store” is a marketing requirement, designers should limit the “apps” to 

scripts that are equivalent to calls that remote, authenticated users and consoles could 

execute and thus validated as part of the base system (Problem25: Solution1). In an 

extreme case, where injecting aftermarket code into a BMC domain must be supported, 

ensure that it is a user space application without kernel space privileges. Also, consider 

instituting an application monitor in the base firmware, which observes whether new 

processes misbehave. A couple examples are the app consuming excess CPU cycles or 

memory, inclusive of slow memory leaks for extended periods. Applying embedded 

systems concepts such as virtualization or containers may prove valuable. 
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2.5.3.4 Secure Peripheral and GPIO Access 

Many types of bus peripherals in most modern chips are memory-mapped 

interfaces that are open for access by locally running software. One example is an I2C 

bus controller that connects to sensors and control functions such as clock chips. Another 

key example is a GPIO controller, which provides expandability to much control and 

status instrumentation in a system. A typical server may have >256 GPIOs, where the 

possible exposure of improper (re)configuration could be catastrophic to system 

operation or performance. Finally, for maximum flexibility, almost all modern chips offer 

multiple functions on one pin, whereas the control for changing that functionality at 

runtime is not typically lockable. As an example, in the most recent shipping enterprise 

chipsets from Intel [25], GPIOs are not lockable or protected and pin function is 

changeable from a compromised operating system (Problem26). 

For static GPIOs and pin functions whose is static at runtime, a granular lock-

until-reset control method is needed in silicon that make various register bits write once 

instead of the typical free read/write capability (Problem26: Solution1). When utilizing 

programmable devices, such as CPLDs and FPGAs, it is common practice to implement 

this type of method with custom code. However, this capability is far from standard, 

sufficiently granular, nor pervasive enough in today’s commodity microcontrollers, or 

even more sophisticated BMC systems-on-a-chip or chipsets. 

When silicon cannot be changed, then another solution is to rely on another secure 

entity to monitor for state changes (Problem26: Solution2). For example, modern Intel 

chipsets have a management engine running firmware inside that can also access various 

registers such as GPIOs and I/O pin functions. Before handing off control to the host 

operating system, booting BIOS could tell the management engine which I/O and pins 

must be locked until the next platform reset. After that, if they are observed to be 
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changed, then the management engine could restore the unexpected modification and 

alert the BMC for logging or other remediation. This would be an improvement but not 

ideal due to the effects of momentary blips. 

In some cases, local GPIO states need to legitimately be altered during runtime, 

such as by BIOS while servicing a systems management interrupt (SMI) (Problem26: 

Solution3). Cross domain authentication is ideal for an entity that wants to change its 

local configuration to confirm permission from another secure domain. Development of a 

request / grant protocol proving authenticity of the requesting entity would go a long way 

to hardening this vulnerability. Such a solution would require modifications to the silicon 

such as hiding the chipset GPIO register space from the host OS. How to ensure that the 

request is from a trusted versus compromised source entity is the challenge. e.g., Could 

the key for an encrypted command have been compromised? At a minimum, the BIOS 

could send a subset list of pins/functions that need to be runtime modified to the 

management engine at end of boot, thereby at least limiting the grants to those requests. 

Exploring solutions from other domains should occur to create a foolproof solution.  

 

2.5.4 System Decommissioning or Re-provisioning 

Proper information handling toward the end of a system’s life or when being re-

deployed for alternate functions or refurbished is an opportune time for enterprise system 

owners to make critical mistakes. There is much research and best practices related to 

computer hard disk drive secure data wipes, disposal and self-encrypting drives to protect 

the main server use data. Data sensitive customers also have great interest in the data held 

in various other embedded system ROMs. Manufacturers are typically required to publish 

a statement-of-volatility to provide such transparency. For system decommissioning 

and/or re-deployment activities, system manufacturers must provide customer 
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satisfactory assurance that all non-volatile storage elements with end user modified data 

have been thoroughly erased and settings reset back to factory defaults (Problem27). 

For example, Dell not only publishes statements-of-volatility for all enterprise 

systems but also provides a “System Erase feature as part of the iDRAC with Lifecycle 

Controller (LC) embedded systems management solution” [26] (Problem27: Solution1).  

The main capability is called System Wipe allowing granular and user-selectable 

categories of deletion. Example categories of operations include erasing logs (including 

the afore mentioned comprehensive lifecycle log), BIOS and BMC configuration data set 

back to factory defaults, embedded RAID controller cache erase, and managed persistent 

storage formatting.   

 

2.6 BIOS Secure Boot, Failure Detection and Recovery 

Though the majority of this paper revolves around enterprise server management 

subsystems, it is also important to explore the system BIOS security protections. In recent 

years, numerous articles discuss ever evolving attack methods on computer BIOS. The 

protections explored include BIOS secure booting, executing only authentic code, BIOS 

update, measurement, altered image detection and secure recovery.  

 

2.6.1 UEFI Secure Boot 

BIOS secure boot in the enterprise is a must have offering for practically all new 

products (Problem28). Modern enterprise systems base their BIOS on the Unified 

Extensible Firmware Interface (UEFI) specification [27]. An optional feature of the UEFI 

specification is UEFI secure boot and is offered as a customer option in many modern 

server systems, although the implementation specifics varies. Similar to secure boot in 
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embedded systems, the secure chain of trust starts with a small piece of immutable code 

running typically on an embedded security processor inside the chipset. Then “each 

subsequently-executed section of code is verified safe and unmodified before it is 

executed” [28].  Reference 28 titled “UEFI Secure Boot in Modern Computer Security 

Solutions” is an excellent overview of this area.      

Intel’s commercial client and enterprise chipsets accomplish this via a feature 

called Intel Boot Guard [29]. Controlling logic inside the silicon “verifies a signature 

contained in the firmware image before executing it, using the hash of the public half of 

the signing key, which is fused into the system’s Platform Controller Hub (PCH) by the 

system manufacturer.” Other complex chip makers offer similar features.  

System designers should take full advantage of these offerings when available, as 

well as enterprise system administrators for ensuring optional security features are 

enabled, which may not be the factory default mode of operation (Problem28: 

Solution1).  When these features are not available, technologists and business requests 

for quote should demand these in additional applications. 
 

2.6.2 BIOS Recovery 

Modern chipset ROMs contain many critical functions needed by the CPUs and 

chipset beyond just the BIOS image, including soft straps, management engine firmware, 

network peripheral option ROMs, etc. 

When a secure boot failure occurs, the policy is typically to halt-on-fail rendering 

the system useless (Problem29). That is because the provision to have a recovery image 

to autonomously failover and heal the primary image is complex. It also consumes large 

amounts of storage space to house an additional redundant primary image. Most 

enterprise systems have secure subsystems such as BMCs that should seemingly always 



 

39 

play a role in customer notification and user initiated or autonomous policy based BIOS 

image recovery (Problem29: Solution1). Thus, secure failure detection should be 

indicated through I/O or ideally through a sideband register or command, such as the 

traditional port 80h codes used for host boot status with granular failure reasoning. 

For various reasons promoting best cybersecurity practices, the U.S. National 

Institute of Standards and Technology (NIST) has published the BIOS Protection 

Guidelines for Servers [30]. These guidelines specifically place a couple key constraints 

on a BMC or service processor that has access to the BIOS ROM device or contents for 

purposes of BIOS update. The first is that the BMC environment may be employed as a 

Root of Trust for Update (RTU) for the system BIOS if the BMC is guaranteed to be 

updated and booted via authentic code. Authorization to execute such tasks is also 

required. These are very important because BMC adding value in BIOS recovery cannot 

open up new attack vectors. Since an earlier section suggested the BMC be a secure root 

of trust for itself, the BMC’s need to be a (RTU) is not a unique suggestion here.  

The second NIST requirement is that “the Service Processor [or BMC] shall not 

have direct and unrestricted access to system memory on the server outside the control of 

the host operating system, to prevent the SP from interfering with legitimate update 

processes.” BMC and other embedded systems chip designers and hardware and system 

designers must ensure that there is no direct host memory access in an unrestricted sense 

in platforms where direct host interfaces exist such as PCI Express, USB, etc. or sideband 

accesses such as via I2C (Problem29: Solution2). Direct Memory Access (DMA) is 

possible if restricted such as for use by that peripheral only. For example, the BMC 

cannot issue a PCI Express DMA request into host memory. If that were allowed, a 

compromised BMC could implant malware, crash the host, or intervene with the BIOS 
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update process such as replacing the update image contents after it was verified and 

before being written to the BIOS ROM. 

 

2.6.3 Boot Measurement 

Since platform security is typically not a one solution fits all area, additional 

concurrent solutions can help assure the end user or administrator of intended operation 

(Problem30). As an example, the Trusted Computing Group (TCG)‘s Trusted Platform 

Management (TPM) Specification defines a TPM chip that securely stores critical 

credentials and offers provision to perform a “measured boot to detect how and where 

improper modifications have been made to a system” [28]. Customers are encouraged to 

utilize TPM for boot code measurement as an additional, complementary security method 

for verifying the UEFI code (Problem30: Solution1). It is complementary since it can 

notify of a fault but does not prevent bad code execution per se.  
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Chapter Three: Conclusions 

This report contributes to a generally under researched and poorly practiced area 

of cyber-security in the area of embedded systems as they pertain to enterprise product 

usage. The report’s logical bottoms-up sequence starts from local physical one-to-one 

attack methods and moves to remote one-to-one and one-to-many software only attack 

methods, including BMC and BIOS domains.  

This report enumerated a total of 30 specific and practical security problems 

currently observed in real-world enterprise products’ systems management and BIOS 

subsystems. This report also offered a total of 50 practical, and in some cases new and 

novel, suggestions to mitigate the explored problems. The author felt that this approach 

creates a much more valuable survey to bound the leading problem areas than 

exhaustively focusing on a single problem. The additional value of this research was that 

even though the focus was on enterprise product embedded systems, most of the 

highlighted issues and suggested solutions apply directly to other industries and product 

types and regardless of various evolving technologies.  

The sources of this practically focused report included online research, first hand 

experimentation with high volume, mainstream rack servers and interviews with 

respected industry practitioners and experts. As a practitioner in this area, it is the 

author’s sincere desire that readers can take away practices that can be immediately 

implemented in their product portfolios and design processes. Interested readers should 

also now have focus areas to further explore toward bolstering enterprise platform 

security, while maintaining optimal design for manufacturing and debug with cost 

effective designs. 
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Chapter Four: Future Work  

Most of the highlighted areas within the enterprise platform cyber-security 

domain can benefit from future research and work to extend the enablement, adoption 

and proliferation of best practices at the silicon, circuit board, firmware/BIOS/software 

and system levels. Solutions that require long lead time solutions and similar multi-

sourced solutions, such as silicon impacting or complex software designs, make it critical 

to stay on top of quickly evolving attack methods. A few key areas where the most value 

in future work lies related to enterprise products are:  

1. To determine how these problems and suggested solutions can be maximally 

applied to additional industries and applications including the Internet of Things, 

where physical attacks are much easier. 

2. To expand ways to get secure boot enabled in low end general purpose 

microcontrollers and programmable devices such as CPLDs and FPGAs, which 

today essentially only check for CRC-based integrity. 

3. To explore how BMCs can play a more active role in verifying and recovering, 

via manual user or automated policies, other active programmable image entities 

in the system including BIOS, management engines and controllers within 

commodities such as power supplies, backplanes, hard disk drives, eMMC type 

flash devices and even more mundane ones such as smart fan controllers, or user 

interaction LCDs. This includes RAM and ROM limited devices. 

4. To explore methods to securely support a 3rd party “application store”, giving the 

server administrator the ability to safely load and execute their own programs into 

a management controller subsystem without affecting additional functionality. 

5. To investigate optimal methods of requiring lightweight authentication to secure 

GPIOs and memory mapped peripheral local access.  
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