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in Layered Clay Profiles 
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Supervisor:  Robert B. Gilbert 

 
Layered soil profiles can complicate the ability to install a foundation and affect the 

performance of a foundation and therefore increase the cost of an offshore foundation. The goal of 

this research is to explore concepts to improve anchor performance in layered soil profiles of clay 

by further understanding (1) the drag trajectory and capacity for a drag embedded plate anchor in 

layered soil profiles; (2) the drag trajectory and capacity of tandem drag embedded plate anchor 

systems; and (3) the free-fall penetration trajectory and resistance of a dynamically embedded plate 

anchor in layered soil profiles. The methodology is to perform drag embedment and free-fall 

penetration tests with model anchors in a variety of test beds containing marine clays with different 

profiles of undrained shear strength versus depth.  

For a drag embedment anchor, model tests with a single anchor in different sizes show that the 

ratio of normal to tangential displacement is affected by model scale, with smaller ratios applying 

to larger anchors. By appropriately adjusting this factor in a prediction model, the model is able to 

represent well the model test results and can be used rationally to predict behavior for a field-scale 

anchor. The drag embedment tests and analytical results in layered soil profile show that anchor 

can penetrate into stiff layer with shear strength 1.5 times higher than the surrounding soil and 

cannot penetrate into stiff layer with shear strength 5 times higher than the surrounding soil.  In 
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the layered soil profile with stiff layer of shear strength 2 to 4 times higher than the surrounding 

soil, the anchor may be able to penetrate the stiff layer if the pitch of the fluke as it approaches the 

layer is at about 30°. 

For a tandem system with two drag embedded anchors, the capacity of the system can be more 

than twice the capacity of a single anchor provided that the spacing between two anchors is at least 

two fluke lengths. The second anchor in the tandem system can penetrate deeper than a single 

anchor and the front anchor. 

For a dynamically embedded plate anchor, the strain rate effect from undrained shearing is 

higher than that from bearing as measured from pure normal and pure in-plane shearing tests. A 

calibrated predication model accounting for the strain-rate effects strain rate parameters produces 

results similar to the model test results, generally matching or slightly under-predicting the actual 

penetration in non-layered and layered soil profiles. A dynamically embedded plate anchor can 

penetrate through stiff layers that would cause difficulty for a conventional drag embedded anchor.    
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Chapter 1. Introduction 

1.1 Introduction and Motivation 

The cost of the foundation can be a significant percentage of the total cost for an offshore 

structure producing energy (e.g., Musial and Butterfield, 2006). Furthermore, layered soil profiles 

(e.g., layers of sand in clay or layers of stiff clay in soft clay) are common due to the glacial and 

sedimentation and can significantly increase the cost of an offshore foundation.  Layers complicate 

the ability to install a foundation (e.g., inability to drive a pile through a dense sand) and can also 

detrimentally affect the performance of a foundation (e.g., loss of suction due to drainage around 

a suction caisson). 

Plate anchors provide an economical solution for offshore foundations because they are very 

efficient as measured by the holding capacity achieved relative to the weight of the foundation. 

Plate anchors include drag embedment anchors (Figure 1.1), vertically loaded anchors (Figure 1.2), 

suction embedded plate anchor (Figure 1.3), dynamically embedded plate anchor (Figure 1.4) and 

a new concept currently under development, the Flying Wing Anchor® (Figure 1.5).  The drag 

embedment anchor evolves from conventional ship anchors, and has a fixed fluke-shank angle 

between 30̊ to 50̊.  Vertical loaded anchors (VLAs) are based on the traditional drag embedment 

anchor with a fixed fluke-shank angle.  VLAs has a thinner shank or a bridle, and can dive deeper 

than the traditional drag embedment anchor with 7 – 10 fluke lengths (Randolph and Gourvenec, 

2011).  SEPLA and DEPLA were developed to combine the benefits of high efficiency of plate 

anchor and certainty of suction caisson or torpedo pile, therefore anchors can start dive deeper 

because of a provided deeper initial embedment depth by suction or torpedo.  The Flying Wing 

Anchor® is designed to installed by gravity and the capacity can be maximized with fluke nearly 
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perpendicular to the shank, which overcomes the problem of loss embedment for SEPLA and 

DEPLA.  These types of anchors may provide an effective solution for layered soils. For example, 

two drag embedment anchors can be attached in tandem to provide greater holding capacity with 

less penetration (Figure 1.6).  Also, the Flying Wing Anchor® may be able to penetrate into and 

through stronger layers during free-fall installation. 

Existing research on the performance of plate anchors in layered soil profiles is limited.  

Baglioni et al. (1982) studied the stability of jack-up rig foundation in the soil profile with a 

relatively thin layer of sand underlain by a weak clay layer. Centrifuge modelling of spudcan 

foundations (Hossain and Randolph, 2011) was performed in the multi-layered soils with 

interbedded stronger layers.  House (1998) applied a limit equilibrium solution of static anchor 

capacity to estimate the capacity of drag embedment anchors in stratified soil.  However, a plate 

anchor installed by drag or by free-fall penetration in layered soil profiles has not been studied. 

The motivation of this research is to investigate the performance of the plate anchors installed 

by drag or by free-fall penetration in layered soil profiles. 

 

Figure 1.1. Example of Drag Embedment Anchor (Vryhof, Vryhof Anchors, Krimpen ad 
Yssel, 1999) and Trajectory (Gerkus, 2016)  
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Figure 1.2. Example of Drag-in Plate Anchor – Stevmanta Vertical Loaded Anchor (Vryhof, 
Vryhof Anchors, Krimpen ad Yssel, 1999) and Trajectory (Gerkus, 2016) 

 

Figure 1.3. Example of Suction Embedded Plate Anchor (Gaudin et al., 2006) 



4 
 

 

Figure 1.4. Example of Dynamically Embedded Plate Anchor (Blake et al., 2015) 

 

Figure 1.5 Speedy Flying Wing Anchor® Configurations (Gilbert et al., 2015) and Trajectory 
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Figure 1.6. Example of Tandem Anchor (Vryhof, 2015) and Trajectory 

 

1.2 Research Objectives 

The objectives of this research are: 

1. To further understanding of the drag trajectory and capacity for a plate anchor in layered 

soil profiles. 

2. To further understanding of the drag trajectory and capacity of tandem anchor systems.  

3. To further understanding of the free-fall penetration trajectory and resistance of a plate 

anchor in layered soil profiles. 

4. To develop and explore concepts to improve anchor performance in layered soil profiles. 

 

1.3 Methodology 

The objectives will be achieved through the following tasks: 
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1. Perform pure loading tests in clay to measure the non-dimensional yield capacity factor, 

pure normal loading capacity factor, pure in-plane shearing capacity factory and pure 

rotational in pitch capacity factor for drag embedment anchor with scale of 1:30. 

2. In the constructed layered soil profiles with remolded or consolidated Gulf of Mexico clay, 

conduct drag embedment tests to investigate anchor trajectory, the line load at the mudline 

and pitch angle.  Experimentally perform sensitivity analyses on how the behavior of drag 

anchor affected by the shear strength, thickness and depth of stiff layer in the constructing 

layered soil profiles.  The load cell can measure the line load at the mudline.  The 

magnetometer with a sensor attached on the anchor can track anchor location (x,y,z) and 

orientation (yaw, pitch, roll). 

3. Conduct drag embedment tests with tandem system anchor in a normally consolidated soil 

profile.  Tandem system anchors with different test configurations are studied by varying 

tailing line thickness, spacing between two anchors, and attachment point of the second 

anchor. 

4. Perform T-bar tests and pure loading tests of a circular plate with a diameter of 4 inch, and 

a thickness of 0.1 inch at different loading rate to establish the dependence of undrained 

shear strength on applied rate of strain. 

5. Conduct free-fall penetration tests with Flying Wing Anchor® in different shear strength 

profiles constructed in the Gulf of Mexico clay, including normally consolidated, over 

consolidated and layered shear strength profile.  Investigate impact velocity and drop 

height of anchors with different ratios of weight to surface area. 
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6. Compare and analyze the plasticity-based limit prediction model and experimental results.  

Extrapolate the experimental results to estimate the behavior of a prototype anchor in the 

field. 

 

1.4 Structure of the Dissertation 

• Chapter 1: A description of the introduction, motivation, and methodology in this 

dissertation 

• Chapter 2: A summary of literature review on offshore structure, mooring system, 

offshore anchors, and design methods. 

• Chapter 3: A description of test facilities in this study. 

• Chapter 4: A description of pure loading tests and presents the experimental and 

analytical results of normal bearing and in-plane shearing capacity factor for drag 

embedment anchor.   

• Chapter 5: A description of drag embedment anchor tests in single layer soil profile 

(normally consolidated and linearly increasing shear strength profile) and layered soil 

profiles, and presents the experimental and analytical results in terms of capacity, 

trajectory and pitch. 

• Chapter 6: A description of tandem system anchor with two drag embedment anchors 

and shows the measured trajectory and capacity of tandem system anchor compared 

with that of single anchor.  Additionally, the experimental results of configuration that 

second anchor attached to the back of fluke of front anchor are compared with 

analytical results. 
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• Chapter 7: A description of tests to study strain rate effect by conducting pure loading 

tests with a thin steel plate at different loading rate. Presents free-fall penetration tests 

with Flying Wing Anchor® in constant shear strength profile and layered soil profiles.  

The experimental results are compared with analytical solution. 

• Chapter 8: A description of scale effect by conducting drag embedment tests with drag 

embedment anchor in different size and Flying Wing Anchor® with different weight 

to area ratio.   

• Chapter 9: A Summary of main findings in this study. 
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Chapter 2. Literature Review 

2.1 Introduction 

This chapter reviews offshore structures, mooring systems, and types of offshore anchors 

typically used in deepwater offshore.  The chapter also reviews the plasticity-based limit methods 

widely applied for prediction of anchor capacity and trajectory.  

 

2.2 Background  

2.2.1 Offshore Structures 

The selection of appropriate foundation for offshore structure is based on site conditions (water 

depth, soil condition in construction site and reserve size), economic consideration, and operating 

interests (French, et al., 2006). The definition of shallow and deepwater depth has been evolved 

with technology, but nowadays the shallow water depth is less than 500m, deep water is 500 m - 

1500 m, and ultra-deep water is over 1500 m (Colliat, 2002; and Randolph and Gourvenec, 2011). 

Figure 2.1 shows main types of offshore foundations.  Fixed Platfrom (FP) with a gravity base 

or steel jackets is selected when water depth shallower than 600 m due to economic consideration.   

If water depth from 300 m to 600 m, a compliant tower (CT) is selected due to its flexibility in 

bending so it can sustain higher lateral load without significant lateral deflection.  Tension Leg 

Platform (TLP) with vertical tendons is selected if water depth is 300 m to 2000m.  The vertical 

tendons are capable to maintain in tension in extreme loading condition like storm. Spar Platform 

(SP) can be developed if water depth is less than 3000m.  SP includes a large cylindrical hull which 

supports platform and buoyancy chamber within the hull to provide buoyancy of platform.  

Floating Production Storage and Offloading Facility (FPSO) is also capable to develop in water 
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depth less than 3000m.  FPSO consists of a vessel and storage facilities, which enables the 

development of FPSO is suitable for the remote filed without pipeline installed.  Subsea systems 

are feasible for any water depth and in service for either a single or multiple platform.    

 

Figure 2.1. Offshore Development Systems (http://www.gomr.mms.gov)  

 

2.2.2 Mooring Systems 

Floating offshore structures can be anchored by catenary or taut mooring line (Figure 2.2).  

Catenary mooring line has zero-line angle at the seabed, as opposed to taut mooring line sustains 

40̊ to 50̊ line angle. The catenary mooring line can transmit horizontal loads to seabed from 

offshore structure, in contrast, the taut mooring line is capable to transmit both horizontal and 

vertical load.  Therefore, lateral load governs the design of catenary mooring line while vertical 

capacity controls designs of taut-leg mooring line (Eltaher et al., 2003).  The self weight of 

catenary mooring line provides the restoring force, but for the taut mooring line, the mooring line 

elasticity is the main component for restoring force which indicates that water depth should be 

sufficient to make mooring length retain the required elasticity.  Vryhof (1999) concluded from 

field experience that the selection of mooring system is limited by the design of the platform, 

weight and length of mooring line.  In general, as water depth increase, the taut mooring line is 
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chosen other than the catenary mooring line.  Taut mooring line can significantly reduce the 

possibility of interaction with existing facilities like pipelines or adjacent structures (Aubeny et al., 

2001); additionally, cost on the mooring line can be saved by choosing taut mooring line with a 

shorter length compared with catenary mooring line.   

 

Figure 2.2. Catenary and Taut Leg Mooring System (Vryhof, 2015) 

 

2.2.3 Offshore Anchors 

Floating offshore structures are anchored to seabed by different type of anchors.  The selection 

of anchors is based on the size and service life of structure, the geotechnical characteristics of 

construction site, and limitation of economy and installation convenience.   This section briefly 

reviewed a couple of anchors commonly employed in practice.  

 

2.2.3.1 Drag Embedment Anchors 

A drag embedment anchor (DEA) embeds into seabed by dragged horizontally with an anchor-

handling vessel (AHV).  DEA designs were advanced by field experience (Figure 2.3).  In general, 

DEA consists of a wide fluke which provides bearing capacity, a thick shank which provides 

shearing resistance, and an attachment point (padeye or shackle) for connecting mooring line.  
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Since the major capacity of DEA is from the bearing by fluke, thus DEA is not designed for sustain 

a large vertical load and are usually used as temporary anchor with catenary mooring system in 

deep water.   

 

Figure 2.3. Drag Embedment Anchors (NCEL, 1987) 

 

Figure 2.4. Components of Drag Embedment Anchor 
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A higher holding capacity can be achieved by embedding DEA deeper since the increase of 

soil shear strength which results in an increase of overburden pressure on fluke and higher 

resistance on shank and embedded anchor line.  To facilitate DEA dives deeper, three features of 

DEA are designed.  First, the front fluke is with two symmetric sharp triangular shape in the 

dragging direction (Figure 2.4).  Second, for better performance, a stabilizer may be attached to 

on DEA (Figure 2.4).  Third, different fluke-shank angle is designed for different site condition: 

angle with 30̊ for sand, and 50̊ for mud. The fluke-shank angle is fixed during installation, and it 

is preset by connecting shank to different notches on fluke (Figure 2.5).   A typical DEA can have 

efficiency of 5 to 55 (efficiency is defined as anchor holding capacity over anchor self-weight).   

 

Figure 2.5. Schematic of Vryhof Drag Embedment Anchor (Vryhof, 2005) 

 

2.2.3.2 Vertically Loaded Anchors 

Vertically loaded anchors (VLA) is designed to sustain vertical load from offshore structure in 

the taut mooring system.  The capacity of VLA is mainly provided by fluke which can be 

considered as an embedded bearing plate.  The shank of VLA is a thin rigid bar or bridle and is 

allowed to rotate around the conjunction point of fluke and shank (Figure 2.6).  VLA shares a 
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similar installation process with DEA, however, the fluke-shank angle of VLA increases along the 

horizontal drag, and shank is almost perpendicular with fluke at the end of installation while fluke 

is almost parallel to the seabed surface.  This final configuration mobilizes the maximum bearing 

capacity on fluke (Murff et al., 2005). 

 

Figure 2.6. VLA Anchor 

 

Two VLA commonly in use are shown in Figure 2.6.  In order to achieve a relative normal 

fluke-shank angle, a shear pin is designed so it will break at a centain installation and anchor shifts 

from installation mode to normal loading mode (Figure 2.7).  In the normal loading mode, VLA is 

acting as a embedded plate and sustain a high resistance against pulling out load (Murff and 

Anderson, 2001). 
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Figure 2.7. Different Mode of VLA 

 

2.2.3.3 Piggy-back Anchor 

Multiple drag anchors either DEA or VLA (Tandem system anchor shown in Figure 2.8) are 

connected to achieve a higher capacity compared with using a single anchor. The tandem system 

anchor is preferred in the following two situations: (1) the installation of large size anchor is limited 

by the reserve size or transport and handling facility; (2) the capacity of pre-selected anchor is 

inadequate for design load requirement. The total capacity of tandem system anchor highly 

depends on the way of second anchor being attached to the front anchor and the stability of the 

front anchor.  Inappropriate attachment will result in a breakout or pulling-out of the front anchor 

and rotation of the second anchor (Oregon Wave Energy Trust, 2009).  If the front anchor is 

unstable, it is impossible to mobilize full capacity for both anchor since the front anchor rolls and 

slides on seabed surface and prevents the second anchor diving into seabed.  However, appropriate 

attaching the second anchor can lead to the total capacity of tandem systems equal to or higher 

than two anchors to be embedded separately.  
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Figure 2.8. Example of Tandem Anchor (Vryhof, 2005) 

 

2.2.3.4 Torpedo Pile 

The torpedo pile is a cost-effective anchor since it is installed by its self-weight, and it was 

first developed in 1996 by the Brazilian energy company Petrobras for a riser flow-line restraint 

(Medeiros, 1997).  The shape of torpedo pile is a tubular pile with a cone tip, fins attached at the 

rear and padeye on the top.  As shown in Figure 2.9, the inside of tubular pile is filled with ballast 

or concrete (Medeiros, 2001 and Medeiros , 2002) to increase the self weight and lower down the 

center of gravity of pile.  Typically, four to eight piles were transported by an anchor-handling 

vessel (AHV).  Two lines are connected to pile, the installation line and mooring line.  The 

installation line is used to lower the anchor to the designated drop height and is disconnected to 

allow anchor free falling through water column and impacting the seabed (Figure 2.10).   
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Figure 2.9. Torpedo Anchor (Medeiros, 2001) 

 

Figure 2.10. Torpedo Pile Installation (Hossain, 2014) 
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2.2.3.5 Deep Penetration Anchor 

Deep Penetration Anchor (DPA) is a conceptually similar to torpedo pile but with shorter and 

wider fins attached on the cylindrical pile (Figure 2.11).  The length of cylindrical pile of DPA is 

arranging from 10 to 15 m (32 to 49 ft), the diameter is between 1 to 1.2 m (3.3 to 3.93 ft), and 

weighs 50 to 100 tons (110 to 220 kips).  The installation procedure of DPA is the same as torpedo 

pile.  The installation line and mooring line is connected to the padeye located on the top of the 

pile, and the installation line is disconnected when DPA reaches the target deploying height and 

DPA is installed by gravity.   

 

Figure 2.11. Torpedo Pile and Its Installation Procedure (Lieng et al., 1999) 
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2.2.3.6 Omni-Max Anchor 

Zimmerman et al. (2005) firstly brought a new concept of dynamically installed anchor, which 

was named as self-penetrating embedment attachment rotating anchor (SPEAR), and later in 2007 

was named as OMNI-Max anchor (Figure 2.12).  OMNI-Max is a rocket shaped anchor with two 

sets of three fins.  The set of fins with larger size is located on the upper part of anchor, and the 

smaller ones are at the bottom.  This design makes the resistance along anchor equilibrium since 

the shear strength of seabed is linearly increasing with depth.  OMNI-Max shares the similar 

installation procedure as torpedo pile and DPA but can rotate after penetration because of a new 

design of adjustable flukes and 360̊ rotation mooring attachment located on the one third of anchor.  

As shown in Figure 2.13, the mooring attachment point allows anchor to rotate to the position 

perpendicular to the applied load, which makes the anchor fluke maximize its bearing force.  The 

adjustable fluke was designed for increase or reduce of anchor surface area make the shear 

resistance larger or smaller.  In the normal loading condition, OMNI-Max anchor remains vertical.  

As the applied load increases up to 20% of design load, OMNI-Max starts to rotate until the 

frictional and bearing on the upper part flukes are equal to the lower part of flukes.  With the 

further increase of load, the anchor starts diving like drag embedment anchor to the deeper soil 

where the shear strength is higher and can provide higher resistance.   

 

Figure 2.12. OMNI-Max Anchor (Shelton et al., 2011) 
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Figure 2.13. Installation of OMNI-Max Anchor (Delmar Systems Inc., 2011) 

 

2.2.3.7 Suction Embedded Plate Anchor (SEPLA) 

Suction Embedded Plate Anchor (SEPLA) is a hybrid anchor which is a plate anchor installed 

by suction caisson (Figure 2.14).  It combines the advantages of dynamically installed anchor and 

the embedded plate.  It can be accurately released from any desired height and location by self 

weight, and it can withstand the horizontal and vertical load which makes SEPLA applicable for 

catenary and taut mooring system.  The installation process of SEPLA is shown in Figure 2.15, 

during installation, the water inside in caisson is pumped out to make the caisson penetrate deeper.  

After the caisson and embedded plate penetrates, the suction caisson is retrieved while the water 

is pumped back, and the embedded plate rotates to the position perpendicular to the load.   

 

Figure 2.14. Suction Embedded Plate Anchor (http://www.energetics.com) 
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Figure 2.15. Installation Process of SEPLA (Yang et al., 2011)  

 

Figure 2.16. Typical SEPLA with Keying Flap (Courtesy of ExxonMobil) 

 

The shortcomings of SEPLA are: (1) the potential to loss embedment during keying process; 

(2) the potential to break during penetration process specially if encounters stiffer soil; and (3) 

lower final capacity due to the weakened soil zone formed during retrieval of follower.  Ehlers et 

al. (2004) reported that the keying process of SEPLA result in inaccurate estimation on final 



22 
 

embedment depth.  Gaudin et al. (2006) illustrated that a weakened soil zone can be formed either 

during installation or retrieval of follower.  This weakend soil zone can be extended from the 

seabed to the embedded anchor, which leads to a lower final capacity.  The loss of embedment 

during keying has been studied experimentally (O'Loughlin et al. 2006; Song et al., 2009) and 

numerically (Song et al., 2008)), and a keying flap (Figure 2.31) was porposed by Gaudin et al. 

(2010b) to reduces the embedment loss. 

 

2.2.3.8 Dynamically Embedded Plate Anchor (DEPLA) 

Dynamically embedded plate anchor is another hybrid anchor combines the advantage of 

dynamic installed anchor and plate anchor.  DEPLA has a tubular cylinder with a cone tip and four 

symmetric cylindrical fins (Figure 2.17).  The installation line is attached to the top of follower, 

and the mooring line is attached to the padeye located on the flukes which are later also used for 

keying process.  The installation process of DEPLA shares the similar procedures as SEPLA.  After 

dynamic penetration of follower and fluke, the follower is retrieved back for future installation, 

and the fluke rotates to the position perpendicular to service load (Figure 2.18).   
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Figure 2.17. DEPLA Anchor (O'Loughlin et al., 2014) 

 

Figure 2.18. Installation of DEPLA (O'Loughlin et al., 2014) 
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2.2.3.9  Flying Wing Anchor ® 

The Flying Wing Anchor®, was developed at The University of Texas at Austin, is a 

sustainable anchor for offshore wind turbines in deep water.  This anchor combines torpedo piles 

and vertically loaded plate anchors, and it maximizes the advantages of both anchors.  The 

installation steps of the Flying-Wing Anchor are presented in Figure 2.19. The Flying Wing 

Anchor® is installed by gravity (Figure 2.19) like torpedo pile, and its wing-shaped plates (shown 

in Figure 2.20 and Figure 2.21) provide hydrodynamic stability.  The center of lift of Flying Wing 

Anchor® is designed above the center of mass when the trajectory of anchor in water is 

perpendicular to seabed.  The shank of Flying Wing Anchor® is closed at the end of installation 

and keeps closing if anchor capacity meets the load requirements.  When the environmental loads 

increases, as the result that the tension force in the mooring line which connects anchor and wind 

turbine increases, and Flying Wing anchor® starts pitching upward (Figure 2.20) from its current 

vertical position.  During the first stage of pitching, the shank is closed and attached with the fluke-

shank coupling mechanism.  The second stage of pitching is triggered when the anchor rotates to 

the design pitch angle, then the fluke-shank coupling mechanism releases the shank and the shank 

gets aligned with the mooring line (Gilbert et. al, 2015).  The tension in the mooring line further 

increases, which drives the anchor diving deeper and a greater anchor capacity can be attained. 

The maximum bearing capacity will be reached at an extreme load condition, when the fluke 

surface is in bearing and the shank is nearly perpendicular to the fluke.   
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Figure 2.19 Schematic Illustration of Installation and Service for Flying Wing Anchor® 
(Gerkus et al., 2016) 

 

The simplified Flying Wing Anchor® shown in Figure 2.20 are two possible design 

configurations, one is diamond-shape configuration, and the other is bi-wing shape configuration.  

In Figure 1.5, the Speedy Flying Wing Anchor® is designed by reducing the size of front fluke of 

bi-wing shape and modifying the front of fluke into a teardrop shape.  Moreover, the fluke-shank 
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coupling mechanism is hidden when the shank is close.  These modifications make the Speedy 

Flying Wing Anchor® more hydrodynamic stable when travelling through water. 

 

 

Figure 2.20 Simplified Diamond-Wing and Bi-Wing Shaped Anchor Designs (Gerkus et al., 
2016) 
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Figure 2.21 Diamond-Wing and Bi-Wing Shaped Flying Wing Anchor® Configurations 
(Gilbert et al., 2015) 

 

 

Figure 2.22 Speedy Flying Wing Anchor® Configurations (Gilbert et al., 2015) 
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2.3 Physical Tests of Different Types of Anchor 

2.3.1 Drag Embedment Anchors 

2.3.1.1 Field Tests 

Taylor (1987) performed the field tests at Indian Island with different types of DEA (Table 

2.1).  The tested anchor weights ranges from 25 lbs to 800 lbs.  The tested site consists normally 

consolidated organic silty clay.  The shear strength at mudline is 0 psf, and the shear strength 

gradient is 10 psf/ft.  The anchor capacity and efficiency is summarized in Table 2.1.  For all the 

drag tests, the tested anchors remained stable.  The maximum load among tested anchor is 105,300 

lbs by 5000-kg (11023-lb) STEVFFIX anchor at drag distance of 45 ft.  The STEVFIX was 

possible to dive deeper however the fluke is blocked to open and anchor rolled at 33.5 degrees.  

The maximum anchor efficiency is achieved by 500-kg (1102.3-lb) Bruce Twin-Shank with 

efficiency of 11.5 at drag distance of 42 ft.   
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Table 2.1. Data Summary for DEAs at Indian Island Tests 

Test 
No. 

Anchor Anchor 
Weight 

(lb) 

Anchor 
Load 
(lb) 

Anchor 
Efficiency 

Peak 
Mooring 

Load 
(lb) 

Anchor 
Drag 

Distance 
(ft) 

Chain 
Weight on 
Seafloor 

(lb) 

Remarks 

1-81 8K Two-Fluke Balanced 8000 23200 2.9 -- 60 6392 Anchor was stable with drag 

2-81 8K Two-Fluke Balanced 8000 20900 2.6 24800 47 6940 Anchor was stable with drag 

3-81 6K MOORFAST 5400 28700 5.3 34100 40 3721 Anchor was stable with drag 

4-81 6K MOORFAST 5400 29500 5.5 33900 45 3541 Anchor was stable with drag 

5-81 8K Two-Fluke Balanced 9800 20100 2.5 24000 43 6541 Anchor was stable with drag 

8-81 8K Two-Fluke Balanced 9800 21800 2.7 24800 42 6167 Anchor was stable with drag 

7-81 500-kg Bruce Twin-Shank 1100 11300 10.3 17100 47 9089 Anchor was stable with drag 

8-81 500-kg Bruce Twin-Shank 1100 12600 11.5 17500 42 9026 Anchor was stable with drag 

9-81 645-kg PRISMA 1895 -- -- 18600 42 9259 Anchor was stable with drag 

10-81 645-kg PRISMA 1895 -- -- 20100 51 8686 Anchor was stable with drag 

11-81 5000-kg STEVFIX 11000 9200 <1 17500 20 15818 Flukes did no trip 

12-81 5000-kg STEVFIX 11000 105300+ 9.6+ 118700+ 94 0 Flukes blocked open 
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2.3.1.2 Scaled Model Tests 

Lynk (2009) performed drag embedment tests with two types of DEA (Figure 2.23) in the 

normally consolidated kaolinite, the grey on with double shank, and the yellow one with a single 

shank.  The capacity was measured for each type of anchor, however, due to the limitation of 

testing facilities, there is no trajectory measured in this study.  The capacity of the grey anchor 

double shank was 1.5 times higher than the yellow anchor with a single shank.   

 

Figure 2.23. Tested DEAs (Lynk, 2009) 

 

Beemer (2011) performed drag embedment tests with in Laponite gel which represents clay.  

Laponite was selected because it can provide visibility of embedded anchor. An example of testing 

anchor in the Laponite testing bed with tested anchor is shown in Figure 2.24.  The anchor was 

attached with different sizes of anchor line, 1/32 inch, 1/16 inch and 1/8 in.  The fluke length of 

tested DEA is 4.5 inch, and the shank length is 4.5 inch.  The fluke-shank angle is 50 degrees.  The 

trajectory of anchor in the tested bed was captured by camera and extracted by Matlab program 
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LoctAnch (Figure 2.25).  Beemer (2011) concluded that the increase of anchor line diameter leads 

to an increase of measured capacity.  However, the relationship between the anchor line size and 

the anchor trajectory was not obvious.  This can be explained that the Laponite gel has the different 

properties (shear strength and yield surface) than soil, and the anchor behavior in the Laponite 

cannot be interpreted into the behavior in soil.  

 

 

Figure 2.24. Example of Tested DEA in Laponite Gel (Beemer, 2011) 

 

 

Figure 2.25. Example of Trajectory of DEA Extracted from Camera Images (Beemer, 2011) 
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2.3.2 Vertically Loaded Anchors 

2.3.2.1 Field Tests 

VLA with Stevmanta design was tested in the field initially in 1996 and 1998 at Gulf of Mexico 

and Offshore Brazil.  Runien and Degenkamp (1999) reported that the VLA with Stavmanta was 

tested in very soft clay and achieved anchor efficiency with 2 to 3.  Agenevall (1998) reported that 

the first VLA (118 ft2 Stevmanta) applied to offshore structure is at P-27 field in Compos Bassin 

Offshore Brazil. 

 

2.3.2.2 Scaled Model Tests 

Elkhatib et al. (2002) performed drag embedment tests with model Vryhof Stevmanta (scale 

of 1:100).  The scaled model anchor (Figure 2.26) is shown in The thickness of fluke is 0.75 mm 

(0.03 inch) and length of fluke is 35 mm (1.38 inch).  The anchor line thickness is 1.8 mm (0.07 

inch).  The fluke-shank angle is 49̊.  The weight of model anchor 15 grams (0.03 lbs). 

 

Figure 2.26. Scaled Vryhof Stevmanta (Elkhatib et al., 2002) 
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Due to the limitation of length strong box, the drag distance is limited up to 7 fluke lengths.  

Elkhatib et al. (2002) achieved a longer drag distance over than 7-fluke length by separating drag 

tests into two stages: (1) dragged the anchor starting at the mudline and measured the penetration 

depth at the end of tests; (2) place the anchor to the depth corresponding with the depth from the 

first stage and continued dragging the anchor (Figure 2.27).  The final embedment depth is 

averaged at 4.5 fluke length. 

 

Figure 2.27. Drag Embedment Tests (Elkhatib et al., 2002) 

 

2.3.3 Piggy-back Anchor 

2.3.3.1 Field Tests 

Taylor (1987) performed tandem system anchor field testing in Port Hueneme and San 

Francisco.  For all of the tests reported by Taylor (1987), the second anchor was connected to the 

back of fluke of front anchor.  He tested tandem system anchor with connecting two STATO 

anchors or two NAVMOOR anchors or one STATO to NAVMOOR.  He found that either STATO 

or NAVMOOR anchor demonstrated good stability when set as the front anchor. From their site 
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investigations, the test site at Port Hueneme consisted of well-graded fine sand.  The soil at San 

Fracisco Bay Hunters Point was classified normally consolidated silty clay with 0 psf  undrained 

shear strength at seabed and 10 psf/ft increaseing rate.  Three different tandem system anchors 

were tested with anchor in different size connected: the first two sets is two 1000-pound anchors 

connected and the third test with two 6000-pound NAVMOOR anchors connected.  The first test 

with two 1000-pound anchors show that the total capacity was at least  twice higher than two single 

anchor installed seperatly.  The second test with two 1000-pound anchors and the third test with 

two 6000-pound anchor stopped in the middle of drag since the anchor capacity reached the 

maximum reading of load cell.  The same conclusion were draw from the tamdem system tests in 

normally consolidated clay: the total capacity can be at least twice higher than a single anchor.  

The advantage of using tandem system is to maintain high anchor efficiency since the anchor 

efficiency decreased with the increase of size of anchor if a single anchor installed.  
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Figure 2.28. Tandem System Test Results in Dense Sand at Port Hueneme (Taylor, 1987) 



36 
 

 

Figure 2.29. Tandem System Tests in San Fracisco Bay Hunters Point (Taylor, 1987) 

 

2.3.3.2 Scaled Model Tests 

Walker and Taylor (1983) performed eighty-two tests of tandem system anchor tests with two 

STATO anchors in sand by varying the attachment point and spacing between two anchors.  From 

their model tests, they arrived at the same conclusion with Taylor (1987) that tandem system 

anchor had at least twice capacity compared with a single anchor with appropriate selection of 

attachment point.  In their tests, they connected the shackle of the second anchor to the center of 

crown of the front anchor; connected the shackle of the second anchor to the upper tripping palm 

of the front anchor; the shackle of the second anchor to different locations on the shank of the front 

anchor; connect two anchors with an additional shackle in the front of both anchor and make them 

parallel (Figure 2.30).  As shown in Figure 2.31, in their first attachment configuration, shackle to 
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center of crown, they found both anchors behaved as single anchor.  The second and the third 

attachment configuration, palm-shackle rigging method and shackle to shank method made anchor 

unstable and the front anchor rolled during penetration while the second anchor was affected by 

this rotation.  Moreover, this rotation was worse if the spacing between two anchors were smaller.  

The total capacity by the ground-shackling method highly depended on the spacing between two 

anchors.  If the spacing was zero, then both anchors were unstable and rolled.  With the increase 

of anchor spacing, the total capacity of tandem system anchors increased.   

 

Figure 2.30. Multiple Anchor Test Methods (Walker and Taylor, 1987)  
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Figure 2.31. Total Capacity of Tandem System Anchors (Walker and Taylor, 1987) 

 

2.3.4 Torpedo Pile 

2.3.4.1 Field Tests 

Petrobras developed a variety of types of torpedo piles for different offshore structures and 

successfully installed over 1000 torpedo piles in offshore Brazil (Acteon, 2009; Wilde, 2009).  The 

types of torpedo piles were named by the anchor weight including T-24s, T-43s, and T-98s.  T-24s 

is a 24-tons torpedo pile with small size fins which is designed to prevent pile rolling on the deck 

of handling vessels while provide small amount of frictional resistance to holding capacity.  T-43s 

is a 43-ton torpedo pile with larger fins compared with T-24s and designed for MODU.  T-98s is 

a 98-ton torpedo pile with fins for FPSO.  From December 2001 to January 2000, the Petrobras 

installed over 90 torpedo piles either for MODUs or FPSO.  Since 1996 torpedo piles installed by 
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Petrobras composed a database including installation information such as accelerometer and 

inclinometer data.  Unfortunately, this database is unavailable for publics.   

Medeiros (2002) reported a set of torpedo piles field tests performed in the Campos Basin.  The 

12-m (39.37 ft) long, 762-mm (2.5 ft) diameter and zero-fin torpedo pile with dry weight of 400 

kN (89.9 kips) was dropped from 30 m (98.4 ft) above sea level and the water depth was around 

1000 m (3280 ft).  The tip penetration in different sites in Campos Basin is summarized in Table 

2.2.  Brandão et al (2006) published three full-scale filed tests with a 74-tons torpedo pile.  In the 

published data, the tip angle, drop height, impact velocity, embedment depth at padeye and final 

pile inclination were listed (Table 2.3), however, no detailed description on anchor dimension was 

released.  Denney (2007) decribed the installaion of torpedo pile for P-50 FPSO vessel.  This 

torpedo pile was 17 m (55 ft) long, with a diameter of 1.07 m (3.5 ft) and four fins with 10 meters 

in length and 0.9 meters in width.  The impact velocity was 26.8 m/s (87.9 ft/s), the tip embedment 

was 37.4 m (122.7 ft) and pile inclined 10̊. 

 

Table 2.2. Field Tests Tip Penetrations (Medeiros, 2002) 

Site Penetration Depth  

Normally Consolidated Clay 29 m (95 ft) 

Overconsolidated Clay 13.5 m (44.3 ft) 

Calcareous Sand 15 m (49.2 ft) 

Find Sand Overlying Normally Consolidated 
Clay 

22 m (13m (42 ft) in sand and 9 m (29.5 ft) in 
normally consolidated clay) 
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Table 2.3. Full-Scale Filed Tests (Brandão et al., 2006) 

 Test 1 Test 2 Test 3 

Tip Angle 60̊ 30̊ 30̊ 

Water Depth 1195 m 
(3920 ft) 

1180 m 
(3871 ft) 

940 m   
(3080 ft) 

Drop Height 40 m     
(131 ft) 

135 m    
(443 ft) 

97 m       
(318 ft) 

Impact Velocity 16.3 m/s 
(53.5 ft/s) 

23.0 m/s 
(75.5 ft/s) 

24.0 m/s 
(78.7 ft/s) 

Padeye Embedment Depth 9.0 m   
(29.5 ft) 

16.0 m  
(52.5 ft) 

17.5 m   
(57.4 ft) 

Pile Inclination After Set-up 3.0̊ 9.0̊ 5.0̊ 

 

2.3.4.2 Scaled Model Tests 

Gilbert et al. (2008) conducted a series of 1g tests with 1:30 scale aluminum model torpedo 

pile in normally consolidated kaolinite.  The model pile consisted of a tubular shaft and a conical 

tip, and was deployed from 0 inch to 36 inches above the mud line.  The dry weight of torpedo pile 

depends on the ballasted material inside of pile; it weighed 1.3 pounds in air if it was ballasted 

with tungsten and lead, and 0.7 pounds without ballast. The surface water above mud line arranged 

from -1 inches to 2.3 inches.  They found the embedment depth increases as the drop height and 

anchor weight increases.    
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Table 2.4. 1g Torpedo Pile Tests Summary (Gilbert et al., 2008) 
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2.3.5 Deep Penetration Anchor 

2.3.5.1 Field Tests 

The field test data with full-scaled DPA is limited, but the data with 1:3 scale DPA is available.  

The first field test with 1:3 scale DPA was conducted in 2003, however, data were not available 

since the failure during the extraction of the instrumented anchor.  In 2008, the second reduced 

scale data were performed at Troll Field in Norway.  Sturn et al. (2011) released this set of field 

test data.  The DPA is 2.9 t (6.4 kips), 4.4 m long and with diameter of 0.4 m (1.31 ft).  The fluke 

width is 0.5 m (1.64 ft) and length is 2 m (6.56 ft).  The water depth at test side was 300 m. The 

DPA was dropped from 15 m (49.2 ft) to 75 m (246 ft) from seabed.  The impact velocity was 

around 13 m/s to 15 m/s and embedment depth was 7.04 m (23 ft) to 8.8 m (28.8 ft) (1.6 to 2 fluke 

length).  The final inclination of DPA is around 2.8̊.  In 2009, another two full-size DPA with 

weight of 80 tons (176.4 kips) were tested at Gjøa Field in Norway.  The DPA with length of 13 

m (42.65 ft) and with fluke of 1.2 m (3.93 ft) in diameter was deloyed from 50 m (164 ft) and 75 

m (246 ft) above sea level, and the embedment depth was 24 m (78.7 ft) (1.6 fluke length) and 31 

m (101.7 ft) (2.4 fluke length).  The undrained shear strength of soil in test site was not reported 

but only generally characterized as stiffer soil.  The inclination at final orientation of DPA was 

less than 2̊.  

 

2.3.5.2 Scaled Model Tests 

The database for DPA tested in centrifuge is larger than the field test.  A DPA with 1:200 scale 

was conducted in normally consolidated kaolinite with shear strength ingradient of 0.83 to 1.5 

kPa/m (17 to 31.33 psf/ft) (Richardson, 2008; O'Loughlin et al., 2004a; O'Loughlin et al., 2004b).  

The length of model DPA was 75 mm (2.95 inches) and diameter was 6 mm (0.24 inches).  Three 
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types of  DPA were tested, zero-fins, three-fins, and four fins (Figure 2.32).  The tests results 

indicated that the anchor can penetrate 2 to 3 fluke length, and the final embedment depnds on 

drop height and anchor mass.  O’Loughlin (2013b) concluded the impact velocity depends on 

aspecte ratio and surface area from a series of centrifuge tests (Figure 2.33).  

 

Figure 2.32. 1:200 Scale DPA (O’Loughlin et al., 2004b)  

 

Figure 2.33. Centrifuge Test results with DPA (O'Loughlin et al., 2013b) 

 

2.3.6 Omni-Max Anchor 

2.3.6.1 Field Tests 

Full-scale OMNI-Max anchor test was performed at Green Canyon in Gulf of Mexico.  The 

tested anchor is 9.7m long and weight is 38 t.  Shelton (2007) summarized that the water depth at 

the test site is around 1650 m.  However, there is no detailed soil characterization information.  
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The anchor was dropped from 76 m above sea level, and penetrated 12m (39.4 ft) (1.2 fluke length) 

measured at the tip.  Zimmerman et al. (2009) published OMNI-Max installation for MODU.  The 

length of anchor is 9.15 m (30 ft) , the fluke is 2.9 m (9.5 ft), and the weight is 39 tons (85 kips).  

The tip embedment of anchor is around 1.17 to 2 fluke length at the initial installation.  After a 

hurrican, post analysis showed that anchor rotated about 45̊, with the tip embedment 2 flukes 

deeper.   

 

2.3.6.2 Scaled Model Tests 

Gaudin et al. (2013) performed a series of centrifuge tests in overconsolidated kaolinite with a 

shear strength gradient of 1.1 kPa/m (23 psf/ft) and calcareous silt.  The fluke length is 34 mm 

(1.34 inches) and width of fluke is 16 mm (0.63 inches).  The tests in silt showed that higher impact 

velocity leads to a deeper tip penetration, however, the restuls in kaolinite shows more scatter 

which might caused by the mooring line (Figure 2.34).   

 

Figure 2.34. Centrifuge Tests Results with OMNI-Max Anchor (Gaudin et al., 2013) 
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2.3.7 Suction Embedded Plate Anchor (SEPLA) 

2.3.7.1 Field Tests 

Wilde et al. (2001) reported that CSO AMC designed and fabricated a SEPLA with a scale of 

1:4 but with a full-sized follower in 1998.  CSO AMC aimed to use this small scaled SEPLA with 

full-sized follower to confirum the follower installation, capacity and recoverility.  After 

successful testing the follower at Gulf of Mexico Ship Shoal Area Block 332, the AHV Seacor 

Vanguard and the CAHT Dove successfully deployed a full size SEPLA at Mississippi Canyon 

Block 126 (MC-126).  The test site had water depth of 1300 m (3280 ft).  The final embedment 

depth of SEPLA was 25 m (82 ft).  The SEPLA was first applied to taut leg mooring JIP on the 

MODU Ocean Victory.  For this SEPLA, the embedment depth was 35 to 36 ft, and the tension at 

the runing-line tensionmeter (RLT) was 380 kips which was consistetn with prediction of 375 kips. 

 

2.3.7.2 Scaled Model Tests 

In 1998, CSO AMC performed small-scaled model test with SEPLA in Laponite for 

subsequent development of SEPLA (Wilde, 2001).  Gaudin (2006) performed a series of centrifuge 

tests with 1/145th scaled SEPLA in normally consolidated clay.  The SEPLA plate in this study is 

a square plate with 35 mm (1.34 inch) high and 1 mm (0.04 inch) thick, which is equivalent to 

5.075 m (16.6 ft) high and 0.145 m (0.45 ft) thick prototype SEPLA.  The surface of the anchor 

was smooth.  The 1 mm thick triangular-shaped plate represented the shank and the padeye on the 

shank was located with 23 mm eccentricity (66% relative to the anchor height).  The purpose of 

making the padeye with eccentricity was to avoid the padeye leveling up with the caisson tip.  

From Gaudin (2006)’s tests, the embedment loss of plate was between 0.9 to 1.5 anchor height.  

Gaudin (2006) concluded that the embedment loss strongly was correlated with the padeye chain 
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inclination.  Thus, keying the plate anchor at a lower inclination angle may reduce the embedment 

loss.   

 

2.3.8 Dynamically Embedded Plate Anchor (DEPLA) 

2.3.8.1 Field Tests 

Blake et al. (2015) conducted a field test with DEPLA which has 9-m (29.5 ft) follower, 0.72-

m (2.4 ft) flukes and 37 t (81.6 kips) in dry weight.  The test site was located in Lower Lough Erne, 

a glacial lake in County Fermanaph, Northern Ireland.  The soil is normally consolidated soft clay 

with shear strength gradient of 1.5 kPa/m (31.33 psf/ft), and moisture content of 270% to 520%, 

plastic limits of 130% to 180%, and liquid limits of 250% to 315%.  The load-displacement 

measured in the field is consistent with the model centrifuge tests, and Nc from field tests (14.3 to 

14.6) is close to Nc (15) from centrifuge tests.  However, the embedment loss in field tests during 

keying was 1D to 1.8D, which is higher than the centrifuge data (0.7D). 

 

2.3.8.2 Scaled Model Tests 

O'Loughlin et al. (2014) performed a seried of centrifuge tests with DEPLA with cylindrical 

fins and square fins.  The follower length is ranging from 51 mm (2 inches) to 76 mm (3 inches), 

and the diameter of fluke is around 16 mm (0.63 inches) to 30 mm (1.18 inches).  The tests were 

conducted under 200g, which makes the model anchor equivalent to 10.3 m (33.8 ft), 15.2 m (50 

ft), and 20.3 m (66.6 ft) respectively.  The centrifuge tests results presented that DEPLA had 

similar behavior as DPA during installation process, and can reach a similar penetration depth 

which is 1.6 to 2.8 fluke length.  After installation, the follower is retrieved, and the fluke rotates 
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into the perpendicular position to service load.  The load measrued from retrieval process of 

follower was 3 times smaller than the anchor self weight.  The load-displacement curve of keying 

and pull-out response contains three stages: stiff response at the beginning of keying, softening 

response afterwards when rotation angle increases, and stiff response again when the full capacity 

of fluke mobilizes.  The loss of embedment is 0.5B to 0.66B during keying.  The bearing capacity 

factor is between 14.2 to 15.8. 

 

Figure 2.35. 1:200 DEPLA (O'Loughlin et al., 2014) 

 

2.3.9 Flying Wing Anchor® 

2.3.9.1 Field Tests 

In December 2015, the scaled Flying Wing Anchor® in Paloma design was tested in Scottish 

Sea.  The main purpose of testing Flying Wing Anchor® in Paloma is to evaluate the coupling 

mechanism underwater.  Before deploying Paloma, the behavior of the coupling mechanism was 
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checked first in the air (Figure below).  From the field tests, the Paloma was successfully embedded, 

but was not dragged to penetrate deeper afterwards.  Moreover, due to the malfunction of 

measuring equipment, the tests data regarding on anchor capacity and embedment depth were 

unavailable. 

 

Figure 2.36. Flying Wing Anchor® in Field Test (Jose Eugenio Iturriaga Flores, 2016) 

 

2.3.9.2 Scaled Model Tests 

Gerkus (2016) performed a series of scale model tests with three different designs of Flying 

Wing Anchor®, the Diamond, the Paloma, and Speedy (Figure 2.37).  All three model anchors 

were printed by 3D printer.  The Diamond model had a fluke area of 11.44 in2, and weight of 0.114 

lbs and fluke thickness between 0.1-0.75 inches.  The Paloma model anchor had a fluke area of 12 

in2, and weight of 0.12 lbs.  The Speedy had a fluke area of 9.7 – 19.29 in2, and weight of 0.2 lbs.  

The anchor loading line thickness was a 0.025 in diameter nylon rope. 
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Figure 2.37. Scaled Model Flying Wing Anchor® (Gerkus, 2016) 

 

For the Diamond Anchor, Gerkus (2016) concluded that the anchor dove deeper and the pitch 

angle increased.  Gerkus (2016) placed the anchor with initial pitch of 45 degree and depth with 

0.8 fluke width or 1.5 fluke width below mudline, and the final embedment depth was 1.4 fluke 

width or 2.1 fluke width.  One example tests results for the Diamond are shown in Figure 2.38.  

For the Paloma Flying Wing Anchor® testing, the anchor line was loaded at 0.04 in/sec before the 

shank being released, and the loading rate was 0.8 in/sec.  The tests results show that shank was 

released with the load at 4.2 lbs and pitch at 52 degrees.  After the shank being released, the load 

dropped to 1.9 lbs.  Correspondingly, the equilibrium capacity factor dropped from 4 to 1.8 at the 

point where shank was released.  One example tests results for the Paloma are shown in Figure 

2.39.  The Speedy anchor was embedded 0.6 fluke width to 1.2 fluke width initially, and the 

equivalent bearing capacity factor for the Speedy was 10-12.  One example tests results for the 

Speedy anchor is shown in Figure 2.40 
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Figure 2.38. Example Tests Results with Diamond-Shaped Flying Wing Anchor® (Gerkus, 
2016) 

 

Figure 2.39. Example Tests Results with Paloma Flying Wing Anchor® (Gerkus, 2016) 
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Figure 2.40. Example Tests Results of Speedy Flying Wing Anchor® (Gerkus, 2016) 

 

2.4 Embedment Prediction Methods 

In this section, the embedment prediction methods for drag embedment anchors and free-fall 

penetration anchors are briefly reviewed.  For the drag embedment anchor prediction methods, 

empirical method, limit equilibrium method, plastic limit method, and upper bound collapse load 

method are reviewed.  For the free-fall penetration prediction, Young’s method, Ove Arup and 

Partners method, True’s method, and modified True’s method are reviewed.  
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2.4.1 Drag Embedment Prediction Methods 

2.4.1.1 Empirical Method - Design Chart 

The empirical method was designed to estimate holding capacity and embedment depth of a 

specific type of anchor.  The chart was developed based on empirical equation and regression of 

tests data.  This section briefly summarized the current design charts commonly used for different 

types of drag embedment anchors.  

 

2.4.1.1.1 NCEL Method 

Naval Civil Engineering Laboratory (NCEL) developed an empirical design chart for different 

types of anchors.  From experiences, the holding capacity is related to the self weight of anchor.  

This relation was regressed as  

 F = a ×(𝑊𝑊𝑎𝑎
𝐶𝐶

)𝑏𝑏 Eq.(2.1) 

where F is the anchor capacity in kips 

a is a parameter for type of anchor in kips 

Wa is the anchor weight in kips 

b is a dimensionless parameter for type of anchor 

C is a constant parameter equal to 10 kips 

Figure 2.41 shows the capacity estimate design chart by NCEL.  The capacity of anchor can 

be estimated by either calculating based on Equation 2.1 or finding the line corresponds with the 

designed anchor in log-log plot shown in Figure 2.41.  For example, if we estimate capacity of 
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Bruce FFTS anchor, then a = 250 kips, and b = 0.92; if we estimate capacity of Vryhof Stevpris, 

then a = 189 kips, and b = 0.92.  However, it is well known that the drag embedment capacity 

depends on the drag distance because a further drag makes anchor dives deeper which makes 

higher soil bearing on fluke and resistance on shank due to the higher undrained shear strength 

form normally consolidated profile.  Therefore, NCEL (1997) proposed another chart for different 

types of anchor for estimate capacity at a certain drag distance.  The drag distance in this chart is 

normalized by fluke length, and the estimated capacity is normalized total capacity from Figure 

2.41. 
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Figure 2.41. NCEL Design Chart (NCEL, 1987) 
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Figure 2.42. Anchor Capacity in Terms of Drag Distance (NCEL, 1987) 

 

2.4.1.1.2 Vryhof Anchor Method 

Vryhof Anchor (2010) developed empirical design chart and table to estimate holding capacity 

in terms of drag embedment depth.  Similar to design chart by NCEL (1987), the design chart for 
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each anchor is different.  However, the difference is that Vryhof takes the soil condition into the 

estimate of holding capacity.  For example, the holding capacity curve for the same anchor is 

different in sand or hard clay, medium clay and very soft clay (Figure 2.43).  The holding capacity 

read from the chart is the maximum holding capacity which corresponds with the deepest 

penetration depth.  However, this extreme condition may not be reached during installation.  Thus, 

a table to correct the maximum holding capacity was proposed (Table 2.5).  The correction is based 

on the percentage of current drag distance over maximum drag distance.   

Table 2.5. Correction Factor for Vryhof Anchor (Vryhof, 2010) 
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Figure 2.43. Vryhof Design Chart for Stevin MK3 Anchor (Vryhof, 2010) 
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2.4.1.1.3 Bruce Anchor Method 

Similar to design chart by NCEL and Vryhof, the proposed design chart by Bruce also depends 

on anchor weight.  The major difference of Bruce design chart is taking thickness of mooring line 

into capacity estimation.  One example of design chart for Bruce PM Anchor is shown in Figure 

2.44.  The corresponding empirical equation is shown in Equation 2.2 to 2.4. 

 

 

Figure 2.44. Brace PM Anchor Design Chart (Courtesy by Bruce Anchor) 
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 HC(chain/sand) = 60.92 W0.94 Eq.(2.2) 

 HC(chain/mud) = 45.94 W0.92 Eq.(2.3) 

 HC(wire/mud) = 57.11 W0.92 Eq.(2.4) 

2.4.1.2 Limit Equilibrium Method 

Limit equilibrium method for predicting anchor trajectory, capacity and pitch along drag is 

assumed that the forces on anchor are in equilibrium at any point of horizontal drag.  Different 

researchers have different assumptions of the magnitude of soil resistance as well as the direction 

and location applied.  In this section, limit equilibrium method proposed by Neubecker and 

Randolph (1996b) and Throne (1998) is briefed reviewed. 

2.4.1.2.1 Neubecker and Randolph 

Neubecker and Randolph (1996) proposed a limit equilibrium approach based on static and 

kinematic behavior of drag anchor in cohesive soil (Stewart, 1992) and sand (Lelievre and 

Tabatabaee, 1981).  In this approach, it was assumed that soil resistance on a weightless anchor is 

a function of undrained shear strength, static bearing capacity, and the frontal projected area in the 

direction of movement.  Coupling with chain solution by Neubecker and Randolph (1995), the 

tension at padeye, anchor trajectory and orientation can be achieved. 

 

Figure 2.45. Frontal Projected Area Ap (Randolph and Gourvenec, 2011) 



60 
 

The forces acting an anchor is shown in Figure 2.46.  Tp is the soil resistance parallel to fluke, 

and can be calculated by Equation 2.5.  For a weightless anchor, a bearing force normal to fluke, 

Tn, combines with Tp, a resultant force Tw can be determined based on Equation 2.6.  Tw at shackle 

makes anchor oriented to 𝜃𝜃𝑤𝑤, which changes over horizontal drag.  During embedment, there will 

be an angle between the fluke and the horizontal, which is defined as β.  The angle between Tw 

and Ta is defined as 𝜓𝜓.  Then, the angle at padeye, 𝜃𝜃𝑎𝑎, can be calculated (Equation 2.7).   It should 

be noted that Tw is independent with anchor weight; however, Ta, the tension at padeye depends 

on weight of anchor.   

 𝑇𝑇𝑝𝑝 = f 𝐴𝐴𝑝𝑝𝑁𝑁𝑐𝑐𝑠𝑠𝑢𝑢 Eq.(2.5) 

where f is the a from factor for anchor, which can be considered as the correction factor for bearing 

capacity factor Nc 

Ap is projected anchor area in the direction of movement (Figure 2.45) 

Nc is bearing capacity factor (commonly use 9) 

Su is the local undrained shear strength 

 Tw = 𝑇𝑇𝑝𝑝

𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃𝑤𝑤)
 Eq.(2.6) 
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Figure 2.46. Force Acting on an Anchor (Neubecker and Randolph, 1996) 

 

 𝜃𝜃𝑎𝑎 = 𝜃𝜃𝑤𝑤 + 𝜓𝜓 − β Eq.(2.7) 

The trajectory, capacity, and orientation of anchor is calculated by the following steps: 

1. At the initial embedment, we know the fluke angle β. 

2. Advance a horizontal increment, Δx, then the embedment depth, Δz, at this horizontal 

increment can be calculated. 

3. Calculate the resistance parallel to fluke by Equation 2.5, and the angle at padeye by 

Equation 2.7, and tension at padeye by using force polygon formed by Tw and anchor 

weight (Figure 2.46). 

4. Advance anchor movement to another increment Δx then repeat from step 2. 
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2.4.1.2.2 Throne (1998) 

Throne (1998) proposed an equilibrium limit method to describe anchor movement in terms of 

its orientation and location.  This method assumed that anchor will move until the it overcame the 

soil resistance parallel to fluke.  The general drag force on an anchor is shown in Figure 2.47 and 

can be expressed as  

 drag = DAi DFi Su Eq.(2.8) 

where DAi and DFi is the area and drag factor for the ith component.   

These small components drag force will be added to calculate the total drag forces as shown in 

Figure 2.48 by Equations 2.9 to 2.11. 

 TDFN = ∑ −𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑖𝑖𝑠𝑠𝑢𝑢 sin 𝛼𝛼𝑖𝑖
𝑖𝑖=𝑛𝑛
𝑖𝑖=1  Eq.(2.9) 

 TDFP = DAf ∙ DFf ∙ Su + ∑ 𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑖𝑖𝑠𝑠𝑢𝑢 cos 𝛼𝛼𝑖𝑖
𝑖𝑖=𝑛𝑛
𝑖𝑖=1  Eq.(2.10) 

 TDFM =  ∑ 𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑖𝑖𝑠𝑠𝑢𝑢 cos 𝛼𝛼𝑖𝑖
𝑖𝑖=𝑛𝑛
𝑖𝑖=1 ∙ (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ∙ sin 𝛼𝛼𝑖𝑖 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ∙

cos 𝛼𝛼𝑖𝑖) 
Eq.(2.11) 

 

 

Figure 2.47. Elements for Conventional Anchor (Throne, 1998) 
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Figure 2.48. Equilibrium of Anchor During Penetration 

 

If an anchor with fluke angle, θ, and the chain angle at the shackle 𝜃𝜃𝑎𝑎, Throne (1998) set a rule 

that anchor stays static condition unless anchor overcomes all components of the soil resistance 

which is normal, parallel, and moment.  At the moment where anchor is about to move, he assumed 

all the forces are in equilibrium state.  The expressions about normal, parallel forces and moment 

are shown in Equation 2.12 to 2.14. 

  𝑇𝑇𝑎𝑎 cos (θ + 𝜃𝜃𝑎𝑎) = TDFP − 𝑊𝑊 sin θ Eq.(2.12) 

 𝐹𝐹𝑛𝑛 = 𝑇𝑇𝑎𝑎 sin (θ + 𝜃𝜃𝑎𝑎) − 𝑊𝑊 cos θ − TDFN Eq.(2.13) 

 M = Ta (Sx sin (θ + 𝜃𝜃𝑎𝑎) − Sy cos (θ + 𝜃𝜃𝑎𝑎)) + TDFM –  𝑊𝑊 (Yw 
sin θ + Xw cos θ) 

Eq.(2.14) 

 

2.4.1.3 Plastic Limit Method 

O'Neill et al. (2003) proposed a prediction method for anchor trajectory based on the yield loci 

and plastic potential framework.  This method was investigated by finite element analysis on the 
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interaction between anchor fluke and soil.  For a given foundation and soil property around the 

foundaiton, the yield locus is  

 f (V, H, M) = 0 Eq.(2.15) 

This mathematical expression of yield locus can be plotted as shown Figure 2.49 if only vertical 

and horizontal load applied (M=0).  Chen (1975) assumed that soil interacted with foundation 

obeys normality rule, and Bransby and Randolph (1998) confirmed this assumption through finite 

element analysis on combined loading subjected to a skirt foundation.  This approcach was applied 

to offhsore foundation by Martin and Houlsby (2001).  Thus, it was verified that there is no 

volumne change in plastic flow for soil in undrained condition. 

 

Figure 2.49. The Yield Locus and Plastic Potential Function (O'Neill et al., 2003) 
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 O'Neill et al. (2003) extended this plastic framwork to a deeply embedded drag anchor.  To 

simplify the analysis, he assumed that the anchor is weightless plate without shank as well as 

assumming chain load at padeye is subjected to a reference point on fluke. This weightless anchor 

without shank are under a loading conidion with force parallel (H) , force perpendicular (V), and 

moment (M) as shown in Figure 2.50.  Anchor experineces with the subjection of H, V and M, the 

anchor experiences failure and moves parallely to fluke (𝛿𝛿ℎ), perpendicular to fluke (𝛿𝛿𝛿𝛿), and 

rotatiaonally to fluke (𝛿𝛿𝛿𝛿) about the same point on the fluke (Figure 2.49).   

 

 

Figure 2.50. Loads and Displacements at Failure for a Simplified Drag Anchor (O'Neill et al., 
2003) 

 

Murff (1994) proposed an offset form of yield loci which gives the best fit to the anaylsis 

results (Equation 2.16) 
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𝑓𝑓= ( 𝑉𝑉−𝑉𝑉1

𝑉𝑉 𝑚𝑚𝑚𝑚𝑚𝑚−𝑉𝑉1
)𝑞𝑞 + �( 𝑀𝑀−𝑀𝑀1

𝑀𝑀 𝑚𝑚𝑚𝑚𝑚𝑚−𝑀𝑀1
)𝑚𝑚  +   ( 𝐻𝐻−𝐻𝐻1

𝐻𝐻 𝑚𝑚𝑚𝑚𝑚𝑚−𝐻𝐻1
)𝑛𝑛�

1
𝑝𝑝 – 1 = 0 

Eq.(2.16) 

The maximum vertical load (𝑉𝑉 𝑚𝑚𝑚𝑚𝑚𝑚), horizontal load (𝐻𝐻 𝑚𝑚𝑚𝑚𝑚𝑚), and moment (𝑀𝑀 𝑚𝑚𝑚𝑚𝑚𝑚) are shown 

in Equation 2.17 to 2.19 , respectively.  The offset vertical load (𝑉𝑉1), horizontal load (𝐻𝐻1), moment 

(𝑀𝑀1) were from finite element analysis.  The interaction coefficients, m, n, p, and q are obtained 

by least square regression (Table 2.6).   

 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝐿𝐿𝑓𝑓𝑠𝑠𝑢𝑢

 =4 (𝜋𝜋 −α + tan 𝛼𝛼
2

) + 4𝑑𝑑𝑓𝑓

𝐿𝐿𝑓𝑓
 (1

2
 +cos α) Eq.(2.17) 

 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚
𝐿𝐿𝑓𝑓𝑠𝑠𝑢𝑢

 =4 𝑡𝑡
𝐿𝐿𝑓𝑓

 (𝜋𝜋 −α + tan 𝛼𝛼
2

) + 4 (1
2
 +cos α) Eq.(2.18) 

 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚
𝐿𝐿𝑓𝑓

2 𝑆𝑆𝑢𝑢
 = 𝜋𝜋

2
 [1+ ( 𝑡𝑡

𝐿𝐿𝑓𝑓
)2] Eq.(2.19) 

where Lf is the length of fluke 

t is the thickness of fluke 

α is the angle of rigid wedge (shown in Figure 2.51 and Figure 2.52) 

Table 2.6. Interaction Coefficients  

 Bransby and O’Neil 

(1999) 

Elkhatib and 

Randolph (2005) 

Murff et al. 

(2005) 

Gilbert et al. 

(2009) 

Yang et al. 

(2010) 

m 1.26 2.58 1.56 1.56 1.35 

n 3.72 3.74 4.19 4.19 3.11 

p 1.09 1.09 1.57 1.57 1.38 

q 3.16 1.74 4.43 4.43 4.3 
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Figure 2.51. Upper Bound Mechanisms of Simplified Anchor Subjected by Pure Normal 
Load (O'Neill et al., 2003) 

 

Figure 2.52. Upper Bound Mechanisms of Simplified Anchor Subjected by Pure Shear Load 
(O'Neill et al., 2003) 

 

Figure 2.53. Upper Bound Mechanisms of Simplified Anchor Subjected by Pure Rotational 
Moment (O'Neill et al., 2003) 
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Figure 2.51 to Figure 2.53 presents the upper bound mechanisms for an anchor without shank.  

The movement of anchor is controlled by the direction which is normal to the yield locus.  With 

the assumption of the associated flow rule, the vertical displacement increment relative to the 

horizontal displacement increment and the rotational movement to horizontal displacement 

increment is shown as following: 

 𝛿𝛿𝛿𝛿
𝛿𝛿ℎ

 = 𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

 ∕ 𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

 Eq.(2.20) 

 𝛿𝛿𝛿𝛿
𝛿𝛿ℎ∕𝐿𝐿𝑓𝑓

 =  𝛿𝛿𝛿𝛿

𝛿𝛿( 𝑀𝑀
𝐿𝐿𝑓𝑓

)
 ∕ 𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿
 Eq.(2.21) 

The horizontal displacement increment is determined in advance, then the vertical and 

rotational movement of anchor fluke can be updated by the following equations: 

 Δ𝑣𝑣= (𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

 ∕ 𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

) Δℎ Eq.(2.22) 

 Δ𝛽𝛽= ( 𝛿𝛿𝛿𝛿

𝛿𝛿( 𝑀𝑀
𝐿𝐿𝑓𝑓

)
 ∕ 𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿
) (Δℎ ∕ 𝐿𝐿𝑓𝑓) Eq.(2.23) 

   

2.4.1.4 Upper Bound Collapse Load Analysis 

Aubeny et al. (2008) developed an anchor trajectory and load prediction method based on the 

anchor line solution by Neubecker and Randolph (1995) and the capacity solution by upper bound 

collapse load analysis.  The anchor chain solution is shown below 

 𝑇𝑇𝑎𝑎 (𝜃𝜃𝑎𝑎
2 − 𝜃𝜃0

2)
2

 = z𝐸𝐸𝑛𝑛𝑁𝑁𝑐𝑐b (𝑁𝑁𝑐𝑐𝑏𝑏 (𝑆𝑆𝑢𝑢0 + kz/2) Eq.(2.24) 

where 𝑇𝑇𝑎𝑎 is the anchor line tension at shackle 

𝜃𝜃𝑎𝑎 is the anchor line angle from horizontal at shackle point 

𝜃𝜃0 is the anchor line angle from horizontal at mudline 
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𝐸𝐸𝑛𝑛 is the multiplier to be applied to chain diameter 

𝑁𝑁𝑐𝑐 is the bearing factor for anchor line 

b is diameter of anchor line 

𝑆𝑆𝑢𝑢0 is the undrained shear strength at mudline 

k is the shear strength gradient 

z is the depth 

The line angle 𝜃𝜃𝑎𝑎 at the shackle can be calculated as  

 
𝑑𝑑𝜃𝜃𝑎𝑎
𝑑𝑑𝑧̂𝑧

  = 

𝐸𝐸𝑛𝑛𝑁𝑁𝑐𝑐
𝑇𝑇�𝑎𝑎

 − 𝜃𝜃𝑎𝑎
2 − 𝜃𝜃0

2

2 (1
𝜂𝜂+ 𝑧𝑧�)

(𝜃𝜃𝑎𝑎− 𝜃𝜃0
𝑑𝑑𝜃𝜃0
𝑑𝑑𝜃𝜃𝑎𝑎

)+ 1
𝑇𝑇�𝑎𝑎

𝑑𝑑𝑇𝑇�𝑎𝑎
𝑑𝑑𝜃𝜃𝑎𝑎𝑎𝑎

 
𝜃𝜃𝑎𝑎

2 − 𝜃𝜃0
2

2  (1− 𝑑𝑑𝜃𝜃𝑠𝑠
𝑑𝑑𝜃𝜃𝑎𝑎

)
 

Eq.(2.25) 

where 𝑧̂𝑧 is the normalized depth of shackle = z/b 

𝑇𝑇�𝑎𝑎 is the normalized tension at shackle = 𝑇𝑇𝑎𝑎 /𝑠𝑠𝑢𝑢𝑢𝑢𝑏𝑏2 = 𝑁𝑁𝑒𝑒𝐴𝐴𝑓𝑓/𝑏𝑏2; and 𝑠𝑠𝑢𝑢𝑢𝑢 is the soil shear strength 

at shackle, and 𝑁𝑁𝑒𝑒 is the equilibrium bearing capacity factor which is the capacity factor when 

anchor is in the equilibrium condition. 

𝑑𝑑𝑇𝑇�𝑎𝑎
𝑑𝑑𝜃𝜃𝑎𝑎𝑎𝑎

 is the slope of anchor capacity curve 

𝑑𝑑𝜃𝜃𝑠𝑠
𝑑𝑑𝜃𝜃𝑎𝑎

 is the rate of change in mudline angle with respect to 𝜃𝜃𝑎𝑎 

𝜂𝜂 is the strength gradient parameter = bk/𝑠𝑠𝑢𝑢0 

The anchor trajectory can be calculated as following steps: 

1. Set a movement Δ𝑡𝑡 which is parallel to the fluke, and a fluke angle 𝜃𝜃𝑓𝑓 . 
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2. Calculate the horizontal and vertical displacement by combining the current rotational 

angle 𝜃𝜃𝑓𝑓.  Δz = Δt sin θf , Δx = Δt cos θf (Figure 2.54). Moreover, the displacement normal 

to fluke can be calculated ( Δn =  Δx ∙ sin θf  −  Δz ∙ cos θf ), and then the ratio of 

displacement normal to displacement parallel to fluke (Rnt = Δn/Δt) can be defined. 

3. Calculated line angle by Equation 2.25. 

4. Update fluke angle θf and anchor line angle at the next step θa 

 

Figure 2.54. Sketch of Anchor Displacement 

 

2.4.2 Free Fall Embedment Prediction Methods 

For the free fall embedment prediction, four different methods are reviewed in this section.  

The Young’s (1969) method was developed empirically based on database with full scale tests, 

Ove Arup and Partners Methods (1982) develop prediction for the disposal of radiactive waste in 

seabed sediment by free-fall penetrometer.  True (1976) extended prediction for penetrometer 

based on Schmid (1969) and Migliore and Lee (1971).  The widely applied prediction for 

penetrometer is the modified True’s method. 
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2.4.2.1 Young’s Method 

Young (1969) proposed a prediction model for free-fall penetrometer based on an extensive 

database of full scale field tests.  Revised prediction by Young (1981) and Young (1997) were 

porposed.  Young (1969, 1981, and 1997)’s method: 

1. is suitable for impact velocity less than 4000 ft/s 

2. cannot accurately predict displacement and velocity within three fluke lengths 

3. is not applicable for layered soil profile 

4. is not applicable for weight less than 5 lb. 

In a uniform soil, the displacement can be predicted by the following equation only if the 

velocity is less than 200 ft/s 

 z = 0.3 SN𝐾𝐾𝑠𝑠 ( 𝑚𝑚
𝐴𝐴𝑝𝑝

)0.7ln (1+ 2×10−5𝑣𝑣𝑖𝑖
2) Eq.(2.26) 

 

If velocity is more than 200 ft/s 

 z = 0.00178 SN𝐾𝐾𝑠𝑠 ( 𝑚𝑚
𝐴𝐴𝑝𝑝

)0.7(𝑣𝑣𝑖𝑖 − 100) Eq.(2.27) 

where z is the displacement  

N is coefficient depends on the tip shape 

For ogive shape tip 

 N = 0.18 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡

𝐷𝐷
 + 0.56 Eq.(2.28) 

   

For a conical shape tip 
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 N = 0.25 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡

𝐷𝐷
 + 0.56 Eq.(2.29) 

𝑣𝑣𝑖𝑖 is the impact velocity in ft/s 

m is the weight in lbs 

Ap is the projected from area in ft2 

Ks is a correction factor for the penetrometer less than 60 lbs 

 𝐾𝐾𝑠𝑠 = 0.2𝑚𝑚0.4 Eq.(2.30) 

S is the fitting parameter depends on the soil property shown in Table 2.7. 

 

Table 2.7. Soil Penetrability of Typical Soil Types (Young, 1997) 

Material S 

Dense, dry, cemented sand 2-4 

Sand without cementation, very stiff and dry clay 4-6 

Moderately dense to loose sand, no cementation 6-9 

Soil fill material, various levels of compaction 8-10 

Silt and clay, low to medium moisture content 5-10 

Silt and clay, moist to wet 10-20 

Very soft, saturated clay – very low shear strength 20-30 

Clay marine sediments – Gulf of Mexico 30-60 
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The strain effect and fluke length is not included in Young’s method, which leads to inaccurate 

prediction on shear strength of soil when penetrometer travelling through soil and inaccurate 

prediction of bearing and shearing force on penetrometer.  In addition, the prediction highly 

depends on the determination of material factor, S, which makes difficult to extend Young’s 

method to stiff materials such as stiff clay and rock.   

 

2.4.2.2 Ove Arup and Partners Method 

Ove Arup and Partners (1982) proposed a method to estimate the penetrometer embedment 

depth for a disposal of radiactive waste in seabed sediment by free-fall penetrometer.  In the 

estimation method developed by Ove Arup and Partners (1982), there was no inertial drag effect 

included.  The estimation contained separte prediction for full and partial penetration.  The part 

for full penetration is brieftly reviewed here. 

The projectile of penetrometer during free-fall process can be described by  

 −m 𝑑𝑑
2𝑧𝑧

𝑑𝑑𝑑𝑑2 = 𝐴𝐴2z + 𝐵𝐵2 Eq.(2.31) 

where 𝐴𝐴2 and 𝐵𝐵2 can be expressed as  

 𝐴𝐴2 = 𝜋𝜋𝐷𝐷2

4
 𝑁𝑁𝑒𝑒𝑒𝑒 k + 𝜋𝜋DLk𝛼𝛼𝑑𝑑 Eq.(2.32) 

 𝐵𝐵2 = 𝜋𝜋𝐷𝐷2

4
 (𝑁𝑁𝑒𝑒𝑒𝑒 (𝑆𝑆𝑢𝑢,𝑠𝑠𝑠𝑠𝑠𝑠 +kL)) + 𝜋𝜋DL𝛼𝛼𝑑𝑑(𝑆𝑆𝑢𝑢,𝑠𝑠𝑠𝑠𝑠𝑠 +k(𝐿𝐿

2
)) −𝑊𝑊𝑠𝑠 Eq.(2.33) 

and 

 𝑁𝑁𝑒𝑒𝑒𝑒 = 𝑁𝑁𝑐𝑐𝑐𝑐 + 𝑁𝑁𝑐𝑐ℎ𝑑𝑑
𝑆𝑆𝑡𝑡

 Eq.(2.34) 

where 𝑁𝑁𝑐𝑐𝑐𝑐 is the bearing capacity factor for penetrometer, and 𝑁𝑁𝑐𝑐𝑐𝑐 is resistance factor for dynamic 

trail, and St is the soil sensitivity.  
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By differentiate Equation 2.31, and modified by Poorooshasb and James (1989), the 

penetration depth can be expressed 

 Z = 𝐵𝐵2
𝐴𝐴2

 (cos(Kt) − 1) + 𝑉𝑉𝑖𝑖
𝐾𝐾

 sin (Kt) Eq.(2.35) 

where K = 𝐴𝐴2/m 

The velocity then can be obtained by differentiating Equation , 

 V = − (𝐵𝐵2
𝐴𝐴2

)𝐾𝐾 sin(𝐾𝐾𝐾𝐾) +  𝑉𝑉𝑖𝑖 cos (Kt) Eq.(2.36) 

This method successfully predicted the velocity, bearing and resistance force during free-fall, 

however, it lacks the consideration of strain rate effect of soil shear strength caused by 

penetrometer travelling through soil with wide range of velocity. 

 

2.4.2.3 True’s Method 

True (1976) developed a method based on Schmid (1969) and Migliore & Lee (1971) to predict 

free-fall object travelling through soil with velocity up to 400 ft/s.  This method includes the strain 

rate, remodling effect on shear strength of soil adhere to side of penetrating object and inertial drag 

effects.  This method is recommended to apply with the velocity over 3 ft/s.  If the object is lower 

than 3ft/s, a static penetration analysis is recommended. 

The prediction equation proposed by True (1976) is shown as following: 

 F = 𝑊𝑊𝑠𝑠 − 𝐹𝐹𝑏𝑏 − 𝐹𝐹𝑠𝑠 − 𝐹𝐹𝑑𝑑 Eq.(2.37) 

where F is from Newton’s Law 
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 F = mv (𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

) Eq.(2.38) 

𝑊𝑊𝑠𝑠 is the submerged weight of penetrating object 

𝐹𝐹𝑏𝑏 is the tip resistance can be expressed  

 𝐹𝐹𝑏𝑏 = 𝑠𝑠𝑢𝑢,𝑡𝑡𝑡𝑡𝑡𝑡𝑆𝑆𝑒𝑒 𝑁𝑁𝑡𝑡𝐴𝐴𝑝𝑝 Eq.(2.39) 

where 𝑠𝑠𝑢𝑢,𝑡𝑡𝑡𝑡𝑡𝑡 is the undrained soil shear strength at a D/2 below penetrating object, and 𝐴𝐴𝑝𝑝 is the 

cross-sectional area of penetrating object 

𝑆𝑆𝑒𝑒 is the strain rate factor can be expressed by  

 𝑆𝑆𝑒𝑒 = 𝑆𝑆𝑒𝑒
∗

1+ 1

[ 𝐶𝐶𝑒𝑒 𝑉𝑉
𝑠𝑠𝑢𝑢𝐷𝐷𝑒𝑒𝑒𝑒

+𝐶𝐶0]0.5 

 Eq.(2.40) 

where 𝑆𝑆𝑒𝑒
∗ is the maximum strain rate factor, 𝐶𝐶𝑒𝑒 and 𝐶𝐶0 is strain rate coefficient, V is penetrating 

object velocity, 𝐷𝐷𝑒𝑒𝑒𝑒 is the equivalent diameter of penetrating object.  For a long cylindrical object, 

𝑆𝑆𝑒𝑒
∗ = 4, Ce = 4 and C0 = 0.11. 

𝑁𝑁𝑡𝑡 is tip resistance factor can be expressed by  

 𝑁𝑁𝑡𝑡 = 5 [1 + 0.2( 𝐷𝐷
𝐿𝐿
 )] [1 + 0.2( 𝑧𝑧

𝐷𝐷
 )] ≤ 10 Eq.(2.41) 

𝐹𝐹𝑠𝑠 is the side friction with the assumption that no gap is between soil and penetrating object 

 𝐹𝐹𝑠𝑠 = ( 𝑆𝑆𝑢𝑢,𝑎𝑎𝑎𝑎𝑎𝑎
𝑆𝑆𝑡𝑡

 )𝑆𝑆𝑒𝑒𝐴𝐴𝑠𝑠 Eq.(2.42) 

where 𝑆𝑆𝑢𝑢,𝑎𝑎𝑎𝑎𝑎𝑎 is the undrained shear strength over the penetrating object 

𝑆𝑆𝑡𝑡 is soil sensitivity 

𝐴𝐴𝑠𝑠 is the side surface area. 
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The prediction flow chart is shown in Figure 2.55.  In general, calculating 𝑣𝑣𝑖𝑖  for each depth 

increment, then update current depth z, and 𝑣𝑣𝑖𝑖+1 for the next iteration. 

 𝑣𝑣𝑖𝑖 = 𝑣𝑣0 + ( 1
𝑣𝑣0 

) [ (△𝑧𝑧
𝑚𝑚

) (𝑊𝑊𝑠𝑠𝑠𝑠 − 𝐹𝐹𝑏𝑏𝑏𝑏 − 𝐹𝐹𝑠𝑠𝑠𝑠− 𝐹𝐹𝑑𝑑𝑑𝑑)] Eq.(2.43) 

 𝑣𝑣𝑖𝑖+1 = 𝑣𝑣𝑖𝑖−1 + 2△ 𝑣𝑣𝑖𝑖 Eq.(2.44) 

 z = 𝑧𝑧𝑖𝑖 △ 𝑧𝑧 ( 𝑣𝑣𝑖𝑖
𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖+1

) Eq.(2.45) 
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Figure 2.55. Prediction Flow Chart (True, 1976) 
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2.4.2.4 Modified Ture’s Method 

The embedment prediction model currently widely employed is the modified True’s method 

with the semi-logarithmic or power-lower rate function included (Lisle, 2001; Wemmie, 2003; 

Aubeny and Dunlap, 2003; Shi, 2005; Aubeny and Shi, 2006).  The model can be expressed as  

 𝑚𝑚′ 𝑑𝑑
2𝑧𝑧

𝑑𝑑𝑑𝑑2  = 𝑊𝑊′ − 𝑅𝑅𝑓𝑓 (𝐹𝐹𝑏𝑏 + 𝐹𝐹𝑠𝑠) − 𝐹𝐹𝑑𝑑 Eq.(2.46) 

where 𝑚𝑚′ is the submerged mass of anchor 

𝑊𝑊′ is the submerged weight of anchor 

Rf is the strain rate effect function depends on the velocity of penetrating object and detailed 

explained in Section 2.4.2.4.3. 

Fb and Fs are detailed discussed in Section 2.4.2.4.1 

Fd is detailed discussed in Section 2.4.2.4.2 

 

2.4.2.4.1 Bearing, Frictional and Buoyancy Forces 

The bearing force and resistance force in the modified True’s method can be written as  

 Fbear = su Nc Ap Eq.(2.47) 

 Ffrict = α su As Eq.(2.48) 

where su is the undrained shear strength, Nc is bearing capacity factor, Ap is the frontal projected 

area, α is an interface friction ratio (1/St), and As is the side area. 

Normally, Nc for the bearing tip is taken as 12 (O’ Loughlin et al., 2004a; O’ Loughlin et al., 

2009; O’Loughlin et al., 2013b), 15 (Freeman et al., 1990), 10 (Mulhearn et al., 1998), 17 (Gilbert 
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et al., 2008) and 14 (Steiner et al., 2014).  Nc = 7.5 is typically adopted for the upper and lower 

end of dynamically installed anchor flukes (Skempton, 1951) based on a solution for deeply 

embedded strip footings.  The adhesion factor, α, is estimated as the inverse of soil sensitivity 

(Andersen et al., 2005).  For Gulf of Mexico clay, the sensitivity is 1.6 to 1.8 (Gerkus, 2016). 

 

2.4.2.4.2 Inertial Drag 

The drag force is acting on the penetrating object, and is in the opposite direction with the 

movement of penetrating object.  The soil inertial force accelerates soil mass from rest to velocity 

capable to move along penetrating object.  The soil inertial force is analogous to the drag force in 

water when penetrating object travels through water.   The drag force consists two parts, the 

pressure drag and the frictional drag.  The pressure drag is formed by the pressure difference 

between the tip and the back of penetrating object, and mathematically obtained by integrating 

pressure on the projected frontal area; while the frictional drag is formed by the shear stress on 

surface area of penetrating object.  Raie and Tassoulas (2009) showed that the frictional drag 

contributes 12% to the total resisting force on a torpedo pile.  Achenbach (1968, 1971) showed 

that the friction drag is only 2% to 3% for total resistance for a sphere.  Therefore, the frictional 

force is omitted. The inertial drag force can be expressed as  

 𝐹𝐹𝑑𝑑 = ½ 𝐶𝐶𝑑𝑑 𝜌𝜌𝐴𝐴𝑝𝑝𝑣𝑣2 Eq.(2.49) 

where 𝐶𝐶𝑑𝑑  is drag coefficient, 𝜌𝜌  is the soil or water density 𝐴𝐴𝑝𝑝  is frontal projected area, and v is the 

penetrating velocity.  𝐶𝐶𝑑𝑑 is a function of shape and surface roughness of penetrating object as well as the 

Reynolds number (Re), 
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 𝑅𝑅𝑒𝑒 = 𝜐𝜐𝜐𝜐
𝑣𝑣

 Eq.(2.50) 

where D is the effective diameter of penetrating object, and 𝜐𝜐 is the viscosity of fluid, and v is the 

penetrating object velocity.   

As a penetrating object moves through water or soil, the drag coefficient changes with Reynold 

Number or different flow conditions as shown in Figure 2.56 and Figure 2.57. In the case of Low 

Reynold numbers represent laminar flow, the drag force is linearly proportional to the velocity.  

The drag coefficient remains relatively constant. 

 

Figure 2.56. Flow Patterns Past Cylinder (Brown and Lawler,2003) 
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Figure 2.57. Subcrictal Sphere Drag Data Corrected for Wall Effect (Brown and Lawler, 

2003) 

 

The most of studies on dynamically installed anchor assumes the drag coefficient remains 

constant and has no variation with Reynolds number.  In addition, when penetrating object travels 

from water to soil, we should separate the drag coefficient for two media due to the difference of 

viscosity of two medium.  However, usually one drag coefficient set for water and soil is because 

the change in Reynolds number during free-fall is small and the inertial drag force contributes 

small portion of total resistance.  For the range of velocities, True (1976) adopted 0.7 for 

calculating drag force in soil and water.  Freeman et al. (1984) recommended 0.15 to 0.18 for the 

ESP, and 0.64 for four-fluke steel DPA.  Shelton (2007) suggested 0.65 for OMNI-Max anchor. 

Richardson (2008) recommended 0.63 for DPA with an ellipsoidal tip.  Cenac II (2011) showed a 

scaled OMNI-Max with scale ratio of 1:15 has 0.46 to 0.83 drag coefficient.   

Blake and O'Loughlin (2015) proposed experimental measurement for anchor drag coefficient, 

Cd,a.  They measured the acceleration by accelerometer attached to anchors with different scales, 
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quantified the motion of anchors during free-fall in water (Equation 2.51), and back calculated Cd,a 

for each anchor by substituting Fd,a and Fd,l with Equations  2.52 and  2.53 into Equation 2.51, then 

rearranged into the from shwon in 2.54 

 (𝑚𝑚 + 𝑚𝑚′) 𝑑𝑑
2𝑠𝑠

𝑑𝑑𝑑𝑑2  = 𝑊𝑊𝑠𝑠 − 𝐹𝐹𝑑𝑑,𝑎𝑎 − 𝐹𝐹𝑑𝑑,𝑙𝑙 Eq.(2.51) 

where m is the anchor mass 

m’ is the added mass (the mass of the fluid accelerated with anchor) which is negligible for slender 

bodies such as the DEPLA 

s is the distance travelled by the anchor  

t is the time 

Ws is the component of the submerged weight of the anchor acting in the direction of motion 

Fd,a is the fluid drag resistance actin on the anchor 

Fd,l is the fluid drag resistance actin on the mooring and follower recovery lines 

 𝐹𝐹𝑑𝑑,𝑎𝑎 = ½ 𝐶𝐶𝑑𝑑,𝑎𝑎 𝜌𝜌𝑤𝑤𝐴𝐴𝑓𝑓𝑣𝑣2 Eq.(2.52) 

where 𝐶𝐶𝑑𝑑,𝑎𝑎 is the drag coefficient for the anchor, 𝜌𝜌𝑤𝑤 is the water density, and 𝐴𝐴𝑓𝑓 is the frontal area 

(of the follower, sleeve, and lfukes). 

 𝐹𝐹𝑑𝑑,𝑙𝑙 = ½ 𝐶𝐶𝑑𝑑,𝑙𝑙 𝜌𝜌𝑤𝑤𝐴𝐴𝑠𝑠𝑣𝑣2 Eq.(2.53) 

where 𝐶𝐶𝑑𝑑,𝑙𝑙 is the drag coefficient of the mooring and follower recovery lines, 𝐴𝐴𝑠𝑠 is the surface area 

of the mooring and follower recovery lines in contact with water. 
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 𝐶𝐶𝑑𝑑,𝑎𝑎 = 𝑊𝑊𝑠𝑠 − ma − 1/2 𝐶𝐶𝑑𝑑,𝑙𝑙 𝜌𝜌𝑤𝑤𝐴𝐴𝑝𝑝𝑣𝑣2

½ 𝜌𝜌𝑤𝑤𝐴𝐴𝑝𝑝𝑣𝑣2  Eq.(2.54) 

 Re = 𝜌𝜌𝑤𝑤𝑣𝑣𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒

µ
 Eq.(2.55) 

From Equations 2.54 and 2.55, Blake and O’Loughlin showed that the drag coefficient of 

acnhor depends on the size of the anchor, and they back calculated Cd,a for each scale of tested 

anchor.  The Reynolds number (0.33 × 106 ) is oabtained by the anchor with scale of 1:4.5 

approximately remains at a constant, which implies that the drag coeffeicient for the 1:4.5 size 

anchor is a constant at 0.7.  For the anchor with scale of 1:12 and 1:7.2, the Renolds number is 

smaller and not a constant, which implies that the drag coefficient for those two sizes anchor may 

not be a constant.  However, the anchor with different scale is geometrically identical, the drag 

coefficient obtained from 1:4.5 scale of anchor can be applited to other two anchors. 

 

Figure 2.58. Dependence of DEPLA Drag Coefficient on Reynolds Number (Blake and 
O’Loughlin, 2015) 
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2.4.2.4.3 Strain Effects 

It is generally recognized that the undrained shear strength highly depends on the strain rate 

(Casagrande et al., 1951) and varies in a wide range for in situ tests and laboratory tests, which is 

supported by vane shear tests (Biscontin et al., 2001) and triaxial compression tests (Sheahan et 

al., 1996).  Einav and Randolph (2006) indicated that triaxial compression tests are usually with 

the strain rate of 1%/hr which corresponds with 3×10-6 s-1, and strain rate of vane shear tests is 

2×10-3 s-1.  For a dynamically installated anchor, the strain rate is normally in the order of 10-1 s-1, 

which is seven orders of magnitude greater than strain rates from triaxial compression tests and 

four orders of magnitude greater than those from vane shear tests.  Therefore, it is difficult to 

extroplate the strain rate effect for dynamically installed anchor from laboratory tests.   

True (1974) took the strain effects into the prediction of penetration anchor by empirically 

assessed the strain effects with model penetrometer tests (Section 2.4.2.3).   The relationship 

between the shear strain rate and the undrained shear strength can be expressed by semi-

logarithmic or power-law form: 

 𝑠𝑠𝑢𝑢 = 𝑠𝑠𝑢𝑢,𝑟𝑟𝑟𝑟𝑟𝑟 [1 + λ log ( 𝛾̇𝛾
𝛾̇𝛾𝑟𝑟𝑟𝑟𝑟𝑟

)] Eq.(2.56) 

 𝑠𝑠𝑢𝑢 = 𝑠𝑠𝑢𝑢,𝑟𝑟𝑟𝑟𝑟𝑟 ( 𝛾̇𝛾
𝛾̇𝛾𝑟𝑟𝑟𝑟𝑟𝑟

)𝛽𝛽 Eq.(2.57) 

where 𝛾̇𝛾  is the strain rate, β and λ are strain rate parameters, and 𝛾̇𝛾𝑟𝑟𝑟𝑟𝑟𝑟  is a reference strain 

associated with the measurement of undrained strength.  The strain rate, 𝛾̇𝛾  can be quantified as 

v/D, such that: 
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 𝑠𝑠𝑢𝑢 = 𝑠𝑠𝑢𝑢,𝑟𝑟𝑟𝑟𝑟𝑟 [1 + λ log( v/D
(v/D)ref

)] Eq.(2.58) 

 𝑠𝑠𝑢𝑢 = 𝑠𝑠𝑢𝑢,𝑟𝑟𝑟𝑟𝑟𝑟 ( v/D
(v/D)ref

)β Eq.(2.59) 

where (𝑣𝑣/𝐷𝐷)𝑟𝑟𝑟𝑟𝑟𝑟 in this instance is calculated using the T-bar penetration velocity, 0.8 in/s (20 

mm/s), and diameter d of the bar, 1 inch (25.4 mm). 

Sheahan et al. (1996) suggested λ is between 0.01 to 0.6 based on vane shear tests with rotation 

rate from 0.06 ̊/min to 3000 ̊/min, and 0.17 for strain rate with 0.0014% to 670% in triaxial 

compression tests.  Biscontin and Pestana (2001) suggested 𝛽𝛽 in the range from 0.05 to 0.1 based 

on vane shear tests.  Chung et al. (2006) proposed 𝛽𝛽 for 0.05 to 0.07 and Lehane et al. (2009) 

suggested 0.06 to 0.08 from T-bar and ball penetrometer tests.  Peuchen and Mayne (2007) used 

0.75±0.025 for 𝛽𝛽 and Abelev and Valent (2009) suggested 0.05 to 0.1 from vane shear tests.  The 

wide range of back-calculated strain rate parameters indicates that back-calculating strain rate 

effects in clay is difficult. As shown in Figure 2.59, O’Loughlin et al. (2013) back calculated λ and 

𝛽𝛽 versus vav/deff (the averaged velocity during penetration over the effective diameter) based on 

centrifuge tests with DPA (Figure 2.59).  He reported that the range of λ is from 0.2 to 1.0 while 

𝛽𝛽 is from 0.06 to 0.17 if vav/deff is in the range of 500 to 4250 s-1.  The strain rate parameter of λ 

with 0.2 to 1.0 implies that the undrained shear strength increases 20%-100%.  Gaudin et al. (2013) 

back calculated 𝛽𝛽 ranging from 0.16 to 0.19 based on centrifuge tests with OMNI-Max anchor in 

overconsolidated kaolin clay and calcareous silts (Figure 2.60) 
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Figure 2.59. Back-Calculated Strain-Rate Parameters (O'Loughlin et al., 2013) 

 

Figure 2.60. Comparison of Measured and Predicted Tip Embedment (Gaudin et al., 2013) 
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Additionally, it is acknowledged that the rate effect for the shearing mechanism is higher than 

it caused by the bearing mechanism (Dayal et al., 1975; Einav and Randolph, 2006; Zhu and 

Randolph, 2011; Steiner et al., 2014; Chow et al., 2014).  Einav and Randolph (2006) derived a 

relationship to express the strain rate effect for bearing and shearing in the following form:  

 Rf = (𝑛𝑛 𝛾̇𝛾
𝛾̇𝛾𝑟𝑟𝑟𝑟𝑟𝑟

)𝛽𝛽 Eq.(2.60) 

where n is 1 for bearing (Zhu and Randolph 2011) and is 2(𝑛𝑛1
𝛽𝛽

 + 𝑛𝑛1 – 2) for shearing resistance; 𝛾̇𝛾 

is v/d, and 𝛾̇𝛾𝑟𝑟𝑟𝑟𝑟𝑟 is v/d, which is 0.8 s-1 for a T-bar test. 

Einav and Randolph (2006) explained the reason that the rate effect by bearing and shearing 

mechanism is different by an example of axial or torsional loading of a pile (Figure 2.61).  The 

strain rate for the circular cross section at tip can be expressed as the velocity over the diameter of 

a pile, v/d; however, the strain rate effect at the cylindrical surface circumscribing a pile is the 

velocity over the thickness of shear band, v/t.  In the assumption that soil exhibits strain-softening, 

the thickness of shear band, t, is with width equivalent to the width with a couple of soil particles, 

which is small compared with the diameter of pile.  This difference implies that normalizing 

velocity to the pile diameter can reflect the strain rate effect by bearing (as shown in Equations 

2.58 and 2.59), however, cannot reflect the strain rate effect by shearing mechanism.  Thus, a new 

term to account the different strain rate effect (or different width of shear band) is proposed by 

Einav and Randolph (2006) as shown in Equation 2.60. 
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Figure 2.61. Schematic of Cylindrical Shear Bands: (a) Pile Under Axial Loading; (b) Van 
Undergoing Torsion (Einav and Randolph, 2006) 

 

2.5 Scale Effect in Anchor Performance 

It is expensive to perform anchors tests with a full-sized anchor.  The scaled model anchor is 

easier and economical to test.  However, to extrapolate the results from scaled model anchor to the 

behavior of full scale, the scale relationship needs to be well established to accuratly predict real 

behavior of the full-sized anchor.   

Craig (1994) showed that the principles of similarity (Table 2.8) can be applied to extrapolate 

the scaled model anchor results.  If the fluke length of prototype anchor is x times longer than the 

scaled model anchor such as L1/L2 = x, then the difference between weights of two anchor is x3, 

the difference of area is x2 and stresses due to anchor weight vary by x.  For a drag embedment 

anchor, as discussed in Section 2.4.1.1, the drag embedment depth of drag anchor depends on the 

drag distance; thus, if the drag distance is sclaed in the ratio of x, then the penetration depth is also 

scaled with the ratio of x.  Craig (1994) showed that the anchor capacity at shackle with differnet 

sizes can be expressed as in Equation 2.61  
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 𝑇𝑇𝑠𝑠 = 𝑠𝑠𝑢𝑢 𝑁𝑁𝑐𝑐 (f B L) Eq. (2.61) 

where 𝑠𝑠𝑢𝑢 is the undrained shear strength 

𝑁𝑁𝑐𝑐 is the bearing capacity factor 

f is a shape factor  

B is the maximum anchor width 

L is the maximum anchor length 

It can be see that in Equation 2.61, if the charateristic lengths of two anchors have a ratio of x, 

then the B and L are each scaled by x, which leads to the capacity is scaled with x2 for the same undrained 

shear strength. Furthermore, if the undrained shear strength increases linearly with depth and the anchor 

penetration below the mudline is proportional to the charactersitc length, then the ratio of the capacities of 

the anchors will be proportional to x3. Thus, the anchor efficiency (anchor capacity over anchor weight) is 

independent on the anchor size, and the capacity of scaled model anchor results in normally consolidated 

profiel can be scaled up to the prototype anchor with x times larger fluke length. 
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Table 2.8 Scale Relationship Related to Weight 

Property Model Prototype Related to Weight 

Length L n W1/3 

Fluke Area A n2 W2/3 

Weight W n3 W 

Penetration P n W1/3 

Moment M n4 W4/3 

Moment of Inertia I n4 W4/3 

Section Modulus S n3 W 

Bending Stress M/S n4/ n3=n W1/3 

Shear Strength F/A n3/ n2=n W1/3 

 

Unlike the capacity, the displacement required to mobilize the capacity will not necessarily 

scale up similarly with anchor size. When anchor moves in the soil, the soil mobilized around 

anchor fluke fails both in in-plane shearing (parallel to anchor fluke) and bearing (normal to anchor 

fluke).  The dispalcement parallel to anchor fluke is dependent on the geometry of the shear band 

and nearly independent of the size of the anchor, while the displacement to mobilize the bearing 

capcity is approximately proportional to the anchor size (characteristic anchor length). Therefore, 

the Rnt term for a drag embedment anchor (Figure 2.54), and therefore the trajectory, is not simply 

scaled by ratio of the sizes between two anchors. Likewise for free-fall penetration, the strain rate 

enhanced by the high velocity from anchor is not simply scaled by the ratio between the 

characteristic length of two anchors.  As discussed in Section 2.4.2.4.3, effect of strain rate on the 

side of anchor (strain rate by shearing mechanism) is higher than the effect of strain rate on the tip 

of anchor (strain rate by bearing mechanism).   
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Finally, for the free-fall anchor, if the ratio of charateristic length between two anchors is x, 

then ratio of area to resist soil shearing force is x2 and the weight ratio between two anchors is x3.  

Thus, the weight over area ratio, which governs the free-fall penetration (Eq.(2.46)), varies with 

the charateristic length ratio beween the two anchors, x.  For exmaple, for a model anchor with a 

scale of 1:50 compared to a full-size anchor, then the weight over area ratio for the full-size anchor 

is 50 times greater than that for the model anchor.   

 

2.6 Conclusion 

This chapter reviewed offshore structures, mooring systems, and offshore anchors for 

deepwater.  The recent physical tests including field tests and laboratory scaled model tests for 

reviewed anchors were briefly summarized.  Next, the prediction models for drag anchors and the 

dynamically installed anchor are reviewed.  From the literature review, there are limited studies in 

the following four aspects: 

• Experimental results for drag embedment anchors and dynamically embedded anchors, 

both at model scale and field scale, in the layered soil profiles. 

• Analytical prediction models for anchors in layer soil profiles. 

• Experimental results to separate strain rate effects for anchors mobilizing both bearing 

and shearing mechanisms.  

• Understanding about how tests on model anchors will scale up to full-sized anchors 

concerning the trajectory of drag embedment anchors and the free-fall penetration of 

dynamically embedded anchors. 
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Chapter 3. Test Facility 

3.1 Introduction 

This chapter presents the test facilities and equipment used in this study.  Detailed descriptions 

of the facilities and equipment can be found in El-Sherbiny R. (2005) and Huang Y. (2015). 

 

Figure 3.1. Test Facilities in Pickle Research Campus 

 

3.2 Soil Tests Beds 

The test bed in this study are built with the Gulf of Mexico Clay.  The test bed with a single 

layer includes constant undrained shear strength profile and linearly increasing shear strength 

profile with remolded or overconsolidated Gulf of Mexico Clay.  The test bed with layered soil 

profile with a stronger soil layer interbedded into soft soil, where the undrained shear strength, the 

thickness, and depth of stronger layer varies in each layered soil test bed.   
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3.2.1 Gulf of Mexico Clay 

Soil used in this study are the marine clay from Gulf of Mexico (GoM).  The soil index 

properties of GoM clay are shown in Table 3.1.  We used the mixer (Figure 3.2) to mix the soil 

with saline water with 35 gram of sea salt per litter of fresh water.  Horan (2012) reported that this 

saline concentration is comparable with that in ocean water.  The mixer consists of a drill and a 

steel paddle.  The torque capacity of the drill is 900 round per minute which is capable to 

reconstitute GoM soil with shear strength ranging from 0 to 90 psf.  The paddle is with 28-inch 

long rod and 12-inch wide paddle in front.  The paddle with slightly bended horizontal part helps 

to move soil when mixing. 

Table 3.1. Soil Index of Gulf of Mexico Clay 

Soil Index 

Liquid Limit 105% 

Plasticity Limit 62% 

Specific Gravity 2.75 

 

 

Figure 3.2 Soil Mixer 
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3.2.2 Preparation of Tests Beds 

We prepare soil test bed with single layer in the thermoplastic tank shown in Figure 3.3.  This 

tank is with dimensions of 4 feet in length, 2 feet in width and 2 feet in height.  In this tank, we 

prepared the remolded soil test bed (sensitivity = 1) and the tests beds with sensitivity greater than 

1.  For the remolded test bed, we followed the method developed by Lee (2008).  In this method, 

he first established relationship between the remolded undrained shear strength depending on 

water content (Figure 3.4).  Next, he employed this relastionhip to control the undrained strength 

by mixing soil to a target water content, then constructed a desired shear strength profile versus 

depth by placing the mixed soil into tank.  For the test bed with sensitivity greater than 1, we first 

prepare the remolded test bed, and then waiting remolded soil consolidating by self weight for a 

couple days or weeks depends on how much sensitivity is targeted for.  If a higher sensitivity is 

desired, we will wait for a longer period.  

 

Figure 3.3. Thermoplastic Tank for Preparing Soil Tests Beds 
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Figure 3.4. Relationship Between the Undrained Shear Strength and Water Content 

 

The test bed with layered soil profile (a stronger layer interbedded within soft soil) are 

constructed by starting with preparing stronger soil.  The stronger soil is prepared by drying GoM 

clay in small buckets (Figure 3.5) first, then remolded by the mixer.  After remolding, we prepare 

stronger soil layer by making stronger soil into small patches at desired thickness.  Then we place 

those small patches with same thickness into the thermoplastic tank contains soft soil, and bind 

those small patches together.  If there exist gaps between the binding patches, we fill them by 

inserting stronger soil in.  The test bed with stronger layer interbedded within soft soil are finalized 

by covering stronger layer with soft soil.  The thickness of soft soil on top of strong layer depends 

on the desired depth of stronger layer.   
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Figure 3.5. Soil Buckets for Stronger Layer 

 

3.2.3 Shear Strength Characterization 

After preparing tests beds, we used T-bar (El-Sherbiny, 2005) to characterize the shear strength 

of soil tests beds.  The T-bar (shown in Figure 3.6) is 4-in long and 1-in diameter acrylic rod.  As 

shown in Figure 3.6, during T-bar tests, the T-bar is mounted on the loading rod with 3/8-inch 

diameter, and pushed into soil test bed by additional weights (5 to 6 pieces of 2.5-lb weights).  The 

other end of loading rod is connected to load cell to measure the resistance from T-bar and loading 

rod.   

First, we insert T-bar together with the loading rod into soil test bed and measure the resistance 

on the T-bar and rod from soil resistance.  The T-bar test is displacement-controlled with the 

constant loading rate of 0.8 in/sec (20 mm/s).  After T-bar tests, the loading rod is inserted into the 

test bed with the same loading rate at the same location, the soil resistance on the loading rod is 

measured.  We follow the equation to determine undrained shear strength 
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 𝑆𝑆𝑢𝑢 = 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟
𝑁𝑁𝑐𝑐×𝐴𝐴

 Eq.(3.1) 

where Ftotal is the load measured from test with T-bar attached to loading rod 

Frod is the load measured from test with the loading rod  

A is the projected area of T-bar in the loading direction (1 inch × 4 inch) 

Nc is the bearing capacity factor, 10.5 (Stewart and Randolph, 1994) 

 

Figure 3.6. T-bar (El-Sherbiny, 2005) 

 

Figure 3.7. T-bar Tests (Gerkus, 2016) 
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If soil test bed constructed by remolded soil, then three cycles of T-bar test at same location 

are sufficient to determine undrained shear strength.  The shear strength profile from three cycles 

of T-bar tests results in the same undrained shear strength (Figure 3.8).  If soil test bed constructed 

by soil with sensitivity, then we perform six cycles of T-bar tests at same location (Figure 3.9).  

The sensitivity is determined by the undrained strength from the first cycle divided by the one 

from the last cycle.  If soil test bed is with a layered soil profile, then the T-bar tests are performed 

at three different location in test bed.  Then the undrained shear strength of soil profile is 

determined by averaging out the three tests (Figure 3.10).  The strain effect can also be assessed 

by performing T-bar Tests, but with a different loading rate.  An example of shear strength profile 

at different loading rate is shown in Figure 3.10.  From Figure 3.10, the shear strength is first 

determined at the undrained loading rate 0.8 in/sec, and T-bar tests are performed with loading 

rate at 1.6 in/sec, 3.2 in/sec, 4.8 in/sec, 6.4 in/sec, and 8 in/sec.  The shear strength at 1.6 in/sec is 

not enhanced a lot compared with the shear strength obtained at the normal undrained loading rate 

(0.8 in/sec); but enhanced obviously with the increase of loading rate when the rate is higher than 

3.2 in/sec.  

 

Figure 3.8. Example T-bar Tests in Remolded Soil Test Bed (Gerkus, 2016) 
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Figure 3.9. Example T-bar Tests in Test Bed of Soil with Sensitivity (Gerkus, 2016) 

 

Figure 3.10. Example of Undrained Shear Strength Profile of Layered Soil Profile 
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Figure 3.11. Example of Undrained Shear Strength Profile at Different Loading Rate 

 

3.3 Loading Frame 

Loading frame (Figure 3.12) consists two parts, the aluminum loading frame and the extended 

wooden arm.  The aluminum loading frame was built by El-Sherbiny R. (2005), and with 

dimensions of 5 ft in width and 4.7 ft in height.  This aluminum loading frame was installed on the 

top of the orange tank built by Lee (2008) and it is capable to slide to any location on the orange 

tank, which makes it possible to apply load at any location in soil tank.  The extended 5-ft long 

wooden frame was built to transfer loading line to the area of thermoplastic tank.   
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Figure 3.12. Loading Frame 

 

3.4 Stepper Motor  

We employ the stepper motor (Superior Electric SLO-SYN MH112-ff-206) to provide 

displacement of loading line at constant rate.  As shown in Figure 3.13, the maximum loading rate 

that motor can supply is 50 RPS (round per second), which is equivalent to 18.89 in/s for line 

displacement.  The loading rate we apply for T-bar test corresponding to the undrained loading 

condition is 0.8 in/s (127 RPM).  The motor was mounted on an aluminum plate attached to the 

loading frame on the orange tank and hang on the side of orange tank (Figure 3.14).   
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Figure 3.13. Torque versus Speed Curve of Stepper Motor 

 

3.5 Loading Device 

The loading device is shown in Figure 3.14.  There are four main components, two stepper 

motors (one for horizontal displacement and one for vertical displacement), two linear actuators, 

two translator drivers, and one computer controller card.  For the vertical displacement of motor, 

the total travelling distance of motor is 12.5 inches.  A pulley with ratio of 3.25 was installed on 

the extended frame (Figure 3.15), which extends the total travelling distance of loading line to 

40.63 inch (12.5 inch × 3.25).  The linear actuators transform rotational motor displacement to a linear 

one (El-Sherbiny R., 2005).  The translator drivers provide current to motivate the movement of motor.  

The movement of motor is controlled by a data acquisition system (more details in Section 3.8) 

using a National Instruments (NI) motion controller card. 
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Figure 3.14. Stepper Motor (Huang, 2015) 

 

Figure 3.15. Pulley on the Extended Frame 
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3.6 Load Cell 

A load cell (Figure 3.16) with 200-lb capacity (LeBow Products Inc.) is used to measure load 

resistance in drag embedment tests and T-bar tests.  One side of load cell is connected to loading 

line around the pulley, and the other side of load cell connected with loading line during drag 

embedment tests or the loading rod during T-bar tests.  If a compressive force is measured by the 

load cell, then a positive voltage reading is registered into the data acquisition system.  If a tensile 

force is applied to the load cell, then a negative reading is recorded.  This voltage output is linearly 

proportional to the magnitude of force.  The force is calculated by Equation 3.2 

 F = A×(V − B) Eq.(3.2) 

where F is the force based on the voltage output 

A is a calibration factor 

V is the output voltage 

B is the voltage reading corresponding with no load attached to the load cell 

The load cell is calibrated occasionally.  The most two sets of calibrated parameters are listed 

in Table 3.2. 

Table 3.2. Calibration Parameter of Load Cell 

Date A B 

2015 Nov 14th 17.586 1.755 

2017 Jan 10th 15.586 1.335 
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Figure 3.16. Load Cell 

 

3.7 Linear Displacement Transducer 

As shown in Figure 3.17, a linear motion transducer (LMT) is used to record loading line 

displacement in T-bar and drag embedment tests.  The LMT consists of the sensor (MTS ® 

Temposonic ®) and a track for the sensor to slide on.   The sensor is connected to the objects we 

want to measure by a fishing line.  We choose fishing line since the friction of line on directional 

pulley can be minimized.  When measuring displacement of T-bar or anchor during tests, the 

corresponding position of sensor on the track can be converted to the displacement of T-bar or 

anchor.  Besides the track, a steel tape is installed for checking displacement reading.  The total 

travelling distance for the sensor is 78 inches. 
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Figure 3.17. Linear Motion Transducer (LMT) 

 

3.8 Data Acquisition and Motion Control Program 

Huang (2015) updated the LabVIEW user interface which records data from the Data 

Acquisition (DAQ) hardware (Figure 3.18) and motion control card.  This interface can record 

measurements of load from load cell, the displacement from stepper motor, and line displacement 

from linear motion transducer.  The user interface is shown in Figure 3.19.  The controlling panel 

(Figure 3.20) is used for starting and ending the command to record data and write into txt file into 

the specified file path set by user in the file path dialog.  The calibration area (Figure 3.21) is for 

inputs of calibration factors which convert voltage signals from load cell, LMT, and LVDT into 

the real load and displacements. The output of load from load cell, the displacement from LMT 

and the displacement from LVDT with respect with time can be seen at the left side of user 
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interface.  The load-displacement curve (LVDT) and load-displacement curve (LMT) will be 

updated in real time with the progress of testing.  

 

Figure 3.18. Data Acquisition Hardware 

 

 

Figure 3.19. LabVIEW User Interface (Huang, 2015) 
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Figure 3.20. Control Panel in LabVIEW Interface  

 

Figure 3.21. Calibration Area in LabVIEW Interface 
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3.9 Magnetometer  

The Polhemus magnetometer (model number is Patriot P/N 4A0520-01, S/N 256B00086) is 

used to measure six-degree-of-freedom (position: x, y and z; orientation: yaw, pitch, and roll) of 

anchor motion in soil.  The magnetometer package includes a sensor, a source, and electronic unit 

(Figure 3.22).  The source emits the electromagnetic field, and identify the location and orientation 

of the sensor through the electromagnetic field.  A software, PiMgr, developed by Polhemus is 

used for receiving the data from the source while watching the anchor movement movie during 

tests.  An example of the user interface in PiMgr is shown in Figure 3.23.  There are six columns 

of data shown in the upper part in the interface, and they are x, y, z, yaw, pitch, and roll from the 

first column to the sixth.  Since the drag embedment anchor is designed to start with the orientation 

of 40̊ pitch from the horizontal, therefore the pitch reading from the fifth column is used for 

direction of placing the anchor at the beginning of test.   

 

Figure 3.22. Polhemus Magnetometer 
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Figure 3.23. PiMgr User Interface 

The output of six-degree-of-freedom data from magnetometer is with respect to real time 

(Figure 3.24).  Then the outputs of y and z are combined to plot anchor trajectory, and the pitch 

and y are used to plot pitch angle of anchor along horizontal drag (Figure 3.25).   
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Figure 3.24. Output from Magnetometer 
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Figure 3.25. Trajectory and Pitch Versus Horizontal Drag 

 

To receive good signal with tdhe least noise from the sensor and the source, we need to be 

cautious when placing the electronic unit, the source and the sensor.  The electronic unit should be 

at least 2 ft from other magnetic or electromagnetic field.  In the testing, since the motor is switched 

on for dragging anchor and computer is on for controlling motor movement and recording data, 

thus electromagnetic fields occur around the motor and the computer.  These electromagnetic 

fields cause electromagnetic interference on the source and the sensor which leads to a noise on 

data received at PiMgr user interface.  To avoid this electromagnetic interference, we place the 

electronic unit at least 2 ft away and the source at least 5 ft away from the computer and the motor.  

To achieve better data with the least noise, the source and the sensor should be close to each other. 

 

3.10 Scaled Model Anchors 

3.10.1 Drag Embedment Anchor 

We employed the scaled anchor model used in a previous MMS project (Aubeny et al., 2011).  

This generic model anchor (Figure 3.26) made with acrylic has a scale factor of 1:30 to the full-
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scale anchor that was designed by Delmar Industries, Inc.  The generic model anchor has a fluke 

with a length of 3.625 inch, a width of 5.270 inch and a thickness of 0.1 inch.  For a typical 

commercial anchor, the ratio of fluke length over fluke thickness ranges from 5 to 30 (29 for the 

model anchor), and the ratio of fluke width to the fluke length is 1 to 2 (1.5 for the model anchor).  

A 2.9-inch long shank is fixed to the fluke with a fluke-shank angle with 50 degrees.  Normally 

the fluke angle is within 30̊ to 50 ̊ (DNV, 2000), the anchor with a lower fluke-shank angle is 

recommended for sand or relatively stiff clay, while a higher angle is for soft clay deposit.  It may 

be appropriate to install anchor with an intermediate angle in layered soil.  A small hole on the top 

end of shank represents padeye of commercial anchor.  For the commercial anchor (Vryhof, 2015), 

as shown in Figure 2.4, anchor line and padeye of anchor is connected by shackle.  However, for 

the drag embedment test with model anchor, we directly attach anchor line to the padeye.  The 

weight of anchor is 0.072 lbs and the volume is 1.81 in3.  Figure 3.27 and Table 3.3 summarize the 

projected area of anchor in different plane.   

 

Figure 3.26. Scaled Generic Model Drag Embedment Anchor (McCarthy, 2011) 
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Figure 3.27. Bottom, Side, Front and Back Perspectives of Anchor with Dimensions and 
Projected Areas (McCarthy, 2011) 
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Table 3.3. Summary of Actual and Projected Areas of Fluke and Shank (McCarthy, 2011) 

 
Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7 Area 8 

 

Back 
of 

Fluke 
(in2) 

Side 
of 

Fluke 
(in2) 

Side of 
Shank 
(in2) 

Front 
of 

Fluke 
(in2) 

Back 
of 

Shank 
(in2) 

Fluke 
Area 
(in2) 

Front and 
Inside of 

Shank (in2) 

Magnetometer 
Sensor (in2) 

Projected 
Area 0.66 

0.43 
2.22 

0.13 0.53 
10.37 

0.70 
0.35 

Actual Area 0.52 0.30 0.80 2.99 

 

To perform drag embedment tests in piggy-back configuration, we need two more anchors.  

Thus, we replicate this anchor by drawing the anchor in AutoCAD first and then printing it in 3-D 

printer.  To extrapolate the model anchor behavior to the prototype anchor, a larger anchor (Figure 

3.29) with fluke length 1.5 times longer than the anchor shown in Figure 3.26 is printed and tested 

in GoM clay.   

 

Figure 3.28. Scaled Anchors in Different Sizes 



117 
 

3.10.2 Flying Wing Anchor® 

The Speedy Flying Wing Anchor® is used for free-fall penetration tests in this study.  The 

flying anchor with shank opened (left in Figure 3.29) and shank closed (right in Figure 3.29).  The 

flying wing anchor® has two plates, the front and back plate connected by two beams.  There are 

four pieces of triangular fins attached at the back plate, and two oval fins at the edges of back plate.  

The shank is attached at the beams.  The dimensions for the printed flying wing anchor is shown 

in Figure 3.30.  The front plate area is 12 in2, and the back plate is 17.28 in2.  A 6.55-inch long 

shank is closed during the free-fall penetration process, and is opened before the drag embedment 

process triggered by the increased load demand.  The weight of the printed anchor is 0.2 lbs.  

 

Figure 3.29. Scaled Model Flying Wing Anchor® (Left: Shank Opened; Right: Shank 
Closed) 



118 
 

 

Figure 3.30. Dimensions of scaled Flying Wing Anchor® 

3.11 Conclusions 

The test facilities are reviewed in this chapter.  The tests beds with Gulf of Mexico clay are 

prepared by remolding at established water contents.  Thermoplastic tank is used for tests beds for 

drag embedment anchor, and the barrel is for the tests beds for Flying Wing anchor.  The capacity 

of anchors and the soil resistance in tests are measured by the load cell.  The anchor trajectory and 

orientation are tracked by magnetometer.  
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Chapter 4. Pure Loading Tests 

4.1 Introduction 

This chapter studies the non-dimensional yield capacity factor for the generic model of a drag 

embedment anchor and the larger model with a characteristic length 50% greater.  The non-

dimensional yield capacity is measured experimentally through pure loading tests.  The scaled drag 

embedment anchor is tested under pure loading conditions to study the non-dimensional yield 

capacity factor.  These factors for drag embedment anchors are applied to the predicted trajectory 

and capacity for the drag embedment tests Chapter 5.   

 

4.2 Theoretical Non-Dimensional Yield Capacity Factor  

The theoretical pure bearing and shearing factor are calculated by the limit-analysis 

relationship originally developed by (Murff, 1994) for shallow foundations.  Murff (2005) and 

Yang et. al. (2008) adapted this relationship for shallow foundations to plate anchors.  The plastic 

yield surface of a foundation or an anchor shows the combination of normal, shear and moment 

loads that causes foundation failure (O'Neil et al., 2003).  Nnmax (Equation 4.1), Ntmax (Equation 

4.2) and Nmmax (Equation 4.3) are the bearing capacity factors under conditions of pure axial, 

shearing and rorational loading. 
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 Nn max = 3π + 2 + tf
Lf

 (α +  1+α
√2

 ) Eq.(4.1) 

 Nt max = 2 (α + Ntip  tf
Lf

 ) ≈ 2 α + 15tf
Lf

 Eq.(4.2) 

 Nm max = π
2
 (1 +  (tf

Lf
)2) Eq.(4.3) 

 

4.3 Experimental Non-Dimensional Yield Capacity Factor 

To study the anchor behavior when it is loaded in the six degrees of freedom, we need to 

perform pure loading tests for each degree of freedom by restricting anchor movement in a single 

degree of freedom and measure anchor capacity.  The six degrees of freedom are linear and 

rotational displacements in x, y, and z direction.  The three components of anchor movement in x, 

y, and z axis is defined as bearing, in-plane shearing, and out-of-plane shearing loading.  As shown 

in Figure 4.1, the three rotational components are roll (rotate around x axis), pitch (rotate around 

y), and yaw (around z axis).  Among these six capacity factors, we measure three important 

capacity factors to understand the anchor behavior in drag embedment tests.  The capacity factor 

in bearing (Figure 4.2), in-plane shearing (Figure 4.3), and rotational in pitch direction (Figure 

4.4).  We load anchor at the same rate (0.8inch/sec) of T-bar penetration rate, which is the rate 

corresponding with undrained condition.  For each capacity factor, we compare the experimental 

measurement with the theoretical results.  
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Figure 4.1. Orientation Sign Convention (McCarthy, 2011) 

 

Figure 4.2. Anchor in Bearing Direction (Ganjoo, 2010) 

 

Figure 4.3. Anchor in In-Plane Shearing direction (Ganjoo, 2010) 



122 
 

 

Figure 4.4. Anchor in Pure Pitching Rotational Direction (Ganjoo, 2010) 

4.3.1 Pure Bearing Factor 

4.3.1.1 Pure Bearing Test Procedure 

Pure normal loading tests are performed by attaching the loading line to the center of gravity 

of the anchor, which makes the loading line perpendicular with the fluke when the loading line is 

in tension.  To find center of gravity of anchor, it is hung by a wire at different locations.  If the 

fluke of the anchor remains parallel to the ground level, then the location of connection is assumed 

as the center of gravity of the anchor.  For normal loading configuration, a plastic tie is attached 

to the anchor and can be used to connect to a loading line as shown in Figure 4.5.  The loading line 

is tied at the center of gravity found previously. 

To perform pure loading test, first, we remove the soil above the desired embedment depth, 

then we place the anchor in the normal loading configuration, and next place the removed soil back 

to embed the anchor.  This wish-in place method helps us to control the location and configuration 

of the anchor.  The embedment depth is at least 10 inches below the surface of the test bed, which 

enables the anchor to travel at least 2 fluke lengths before being pulled out.   

 



123 
 

 

Figure 4.5. Anchor Suspended by Wire Using Plastic Ties to Find the Center of Gravity for 
Normal Loading Configuration (McCarthy, 2011) 

 

4.3.1.2 Experimental Pure Bearing Factor 

We have the following equation to calculate the pure normal bearing factor.  The results of the 

normalized bearing factors for the generic anchor are shown in Table 4.1.  One example of pure 

bearing tests results for generic anchor and larger anchor are shown in Figure 4.6 and Figure 4.7, 

respectively. 

 
Nnmax =  

Frod+anchor − Frod − Wanchor
′

Su ∙ Af
 

Eq.(4.4) 

where Frod+anchor = resistance normal force of the anchor with the rod  

Frod = resistance shear force of the separate tests on the rod 

Wanchor
′  = submerged weight of the anchor 
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Su = undrained shear strength 

Af = area of fluke  

Table 4.1. Example of Normalized Bearing Factors for the Generic Model Anchor (Ganjoo, 
2010) 

 

 

Figure 4.6. Example of Test Result from Pure Bearing Test for the Generic Model Anchor 
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Figure 4.7.  Example of Tests Results from Pure Bearing Tests with Anchors in Different 
Sizes 

 

4.3.2 Pure In-Plane Shearing Factor 

4.3.2.1 Pure In-plane Shearing Test Procedure 

The tangential motion of the anchor is controlled by the in-plane shearing factor.  The pure in-

plane shearing factor can be determined by in-plane shear loading tests.   In in-plane shear loading, 

a force is applied parallel to the fluke (Figure 4.8).  In the test, the anchor is attached to the insertion 

rod by a wire.  The anchor is then inserted into soil to 10 inches below the surface of the soil with 

a constant loading rate at 0.8 inch/sec.  The rod friction is measured by removing the anchor at the 

tip of rod and inserting the rod itself to the soil bed.  Since the magnetometer is attached to the 

anchor during drag embedment tests, the in-plane shearing factor of the anchor with and without 

magnetometer attached are performed separately.  This helps us to quantify how the magnetometer 

impacts the anchor behavior during the drag tests. 
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Figure 4.8 In-plane Shear Test Orientation (Left: Anchor Itself and Right: With 
Magnetometer) (McCarthy, 2011) 

 

4.3.2.2 Experimental Pure In-Plane Shearing Factor 

We have the following equation to calculate the pure shearing factor, and the results are shown 

in Table 4.2.  One example of pure shearing tests results for generic anchor and larger anchor are 

shown in Figure 4.9 and Figure 4.10, respectively. 

 
Ntmax =  

Frod+anchor − Frod − Wanchor
′

Su ∙ Af
 

Eq.(4.5) 

where Frod+anchor = resistance normal force of the anchor with the rod 

Frod = resistance shear force of the separate tests on the rod 

Wanchor
′  = submerged weight of the anchor 

Su = undrained shear strength 

Af = area of fluke 
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Table 4.2. Example of Normalized In-Plane Shearing Factors for the Generic Model Anchor 
(McCarthy, 2011) 

 

 

Figure 4.9. Example of Test Result from Pure In-Plane Shearing Test for the Generic Model 
Anchor 
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Figure 4.10 Example of Test Results from Pure In-Plane Shearing Tests with Anchors in 
Different Sizes 

 

4.3.3 Pure Rotational Pitching Factor 

4.3.3.1 Pure Rotation in Pitch Test Procedure 

A threaded rod with two steel plate attached to each side (Figure 4.11) is designed to test the 

anchor in pure rotational resistance of pitch.  The steel plate is 3 inches by 0.5 inches, and drilled 

with two holes with a diameter of 0.25 inches.  These holes prevent anchor movement relative to 

the threaded rod in rotational motion.  We attach the anchor to the steel plates and the threaded rod 

with plastic ties (Figure 4.12).  After attaching the anchor, it is placed into the soil test bed 10 

inches below the surface of soil.  
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4.3.3.2 Experimental Pure Rotational Pitching Factor 

We calculate the normalized pitch rotation factor by the following equation, and results are 

shown in Table 4.3 

 Nmmax =  
Mrod+anchor − Mrod

Su ∙ Af ∙ Lf
 Eq.(4.6) 

where Mrod+anchor = resistance moment force of the anchor with the rod 

Mrod = resistance moment force of the separate tests on the rod 

Wanchor
′  = submerged weight of the anchor 

Su = undrained shear strength 

Af = area of fluke 

Lf = length of fluke 

Moment is calculated by the following equation 

 M = Fdrive ∙ r Eq.(4.7) 

where Fdrive = the force to rotate the anchor 

r = radius of the pulley 
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Figure 4.11. Steel Plate Attached to Threaded Rod (Ganjoo, 2010) 

 

Figure 4.12. Connection of Threaded Rod to The Anchor for Pitch Rotation Testing (Ganjoo, 
2010) 
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Table 4.3. Example of Normalized Pitch Rotation Factors for the Generic Model Anchor 
(Ganjoo, 2010) 

 

 

 

Figure 4.13. Example of Test Result of Pure Rotational in Pitch Direction for the Generic 
Model Anchor (Ganjoo, 2010) 
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4.4 Theoretical and Experimental Results of Non-Dimensional Yield Capacity 

Factor 

4.4.1 Results for the Generic Model Anchor 

The experimental and theoretical non-dimensional capacity factors for the generic model are 

summarized in Table 4.4.  The theoretical pure normal, shearing, and pitch rotational factor are 

calculated by Equation 4.1, 4.2, and 4.3, respectively.  The experimental Np, 11, is close to the 

analytical one, 12.  For the pure shear loading factor, the experimental measured Ns is 4.5, which 

is higher than the 2.9 obtained by the analytical model.  The reason for this smaller Ns from 

theoretical model is that the shank is not involved for calculating the shearing factor, however, the 

surface area on the shank contributes shearing resistance.  By calibrating the theoretical Ns, the 

thickness of the anchor is changed from 0.12 inch to 0.336 inch in the input in Equation 4.2 to 

obtain the same theoretical Ns as the experimental measurement. 

Table 4.4.  Measured Results for Non-Dimensional Bearing Capacity Factors 

Bearing Capacity Factor Measured Value Theoretical Value 

Pure normal loading factor, Np 11 12 

Pure shear loading factor, Ns 4.5 2.9 

Pure pitch rotation factor, Nm 2.4 1.6 

 

4.4.2 Results for the Larger Model Anchor 

For the large anchor, the pure normal loading factor and shear loading factor are experimentally 

determined by following the producers in Section 4.3.1.1 and 4.3.2.1, and the results are 

summarized in Table 4.5.  As a comparison, the theoretical Np and Ns are calculated by Equation 

4.1 and  4.2, and are shown in Table 4.5.  From Table 4.5, it can be seen that the pure bearing and 
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pure in-plane shearing factor for different anchors are close.  The larger anchor is measured to 

have a slightly smaller Np and a slightly larger Ns compared with the generic anchor.  From the 

test results, it can be concluded that the non-dimensional yield capacity factor for prototype anchor 

can be measured by using a scaled model anchor.   

The measured Np is close to the theoretical value, however, the in-plane shearing loading factor 

from experimental measurement (4.5) is higher than the theoretical values (2.9).  The reason that 

the experimental measurement is higher than the theoretical ones is the same as discussed in 

Section 4.4.1, the shearing surface on the shank is not included when calculating the theoretical 

Ns.  To calibrate, the thickness of fluke is increased from the real thickness, 0.18 inches, to 0.504 

inches, which makes the shearing area higher.  

 

Table 4.5.  Measured Results for Non-Dimensional Bearing Capacity Factors 

Bearing Capacity Factor Measured Value Theoretical Value 

Pure normal loading factor, Np 10.6 12 

Pure shear loading factor, Ns 4.5 2.9 

 

4.5 Conclusions 

This chapter presents the test results of anchor capacity under pure loading. Tests on the pure 

normal and pure in-plane shearing capacity factors on the model drag embedment anchors lead to 

the following conclusions:   
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• For the generic model anchor, the experimental pure bearing capacity is 11, compared 

with 12 from plasticity-based analysis; the in-plane shearing capacity is 4.5 from 

experimental measurement, and 2.9 from analytical model.   

• As Expected, the increase of 50% in the characteristic length has no impact on the 

bearing factors.  For the larger model anchor, the experimental pure bearing capacity 

is 10.6 and the in-plane shearing capacity is 4.5; the theoretical bearing and in-plane 

shearing is 12 and 2.9, respectively.  The theoretical pure bearing and pure in-plane 

shearing factor for the larger anchor is the same as the generic anchor.   

• The theoretical in-plane shearing capacity factor for either the generic model anchor or 

the large anchor is calibrated by increasing the fluke thickness (0.12 inches to 0.34 

inches for the generic anchor, 0.18 inches to 0.50 inches for the large anchor) since the 

increased part of fluke thickness counts for the shank area which is not involved for Ns 

calculation. 

The calibrated non-dimensional yield capacity factor will be applied to the anchor trajectory 

and capacity prediction in Chapter 5. 
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Chapter 5. Drag Embedment Tests with a Single Anchor 

5.1 Introduction 

This chapter presents the experimental and analytical results for a single drag embedment 

anchor in single layer soil profile (constant and linearly increasing shear strength profile) and 

layered soil profiles.  In constant shear strength profile, anchor parameters (equilibrium bearing 

capacity factor and ratio of displacement normal to displacement parallel to fluke) are first 

experimentally determined from drag embedment tests.  Additionally, these two anchor parameters 

together with the non-dimensional yield capacity factors in Chapter 4 are applied to calibrate an 

analytical model, and the calibrated analytical model is applied to compare the tests results from 

linearly increasing shear strength profile and layered soil profiles. In linearly increasing shear 

strength profiles, two sizes of anchor are tested for extrapolating scaled model anchor tests results 

to predict prototype anchor behavior.   

 

5.2 Drag Embedment Tests in a Single Layer 

This section presents the drag embedment tests results with two different sizes of anchor in a 

single layer soil profile.  First, the analytical model for anchor capacity, trajectory and orientation 

is presented.  Next, based on the analytical model results, the experimental tests are designed.  The 

experimental tests with the generic anchor in constant and linearly increasing shearing strength 

profile are presented first, and the experimental tests with a larger size anchor are presented for the 

purpose of understand how to extrapolate model anchor tests to real size anchor. 
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5.2.1 Analytical Model for Drag Embedment Anchor in a Single Layer 

5.2.1.1 Theoretical Equilibrium Bearing Capacity Factor, Ne 

The parameters in the prediction model are illustrated in Figure 5.1.  The anchor in the 

prediction model is simplified into a rectangular fluke of length Lf with a cylindrical shank of 

length Ls.  The fluke-shank angle is 𝜃𝜃𝑓𝑓𝑓𝑓. The tension, Ta with a line angle of 𝜃𝜃𝑎𝑎,  is at the shackle 

point and a corresponding tension, T0 with an angle of 𝜃𝜃0, is at the mudline.  The shank has an 

angle with 𝜃𝜃𝑠𝑠, and 𝜃𝜃𝑎𝑎𝑎𝑎 = 𝜃𝜃𝑎𝑎 − 𝜃𝜃𝑠𝑠 is the angle of the anchor line force Ta (F) relative to anchor shank. 

The pitch angle of the anchor is designated as 𝜃𝜃𝑓𝑓.  (Aubeny and Chi, 2010). 

 

Figure 5.1. Anchor Definition Illustration (Aubeny and Chi, 2010) 

 

Aubeny and Chi (2010) calculates the theoretical equilibrium bearing capacity factor by:  
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f =  �

|c1|Ne

Nn,max
�

q

+ ��
|c3|Ne

Nm,max
�

m

+ �
|c2|Ne

Nt,max
�

n

�
1/p

− 1 
Eq.(5.1) 

where Ne is the equilibrium bearing capacity factor  

Nnmax is pure normal bearing factor (Equation 4.1) 

Ntmax is the pure tangential factor (Equation 4.2)  

Nmmax is the pure rotational factor (Equation 4.3)  

m, n, p and q are the interaction coefficients for plasticity solutions and values proposed by Murff 

(2005) are used to model the interaction between the anchor and soil during drag embedment 

loading in this study (Table 5.1).   

Table 5.1 Interaction Coefficients for Fluke with Lf/tf = 7  

Interaction factor Murff (2005) Yang et al. (2008) 

m 1.56 1.40 

n 4.19 3.49 

p 1.57 1.31 

q 4.43 1.14 

 

c1 = sin (𝜃𝜃𝑎𝑎𝑎𝑎 + 𝜃𝜃𝑓𝑓𝑓𝑓) 

c1 = cos (𝜃𝜃𝑎𝑎𝑎𝑎 +  𝜃𝜃𝑓𝑓𝑓𝑓) 

c3 = sin (𝜃𝜃𝑎𝑎𝑎𝑎 + 𝜃𝜃𝑓𝑓𝑓𝑓) [𝐿𝐿𝑗𝑗

𝐿𝐿𝑓𝑓
 + 𝐿𝐿𝑠𝑠

𝐿𝐿𝑓𝑓
 cos𝜃𝜃𝑓𝑓𝑓𝑓 − 1

2
] – cos (𝜃𝜃𝑎𝑎𝑎𝑎 +  𝜃𝜃𝑓𝑓𝑓𝑓) sin𝜃𝜃𝑓𝑓𝑓𝑓

𝐿𝐿𝑠𝑠
𝐿𝐿𝑓𝑓
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The yeild function in this study is preposed by Rasulo and Aubeny (2017) and they simplify 

Equation 5.1 into Equation 5.2 by vanishing moment term since the moment on anchor fluke is 

small when anchor is in equilibrium condition where the equialibrium capacity factor is calculated 

 
f =  �

|c1|Ne

Nn,max
�

q

+ ��
|c2|Ne

Nt,max
�

n

�
1/p

− 1 
Eq. (5.2) 

where c1 = sin (𝜃𝜃𝑓𝑓𝑓𝑓) 

c2 = cos (𝜃𝜃𝑓𝑓𝑓𝑓)  

From Equation 5.2, Ne can be calculated by taking the root of f (Ne) = 0. 

The equilibrium bearing capacity factor is important for capacity estimation.  A comparison 

example with different Ne for drag embedment anchor is shown in Figure 5.2.  From Figure 5.2, a 

higher equilibrium capacity factor leads to a higher anchor capacity factor.  The meaning of 

equilibrium bearing capacity on the yield surface will be discussed in Section 5.2.1.3. 
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Figure 5.2. Capacity with Different Ne 

 

5.2.1.2 Theoretical Ratio of Displacement Normal to Displacement Parallel to Fluke 

Aubeny and Chi (2010) calculates the ratio of normal to tangential motion (Rnt) by:  

 

 

Rnt =
�

Nt,max
Nn,max

� �pq
n �

��� Nm
Nm,max

��
m

+ �� Nt
Nt,max

��
n

�
�1

p�−1

�� Nn
Nn,max

��
q−1

�� Nt
Nt,max

��
n−1  

Eq.(5.3) 

Rasulo and Aubeny (2017) simplifies Equation 5.3 into Equation 5.4 by making the moment 

term is equal to 0 since there is no rotation around fluke when anchor is in equilibrium. 
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Rnt =
�

Nt,max
Nn,max

� �pq
n �

��� Nt
Nt,max

��
n

�
�1

p�−1

�� Nn
Nn,max

��
q−1

�� Nt
Nt,max

��
n−1  

Eq. (5.4) 

Equation 5.4 can be further modified with Ne as shown in below 

 

Rnt =
�

Nt,max
Nn,max

� �pq
n �

��� Nec2
Nt,max

��
n

�
�1

p�−1

�� Nec1
Nn,max

��
q−1

�� Nt
Nt,max

��
n−1  

Eq. (5.5) 

Therefore, if Ne is obtained from Equation 5.2, then Rnt can be calculated by Equation 5.5. 

The Rnt controls the direction of anchor movement.  If an anchor moves a certain displacement 

parallel to fluke, a higher Rnt makes anchor moves more in the direction normal to fluke, which 

makes anchor move towards to soil surface.  In comparison, anchor with a lower Rnt moves less in 

the direction normal to fluke at a certain displacement parallel to fluke, that is, anchor dives deeper 

into soil.  The Rnt directly influence anchor trajectory (Figure 5.3), trajectory with smaller Rnt is 

steeper than the trajectory with a higher Rnt.  The meaning of Rnt on the yield surface will be 

discussed in Section 5.2.1.3. 
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Figure 5.3. Trajectory with Different Rnt 

 

5.2.1.3 Yield Surface 

The yield surface is proposed by O’Neil et al. (2003) to describe soil-anchor interaction under 

combined loading (vertical load V, moment M, and lateral H).  The yield surface is plotted based 

on the calculated results from Equation 5.2.  An example of yield surface with different 

combination of Rnt and Ne is shown in Figure 5.4.  The orange yield surface is with the Rnt with 

0.2 and Ne with 6.1, and the blue yield surface is with the Rnt with 0.02 and Ne with 6.6.  The Ne 

represents the distance between the origin to the point on the yield surface.  Therefore, a larger Ne 

leads to a larger yield surface (blue yield surface is larger than the orange one as shown in Figure 

5.4).  The Rnt represents the tangential slope at the point where Ne touches yield surface.  Therefore, 

a higher Rnt means a flatter angle (orange yield surface has a flatter angle compared with blue one 

as shown in Figure 5.4).  In terms of anchor movement, at a certain displacement parallel to fluke 
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(Δ𝑠𝑠), a higher Rnt means anchor moves more in the normal to the fluke direction (Δ𝑛𝑛) compared 

with that anchor with a smaller Rnt. 

 

Figure 5.4. Comparison of Yield Surfaces with Different Rnt and Ne 

 

5.2.1.4 Algorithm for Trajectory Prediction 

The algorithm by Aubeny and Chi (2010) for in-plane drag embedment trajectory in a single 

layer is used to calculate the trajectory and the load capacity of the anchor.   

The trajectory algorithm is presented below: 

1. Advance the padeye at current coordinate (x, z) a small distance Δs in the direction of the 

fluke oriented at an angle 𝜃𝜃𝑓𝑓1  from horizontal.   An increment Δs = 0.024 inch produced 

satisfactory convergence in this study. 

2. Compute the corresponding increment of drag distance, Δs, parallel to fluke. 
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Then, the displacement normal to fluke is Δn = Rnt Δs.  

 Δz = Δs sin θf1- Δn cosθf1 Eq.(5.6) 

 Δx = Δs cos θf1+ Δn sinθf1 Eq.(5.7) 

3. Calculate the normalized depth 𝑧̂𝑧 and normalized depth increment  

 z� = z/b Eq.(5.8) 

 dz� = dz/b Eq.(5.9) 

where b is the anchor line or chain diameter 

4. Compute the tension at the shackle by Equation 5.10 

 T�a= Ta/Suab2 = Ne Af /b2 Eq.(5.10) 

where Ne is equilibrium capacity factor, and Af is the fluke area. 

5. Compute the line angle at the shackle by rearranging Equation 5.11 into Equation 5.12 

 Ta (θa
2 − θ0

2) / 2 = z En Nc b (Su0 + k z / 2) Eq.(5.11) 

 
θa = �2 z En Nc b Suaverage

Ta
+ θ0

2 
Eq.(5.12) 

θ0 = anchor line angle at the mudline 

Nc = bearing factor for anchor line 

En = multiplier for anchor lines comprised of chains (1 is for anchor wire, and 2.5 for 

anchor chain) 

k = soil shear strength increase per unit increase in depth 

6. Calculate the increment of line angle at the shackle 𝑑𝑑θa 

 dθa = 1
θa

 [ EnNc 
Ta

∗  − θa
2 − θ0

2

2 (1
η+z� )

 ] dz� Eq.(5.13) 

where η = strength gradient parameter = b k / su0 
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7. Calculate the tension at the mud line  

 T0 =  Ta exp[µ (θa − θ0)] Eq.(5.14) 

where µ is the relative magnitude of tangential to normal unit force acting on the anchor 

line, which is typically is in the range of 0.4-0.6. 

8. Update the fluke angle 𝜃𝜃𝑓𝑓  = 𝜃𝜃𝑓𝑓1, and padeye coordinates (x, z) 

Repeat step 1 to step 8 until the anchor reaches its ultimate embedment.  At the ultimate 

embedment, the pitch of the anchor will become zero and there will be no further embedment.  

The capacity will be constant when the anchor reaches ultimate embedment (Aubeny et al., 

2008). 

 

5.2.2 Generic Drag Embedment Anchor in a Single Layer Soil Profile 

5.2.2.1 Experimental Design  

This section studies the analytical model in Section 5.2.1.4, and obtains the test bed 

characteristics such as the soil strength (undrained shear strength at mudline and the shear strength 

gradient) and anchor line thickness.  Based on these information, the load cell capacity described 

in Section 3.6 is checked to ensure it will have the range needed to measure anchor capacity.  Also, 

the magnetometer described in Section 3.9 is checked to ensure it is capable to cover the range of 

trajectory and orientation of drag embedment anchor.   

5.2.2.1.1 Effect of Shear Strength at Mudline 

In the constant shear strength profile, drag embedment anchor capacity, trajectory and 

orientation in terms of pitch are checked by analytical model.  An example results with the shear 

strength at 16 psf, 18 psf, and 20 psf are shown in Figure 5.5 to Figure 5.7.  From the capacities 
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shown in Figure 5.5, as the shear strength increases, the capacity is expected to increase.  From 

the trajectories in Figure 5.6, the final penetration depth is independent on the shear strength in the 

constant shear strength profile.  Figure 5.7 shows that the orientation is also independent on the 

shear strength in the constant shear strength profile.   

From the capacities shown in Figure 5.5, it can be estimated that the maximum load from drag 

embedment tests in constant shear strength profile (Su up to 50) is in range of the capacity of load 

cell.  The horizontal displacement from trajectory is up to 20 inches and the vertical displacement 

is up to 4 inches which are in the range of magnetometer measurement.  The pitch ranges from 40̊ 

to 20̊ is also in the measurable range by magnetometer. 

 

Table 5.2. Input for Effect of Shear Strength at Mudline 

Soil Parameter 
Su at mudline 16 or 18 or 20 psf 

k 0 psf/ft 
Anchor and Anchor line 

Anchor line 0.22 inch 
Anchor initially embedment 0.12 inch 

Initial pitch angle (fluke to horizontal) 40° 
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Figure 5.5. Anchor Capacity (Effect of Shear Strength at Mudline) 

 

Figure 5.6. Anchor Trajectory (Effect of Shear Strength at Mudline) 
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Figure 5.7. Anchor Pitch (Effect of Shear Strength at Mudline) 

 

5.2.2.1.2 Effect of Shear Strength Gradient 

The capacity (Figure 5.8), trajectory (Figure 5.9), and orientation (Figure 5.10) of drag 

embedment anchor is checked in the linearly increasing shear strength profile with a gradient of 6 

psf/ft and 10 psf/ft.  From Figure 5.8, the capacity is expected to increase with the increase of the 

shear strength gradient.  Figure 5.9 shows that the higher shear strength gradient leads to a deeper 

penetration.  Figure 5.10 shows that anchor pitches slightly less in the shear strength profile with 

a higher shear strength gradient. 

From the capacity results, it can be estimated that the load cell is capable to measure the 

capacity in the linearly increasing shear strength profile.  From the trajectory and pitch results, it 

can be concluded that the magnetometer is capable to track anchor displacement and rotation 

during drag tests. 
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Table 5.3. Input for Effect of Shear Strength Gradient at Mudline 

Soil Parameter 
Su at mudline 16 psf 

k 0 or 6 or 10 psf/ft 
Anchor and Anchor line 

Anchor line 0.22 inch 
Anchor initially embedment 0.12 inch 

Initial pitch angle (fluke to horizontal) 40° 

 

Figure 5.8. Anchor Capacity (Effect of Shear Strength Gradient) 

 

Figure 5.9. Anchor Trajectory (Effect of Shear Strength Gradient) 
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Figure 5.10. Anchor Pitch (Effect of Shear Strength Gradient) 

 

5.2.2.1.3 Effect of Anchor Line Thickness 

In the linearly increasing shear strength profile with gradient of 6 psft/ft and 16 psf at the 

surface at mudline, drag embedment anchor with different line thickness (0.05 inch and 0.22 inch) 

is checked in terms of its capacity, trajectory, and pitch.  The 0.22 inch thickness line is selected 

since the industry standard ratio for fluke area over square of line thickness is around 200, and 

0.22 inch thickness yields the ratio at 216.  The line thickness of 0.05 inch is selected since the line 

is thin enough to influence anchor behavior, which minimizes the lines effect on the anchor pitch.  

Figure 5.11 shows the capacities with different line attached, a thicker line leads to a higher 

capacity.  Figure 5.12 shows the trajectories with different line thickness.  Figure 5.13 shows the 

orientation with different line thickness.  It can be seen that the line thickness has impact the 

trajectory and orientation.     
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Table 5.4. Input for Effect of Anchor Line Thickness 

Soil Parameter 
Su at mudline 16 psf 

k 6 psf/ft 
Anchor and Anchor line 

Anchor line 0.05 or 0.22 inch 
Anchor initially embedment 0.12 inch 

Initial pitch angle (fluke to horizontal) 40° 

 

Figure 5.11. Anchor Capacity (Effect of Anchor Line Thickness) 

 

Figure 5.12. Anchor Trajectory (Effect of Anchor Line Thickness) 
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Figure 5.13. Anchor Pitch (Effect of Anchor Line Thickness) 

 

5.2.2.2 Test Setup  

Drag embedment tests are conducted by applying a load to the scale model.  In the drag tests, 

the trajectory and capacity of the scaled model anchor is measured.  The anchor is attached to the 

load cell with different sizes of loading lines.  Drag tests are performed in a single layer soil test 

with either a constant shear strength profile or linearly increasing shear strength profiles.  The 

pulley is installed at mudline to provide zero line angle and is located approximately 43 inches 

away from the starting point of the test.  Additionally, the magnetometer sensor is attached to the 

anchor to track the location and orientation of the anchor throughout the test.  The magnetometer 

source is located on top of the thermos-plastic tank (Figure 5.14).   
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Figure 5.14. Picture of In-Plane Drag Embedment Test in Thermo-Plastic Tank (Gerkus, 
2016) 

 

Based on the study of analytical model in Section 5.2.2.1, the following two tests bed with a 

single layer soil profile is proposed.  Table 5.5 summarizes the tests in a single layer.  We perform 

drag tests in a constant shear strength profile and a linearly increasing shear strength profile.  The 

constant shear strength profile is with shear strength 16 psf at the mudline, and slightly increases 

6 psf per ft.  Since the maximum penetration depth by drag embedment anchor is 4.5 inch, thus 

the increase of shear strength along depth is trivial.  For the linearly increasing shear strength 

profile, the shear strength at mudline is 13.57 psf, and the shear strength gradient is 9.11 psf/ft. 
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Table 5.5. Summary of Tests in a Single Layer Soil Profile 

Case 1 

 Constant Shear 

Strength 

Su at mudline 16 psf 
Su gradient 6 psf/ft 

Sensitivity of soft layer 1 
Stiff Layer Thickness 0 inch 

Stiff Layer Depth from Mudline 0 inch 
Shear strength ratio of stiff layer over soft 

 

0 
Case 2 

Linearly Increasing 

Shear Strength 

Su at mudline 13.57 psf 
Su gradient 9.11 psf/ft 

Sensitivity of soft layer 1 
Stiff Layer Thickness 0 inch 

Stiff Layer Depth from Mudline 0 inch 
Shear strength ratio of stiff layer over soft 

 

0 
 

5.2.2.3 Experimental and Analytical Results  

5.2.2.3.1 Experimental Equilibrium Bearing Capacity Factor, Ne 

When the anchor is in equilibrium condition in drag tests, a dimensionless factor, Ne, can be 

determined.  For tests in a linearly increasing undrained shear strength profile, the equilibrium 

bearing factor (Ne) is calculated at the end of test, that is determined by the holding capacity and 

the shear strength corresponding with the final embedment depth.  For tests in a uniform undrained 

shear strength profile, the load used to determine the equilibrium bearing capacity factor is load 

averaged throughout the drag test with the neglect of load within the first couple inches of drag.   

 Ne = Ta
Su∙Af

 Eq.(5.15) 

where Ne = Equilibrium bearing factor 

𝑇𝑇𝑎𝑎 = Tension measured at the load cell 

𝑆𝑆𝑢𝑢 = Undrained shear strength at the fluke 

𝐴𝐴𝑓𝑓 = Area of fluke 
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The experimental Ne is derived based on the anchor capacity (Figure 5.15) in constant shear 

strength profile.  The experimental Ne is calculated based on Equation 5.15.  An example of Ne 

determined from the drag tests in the constant shear strength profile is shown in Figure 5.16.  The 

Ne is about 6.2 after the first 6 inches of drag distance. 

 

Figure 5.15. Test Result of Anchor Capacity for Calibrating Equilibrium Capacity Factor, Ne 

 

Figure 5.16. Example of Experimental Equilibrium Bearing Capacity Factor 
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5.2.2.3.2 Experimental Displacement Normal to Displacement Parallel to the Fluke (Rnt) 

The ratio of the change in displacement normal to the fluke (Δn) to the change in displacement 

parallel to the fluke (Δt) is usually small for a commercial DEA (Aubeny and Chi, 2010). This 

parameter can be calculated from the drag tests in the constant shear strength profile with 

sensitivity of 1 and applied to the predictive model.  The experimental determination of this ratio 

is using the difference of horizontal and vertical displacements between two readings from a 

magnetometer from which Δx and Δz can be calculated.  Afterwards, combining the corresponding 

pitch angle θf of the anchor with Δx and Δz, the Δn and Δt can be calculated by Equation 5.16 and 

5.17 

 Δn =  Δx ∙ sin θf − Δz ∙ cos θf Eq.(5.16) 

 Δt =  Δx ∙ cos θf + Δz ∙ sin θf Eq.(5.17) 

 

The experimental Rnt is obtained from the anchor trajectory (Figure 5.17) and pitch angle along 

the horizontal drag (Figure 5.18) in constant shear strength profile.  First, the horizontal and 

vertical displacement of anchor is calculated based on the reading from magnetometer and then 

Δn and Δt. is obtained by using Equation 5.16 and Equation 5.17.  The Rnt is then simply the ratio 

of Δn/Δt. Testing with the magnetometer indicated that the value of Δn/Δt is typically 0.2 after 1-

3 fluke length of drag distance (Figure 5.19). This ratio is used in the evaluation of in-plane drag 

behavior in the predictive model. 
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Figure 5.17. Test Result of Anchor Trajectory for Calibrating Experimental Displacement 
Normal to Displacement Parallel to Fluke Rnt 

 

Figure 5.18. Test Result of Anchor Pitch for Calibrating Experimental Displacement Normal 
to Displacement Parallel to Fluke Rnt 
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Figure 5.19. Example of Experimental Δn/Δt Throughout Drag Distance 

 

5.2.2.3.3 Calibrated Yield Surface Based on Experimental Results 

Table 5.6 presents the equilibrium bearing capacity factor and the ratio of the normal to shear 

movement.  Table 5.7 summarizes the interaction coefficients for the yield surface before and after 

calibration based on the Ne and Rnt presented in Table 5.6.  The yield surfaces with different sets 

of interaction coefficients are shown in Figure 5.20.  The yield surface is calibrated by changing 

the n/p ratio and q in Eq. 5.2 to make the equilibrium bearing capacity factor and ratio of normal 

to shear movement in theoretical values close to the experiment values.   

Table 5.6.The Equilibrium Bearing Capacity Factor, Ne, and the Ratio of the Normal to Shear 
Movement Ratio, Rnt 

 Equilibrium bearing 
capacity factor, Ne 

Ratio of the normal to shear 
movement, Rnt 

Theoretical Results Before 
Calibration 

4.3 0.05 

Theoretical Results After 
Calibration (Experimental Results) 

6.2 0.2 

 



158 
 

Table 5.7. Exponents in the Yield Function 

Characteristics of Yield 
Surface 

Calibrated Values based on Drag 
Tests 

Theoretical Values 
based on FEM Work 

n/p 1.23 2.67 

q 2.2 4.43 

 

 

Figure 5.20.  Comparison between yield surfaces with different parameters 
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shearing factor (Ns), displacement normal to parallel to the fluke (Rnt), and equilibrium bearing 

capacity factor (Ne).  The pure in-plane shearing factor (Ns) is calibrated based on the pure in-

plane shearing tests.  Before calibration, Ns by theoretical plasticity is 2.9.  After calibration by 

increasing the thickness of plate from 0.12 inches to 0.336 inches, the theoretical Ns matches the 

experimental measured 4.47.  The Rnt and Ne is calibrated based on the drag embedment tests in 

constant shear strength profile.  Ne is experimentally obtained from normalizing the load with 

anchor fluke area and undrained shear strength.  Rnt is calculated based on anchor trajectory 

extracted from magnetometer reading (Section 5.2.2.3.2).  The theoretical Ne and Rnt is calibrated 

to match experimental ones by changing n/p ratio and q from 2.67 and 4.43 to 1.23 and 2.2, thus 

the Ne and Rnt is changed from 4.3 and 0.05 to 6.2 and 0.2.  The results of prediction results between 

the before and after calibration are shown Figure 5.21 and Figure 5.22. Figure 5.21 shows the 

capacity, trajectory, and pitch in a constant shear strength profile, and Figure 5.22 shows the tests 

results in a linearly increasing shear strength.  From those two comparisons, it can be seen that the 

predicted capacity with the calibrated model can better predict the anchor capacity in either the 

constant shear strength and linearly increasing shear strength profile since the Ne is increased from 

4.3 to 6.2.  Comparing the original and the calibrate trajectory, it can be seen that the original 

model predicts a shallow penetration depth, however, the calibrated model can better predict the 

trajectory.  For the pitch prediction, the calibrated model can better match with the measured pitch, 

but still is not capable for the flat pitch during the first inches drag.    

Figure 5.23 and Figure 5.24 present the calibrated model compared with all experimental 

results in constant and linearly increasing shear strength profile.  It can be seen that the variability 

between the experimental results and calibrated prediction still exists, but in a reasonable range. 
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Figure 5.21. Comparison of Experimental Results with Predictions for Constant Undrained 

Shear Strength with Depth (Case 1) 
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Figure 5.22. Comparison of Experimental Results with Predictions for Linearly Increasing 

Undrained Shear Strength with Depth (Case 2) 
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Figure 5.23. Drag Embedment Test Results for Single Layer with Constant Strength (Soil Profile 1) 
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Figure 5.24. Drag Embedment Test Results for Single Layer with Linearly Increasing Strength (Soil Profile 2)
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5.2.3 Extrapolate Generic Drag Embedment Anchor Results 

To extrapolate the tests results to the prototype sized anchor, it is necessary to 

understand which anchor property is scalable and which is not.  A larger size anchor with 

fluke length 1.5 longer than the generic anchor is printed and dragged in the same soil test 

bed as the generic anchor.   

5.2.3.1 Experimental Design 

By the analytical model in Section 5.2.1 with different input of fluke area, the capacity 

(Figure 5.25), trajectory (Figure 5.26), and pitch (Figure 5.27) are obtained with different 

size of fluke.  Figure 5.25 shows that a larger size anchor is expected to have a higher 

capacity.  Figure 5.26 shows that a larger size anchor can penetrate deeper. Figure 5.27 

shows that a larger size anchor pitches more when penetrating into soil.  The capacity by 

the larger size anchor is still in the capacity range of load cell.  The range of displacement 

and pitch by the larger size anchor is also in the range of magnetometer capable to measure. 

Table 5.8. Input for Different Sizes of Anchor Fluke 

Soil Parameter 
Su at mudline 10 psf 

K 5.6 psf/ft 
Anchor and Anchor line 

Anchor line 0.22 or 0.32inch 
Anchor Fluke Area 10 in2 or 22 in2 

Anchor initially embedment 0.12 inch 
Initial pitch angle (fluke to horizontal) 40° 
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Figure 5.25. Capacity from Different Sizes of Anchor Fluke 

 

Figure 5.26. Trajectory from Different Sizes of Anchor Fluke 
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Figure 5.27. Pitch from Different Sizes of Anchor Fluke 

 

5.2.3.2 Test Setup 

In the experiment tests to study how to extrapolate model anchor tests results to 

prototype anchor, two different sizes of anchors are printed.  The characteristic length of 

the larger anchor is 1.5 times longer than the generic anchor.  Both anchors are tested in 

the same soil test bed (Figure 5.28).  The anchors are connected to the appropriate size of 

loading line for drag embedment tests.  The line thickness for each anchor is chosen based 

on the area of fluke by keep the ratio of area over square of line thickness as constant at 

216 (same as the industry standards).  The basic property of anchor and anchor line 

thickness in different sizes are summarized in Table 5.9.  For the drag embedment tests 

with large size anchor, the magnetometer is also attached to track the trajectory and 

orientation.  The drag embedment test procedure for the large size anchor is the same as 

described in Section 5.2.2.2. 
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Table 5.9. Comparison of Geometric Properties of Anchor in Different Sizes 

 Fluke Area 
(in2) 

Fluke Length 
(in) 

Thickness of 
Fluke (in) 

Line Thickness 
(in) 

Generic Anchor 10.37 3.6 0.120 0.22 
Larger Anchor 22.45 5.3 0.186 0.32 

 

 

Figure 5.28. Undrained Shear Strength Profile for Drag Embedment Test with Anchor 
in Different Sizes 

 

5.2.3.3 Experimental and Analytical Results  

5.2.3.3.1 Ne, Rnt and Yield Surface 

The Ne is back-calculated from the load reading and Rnt is calculated from the 

magnetometer reading.  Based on the Ne and Rnt together with Np and Ns from pure loading 

tests (Section 4.4.2), the yield surface is calibrated following the same procedure as for the 
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generic anchor in Section 5.2.2.3.3.  The comparison between the yield surface between 

the generic anchor and large anchor is shown in Figure 5.29.  From Figure 5.29, we can 

see that the large anchor has more flat yield surface, which is close to the reported yield 

surface by commercial anchor.  From the Ne results from anchors in different sizes, it can 

be concluded that capacity is dependent on the size of anchor and is scalable with the area 

(characteristic length) ratio of two anchors.  The Rnt for anchor in different sizes cannot be 

simply scaled by the ratio of the sizes between two anchors.  For example, the fluke length 

ratio between the two anchors is 1.47 (5.3÷3.6=1.47), and the area ratio between the larger 

and the generic anchor is 2.167 (22.45÷10.37=2.167) which is close to the square of length 

ratio (1.472 = 2.1609).  The ratio of Rnt between the larger anchor is 0.25.  Since the 

shearing displacement is independent on the size of anchor, thus, the ratio of Δs between 

two anchors is 1.  The ratio of Rnt together with Δs implies that the ratio of Δn between the 

two anchor is 0.25, which means that if two anchors both move in the direction parallel to 

the fluke, the displacement normal to fluke for the larger anchor is 0.25 of the displacement 

normal to fluke for the generic anchor.   

Table 5.10. Ne and Rnt for Different Size Anchor 

 Ne Rnt 
Generic Anchor 6.2 0.2 
Larger Anchor 6.2 0.05 

 

The theoretical Ne and Rnt is calculated by equation 5.2 and 5.5 in Section 5.2.1.1 and 

5.2.1.2.  To match the theoretical Ne and Rnt to experimental measurements, the n/p and q 

are changed.  However, for the larger size anchor, with n/p and q are changed only once, it 

is hard to get Ne and Rnt to match experimental results at the same time.  For example, ifNe 
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matches with experimental measurement of 6.2 when n/p is 1.23 and q is 4.3, then Rnt is 

0.12.  If Rnt matches with experimental measurement of 0.05 when n/p = 2.67 and q is 3.87, 

then Ne is 6.9.  The best fit results can be achieved by compensating accuracy for both 

parameters with n/p = 2.1 and q = 3.2, and gives Ne = 6.8 and Rnt = 0.08.  The yield surfaces 

corresponding with different sets of interaction coefficient are shown in Figure 5.29, Figure 

5.30 and Figure 5.31.  Figure 5.29 shows that the Rnt for the larger anchor matches with 

experimental measurements, 0.05, however, Ne is 6.9; it shows that the slope for the larger 

anchor is steeper than the generic anchor since the Rnt is smaller for the larger anchor.  

However, the Ne is quite different for both anchors, which is contrast with the experimental 

results that the Ne for both anchors are the same.  Figure 5.30 show that Ne for the larger 

anchor has agreement with experimental results of 6.2, however, the Rnt is 0.12 which is 

different from 0.05 measured in the lab.  Figure 5.30 shows that the Ne for both anchors 

are the same. Figure 5.31 shows the best fit for experimental results.   

 

Table 5.11. Interaction Coefficient in the Yield Surface for Different Size Anchor 

 Generic Anchor Large Anchor (Rnt 

Matches with Test) 
Large Anchor (Ne 

Matches with Test) 
Large Anchor (Best 

Fit with Test) 

n/p 1.23 2.67 1.23 2.1 
q 2.2 3.87 4.3 3.2 
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Figure 5.29. Comparison of Yield Surface between Large and Generic Anchor (Rnt 
matches Experimental Measurements) 

 

 

Figure 5.30. Comparison of Yield Surface between Large and Generic Anchor (Ne 
matches Experimental Measurements) 
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Figure 5.31. Comparison of Yield Surface Between Large and Generic Anchor (Ne 
and Rnt Best-fitted with Experimental Results) 

 

5.2.3.3.2 Drag Embedment Tests 

A comparison of load, trajectory and pitch versus horizontal drag are shown in Figure 

5.29, Figure 5.32 and Figure 5.33, respectively.  In addition, the prediction model described 

in Section 5.2.1.4 is capable to catch the characteristic of load-displacement curve for the 

generic and large anchor.  Figure 5.33 shows that the measured trajectory matches well 

with the predicted trajectory after calibrating the prediction model for each size of anchor.  

Figure 5.34 shows that the pitch angle is not influenced by the size of anchor.  All the tests 

results are shown in Appendix B.  

From Figure 5.29 and Table 5.12, it can be seen that the load is proportional to the ratio 

of area between two anchors.  The area ratio between two anchors is 2.16, and the load 
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ratio between the two anchor is 2.28, which implies that the capacity can be scaled to the 

ratio of area between two anchors.  The penetration depth ratio is 1.4 and the fluke length 

ratio between two anchors is 1.47, which implies that the penetration depth may be scaled 

by the ratio fluke length. 

 

Table 5.12. Ratio of Geometry, Load, Penetration Depth Between Two Anchors 

Fluke Length Ratio Area Ratio Load Ratio Penetration Depth Ratio 

1.47 2.12 2.28 1.4 

 

 

Figure 5.32. Comparison of Tension at Mudline for Anchor in Different Sizes 
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Figure 5.33. Comparison of Trajectory for Anchor in Different Sizes 

 

Figure 5.34. Comparison of Pitch for Anchor in Different Sizes 
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5.3 Drag Embedment Tests in Layered Soil Profiles 

5.3.1 Analytical Model  

The prediction model for the drag embedment tests in a layered soil profile is developed 

based on the prediction of anchor in a single layer in Section 5.2.1.4.  An immediate issue 

that arises in predicting anchor trajectory and load in layered soil is how anchor and anchor 

line behave when hitting a stiff layer.  That is, to quantify the effect of stiff layer on the 

non-dimensional bearing factors and the fluke angle, fluke-line angle.  

When the fluke of the anchor hits a stiff layer, as shown in Figure 5.35, the shear 

resistance and the center of rotational resistance shifts towards the front of the anchor.  

Compared with anchors in a soft soil layer only, a higher pressure from a stiff layer is 

applied to the tip of anchor.  This higher pressure at the tip makes the anchor pitch forward 

as shown in Figure 5.36.  Additionally, as the anchor pitches forward, the line angle at the 

shackle also changes compared with that anchor is in the soft soil only.   

The additional resistance from a stiff layer is considered by including the multipliers 

on the normal bearing factor and the tangential bearing factor.  

 

Figure 5.35. Anchor Fluke Hits Stiff Layer (Rasulo and Aubeny, 2017) 
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Figure 5.36. Anchor Rotation and Anchor Line Reconfiguration When Anchor Hits 
Stiff Layer (Rasulo and Aubeny, 2017) 

 

Figure 5.37 Normal and Tangential Bearing Resistance When Anchor Hits Stiff Layer 
(Rasulo and Aubeny, 2017) 

 

The Normal Bearing resistance force shown in Figure 5.37 is calculated by Eq.5.18, 

and the shearing resistance force is calculated by Eq. 5.19.  

 Fn = su Af Np Mn  Eq.(5.18) 

 Fs = su Af NsMs  Eq.(5.19) 

where su = base soil strength 

Af = fluke area 
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Np = normal bearing factor (experimentally determined by Equation 4.4 or determined 

by Equation 4.1 from plasticity analysis) 

Ns = tangential bearing factor (experimentally determined by Equation 4.5 or 

determined by Equation 4.2 from plasticity analysis) 

Mn and Ms = multipliers for stiff layer effect shown in Figure 5.38, which is a function 

of (Astiff/Af, sustiff/subase) 

 

Figure 5.38. Bearing Factor Multipliers 

 

First, the ratio of the shear strength of the stiff layer over the shear strength of the soil 

layer needed to be determined.  Then the area in the stiff layer can be multiplied by this 

ratio.  That is, the fluke in the stiff layer is enlarged by the shear strength ratio, Suratio. An 

enhanced fluke area can be calculated by involving the enlarged area in a stiff layer. Then 

the multiplier for the bearing factor and shearing factor can be determined.  
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 Mn = 𝐴𝐴𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 Eq.(5.20) 

To determine the multiplier for the shearing factor, the width of the top and bottom of 

the fluke in a stiff layer needs to be determined first, which is designated as btop and bbottom 

in Figure 5.38. Additionally, the maximum width of the fluke in the stiff layer, bmax, is 

needed for the shearing factor multiplier. 

 Ms = 1 + btop− bbot

bmax
 (Suratio −1)

2
 Eq.(5.21) 

The prediction model for anchors in a layered soil profile is the same as in a single 

layer soil except applying the multipliers to bearing and shearing factors, respectively when 

the anchor is in a stiff layer.  In addition, a line multiplier ranging from 1 to 1.22, depending 

on the depth of line, will be applied to the line resistance if the anchor line is in the stiff 

layer.  

 

5.3.2 Experimental Design 

This section studies the analytical model in 5.3.1.  From the study of analytical model, 

the effect by the characteristics of stiff layer such as the shear strength, depth, and thickness 

is evaluated as a guide to experimentally construct soils tests beds which are at the 

threshold anchor can or cannot penetrate into stiff layer.   
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5.3.2.1 Effect of Shear Strength of Stiff Layer  

Table 5.13 summarizes the soil parameters for sensitivity analysis of shear strength of 

stiff layer.  A 1 inch thickness stiff layer interbedded into the constant shear strength profile 

with 12 psf, and the shear strength is 24 psf, 36 psf or 48 psf.   

The capacity (Figure 5.39), trajectory (Figure 5.40), and orientation (Figure 5.41) of 

drag embedment anchor is checked.  From Figure 5.39, the capacity is expected to increase 

with the increase of the shear strength of stiff layer.  Figure 5.40 shows that it is less 

possible for anchor to penetrate into the stiff layer with higher shear strength.  In the shear 

strength profile with 24 psf, anchor can penetrate into the stiff layer, however, anchor canno 

penetrate into stiff layer with shear strength at 36 psf and 48 psf. Figure 5.10 shows that 

anchor pitches slightly less in the shear strength profile with a lower shear strength gradient. 

From the capacity results, it can be estimated that the load cell is capable to measure 

the capacity.  From the trajectory and pitch results, it can be concluded that the 

magnetometer is capable to track anchor displacement and rotation during drag tests. 

Table 5.13. Input for Effect of Stiff Layer Shear Strength 

Soil Parameter 
Su at mudline 12 psf 

k 0 psf/ft 
Stiff Layer Thickness 1 inch 

Stiff Layer Depth from Mudline 3 inch 
Shear strength ratio of stiff layer over 

soft layer 
2 (24 psf) or 3 (36 psf) 

or 4 (48 psf)  
Anchor and Anchor line 

Anchor line 0.22 inches 
Anchor initially embedment 0.6 inches 
Initial line angle at mudline 0° 

Initial pitch angle (fluke to horizontal) 40° 
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Figure 5.39. Anchor Capacity (Effect of Stiff Layer Shear Strength) 

 

Figure 5.40. Anchor Trajectory (Effect of Stiff Layer Shear Strength) 
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Figure 5.41. Anchor Pitch (Effect of Stiff Layer Shear Strength)  

5.3.2.2 Effect of Thickness of Stiff Layer 

Table 5.14 summarizes the soil parameters for sensitivity analysis of shear strength of 

stiff layer.  A 3-in thick stiff layer with 24 psf shear strength interbedded into the constant 

shear strength profile with 12 psf, and the shear strength is 1 inch or 1.5 inches or 2 inches.   

The capacity (Figure 5.42), trajectory (Figure 5.43), and orientation (Figure 5.44) of 

drag embedment anchor is checked.  From Figure 5.42, the capacity is independent with 

the thickness of stiff layer.  Figure 5.43 shows that the thickness does not impact the fact 

that anchor can or cannot penetrate into stiff layer, but affect that anchor can or cannot 

penetrate through the stiff layer.  For the thinnest stiff layer (1 inch), anchor can penetrate 

through the stiff layer, however for the thicker layers (3 inches), anchor only can penetrate 

into but not through.  Figure 5.10 shows that anchor pitches the same way in shear strength 

profile with different thicknesses when approaching into stiff layer, however, the pitch 
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angel is the different in shear strength profile with different thicknesses when anchor is in 

stiff layer. 

 

Table 5.14. Input for Effect of Stiff Layer Thickness 

Soil Parameter 
Su at mudline 12 psf 

k 0 psf/ft 
Stiff Layer Thickness 1 or 1.5 or 2 inch 

Stiff Layer Depth from Mudline 3 inch 
Shear strength ratio of stiff layer over 

soft layer 2 (24 psf) 
Anchor and Anchor line 

Anchor line 0.22 inches 
Anchor initially embedment 0.6 inches 
Initial line angle at mudline 0° 

Initial pitch angle (fluke to horizontal) 40° 
 

 

Figure 5.42. Anchor Capacity (Effect of Stiff Layer Thickness) 
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Figure 5.43. Anchor Trajectory (Effect of Stiff Layer Thickness) 

 

 

Figure 5.44. Anchor Pitch (Effect of Stiff Layer Thickness) 
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5.3.2.3 Effect of Stiff Layer Depth 

Table 5.15 summarizes the soil characteristics for the sensitivity analysis of stiff layer 

depth.  The shear strength of soft soil is 13 psf and increasing with the gradient of 8.21 

psf/ft.  The 1-in thick stiff layer starts at 3 or 4 or 5 inches below mudline.  The shear 

strength of stiff layer is 39 psf.   

From Figure 5.45, the soil resistance increases with the increase of depth of stiff layer.  

From Figure 5.46, the trajectory shows that the anchor cannot penetrate into the stiff layer 

deeper than 3 inches (1 fluke length). 

 

Table 5.15. Input for Effect of Stiff Layer Depth 

Soil Parameter 
Su at mudline 13 psf 

k 8.2 psf/ft 
Stiff Layer Thickness 1 inch 

Stiff Layer Depth from Mudline 3 or 4 or 5 inch 
Shear strength ratio of stiff layer over 

soft layer 3 
Anchor and Anchor line 

Anchor line 0.22 inches 
Anchor initially embedment 0.6 inch 
Initial line angle at mudline 0° 

Initial pitch angle (fluke to horizontal) 40° 
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Figure 5.45. Anchor Capacity (Effect of Stiff Layer Depth) 

 

Figure 5.46. Anchor Trajectory (Effect of Stiff Layer Depth) 
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Figure 5.47. Anchor Pitch (Effect of Stiff Layer Depth) 

 

5.3.2.4 Effect of Anchor Line Thickness 

Table 5.16 summarizes the soil parameters for sensitivity analysis of shear strength of 

stiff layer.  A 1-in thick stiff layer with 24 psf shear strength interbedded into the constant 

shear strength profile with 12 psf.  The thin anchor line is 0.05 inch and the thick line is 

0.218 inch. 

The capacity (Figure 5.48), trajectory (Figure 5.49), and orientation (Figure 5.50) of 

drag embedment anchor is checked.  From Figure 5.48, the capacity increases with the 

increase of line thickness.  Figure 5.49 shows that the thickness line impacts that anchor 

can or cannot penetrate into stiff layer.   Figure 5.50 shows that anchor pitches less with 

the thin line attached compared with thick line attached.   
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Table 5.16. Input for Effect of Anchor Line Thickness 

Soil Parameter 
Su at mudline 12 psf 

k 0 psf/ft 
Stiff Layer Thickness 1 inch 

Stiff Layer Depth from Mudline 3 inch 
Shear strength ratio of stiff layer over 

soft layer 2 (24 psf) 
Anchor and Anchor line 

Anchor line 0.05 or 0.218 inch  
Anchor initially embedment 0.6 inch 
Initial line angle at mudline 0° 

Initial pitch angle (fluke to horizontal) 40° 
 

 

Figure 5.48. Anchor Capacity (Effect of Anchor Line Thickness) 
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Figure 5.49. Anchor Trajectory (Effect of Anchor Line Thickness) 

 

Figure 5.50. Anchor Pitch (Effect of Anchor Line Thickness) 
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5.3.3 Tests Setup 

The drag embedment tests setup is the same as the drag embedment anchor in a single 

layer as described in Section 5.2.3.2 except that test bed preparation is slightly different.  

The clay layer with relative higher shear strength is prepared by drying the GoM clay in a 

soil bucket 1.6 feet in diameter and 2.6 feet in height to a desired undrained shear strength.  

The strength of the dried GoM clay is characterized by T-bar tests before being placed into 

thermoplastic tank. Then the stratified soil profile can be prepared by removing the top 

couple inches of soft clay in the thermoplastic tank placing stiff clay and covering the tank 

with removed soft soil. 

Table 5.17 summarizes the soil strength characteristics of soft and stiff soil in layered 

soil profile in six cases including the shear strength of soft soil at mudline, shear strength 

gradient of soft soil, stiff layer thickness, stiff layer depth, and the shear strength ratio of 

stiff layer over surrounding soft soil.  The thickness of stiff layer ranges from 1 inches to 

4 inches.  The depth of stiff layer ranges from 3 inches to 4 inches.  The shear strength ratio 

of stiff layer over surrounding soft soil ranges from 1.4 to 5.  The soft soil in case 3, 4, and 

5 are with sensitivity with 1.6, and in case 7, 8, and 9 are remolded soil.  The shear strength 

of soft soil at mudline ranges from 10 psf to 14 psf, and the shear strength gradient is 

between 0 psf/ft to 13.34 psf/ft.   

In the first column in Table 5.17, the expectation of that anchor can or cannot penetrate 

into or through the stiff layer is listed.  It should be noticed that this expectation is based 

on the predicted trajectory from the calibrated model instead of the original model. 
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Table 5.17. Summary of Tests in Layered Soil Profiles 

Case 3 

Stiff Layer – Anchor 
Expected to Penetrate 

Through Stiff Layer based 
on Prediction Model 

Su at mudline 14 psf 
Su gradient 6.3 psf/ft 

Sensitivity of soft layer 1.6 
Stiff Layer Thickness 1 inch 

Stiff Layer Depth from Mudline 3 inches 
Shear strength ratio of stiff layer over soft 

 

2.2 
Case 4 

Stiff Layer - Anchor 
Expected to Penetrate 

Through Stiff Layer based 
on Prediction Model 

Su at mudline 14 psf 
Su gradient 6.3 psf/ft 

Sensitivity of soft layer 1.6 
Stiff Layer Thickness 1 inch 

Stiff Layer Depth from Mudline 4 inches 
Shear strength ratio of stiff layer over soft 

 

2.2 
Case 5 

Stiff Layer – Anchor 
Expected to Penetrate into 

but not Through Stiff 
Layer based on Prediction 

Model 

Su at mudline 16 psf 
Su gradient 0 psf/ft 

Sensitivity of soft layer 1.6 
Stiff Layer Thickness 4 inches 

Stiff Layer Depth from Mudline 3 inches 
Shear strength ratio of stiff layer over soft 

 

1.4 
Case 6 

Stiff Layer – Anchor 
Expected to Penetrate into 

Stiff Layer based on 
Prediction Model 

Su at mudline 10 psf 
Su gradient 13.4 psf/ft 

Sensitivity of soft layer 1 
Stiff Layer Thickness 1 inch 

Stiff Layer Depth from Mudline 3 inches 
Shear strength ratio of stiff layer over soft 

 

2 
Case 7 

Stiff Layer – Anchor 
Expected to Not Penetrate 
into Stiff Layer based on 

Prediction Model 

Su at mudline 13 psf 
Su gradient 6.3 psf/ft 

Sensitivity of soft layer 1 
Stiff Layer Thickness 5 inches 

Stiff Layer Depth from Mudline 4 inches 
Shear strength ratio of stiff layer over soft 

 

5 
Case 8 

Stiff Layer – Anchor 
Expected to Penetrate into 

but not Through Stiff 
Layer based on Prediction 

Model 

Su at mudline 14 psf 
Su gradient 8.2 psf/ft 

Sensitivity of soft layer 1 
Stiff Layer Thickness 2 inches 

Stiff Layer Depth from Mudline 4 inches 
Shear strength ratio of stiff layer over soft 

 

2.4 
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5.3.4 Experimental and Analytical Results 

From Figure 5.51, the calibrated model can better predict the capacity, trajectory and 

pitch of anchor in layered soil profile.  It should be noted that the calibrated model is only 

calibrated once based on the test results in constant shear strength profile, and directly 

applied to the cases in layered soil profile.  Figure 5.52 shows the comparison between the 

calibrated prediction model with the experimental results in case 5.  The variability 

between the prediction model and experimental results still exist but that they generally 

match well, thus the calibrated model is applied to evaluate the ability of anchor in layered 

soil profile before constructing soil tests beds, and is checked with experimental results 

after testing in the corresponding soil profile.  
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Figure 5.51. Comparison of experimental results with predictions for a relatively 

weak layer (Case 5) 
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Figure 5.52. Drag embedment test results for layered soil profile (Soil Profile 5) 
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Table 5.18 to Table 5.20 summarizes comparison on capacity, penetration depth and 

pitch when anchor hitting stiff layer and at the point where the maximum difference 

between analytical and experimental results exist. 

From Table 5.18,  it can be seen that the analytical model is capable to predict the 

capacity when anchor hitting stiff layer generally within 20% difference.  However, 

comparing the normalized horizontal drag distance (marked x_fluke length) when hitting 

stiff layer, the analytical model predict anchor hits stiff layer with more horizontal drag 

distance compared with experimental measurement, which implies that anchor hits stiff 

layer earlier experimentally than analytically.    The maximum difference between the 

analytical and experimental capacity exist either before hitting stiff layer or at the end of 

drag tests.  This makes consistent with the previous conclusion (anchor hits stiff layer 

earlier in experiement) and experimental capacity is higher than analytical since anchor 

already hits stiff layer. 

Table 5.19 summarizes the penetration depth when anchor hits stiff layer and the 

maximum difference on penetration depth between experimental and analytical results.  

Generally, the analytical penetration depth is 30% deeper than the experimental ones when 

hitting stiff layer.  This also makes consistent with the capacity observation that anchor 

experimentally feels stiff layer earlier than in the analytical prediction.  Due to the early 

exposure to enhanced shear strength from stiff layer, experimentally anchor penetrates less 

than predicted by analytical model.  The maximum difference between analytical and 

experimental penetration exist mostly at the end of drag tests.  Since the analytical model 

predicts less and lagged resistance therefore anchor is more possible to penetrate into stiff 

layer.  However, in the same case, experimentally anchor cannot penetrate into stiff layer.  
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This discrepancy makes a difference on the final penetration between analytical and 

experimental results.  

Table 5.20 summarizes the pitch angle when anchor hitting stiff layer and the maximum 

difference on pitch between experimental and analytical results.  First, from the normalized 

horizontal drag distance (x fluke length), it shows that experimentally anchor hits stiff layer 

earlier than analytical results.    Second, in case 3, 4 and 8, the analytical model predicts 

shallower pitch angle when hitting stiff layer than experimental measurement.  The 

maximum difference between analytical and experimental pitch exists after around one 

fluke length drag anchor penetrates stiff layer or at the end of drag.  At the point where 

after around one fluke length drag after penetrate stiff layer, the analytical model predicts 

anchor flattened,  however, the anchor is still pitching forward  experimentally.  At the end 

of drag, analytical model predicts that anchor penetrates through stiff layer and continues 

the trajectory in soft soil and with a flattened pitch.  However, experimentally pitch angle 

is still steep and anchor slides on top of stiff layer.  
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Table 5.18. Difference between the Experimental and Analytical Capacity 
  

Encounter the Stiff Maximum Difference 
 

Prediction Experiment 
Load 

Difference 

Prediction Experiment 
Load 

Difference x (Fluke 
Length) Load x (Fluke 

Length) Load x (Fluke 
Length) Load x (Fluke 

Length) Load 

Case 3 Test 0.5 8.8 0.3 8.0 9% 0.5 8.8 0.5 8.8 0% 

Repeat 1 0.5 8.8 1.1 7.5 15% 0.5 8.8 1.9 9.0 -2% 

Repeat 2 0.5 8.8 0.3 7.0 20% 0.5 8.8 0.5 6.8 23% 

Case 4 Test 1.4 9.2 1.4 7.8 15% 1.4 9.4 1.4 7.8 17% 

Repeat 1 1.4 9.2 1.4 8.0 13% 3.6 9.6 3.6 7.2 25% 

Case 5 Test 1.4 8.8 0.5 7.8 11% 3.7 8.0 3.7 10.8 -35% 

Repeat 1 1.4 8.8 1.4 8.8 0% 3.9 8.0 3.9 12.0 -50% 

Case 6 Test 1.4 7.5 1.4 5.5 27% 1.4 7.5 1.4 5.5 27% 

Repeat 1 1.4 7.5 0.8 7.5 0% 0.8 6.0 0.8 7.5 -25% 

Repeat 2 1.4 7.5 0.8 3.5 53% 1.4 7.5 0.8 3.5 53% 

Repeat 3 1.4 7.5 1.4 5.0 33% 1.4 7.5 1.4 5.0 33% 

Repeat 4 1.4 7.5 0.8 7.5 0% 5.2 6.0 5.2 3.0 50% 

Repeat 5 1.4 7.5 1.1 6.0 20% 4.8 6.0 4.8 4.8 20% 
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Table 5.18. Difference between the Experimental and Analytical Capacity (Continued) 

Case 7 Test 2.2 15.0 3.8 15.0 0% 3.8 8.0 3.8 15.0 -88% 

Repeat 1 2.2 15.0 3.4 12.0 20% 2.2 15.0 2.2 8.0 47% 

Repeat 2 2.2 15.0 2.2 10.0 33% 3.8 8.0 3.8 14.0 -75% 

Repeat 3 2.2 15.0 2.2 18.0 -20% 2.7 9.0 2.7 15.0 -67% 

Repeat 4 2.2 15.0 1.9 14.0 7% 2.7 9.0 2.7 14.0 -56% 

Case 8 Test 2.5 10.8 3.0 10.8 0% 6.8 8.8 6.8 5.2 41% 

Repeat 1 2.5 10.8 1.1 10.0 7% 1.4 7.2 1.4 10.0 -39% 

Repeat 2 2.5 10.8 0.5 12.0 -11% 0.5 6.4 0.5 12.0 -88% 

Repeat 3 2.5 10.8 2.1 13.0 -20% 2.1 9.0 2.1 13.0 -44% 

Repeat 4 2.5 10.8 2.1 12.0 -11% 6.0 8.8 6.0 5.6 36% 
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Table 5.19. Difference between the Experimental and Analytical Penetration Depth 

 

Encounter the Stiff Maximum Difference 

Prediction Experiment 
Difference 

on z 

Prediction Experiment 
Difference 

on z x (Fluke 
Length) 

z (Fluke 
Length) 

x (Fluke 
Length) 

z (Fluke 
Length) 

x (Fluke 
Length) 

z (Fluke 
Length) 

x (Fluke 
Length) 

z (Fluke 
Length) 

Case 3 

Test 0.3 0.8 0.3 0.8 0% 2.7 0.7 2.7 0.5 20% 

Repeat 1 0.5 0.8 1.1 0.3 67% 2.2 1.4 2.2 0.3 80% 

Repeat 2 0.5 1.0 0.3 0.4 57% 3.5 1.5 3.5 0.8 45% 

Case 4 
Test 1.4 1.2 1.4 1.2 0% 1.9 1.1 1.9 1.4 -25% 

Repeat 1 1.4 1.4 1.4 0.7 50% 2.7 0.8 2.7 1.9 -133% 

Case 5 
Test 1.4 1.2 0.5 0.8 33% 3.6 1.6 3.6 1.5 8% 

Repeat 1 1.4 1.2 1.4 1.1 11% 1.9 1.4 1.9 1.2 10% 

Case 6 

Test 1.4 1.2 1.4 1.0 22% 1.4 1.2 1.4 1.0 22% 

Repeat 1 1.4 1.2 0.8 0.8 33% 3.8 1.4 3.8 0.5 60% 

Repeat 2 1.4 1.2 0.7 1.0 22% 4.9 1.5 4.9 0.8 45% 

Repeat 3 1.4 1.2 1.4 0.8 33% 4.9 1.5 4.9 0.5 64% 

Repeat 4 1.4 1.2 0.8 0.8 33% 4.9 1.5 4.9 0.0 100% 

Repeat 5 1.4 1.2 1.1 0.8 33% 4.8 1.5 4.8 0.5 64% 
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Table 5.19. Difference between the Experimental and Analytical Penetration Depth (Continued) 

Case 7 

Test 2.2 1.4 3.8 1.4 0% 5.2 1.6 5.2 1.1 33% 

Repeat 1 2.2 1.4 3.4 0.9 34% 4.4 1.6 4.4 1.1 33% 

Repeat 2 2.2 1.4 2.2 1.1 20% 3.8 1.6 3.8 1.4 17% 

Repeat 3 2.2 1.4 2.2 0.8 40% 4.9 0.5 4.9 1.6 -200% 

Repeat 4 2.2 1.4 1.9 1.0 30% 5.8 1.6 5.8 0.8 50% 

Case 8 

Test 2.5 1.5 3.0 1.4 9% 4.1 1.6 4.1 1.2 25% 

Repeat 1 2.5 1.5 1.1 1.1 27% 4.7 1.6 4.7 2.3 -42% 

Repeat 2 2.5 1.5 0.5 0.8 45% 5.5 1.6 5.5 1.1 33% 

Repeat 3 2.5 1.5 2.1 1.1 27% 2.1 1.5 2.1 1.1 27% 

Repeat 4 2.5 1.5 2.1 1.0 36% 6.0 2.4 6.0 1.5 36% 
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Table 5.20. Difference between the Experimental and Analytical Pitch 
 

Encounter the Stiff 
 

Maximum Difference 
 

Prediction Experiment Pitch 
Difference 

Prediction Experiment Pitch 
Difference  

x (Fluke 
Length) 

Pitch x (Fluke 
Length) 

Pitch x (Fluke 
Length) 

Pitch x (Fluke 
Length) 

Pitch 

Case 3 Test 0.3 38.0 0.3 30.0 21% 2.7 18.0 2.7 28.0 -56% 

Repeat 1 1.1 22.0 1.1 38.0 -73% 1.6 20.0 1.6 52.0 -160% 

Repeat 2 0.5 40.0 0.3 47.5 -19% 3.4 17.5 3.4 42.5 -143% 

Case 4 Test 1.4 40.0 1.4 35.0 13% 1.9 25.0 1.9 35.0 -40% 

Repeat 1 1.4 40.0 1.4 50.0 -25% 2.2 24.0 2.2 52.0 -117% 

Case 5 Test 1.4 30.0 0.5 23.0 23% 1.4 31.0 1.4 23.0 26% 

Repeat 1 1.4 30.0 1.4 30.0 0% 2.2 22.0 2.2 30.0 -36% 

Case 6 Test 1.4 33.0 1.4 33.0 0% 1.9 14.0 1.9 33.0 -136% 

Repeat 1 1.4 33.0 0.8 30.0 9% 1.9 14.0 1.9 33.0 -136% 

Repeat 2 1.4 33.0 0.8 26.0 21% 2.7 15.0 2.7 35.0 -133% 

Repeat 3 1.4 33.0 1.4 30.0 9% 4.9 12.5 4.9 32.0 -156% 

Repeat 4 1.4 33.0 0.8 32.0 3% 4.9 12.5 4.9 -30.0 340% 

Repeat 5 1.4 33.0 1.1 35.0 -6% 2.2 15.0 2.2 32.0 -113% 
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Table 5.20. Difference between the Experimental and Analytical Pitch (Continued) 

Case 7 Test 2.2 43.0 3.8 35.0 19% 5.2 13.0 5.2 27.0 -108% 

Repeat 1 2.2 43.0 3.4 40.0 7% 4.4 14.0 4.4 35.0 -150% 

Repeat 2 2.2 43.0 2.2 27.0 37% 2.5 43.0 2.5 27.0 37% 

Repeat 3 2.2 43.0 2.2 35.0 19% 2.7 16.0 2.7 35.0 -119% 

Repeat 4 2.2 43.0 1.9 37.0 14% 3.6 15.0 3.6 46.0 -207% 

Case 8 Test 2.5 21.0 3.0 45.0 -114% 4.1 13.0 4.1 45.0 -246% 

Repeat 1 2.5 21.0 1.1 40.0 -90% 2.5 40.0 2.5 20.0 50% 

Repeat 2 2.5 21.0 0.5 47.0 -124% 5.5 11.0 5.5 43.0 -291% 

Repeat 3 2.5 21.0 2.1 47.0 -124% 2.1 20.0 2.1 47.0 -135% 

Repeat 4 2.5 21.0 2.1 3.5 83% 6.0 6.0 6.0 3.5 42% 
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Figure 5.53. Percentage of Tests in Which Stiff Layer Was Penetrated Versus the 
Undrained Strength Ratio for The Stiff Layer Compared to the Surrounding Soil 

 

 

Figure 5.54. Percentage of Tests in Which Stiff Layer Was Penetrated Versus Depth 
of Stiff Layer 
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Figure 5.55. Percentage of Tests in Which Stiff Layer Was Penetrated Versus Anchor 
Line Thickness 

 

 

Figure 5.56. Percentage of Tests in Which Stiff Layer Was Penetrated Versus 
Thickness of Stiff Layer 
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As shown in Figure 5.52, the calibrated model can generally match with experimental 

results, but there is slight difference on trajectory (final penetration depth) which makes 

discrepancy between the experimentally and theoretically that if anchor can or cannot 

penetrate into or through the stiff layer.  In the same test bed where anchor is expected to 

penetrate into or through the stiff layer by the calibrated model, but experimental results 

may not match the analytical expectation in every test.  Figure 5.53 summarizes the number 

of penetration over the total tests.  Combining Table 5.17 and Figure 5.53, we can 

summarize that:  

• For the stiff layer with lowest and highest undrained shear strength, the 

prediction model matches with every experimental test (case 5 and case 7 in 

Figure 5.53).  

o When the anchor is expected to penetrate into the stiff layer in case 5 

based on the calibrated model, the anchor penetrates into the stiff layer 

in every test.  In this case, the undrained shear strength of stiff layer is 

22 psf, and the thickness is 4 inches, the depth is 3 inches.  One example 

test compared with calibrate model is shown in Figure 5.59, from which 

the experimental measured capacity agrees well with the predicted one, 

the experimental and analytical trajectory matches well, the measured 

pitch is slightly flattened than the predicted one.  The rest of tests results 

in case 5 are shown in Appendix A, and they all match well with 

analytical results that anchor penetrates into the stiff layer.  

o When the anchor is not expected to penetrate into the stiff layer in case 

7, the anchor in every test cannot penetrate into the stiff layer.  In this 
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case, the shear strength of stiff layer is 76 psf, and the thickness is 2 

inches, and starting at 4 inches below mudline.  An example of the 

comparison between the analytical and experimental results of capacity, 

trajectory, and pitch is shown in Figure 5.61.  The rest of tests are shown 

in Appendix A.  From Figure 5.61, the calibrated and experimental 

results match generally well, and either the analytical or experimental 

results show the anchor cannot penetrate into the stiff layer. 

• For a Su ratio with 2 to 2.4, anchor can or cannot penetrate into stiff layer does 

not highly depends on the shear strength ratio between the stiff layer over 

surrounding soil, however, it depends on the depth of stiff layer and the 

thickness of anchor line (Figure 5.54 and Figure 5.55) and does not depend on 

stiff layer thickness (Figure 5.56).  From Figure 5.53, it can be seen that there 

is no clear trend that anchor is less possible to penetrate into stiff layer with the 

increase of shear strength.  This implies that within the shear strength ratio 

range between 2 and 4, the shear strength ratio may not be the determinant for 

anchor to penetrate or not into stiff layer.  Figure 5.54 summarizes the 

percentage of anchor penetrates into stiff layer with the depth of stiff layer, and 

it shows that a lead to a less percentage to penetrate.  Figure 5.55 shows that a 

thinner anchor line makes anchor more possibility to penetrate into stiff layer.  

Figure 5.56 shows that the thickness of stiff layer is not the key variable to 

determine anchor can or cannot to penetrate into stiff layer.  In summary, the 

depth of stiff layer and anchor line thickness are two factors to influence anchor 

to penetrate into stiff layer, which implies that anchor can or cannot penetrate 
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into stiff layer is the pitch angle when approaching stiff layer.  If the pitch angle 

is relative steep, then it is likely to for anchor to slide on the surface of stiff 

layer.  Otherwise, the anchor with a relatively flattened pitch can penetrate into 

stiff layer.  Thus, the thin anchor line helps anchor pitch downward compared 

with the thick line which makes a steeper angle at the shackle.  On the other 

hand, if the depth of stiff layer is relatively deeper, then the pitch of anchor has 

already flattened when touching the stiff layer since pitch generally decreases 

with the horizontal drag distance.   

o It is easier for anchor to penetrate into the stiff layer with deeper depth 

compared with the case with shallower depth.  Comparing case 4 and 

case 8 with case 6 and case 3 in Figure 5.53, the percentage of 

penetration numbers over total tests for the cases with deeper stiff layer 

(case 4 and case 8) is higher than the cases with shallower stiff layer 

(case 3 and case 6). 

o If the depth of stiff layer is the same, then it is easier for anchor to 

penetrate into stiff layer with a thinner anchor line attached.  Comparing 

the case 8 (thick anchor line) with case 4 (thin anchor line), case 6 (thick 

anchor line) and case 3 (thin anchor line), the number of penetration 

over total tests is higher for the cases with thin anchor line.  For example, 

with the stiff layer at shallower depth (case 3 and case 6), the thick 

anchor line (case 6) has one test out of 6 tests for anchor penetrating into 

stiff layer, while the thin line (case 3) has two test out of 6 tests for 

anchor penetrating into stiff layer; with the stiff layer at deeper depth 
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(case 4 and case 8), the anchor with a thin line (case 4) penetrates into 

stiff layer in every test while anchor with a thick line (case 8) penetrates 

into stiff layer twice out of 5 times.  

• When the behavior in the experiment matches the predicated behavior (either 

penetrating or not penetrating the stiff layer), the experimental results are 

generally in good agreement with the predictions for the load and trajectory 

(Figure 5.57 to Figure 5.62). 

• The anchor and the T-bar are both affected by the stiff layer before penetrating 

it (Figure 5.57 to Figure 5.62).  The orange block represents the real stiff layer 

thickness and depth in undrained shear strength versus depth plot and trajectory 

plot, while the gray block represents the stiff layer felt by the T-bar and anchor.  

From the undrained shear strength profiles in Figure 5.57 to Figure 5.62, the 

undrained shear strength increases before the T-bar touching the stiff layer, and 

the soil resistance decreases gradually when the T-bar back to the soft soil. 

• The anchor tends to pitch forward (stand up vertically or rotate in the opposite 

direction of the flattening it typically exhibits) when it hits the stronger layer.  

This effect is most significant with the shallower stiff layers.  Figure 5.63 shows 

an example of trajectory and pitch from case 3 with stiff layer at a shallower 

depth, and Figure 5.64 shows an example of trajectory and pitch from case 8 

with stiff layer at a deeper depth.  Comparing pitches in Figure 5.63 and Figure 

5.64, the anchor stands up more vertically in the case with a shallower stiff layer. 
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Figure 5.57 Drag embedment test results in Case 3 
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Figure 5.58. Drag embedment test results in Case 4 
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Figure 5.59. Drag embedment test results in Case 5 
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Figure 5.60. Drag embedment test results in Case 6 
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Figure 5.61. Drag Embedment Test Results in Case 7 
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Figure 5.62. Drag Embedment Test Results in Case 8 
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Figure 5.63. Example of Anchor Pitching Forward from Case 3 

 

Figure 5.64. Example of Anchor Pitching Forward from Case 7
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5.3.5 Updated Analytical Model  

From previous comparison, the prediction model did not include the effect that the T-

bar and anchor experiences the stiff layer earlier before touching the stiff layer lagging 

after leaving the stiff layer.  In the updated prediction model, this effect is included.  The 

comparison between the shear strength is shown in Figure 5.65.  The updated prediction 

model adds a linear ramp above and below the stiff layer.  In that ramp region above stiff 

layer, the multiplier is stepped up linearly from 1 at the beginning of the ramp to the stiff 

layer multiplier at the boundary of the stiff layer.  In the same way, a linear ramp below 

stiff layer, the multiplier is equal to the stiff layer multiplier and reduce to 1 when back to 

soft layer.  This linear ramp models the effect that T-bar and anchor feels stiff layer earlier 

before penetrating and lagging after leaving stiff layer.  All the comparison between the 

original prediction, the experimental results and updated prediction are shown in Appendix 

C. 
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Figure 5.65. Shear Strength Comparison Between the Primary and Updated Model 

 

5.3.5.1 Updated Analytical Capacity  

The peak capacity from both prediction models are similar.  However, the capacity 

curve by the updated prediction has two features different from that by the original 

prediction model.  First, load gradually increases when the anchor approaches to stiff layer 

and gradually decreases when anchor breaks stiff layer and back to soft layer.  Second, the 

capacity by the updated prediction model tends to predict higher load than that from 

original prediction after its peak.  Figure 5.66 shows an example of capacity comparison 

from case 4.  The curve by the original model has a sharp increase and decrease when 

anchor penetrates and leaves the stiff layer.  In comparison, the peak load by the updated 
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prediction moderately reaches its peak and then decreases.  After the peak load, the updated 

predicted capacity is slightly higher than the original prediction.   

 

Figure 5.66. Example of Capacity Comparison between Updated and Original 
Prediction for Case 4 

 

The updated prediction has a similar trend as the original prediction as shown above in 

Figure 5.66.  However, in the cases where the shear strength ratio of the stiff layer over 

surrounding soft soil is higher than 2.4, instead of having an obvious drop in load-

displacement curve after the peak, load keeps slightly increasing.  Figure 5.67 and Figure 

5.68 show an example of load-displacement curves from case 7 and case 8 with shear 

strength ratio of 5 and 2.4, respectively.  From these two examples, we can see that the 

updated prediction model predicts the capacity still slightly increases after the sharp 

increase.   
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Figure 5.67. Example of Capacity Comparison between Updated and Original 
Prediction for Case 7 

 

Figure 5.68. Example of Capacity Comparison between Updated and Original 
Prediction for Case 8 
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The characteristics of load-displacement curves by the updated model are summarized 

below: 

• If the shear strength ratio of stiff layer over the surrounding soft soil is lower 

than 2, then the updated prediction model predicts the similar capacity as the 

original model.  Both predictions have an obvious peak load, but the updated 

prediction model predicts higher peak load and higher capacity after the peak 

than the original prediction.  The slightly higher capacity is because of the 

introduce of linear ramp representing the effect that the anchor or the T-bar 

experiences higher resistance before reaching and after leaving stiff layer.  This 

linear ramp extends the thickness of stiff layer and increases the shear resistance 

from stiff layer.  

• If the shear strength ratio is higher than 2.4, the load-displacement curve by the 

updated prediction model has no obvious peak compared with the original 

model.  Instead, the updated model predict that capacity keeps increasing after 

reaching stiff layer.   

• From the above two characteristics, we can conclude that the updated model 

with linear ramp above and below actual stiff layer is capable to capture the 

effect of elevated resistance before anchor touching and after anchor leaving 

stiff layer. 

 



219 

5.3.5.2 Updated Analytical Trajectory 

The updated prediction model predicts a similar trajectory of anchor in layered soil 

profile.  There are three examples shown below from different cases to show the similarity 

between the original model and the updated model. 

The original model can predict the anchor trajectory well when the stiff layer is 

relatively deeper and anchor is expected to penetrate through stiff layer.  However, when 

the stiff layer is shallower, the prediction trajectory has few agreements with the measured 

trajectory.  In the cases with shallower stiff layer, the original prediction model predicts 

anchor can penetrate into stiff layer, but experimentally, anchor pitches forward and slides 

on top of stiff layer.   

There is no obvious improvement on trajectory prediction with the updated model with 

a linear ramp in shear strength profile.  Figure 5.69 to Figure 5.72 show three comparison 

example between the original and the updated prediction from different cases.  Figure 5.69 

shows an example from case 4 where anchor is expected to penetrate into the stiff layer 

and anchor penetrates into stiff layer experimental in every test.  In this case with the stiff 

layer is relatively deeper, the updated and the original prediction agrees well with the 

experimental trajectory.  Figure 5.70 and Figure 5.71 show another example of case with a 

relatively deep stiff layer.  In this case, anchor is analytically expected to penetrate into 

stiff layer either by the original and the updated model, however, it only penetrates into 

stiff layer two times out of five trials experimentally.  The experimental result in Figure 

5.70 shows anchor penetrates into stiff layer and matches well with both predictions.  In 

comparison, Figure 5.71 shows that anchor does not penetrate into stiff layer, however, 

both prediction model predict that anchor penetrates into stiff layer.  Figure 5.72 shows an 
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example of that stiff layer is relatively shallower.  In this case, anchor pitches forward and 

slide on the top of stiff layer, however, both analytical model predict anchor can penetrate 

and have a similar predicted trajectory.   

In summary, the updated prediction model  

• Predicts a similar final penetration depth as the original prediction model 

• Still cannot capture that anchor pitching forward when hitting a shallower stiff 

layer. 

 

Figure 5.69. Example of Trajectory from Case 4 

 

Figure 5.70. Example of Trajectory from Case 8 (Penetrate into Stiff Layer) 
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Figure 5.71. Example of Trajectory from Case 8 (Not Penetrate into Stiff Layer) 

 

Figure 5.72. Example of Trajectory from Case 3 

 

5.3.5.3 Updated Analytical Pitch 

The pitch angle along horizontal dragging distance by the original prediction model has 

an obvious increase and decrease.  In contrast, the pitch by the updated prediction model 

generally decreases with horizontal drag.   

Figure 5.73 and Figure 5.74 show two examples of pitch angle along drag distance 

from two cases. Figure 5.73 shows the pitch angle in the test anchor penetrates into stiff 
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layer, and the corresponding trajectory is shown in Figure 5.69.  In this case, the pitch angle 

by the original model has an obvious jump in the horizontal drag, however, the pitch by 

the updated prediction has similar trend as the measured pitch, that is, pitch angle decreases 

with horizontal drag.  Figure 5.74 shows the pitch-drag curve from one test in case 8, and 

the corresponding trajectory is shown in Figure 5.71.  In this particular test, anchor pitches 

forward when encounters stiff layer and continues sliding with the pitch first touches the 

stiff layer, thus the measured pitch increases first then keeps at a relative constant.  

However, neither the updated prediction nor the original model predicts the relative 

constant pitch.   

In summary, the pitch by the updated model 

• Has no sharp increase and decrease 

• Better predicts the measured pitch with the case where the measured pitch 

gradually decreases with the horizontal drag 

• Still does not capture the standing up and sliding features when anchor paws on 

top of stiff layer  

 

Figure 5.73. Example of Pitch-Drag from Case 4 
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Figure 5.74. Example of Pitch-Drag from Case 8 

 

5.4 Conclusion 

This chapter summarizes the experimental results of the generic drag embedment 

anchor in constant undrained shear strength profile with sensitivity of 1, linearly increasing 

undrained shear strength profile with sensitivity of 1.6, and a variety of layered undrained 

shear strength profiles.  In the linearly increasing shearing strength profile, a larger anchor 

with fluke length of 1.5 times longer than the generic one is tested.  The following 

conclusions are drawn based on the measured results and the predicted results using the 

plasticity model.   

For the generic anchor in a single layer: 

• The prediction model is calibrated using the experimental results from soils 

with the simplest profiles (no layer or a relatively weak layer) by changing n/p 

ratio, q (based on the trajectory) and the thickness of anchor fluke (based on the 

measured resistance to in-plane shear). The variability between the 
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experimental results and the calibrated analytical prediction is generally 

consistent and repeatable.  The measured equilibrium capacity is 6.2, and the 

Rnt is 0.2.  The equilibrium capacity from plasticity-based analysis is 4.3 and 

Rnt is 0.05 with interaction coefficient with n/p = 2.67 and q = 4.43.  In order to 

make the predicted Rnt and Ne matches with the experimental measurement, the 

n/p is changed into 1.23 and q into 2.2.   

To extrapolate scaled model anchor results based on the larger anchor in the linearly 

increasing shear strength profile: 

• The larger size anchor is stable and dives deeper as expected.  The measured 

capacity and trajectory for the larger size anchor matches well with the 

predicted results by the calibrated prediction model.   

• The Rnt for the large size anchor is 0.05, and the Ne is 6.2. Therefore, Rnt is 

related to the model scale, but Ne is independent on the model scale.  However, 

the theoretical Rnt for and the Ne for the larger anchor cannot be matched with 

experimental results at the same time with changing n/p and q once.  The 

interaction coefficient for the larger anchor at best-fit is that n/p of 2.1, and q of 

3.2.   The yield surface from larger anchor is different from the one for generic 

anchor, which implies that the soil surrounding different size anchor yields 

differently.  The yield surface for tested larger size anchor is close to the yield 

surface for prototype anchor.   

• The ratio of capacity between two anchors is the same as the area ratio, and the 

ratio of penetration depth between two anchors it close to the fluke length ratio.  

This result implies that when extrapolating scale model results, the capacity can 



225 

be scaled by the ratio of area, and the trajectory may be scaled by the ratio of 

fluke length. 

For the generic anchor in layered soil profiles: 

• For the tests with the stiff layer being the weakest (Case 5 – undrained shear 

strength of layer is 1.38 times the undrained shear strength of surrounding soil), 

the anchor was predicted to penetrate and did penetrate in every test (Fig. 4). 

• For the tests with the stiff layer having an undrained shear strength about five 

times the undrained shear strength of the surrounding soil (Case 7), the anchor 

was not predicted to penetrate and did not penetrate the stiff layer (Fig. 4). 

• For the tests with the stiff layer having an undrained shear strength about twice 

the undrained shear strength of the surrounding soil (Cases 3, 4, 6 and 8), the 

anchor was predicted to penetrate the stiff layer but did consistently only for 

the case in which the layer was the deepest and the thinnest – Case 4. 

• When the behavior in the experiment matches the behavior predicted (either 

penetrating or not penetrating the stiff layer), the experimental results are in 

generally good agreement with the predictions for the load and trajectory. 

• The anchor and the T-bar are both affected by the stiff layer before penetrating 

it.  The estimated capacity from updated prediction with adding ramps above 

and below stiff layer is capable to catch this effect. 
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Chapter 6. Drag Embedment Tests of Tandem System Anchor 

6.1 Introduction 

The tandem (piggy-back) anchor system concept involves attaching two drag 

embedment anchor or vertically loaded anchors together to achieve higher capacity than a 

single anchor. Walker (1983) performed drag embedment tests in cohsionless soil by 

connecting two Navmoor anchors with 1/20 scale and found that tandem system anchor 

has twice higher than a single anchor.  Taylor (1987) validated this conclusion with field 

tests in soft mud.  In this study, to further understanding of tandem system anchor, drag 

embedmnet tests are performed the drag embedment tests with varying the attachment 

point of piggy-back anchor, the thickness of tailing and the spacing between two anchors.   

Additionally, drag embedment tests with a single anchor are performed in the same test 

bed for comparison.  Furthermore, the tests results are used to calibrate and validate an 

analytical prediction.  

 

6.2 Analytical Model  

The prediction model for piggy-back configuration is developed by Aubeny (2017).  

This prediction model is capacble to predict the capacity, trajectory and pitch angle for 

piggy-back anchor system in which the second anchor is attached to the back of the fluke 

of first anchor.  The prediction model allows slacks between the first anchor and second 

anchor.  The prediction model uses the padeye of anchor as the reference point when 

calculating embedment depth for each anchor.  It is assumed that the first anchor is pre-

embedded at mudline with pitch angle of 45̊ (shank is horizontally placed at mudline).  The 
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second anchor is also pre-embedded deeper than at the mudlineThe initial orientation and 

location of the first anchor is assumed that At each point along the predicted embedment 

depth, the fluke angles (θf1 and θf2) during embedment are calculated.  During the drag 

embedment process, the anchor system behavior is controlled by the fluke-shank angles 

θaf0, and the pitch, θaf1.  The variables used in the prediction model are schematically 

described in Figure 6.1 and Figure 6.2. 

 

Figure 6.1. Geometric Description of the Piggyback Anchor System (Aubeny, 2017) 
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Figure 6.2. Tension Description of the Piggyback Anchor System Lines (Aubeny, 
2017) 

The line angle at shackle of the first anchor at the beginning can be determined by 

 
𝜃𝜃𝑎𝑎1 = �2 𝐸𝐸𝑛𝑛𝑁𝑁𝑐𝑐 𝑏𝑏 𝑧𝑧1

𝑇𝑇𝑎𝑎1
�𝑠𝑠𝑢𝑢0 + 𝑘𝑘𝑧𝑧1

2
� +  𝜃𝜃0

2   
Eq.(6.1) 

where 𝐸𝐸𝑛𝑛 – Multiplier to be applied to chain diameter 

𝑁𝑁𝑐𝑐 – Bearing factor for Anchor line; 

𝑏𝑏 – Anchor line diameter 

𝑘𝑘 – Strength gradient. 

𝑧𝑧1 – Depth from mudline to shackle of Anchor 1. 

𝜃𝜃0– line angle at the mudline 

And the fluke angle of the first anchor can be calculated as  
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 𝜃𝜃𝑓𝑓1 = 𝜃𝜃𝑎𝑎𝑎𝑎1 −  𝜃𝜃𝑎𝑎1 
 

Eq.(6.2) 

where 𝜃𝜃𝑓𝑓1 – Anchor fluke angle with respect to the horizontal plane 

𝜃𝜃𝑎𝑎𝑎𝑎1 – Line Angle parallel to anchor fluke 

For the second anchor, the line angle at shackle is 

 𝜃𝜃12 = tan−1(
𝑧𝑧𝑏𝑏 −  𝑧𝑧2

𝑥𝑥𝑏𝑏 −  𝑥𝑥2
) Eq.(6.3) 

where 𝑧𝑧𝑏𝑏 – Depth from mudline to connection of piggyback line at back of Anchor 1. 

𝑥𝑥𝑏𝑏 – Distance from reference to connection of piggyback line at back of Anchor 1. 

𝑧𝑧2 – Depth from mudline to shackle of Anchor 2. 

𝑥𝑥2 – Distance from reference to shackle of Anchor 2. 

The fluke angle of the second anchor is  

 𝜃𝜃𝑓𝑓2 = 𝜃𝜃𝑎𝑎02  +  𝜃𝜃12 
 

Eq.(6.4) 

where 𝜃𝜃12 – Piggyback line angle with respect to the horizontal plane. 

 𝜃𝜃𝑓𝑓2 – Anchor fluke angle with respect to the horizontal plane 

𝜃𝜃𝑎𝑎02 – Angle the resistance force makes with the anchor fluke 
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Figure 6.3. Sketch of the First Anchor in Tension (Aubeny, 2017) 

 

Figure 6.4. Sketch of the Second Anchor in Tension (Aubeny, 2017) 

 

When both anchors start diving and reach equilibrium point, the bearing force acting 

on the fluke of the first anchor and the line angle relative to its fluke: 
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 𝐹𝐹1 = 𝑁𝑁𝑒𝑒1 𝑠𝑠𝑢𝑢𝑢𝑢1 𝐴𝐴𝑓𝑓1 Eq.(6.5) 

 
𝜃𝜃𝑎𝑎𝑎𝑎1 =   

𝐹𝐹1 sin(𝜃𝜃𝑎𝑎01) + 𝑇𝑇𝑝𝑝 sin�𝜃𝜃𝑝𝑝�   
𝐹𝐹1 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝑎𝑎01) + 𝑇𝑇𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐�𝜃𝜃𝑝𝑝�   

 
Eq.(6.6) 

where Ne is the equilibrium bearing capacity factor 

𝐹𝐹1 – Anchor 1 bearing resistance of fluke 

𝑇𝑇𝑝𝑝 – Piggyback line Tension at connection point on back of Anchor 1 

𝜃𝜃𝑝𝑝 – Angle of the Piggyback line tension with respect to fluke of Anchor 1 

If the trailing line connects piggy-back anchor is slack, the anchor line tension of 

piggyback system at the shackle of the first anchor 

 
𝑇𝑇𝑎𝑎1 =   

𝐹𝐹1 cos(𝜃𝜃𝑎𝑎01) + 𝑇𝑇𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐�𝜃𝜃𝑝𝑝�   
𝑐𝑐𝑐𝑐𝑐𝑐�𝜃𝜃𝑎𝑎𝑎𝑎1�   

 

 

Eq.(6.7) 

If the trailing line in tension, the line tension at the connection point at the first anchor 

 
�
𝑇𝑇𝑝𝑝 =  𝑇𝑇𝑎𝑎2 =  𝐹𝐹2 =  𝑁𝑁𝑒𝑒2 𝑠𝑠𝑢𝑢𝑢𝑢2𝐴𝐴𝑓𝑓2      𝑖𝑖𝑖𝑖 𝑍𝑍𝑏𝑏 > 𝑍𝑍2
𝑇𝑇𝑝𝑝 =  𝐹𝐹2 exp[ µ (𝜃𝜃𝑎𝑎1  − 𝜃𝜃12)]         𝑖𝑖𝑖𝑖 𝑍𝑍𝑏𝑏 < 𝑍𝑍2

 
Eq.(6.8) 

 

For the trajectory prediction, the horizontal and vertical movement of each anchor is 

calculated for each increment.  The sketch of increment for each anchor is shown in Figure 

6.5. 
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Figure 6.5. Evolution of Anchor (Aubeny, 2017) 

For the first anchor, the horizontal and vertical movement as well as the movement 

parallel to the fluke 

 
𝑑𝑑𝑑𝑑1 = 𝑑𝑑𝑑𝑑1 (cos 𝜃𝜃𝑓𝑓1 +

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 sin 𝜃𝜃𝑓𝑓1)  
 

Eq.(6.9) 

 
𝑑𝑑𝑑𝑑1 = 𝑑𝑑𝑑𝑑1 (sin 𝜃𝜃𝑓𝑓1 −

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 cos 𝜃𝜃𝑓𝑓1)  
 

Eq.(6.10) 

 𝑑𝑑𝑑𝑑 =  𝑑𝑑𝑑𝑑1 cos 𝜃𝜃12  + 𝑑𝑑𝑑𝑑1 sin 𝜃𝜃12 
 

Eq.(6.11) 

where 𝜃𝜃12 – Piggyback line angle with respect to the horizontal plane. 

For the first anchor, the movement parallel to the fluke, the horizontal and vertical 

movement is 
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⎩
⎪
⎨

⎪
⎧𝑑𝑑𝑑𝑑2 =   

𝑑𝑑𝑑𝑑
cos (𝜃𝜃𝑓𝑓2 − 𝜃𝜃12)

      𝑖𝑖𝑖𝑖 𝑍𝑍𝑏𝑏 > 𝑍𝑍2

𝑑𝑑𝑑𝑑2 =   
𝑑𝑑𝑑𝑑

cos (𝜃𝜃𝑓𝑓2 + 𝜃𝜃12)
      𝑖𝑖𝑖𝑖 𝑍𝑍𝑏𝑏 < 𝑍𝑍2

 

Eq.(6.12) 

 
𝑑𝑑𝑑𝑑2 = 𝑑𝑑𝑑𝑑2 (cos 𝜃𝜃𝑓𝑓2 +

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 sin 𝜃𝜃𝑓𝑓2)  
 

Eq.(6.13) 

 
𝑑𝑑𝑑𝑑2 = 𝑑𝑑𝑑𝑑2 (sin 𝜃𝜃𝑓𝑓2 −

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 cos 𝜃𝜃𝑓𝑓2)  
 

Eq.(6.14) 

When the embedment occurs, the evolution equation for the first and second anchor 

is,  

 𝑑𝑑𝜃𝜃𝑎𝑎1
𝑑𝑑𝑧𝑧1

= 1
𝑇𝑇𝑎𝑎1𝜃𝜃𝑎𝑎1

�(𝐸𝐸𝑛𝑛𝑁𝑁𝑐𝑐𝑏𝑏𝑠𝑠𝑢𝑢𝑢𝑢1) − �𝜃𝜃𝑎𝑎1
2

2
cos 𝜃𝜃𝑎𝑎01
cos 𝜃𝜃𝑎𝑎𝑎𝑎1

𝑁𝑁𝑒𝑒1𝐴𝐴𝑓𝑓1𝑘𝑘� −

�𝜃𝜃𝑎𝑎1
2

2
cos 𝜃𝜃𝑝𝑝

cos 𝜃𝜃𝑎𝑎𝑎𝑎1
𝑁𝑁𝑒𝑒2𝐴𝐴𝑓𝑓2𝑘𝑘 𝑑𝑑𝑧𝑧𝑎𝑎2

𝑑𝑑𝑧𝑧𝑎𝑎1
��   

Eq.(6.15) 

 
𝑑𝑑𝜃𝜃𝑎𝑎2

𝑑𝑑𝑧𝑧2
=

(𝐸𝐸𝑛𝑛𝑁𝑁𝑐𝑐𝑏𝑏𝑠𝑠𝑢𝑢𝑢𝑢2)
𝑇𝑇𝑎𝑎2

 −  𝐾𝐾(𝜃𝜃𝑎𝑎2
2 −  𝜃𝜃12

2)
2 𝑠𝑠𝑢𝑢𝑢𝑢2

𝜃𝜃𝑎𝑎2 +  1
𝑇𝑇𝑎𝑎2

 (𝐸𝐸𝑛𝑛𝑁𝑁𝑐𝑐𝑏𝑏2𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢
𝑑𝑑𝑍𝑍𝑏𝑏
𝑑𝑑𝜃𝜃𝑎𝑎2

)
 

 

Eq.(6.16) 

   

6.3 Test Setup  

The piggy-back tests setup is the same as the drag embedment tests with a single anchor 

(Figure 6.6).  The magnetometer source is placed on the frame of small thermos-plastic 

tank.  A directional pulley is installed at one side of tank, while two anchors are connected 

and placed at the other side of tank.  On each anchor, a magnetometer sensor is attached.  

The second anchor is attached to the padeye (Figure 6.7) or back of the fluke (Figure 6.8) 

of the front anchor by a tailing line thickness of 0.05 inch or 0.19 inch (Figure 6.9).  When 

the piggy-back anchor is attached to the back of the fluke of front anchor, a rope with 0.05 

inch thickness is wrapped around the shank and fluke of the front anchor to provide an 
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attachment in the middle of back fluke for the piggy-back anchor.  The tailing line with 

0.19-inch thickness is achieved by wrapping the 0.05-inch thickness tailing line with the 

magnetometer line by duct tape (Figure 6.9). 

 

Figure 6.6. Piggy-Back Test Setup (Gerkus, 2016) 

 

 

Figure 6.7. Piggy-back Anchor Attached to the Back of Front Anchor 
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Figure 6.8. Piggy-back Anchor Attached to the Padeye of Front Anchor 

 

Figure 6.9. Piggy-back Line Thickness  

 

 

 

 

 

 

 

Su=10 psf 

k=10.28 psf/ft 

Line Diameter = 0.190 inch 
Line Diameter = 0.05 inch or 
0.19 inch 

Piggy-back 
Anchor 

Front Anchor 

Spacing (1 to 5 
Fluke Length) 
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The soil test bed for drag embedment test with piggy-back anchor is normally 

consolidated shear strength profile with the shear strength at the mudline 10 psf and the 

shear strength increasing gradient is 10 psf/ft.  For comparison purpose, a series of drag 

embedment tests of a single anchor is also tested in this soil test bed.  In this set of single 

anchor test, we also perform tests with a thin loading line with 0.05-inch thickness and a 

thick loading line with 0.19-inch thickness. 

 

Figure 6.10. Shear Strength Profile of Piggy-back Tests 

 

Except varying the tailing line thickness and the attachment point of piggy-back anchor, 

we also change the spacing between two anchors.  The range of spacing between two 

anchors are from 1.2 fluke length (5 inch) to 5 fluke length (18 inch).  The tests setup in 

different anchor configurations are summarized in Table 6.1.   
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Table 6.1. Piggy-Back Anchor Tests Summary 

 The Second Anchor 

Connected to the First 

Anchor’s 

Line 

Thickness 

(inch) 

Spacing (Fluke 

Length) 

Number of 

Tests 

Performed 

Case 1 Padeye 0.19 1.16 3 

Case 2 Back of the Fluke 0.19  1.77 2 

Case 3 Padeye 0.19 1.81  3 

Case 4 Padeye 0.05 1.38 2 

Case 5 Back of the Fluke 0.19  2.87 3 

Case 6 Back of the Fluke 0.05  3.14 3 

Case 7 Padeye 0.19  2.28 4 

Case 8 Padeye 0.05  3.18 1 

Case 9 Back of the Fluke 0.19 3.39 3 

Case 10 Back of the Fluke 0.05  4.03 2 

Case 11 Padeye 0.05  4.24 4 

Case 12 Back of the Fluke 0.19 5.39 3 

Case 13 Back of the Fluke 0.05 4.2 2 

Case 14 Padeye 0.05 1.9 3 

Case 15 Padeye 0.19 3.78 3 

Case 16 Padeye 0.19 4.95 3 
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6.4 Experimental Results of Tandem System Anchor Compared with a 

Single Anchor 

All the drag embedment tests results of piggy-back anchor are shown in this section in 

a format of comparing with a single anchor including its capacity, embedment depth, and 

the pitch angle along horizontal drag.   

The tests results shown in Figure 6.12 are the measured capacity of piggy-back anchor 

compared with capacity of a single anchor.  The capacity plotted in Figure 6.12 is the 

maximum load measured within a certain drag distance.  Thus, for some cases, the anchor 

capacity can be higher with further horizontal drag distance since the anchor can penetrate 

deeper with a longer drag.  It also should be noticed that the horizontal drag distance for 

each case are different because of the limitation from length of soil tank.  That is, a short 

spacing between two anchor results in more space for anchor travelling along the tank; 

otherwise, a long spacing between the two anchors leaves an insufficient horizontal drag 

distance for anchors.  Because of the different drag distance for each case, when the 

measured capacity of piggy-back anchor compared with the capacity of a single anchor, 

the single anchor capacity is chosen based on the horizontal drag distance of piggy-back 

anchor from that case compared with.  In details, we take the maximum measured load 

from the single anchor corresponding with the horizontal drag distance of the piggy-back 

anchor in the case we compare with.  

When comparing the penetration depth and pitch angle of front anchor and second 

anchor from tandem system to a single anchor, the penetration depth and pitch angle from 

the single anchor is also selected based on the horizontal drag distance of tandem system 
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we compare with.  The ratio of embedment depth from front or second anchor over a single 

anchor is shown in Figure 6.13, and the ratio of pitch angle is shown in Figure 6.11.  Figure 

6.14 and Figure 6.15 show the embedment depth and pitch angle ratio of piggy-back anchor 

over a single anchor within the same drag distance.  The minimum drag distance in all 

cases are 7 inches.  These two graphs are plotted by cutting the embedment depth and pitch 

angle versus horizontal drag curves at 7 inches for the cases where the horizontal drag 

distance is longer than 7 inches.   

The following conclusions are obtained based on the measured results of piggy-back 

anchors and a single anchor (Figure 6.11 and Figure 6.13) 

Pitch angle of piggy-back configuration: 

• For the tests with the second anchor attached to the padeye of the front anchor, 

the second anchor has higher pitch angle compared with a single anchor and the 

front anchor at the end of test.  This high pitch angle indicates that the second 

anchor has potential to dive deeper with further drag (Figure 6.11).  When the 

second anchor attached to the padeye of the front anchor with a shorter spacing 

(less than 3 fluke length), the thick line restricts the front anchor pitching 

forward when dragging, thus we see the front anchor has lower pitch angle 

compared with a single anchor.   However, the front anchor still has lower pitch 

angle even two anchors are further apart (spacing between the two anchors are 

from 3-fluke length to 5-fluke length).  This can be explained by that the front 

anchor is too close to the directional pulley, thus a steep angle at the mudline 

for the front anchor forms which restricts the front anchor dive deeper and pitch 
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forward.  This limitation can be improved with performing piggy-back anchor 

testing in the larger tank.   

• The restriction from tailing line to the front anchor becomes less when the 

tailing line thickness is 0.05 inch.  From the top right graph in Figure 6.11, the 

pitch angle of front anchor is higher compared with those cases shown in the 

top left graph where the thick tailing line is used. 

• For the tests the second anchor attached to the back of fluke of the front anchor, 

the restriction of trailing line on the front anchor becomes less.  The second 

anchor is still in a pitching forward position at the end of test, which indicates 

that the second anchor can dive deeper with further drag.  Generally, the second 

anchor has higher pitch angle than the front anchor either with thick or thin 

tailing line.  

Total capacity of piggy-back configuration: 

• For the tests with the second anchor attached to the padeye of the first anchor, 

the total capacity of piggy-back configuration increases with the increase of 

spacing between the front anchor and the second anchor, and can achieve twice 

higher capacity than a single anchor provided that the spacing between two 

anchors are at least fluke length (Figure 6.12).  

• For the tests with the second anchor attached to the back of fluke of the first 

anchor, the total capacity of piggy-back configuration slightly increases with 

the increase of spacing between the front anchor and the second anchor (Figure 

6.12). 
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• Due to the limitation of length of soil tank, for each test, the maximum 

horizontal drag distance is achieved.  Since at the end of test, the second anchor 

is still in pitching position (Figure 6.11), thus a higher capacity can be achieved 

with a further drag distance since the second anchor can dive deeper. 

Embedment depth of piggy-back configuration: 

• For the tests with the second anchor attached to the padeye of the first anchor, 

the second anchor can penetrate deeper than the first anchor, and deeper than 

the embedment depth of a single anchor.  The first anchor can penetrate deeper 

than a single anchor if the trailing line is thick and the spacing between two 

anchors are greater than 1.5 times the fluke length (Figure 6.13). 

• For the tests with the second anchor attached to the back of fluke of the first 

anchor, the second anchor can penetrate deeper than the first anchor and a single 

anchor (Figure 6.13).   

• Since the second anchor is still in the pitching position, thus it can dive deeper 

if a further drag distance is provided.  It is also possible for the first anchor to 

dive deeper if we perform the drag embedment test in a larger tank where the 

directional pulley is further away from the front anchor which provides a less 

steep mudline angle to the front anchor and thus it can dive deeper (Figure 6.11).  

This also can be approved by comparing Figure 6.11 Figure 6.15, together with 

Figure 6.13 and Figure 6.14.  Figure 6.11 and Figure 6.13 show the results of 

embedment depth and pitch from each case, while Figure 6.13 and Figure 6.14 

show the embedment depth and pitch at the same drag distance of 7 inches, 

which is shorter drag distance for the most of cases.  Comparing Figure 6.11 
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and Figure 6.15, we can see that both anchor flatten itself with further drag, and 

correspondingly they dive deeper.  

 

All the comparison between experimental results with tandem system anchor and single 

anchor are shown in Appendix D.



243 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 6.11. Pitch Angle Ratio of Piggy-Back over a Single Anchor
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Figure 6.12. Capacity Ratio of Piggy-Back over a Single Anchor 

    



245 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13. Embedment Depth Ratio of Piggy-Back over a Single Anchor  
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Figure 6.14. Embedment Depth Ratio of Piggy-Back over a Single Anchor Embedment Depth at the Same Drag Distance 
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Figure 6.15. Pitch Angle Ratio of Piggy-Back over a Single Anchor Embedment Depth at the Same Drag Distance
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6.4.1 Effect of Spacing 

From Figure 6.12, with the increase of spacing, the higher capacity can be attained if 

the second anchor is attached to the padeye of front anchor.  Spacing has no obvious impact 

on total capacity of piggy-back configuration when the second anchor is attached to the 

back of the fluke of front anchor.   

 

6.4.2 Effect of Line Thickness 

Before discussing the line effect on the penetration of front and second anchor, the tests 

results are replotted by plotting cases with same test setup except the line thickness is 

different.  The results of front anchor embedment depth are shown in Figure 6.16 and 

Figure 6.18, and the results of second anchor are shown in Figure 6.17 and Figure 6.19.  If 

the second anchor is attached to the padeye of the front anchor, the front anchor and the 

second anchor generally embed deeper with the thin tailing line.  The test data enclosed by 

the blue circled and yellow circle in  Figure 6.16 and Figure 6.17 indicate that the thinner 

tailing line makes the front and the second anchor dive deeper, however, the test data in 

orange circle shows that only the second anchor dives deeper with thinner tailing line.  If 

the second anchor attached to the back of fluke of front anchor, the thinner tailing line still 

makes the anchor dives deeper.  From Figure 6.18 and Figure 6.19, when the second anchor 

is attached to the back of fluke of front anchor, the test results in yellow circle and orange 

circle show that the thinner line makes anchor penetrate deeper if the spacing between two 

anchors is larger than 3-fluke length.  A thinner line makes the anchor dives deeper since 

the thin line leads to a higher pitch angle during horizontal drag, thus the resistance from 

bearing on the fluke is less which is easier for anchor to dive deeper. 
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An example of trajectory either with thick line or thin line is shown in Figure 6.20 and 

Figure 6.21.  Figure 6.20 presents the front anchor dives into 4.37 inches while the second 

anchor dives 6.04 inches with the thick line connecting both anchors.  In comparison, 

Figure 6.21 shows that the front anchor dives 6.33 inches and the second anchor dives 6.16 

inches with a thick tailing line connecting two anchors.  The spacing between two anchors 

are 1.77 and 1.9 fluke length, respectively; and the attachment point are the same for two 

anchors. 

 

Figure 6.16. Line Effect – Front Anchor Results from Cases of Padeye as Attachment 
Point 

 

Figure 6.17. Line Effect – Second Anchor Results from Cases of Padeye as 
Attachment Point 
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Figure 6.18. Line Effect – Front Anchor Results from Cases of Back of Fluke as 
Attachment Point 

 

Figure 6.19. Line Effect – Second Anchor Results from Cases of Back of Fluke as 
Attachment Point 
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Figure 6.20. Trajectory from Case 2 (thick tailing line) 

 

Figure 6.21. Trajectory from Case 14 (thin tailing line) 
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6.4.3 Effect of Attachment Point 

Figure 6.22 to Figure 6.25 show the pitch angle ratio of either the front anchor or the 

second anchor over a single anchor.  From Figure 6.22 and Figure 6.23, it can be concluded 

that attaching the second anchor to the back of fluke restricts less for the front anchor 

pitching forward.  From Figure 6.24 and Figure 6.25, the attachment point has no obvious 

effect on the pitch angle of the second anchor.   

Figure 6.26 to Figure 6.29 presents the comparisons of effect of padeye or tail on 

embedment depth.  Figure 6.26 and Figure 6.27 shows the results of front anchor, the front 

anchor dives deeper with the second anchor attached to the back of fluke of the front anchor.  

This makes good agreement with the pitch angle shown in Figure 6.22 and Figure 6.23.  

Since the front anchor is in a relative steep pitch angle, thus it has less bearing resistance 

on the fluke and can dive deeper.  From Figure 6.28 and Figure 6.29, the second anchor 

dives deeper when attached to the back of fluke of the front anchor. 

 

Figure 6.22. Pitch Ratio of Front Anchor with Thick Tailing Line 
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Figure 6.23. Pitch Ratio of Front Anchor with Thin Tailing Line 

 

Figure 6.24. Pitch Ratio of Second Anchor with Thick Tailing Line 

 

Figure 6.25. Pitch Ratio of Second Anchor with Thin Tailing Line 
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Figure 6.26.Embedment Ratio of Front Anchor with Thick Tailing Line 

 

Figure 6.27. Embedment Ratio of Front Anchor with Thin Tailing Line 

 

Figure 6.28. Embedment Ratio of Second Anchor with Thick Tailing Line 
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Figure 6.29. Embedment Ratio of Second Anchor with Thin Tailing Line 

 

6.5 Experimental Results of Tandem System Anchor Compared with 

Analytical Results 

To calibrate the prediction model for piggy-back tests, we changed the equilibrium 

capacity factor and the ratio of normal to tangential motion to make the analytical 

prediction results matches.  The Ne and Rnt in each case are summarized in Table 6.2.  From 

Table 6.2, we can see that the Ne and Rnt for piggy-back configuration is different from 

those obtained from drag embedment tests for a single anchor.  It is reasonable since the 

yield surface for each anchor in piggy-back configurations interacts compared with the 

yield surface for a single anchor.  This can be also confirmed by comparing anchor 

trajectory and pitch with substituting Ne and Rnt from a single anchor and Ne and Rnt for 

piggy-back anchor.  An example of capacity, trajectory, and pitch with different sets of Ne 

and Rnt are shown in Figure 6.30.  From Figure 6.30, the capacity with Ne and Rnt from a 

single anchor is smaller than the capacity with Ne and Rnt for piggy-back configuration.  

Additionally, the predicted trajectory with Ne and Rnt is not capable to match with the 
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measured trajectory.  The impact by Ne and Rnt on the pitch is not obvious compared with 

the influence on load and trajectory. 

 

Table 6.2. Summary of Ne and Rnt for Piggy-back Prediction Model 

   
First Anchor Second Anchor 

 
Spacing Line Thickness Ne Rnt Ne Rnt 

Case 2 1.77 Thick 5.4 0.02 5.4 0.02 

Case 5 2.87 Thick 6.2 0.01 6.2 0.07 

Case 6 3.14 Thin 7 0.01 7 0.2 

Case 9 3.39 Thick 7.2 0.05 7.2 0.4 

Case 10 4.03 Thin 7.1 0.015 7.1 0.4 

Case 12 5.39 Thick 7.5 0.03 7.5 0.2 

Case 13 4.2 Thin 8 0.1 8 0.3 

 

Figure 6.31 plots the Ne from piggy-back prediction versus spacing, it can be concluded 

that the further spacing leads to a higher Ne, which implies that a further spacing result in 

a higher total capacity of tandem system.  A straight line with Ne for single anchor of 6.2 

is plotted in the Figure 6.31, it can be seen that if the spacing between the two anchor is 

less than 2-fluke length, than the Ne is smaller than a single anchor, which coincide with 

the experimental measured capacity that is smaller than twice of a single anchor.  All the 

comparison between the experimental and analytical results of capacity, trajectory, and 

pitch are shown in Appendix E. 
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Figure 6.30. Example Comparison of Prediction with Different Ne and Rnt 
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Figure 6.31. Equilibrium Bearing Capacity for Prediction Model 

 

6.6 Conclusion 

This chapter explores the tandem system anchor behavior in normally consolidated soil 

profile.  Two sets of testing configuration of two different line attachment points for the 

piggy-back anchor are studied: one at the padeye of the front anchor and one at the back of 

the fluke of the front anchor.  A variety of spacings between the piggy-back anchor and the 

front anchor, ranging from one fluke lengths to five fluke lengths, and two different line 

thicknesses for the trailing line attaching the piggy-back anchor to the front anchor are 

considered. For every test bed with piggy-back anchor tests, drag test with a single anchor 

are performed for comparison. 

The following conclusions can be drawn from the test results: 
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• For both attachment points, the total capacity of the piggy-back configuration 

tends to increase with increasing spacing between the front anchor and the 

piggy-back anchor.   

• For both attachment points, the total capacity of the piggy-back configuration 

is greater than twice the capacity of a single anchor provided that the spacing 

between the anchors is at least two fluke lengths.   

• The piggy-back anchor is able to dive deeper than both the front anchor and a 

single anchor.  It is also possible for the front anchor to dive deeper than a 

single anchor. 

• For the tests with the second anchor attached to the back of fluke of the front 

anchor, the experimental results are compared with analytical results.  The 

analytical results reasonably agree with the experimental results after 

calibrating by changing equilibrium bearing capacity factor and ratio of normal 

to tangential movement. 
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Chapter 7. Free-Fall Penetration Tests of Flying Wing Anchor®  

7.1 Introduction 

This chapter studies Flying Wing Anchor® free-fall penetration in constant shear 

strength profile and a layered soil profile.  The undrained shear strength is increased by 

high velocity from anchor travelling through soil, thus the strain rate effect is studied first 

by performing T-bar tests as well as pure normal and pure in-plane shearing tests with a 

thin steel plate at different loading rates.  The strain rate parameters, β and λ, from this 

series of pure loading tests are applied into the analytical model to predict the impact 

velocity and embedment depth of Flying Wing Anchor® in constant shear strength profile 

and layered profiles.  From the experimental and analytical results, the potential application 

of Flying Wing Anchor® in layered soil profiles is assessed. 

 

7.2 Strain Rate Effect 

As discussed in Section 2.4.2.4.3, the wide range of velocity during the free-fall 

penetration tests either in the laboratory or in the field increases the soil strength.  This 

increased undrained shear strength is accounted by Rf based on the shear strain rate.  

Additionally, the strain rate effect is acknowledged that the rate effects for the shearing 

mechanism is higher than it caused by the bearing mechanism (Dayal et al., 1975; Steiner 

et al., 2014). The objectives of exploring strain rate effect in this section are: 

• to characterize the rate effect with T-bar tests at different loading rate 
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• to experimentally quantify the strain rate effect in bearing and shearing 

mechanism experimentally and compared with the typical formulation (semi-

logarithmic and power-law). 

• to apply the appropriate strain rate effect results from the above to the trajectory 

prediction of Flying Wing Anchor® in GoM clay. 

 

7.2.1 Strain Rate Effect Test Setup 

The rate effect on different mechanism (bearing and shearing) is explored by 

performing the pure loading tests on a 0.1-inch thick circular pate with a 4-inch diameter.  

The surface area is 12.57 in2, and side area is 1.26 in2.  Therefore, when placing the steel 

plate horizontally (right one in Figure 7.1), the bearing area is 12.57 in2 while the shearing 

area 1.26 in2; in comparison, when placing the steel plate vertically (left in Figure 7.1), the 

shearing area is 1.26 in2 while the bearing area 12.57 in2.  The shearing area is small 

compared with bearing area in normal loading tests, and the bearing area is small compared 

with shearing area in pure shearing tests. Therefore, bearing mechanism and shearing 

mechanism are separated in either the pure normal or shearing loading tests.  The pure 

bearing tests are carried out for quantifying the strain rate effect on bearing resistance, 

while the in-plane shearing tests are performed for assessing the strain rate effect on the 

shearing resistance.    

Different loading rate is selected based on the velocity range from free-fall penetration 

tests.  The maximum impact velocity obtained from the free fall penetration tests is 247 

in/s, and the effective diameter of Speedy Flying Wing anchor® is 2.5 inch.  Thus, 
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maximum v/d from the free penetration tests is 99 s-1, which is three orders of magnitude 

compared to T-bar tests in undrained loading conditions (0.8 s-1).   There are two limitations 

on the maximum loading rate in pure loading tests to study rate effect, one is the capacity 

of motor, and the other one is depth of soil bed.  For the capacity of motor, as discussed in 

Section 3.4, the maximum loading rate can be provided by stepper motor is 50 RPS (Figure 

3.13) which is 18.95 in/s.  The soil depth in test bed limits maximum loading rate since the 

loading system reaches the setting travelling distance (soil depth) first and then motor 

already stops moving even if the setting speed has not been reached.  In details, the motor 

accelerates from zero to the speed set on the LabVIEW control panel while moving towards 

to the set position (corresponding to the travelling distance of loading rod in soil).  The 

motor stops when reaching the set position.  Since the travelling distance for motor 

accelerating from zero to the set speed is longer than the soil depth, thus the speed has not 

been reached however the set distance has already been reached then the motor stops.  After 

a couple of trial tests in the deepest soil bed can be performed with GoM, the maximum 

speed is 21.17 RPS (8 in/s), which cover two orders of magnitude.   

  

Figure 7.1. Pure Loading Test on the Circular Plate 
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Figure 7.2. Undrained Shear Strength Profile for Pure Loading Tests at Different Rate 

 

7.2.2 Experimental and Theoretical Results  

7.2.2.1 T-bar Tests at Different Loading Rate 

The T-bar Tests are performed at different loading rate (0.8 in/s, 1.6 in/s, 3.2 in/s, 4.8 

in/s, 6.4 in/s and 8 in/s), and the Rf is obtained based on the ratio of measured soil resistance 

at different loading rate over the resistance corresponding with 0.8 in/s (shown as black 

circle in Figure 7.3 and Figure 7.4).  The Rf is generally formulated using either semi-

logarithmic or power-law functions (Biscontin and Pestana, 2001), and can be expressed 

as  
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 Rf =1 + λ log( 𝛾̇𝛾
𝛾̇𝛾𝑟𝑟𝑟𝑟𝑟𝑟

) Eq.(7.1) 

 Rf = ( 𝛾̇𝛾
𝛾̇𝛾𝑟𝑟𝑟𝑟𝑟𝑟

)𝛽𝛽 Eq.(7.2) 

where 𝛾̇𝛾𝑟𝑟𝑟𝑟𝑟𝑟  is the reference strain rate at loading rate corresponding with undrained 

condition (0.8 in/s), and 𝛽𝛽 and λ are strain rate parameters for semi-logarithmic and power-

law function, respectively.  To best fit the experimental Rf from T-bar tests in this study, 

the 𝛽𝛽 and λ is 0.05 and 0.12, respectively.   

 

Figure 7.3. T-bar at Different Rates Fitted by Power-Law Function 

 

Figure 7.4. T-bar at Different Rates Fitted by Semi-Logarithmic Function 
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7.2.2.2 Pure Loading Tests with Plate at Different Loading Rate 

7.2.2.2.1 Pure Bearing Tests with Plate at Different Loading Rate 

The pure loading tests with the circular plate (0.1-inch thick circular plate with a 4-inch 

diameter) are performed at 0.8 in/s, 1.6 in/s, 3.2 in/s, 4.8 in/s, 6.4 in/s and 8 in/s, and the Rf 

is obtained based on the ratio of measured soil resistance at different loading rate over the 

resistance corresponding with 0.8 in/s. The pure normal loading tests results are shown in 

Table 7.1, and the pure shearing tests results are shown in Table 7.2.   

The pure normal capacity factor at 0.8 in/s us measured as 11.97, which is close to the 

simplified theoretical pure loading threshold by Gerkus (2016) shown below 

 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 12.5 + 4×(1/𝑆𝑆𝑡𝑡) × (t/B) Eq.(7.3) 

𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 12.5 + 4×(1/1) × (0.1/4) = 12.6 

One set of tests results at different loading rate is shown in Figure 7.5.  As shown in 

Table 7.1 and Figure 7.5, the measured Np increases with the increasing loading rate, and 

this increasing trend is more obvious when loading rate higher than 4.8 in/s. 

Table 7.1. Np at Different Rate 

Np 
Velocity (in/s) v/d (s-1) Test 1 Test 2 Test 3 Average 

0.8 0.2 12.52 11.73 11.65 11.97 
1.6 0.4 11.93 12.08 12.03 12.01 
3.2 0.8 11.83 12.10 12.22 12.05 
4.8 1.2 14.18 13.18 12.81 13.39 
6.4 1.6 13.29 13.32 13.59 13.40 
8 2 13.79 13.88 13.71 13.79 
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Figure 7.5. Example of Pure Normal Loading Tests at Different Rate 

 

As shown in Figure 7.6, the Rf obtained from pure bearing tests are fitted with power-

law function and compared with the Rf from T-bar fitted with power-law function.  The Rf 

is plotted against (v/d)/(v/d)ref where the (v/d)ref is 0.8 s-1 (the reference velocity of 0.8 in/s 

with 1-in diameter of T-bar).  The β with 0.05 is obtained by fitting T-bar tests at different 

loading rate as shown in Figure 7.2 in Section 7.2.2.1 and Figure 7.6 shown below.  Since 

the soil failure around T-bar penetration tests and around pure bearing tests is bearing 

mechanism, so the strain rate parameter of β with 0.05 is first applied to Rf obtained from 

pure bearing tests.  However, as shown in Figure 7.6, the Rf curve of β with 0.05 cannot fit 

the whole range but only cover the part with (v/d)/(v/d)ref lower than 1 (corresponding with 

velocity lower than 3.2 in/sec).  The β with 0.15 is fitted for the Rf from pure bearing 

loading tests, and can fit well with the range over (v/d)/(v/d)ref higher than 1 (corresponding 

with velocity lower than 3.2 in/sec).  As discussed in Section 7.2.1, the maximum v/d from 

free-fall penetration tests with Flying Wing Anchor® is 99 s-1, thus the fitting results at the 
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higher velocity range is more suitable for the condition for Flying Wing Anchor®.  

Therefore, the β with 0.15 is more suitable for the strain rate effect condition for Flying 

Wing Anchor®. 

 

Figure 7.6. Comparison of Rf from Pure Bearing Tests and T-bar Tests Fitted with 
Power-Law Function 

 

The similar fitting process is performed with employing semi-logarithmic function to 

fit the Rf from pure bearing tests.  First, the strain rate parameter λ with 0.12 from fitting 

Rf obtained from T-bar tests is applied to the semi-logarithmic function with Rf from pure 

bearing tests, as shown in  Figure 7.7.   However, the λ with 0.12 with only can fit the 

velocity range up to 3.2 in/s which is (v/d)/(v/d)ref with 1.  Then the semi-logarithmic 

function of λ with 0.35 is plotted and fit the velocity range higher than 3.2 in/s.   
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Figure 7.7. Rf from Pure Bearing Tests and T-bar Tests Fitted with Semi-Logarithmic 
Function 

 

In summary, the soil failure mechanism in pure bearing tests and T-bar is pure bearing.  

However, the theoretical Rf with strain rate parameter (β with 0.05 and λ with 0.12) 

obtained from T-bar can only cover the lower velocity range for the Rf from the pure 

bearing tests with plate.  A higher strain rate parameter (β with 0.15 and λ with 0.35) is 

employed to fit the higher velocity range, and is suitable with the strain rate condition for 

the free-fall penetration tests with Flying Wing Anchor® (a higher range of v/d than tested 

with plate and T-bar). 

 

7.2.2.2.2 Pure In-Plane Shearing Tests with Plate at Different Loading Rate 

The pure shearing capacity factor at 0.8 in/s is measured as 2.568, which is close to the 

simplified theoretical pure loading threshold by Gerkus (2016) shown below 
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 𝑁𝑁𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 2×(1/𝑆𝑆𝑡𝑡) + 2 × 7.5 × (t/B) Eq.(7.4) 

𝑁𝑁𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 2×(1/1) + 2 × 7.5 × (0.1/4) = 2.375 

One set of tests results at different loading rate is shown in Figure 7.8.  As shown in 

Table 7.2 and Figure 7.8, the measured Ns increases with the increasing loading rate.  In 

contrast from the trend of Np with loading rate, the Ns increases as the rate increases. 

Table 7.2. Ns at Different Rate 

Ns 
Velocity (in/s) v/d (s-1) Test 1 Test 2 Test 3 Average 

0.8 0.2 2.64 2.53 2.52 2.56 
1.6 0.4 2.64 2.63 2.59 2.62 
3.2 0.8 2.87 3.00 2.93 2.93 
4.8 1.2 3.23 3.43 3.21 3.29 
6.4 1.6 3.28 3.34 3.36 3.33 
8 2 3.56 3.51 3.48 3.52 

 

 

Figure 7.8. Example of Pure In-Plane Shearing Loading Tests at Different Rate 

 



270 

As shown in Figure 7.9, the Rf obtained from pure in-plane shearing tests are fitted with 

power-law function and plotted against (v/vref) where the vref is 0.8 in/s.  The β with 0.15 is 

fitted for the Rf from pure in-plane shearing loading tests, and can fit well with the entire 

tested velocity range.  As shown in Figure 7.10, the Rf obtained from pure in-plane shearing 

tests are fitted with semi-logarithmic function, and the λ with 0.35 can fit well with the Rf 

in the entire tested velocity.   

 

Figure 7.9. Rf from Pure In-Plane Tests Fitted with Power-Law Function 
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Figure 7.10. Rf from Pure In-Plane Tests Fitted with Semi-Logarithmic Function 

 

7.2.2.2.3 Comparison of Rf from Bearing and Shearing Mechanism 

The strain rate effect Rf,bear and Rf,friction obtained from plate are plotted in Figure 7.11 

together with the Rf from T-bar.  The tests results show that the Rf,friction is higher than Rf,bear, 

which agrees well with the theoretical conclusion by Einav and Randolph (2006) and 

experimental results by Dayal et al. (1975) and Steiner, et al. (2014).   

 

Figure 7.11. Rf,bear and Rf,friction Versus Different Loading Rate 

 

7.2.3 Selected Strain Rate Parameter for Flying Wing Anchor® 

The strain rate parameter β with 0.15 and λ with 0.35 is applied for the strain rate effect 

function for the prediction model of free-fall penetration tests with Flying Wing Anchor®.  

The strain rate effect for Flying Wing Anchor® penetrating into soil is mostly shearing 

since the shear surface contributes 87% among the total area (Gerkus, 2016).  It should be 
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noted that the soil failure mechanism in pure bearing loading tests and T-bar tests are pure 

bearing.  Thus, applying the strain rate effect of shearing mechanism from pure in-plane 

shearing tests is appropriate to the condition for Flying Wing Anchor®.   

 

7.3 Free-Fall Penetration with Flying Wing Anchor® in a Single Layer  

7.3.1 Analytical Model  

The model applied in this study is the modified True’s method discussed in Section 

2.4.2.4.  This is basically Newton’s second law of motion with forces acting on the anchor 

in one-dimensional space varied with time and equates the submerged anchor mass and 

acceleration varied with time: 

 mʹ d
2z

dt2  = Wʹ – Rf (Ffrict + Fbear) – Fd Eq.(7.5) 

where mʹ is the submerged anchor mass, z is anchor depth, t is time, Wʹ is the submerged 

anchor weight, Ffrict is frictional resistance along the soil anchor interface, Fbear is bearing 

resistance on the anchor tip and flukes, and Fd is drag resistance.  The Rf term in Equation 

7.5 accounts for the viscous enhancement of strength due to strain rate effects.  Drag 

resistance is formulated as 

 Fd = 1
2
 CD ρs AP  v2 

 

Eq.(7.6) 

where CD is drag coefficient, 𝜌𝜌𝑠𝑠 is soil density, AP is projected area of anchor and v is 

anchor velocity.  

Frictional and bearing resistances can be expressed in the form, 
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 Ffrict = α su As Eq.(7.7) 

 Fbear = Nc su AP Eq.(7.8) 

where α is an interface friction ratio, Nc is the bearing capacity for the anchor tip or fluke 

and su is the undisturbed undrained shear strength for calculating Fbear, and remolded shear 

strength for calculating Ffrict. The interface friction ratio, α, required for calculating the 

frictional resistance in Equation 7.7 is identical to that used in the estimation of frictional 

resistance on drive piles and suction caissons and may be estimated as the inverse of soil 

sensitivity.  For the GoM clay in this study, the soil sensitivity is 1 since soil is remolded 

in each test which results in α = 1.  The capacity factor, Nc, in Equation 7.8 for calculating 

tip is similar to that used in the analysis of driven piles and suction installed caissons.  

American Petroleum Institute guidelines recommend Nc = 9 (American Petroleum Institute, 

2002), O'Loughlin et al. (2009) suggested that Nc = 12, Gilbert et al. (2006) applied 17, 

Skempton (1951) proposed 7.5. 

As discussed in Section 2.4.2.4.3 and Section 7.2, the high anchor penetration velocity 

results in an increase soil strength (Casagrande and Wilson, 1951; Graham et al., 1983; 

Sheahan et al., 1996).  Rf is applied to quantify this enhanced shear strength by using either 

power-law or semi-logarithmic function (Biscontin and Pestana, 2001; Abelev and Valent, 

2009; O'Loughlin et al., 2013).  In this study, Rf is calculated in two different formulation, 

the power-law function (Equation 7.9) and semi-logarithmic function (Equation 7.10).   

 
Rf,bear =  (

v/D
(v/D)ref

)β 
Eq.(7.9) 

 Rf = 1 + λ log( v/D
(v/D)ref

) Eq.(7.10) 
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7.3.2 Experimental Design 

By performing sensitivity analysis with the analytical model in Section 7.3.1, the 

displacement range and velocity range from different release height and in different soil 

profiles is obtained.  This displacement range and velocity range, the measuring facility 

(linear transducer or magnetometer) is chosen for the experimental tests.  

7.3.2.1 Effect of Release Height 

In the soil test bed with constant shear strength at 20 psf, Flying Wing Anchro® is 

released at 3 ft, 2 ft and 1ft.  The maximum displacement is 3.5 ft and velocity range is up 

to 15 ft/sec.  Based on the maximum velocity, the magnetometer is selected to track Flying 

Wing Anchor® motion during free-fall penetration.  Since the weight of black sensor 

shown in Figure 3.17 is too small compared with the weight of Flying Wing Anchor®, thus 

when anchor impact soil surface and slows down, the momentum by sensor drives the 

sensor travels on the measuring track with the velocity before anchor impacts soil.  Using 

LMT to track free-fall penetration tests with lower impact velocity won’t raise this issue.  

Therefore, magnetometer is selected and attached to the anchor to measure displacement 

of anchor. 

Table 7.3. Input for Effect of Release Height 

Soil Parameter 
Su at mudline 20 psf 

k 0 psf/ft 
Anchor Parameter 

Anchor Weight 1.26 lbs 
Model Parameter 

Drag Coefficient, CD 0.05 
Strain Rate Parameter, λ 0.35 
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Figure 7.12. Impact Velocity versus Displacement (Effect of Release Height) 

 

7.3.2.2 Effect of Shear Strength at Mudline 

The left figure in Figure 7.13 is the whole displacement range, and the right one in 

Figure 7.13 shows the displacement below the mudline. The analytical model predicts that 

Flying Wing Anchor® penetrates slightly less in the constant shear strength profile with 

higher shear strength.   
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Table 7.4. Input for Effect of Shear Strength at Mudline 

Soil Parameter 

Su at mudline 
10 or 20 or 30 

psf 
k 0 psf/ft 

Anchor Parameter 
Anchor Weight 1.26 lbs 

Model Parameter 
Drag Coefficient, CD 0.05 

Strain Rate Parameter, λ 0.35 
 

 

Figure 7.13. Impact Velocity versus Displacement (Effect of Shear Strength at 
Mudline) 

 

7.3.2.3 Effect of Shear Strength Gradient 

The left figure in Figure 7.14 is the whole displacement range, and the right one in 

Figure 7.14 shows the displacement below the mudline. The analytical model predicts that 
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Flying Wing Anchor® penetrates slightly less in the linearly increasing shear strength 

profile with higher gradient.   

 

Table 7.5. Input for Effect of Shear Strength Gradient 

Soil Parameter 
Su at mudline 10 psf 

k 5 or 10 or 20 psf/ft 
Anchor Parameter 

Anchor Weight 1.26 lbs 
Model Parameter 

Drag Coefficient, CD 0.05 
Strain Rate Parameter, λ 0.35 

 

.  

Figure 7.14. Impact Velocity versus Displacement (Effect of Shear Strength Gradient) 
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7.3.3 Test Setup  

Due to the complex shape of Flying Wing anchor®, it is difficult to make Flying Wing 

anchor® in steel. The Speedy Flying Wing anchor® used in this study is printed by 3D 

printer.  The printing material is ABS (Acrylonitrile Butadiene Styrene) with density of 

1.05 g/cm3.  The weight of printed anchor is only 0.2 lbs, and the weight of anchor made 

with steel in the same volume of the printed anchor is 1.26 lbs.  Thus, a steel plate is cut 

and attached to the rod with 0.25-inch diameter and 6-inch length.  On the other side of the 

rod, the printed anchor is attached (Figure 7.15). The total weight including rod, nuts and 

washers to tighten steel plate as well as steel plate and anchor is 1.27 lbs, which is close to 

the weight of anchor made with steel in the size of the printed anchor.  The magnetometer 

discussed in Section 3.9 is used to track displacement of anchor during tests and is taped 

on the surface of plate.  The magnetometer is capable to measure displacement within 96 

inches and record 60 readings per second.  Due to the limitation of measured length, the 

maximum drop height is 4.25 ft above soil surface.  On the top of the rod, a circular link is 

connected to enable a string line to be tied.  This string goes around the pulley on the 

loading frame, so we can pull the other end of string on the ground to easily rise the anchor 

to the drop heights.      
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Figure 7.15. Flying Wing Anchor® for Free-Fall Penetration Tests 

 

Figure 7.16. Free Penetration Test Set-up 
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The soil test bed for the free fall penetration tests with Flying Wing Anchor® is shown 

in Figure 7.17.  The soil test bed is a relatively constant shear strength profile with 

undrained shear strength of 12.5 psf.    

 

Figure 7.17. Shear Strength Profile for Free-Fall Penetration Test  

 

7.3.4 The Experimental and Analytical Results 

The free-fall penetration tests with Flying Wing Anchor ® are performed by releasing 

anchor attached with steel plate from 1.64 ft to 4.25 ft above the soil surface.  The 

prediction model is calibrated by experimental tests.  The calibrated parameters are the 

coefficient of drag, CD, the bearing factor Nc, and the strain rate parameter β and λ as 

summarized in Table 7.6.  The adopted CD, 0.05, is obtained by fitting the predicted impact 

velocity with the experimental measurement.  The bearing capacity at the tip of Flying 

Wing Anchor® is modelled as a deeply embedded strip footing with Nc = 7.5 by Skempton 
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(1951).  The back-calculated strain rate parameter, β, in the power-law function is between 

0.1 to 0.2.  The β is close to the β from the pure in-plane shearing tests (0.15), are slightly 

higher than the β (0.05 to 0.1) obtained from vane shear tests (Biscontin and Pestana, 2001), 

higher than the β (0.05 to 0.07) obtained from T-bar penetrometer (Chung et al., 2006), and 

higher than the β (0.06 to 0.08) from T-ball penetrometer (Lehane et al., 2009).  The back-

calculated strain rate parameter, λ, in the semi-logarithmic strain rate function is between 

0.2 to 0.5, which is in the typical range from λ (0.01 to 0.6) obtained from vane shear test 

(Sheahan et al., 1996) and in the range of back-calculated λ (0.2 to 1.0) from centrifuge 

tests with DPA (O’Loughlin et al., 2013).  The embedment depth versus impact velocity 

shown in Figure 7.18 are normalized by the equivalent fluke width (square root of front 

plate of Flying Wing Anchor®, 2.54 inch for the scaled model anchor).      

The prediction results are calculated by using the parameters listed in Table 7.6.  The 

Figure 7.18 and Table 7.7 show the comparison between the analytical and experimental 

embedment depth and the impact velocity.  Prediction with two different strain rate 

functions are evaluated by comparing with experimental results.  As discussed in Section 

7.3.1, the strain rate function includes the power-law function and the semi-logarithmic 

function.  From Table 7.7, the predicted impact velocity is close to the experimental one.  

From Figure 7.18 and Table 7.7, the least square between the predicted and the 

experimental embedment depth is 0.867 and 0.87 for the prediction with power-law and 

semi-logarithmic function, respectively.  The experimental embedment depth is slightly 

deeper than the predicted ones from strain rate effect modeled by semi-logarithmic function 

or power-law function.  This slightly deeper embedment from experimental results may be 

due to the additional weight of magnetometer sensor and magnetometer line being part of 
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the anchor weight when being released from designated dropping height.  This assumption 

is checked by changing the anchor weight in the prediction model by including the 

estimated magnetometer line and sensor weight.  Figure 7.19 shows the predicted results 

with the real anchor weight and the weight of anchor together with line weight compared 

with the experimental result.  The experimental embedment depth is 0.55 ft, and the 

predicted embedment depth with anchor weight only is 0.48 ft, in contrast with 0.53 ft from 

the prediction with anchor weight and magnetometer line weight.  Thus, this weight 

difference is part of the reason that the prediction model underestimates embedment depth.   

Table 7.6. Parameters in Prediction Model for a Single Layer 

Parameter Value 

CD 0.05 

Nc 7.5 

β 0.1~0.2 

λ 0.2~0.5 

α 1 
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Figure 7.18. Experimental and Analytical Embedment Depth versus Impact Velocity 

 

Figure 7.19. Comparison of Prediction between With and Without Magnetometer 
Line Weight 
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 Table 7.7. Experimental and Analytical Embedment Depth and Impact Velocity  

  Experiment Rf in Power-Law  Rf in Semi-Log  

Test 

Drop 
Height 

(ft) 
v 

(ft/s) 

Ztip 
(Equivalent 

Length) 
v 

(ft/s) 

Ztip 
(Equivalent 

Length) 
v 

(ft/s) 

Ztip 
(Equivalent 

Length) 
1 4.17 16.80 2.61 16.09 2.26 16.09 2.26 
2 4.18 16.16 2.61 16.12 2.28 16.12 2.29 
3 4.10 16.20 2.61 15.97 2.21 15.97 2.26 
4 4.17 16.71 2.61 16.09 2.26 16.09 2.27 
5 4.25 16.20 2.61 16.24 2.28 16.24 2.29 
6 3.36 16.50 2.49 14.51 2.17 14.51 2.18 
7 3.37 15.43 2.49 14.51 2.21 14.51 2.22 
8 3.38 13.73 2.50 14.54 2.16 14.54 2.17 
9 2.57 12.50 2.40 12.70 2.11 12.70 2.12 
10 2.54 12.60 2.40 12.64 2.11 12.64 2.12 
11 2.50 12.50 2.40 12.55 2.11 12.55 2.11 
12 1.75 10.50 2.33 10.53 2.03 10.53 2.03 
13 1.69 8.78 2.33 10.34 2.04 10.34 2.05 
14 1.65 10.00 2.33 10.21 2.02 10.21 2.02 
17 3.81 15.83 2.59 15.43 2.20 15.43 2.21 
18 3.75 16.67 1.93 15.49 2.26 15.30 2.23 
19 3.77 12.05 2.59 15.55 2.23 15.33 2.24 

 

A comparison example of experimental and analytical free-fall trajectory with three 

tests with different release height are shown in Table 7.8 to Table 7.10 and Figure 7.20 to 

Figure 7.22.  From Figure 7.20 to Figure 7.22, the predicted results with different strain 

rate formulation generally have a good agreement with experimental results.  Additionally, 

the predicted results by different Rf function is close to each other.  All 19 tests results with 

prediction models can be found in Appendix F.  
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Table 7.8. Experimental and Analytical Impact Velocity and Embedment Depth (Drop 5) 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 16.2 2.6 − − 

Rf in Power-Law 16.24 2.28 0.1 − 
Rf in Semi-log 16.24 2.28 − 0.2 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 
Figure 7.20. Experimental and Analytical Results of Flying Wing Anchor® in a Single Layer (Drop 5) 
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Table 7.9. Experimental and Analytical Impact Velocity and Embedment Depth (Drop 8) 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 13.73 2.4950 − − 

Rf in Power-Law 14.54 2.1643 0.1 − 
Rf in Semi-log 14.54 2.1697 − 0.2 

 

                                                Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 
Figure 7.21. Experimental and Analytical Results of Flying Wing Anchor® in a Single Layer (Drop 8) 
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Table 7.10. Experimental and Analytical Impact Velocity and Embedment Depth (Drop 13) 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 8.78 2.33 − − 

Rf in Power-Law 10.34 2.04 0.1 − 
Rf in Semi-log 10.34 2.05 − 0.2 

                                                 

Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 
Figure 7.22. Experimental and Analytical Results of Flying Wing Anchor® in a Single Layer (Drop 13) 
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7.4 Extrapolate Results of Free-Fall Penetration with Flying Wing 

Anchor® 

7.4.1 Experimental Design 

This section performs sensitivity analysis with varying the weight over area ratio and 

release height.  From  Figure 7.21 and Table 7.7, a higher release height results in a deeper 

penetration.  A heavier anchor is expected to penetrate deeper than a lighter anchor.  The 

penetration depth is limited by the maximum soil depth that can be provided in the lab.  

Therefore, the sensitivity analysis in this section is for selecting a maximum weight can be 

attached on anchor and a maximum height for releasing anchor.   

7.4.1.1 Effect of Weight Over Area Ratio 

By increasing the ratio of weight over area as shown in Figure 7.23, the final 

penetration depth of anchor is increased.  The maximum soil depth available in the lab is 

30 inches (2.5 ft).  Therefore, if the anchor is released at 1.7 ft above mudline in the constant 

shear strength profile with 10 psf, the maximum weight over area ratio should be less than 

22.  A ratio higher than 22 may results the anchor stopped by hitting test bed bottom instead 

of being stopped by the soil resistance.  If the anchor with the ratio higher than 22 is 

intended to be tested, then a test bed with higher strength (higher than 10 psf) should be 

prepared.   
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Table 7.11. Input for Effect of Weigh Over Area Ratio 

Soil Parameter 
Su at mudline 10 psf 

k 0 psf/ft 
Anchor Parameter 

Weight Over Area Ratio 4 or 8 or 15 or 22 
Model Parameter 

Drag Coefficient, CD 0.05 
Strain Rate Parameter, λ 0.35 

 

 

Figure 7.23. Impact Velocity versus Displacement (Effect of Weigh Over Area Ratio) 

 

7.4.1.2 Effect of Release Height 

The weight over area ratio of 22 is selected as the maximum w/a for extrapolating 

scaled Flying Wing Anchor® results to prototype as discussed in Section 7.4.1.1.  This 

section studies that the maximum height for releasing anchor.  As expected that a higher 
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release height results in a deeper penetration.  Therefore, if performing free-fall test in the 

constant shear strength profile with 10 psf, the maximum release height at 1.5 ft is selected 

for the anchro with w/a ratio of 22 due to the limitation of soil depth.   

Table 7.12. Input for Effect of Release Height with Weight Over Area Ratio with 22 

Soil Parameter 
Su at mudline 10 psf 

k 0 psf/ft 
Anchor Parameter 

Weight Over Area Ratio 22 
Model Parameter 

Drag Coefficient, CD 0.05 
Strain Rate Parameter, λ 0.35 

 

 

Figure 7.24. Impact Velocity versus Displacement (Effect of Release Height with 
Weight Over Area Ratio with 22) 
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7.4.2 Test Setup  

In the tests to explore the scaling relationship of free penetration tests, the same size 

Speedy Flying Wing Anchor® will be used.  The difference between each test is measured 

by attaching different weights on top of the anchor to present different size of anchor.  As 

shown in Table 2.8, if the difference of weights between two anchors is x3, then the 

difference between surface area of two anchor is x2, and characteristic lengths of two 

anchor is x.  Thus, the weight to area ratio of prototype anchor is x times greater than the 

scaled model anchor with 1:x scale.  For example, the weight to area ratio of prototype 

anchor is 50 times greater than the 1:50 scaled Flying Wing Anchor® tested in Chapter 7.  

If the behavior of prototype anchor is tended to predict by extrapolating the measurement 

from scale model tests, the weight of area ratio is increased up to 50.  As discussed in 

Section 7.3.2, the weight of prototype anchor is 1.27 lbs, additional 48 lbs weight should 

be added to simulate test condition for prototype anchor.  However, due to the limitation 

of length of rod connecting the weights and anchor (preventing the attached weight on the 

top touches the soil surface when anchor travelling into soil bed), and the depth of soil test 

bed (preventing anchor being stopped by hitting bottom of soil barrel instead of being static 

by deacceleration from soil resistance), the maximum weight attached is 28 lbs, which 

provides the ratio of weight over area is 22 (28 lbs/1.27lbs = 22).  By following the same 

test set up discussed in Section 7.3, the free-fall penetration for study scale effect is the 

same except: (1) attaching different weights on the top of anchor and; (2) using a longer 

rod (24 inches) to connect anchor and weights and; (3) using a PVC pipe as guide to 

preventing anchor together with rod and heavier weights (over 15 lbs) tilting when 
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impacting soil tests bed.  The releasing height is selected at 1.7 ft above soil surface and 

remains the same for all tests with different weights attached.  

 

Figure 7.25. Free-Fall Flying Wing Anchor® and Guide 

7.4.3 The Experimental and Analytical Results  

The soil test bed for scale effect study is the same as shown in Figure 7.17.  An example 

of free-fall penetration tests with weight over area ratio higher than 1 is shown in Table 

7.13 and Figure 7.26.  The strain rate parameter, β with 0.15 λ with 0.35 is applied to the 

strain rate function Rf in the prediction model, which is consistent with the β and λ obtained 

in the pure in-plane shearing tests.  All the tests results are shown in Appendix G.  The 

experimental and analytical embedment depth and impact velocity with different weights 

attached are summarized in Table 7.14 and the results are plotted in Figure 7.27 with fitted 

prediction curve for extrapolating scaled model tests to prototype tests in the field.  The 

fitted prediction curve can predict the embedment depth based on the weight to area ratio, 
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 Embedment Depth = 0.4993 × 𝑒𝑒0.08 ×𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡 𝑡𝑡𝑡𝑡 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 Eq.(7.11) 

From the predicted equation, the prototype corresponds with weight to area ratio of 50 

can penetrate 27 ft if being released at 1.7 ft above mudline.  The equivalent fluke length 

of prototype anchor is 10 ft, which implies that the Flying Wing Anchor® can penetrate 

2.7 fluke length when being dropped from 1.7 ft above mudline.   
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 Table 7.13. Experimental and Analytical Impact Velocity and Embedment Depth with Flying Wing Anchor® with Weight to 
Area Ratio of 22.13 

 Impact v (ft/s) Embedment D (Lf) β λ Weight of Area 
Ratio = 22.13 Experiment 12.01 7.89 − − 

Rf in Power-Law 10.49 8.54 0.15 − 
Rf in Semi-log 10.49 8.47 − 0.35 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 

Figure 7.26. Experimental and Analytical Impact Velocity and Embedment Depth with Flying Wing Anchor® with Weight to 
Area Ratio of 22.13 
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Table 7.14. Experimental and Analytical Embedment Depth and Impact Velocity of Flying Wing Anchor® with Different Weight 
to Area Ratio 

   Experiment Rf in Power-Law  Rf in Semi-Log   

Test 

Weight 
to Area 
Ratio 

Drop 
Height 

(ft) 
v 

(ft/s) 

Z 
(Equivalent 

Length) v (ft/s) 

Z 
(Equivalent 

Length) 
v 

(ft/s) 

Z 
(Equivalent 

Length) 
12 1.00 1.75 10.50 2.33 10.53 2.03 10.53 2.03 
13 1.00 1.69 10.30 2.33 10.34 2.04 10.34 2.05 
20 22.13 1.71 8.53 7.69 10.40 8.23 10.46 8.41 
21 22.13 1.71 12.01 7.89 10.49 8.54 10.49 8.47 
22 22.13 1.69 8.76 7.81 10.40 8.40 10.40 8.33 
23 9.49 1.72 7.82 3.86 10.49 3.94 10.49 3.92 
24 9.49 1.73 7.53 4.35 10.52 3.95 10.52 3.94 
25 9.49 1.69 8.81 4.30 10.42 3.93 10.42 3.91 
26 6.32 1.72 7.07 3.36 10.48 3.17 10.48 3.16 
27 6.32 1.75 7.71 3.37 10.58 3.21 10.58 3.20 
28 6.32 1.69 7.57 3.56 10.42 3.16 10.42 3.15 
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Figure 7.27. Extrapolate Scaled Model Anchor Embedment Depth to Prototype 
Anchor Embedment Depth 

 

7.5 Free-Fall Penetration with Flying Wing Anchor ® in Layered Soil 

Profiles  

This section presents the analytical and experimental results of Flying Wing Anchor® 

in layered soil profiles.  The prediction model follows the same prediction as the free-fall 

penetration in a single layer but with a factor to account force enhancement from stiff layer.  

The comparison between analytical and experimental results are presented for each case in 

Appendix H. 

 

7.5.1 Analytical Model of Free-Fall Penetration in Layered Soil Profile 

The prediction model for the Flying Wing Anchor® in a layered soil profile is 

developed based on the prediction for Flying Wing Anchor® in a single layer described in 
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Section 7.3.1 and the prediction for DEA in layered soil described in Section 5.3.1. The 

prediction model for the anchor being released to reach the soil is followed the same 

prediction as the Flying Wing Anchor® in a single layer.  As anchor impacts soil surface, 

the prediction still follows the same one as in a single layer for the part of anchor travels 

within soft soil layer.  The stiff layer effect is evoked when the tip of anchor starts touching 

the stiff layer.  The stiff layer effect is accounted by involving a multiplier in tip bearing 

capacity similarly in Equations 5.18 and 5.20.  However, different from the multiplier for 

DEA in layered soil profiles which is a function of ratio of enhanced fluke area due to stiff 

layer over physical area and shear strength ratio of stiff layer and soft soil, the multiplier 

for Flying Wing Anchor® in free-fall penetration is only a function of shear strength ratio.  

Thus, the bearing force when anchor interacts with stiff layer is expressed as  

 Fbear = Mn Nc su AP Eq.(7.12) 

 Mn = 𝑆𝑆𝑢𝑢,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑆𝑆𝑢𝑢,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 Eq.(7.13) 

The strain effect enhanced by high velocity from anchor is accounted in the same power-

law or semi-logarithmic functions as shown in Equations 7.9 and 7.10 for the part of anchor 

in the stiff layer. 

7.5.2 Experimental Design 

This section performs sensitivity analysis with the analytical model in Section 7.5.1, 

and studies the impact from characteristics of stiff layer such as depth, thickness and shear 

strength on the final penetration depth of Flying Wing Anchor®.  These information guides 

constructing layere soil profiles in the lab.  
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7.5.2.1 Effect of Stiff Layer Depth 

Figure 7.28 shows the impact velocity versus displacement in layered soil profile with 

stiff layer with shear strength of 20 psf and soft soil with shear strength of 10 psf.  The 5-

inch thick stiff layer starts at 1 or 2 or 3 inches.  Figure 7.28 shows that the penetration 

depth in the soil profile with stiff layer at 2 inches is the same as in the one with stiff layer 

at 3 inches.  This comparison implies that the stiff layer at 2 inches may be the threshold 

where anchor can or cannot penetrate into stiff layer from the release height from 4 inches.  

This assumption will be checked experimentally in Section 7.5.4.   
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Table 7.15. Input for Effect Stiff Layer Depth 

Soil Parameter 
Su at mudline 10 psf 

k 0 psf/ft 
Stiff Layer Thickness 5 inch 

Stiff Layer Depth from Mudline 1 or 2 or 3 inch 
Shear strength ratio of stiff layer over soft layer 2 

Anchor Parameter 
Anchor Weight 1.26 lbs 

Model Parameter 
Drag Coefficient, CD 0.05 

Strain Rate Parameter, λ 0.35 
 

 

Figure 7.28. Impact Velocity versus Displacement (Effect of Stiff Layer Depth) 
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7.5.2.2 Effect of Stiff Layer Thickness 

Figure 7.29 shows that the velocity versus displacement in layered soil profile with stiff 

layer with shear strength of 20 psf and soft soil with shear strength of 10 psf.  The stiff 

layer starts at 1 inch below mudline with thickness of 1 or 2 or 3 inches.  Figure 7.29 shows 

that the penetration depth in the soil profile with thicker stiff is less compared with the 

thinner stiff layer.  This comparison implies that the anchor may penetrate into the stiff 

layers in all three cases.  This assumption will be checked experimentally in Section 7.5.4. 

Table 7.16. Input for Effect Stiff Layer Thickness 

Soil Parameter 
Su at mudline 10 psf 

k 0 psf/ft 
Stiff Layer Thickness 3 or 2 or 1 inch 

Stiff Layer Depth from Mudline 1 inch 
Shear strength ratio of stiff layer over soft layer 2 

Anchor Parameter 
Anchor Weight 1.26 lbs 

Model Parameter 
Drag Coefficient, CD 0.05 

Strain Rate Parameter, λ 0.35 
 



301 

 

Figure 7.29. Impact Velocity versus Displacement (Effect of Stiff Layer Thickness) 

 

7.5.2.3 Effect of Stiff Layer Shear Strength 

Figure 7.30 shows that the velocity versus displacement in layered soil profile with stiff 

layer with shear strength of 20 or 30 or 40 psf and soft soil with shear strength of 10 psf.  

The stiff layer starts at 3 inch below mudline with thickness of 2 inches.  Figure 7.30 shows 

that the penetration depth in the soil profile with stronger stiff is less compared with the 

weaker stiff layer.  This comparison implies that the anchor may penetrate into the stiff 

layers in all three cases.  This assumption will be checked experimentally in Section 7.5.4. 
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Table 7.17. Input for Effect Stiff Layer Shear Strength 

Soil Parameter 
Su at mudline 10 psf 

k 0 psf/ft 
Stiff Layer Thickness 2 inch 

Stiff Layer Depth from Mudline 3 inch 
Shear strength ratio of stiff layer over soft layer 2 or 3 or 4 

Anchor Parameter 
Anchor Weight 1.26 lbs 

Model Parameter 
Drag Coefficient, CD 0.05 

Strain Rate Parameter, λ 0.35 
 

 

Figure 7.30. Impact Velocity versus Displacement (Effect of Stiff Layer Shear 
Strength) 

7.5.3 Test Setup  

The shear strength characteristics of soft and stiff layer are summarized in Table 7.18.  

The characteristics of stiff layers are similar to the stiff layers shown in Table 5.17.  The 
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thickness of stiff layer is also 1 inch or 2 inches, and the shear strength ratio of stiff layer 

over soft layer ranges from 1.5 to 4.  The difference of stiff layer profiles for DEA and 

Flying Wing Anchor® is the depth of stiff layer.  For the tests with DEA in layered profiles, 

the depth of stiff layer ranges from 3 inches to 4 inches, and it is difficult for DEA to break 

through the shallower stiff layer.  In contrast, for free-fall tests with Flying Wing Anchor® 

in layered soil profiles, the shallowest stiff layer starts at 1 inch below mudline.  This shear 

strength profile with shallow stiff layer is prepared for explore the potential of Flying Wing 

Anchor® in the soil profiles where DEA cannot successfully embed.  In the first column, 

after case designated number, the expectation of anchor can or cannot penetrate into or 

through stiff layer is listed.  It should be noted that the listed penetration expectation is 

based on the drop height at 8 ft above soil surface, which means that the Flying Wing 

Anchor® has potential to penetrate through the stiff layers where being listed as not 

penetrate by releasing the anchor at a higher drop height.  However, due to the limitation 

of effective length measurement by magnetometer, the maximum drop height is up to 8 ft 

in this study.   

 

Table 7.18.  Shear Strength Summary of Layered Soil Profile for Free-Fall 
Penetration Tests with Flying Wing Anchor® 

Case 1 

Stiff Layer – Anchor 
Expected to Penetrate 
Through Stiff Layer  

Su at mudline 11 psf 
Su gradient 0 psf/ft 

Sensitivity of soft layer 1 
Stiff Layer Thickness 1 inch 

Stiff Layer Depth from Mudline 3 inches 
Shear strength ratio of stiff layer over soft 

 

1.5 
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Table 7.18.  Shear Strength Summary of Layered Soil Profile for Free-Fall 
Penetration Tests with Flying Wing Anchor® (Continued) 

Case 2 

Stiff Layer - Anchor 
Expected to Penetrate 
Through Stiff Layer  

Su at mudline 13 psf 
Su gradient 0 psf/ft 

Sensitivity of soft layer 1 
Stiff Layer Thickness 1 inch 

Stiff Layer Depth from Mudline 1.5 inches 
Shear strength ratio of stiff layer over soft 

 

2 
Case 3 

Stiff Layer – Anchor 
Expected to Penetrate into 

but not Through Stiff 
Layer  

Su at mudline 13 psf 
Su gradient 0 psf/ft 

Sensitivity of soft layer 1 
Stiff Layer Thickness 1 inch 

Stiff Layer Depth from Mudline 2.5 inches 
Shear strength ratio of stiff layer over soft 

 

3 

Case 4 

Stiff Layer – Anchor 
Expected to Penetrate 

through Stiff Layer  

Su at mudline 13 psf 
Su gradient 0 psf/ft 

Sensitivity of soft layer 1 
Stiff Layer Thickness 1 inch 

Stiff Layer Depth from Mudline 3 inches 
Shear strength ratio of stiff layer over soft 

 

2 

Case 5 

Stiff Layer – Anchor 
Expected to Penetrate 
Through Stiff Layer  

Su at mudline 13 psf 
Su gradient 0 psf/ft 

Sensitivity of soft layer 1 
Stiff Layer Thickness 2 inches 

Stiff Layer Depth from Mudline 2.5 inches 
Shear strength ratio of stiff layer over soft 

 

1.8 
Case 6 

Stiff Layer – Anchor 
Expected to Penetrate into 

but not Through Stiff 
Layer  

Su at mudline 13 psf 
Su gradient 0 psf/ft 

Sensitivity of soft layer 1 
Stiff Layer Thickness 2 inches 

Stiff Layer Depth from Mudline 5 inches 
Shear strength ratio of stiff layer over soft 

 

2 
Case 7 

Stiff Layer – Anchor 
Expected to Penetrate into 

but not Through Stiff 
Layer  

Su at mudline 13 psf 
Su gradient 0 psf/ft 

Sensitivity of soft layer 1 
Stiff Layer Thickness 2 inches 

Stiff Layer Depth from Mudline 6 inches 
Shear strength ratio of stiff layer over soft 

 

2 
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7.5.4 Experimental and Analytical Results 

As summarized in Table 7.18, Flying Wing Anchor ® penetrates through the stiff layer 

in case 1, case 2, case 4, and case 5.  The minimum release height enables anchor penetrates 

through the stiff layer is summarized in Figure 7.31.  Table 7.19 to Table 7.26, and Figure 

7.36 to Figure 7.42 summarize the impact velocity and embedment depth from tests and 

predictions with different strain rate effect functions. All the experimental and analytical 

results are shown in Appendix H  

From these summaries, the conclusions for the Flying Wing Anchor® in layered soil 

profiles are: 

• The Flying Wing Anchor® can penetrate into stiff layer in all layered soil 

profiles prepared in this study.  For the cases with stiff layer at relative shallow 

depth (less than 1 effective fluke width or length), DEA slides on the top of stiff 

layer and pitch forward without diving deeper in the cases where stiff layer is 

one fluke length below the mudline, but FWA can penetrate into or through the 

stiff layer even less than 1fluke width.  For the cases with stiff layer at relative 

deeper depth (more than 1 fluke length or width), DEA can penetrate through 

the stiff layer with a thin loading line.  However, there is no line thickness 

restriction for FWA. 

• For the cases FWA penetrates through the stiff layer: 

o When the thickness of stiff layer is less than half of the effective fluke 

width, the higher shear strength ratio requires higher release height for 

FWA to penetrate through stiff layer.  Compare case 4 and case 1, the 1 

inch stiff layer starts at 3 inches below mudline, the shear strength ratio 
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of stiff layer over surrounding soft soil is 2 and 1.5 for case 4 and 1, 

respectively; the impact velocity for FWA to penetrate through stiff 

layer is 15.79 ft/s and 15.22 ft/s respectively (Figure 7.31).  

o When the thickness of stiff layer is less than half of the effective fluke 

width, the shallower depth of stiff layer requires higher release height 

for FWA to penetrate through the stiff layer.  Compare case 2 and case 

4, the shear strength ratio and thickness of stiff layer in these two cases 

are the same, but the depth of stiff layer is different, 1.5 inch for case 2, 

and 3 inches for case 4.  From Figure 7.31, the minimum impact velocity 

for anchor penetrate through the stiff layer is 17.19 ft/s and 15.79 ft/s 

for case 2 and case 4, respectively.  To penetrate a shallower stiff layer 

depth, it requires higher kinematic energy since the maximum velocity 

being achieved is below mudline (Figure 7.32), thus the anchor may 

reach the shallower stiff layer first before reaching its maximum 

velocity which lowers the kinematic energy input before reaches the 

stiff layer.  To compensate the loss of velocity (kinematic energy) by 

early encountering stiff layer, a higher release height is required (Figure 

7.31).    

o A shallower stiff layer with thicker thickness may require higher release 

height to penetrate through compared with the case where a thinner stiff 

layer at a deeper depth.  Comparing Case 5 and Case 1, the shear 

strength ratio in two cases are around 1.7, the depth of stiff layer is 2.5 

inches and 3 inches, respectively, and the thickness of stiff layer is 2 
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inches and 1 inch, respectively; the minimum height for anchor 

penetrate through the stiff layer in case 5 and case 1 is 19.05 ft/s and 

15.22 ft/s.  This comparison leads to a conclusion that higher release 

height is required to penetrate a thicker stiff layer (Figure 7.31). 

 

Figure 7.31. Minimum Release Height to Penetrate Through Stiff Layer 

 

Figure 7.32. Example of Anchor Trajectory by Experimental and Analytical Results 



308 

• For the cases FWA model penetrates into the stiff layer but not through: 

o From Figure 7.33, the shear strength of stiff layer is over 3 (the 

undrained shear strength is 40 psf), the FWA model can penetrate into 

the stiff layer but not through the stiff layer.  Comparing case 3 and case 

5, the anchor can penetrate through the stiff layer in case 5, but only can 

penetrate into stiff layer in case 3.  The depth of stiff layer is the same 

for two cases, the shear strength in case 3 is a stiffer thinner layer (1-

inch thick with undrained shear strength of 42 psf), and in case 5 is a 

relative softer thicker layer (2-inch thick with undrained shear strength 

of 24 psf).  The FWA model can penetrate through the thicker softer 

layer, but only into the thinner stiffer layer. 

o From Figure 7.34, the FWA model can only penetrate into but not 

through the deeper stiff layer (deeper than 1.5 fluke length).  Compare 

case 5, case 6, and case 7; the shear strength ratio, the thickness of stiff 

layer is the same, but the depth of stiff layer in each case is different.  

The anchor can penetrate through the shallowest stiff layer (case 5), but 

only penetrate into but not through the deeper stiff layers (case 6 and 

case 7). 
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Figure 7.33. Comparison between Case 3 and Case 5 

 

Figure 7.34. Comparison between Case 5, Case 6 and Case 7 

• Comparing the predicted and experimental results including displacement-

velocity curve, impact velocity, and embedment depth, we can conclude that 

o the displacement-velocity by the predictions with different strain rate 

functions yields similar results and all can match well with the 
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experimental results.  One example is shown in Table 7.19 and Figure 

7.35. 

o the predicted embedment depth and velocity by analytical model with 

different strain rate function is close; however, the prediction model 

underestimates the final embedment depth (Table 7.20 to Table 7.26 and 

Figure 7.36 to Figure 7.42).  For example, the prediction models predict 

the anchor can only penetrate into the stiff layer but not through for case 

1, which is different from the experimental results that the anchor 

penetrates through the stiff layer. Additionally, the anchor can 

experimentally penetrate into the stiff layer in case 6 and case 7, but the 

prediction model predicts the anchor cannot penetrate into the stiff layer.   

The parameters used in the prediction model are the same as described 

in Table 7.6. 
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Table 7.19. Experimental and Analytical Impact Velocity and Embedment Depth (1st repeat in Case 1) 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 15.41 2.95 − − 

Rf in Power-Law 15.41 2.03 0.1 − 
Rf in Semi-log 15.41 2.07 − 0.2 

 

                                                       Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 

Figure 7.35. Comparison Between Predicted and Experimental Displacement-Impact Velocity Curve  
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Table 7.20 Experimental and Analytical Impact Velocity and Embedment Depth in Case 1 

 Experimental Results Prediction by Power-Law  Prediction by Semi-
Logarithmic 

Test h (ft) z (ft) v (ft/s) Penetrate 
Through 
or Into 

z (ft) v (ft/s) Penetrate 
Through 
or Into 

z (ft) v 
(ft/s) 

Penetrate 
Through 
or Into 

1 7.65 -0.67 16.54 Through -0.47 17.66 Into -0.48 17.66 Into 
2 6.78 -0.63 16.85 Through -0.47 17.03 Into -0.47 17.03 Into 
3 5.46 -0.59 16.67 Through -0.46 15.86 Into -0.46 15.86 Into 
4 7.73 -0.67 19.05 Through -0.48 17.72 Into -0.48 17.72 Into 
5 6.84 -0.63 16.87 Through -0.47 17.08 Into -0.47 17.08 Into 
6 5.77 -0.59 16.00 Through -0.46 16.16 Into -0.46 16.16 Into 

   

Figure 7.36. Experimental and Analytical Impact Velocity and Embedment Depth in Case 1 
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Table 7.21. Experimental and Analytical Impact Velocity and Embedment Depth in Case 2 

 Experimental Results Prediction by Power-Law  Prediction by Semi-
Logarithmic 

Test h (ft) z (ft) v (ft/s) Penetrate 
Through 
or Into 

z (ft) v (ft/s) Penetrate 
Through 
or Into 

z (ft) v 
(ft/s) 

Penetrate 
Through 
or Into 

1 7.88 -0.40 18.87 Into -0.41 17.81 Into -0.45 17.81 Through 
2 6.93 -0.39 17.93 Into -0.41 17.15 Into -0.45 17.15 Through 
3 6.14 -0.30 15.00 Into -0.35 16.50 Into -0.42 16.50 Into 
4 7.88 -0.44 17.81 Through -0.41 17.81 Into -0.45 17.81 Through 
5 7.01 -0.44 17.19 Through -0.41 17.20 Into -0.44 17.20 Through 
6 6.16 -0.28 17.50 Into -0.34 16.51 Into -0.43 16.51 Through 

 

Figure 7.37. Experimental and Analytical Impact Velocity and Embedment Depth in Case 2 
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Table 7.22. Experimental and Analytical Impact Velocity and Embedment Depth in Case 3 

 Experimental Results Prediction by Power-Law  Prediction by Semi-
Logarithmic 

Test h (ft) z (ft) v (ft/s) Penetrate 
Through 
or Into 

z (ft) v (ft/s) Penetrate 
Through 
or Into 

z (ft) v 
(ft/s) 

Penetrate 
Through 
or Into 

7 7.60 -0.31 18.87 Into -0.28 17.62 Into -0.41 17.62 Into 
8 6.83 -0.25 17.93 Into -0.28 17.07 Into -0.40 17.07 Into 
9 6.04 -0.18 15.00 Not Into -0.24 16.41 Into -0.36 16.41 Into 

10 7.65 -0.31 17.81 Into -0.33 17.66 Into -0.40 17.66 Into 
12 6.93 -0.24 17.19 Into  -0.32 17.15 Into -0.41 17.15 Into 
13 6.23 -0.20 17.50 Not Into -0.27 16.57 Into -0.36 16.57 Into 
11 6.97 -0.38 18.87 Into -0.38 17.17 Into -0.41 17.17 Into 

 

Figure 7.38. Experimental and Analytical Impact Velocity and Embedment Depth in Case 3 
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Table 7.23. Experimental and Analytical Impact Velocity and Embedment Depth in Case 4 

 Experimental Results Prediction by Power-Law  Prediction by Semi-
Logarithmic 

Test h (ft) z (ft) v (ft/s) Penetrate 
Through 
or Into 

z (ft) v (ft/s) Penetrate 
Through 
or Into 

z (ft) v 
(ft/s) 

Penetrate 
Through 
or Into 

4 7.06 -0.62 15.20 Through -0.43 14.42 Into -0.42 13.86 Into 
5 6.24 -0.40 12.50 Into -0.43 13.58 Into -0.43 13.58 Into 
6 5.50 -0.40 14.17 Into -0.40 14.47 Into -0.41 14.47 Into 
7 7.19 -0.62 15.41 Through -0.43 15.42 Into -0.44 15.42 Into 
8 6.12 -0.60 15.79 Through -0.44 15.79 Into -0.44 15.79 Into 
9 5.66 -0.44 15.00 Into -0.44 15.43 Into -0.44 15.43 Into 
10 6.35 -0.43 15.96 Into -0.44 15.97 Into -0.44 15.97 Into 
11 6.66 -0.37 17.75 Into -0.44 16.18 Into -0.44 16.18 Into 

 

Figure 7.39. Experimental and Analytical Impact Velocity and Embedment Depth in Case 4 
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Table 7.24. Experimental and Analytical Impact Velocity and Embedment Depth in Case 5 

 Experimental Results Prediction by Power-Law  Prediction by Semi-
Logarithmic 

Test h (ft) z (ft) v (ft/s) Penetrate 
Through 
or Into 

z (ft) v (ft/s) Penetrate 
Through 
or Into 

z (ft) v 
(ft/s) 

Penetrate 
Through 
or Into 

7 7.58 -0.63 16.54 Through -0.48 17.61 Into -0.45 17.61 Into 
9 6.66 -0.55 16.85 Into -0.46 16.93 Into -0.42 16.93 Into 

10 5.73 -0.55 16.67 Into -0.46 16.13 Into -0.43 16.13 Into 
13 7.52 -0.61 19.05 Through -0.48 17.56 Into -0.45 17.56 Into 
11 6.58 -0.57 16.87 Into -0.47 16.86 Into -0.43 16.86 Into 
12 5.61 -0.50 16.00 Into -0.46 16.00 Into -0.43 16.00 Into 

 

Figure 7.40. Experimental and Analytical Impact Velocity and Embedment Depth in Case 5 
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Table 7.25. Experimental and Analytical Impact Velocity and Embedment Depth in Case 6 

 Experimental Results Prediction by Power-Law  Prediction by Semi-
Logarithmic 

Test h (ft) z (ft) v (ft/s) Penetrate 
Through 
or Into 

z (ft) v (ft/s) Penetrate 
Through 
or Into 

z (ft) v 
(ft/s) 

Penetrate 
Through 
or Into 

1 7.32 -0.68 17.90 Into -0.48 17.43 Into -0.48 17.43 Into 
2 6.63 -0.64 16.30 Into -0.47 16.91 Into -0.47 16.91 Into 
3 6.54 -0.62 16.30 Into -0.48 16.84 Into -0.48 16.84 Into 
6 7.57 -0.70 16.98 Into -0.47 17.61 Into -0.48 17.61 Into 
5 6.55 -0.65 17.33 Into -0.47 16.84 Into -0.47 16.84 Into 
4 5.70 -0.63 14.89 Into -0.46 16.10 Into -0.47 16.10 Into 
7 7.66 -0.75 19.50 Through -0.48 17.67 Into -0.48 17.67 Into 

 

Figure 7.41. Experimental and Analytical Impact Velocity and Embedment Depth in Case 6 
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Table 7.26. Experimental and Analytical Impact Velocity and Embedment Depth in Case 7 

 Experimental Results Prediction by Power-Law  Prediction by Semi-
Logarithmic 

Test h (ft) z (ft) v (ft/s) Penetrate 
Through 
or Into 

z (ft) v (ft/s) Penetrate 
Through 
or Into 

z (ft) v 
(ft/s) 

Penetrate 
Through 
or Into 

8 7.34 -0.69 16.67 Into -0.47 17.45 Not Into -0.47 17.45 Not Into 
9 6.37 -0.63 16.99 Into -0.47 16.70 Not Into -0.23 16.70 Not Into 

10 5.73 -0.61 16.67 Into -0.46 16.11 Not Into -0.43 16.11 Not Into 
14 7.38 -0.78 17.32 Into -0.47 17.48 Not Into -0.48 17.48 Not Into 
13 6.83 -0.65 16.67 Into -0.47 17.07 Not Into -0.47 17.07 Not Into 
11 5.75 -0.61 16.67 Into -0.46 16.14 Not Into -0.47 16.14 Not Into 
12 6.62 -0.71 16.67 Into -0.47 16.91 Not Into -0.47 16.91 Not Into 

 

Figure 7.42. Experimental and Analytical Impact Velocity and Embedment Depth in Case 7
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7.6 Conclusion 

To investigate effects of strain rate in shearing versus bearing, T-bar tests and pure 

loading tests with a circular steel plate (0.1-in thick and 4-in diameter) in different 

orientations and at different loading rates are performed.  From the tests result, the 

following conclusions can be obtained: 

• The strain rate parameter obtained from T-bar tests at different loading rate is β 

equal to 0.05 for power-law function and λ equal to 0.12 for semi-logarithmic 

function.  

• From the pure loading tests with the steel plate, the enhanced shear strength by 

increasing rate is in shearing is higher than in bearing.  The shear strength starts 

being enhanced by bearing mechanism at the loading rate higher than 3.2 in/sec; 

however, the shear strength starts being enhanced by shearing mechanism at the 

loading rate higher than 0.8 in/sec.  The maximum enhanced shear strength by 

bearing and shearing mechanism is 15% and 40%, respectively, and both are 

achieved at the loading rate with 8 in/sec.  

• The strain rate parameters obtained from T-bar tests cannot fit the entire 

velocity range for pure bearing tests with steel plate, but only fit the lower 

velocity range.  For the higher velocity range, the β with 0.15 and λ with 0.35 

can better fit the tests results from pure bearing plate.   

• The strain rate parameter for shearing mechanism is obtained by fitting pure in-

plane shearing tests with thin steel plate, and the parameters are β with 0.15 in 

power-law function and λ with 0.35 for semi-logarithmic function.  The strain 

rate parameter for power-law, β, and for semi-logarithmic, λ, is in the typical 
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range for strain rate parameters obtained from back-calculated β and λ from 

dynamically installed anchor tests.  

• This strain rate parameter obtained from in-plane shearing tests are applied to 

the predict embedment depth for Flying Wing Anchor® since 87% area in 

Flying Wing Anchor acts as shearing surface. 

From the free-fall penetration tests with Flying Wing Anchor®, the following 

conclusions are drawn:  

• In the constant shear strength profile, the embedment depth from experiment 

and prediction matches well.   

• In layered soil profiles, the Flying Wing Anchor® can penetrate through a 

shallow stiff layer that the DEA is unable to penetrate. Additionally, Flying 

Wing Anchor® can penetrate into the deeper stiff layer where DEA cannot 

penetrate.  This finding implies that Flying Wing Anchor® is a possible solution 

for layered soil profiles in deepwater.   

Based on free-fall penetration tests of the Flying Wing Anchor® with different ratios 

of the weight to surface area (up to 22), the test results match well with the prediction 

model. Therefore, this model can likely be used to predict the free-fall penetration for a 

full-sized anchor, which will have a weight to area ratio that is about twenty-two as large 

as what has thus far been tested.  
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Chapter 8. Conclusions and Future Works 

8.1 Conclusions 

Constructing foundations for offshore structures in deepwater can be a significant cost.  

Layered soil profiles are common and can further increase the cost of foundations by 

hampering installation and performance.  This research focuses on experimental model 

testing of plate anchors installed by drag or free-fall in layered soil profile, with the goal to 

improve understanding of anchor performance and to capitalize on this improved 

understanding to improve the efficiency of anchors in layered soils.  

Objective 1 is to further understanding of the drag trajectory and capacity for a plate 

anchor in layered soil profiles.  The first conclusion is that the ratio of normal to tangential 

displacement is affected by model scale, with smaller ratios applying to larger anchors. 

Therefore, the prediction models calibrated with small-scale model tests can be adjusted to 

better predict full-scale performance. The second conclusion is that the equilibrium 

capacity factor is not dependent on model scale, therefore, the small scaled equilibrium can 

be applied to a larger size anchor with the same shape.  The third conclusion is that the 

calibrated analytical model based on simplified plasticity theory can predict anchor 

capacity, trajectory and pitch in a non-layered soil profile (with remolded soil or soil with 

sensitivity), including constant and linearly increasing shear strength profiles.  The fourth 

conclusion is that the calibrated analytical results match well with experimental results 

(capacity, trajectory and pitch) in the layered soil profile with shear strength ratio of stiff 

layer over surrounding soft soil less than 1.5 (anchor can penetrate into stiff layer) or 

greater than 5 (anchor cannot penetrate into stiff layer).  The fifth conclusion is that the 

analytical model can predict capacity but cannot capture anchor trajectory and pitch when 
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the shear strength ratio for the layers is between 2 to 4.  The analytical model predicts the 

anchor can penetrate into a stiff layer with shear strength between 2 to 4 times greater than 

the surrounding soil, however, only about half of the tests show that the anchor 

experimentally penetrates into stiff layer. The key factor in whether or not the anchor will 

penetrate the stiff layer is the pitch of the fluke as it approaches the layer; the pitch needs 

to be at about 30° for the best potential to penetrate. The sixth conclusion is that analytical 

model cannot capture anchor behavior in the layered soil profile with a stiff layer at a 

shallower depth.  Experimentally, the anchor does not reach its equilibrium point before 

hitting the stiff layer and pitches forward as well as plowing on the top of stiff layer; 

however, the analytical model assumes the anchor is at the equilibrium point at the 

beginning and will follow the equilibrium trajectory and therefore to penetrate into stiff 

layer without pitching forward.  

Objective 2 is to further understanding of the drag trajectory and capacity of tandem 

anchor systems.  The first conclusion is that the total anchor capacity increases with an 

increase of spacing between the front anchor and the piggy-back anchor.  The second 

conclusion is that the total capacity of the piggy-back configuration is greater than twice 

the capacity of a single anchor, provided that the spacing between the anchors is at least 

two fluke lengths.  The third conclusion is that the piggy-back anchor is able to dive deeper 

than both the front anchor and a single anchor, and it is also possible for the front anchor 

to dive deeper than a single anchor.  The practical conclusion is that a tandem anchor 

system can achieve higher capacity with less penetration compared with installing two 

anchors separately. 
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Objective 3 is to further understanding of the free-fall penetration trajectory and 

resistance of a dynamically embedded plate anchor in layered soil profiles.  The first 

conclusion is that the strain rate effect from shearing is higher than that from bearing as 

measured from pure normal and pure in-plane shearing tests at loading rate from 0.8 in/sec 

to 8 in/sec.  The strain rate parameters β equal to 0.15 (power law) and λ equal to 0.35 

(semi-log law) from pure in-plane shearing tests with a steel plate is applied to the 

analytical model of free-fall penetration with Flying Wing Anchor®. The calibrated 

predication model with these strain rate parameters produces results similar to the test 

results, generally matching or slightly under-predicting the actual penetration in non-

layered and layered soil profiles. The second conclusion is that in the layered soil profile, 

the ability to penetrate into and through the stiff layer increases with decreasing shear 

strength of the stiff layer, decreasing thickness of the stiff layer, increasing depth of the 

stiff layer, increasing impact velocity and increasing weight-to-area ratio for the anchor. 

For the model anchor, the anchor was able to penetrate through stiff layers with undrained 

shear strengths three times greater than the surrounding soil, depths to the top of the stiff 

layer as shallow as 1/3 fluke lengths, and thicknesses of the stiff layers as much as 5/6 fluke 

lengths.   

Objective 4 is to develop and explore concepts to improve anchor performance in 

layered soil profiles.  The first conclusion is that a conventional drag embedment anchor 

can penetrate through the stiff layer with shear strength 50% higher than the surrounding 

soil and cannot penetrate into the stiff layer with shear strength 5 times higher than the 

surrounding soil.  The second conclusion is that it is less likely for a conventional drag 

embedment anchor to penetrate into a stiff layer with shear strength between 2 to 4 times 
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higher than the surrounding soil.  Whether the anchor can or cannot penetrate into stiff 

layer with su ratio of 2 to 4 depends on the depth of stiff layer and the anchor line thickness. 

The drag embedment anchor is less likely to penetrate into the stiff layer at shallower depth 

(shallower than one fluke length) and being dragged with chain due to its steep pitch 

(around 50̊).  The third conclusion is that attaching two drag embedment anchor together 

to achieve a tandem anchor system  can provide a capacity more than twice the capacity 

from a single anchor provided that the spacing between two anchors is at least two fluke 

lengths.  The second anchor in tandem system can penetrate deeper than a single anchor 

and the front anchor.  The fourth conclusion is that a dynamically embedded plate anchor 

can penetrate through the stiff layer with shear strength at least three times greater than the 

surrounding soft soil. The fifth conclusion is that one dynamically embedded anchor, the 

Flying Wing Anchor®, can penetrate through a shallow stiff layer (shallower than one 

fluke length) while a conventional drag embedment anchor will stand up on the surface of 

stiff layer and pitch forward without diving.  If the terminal velocity can be achieved in the 

field, the Flying Wing Anchor® can readily penetrate through a stiff layer with a shear 

strength 3 times greater than the surrounding soil if the layer is one fluke-length thick and 

up to two fluke-lengths deep. For a stiff layer that is one fluke-length deep and 1/2 fluke-

lengths thick, the Flying Wing Anchor® can penetrate the stiff layer even if its shear 

strength is 40 times greater than the surrounding soil. Based on above conclusion, it implies 

that Flying Wing Anchor® is possible solution for layered soil profiles in deepwater. 
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8.2 Recommended Future Work 

The understanding for the drag embedment anchor in terms of capacities (pure bearing 

capacity, pure in-plane shearing capacity and pure rotational pitch capacity) can improved 

by involving shank into the plasticity based model.  The analytical prediction model for 

the drag embedment anchor in layered soil profile can be further calibrated by involving a 

factor which can reduce pure rotational pitch capacity when anchor hits stiff layer and 

therefore it is more possible for anchor to rotate forward which is consistent with the 

experimental observations.  The analytical model for tandem system anchors can be further 

improved by involving yield surface calculation for each anchor (which depends on the 

spacing between two anchor and interacts with each other when the spacing between two 

anchors is less than 2-fluke length).  The strain rate effect on side shearing and bearing can 

be further understood by running pure in-plane shearing and bearing tests with different 

size of penetrometer to verify the conclusion obtained in current study.  A larger Flying 

Wing Anchor® model can be tested in the free-fall penetration tests to verify the scale 

effect on extrapolation and to optimize Flying Wing Anchor® Design.   
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Appendix A. Drag Embedment Tests with a Single Drag Embedment 

Anchor 

Case 1 
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First repeat test in Case 1 
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Second repeat test in Case 1 
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Case 2 
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First Repeat Test in Case 2 
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Second Repeat Test in Case 2 
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Third Repeat Test in Case 2 
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Forth Repeat Test in Case 2 
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Case 3 
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First Repeat Test in Case 3 
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Second Repeat Test in Case 3 
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Case 4 
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First Repeat Test in Case 4 
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Case 5 
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First Repeat Test in Case 5 
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Case 6 
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First Repeat Test in Case 6 
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Second Repeat Test in Case 6 
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Third Repeat Test in Case 6 
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Fourth Repeat Test in Case 6 
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Fifth Repeat Test in Case 6 
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Case 7 
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First Repeat Test in Case 7 
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Second Repeat Test in Case 7 
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Third Repeat Test in Case 7 
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Fourth Repeat Test in Case 7 
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Case 8 
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First Repeat Test in Case 8 
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Second Repeat Test in Case 8 
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Third Repeat Test in Case 8 
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Fourth Repeat Test in Case 8 
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Appendix B. Drag Embedment Tests with Drag Embedment Anchor in 

Different Sizes 

Generic Anchor Tests Results 

First test 
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Generic Anchor Tests Results 

First test 
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Generic Anchor Tests Results 

Third test 
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Larger Anchor Tests Results 

First test  
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Larger Anchor Tests Results 

Second test  
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Larger Anchor Tests Results 

Third test  
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Appendix C. Comparison between the Updated and Original Prediction 

for Drag Embedment Anchor in Layered Soil Profile  

Case 3 
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Case 3 First Repeat 
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Case 3 Second Repeat 
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Case 4 
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Case 4 First Repeat 
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Case 5 
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Case 5 First Repeat 
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Case 6
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Case 6 First Repeat 

 



374 

Case 6 Second Repeat

 

 



375 

Case 6 Third Repeat 
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Case 6 Fourth Repeat 
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Case 6 Fifth Repeat 
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Case 7 
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Case 7 First Repeat 

 



380 

Case 7 Second Repeat 
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Case 7 Third Repeat 
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Case 7 Fourth Repeat 
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Case 8 
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Case 8 First Repeat 
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Case 8 Second Repeat 
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Case 8 Third Repeat 
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Case 8 Fourth Repeat 
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Appendix D. Comparison between Tandem System Anchor and a Single 

Drag Embedment Anchor 

Case 1 

Line Diameter (connecting two anchors) 0.19 inch 
The 2nd anchor Attached to 1st Anchor’s  Padeye 

Spacing between two anchors 4.19 inch (1.16 fluke length) 
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First Repeat test in Case 1 
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Second Repeat Test in Case 1 
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Case 2 

Line Diameter (connecting two anchors) 0.19 inch 
The 2nd anchor Attached to 1st Anchor’s  Center of Back Fluke 

Spacing between two anchors 6.40 inch (1.77 Fluke Length) 
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First Repeat test in Case 2 
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Case 3 

Line Diameter (connecting two anchors) 0.19 inch 
The 2nd anchor Attached to 1st Anchor’s  Padeye 

Spacing between two anchors 6.57 inch (1.81 Fluke Length) 

 

 

 



394 

First Repeat test in Case 3 
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Second Repeat Test in Case 3 
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Case 4 

Line Diameter (connecting two anchors) 0.05 inch 
The 2nd anchor Attached to 1st Anchor’s  Padeye 

Spacing between two anchors 5.02 inch (1.38 Fluke Length) 
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First Repeat test in Case 4 

 

 

 



398 

Case 5 

Line Diameter (connecting two anchors) 0.19 inch 
The 2nd anchor Attached to 1st Anchor’s  Center of Back Fluke 

Spacing between two anchors 10.42 inch (2.87 Fluke Length) 
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First Repeat test in Case 5 

 

 

 



400 

Second Repeat Test in Case 5 
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Case 6 

Line Diameter (connecting two anchors) 0.05 inch 
The 2nd anchor Attached to 1st Anchor’s  Center of Back Fluke 

Spacing between two anchors 11.38 inch (3.14 Fluke Length) 
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First Repeat test in Case 6 
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Second Repeat Test in Case 6 
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Case 7 

Line Diameter (connecting two anchors) 0.19 inch 
The 2nd anchor Attached to 1st Anchor’s  Padeye 

Spacing between two anchors 8.28 inch (2.28 Fluke Length) 
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First Repeat test in Case 7 
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Second Repeat Test in Case 7 
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Third Repeat Test in Case 7 
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Case 8 

Line Diameter (connecting two anchors) 0.05 inch 
The 2nd anchor Attached to 1st Anchor’s  Padeye 

Spacing between two anchors 11.54 inch (3.18 Fluke Length) 
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Case 9 

Line Diameter (connecting two anchors) 0.19 inch 
The 2nd anchor Attached to 1st Anchor’s  Center of Back Fluke 

Spacing between two anchors 12.28 inch (3.39 Fluke Length) 
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First Repeat test in Case 9 
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Second Repeat Test in Case 9 
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Case 10 

Line Diameter (connecting two anchors) 0.05 inch 
The 2nd anchor Attached to 1st Anchor’s  Center of Back Fluke 

Spacing between two anchors 14.62 inch (4.03 Fluke Length) 
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First Repeat test in Case 10 
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Case 11 

Line Diameter (connecting two anchors) 0.05 inch 
The 2nd anchor Attached to 1st Anchor’s  Padeye 

Spacing between two anchors 15.29 inch (4.24 Fluke Length) 
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First Repeat test in Case 11 

 

 

 
 



416 

Second Repeat Test in Case 11 
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Third Repeat Test in Case 11 
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Case 12 

Line Diameter (connecting two anchors) 0.19 inch 
The 2nd anchor Attached to 1st Anchor’s  Center of Back Fluke 

Spacing between two anchors 19.53 inch (5.39 Fluke Length) 
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First Repeat test in Case 12 

 

 

 



420 

Second Repeat Test in Case 12 
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Case 13 

Line Diameter (connecting two anchors) 0.05 inch 
The 2nd anchor Attached to 1st Anchor’s  Center of Back Fluke 

Spacing between two anchors 15.23 inch (4.2 Fluke Length) 
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First Repeat test in Case 1 
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Case 14 

Line Diameter (connecting two anchors) 0.05 inch 
The 2nd anchor Attached to 1st Anchor’s  Padeye 

Spacing between two anchors 6.89 inch (1.9 Fluke Length) 
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First Repeat Test in Case 14 
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Second Repeat Test in Case 14 
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Case 15 

Line Diameter (connecting two anchors) 0.19 inch 
The 2nd anchor Attached to 1st Anchor’s  Padeye 

Spacing between two anchors 13.70 inch (3.78 Fluke Length) 
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First Repeat Test in Case 15 
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Second Repeat Test in Case 15 
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Case 16 

Line Diameter (connecting two anchors) 0.19 inch 
The 2nd anchor Attached to 1st Anchor’s  Padeye 

Spacing between two anchors 17.93 inch (4.95 Fluke Length) 
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First Repeat Test in Case 16 

 

 

 
Second Repeat Test in Case 16 
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Appendix E. Comparison between Analytical and Experimental Results 

of Tandem System Anchor 

Case 2  
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First Repeat Test in Case 2 
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Case 5  
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First Repeat Test in Case 5 
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Second Repeat Test in Case 5 
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Case 6 
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First Repeat Test in Case 6 
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Second Repeat Test in Case 6 
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Case 9 
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First Repeat Test in Case 9 
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Second Repeat Test in Case 9 
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Case 10 
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First Repeat Test in Case 10 
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Case 12 

 

 

 



446 

First Repeat Test in Case 12 
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Second Repeat Test in Case 12 
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Case 13 
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First Repeat Test in Case 13 
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Appendix F. Free-Fall Penetration Tests with Flying Wing Anchor® in a Single Layer 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer 
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Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  

Drop 1 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 16.8 2.61 − − 

Rf in Power-Law 16.09 2.26 0.15 − 
Rf in Semi-log 16.09 2.26 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

         



452 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  

Drop 2 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 16.16 2.61 − − 

Rf in Power-Law 16.12 2.28 0.15 − 
Rf in Semi-log 16.12 2.29 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



453 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  

Drop 3 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 16.2 2.61 − − 

Rf in Power-Law 16.12 2.21 0.15 − 
Rf in Semi-log 16.12 2.26 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

                                 



454 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  

Drop 4 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 16.71 2.61 − − 

Rf in Power-Law 15.97 2.26 0.15 − 
Rf in Semi-log 15.97 2.27 − 0.35 

 

                                                   Prediction with Rf in power-law                      Prediction with Rf in semi-log 

 



455 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  

Drop 5 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 16.2 2.61 − − 

Rf in Power-Law 16.24 2.28 0.15 − 
Rf in Semi-log 16.24 2.29 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



456 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  

Drop 6 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 16.5 2.49 − − 

Rf in Power-Law 14.51 2.17 0.15 − 
Rf in Semi-log 14.51 2.18 − 0.35 

 

                                                   Prediction with Rf in power-law                      Prediction with Rf in semi-log 

 



457 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  

Drop 7 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 15.42 2.49 − − 

Rf in Power-Law 14.51 2.21 0.15 − 
Rf in Semi-log 14.51 2.22 − 0.35 

 

                                                   Prediction with Rf in power-law                      Prediction with Rf in semi-log 

 



458 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  

Drop 8 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 13.73 2.50 − − 

Rf in Power-Law 14.54 2.16 0.15 − 
Rf in Semi-log 14.54 2.17 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



459 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  

Drop 9 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 12.5 2.40 − − 

Rf in Power-Law 12.70 2.11 0.15 − 
Rf in Semi-log 12.70 2.12 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



460 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  

Drop 10 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 12.6 2.40 − − 

Rf in Power-Law 12.64 2.11 0.15 − 
Rf in Semi-log 12.64 2.12 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



461 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  

Drop 11 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 12.5 2.40 − − 

Rf in Power-Law 12.55 2.10 0.15 − 
Rf in Semi-log 12.55 2.11 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



462 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  

Drop 12 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 11.185 2.33 − − 

Rf in Power-Law 10.53 2.03 0.15 − 
Rf in Semi-log 10.53 2.03 − 0.35 

 

                                                     Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



463 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  

Drop 13 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 8.78 2.33 − − 

Rf in Power-Law 10.34 2.04 0.15 − 
Rf in Semi-log 10.34 2.05 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

                             



464 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  

Drop 14 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 10 2.33 − − 

Rf in Power-Law 10.21 2.02 0.15 − 
Rf in Semi-log 10.21 2.02 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



465 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  

Drop 17 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 15.83 2.59 − − 

Rf in Power-Law 15.43 2.20 0.15 − 
Rf in Semi-log 15.43 2.21 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



466 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  

Drop 18 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 16.67 1.93 − − 

Rf in Power-Law 15.49 2.26 0.15 − 
Rf in Semi-log 15.49 2.23 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



467 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  

Drop 19 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 12.05 2.59 − − 

Rf in Power-Law 15.54 2.23 0.15 − 
Rf in Semi-log 15.33 2.24 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 
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Appendix G. Free-Fall Penetration Tests with Flying Wing Anchor with Different Weight to Area Ratio 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  

Drop 20 

 Impact v (ft/s) Embedment D (Lf) β λ Weight of Area 
Ratio = 22.13 Experiment 8.53 7.69 − − 

Rf in Power-Law 10.40 8.23 0.15 − 
Rf in Semi-log 10.46 8.41 − 0.35 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  



469 

Drop 21 

 Impact v (ft/s) Embedment D (Lf) β λ Weight of Area 
Ratio = 22.13 Experiment 12.01 7.89 − − 

Rf in Power-Law 10.49 8.54 0.15 − 
Rf in Semi-log 10.49 8.47 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  



470 

Drop 22 

 Impact v (ft/s) Embedment D (Lf) β λ Weight of Area 
Ratio = 22.13 Experiment 8.79 7.81 − − 

Rf in Power-Law 10.40 8.40 0.15 − 
Rf in Semi-log 10.40 8.33 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  



471 

Drop 23 

 Impact v (ft/s) Embedment D (Lf) β λ Weight of Area 
Ratio = 9.5 Experiment 7.82 3.86 − − 

Rf in Power-Law 10.49 3.94 0.15 − 
Rf in Semi-log 10.49 3.92 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  



472 

Drop 24 

 Impact v (ft/s) Embedment D (Lf) β λ Weight of Area 
Ratio = 9.5 Experiment 7.53 4.35 − − 

Rf in Power-Law 10.52 3.95 0.15 − 
Rf in Semi-log 10.52 3.94 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  



473 

Drop 25 

 Impact v (ft/s) Embedment D (Lf) β λ Weight of Area 
Ratio = 9.5 Experiment 8.81 4.30 − − 

Rf in Power-Law 10.42 3.93 0.15 − 
Rf in Semi-log 10.42 3.91 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

                         

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  



474 

Drop 26 

 Impact v (ft/s) Embedment D (Lf) β λ Weight of Area 
Ratio = 6.32 Experiment 7.07 3.36 − − 

Rf in Power-Law 10.48 3.17 0.15 − 
Rf in Semi-log 10.48 3.16 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  



475 

Drop 27 

 Impact v (ft/s) Embedment D (Lf) β λ Weight of Area 
Ratio = 6.3 Experiment 7.71 3.37 − − 

Rf in Power-Law 10.58 3.21 0.15 − 
Rf in Semi-log 10.58 3.20 − 0.35 

 

                                                         Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 

Free-Fall Penetration with Flying Wing Anchor ® in a Single Layer  



476 

Drop 28 

 Impact v (ft/s) Embedment D (Lf) β λ Weight of Area 
Ratio = 6.3 Experiment 7.57 3.56 − − 

Rf in Power-Law 10.42 3.16 0.15 − 
Rf in Semi-log 10.42 3.15 − 0.35 

 

                                                     Prediction with Rf in power-law                       Prediction with Rf in semi-log 
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Appendix H. Free-Fall Penetration Tests with Flying Wing Anchor® in Layered Soil Profiles 

Free-Fall Penetration with Flying Wing Anchor ® in Case 1 Layered Soil  
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Free-Fall Penetration with Flying Wing Anchor ® in Case 1 Layered Soil  

Drop 1 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 15.2 2..93 − − 

Rf in Power-Law 14.42 2.01 0.15 − 
Rf in Semi-log 13.86 2.01 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



479 

Free-Fall Penetration with Flying Wing Anchor ® in Case 1 Layered Soil  

Repeat Test of Drop 1 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 15.41 2.95 − − 

Rf in Power-Law 15.41 2.03 0.15 − 
Rf in Semi-log 15.41 2.07 − 0.35 

 

                                                 Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



480 

Free-Fall Penetration with Flying Wing Anchor ® in Case 1 Layered Soil  

Drop 2 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 12.5 1.89 − − 

Rf in Power-Law 13.58 2.04 0.15 − 
Rf in Semi-log 13.58 2.04 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



481 

Free-Fall Penetration with Flying Wing Anchor ® in Case 1 Layered Soil  

First Repeat in Drop 2 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 15.79 2.86 − − 

Rf in Power-Law 15.79 2.06 0.15 − 
Rf in Semi-log 15.79 2.07 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



482 

Free-Fall Penetration with Flying Wing Anchor ® in Case 1 Layered Soil  

Second Repeat in Drop 2 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 15.96 2.05 − − 

Rf in Power-Law 15.96 2.07 0.15 − 
Rf in Semi-log 15.96 2.07 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



483 

Free-Fall Penetration with Flying Wing Anchor ® in Case 1 Layered Soil  

Third Repeat in Drop 2 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 17.75 1.75 − − 

Rf in Power-Law 16.18 2.09 0.15 − 
Rf in Semi-log 16.18 2.10 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



484 

Free-Fall Penetration with Flying Wing Anchor ® in Case 1 Layered Soil  

Drop 3 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 14.17 1.90 − − 

Rf in Power-Law 14.46 1.90 0.15 − 
Rf in Semi-log 14.46 1.96 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



485 

Free-Fall Penetration with Flying Wing Anchor ® in Case 1 Layered Soil  

Repeat in Drop 3 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 15.00 2.08 − − 

Rf in Power-Law 15.43 2.09 0.15 − 
Rf in Semi-log 15.43 2.10 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 
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Free-Fall Penetration with Flying Wing Anchor ® in Case 2 Layered Soil  
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Free-Fall Penetration with Flying Wing Anchor ® in Case 2 Layered Soil  

Drop 1 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 18.87 1.91 − − 

Rf in Power-Law 17.81 1.95 0.15 − 
Rf in Semi-log 17.81 2.11 − 0.35 

 

                                                    Prediction with Rf in power-law                    Prediction with Rf in semi-log 
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Free-Fall Penetration with Flying Wing Anchor ® in Case 2 Layered Soil  

Repeat Test of Drop 1 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 17.81 2.08 − − 

Rf in Power-Law 17.81 1.94 0.15 − 
Rf in Semi-log 17.81 2.10 − 0.35 

 

                                                        Prediction with Rf in power-law               Prediction with Rf in semi-log 

 



489 

Free-Fall Penetration with Flying Wing Anchor ® in Case 2 Layered Soil  

Drop 2 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 17.93 1.86 − − 

Rf in Power-Law 17.14 1.93 0.15 − 
Rf in Semi-log 17.14 2.12 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



490 

Free-Fall Penetration with Flying Wing Anchor ® in Case 2 Layered Soil  

First Repeat in Drop 2 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 17.19 2.08 − − 

Rf in Power-Law 17.19 1.94 0.15 − 
Rf in Semi-log 17.19 2.08 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



491 

Free-Fall Penetration with Flying Wing Anchor ® in Case 2 Layered Soil  

Drop 3 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 15.00 1.41 − − 

Rf in Power-Law 16.49 1.67 0.35 − 
Rf in Semi-log 16.49 1.97 − 0.5 

 

                                                 Prediction with Rf in power-law                      Prediction with Rf in semi-log 

 



492 

Free-Fall Penetration with Flying Wing Anchor ® in Case 2 Layered Soil  

Repeat in Drop 3 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 17.5 1.30 − − 

Rf in Power-Law 16.51 1.59 0.16 − 
Rf in Semi-log 16.51 2.05 − 0.3 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



493 

Free-Fall Penetration with Flying Wing Anchor ® in Case 3 Layered Soil  

 

 



494 

Free-Fall Penetration with Flying Wing Anchor ® in Case 3 Layered Soil  

Drop 1 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 17.6 1.45 − − 

Rf in Power-Law 17.62 1.34 0.2 − 
Rf in Semi-log 17.62 1.92 − 0.3 

 

                                                  Prediction with Rf in power-law                      Prediction with Rf in semi-log 

 



495 

Free-Fall Penetration with Flying Wing Anchor ® in Case 3 Layered Soil  

Repeat Test of Drop 1 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 19.98 1.47 − − 

Rf in Power-Law 17.65 1.56 0.15 − 
Rf in Semi-log 17.65 1.91 − 0.3 

 

                                                   Prediction with Rf in power-law                   Prediction with Rf in semi-log 

 



496 

Free-Fall Penetration with Flying Wing Anchor ® in Case 3 Layered Soil  

Drop 2 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 16.8 1.17 − − 

Rf in Power-Law 17.06 1.31 0.2 − 
Rf in Semi-log 17.06 1.91 − 0.3 

 

                                                   Prediction with Rf in power-law                  Prediction with Rf in semi-log 

 



497 

Free-Fall Penetration with Flying Wing Anchor ® in Case 3 Layered Soil  

First Repeat in Drop 2 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 16.48 1.15 − − 

Rf in Power-Law 17.14 1.56 0.15 − 
Rf in Semi-log 17.14 1.96 − 0.35 

 

                                                   Prediction with Rf in power-law                     Prediction with Rf in semi-log 

 



498 

Free-Fall Penetration with Flying Wing Anchor ® in Case 3 Layered Soil  

Second Repeat in Drop 2 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 17.17 1.80 − − 

Rf in Power-Law 17.17 1.81 0.1 − 
Rf in Semi-log 17.17 1.93 − 0.2 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



499 

Free-Fall Penetration with Flying Wing Anchor ® in Case 3 Layered Soil  

Drop 3 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 16.41 0.8428 − − 

Rf in Power-Law 16.41 1.12 0.15 − 
Rf in Semi-log 16.41 1.68 − 0.35 

 

                                                   Prediction with Rf in power-law                     Prediction with Rf in semi-log 

 



500 

Free-Fall Penetration with Flying Wing Anchor ® in Case 3 Layered Soil  

Repeat in Drop 3 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 14.97 0.96 − − 

Rf in Power-Law 16.57 1.28 0.2 − 
Rf in Semi-log 16.57 1.69 − 0.5 

 

                                                  Prediction with Rf in power-law                       Prediction with Rf in semi-log 
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Free-Fall Penetration with Flying Wing Anchor ® in Case 4 Layered Soil  

 

 



502 

Free-Fall Penetration with Flying Wing Anchor ® in Case 4 Layered Soil  

Drop 1 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 18.24 3.17 − − 

Rf in Power-Law 17.66 2.24 0.1 − 
Rf in Semi-log 17.66 2.25 − 0.2 

 

                                                 Prediction with Rf in power-law                      Prediction with Rf in semi-log 

 



503 

Free-Fall Penetration with Flying Wing Anchor ® in Case 4 Layered Soil  

Repeat Test of Drop 1 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 17.72 3.17 − − 

Rf in Power-Law 17.72 2.25 0.1 − 
Rf in Semi-log 17.72 2.26 − 0.2 

 

                                                   Prediction with Rf in power-law                     Prediction with Rf in semi-log 

 



504 

Free-Fall Penetration with Flying Wing Anchor ® in Case 4 Layered Soil  

Drop 2 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 18.57 2.97 − − 

Rf in Power-Law 17.02 2.20 0.1 − 
Rf in Semi-log 17.02 2.21 − 0.2 

 

                                                   Prediction with Rf in power-law                    Prediction with Rf in semi-log 

 



505 

Free-Fall Penetration with Flying Wing Anchor ® in Case 4 Layered Soil  

First Repeat in Drop 2 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 18.15 2.97 − − 

Rf in Power-Law 17.08 2.23 0.1 − 
Rf in Semi-log 17.08 2.24 − 0.2 

 

                                                   Prediction with Rf in power-law                     Prediction with Rf in semi-log 

 



506 

Free-Fall Penetration with Flying Wing Anchor ® in Case 4 Layered Soil  

Drop 3 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 15.22 2.77 − − 

Rf in Power-Law 15.86 2.17 0.1 − 
Rf in Semi-log 15.86 2.18 − 0.2 

 

                                                    Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



507 

Free-Fall Penetration with Flying Wing Anchor ® in Case 4 Layered Soil  

Repeat in Drop 3 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 15.38 2.77 − − 

Rf in Power-Law 16.15 2.18 0.1 − 
Rf in Semi-log 16.15 2.19 − 0.2 

 

                                                  Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



508 

Free-Fall Penetration with Flying Wing Anchor ® in Case 5 Layered Soil  

 

 



509 

Free-Fall Penetration with Flying Wing Anchor ® in Case 5 Layered Soil  

Drop 1 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 16.54 2.97 − − 

Rf in Power-Law 17.61 2.27 0.15 − 
Rf in Semi-log 17.61 2.13 − 0.35 

 

                                                   Prediction with Rf in power-law                      Prediction with Rf in semi-log 

 



510 

Free-Fall Penetration with Flying Wing Anchor ® in Case 5 Layered Soil  

Repeat Test of Drop 1 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 19.5 2.87 − − 

Rf in Power-Law 17.56 2.26 0.15 − 
Rf in Semi-log 17.56 2.12 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



511 

Free-Fall Penetration with Flying Wing Anchor ® in Case 5 Layered Soil  

Drop 2 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 16.85 2.59 − − 

Rf in Power-Law 16.93 2.20 0.15 − 
Rf in Semi-log 16.93 2.00 − 0.35 

 

                                                  Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



512 

Free-Fall Penetration with Flying Wing Anchor ® in Case 5 Layered Soil  

First Repeat in Drop 2 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 16.87 2.67 − − 

Rf in Power-Law 16.87 2.24 0.15 − 
Rf in Semi-log 16.87 2.05 − 0.35 

 

                                                  Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



513 

Free-Fall Penetration with Flying Wing Anchor ® in Case 5 Layered Soil  

Drop 3 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 16.67 2.58 − − 

Rf in Power-Law 16.12 2.16 0.15 − 
Rf in Semi-log 16.12 2.03 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



514 

Free-Fall Penetration with Flying Wing Anchor ® in Case 5 Layered Soil  

Repeat in Drop 3 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 15.79 2.37 − − 

Rf in Power-Law 16.00 2.16 0.15 − 
Rf in Semi-log 16.00 2.05 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



515 

Free-Fall Penetration with Flying Wing Anchor ® in Case 6 Layered Soil  

 

 



516 

Free-Fall Penetration with Flying Wing Anchor ® in Case 6 Layered Soil  

Drop 1 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 17.90 3.21 − − 

Rf in Power-Law 17.43 2.26 0.15 − 
Rf in Semi-log 17.43 2.27 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



517 

Free-Fall Penetration with Flying Wing Anchor ® in Case 6 Layered Soil  

First Repeat Test of Drop 1 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 16.98 3.31 − − 

Rf in Power-Law 17.61 2.24 0.15 − 
Rf in Semi-log 17.61 2.25 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



518 

Free-Fall Penetration with Flying Wing Anchor ® in Case 6 Layered Soil  

Second Repeat Test of Drop 1 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 19.50 3.56 − − 

Rf in Power-Law 17.66 2.25 0.15 − 
Rf in Semi-log 17.66 2.26 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



519 

Free-Fall Penetration with Flying Wing Anchor ® in Case 6 Layered Soil  

Drop 2 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 16.3 3.07 − − 

Rf in Power-Law 16.9 2.23 0.15 − 
Rf in Semi-log 16.9 2.24 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 
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Free-Fall Penetration with Flying Wing Anchor ® in Case 6 Layered Soil  

First Repeat in Drop 2 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 17.33 3.06 − − 

Rf in Power-Law 16.84 2.21 0.15 − 
Rf in Semi-log 16.84 2.22 − 0.35 

 

                                                         Prediction with Rf in power-law                       Prediction with Rf in semi-log 
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Free-Fall Penetration with Flying Wing Anchor ® in Case 6 Layered Soil  

Drop 3 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 16.3 2.92 − − 

Rf in Power-Law 16.84 2.45 0.15 − 
Rf in Semi-log 16.84 2.25 − 0.35 

 

                                                      Prediction with Rf in power-law                       Prediction with Rf in semi-log 
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Free-Fall Penetration with Flying Wing Anchor ® in Case 6 Layered Soil  

Repeat in Drop 3 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 14.89 3.00 − − 

Rf in Power-Law 16.09 2.20 0.15 − 
Rf in Semi-log 16.09 2.20 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 
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Free-Fall Penetration with Flying Wing Anchor ® in Case 7 Layered Soil  
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Free-Fall Penetration with Flying Wing Anchor ® in Case 7 Layered Soil  

Drop 1 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 17.67 3.26 − − 

Rf in Power-Law 17.45 2.23 0.15 − 
Rf in Semi-log 17.45 2.24 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 
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Free-Fall Penetration with Flying Wing Anchor ® in Case 7 Layered Soil  

Repeat Test of Drop 1 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 17.32 3.70 − − 

Rf in Power-Law 17.48 2.21 0.15 − 
Rf in Semi-log 17.48 2.29 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 
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Free-Fall Penetration with Flying Wing Anchor ® in Case 7 Layered Soil  

Drop 2 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 16.99 2.97 − − 

Rf in Power-Law 16.70 2.29 0.15 − 
Rf in Semi-log 16.70 1.08 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 
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Free-Fall Penetration with Flying Wing Anchor ® in Case 7 Layered Soil  

First Repeat in Drop 2 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 16.67 3.07 − − 

Rf in Power-Law 17.06 2.21 0.15 − 
Rf in Semi-log 17.06 2.21 − 0.35 

 

                                                    Prediction with Rf in power-law                       Prediction with Rf in semi-log 
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Free-Fall Penetration with Flying Wing Anchor ® in Case 7 Layered Soil  

Second Repeat in Drop 2 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 16.67 3.37 − − 

Rf in Power-Law 16.91 2.21 0.15 − 
Rf in Semi-log 16.91 2.22 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 
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Free-Fall Penetration with Flying Wing Anchor ® in Case 7 Layered Soil  

Drop 3 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 16.67 2.87 − − 

Rf in Power-Law 16.11 2.17 0.15 − 
Rf in Semi-log 16.11 2.05 − 0.35 

 

                                                   Prediction with Rf in power-law                       Prediction with Rf in semi-log 

 



530 

Free-Fall Penetration with Flying Wing Anchor ® in Case 7 Layered Soil  

Repeat in Drop 3 

 Impact v (ft/s) Embedment D (Lf) β λ 
Experiment 16.67 2.87 − − 

Rf in Power-Law 16.14 2.19 0.15 − 
Rf in Semi-log 16.14 2.20 − 0.35 

 

                                                 Prediction with Rf in power-law                       Prediction with Rf in semi-log 
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