
Copyright

by

Srilakshmi Pattabiraman

2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211341322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Thesis Committee for Srilakshmi Pattabiraman
certifies that this is the approved version of the following thesis:

Finding good enough coins under symmetric and

asymmetric information

APPROVED BY

SUPERVISING COMMITTEE:

Supervisor:
Constantine Caramanis

Alexandros G. Dimakis

Finding good enough coins under symmetric and

asymmetric information

by

Srilakshmi Pattabiraman

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2017

Acknowledgments

I would like to take this opportunity to express my sincere gratitude

to Prof. Constantine Caramanis for his time, and patience. If not for the

several insightful discussions over the last two years, my growth would have

been bleak. I would also like to thank Prof. Alex Dimakis for his support.

Many thanks to Prof. de Veciana, Prof. Ren, Prof. Caramanis, Prof. Dimakis,

Prof. Vikalo, Prof. Hanasusanto, Prof. Zitkovic, Prof. Nikolova, Prof. Price,

Prof. Bakolas, and Prof. Walker for I have benefitted immensely from their

courses during my time here.

iv

Abstract

Finding good enough coins under symmetric and

asymmetric information

Srilakshmi Pattabiraman, MSE

The University of Texas at Austin, 2017

Supervisor: Constantine Caramanis

We study the problem of returningm coins with biases above 0.5. These

good enough coins that are returned by the agent should be acceptable to the

authority by meeting the authority’s Family Wise Error Rate constraint. We

design adaptive algorithms that invoke Sequential Probability Ratio Test to

find these good enough coins. We consider scenarios that differ in terms of the

information available about the underlying Bayesian setting. The symmetry

or asymmetry of the underlying setup, i.e., the difference between what the

agent and the authority know about the underlying prior and the support,

presents different challenges. We also make notes on the algorithms’ sample

complexity.

v

Table of Contents

Acknowledgments iv

Abstract v

List of Figures viii

Chapter 1. Introduction 1

1.1 Related Work . 1

1.2 Outline . 2

Chapter 2. Problem Formulation 4

Chapter 3. Background 6

3.1 Pure Exploration Review . 6

3.2 Supplementary Reading . 12

3.2.1 Sequential Probability Ratio Test 12

3.2.2 Generalized SPRT . 14

Chapter 4. Preliminaries 16

4.1 Notation . 16

4.2 Finding one p1 coin . 17

Chapter 5. Symmetric, Complete Information 21

5.1 Algorithm for Illustration . 22

5.2 Complete Algorithm . 31

Chapter 6. Asymmetric Information 34

Chapter 7. Symmetric, Incomplete Information 40

vi

Chapter 8. Conclusion 45

Bibliography 46

vii

List of Figures

4.1 Sample complexity of sequential-SPRT for k = 2: To calculate
S, we note that the process is memoryless every time it picks a
coin. If a p0 coin is picked, with probability α is it declared sig-
nificant and the process terminates, and with probability 1− α
the coin is declared a null and another coin is picked. Similarly,
when a p1 coin is picked, with probability β the coin is declared
a null and the process continues, and with probability 1−β the
coin is declared significant and the process terminates. p0, p1

coins are picked with probability π0, π1 respectively. 18

5.1 Sample complexity of sequential-SPRT for k = 3: As in the
k = 2 case, to calculate S, we note that the process is mem-
oryless every time it picks a coin. If a p0 coin is picked, with
probability θ2PF is it declared an alternate, bagged, and the
process terminates; with probability 1−PF the coin is declared
a null and another coin is picked, and with probability θ1PF , the
coin is thought to be a p1 coin, and without declaring it either
way we proceed to pick another coin. Similarly, for a p1 or a p2

coin picked, with some probability the coin is declared a null,
or thought to be a p1 coin, and the process continues; and with
some probability, the coin is declared as an alternate and the
process terminates. p0, p1, p2 coins are picked with probability
π0, π1, π2 respectively. 25

6.1 Null and Alternate intervals for Phase 1 and Phase 2 35

viii

Chapter 1

Introduction

We consider the problem of finding m coins (amongst infinitely many)

with biases greater than 0.5 under the constraint that the probability of any

coin being biased 0.5 or below is less than some pre-specified value α∗. In

particular, we consider a setting wherein a player is tasked with finding k coins

with biases greater than 0.5 and getting it approved from a non adversarial,

independent party whom we shall refer to as the authority. The authority

approves of the set of discovered coins if its Family Wise Error Rate (FWER)

is below some pre-specified level α∗. The central idea in this work is an adaptive

strategy that uses the Sequential Probability Ratio Test (SPRT) (as described

in [1]). We consider three settings wherein the information available to the

player and the authority is different, describe our algorithms for these settings

and compute the upper bound on the algorithms’ sample complexities.

1.1 Related Work

Statistics, Learning Theory and Machine Learning communities house

extensive literature on Hypothesis Testing [2, 3, 4], Anomaly Detection [5],

Family Wise Error Rate (FWER) (and closely related False Discovery Rate

1

(FDR))[6, 7, 8] and Multi-arm Bandits Problems [9, 10, 11, 12] . [1, 13] are the

seminal works of Wald and Chernoff (respectively) on sequential analysis upon

which several works are built (including ours). Pure exploration problems in

the multi-arm bandits literature are closely related to our work. Some of the

recent works in the well studied Top arm(s) and closely related problems -the

problem of finding the arm(s) with the largest (or close to the largest) mean

- include [14], [15], [16] and [17]. Thresholding bandits problems studied in

[18], [19] require algorithms to return all arms or a finite subset of arms that

are above a certain threshold. Most of these works consider a setting wherein

the number of arms is finite and sample complexity required to correctly (up

to a certain precision) identify the top arm(s) is quantified. Another work

that closely relates to the top arm problem is [20] which describes the optimal

adaptive strategy for the problem of finding the most biased coin in the fewest

flips. However, our setting involves infinite coins (arms), a prior on the biases

of the coins, an FWER constraint and a requirement to get the biased coin(s)

approved by the authority. The possible asymmetry of the underlying setting

is another distinction. Together, they make our setting unique.

1.2 Outline

Chapter 2 describes our problem setting formally. Chapter 3 reviews

the closely related pure exploration literature, and also provides supplementary

expository notes. In Chapter 4, we outline some key ideas used throughout this

text. Chapter 5 considers the setting where both the agent, and the authority

2

know all parameters of the underlying model. Chapter 6 discusses the setting

wherein the agent is endowed with complete information of the support and

the prior on it, while the authority has no such information. Chapter 7 deals

with the setting where both the agent and the authority know the support,

but neither of them are aware of the prior. Chapter 8 summarizes the text

and discusses the limitations therein.

3

Chapter 2

Problem Formulation

Consider an infinite set of coins. We consider the problem of returning

m ≥ 1 coins with bias > 0.5 such that their collective FWER is guaranteed

to be below α∗, while performing the fewest number of flips. The bias of the

coins, {pi}i∈[k] ([k] = {1...k}), are distributed identically, and independent

(i.i.d.) of other coins. The a priori probability that the Bernoulli parameter

of a coin is pi is denoted by πi. We shall assume that πi > επ, ∀i ∈ [k], where

επ is some known positive constant.

The number of tosses T performed in expectation by a strategy A is given by

E[T |A], where the expectation is jointly over the prior and any randomness in

the strategy A. A incurs a cost

R(A) = M1FWER(A)>α∗ + 1E[T |A]

where M is an arbitrarily large positive constant. Thus, the objective is to

find the minimizer of the following program:

arg min
A∈A

E[T |A]

subject to FWER(A) <= α∗

where A is the set of all randomized strategies. Since an arbitrarily large cost

is incurred if the FWER constraint is violated, we have the following definition:

4

Definition 2.0.1. An algorithm A is admissible if its FWER is below the

pre-specified requirement α∗.

Definition 2.0.2. An algorithm A is δ-weakly admissible if it contains FWER

below α∗ + δ.

Definition 2.0.3. A strategy A∗ is asymptotically optimal if

lim
α∗→0

R(A∗)

infA∈AR(A)
= 1.

In a similar spirit, we define the following:

Definition 2.0.4. An algorithm A whose expected FWER is below α∗ is

unbiased, i.e., for an unbiased algorithm A, E[FWER(A)] ≤ α∗. A is δ-weakly

unbiased if its expected FWER is below α∗ + δ, i.e., E[FWER(A)] ≤ α∗ + δ.

5

Chapter 3

Background

3.1 Pure Exploration Review

We shall review some related algorithms in the Pure Exploration of

Multi Arm Bandits literature. We do not intend this section to be exhaustive;

nor do we intend it to be rigorous. Our aim is to convey qualitatively the focus

of the pure exploration multi-arm bandit literature, and its distinction thereof

from our problem.

Consider the setting wherein a finite number of arms are present. Let A

represent this set of arms. Each arm a ∈ A returns 1 or 0 when pulled

with probability µa or 1 − µa respectively. Identifying the top arm, i.e., the

arm a∗ ← arg maxa∈A µa has been of extreme interest. To that end, we now

highlight two algorithms from [15] to illustrate the core ideas used to address

such questions, and the nature of guarantees provided therein. [15, Definition

1] is presented here for completeness.

Definition 3.1.1. An algorithm is a (ε, δ)-PAC algorithm for the multi armed

bandit with sample complexity T , if it outputs an ε-optimal arm, a
′
, with

probability at least 1 − δ, when it terminates, and the number of time steps

the algorithm performs until it terminates is bounded by T .

6

A simple algorithm samples each arm a finite number of times, and

outputs the arm with the highest empirical average. Algorithm 1 specifies the

number of pulls of each arm. Theorem 1 describes the PAC bound on the algo-

rithm. The theorem is an immediate consequence of Hoeffding’s concentration

inequality and union bound. Note that this algorithm is non-adaptive, in that

every arm is pulled the same number of times irrespective of the promise of

its posterior.

Algorithm 1 Naive

1: procedure Naive (ε > 0, δ > 0)
2: Foreach arm a ∈ A
3: Sample arm a 4

ε2
log
(

2n
δ

)
times

4: p̂a ← average reward of arm a
5: return arg maxa∈A{p̂a}

Theorem 1. The algorithm Naive (ε, δ) is an (ε, δ)-PAC algorithm with arm

sample complexity O
(
n
ε2

log
(
n
δ

))
Algorithm 2 improves over the simple Naive algorithm by sampling (in

successive rounds) the arms that are promising. In every round, a set of arms

are pulled a finite number of times. Arms that are promising, in particular,

whose empirical means are above the median, are propagated to the next

round. Thus, at every round about half of the current arms are eliminated.

Theorem 2 gives the PAC guarantee for the algorithm. Note that Algorithm

2 brings down the sample complexity to O
(
n
ε2

log
(

1
δ

))
from O

(
n
ε2

log
(
n
δ

))
.

7

Algorithm 2 Median Elimination

1: procedure Median Elimination (ε > 0, δ > 0)
2: S1 = A, ε1 = ε

4
, δ1 = δ

2
, l = 1

3: while |Sl| > 1 do

4: Sample a ∈ Sl l = 4
ε2l

log
(

3
δl

)
time

5: p̂la ← average reward of arm a ∈ Sl
6: ml ← median of the empirical rewards {p̂la}a∈Sl
7: Sl+1 = Sl \{a : p̂a < ml}
8: εl+1 ← 3

4
εl, δl+1 ← 1

2
δl, l← l + 1

9: return arg maxa∈A{p̂a}

Theorem 2. The algorithm Median Elimination (ε, δ) is an (ε, δ)-PAC algo-

rithm with arm sample complexity O
(
n
ε2

log
(

1
δ

))
.

A natural extension of this problem is the top m arms problem. As

the name suggests, under the setting of the top arm problem, we ask for an

algorithm that returns the m arms that have the largest empirical means, i.e.,

we ask the algorithm to return the set S wherein {S ⊂ A : |S| = m, and ∀i ∈

S,∀j ∈ (A\S) : µi ≥ µj}. In [16], three algorithms are designed that parallel

the ones designed in [15]. We now briefly discuss these algorithms. Algorithm

3 parallels Algorithm 1, in that every arm is pulled a fixed number of times and

the set of arms that have the highest empirical means are returned. Theorem

3 gives the PAC bound for the algorithm. Henceforth, we let Tn represent the

set of all arms.

8

Algorithm 3 Direct

1: procedure Direct (m,n, ε, δ)
2: Foreach arm a ∈ Tn
3: Sample a l = 2

ε2
log
(
n
δ

)
times.

4: p̂a ← average reward of arm a
5: return {S ⊂ Tn : |S| = k, and ∀i ∈ S,∀j ∈ (Tn\S) : p̂i ≥ p̂j}

Theorem 3. Direct(m,n, ε, δ) is (ε,m, δ)-optimal with sample complexity O
(
n
ε2

log
(
n
δ

))
.

Algorithm 4 improves over Algorithm 3 by calling the Median Elimina-

tion algorithm to find m arms successively. Theorem 4 gives its corresponding

PAC guarantee.

Algorithm 4 Incremental

1: procedure Incremental (m,n, ε, δ)
2: S1 ← {}, R1 ← Tn, l← 1
3: while l ≤ m do
4: a

′ ← Median Elimination(Rl, ε,
δ
m

)

5: Sl+1 ← Sl ∪ a
′
, Rl+1 ← Rl − a

′
, l← l + 1

6: return Sm+1

Theorem 4. Incremental(m,n, ε, δ) is (ε,m, δ)-optimal with sample complex-

ity O
(
mn
ε2

log
(
m
δ

))
.

Note that Algorithm 4’s logrithmic dependence is over the number of

arms to be returned and not the total number of arms. When m = o(n),

this is a significant improvement over Algorithm 3. However, the information

about the pulls in the Median Elimination subroutine is only used to determine

the best arm in that stage. This information could be used to eliminate less

9

promising arms, thereby reducing sample complexity. Algorithm 5 formalizes

this intuition, and Theorem 5 provides its PAC gaurantee.

Algorithm 5 Halving

1: procedure Halving (ε > 0, δ > 0)
2: R1 = Tn, ε1 = ε

4
, δ1 = δ

2
, l = 1

3: while l ≤ log
(
n
m

)
do

4: Sample a ∈ Rl
2
ε2l

log
(

3m
δl

)
times

5: p̂la ← average reward of arm a ∈ Rl

6: ml ← median of the empirical rewards {p̂la}a∈Sl
7: Find R

′

l such that |R′l| = max
([
|Rl|

2

]
,m
)

, and ∀i ∈ Rl,∀j ∈
(Rl\R

′

l) : p̂i ≥ p̂j
8: Rl+1 = R

′

l \{a : p̂a < ml}
9: εl+1 ← 3

4
εl, δl+1 ← 1

2
δl, l← l + 1

10: return
[
Rlog(nm)+1

]

Theorem 5. Incremental(m,n, ε, δ) is (ε,m, δ)-optimal with sample complex-

ity O
(
mn
ε2

log
(

1
δ

))
.

Another interesting pure exploration problem is that of the Thresh-

olding Bandits. Given a set of n arms, the task is to design an algorithm

that returns all (or a set of) arms whose means are above a certain thresh-

old τ . Amongst other papers, this problem is also studied in [19]. [19] also

provides valuable discussion about the gaps between the best known lower

and upper bounds in the fixed confidence and the fixed budget settings. Any-

time Parameter-free Thresholding Algorithm 6 is a tight fixed budget algo-

rithm that provides a guarantee on the probability of incorrectly returning

a suboptimal arm. The algorithm leverages upon the lower bound. The

10

authors show that the bottle neck of the problem is
√
Tk(t)∆̂k(t), wherein

∆̂i(s) := ∆̂i(s)
τ,ε(s) = |µ̂i(s) − τ | + ε, with µ̂i(t) = 1

Ti(t)

∑Ti(t)
s=1 Xi,s, and

Ti(t) =
∑t

s=1 IIs=i. Hence, by forcing
√
Tk(t)∆̂k(t) to be equal across all

arms, the algorithm claims its optimality.

Algorithm 6 Anytime Parameter-free Thresholding

1: procedure Naive (τ, ε)
2: Pull each arm once. t← K
3: while t < T do
4: Pull arm It = arg mink≤K

√
Tk(t)∆̂k(t)

5: return Ŝτ = {k : µ̂k(T) ≥ τ}

Perhaps the setting that comes closest to ours is the one considered in

[20]. The authors discuss a Bayesian setting with infinite coins wherein each

coin is either heavy (in particular, the bias of the coin is p+ε) with probability

α, and not heavy (the bias of the coin is p − ε) with probability 1 − α. The

task is to design an algorithm that finds a heavy coin in the fewest number of

flips. The Algorithm 7 presented therein considers a setting with n coins, and

a single absorbing layer. The authors prove optimality of the algorithm using

tools from Markov games.

Algorithm 7 Likelihood-Toss

1: procedure Likelihood-Toss (α, δ, n)
2: Li ← 1∀i ∈ [n]

3: while Li <
(1−α)(1−δ)

αδ
∀i ∈ [n] do

4: Toss coin i∗ = arg max{Li : i ∈ [n]}. Break ties arbitrarily.
5: bi∗ ← 1Heads

6: Li∗ ← Li∗
(
p+ε
p−ε

)bi∗ (1−p−ε
1−p+ε

)1−bi∗

7: return coin with maximum Li

11

3.2 Supplementary Reading

We provide some expository material that might aid readability of this

text.

3.2.1 Sequential Probability Ratio Test

Consider the problem of distinguishing between two hypotheses H0 =

p0 (null) and H1 = p1 (alternate). The SPRT designed by [1] provides an

elegant solution for the optimal number of samples required to distinguish

between the hypotheses. For a given acceptance threshold (α, β) for (PF ,PM)

respectively, SPRT designs corresponding rejection and acceptance thresholds

(b, a) = (log(1
α

), log(β)) for the null hypotheses. The test essentially analyses

the behavior of the log-likelihood random walk SN . If SN ≥ b, then the null

hypothesis is rejected, and if SN ≤ a, then the null is accepted. Thus,

N = inf
n
{n : Sn ≤ a or Sn ≥ b},

where b > 0 > a, denotes the stopping time of the random walk. Expected

number of samples required to accept or reject the null hypotheses is an im-

mediate consequence of Wald’s lemma. To that end, we now state the lemma

(without proof).

Lemma 1. Let ζii∈N be a sequence of independently and identically distributed

random variables such that E[|ζ0|] = µ, µ <∞, and τ be a stopping time such

12

that E[τ] <∞. Then,

E

[
τ∑
i=0

ζi

]
= E[τ]µ.

The stopping time N for the log-likelihood random walk is finite with

probability 1. In particular, the probability that N exceeds any finite positive

integer k under the null (alternate) hypotheses, i.e., P0[N > k](P1[N > k]), is

bounded above by ρk√
ea

(
ρk√
e−b

)
, (where ρ < 1 is the Bhattacharyya coefficient

for the distribution pair (p0, p1)) which decays to 0 exponentially fast as k →

∞.

We now quantify the expected stopping time under the null hypothesis, E0[N].

E0[SN]
(a)
= E0[N]E0

[
log

(
p1(Yi)

p0(Yi)

)]
, (3.1)

E0[N] =
E0[SN]

E0

[
log
(
p1(Yi)
p0(Yi)

)] , (3.2)

E0[N]
(b)
=

(1− α)a+ αb

−D(p0||p1)
. (3.3)

(a) follows from Wald’s lemma. (b) combines (i) E[SN] = P0[SN ≥ b]E0[SN |SN ≥

b] + P0[SN ≤ a]E0[SN |SN ≤ a] = αb + (1 − α)a, and (ii) E0

[
log
(
p1(Yi)
p0(Yi)

)]
=

−D(p0||p1), where −D(p0||p1) is the KL divergence between the distributions

p0, p1.

Similarly,

E1[N] =
(1− β)a+ βb

D(p1||p0)
. (3.4)

13

3.2.2 Generalized SPRT

We briefly describe the Generalized SPRT algorithm, and present its

salient results here. Let {ζi}i∈N be a set of random variables following a density

f with respect to a dominant measure µ. Generalized SPRT is an algorithm

that distinguishes between two families of hypothesis,

H0 : f ∈ {gθ : θ ∈ Θ},

H1 : f ∈ {hγ : γ ∈ Γ},

where gθ, hγ are density functions with respect to the dominant measure µ. To

avoid singularity issues, the densities are to be mutually absolutely continuous

for all θ, γ. For {ζi}i∈[n], the generalized likelihood statistic is given by

Ln =
maxγ∈Γ

∏n
k′=1 fγ(ζk′)

maxθ∈Θ

∏n
k′=1 fθ(ζk′)

.

For two positive numbers exp(−a), exp(b) such that exp(−a) < exp(b), stop-

ping time τ is given by

τ = inf
n∈N
{Ln ≥ exp(b) or Ln ≤ exp(a)}.

The Generalized SPRT sequentially uses samples until the Ln process stops.

(The Ln process stops when Lτ ∈ [exp(b),∞) ∪ (0, exp(−a)].)

Under the technical conditions A1, A2, and A3, Theorem 2.2 in [21] states

sup
θ∈Θ

logPθ(Lτ > exp(b)) ∼ −b, sup
γ∈Γ

logPγ(Lτ < exp(−a)) ∼ −a, as a, b→∞.

14

Further, Theorem 2.3 in [21] states that under the setting of Theorem 2.2, the

expected stopping time admits the approximation

Eθ[τ] ∼ a

infγ ∈ Γ
Dθ(θ||γ), Eγ[τ] ∼ b

infθ ∈ Θ
Dγ(γ||θ), as a, b→∞,

where Dν(g||h) is the KL divergence between the densities g, h under the mea-

sure ν.

15

Chapter 4

Preliminaries

4.1 Notation

In the setting where k = 2, i.e., when only two types of coins are present

in the urn, let us assume that the two possible biases of the coins (p0, p1), and

the prior (π0, π1) over them are known. In particular, we assume p0 = 0.5, and

p1 > 0.5. Following terminology from the statistical detection theory litera-

ture, we call the p0 coin null, and the p1 coin alternate. X
Tj
1 denotes the set of

random variables {X1, X2, . . . , XTj}, wherein each Xi takes a value in {0, 1}

according to the outcome of the ith toss. For an algorithm A, A(X
Tj
1) denotes

that A uses X
Tj
1 to decide upon a pj coin. As evident, Tj is the stopping

time for A under pj. Hj denotes the hypothesis that a coin’s bias is pj. We

denote by PF = P0(A(XT0
1) = H1) the probability of false positive (probability

of declaring a null coin as an alternate), and by PM = P1(A(XT1
1) = H0) the

probability of missed detection (probability of declaring an alternate as a null).

The partial sum of the log-likelihood random walk up to time N is given by

SN , i.e., SN =
∑N

i=1 log
(
p1(Xi)
p0(Xi)

)
.

16

4.2 Finding one p1 coin

In order to find one p1 coin, we run SPRT test sequentially until we

declare a coin as an alternate. The expected sample size for this procedure is

illustrated in Figure 4.1, and is calculated below.

S = π0[(1− α)(E0[N |SN ≤ a] + S) + αE0[N |SN ≥ b]] +

π1[β(E1[N |SN ≤ a] + S) + (1− β)E1[N |SN ≥ b]]

=
π0E0[N] + π1E1[N]

1− π0(1− α)− π1β

where E0[N],E1[N] are as in (3.3), (3.4) respectively. Hence:

S =
π0

(1−α)a+αb
−D(p0||p1)

+ π1
(1−β)b+βa
D(p1||p0)

1− π0(1− α)− π1β

The Bayesian setting implies that every coin must be tested with the

same (α, β). Every coin being examined is essentially put through a hypothesis

test that is a function of its flips alone since the distribution of the biases are

independent. In addition, since the biases are distributed identically, different

(α, β) pairs offer no advantage; in other words, assignment of different (α, β)

pairs to coins would be of help only if the biases were not iid.

Let us suppose that the M th coin is the first to be declared biased and all

17

S

0

E0[N|SN ≤ a]

. .

1− α
E0[N|SN ≥ b]

α

π0

1

E1[N|SN ≥ b]

1− β
E1[N|SN ≤ a]

. .

β

π1

Figure 4.1: Sample complexity of sequential-SPRT for k = 2: To calculate
S, we note that the process is memoryless every time it picks a coin. If a
p0 coin is picked, with probability α is it declared significant and the process
terminates, and with probability 1−α the coin is declared a null and another
coin is picked. Similarly, when a p1 coin is picked, with probability β the coin
is declared a null and the process continues, and with probability 1 − β the
coin is declared significant and the process terminates. p0, p1 coins are picked
with probability π0, π1 respectively.

preceding M − 1 coins were declared unbiased.

P(coin M was unbiased|coin M was declared biased)

(a)
=

P(coin M was unbiased, declared biased)

P(coin M was declared biased)

(b)
=

P(coin M was unbiased)P(coin M was declared biased|M was unbiased)

P(coin M was declared biased)
(c)

≤ π0ρ
M−1α

ρM−1(1− ρ)

= α
π0

π0α + (1− β)π1

(d)
= α∗

(a), (b) are Bayes’ rule, in (c), ρ is the probability of a coin not being de-

clared biased ρ = E[1not declared bias] = E[E[1not declared bias]|bias of the coin] =

(1 − α)π0 + βπ1 , and (d) shall follow from the definitions of α and β. The

18

minimizers of the following program achieve the minimum sample complexity.

The objective of the program is the expected number of tosses required to

prove a coin, and (4.2) is the FWER constraint.

minimize
α,β∈[0,0.5)

π0
(1−α)a+αb
−D(p0||p1)

+ π1
(1−β)b+βa
D(p1||p0)

1− π0(1− α)− π1β
(4.1)

subject to α
π0

π0α + (1− β)π1

≤ α∗ (4.2)

b = log(
1

α
), a = log(β) (4.3)

The unconstrained objective is minimized at the right boundary. Thus (4.2)

is an active constraint that governs selection of the parameters α, β. Small

values of α∗ forces α to be small. Thus constraint (4.2) is approximately

α π0

(1−β)π1
≤ α∗, which implies α = α∗ (1−β)π1

π0
is a consistent assignment. In

particular, the optimal α is within a constant factor of α∗ π1

π0
. Solving (4.1)

with this assignment would give an optimal solution. If, in addition to α, β

were also small, then the LHS of constraint (4.2) ∼ απ0

π1
. Thus, α = α∗ π1

π0
and

β = α∗ is a consistent assignment. Since the E0[N] and E1[N] are optimal, so

is the objective π0E0[N]+π1E1[N]
1−π0(1−PF)−π1PM

.

Further, we wish to draw attention to the fact that although the prob-

lem explicitly constraints probability of false positives only, by demanding a

p1 coin, the probability of miss is also implicitly constrained. In other words,

β is not a free variable. Small values of α pushes the algorithm towards not

declaring coins alternates. However, the objective of the algorithm is to find

a significant coin with the least number of flips, and this asks for some signif-

icant power, thereby constraining β. This is the reason why β is constrained

19

to take values in [0, 0.5), and not [0, 1].

20

Chapter 5

Symmetric, Complete Information

Let us look at the scenario wherein both the agent and the authority are

endowed with complete knowledge of the support and the prior over it. In this

section we design the “(m)-successive” SPRT algorithm to find m alternates

that collectively meet the FWER constraint.

Let H0 denote the null hypothesis class and H1, the alternate.

H0 : p ∈ (0, 0.5]

H1 : p ∈ (0.5, 1)

where p is the bias of the coin. Before we present the general algorithm,

we illustrate it with k = 3 and p2 > p1 > p0 = 0.5, and their respective

priors π2, π1 and π0. Thus, p0 coin is our null and p1, p2 are the alternates.

For m = 1, the task is to design an algorithm that, in expectation, requires

minimum number of samples to declare a coin significant, and contains PF at

level α∗. It is easy to see that if we happen to pick a p2 coin, the least sample

complexity in expectation corresponds to that given by SPRT for the p2 coin.

However, if we pick a p1 coin, it is optimal to commit to proving the coin only

if, in expectation, the tosses required to prove this coin is less than the tosses

required to find and prove a p2 coin. This idea lies at the core of the following

21

algorithm, and it also emphasizes why the problem does not fit readily in the

setting of binary hypothesis testing.

5.1 Algorithm for Illustration

Let Lijn =
∏n

k
′
=1

pi(Yk′)∏n

k
′
=1

pj(Yk′)
and Sijn = log[

∏n

k
′
=1

pi(Yk′)∏n

k
′
=1

pj(Yk′)
] denote the likelihood

ratio and the log-likelihood ratio of the observations (with respect to hypothe-

ses that the coins are pi, pj) respectively. Algorithm 8 illustrates the optimal

procedure to find a biased coin.

Algorithm 8

1: procedure Search(p2, p1, π2, π1, α
∗, x ≤ 0, k,m = 1)

2: a← log(β∗) b← log(2Cπ0k

α∗π
′
0

) . β∗, C are solutions of generalized

program (4.1)
3: while j < m do
4: Pick a coin and keep flipping until S10

i < a or S20
i > b or S10

i >
b or

{S12
i < x and

b−S10
i

D(p1||p0)
> b

D(p2||p0)
+ π1

π2

S21
i

(−D(p1||p2))
}} . i is the

stopping time
5: if S20

i < a and S10
i < a then

6: Pick another coin continue
7: if S20

i > b or S10
i > b then

8: j ← j + 1 continue . Alternate

9: if S21
i < x and

10:
b−S10

i

D(p1||p0)
> b

D(p2||p0)
+ π1

π2

S21
i

(−D(p1||p2))
+ π0

π2

a
−D(p1||p0)

then
11: Pick another coin
12: return Alternates

Note that in line 10 of Algorithm 8, S21
i < 0. The question of whether

or not to pick another coin and start tossing that instead arises only if the

coin at hand seems to be a p1 coin. If we decide to pick another coin when

22

S21
i crosses some level y from above, then, because of the Bayesian setup of

the problem, we must reject every subsequent (seemingly) p1 coin at the same

level y. Thus, S, the number of tosses required to search for and prove a p2

coin when the partial sums of the walks update exactly by their drift µ, is

given by:

S =
b

D(p2||p1)
+
π1

π2

x

−D(p1||p2)
+
π0

π2

a

−D(p1||p0)
(5.1)

The LHS of line 10 in Algorithm 8 is the projected tosses required in expecta-

tion to prove the (seemingly) p1 coin in hand and the RHS is S for the present

level S21.

We remark that, devoid of other absorbing levels, all good particles are ab-

sorbed at barrier b > 0 under a positive drift µ > 0 with probability 1. The

claim is an immediate consequence of Martingale Convergence Theorem which

is stated below.

Theorem 6. Let {ζi}i∈N be a martingale such that supi∈N E[|ζi|] <∞. Then,

there exists a random variable ζ such that ζi → ζ almost surely.

We now proceed to prove the claim that all good particles are absorbed

at b almost surely under a positive drift. Let Yi represent log
(
p1(Yi)
p0(Yi)

)
. Thus,

E1[Yi] = D(p1||p0).

We note that supi∈N E[|Yi|] = E[|Yi|] <∞. Let Zi = Yi−D(p1||p0). Martingale

23

convergence theorem states that
∑n−1

i=0 Zi converges. Also,

E

[
1

n

n−1∑
i=0

Zi

]
=

1

n
[nE[Yi]− nD(p1||p1)] = 0.

Strong law of large numbers states that
∑n−1

i=0 Yi − nD(p1||p0) → 0 almost

surely. Therefore
∑n−1

i=0 Yi crosses any positive level from below almost surely.

This proves our claim.

If one were to pick a p2 coin and toss until declaration (i.e., assume that only

one absorbing barrier is present at b, and wait till the particle gets absorbed),

the expected number of tosses is b
D(p2||p0)

. Introducing other absorbing barriers

decreases this quantity as it terminates the walks of all particles that cross a

from above around a1. This is true for the other two terms as well. Hence,

Equation (5.1) is an upper bound on the number of tosses required to search

and prove a coin.

When a p0 coin is tossed a finite number of times, there exists a positive

probability for the maximum likelihood estimator’s outcome to be p1 or p2

(and likewise for other coins as well). Accounting for all possibilities2, we

arrive at the following expression for the sample complexity S, which is also

illustrated in the Figure 5.1.

1More precisely, the random walks are terminated at a+ o(1).
2Rejecting a coin at a certain level x induces a probability of miss and ν and η capture

them.

24

S

0

E0[N|S10
N ≤ a]

. . .

1− PF

E0[N|S21
N ≤ x]

. . .

θ1PF

E0[N|S20
N ≥ b]

θ2PF

π0

1

E1[N|S21
N ≤ x]

. . .

η1(1− PM)

E1[N|S20
N ≥ b]

η2(1− PM)

E1[N|S10
N ≤ a]

. . .

PM

π1

2

E2[N|S20
N ≥ b]

ν2(1− PM)

E2[N|S10
N ≤ a]

. . .

PM

E2[N|S21
N ≤ x]

. . .

ν1(1− PM)

π2

Figure 5.1: Sample complexity of sequential-SPRT for k = 3: As in the k = 2
case, to calculate S, we note that the process is memoryless every time it picks
a coin. If a p0 coin is picked, with probability θ2PF is it declared an alternate,
bagged, and the process terminates; with probability 1−PF the coin is declared
a null and another coin is picked, and with probability θ1PF , the coin is thought
to be a p1 coin, and without declaring it either way we proceed to pick another
coin. Similarly, for a p1 or a p2 coin picked, with some probability the coin
is declared a null, or thought to be a p1 coin, and the process continues; and
with some probability, the coin is declared as an alternate and the process
terminates. p0, p1, p2 coins are picked with probability π0, π1, π2 respectively.

25

S = π0[(1− PF)(E0[N |S10
N ≤ a] + S) + PF θ1(E0[N |S21

N ≤ x] + S) + PF θ2E0[N |S20
N ≥ b]]

+ π1[PM(E1[N |S10
N ≤ a] + S) + (1− PM)η1(E1[N |S21

N ≤ x] + S) + (1− PM)η2E1[N |S20
N ≥ b]]

+ π2[PM(E2[N |S10
N ≤ a] + S) + (1− PM)ν1(E2[N |S21

N ≤ x] + S) + (1− PM)ν2E2[N |S20
N ≥ b]]

S =
π0E0[N] + π1E1[N] + π2E2[N]

Dr
(5.2)

Dr = 1− π0(1− PF + θ1PF)− π1(PM + η1(1− PM))− π2(PM + (1− PM)ν1)
(5.3)

where

E0[N] = (1− PF)
a

−D(p0||p1)
+ θ1PF

E0[S10
N |S21

N ≤ x]

−D(p0||p1)
+ θ2PF

E0[S10
N |S20

N ≥ b]

−D(p0||p1)
(5.4)

E1[N] = η1(1− PM)
x

−D(p1||p2)
+ η2(1− PM)

E1[S21
N |S20

N ≥ b]

−D(p1||p2)
+ PM

E1[S21
N |S10

N ≤ a]

−D(p1||p2)
(5.5)

E2[N] = ν2(1− PF)
b

D(p2||p0)
+ PM

E2[S20
N |S10

N ≤ a]

D(p2||p0)
+ ν1(1− PM)

E2[S20
N |S21

N ≤ x]

D(p2||p0)
(5.6)

Lemma 2. Let S∗ denote the optimal sample complexity, and S(5.1) denote

the sample complexity of Algorithm 8 as given by (5.1). The excess number of

expected of tosses performed by algorithm 8, |S∗ − S(5.1)|, is upper bound by a

function that decreases with decreasing values of parameters β∗, log(1/|x|) used

in SPRT.

Proof. We begin by noting that (5.1) is only an upper bound on the projected

number of tosses. Our aim is to show that this upper bound is not too far

26

away for small values of the parameters. From (5.4) we know

a

−D(p0||p1)
− E0[N]

=
a

−D(p0||p1)
−
(

(1− PF)
a

−D(p0||p1)
+ θ1PF

E0[S10
N |S21

N ≤ x]

−D(p0||p1)
+ θ2PF

E0[S10
N |S20

N ≥ b]

−D(p0||p1)

)
= θ1PF

a− E0[S10
N |S21

N ≤ x]

−D(p0||p1)
+ θ2PF

a− E0[S10
N |S20

N ≥ b]

−D(p0||p1)
(a)

≤ PF
a− b

(−D(p0||p1))

≤ 2PF
max{|a|, b}
D(p0||p1)

. (5.7)

where (a) follows from two observations - a ≤ S10
n ≤ b, and θ1 + θ2 = 1.

Similarly, from (5.5), we infer

x

−D(p1||p2)
− E1[N] ≤ (η2 + PMη1)

x

−D(p1||p2)
. (5.8)

Also, assuming that ∃λ > 0 for all trajectories such that if S10
N ≈ a then S20

N

is at most λa, then

b

D(p2||p0)
− E0[N] ≤ (ν1 + ν2PM)

b− λa
D(p2||p0)

. (5.9)

Together, (5.7), (5.8), and (5.8) show that for small values of the parameters,

the projected number of tosses is also small.

We make some further remarks about the sample complexity for m = 1.

We now quantify the upper bound on number of tosses required to declare a

coin. In expectation, every p1 coin is rejected the first time it is tossed or

tossed until proven.3 In that, we draw attention to the fact that for any fixed

3Analysis is done for x = 0. When x > 0 we obtain an additive factor of π1

π2

x
−D(p2||p1)

instead of π1

π2
.

27

p0, p2, π there exists p∗1 such that ∀p1 < p∗1, it is optimal to search and prove a

p2 coin, and ∀p1 ≥ p∗1, it is optimal to flip the coin till it crosses b from below.

In the first case, i.e., when flipping the p1 coin is sub-optimal, E[S21
1] < 0.

Thus the coin, in expectation, is rejected after the first toss. Otherwise, in

expectation, it is tossed until S10
N crosses b from below. The sample complexity

is computed separately for the two cases:

• Case 1: Every p1 coin is rejected after the first toss.

Let S
′

be the tosses required to prove one coin.

S
′
= π0

[
a

−D(p0||p1)
+ S

′
]

+ π1

[
−D(p2||p1)

−D(p2||p1)
+ S

′
]

+ π2
b

D(p2||p0)

S
′
=
π0

π2

a

−D(p0||p1)
+
π1

π2

+
b

D(p2||p0)

• Case 2: Every p1 coin is proved.

S
′
= π0

[
a

−D(p0||p1)
+ S

′
]

+ π1

[
b

D(p1||p0)

]
+ π2

b

D(p2||p0)

S
′
=

π0

1− π0

a

−D(p0||p1)
+

π1

1− π0

b

D(p1||p0)
+

π2

1− π0

b

D(p2||p0)

Lemma 3. When m > 1, Algorithm 8 performs at most C1m log(m) tosses

more than the optimal,

where C1 ∈
{

1
D(p2||p0)

, 1
1−π0

[
π1

D(p1||p0)
+ π2

D(p2||p0)

]}
.

28

Proof. Let us first look at the natural lower bound for the problem:

FWER = P(at least one of the coins returned is biased)

≥ P(coin i is biased|i was returned) (∀i ∈ [k])

= max
i

P(coin i is biased|i was returned)

PF of every coin can at best be α∗ as any other α∗ would violate the FWER

constraint. Since the biases are i.i.d., and the setting is Bayesian, the proce-

dure that performs the least number of flips to declare m coins significant is

SPRT performed m times successively. We shall call this the (m) successive-

SPRT. Consider the case where the p1 coin is rejected after its first toss. The

asymptotic expected number of tosses to declare m coins, E(Nα
m) is:

E(Nα
m) ≥

[
π0

π2

log(β)

−D(p0||p1)
+
π1

π2

+
log(2

α
)

D(p2||p0)

]
m

The asymptotic upper bound on the expected number of tosses for declaring

m coins, E(N
α/m
m), using the above algorithm:

E(Nα/m
m) ≤

[
π0

π2

log(β)

−D(p0||p1)
+
π1

π2

+
log(2m

α
)

D(p2||p0)

]
m

Lemma 4. Algorithm 8 is admissible, i.e., FWER(A) ≤ α∗.

Proof. Let Algorithm 8’s probability of declaring a null coin as biased be

29

denoted by PAF . Let exp(b) = B

P0{Li0N ≥ B} =
∞∑
n=1

P0({N = n} ∩ {Li0N ≥ B})

=
∞∑
n=1

∫
{N=n}∩{Li0N≥B}

n∏
k=1

p0(yk) dµ(y1)...dµ(yn)

=
∞∑
n=1

∫
{N=n}∩{Li0N≥B}

∏n
k=1 pi(yk)

Li0N
dµ(y1)...dµ(yn)

≤ 1

B

∞∑
n=1

∫
{N=n}∩{Li0N≥B}

n∏
k=1

pi(yk) dµ(y1)...dµ(yn)

≤ 1

B

=
α

2

And by union bound, we have:

PAF ≤ P0{L10
N ≥ B}+ P0{L20

N ≥ B} ≤ α

Let us suppose coins indexed {Mi}i∈[k] were declared biased and all others

(with indices < Mk, 6∈ {Mi}i∈[k−1]) were declared unbiased.

P(∃ an unbiased coin in {Mi}i∈[m]|{Mi}i∈[m]were declared biased)

(a)

≤
m∑
i=1

P(Mi was unbiased coin|{Mi}i∈[m]were declared biased)

(b)
=

m∑
i=1

π0ρ
Mm−m(1− ρ)m−1α

ρMm−m(1− ρ)m
(c)
= α∗

(a) is by union bound; in (b), the variables represent the same quantities as

mentioned earlier and (c) follows from definitions.

Having conveyed the core ideas, we now extend the algorithm to a more general

setting. We assume a prior density fprior over the biases of the coins defined

30

over (0, 0.5]∪ [0.5 + ε, 1). We utilize Generalized Sequential Probability Ratio

Test (Generalized SPRT) as described in [21], and show that its optimality

translates to our setting as well. We now tailor Generalized SPRT to our

problem; henceforth, we let Ln denote the generalized likelihood ratio

Ln =
maxγ∈Γ

∏n
k′=1 pγ(yk′)

maxδ∈∆

∏n
k′=1 pδ(y

′
k)

wherein Γ corresponds to the “alternate interval” [0.5+ε, 1] and ∆ corresponds

to the “null interval” [0, 0.5].

5.2 Complete Algorithm

A recursion tree, similar to the one illustrated previously, provides us

an expression for sample complexity that accounts for low probability events.

However, asymptotically, as given by line 16 in Algorithm 9 suffices.

Lemma 5. For small values of α∗, Algorithm 9 is admissible, i.e.,

P[∃ an unbiased coin in {Mi}i∈[k]|{Mi}i∈[k] were declared biased] ≤ α∗, as α∗ → 0.

Proof. Let exp(b) = B. An upper bound for the probability of false positive

under coin with bias δ∗, Pδ∗{LN ≥ B} is obtained through steps similar to the

5ζ can be thought of as a risk-aversion factor. In the case of discrete support, ζ is the
gap between two corresponding alphabets.

513: When the support is discrete, the distribution is not altered as ζ contains no mass.

31

Algorithm 9

1: procedure Search(fprior, α
∗, ζ,m = 1)4

2: b← log(Cπ0m
π′0α
∗), a← log(β∗) . π0 =

∫
∆
fpriordµ(δ)

3: while j < m do
4: Pick a coin and keep flipping until

Si < a or Si > b or {Si >
0 and easier to declare a coin with larger bias}

5: if Si < a then
6: Declare null continue
7: if Si > b then
8: k ← k + 1 continue . Alternate

9: if Si > 0 then
10: θ̂ ← maxγ∈Γ

∏i
k=1 pγ(yk)

11: Θ← [0.5 + ε, θ̂]
12: Γ← [θ̂ + ζ, 1]
13: Redistribute ζ mass on the Θ interval uniformly 5

14: Lθ̂+ζ,θ̂i ← maxγ∈Γ
∏i
k=1 pγ(yk)

maxθ∈Θ
∏i
k=1 pθ(yk)

15: S θ̂+ζ,θ̂i ← log(Lθ̂+ζ,θ̂i)

16: if b−Si
D(θ̂||0.5− ε

2
)

> Eγ[b
D(γ||0.5− ε

2
)
] + π1

π2
Eθ[

Sθ̂+ζ,θ̂i

−D(θ||θ̂+ζ)] +
π0

π2
Eδ[a

−D(δ||0.5+ ε
2

)
] then

17: continue
. π1 =

∫
Θ
fpriordµ(θ); π2 =

∫
Γ
fpriordµ(γ)

18: return Alternates

32

ones outlined in the proof of Lemma 4.

Pδ∗{LN ≥ B} =
∞∑
n=1

Pδ∗({N = n} ∩ {LN ≥ B})

=
∞∑
n=1

∫
{N=n}∩{LN≥B}

n∏
k=1

pδ∗(yk) dµ(y1)...dµ(yn)

≤
∞∑
n=1

∫
{N=n}∩{LN≥B}

∏n
k=1 pγ∗mle(yk)

[

∏n
k=1 pγ∗mle

(yk)∏n
k=1 pδ∗mle

(yk)
]

dµ(y1)...dµ(yn)

≤ 1

B

∫
∆

fpriorPδ∗{LN ≥ B}dµ(δ) ≤ 1

B

∫
∆

fpriordµ(δ)

=
π0

B

≤ α

P(∃ an unbiased coin in {Mi}i∈[m]|{Mi}i∈[m]were declared biased)

(a)

≤
m∑
i=1

P(Mi was unbiased coin|{Mi}i∈[m]were declared biased)

(b)
=

m∑
i=1

π0ρ
Mm−m(1− ρ)m−1α

ρMm−m(1− ρ)m

=
mπ0α

1− ρ
(c)
= α∗

Since E[1LN≥B|∆] =
∫

∆

fprior
π0

Pδ∗{LN ≥ B}dµ(δ), the claim follows.

33

Chapter 6

Asymmetric Information

The first player is now endowed with complete information, and the

authority has no a priori knowledge about the prior. Since we can employ

Algorithm 8 and benefit from its properties if only the authority were convinced

of the mass on the null, our approach is to find an optimal strategy with which

we could convince the authority of our null-alternate prior (π0, π
c
0) ahead of

the coin testing/proving phase. Let’s suppose that the authority would accept

the null-alternate prior (π0, π
c
0) if the first player could verify it at least up

to an l1 distance of δ. Furthermore, let’s suppose that the authority would

accept the hypothesis that there is no mass on an interval (θ̃, γ̃) if it were

to be shown that at least 1 − ϑ mass is on (θ̃, γ̃)c. In order to verify the

null-alternate prior, we could design a binary hypothesis testing problem with

the null interval [0, θ̄] and the alternate interval [γ, 1], where θ̄, γ are the end

points of the null and the alternate intervals that the second player is aware

of. Let PM = PF = c1. The average number of tosses required to classify

a coin is
∑

θ∈Θ πθ
− log(c1)

|Eθ log
p
θ̃
pθ
|

+
∑

γ∈Γ πγ
− log(c1)

|Eγ log
pγ̃
pγ
|
. Perhaps, we could do better

by assuming a shorter null interval [0, p] and a shorter alternate [q, 1] interval,

while ensuring that all coins in (p, θ̄) get classified as null coins, and all coins in

(γ, q) get classified as alternates. If the gap between the null and the alternate

34

Figure 6.1: Null and Alternate intervals for Phase 1 and Phase 2

intervals were to be much larger than the known (γ̄, δ), it could be beneficial

to verify (a portion) the gap before proceeding to find the optimal p, q.

We design a three-phase algorithm that accounts for the tradeoffs between

proving the largest gap and designing the fastest test in expectation. Phase

1 verifies that there is no mass on (θ̃, γ̃) interval. Phase 2 verifies the null-

alternate prior (π0, π
c
0). Phase 1 and Phase 2 invoke Algorithm 10 to verify

their respective hypothesis. Their null and alternate intervals is illustrated in

figure 6.1. Phase 3 calls Algorithm 9 in order to find and return the biased

coins. The parameters required for the algorithms are the optimizers of the

following program.

minimize
n1,c1,n2,c2,δ

n1g1(c1) + n2g2(c2) +N(π,p) (6.1)

subject to

√
2

πn1

+
4
√

2

n
3
4
1

+ 2c1 ≤ ϑ (6.2)√
2

πn2

+
4
√

2

n
3
4
2

+ 2c2 ≤ δ (6.3)

35

n1g1(c1) denotes the number of tosses (on average) required to verify that no

coin is in the gap (θ̃, γ̃).

g1(c1) =
∑
θ∈Θ

πθ
− log c1

|Eθ log
pθ0
pθ
|

+
∑
γ∈Γ

πγ
− log c1

|Eγ log
pγ0

pγ
|

where γ0, θ0 are the maximizers of the following program:

maximize
∑
θ∈Θ

πθ
1

|Eθ log
pθ̃
pθ
|

+
∑
γ∈Γ

πγ
1

|Eγ log
pγ̃
pγ
|
−

[∑
θ∈Θ

πθ
1

|Eθ log
pθ0
pθ
|

+
∑
γ∈Γ

πγ
1

|Eγ log
pγ0

pγ
|

]
(6.4)

subject to ε ≤ θ1 ≤ θ0 ≤ θ̄

1− ε ≥ γ1 ≥ γ0 ≥ γ

∀i ∈ (ε, θ̃) Ei log
pθ0
pi∧θ1

≤ 0

∃θ′ ∈ (θ0, γ0) : ∀i ∈ (θ̃, θ′) Ei log
pi∨θ0
pθ1
≥ 0

∀i ∈ (θ′, γ̃) Ei log
pi∧γ0

pγ1

≥ 0

∀i ∈ (γ̃, 1− ε) Ei log
pγ0

pi∨γ1

≤ 0

g2(c2) denotes the average number of tosses performed to update the prior

once.

g2(c2) =
∑
θ∈Θ

πθ
− log c2

|Eθ log pq
pθ
|

+
∑
γ∈Γ

πγ
− log c2

|Eγ log pγ
pp
|

36

where p, q are the maximizers of the following program:

maximize
p,q

∑
θ∈Θ

πθ
1

|Eθ log
pγ

pθ
|

+
∑
γ∈Γ

πγ
1

|Eγ log pγ
pθ̄
|
−

[∑
θ∈Θ

πθ
1

|Eθ log pq
pθ
|

+
∑
γ∈Γ

πγ
1

|Eγ log pγ
pp
|

]
(6.5)

subject to ε ≤ p ≤ θ̃

1− ε ≥ q ≥ γ̃

∀i ∈ (p, θ̃) : Ei log
pq
pp
≤ 0

∀j ∈ (γ̃, q) : Ej log
pq
pp
≥ 0

Algorithm 10 Asymmetric Information

1: procedure π0Estimation (Θ,Γ, p, q, n)
2: j ← 0 . coins are indexed by j
3: π̃ ← 0 T0 ← 0 T1 ← 0
4: while j ≤ n do
5: Pick a coin and flip till {Si ≤ log c or Si ≥ − log c}

where Si = log
(

maxγ∈Γ
∏i
l=1 pγ(Xl)

maxθ∈Θ
∏i
l=1 pθ(Xl)

)
6: j ← j + 1
7: if Si ≥ − log c then
8: Declare H0 T0 ← T0 + 1

9: if Si ≤ log c then
10: Declare H1 T1 ← T1 + 1

11: return(π̃ ∝ (T0, T1))

Note that the total number of tosses required in expectation is the

sum of the expected number of tosses required in each phase. After we verify

the null-alternate prior, the number of tosses required in expectation is the

number of tosses that Algorithm 9 would require. This quantity N(π,p) does

not depend on the optimizing parameters, and is included in the objective

37

for clarity. Thus, (6.1) is the quantity that we want to minimize. We have

assumed that the authority would accept the hypothesis that there is no mass

on an interval (θ̃, γ̃) if it were to be shown that atleast 1 − ϑ mass is on

(θ̃, γ̃)c. In particular, to us it means that the “prior” on the gap that we

infer from Algorithm 10 in Phase 1 can be at most ϑ. In other words, the l1

separation between the prior π and the prior learned through Algorithm 10

π̃l, l1(π̃, π̃l) < ϑ. Consider the problem of learning the prior when sampling

symbols, i.e., every sample is a support alphabet as against 0 or 1. Let π̃

denote the prior that can be learnt under this “perfect” alphabet model. Using

triangle inequality, we know,

E[l1(π̃l, π)] ≤ E[l1(π̃l, π̃)] + E[l1(π̃, π)].

We use the result of [22, Lemma 7], to substitute for E[l1(π̃, π)], and worst case

reasoning to substitute for E[l1(π̃l, π̃)]. Thus, we arrive at (6.2). Similarly, we

have assumed that the authority would accept the null-alternate prior (π0, π
c
0)

if the player could verify it at least up to an l1 distance of δ. We arrive at

constraint (6.3) through the same line of reasoning as used to obtain constraint

(6.2). Algorithm 10 invoked twice in succession, first to verify the gap and

next to verify the mass on the null, followed by Algorithm 8 9 is admissible

contingent on verification of the prior. Since the prior is verified in expectation,

this procedure is unbiased.

Lemma 6. For ϑ, δ > 0, and m = 1, Algorithm 10 invoked twice in succession,

first to verify the gap and next to verify the mass on the null, followed by

38

Algorithm 8 spends the minimum number of tosses in expectation (over the

excess of Algorithm 8) amongst all unbiased algorithms that perform hypothesis

testing.

Proof. Note that minimizers of Program 6.1 are independent of the FWER

requirements α∗. δ, ϑ > 0 result in finite n1g1(c1) + n1g1(c1). Thus, for small

values of α∗, N(π,p) dominates, and hence the claim.

Lemma 7. For ϑ, δ > 0, and when m > 1, Algorithm 10 invoked twice in

succession, first to verify the gap and next to verify the mass on the null,

followed by Algorithm 8 spends at most C3m log(m) tosses (over the excess of

Algorithm 8) more than the optimal asymptotically in expectation.

Finally, we note that instead of verifying the null-alternate prior, we

could verify an upper bound on the null, and prove the coins with respect to

a higher threshold. This could be beneficial in some situations. Our program

can be modified to accommodate for this flexibility as well.

39

Chapter 7

Symmetric, Incomplete Information

Since we do not know the prior, we first learn the prior using Algorithm

11. Let c denote the maximum misclassification probability while learning the

prior, i.e., Pi(coin clasified as j) ≤ c ∀i 6= j.

Algorithm 11 uses the deterministic DGFi policy in [23], and for completeness

we briefly describe the problem, its setting, and the policy here.

Consider K cells, M of which are informative, i.e., signals, and the rest noise.

When a cell i is probed at time j, a random variable ζji is generated according

to distribution fi if the signal is present, otherwise ζji is generated according

to the distribution gi. It is assumed that the (fi, gi) pairs are known for all

cells. The paper addresses the problem of finding a policy that is optimal

with respect to a Bayes’ risk as defined in [23]. The DFGi policy as described

in [23] is an asymptotically optimal policy with respect to the Bayes’ risk.

For M = 1, the policy asks to probe cells that rapidly increase the difference

between the largest log-likelihood ratio (LLR), and the second largest LLR.

When this gap, ∆S = {largest LLR − second largest LLR} ≥ − log(c), the

process is terminated, and the cell whose LLR is the largest is declared as the

one with signal. It is proved that the probability of incorrectly declaring a

noisy cell is at most c.

40

Algorithm 11 uses the deterministic DGFi policy in [23] with K = 3, Si0 as

the signals gi’s and deterministic 0 process as the alternate fi for all i. We,

therefore, wait for the most likely walk (S20, S10 or 0) to be − log(c) away

from the second most likely walk before classifying the coin and updating

the prior. (Of course, we are not concerned about the probing feature, since

we are compute Si0 for all i.) Let g(c) denote the average number of tosses

performed to update the prior once in Algorithm 11. Assume (w.l.o.g) pi <

pi+1 ∀i, i+ 1 ∈ [k].

g(c) =
∑
i∈[k]

πi
c

D(pi)

where D(pi) =

D(p0||p1), if i = 0,

D(pk||pk−1), if i = k,

min{D(pi||pi−1), D(pi||pi+1)}, otherwise.

41

Algorithm 11 Subroutine: Learning a Noisy Prior

1: procedure L.Search(p2, p1, p0, c, n)
2: j ← 0 . coins are indexed by j
3: π̃ ← 0
4: Pick a coin j ← 1
5: while j ≤ n do
6: Keep flipping the coins till {S21

i ≤ log c, S10
i ≥ 0} or {S21

i ≥
− log c, S20

i ≥ 0} or
{S10

i ≤ log c}
7: if S10

i < log c then
8: π̃0 ← π̃0 + 1 j ← j + 1 continue

9: if S20
i − S10

i > − log c, S20
i ≥ 0 then

10: π̃2 ← π̃2 + 1 j ← j + 1 continue

11: if S20
i − S10

i < − log c, S10
i ≥ 0 then

12: π̃1 ← π̃1 + 1 j ← j + 1 continue

13: π̂ ∝ π̃ . π̂ is a noisy empirical frequency vector
14: return π̂

Algorithm 12 Min-Max setting

1: procedure L.Search(p2, p1, p0, α
∗, π̂, n)

2: n← 0 . n is the number of coins declared alternates
3: a← log(β∗) b← log(2C4π̂0m

α∗π̂0
′)

4: Pick a coin
5: while n < m do
6: Invoke algorithm 8 to find a biased coin
7: n← n+ 1

Let f(δ) denote the number of tosses required to complete the task

with π̃l that is utmost δ away from π in l1. Let us assume we do know the

prior.

If we were to choose a very small c, we might spend a lot of flips learning the

prior, if we choose a large c, we risk learning a prior too far from the ground

42

truth. We should also explore enough (n) coins such that the central limit

theorem kicks in, all while trying to minimize the number of flips spent so far

and f(δ). Program (7.1) is designed to handle the said trade-offs.

minimize
n,c,δ

ng(c) + f(δ) (7.1)

subject to α∗

(
1 + δ

2π0

1− δ
2π1

)
≤ ᾱ∗ + α∗ (7.2)√

2(k − 1)

πn
+

4k
1
2 (k − 1)

1
4

n
3
4

+ (k − 1)c ≤ δ (7.3)

If the priors were accurate, then, we could claim the following:

Lemma 8. Algorithm 12 is ᾱ∗-weakly unbiased, i.e., with arguments of pro-

gram (7.1) as parameters and m = 1 , Algorithm 12 contains the expected

FWER below ᾱ∗ + α∗. Also, Algorithm 12 performs optimal number of tosses

in expectation (over the excess of Algorithm 8).

Proof. To verify the claim, note the following:

• The expected FWER when the l1 distance from the prior is at most δ,

is α∗ 1+δ/(2π1)
1−δ/(2π0)

. This accounts for (7.2). Thus, Algorithm 12 contains the

worst case FWER below ᾱ∗.

• Algorithm 11 learns a prior π̃. It’s probability of misclassifying an i coin

as a j coin,i.e. Pi(Sj0 − Sl0 ≥ − log(c)) ≤ (k − 1)c (where l 6= j, i).

Hence:

πi(1− (k − 1)c) ≤ P(H̃i) ≤ πi(1− c) + c

43

The worst case l1 separation between the prior π and the learnable π̃ -

l1(π̃, π̃l) < (k − 1)c. Using triangle inequality, followed by [22, Lemma

7]:

E[l1(π̃l, π)] ≤ E[l1(π̃l, π̃)] + E[l1(π̃, π)]

This accounts for (7.3).

Lemma 9. Under the conditions of the previous lemma, with m > 1, the

Algorithm 12 performs additional C4m logm tosses in expectation (over the

excess of Algorithm 8).

Lemma 8 and Lemma 9 were based on the assumption that we knew

the prior (g(c) is defined in terms of it). Since the prior is unknown, we turn

the two stage algorithm into a three stage algorithm with the first stage being

a burn-in stage to learn the prior. We first fit an uniform distribution over the

alphabet, i.e., assume alphabet in the support has equal probability mass. We

now solve program (7.1). Using c thus obtained, we run Algorithm 11 till we

learn the prior up to a sufficient l1 distance.

Using the learnt prior, we then solve (7.1) again. We now use the parameters

obtained to crank Algorithm 12. Note that the number of tosses performed

in the burn-in stage is some number bounded from above. For any specific

c, n we can find an upper bound on the expected l1 distance between the true

prior and that learnt. Thus, Lemma (8) and lemma (9) would still hold with

different constants.

44

Chapter 8

Conclusion

The problem of finding good enough coins was studied. Algorithms

were proposed so as to enable the agent to return good coins acceptable to the

authority under symmetrical and asymmetrical information settings.

In our text, we assume the knowledge of the underlying support. Designing

algorithms without this assumption is a natural future direction. Another

direction of interest is along finding tighter lower bounds under generalized

settings.

45

Bibliography

[1] A. Wald. Sequential tests of statistical hypotheses. Ann. Math. Statist.,

16(2):117–186, 06 1945.

[2] Sirin Nitinawarat, George K Atia, and Venugopal V Veeravalli. Con-

trolled sensing for multihypothesis testing. IEEE Transactions on Auto-

matic Control, 58(10):2451–2464, 2013.

[3] Mohammad Naghshvar and Tara Javidi. Active m-ary sequential hy-

pothesis testing. In Information Theory Proceedings (ISIT), 2010 IEEE

International Symposium on, pages 1623–1627. IEEE, 2010.

[4] Mohammad Naghshvar, Tara Javidi, et al. Active sequential hypothesis

testing. The Annals of Statistics, 41(6):2703–2738, 2013.

[5] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detec-

tion: A survey. ACM computing surveys (CSUR), 41(3):15, 2009.

[6] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery

rate: a practical and powerful approach to multiple testing. Journal of

the royal statistical society. Series B (Methodological), pages 289–300,

1995.

46

[7] Dean P Foster and Robert A Stine. α-investing: a procedure for sequen-

tial control of expected false discoveries. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 70(2):429–444, 2008.

[8] Adel Javanmard and Andrea Montanari. On online control of false dis-

covery rate. arXiv preprint arXiv:1502.06197, 2015.

[9] Chun-Hung Chen, Donghai He, Michael Fu, and Loo Hay Lee. Efficient

simulation budget allocation for selecting an optimal subset. INFORMS

Journal on Computing, 20(4):579–595, 2008.

[10] Jean-Yves Audibert and Sébastien Bubeck. Best arm identification in

multi-armed bandits. In COLT-23th Conference on Learning Theory-

2010, pages 13–p, 2010.

[11] Shie Mannor and John N Tsitsiklis. The sample complexity of explo-

ration in the multi-armed bandit problem. Journal of Machine Learning

Research, 5(Jun):623–648, 2004.

[12] Lloyd W Koenig and Averill M Law. A procedure for selecting a subset

of size m containing the l best of k independent normal populations, with

applications to simulation. Communications in Statistics-Simulation and

Computation, 14(3):719–734, 1985.

[13] Herman Chernoff. Sequential Analysis and Optimal Design.

47

[14] Jean-Yves Audibert and Sébastien Bubeck. Best Arm Identification in

Multi-Armed Bandits. In COLT - 23th Conference on Learning Theory

- 2010, page 13 p., Haifa, Israel, June 2010.

[15] Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action elimination

and stopping conditions for the multi-armed bandit and reinforcement

learning problems. J. Mach. Learn. Res., 7:1079–1105, December 2006.

[16] Shivaram Kalyanakrishnan and Peter Stone. Efficient selection of multi-

ple bandit arms: Theory and practice. In Proceedings of the 27th Inter-

national Conference on International Conference on Machine Learning,

ICML’10, pages 511–518, USA, 2010. Omnipress.

[17] Shivaram Kalyanakrishnan, Ambuj Tewari, Peter Auer, and Peter Stone.

Pac subset selection in stochastic multi-armed bandits. In Proceedings of

the 29th International Coference on International Conference on Machine

Learning, ICML’12, pages 227–234, USA, 2012. Omnipress.

[18] Subhojyoti Mukherjee, K. P. Naveen, Nandan Sudarsanam, and Balara-

man Ravindran. Thresholding bandits with augmented UCB. CoRR,

abs/1704.02281, 2017.

[19] Andrea Locatelli, Maurilio Gutzeit, and Alexandra Carpentier. An opti-

mal algorithm for the thresholding bandit problem. In Proceedings of the

33rd International Conference on International Conference on Machine

Learning - Volume 48, ICML’16, pages 1690–1698. JMLR.org, 2016.

48

[20] Karthekeyan Chandrasekaran and Richard M. Karp. Finding the most

biased coin with fewest flips. CoRR, abs/1202.3639, 2012.

[21] Xiaoou Li, Jingchen Liu, and Zhiliang Ying. Generalized sequential prob-

ability ratio test for separate families of hypotheses. Sequential analysis,

33(4):539–563, 2014.

[22] Sudeep Kamath, Alon Orlitsky, Dheeraj Pichapati, and Ananda Theertha

Suresh. On learning distributions from their samples. In COLT, pages

1066–1100, 2015.

[23] Boshuang Huang, Kobi Cohen, and Qing Zhao. Sequential active detec-

tion of anomalies in heterogeneous processes. arXiv preprint arXiv:1704.00766,

2017.

[24] Shie Mannor and John N Tsitsiklis. The sample complexity of explo-

ration in the multi-armed bandit problem. Journal of Machine Learning

Research, 5(Jun):623–648, 2004.

49

