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when Multiple Treatments are tested in Multiple Stages
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The University of Texas at Austin, 2014

Supervisor: Peter Müller

In recent times, there has been an increasing interest in adaptive de-

signs for clinical trials. As opposed to conventional designs, adaptive designs

allow flexible design adaptation in the middle of a trial based on accumulated

data. Although various models have been developed using both frequentist

and Bayesian perspectives, relative statistical performances of adaptive de-

signs are somewhat controversial and little is known about those of Bayesian

adaptive designs. Most comparison studies also focused on single experimental

treatment rather than multiple experimental treatments. In this report, both

frequentist and Baysian adaptive designs were compared in terms of statistical

power by a simulation study, assuming the situation when multiple experi-

mental treatments are tested in multiple stages. The designs included in the

current study are group sequential design (frequentist), adaptive design based

on combination tests (frequentist), and Bayesian adaptive design (Bayesian).

Based upon the results under multiple scenarios, the Bayesian adaptive design
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showed the highest power, and the design based on combination tests per-

formed better than group sequential designs when proper interim adaptation

could be conducted to increase power.
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Chapter 1

Introduction

Adaptive designs are statistical methodologies for clinical trials, in-

creasingly recognized as useful tools for investigating experimental drugs, pro-

cedures, and medical devices. They allow that accumulated data can be ana-

lyzed in the middle of a trial so that appropriate interim adaptation is made

during its course. Interim analyses are often recommended in clinical trials be-

cause the total process of trials can be adjusted to improve the probability of

successful completion. This provides ethical and economical benefits [1]. For

example, it would be desirable to move the process rapidly if an experimental

drug shows overwhelming efficacy in the middle of a trial. With adaptive de-

signs, trials can be stopped early for superiority, a treatment can be dropped

for inferiority, and a samples size can be modified to increase statistical power.

Conventional designs such as fixed-sample designs usually perform one final

analysis without interim analyses or adaptation. Since they strictly conduct

a trial only as planned, designs cannot be modified to improve efficiency or

response to unexpected situations [2].

Adaptive designs incorporate multiple testing to allow interim analyses.

This often results in a significant inflation of the overall type I error rate, which
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can be a serious problem with respect to statistical validity. Thus, adaptive

designs have been developed to provide more flexibility without compromising

the overall type I error rate. One approach in adaptive designs is a group

sequential design which stops a treatment at any interim analysis for either

futility or superiority [3, 4, 5, 6]. Group sequential models were initially de-

signed to allow early stopping for treatment superiority, but can be extended

to incorporate treatment selection in more general settings. Another popular

class of methods are adaptive designs based on combination tests, which were

developed to provide additional flexibility compared to the group sequential

designs [7, 8, 9, 10]. Such designs usually combine evidence from stage-wise

data using a specific combination function of p-values. By introducing p-values

as test statistics, a wide range of design adaptation is possible at interim anal-

yses. A Bayesian adaptive approach also can be considered as an alternative to

these designs [11, 12]. The Bayesian approach to inference is directly based on

the data without concerns about type I error rate. Most design restrictions in

frequentist designs, such as group sequential and combination test approaches,

are related to the issue of controlling type I error rate. Therefore, more flexible

designs can be constructed using Bayesian adaptive models to address various

aspects of interim adaptation.

Although extensive research has been carried out on adaptive designs,

debate continues about statistical performance of adaptive designs. Tsiatis and

Mehta (2003) [13] first discussed systematically how group sequential designs

can outperform adaptive designs based on insufficient statistics, i.e., p-values,
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if more interim analyses are allowed for group sequential designs. Jennison

and Turnbull (2003, 2006)[14, 15] showed by simulation that standard group

sequential approaches can be more efficient than adaptive test based on com-

bination test approaches. Kelly et al. (2005) [16] compared both designs in

practical settings, indicating that the difference in power is not identified as

long as asymptotic assumptions for test statistics are satisfied. For trials with

multiple treatments, however, Friede and Stallard (2008) [35] reported that

adaptive designs using combination tests can be better than group sequential

designs in spite of the use of insufficient statistics, when it is believed a priori

that all treatments are effective. Most comparisons were based on frequentist

adaptive designs, and little is known about relative performances of Bayesian

adaptive models in terms of statistical power.

The purpose of this report is to compare adaptive designs by simulation

including both frequentist and Bayesian methods. The specific methods con-

sidered in this study are as follows: Pocock’s [3] and O’Brien and Fleming’s

[4] for the group sequential design, Bretz et al. (2009) [1] model for the combi-

nation test approach, and a hierarchical Bayesian model based on Thall et al.

(2003) [12] for the Bayesian adaptive design. The report is also aimed to inves-

tigate statistical performances of adaptive designs when multiple treatments

are tested in multiple stages. Clinical trials become more complex than before

and often involve two or more experimental treatments. However, there have

been only a few discussions about testing multiple treatments using adaptive

designs. The present report has been organized in the following way. The

3



chapter two first gives a brief description of frequentist adaptive methods in

clinical trials, and the chapter three introduces a model for the Bayesian adap-

tive design. Both chapter two and three also include implementations when

multiple treatments are tested in multiple stages. The chapter four summa-

rizes scenarios of the comparison study and reports major findings. The last

section concludes by discussing limitation and extensions.
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Chapter 2

Frequentist Adaptive Designs

This chapter introduces two frequentist adaptive designs in clinical tri-

als, which are used for the comparison study in this report. The first sec-

tion illustrates a group sequential design, and the second section describes an

adaptive design based on combination tests. For multiplicity issue of multiple

hypotheses, the last section discusses the closure principle and its applications.

2.1 Group Sequential Design

Classical group sequential designs monitor superiority of an experimen-

tal treatment at each interim analysis. In a clinical trial, inferences are often

made by statistical hypothesis tests, and group sequential designs examine

whether or not there is evidence against a null hypothesis in accumulating

data [3, 4]. In contrast to the fixed-sample designs allowing one final analy-

sis from fully pre-planned process, group sequential designs can be considered

more flexible in that a trial can be stopped at any interim analysis in response

to what interim data demonstrate. However, repeating hypothesis test can

increase the probability of falsely rejecting the true null hypothesis, which is

also known as the type I error rate. Group sequential designs usually use
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different critical regions to control overall type I error rate associated with

multiple interim analyses. This section briefly describes two classical group

sequential designs: Pocock’s design [3] and O’Brien and Fleming’s design [4].

More details about group sequential designs can be found in Yin (2012)[2] and

Jennison and Turnbull (2000)[18].

2.1.1 Pocock’s Design

The Pocock’s Design(1977)[3] is a group sequential design which as-

sumes equal stopping boundaries across all stages. Although the design was

proposed originally for a two-sided test, it can be easily extended to a one-sided

test. Suppose that we are interested in testing superiority between two treat-

ments when a trial is scheduled up to K stages in advance. We assume that

treatment 1 is the experimental treatment, while treatment 0 is the standard

treatment. At each stage, outcomes are independent normal random variables

such that:

Y1ij ∼ N(µ1, σ
2), Y0ij ∼ N(µ0, σ

2), i = 1, 2, .., n, j = 1, 2, .., K (2.1)

where Y1ij and Y0ij denote i-th observation of treatment 1 and 0 at stage j,

respectively. Treatment 1 and 0 have the true mean µ1 and µ0. For simplicity,

we assume that the variance σ2 and the sample size n are known and equivalent

across all treatments at all stages. The only unknown quantities are the true

treatment means, while others should be determined in advance before starting

a trial.
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According to the notation defined above, the one-sided test for the

treatment difference refers to testing the hypotheses

H0 : µ1 − µ0 ≤ 0, H1 : µ1 − µ0 > 0 (2.2)

Now let Nk = nk denote the cumulative sample size up to stage k

for each treatment. Conditioned on the null hypothesis, the standardized test

statistic Zk for the k-th interim analysis based on the all previous observations

is given by:

Zk =
1√

2Nkσ2

k∑
j=1

n∑
i=1

(Y1ij − Y0ij) =
Ȳ1 − Ȳ0√
2σ2/Nk

(2.3)

where Zk is tested at each stage against some critical value ck. In the case

of rejecting the null hypothesis at interim stages (Zk ≥ ck), the trial is early

stopped for superiority. Otherwise (Zk < ck), the trial proceeds to stage k+1

until the stage reaches the maximum number of stages, K.

ck is assumed to be constant across all stages as Pocock(1977)[3] pro-

posed, but should be larger than the single stage significant level α due to

the possible inflation of the overall type I error rate. For one-sided testing,

Pocock’s constant ck = cpo, k = 1, 2, .., K can be computed numerically ac-

cording to the following definition:

α = P (Zk ≥ cpo at any k in a sequential order |H0) (2.4)

This can be also obtained by solving K equations with respect to the stage

wise α level, αk [2]. For example, when maximum two stages are scheduled,
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cpo can be computed numerically by considering the following two equations.

α1 = P (Z1 ≥ cpo|H0), (2.5)

α2 = α = P (Z1 < cpo, Z2 ≥ cpo|H0) + α1 (2.6)

2.1.2 O’Brien and Fleming’s Design

O’Brien and Fleming’s Design has the exactly same procedure with

Pocock’s, except the critical values are not constant across K stages [4]. They

proposed the critical value at stage k, ck, such that

ck = cof
√
K/k (2.7)

where cof is a constant and K is the maximum number of stages. This specifi-

cation is based on the idea that the rejection criterion should be more stringent

at the earlier interim analyses due to the limited number of observations. As

the trial proceeds, this criterion is relaxed by increasing
√
K/k so that the

null hypothesis is more likely rejected than earlier testing stages. For one-sided

testing, O’Brien and Fleming’s constant cof can be computed numerically ac-

cording to the following definition.

α = P (Zk ≥ cof
√
K/k at any k in a sequential order |H0) (2.8)

Note that this can be also obtained by solving K equations iteratively with

respect to the individual significance level of each stage k.

In general, it is expected that O’Brien and Fleming’s design has more

statistical power than Pocock’s design because critical values decrease as trial
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proceeds. In most cases, the values at the final stage in O’Brien and Fleming’s

are smaller than those in Pocock’s, whereas they are greater than those in

Pocock’s at earlier stages. As such, it is more likely for the null hypothesis

to be rejected in O’Brien and Fleming’s design, indicating that the overall

statistical power of O’Brien and Fleming’s is higher than the overall statistical

power of Pocock’s.

2.2 Adaptive Design based on Combination Tests

Although group sequential designs are more flexible than fixed-sample

designs, there are still some aspects required to specify in advance, e.g., sample

sizes at each stage. The adaptive designs based on combination tests have been

developed to overcome this limitation and provide more flexibility at interim

stages [7, 8, 9, 10]. The key idea of the combination tests is combining stage-

wise p-values according to the conditional invariance principle [19, 10, 20]. By

introducing p-values as test statistics, many design features such as sample

sizes can be modified at interim stages without inflation of the overall type I

error rate [22]. Thus, although p-values are not sufficient statistics, adaptive

designs can increase statistical power at interim stages if appropriate design

modifications are applied. This section describes the conditional invariance

principle and the adaptive design of Bretz et al. (2009) [1] based on the

combination test approach. More detailed information can be found in Bretz

et al. (2009) and the references therein.
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2.2.1 Conditional Invariance Principle

The conditional invariance principle controls the type I error rate when

interim results or modifications are unknown in advance. According to the

conditional invariance principle, an α level test can be constructed without

knowing adaptation rules, if distributions of test statistics are known and con-

ditionally invariant with respect to the interim adaptation [20]. For example,

combination test approaches usually exploit stage-wise p-values, which are al-

ways uniformly distributed under the pre-specified null hypothesis. Since this

distributional aspect does not change after interim adaptation, it can be said

that distributions of p-values are conditionally invariant with respect to the

interim data and the mid-term design adaptation. Knowing that distributions

of test statistics are (conditionally) independent of interim analyses, we can

now construct an α level test in terms of p-values. The more detailed example

will be following, but we also refer to Liu et al. (2002) [21] for more rigorous

discussion about the conditional invariance principle.

2.2.2 Combination Test Approach

A combination test approach is a statistical method which combines

stage-wise p-values through a pre-specified combination function. It allows

early stopping for futility or superiority at interim stages. For simplicity, here

we illustrate an adaptive design for a single null hypothesis, which is tested in

two stages [1].

Suppose that there are two treatments, where one is experimental and
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the other is standard. Similar to group sequential designs, we are interested

in testing one-side null hypothesis H0 for the treatment difference. Let p1 and

p2 be the p-values from stage 1 and 2 data, respectively. At the interim stage,

a combination test approach examines whether a trial can be early stopped or

proceed to the second stage by comparing p-values to α0 and α1. α0 and α1 are

early stopping boundaries such that 0 < α1 ≤ α0 ≤ 1. If p1 > α0, then H0 is

early accepted and the trial stops for futility of the experimental treatment. If

p1 ≤ α1, then H0 is early rejected and the trial stops for superiority. Otherwise,

α1 < p1 ≤ α0 and the trial continues to the second stage to combine stage-

wise p-values through the pre-specified combination function C(p1, p2). This

combination function defines the critical region as C(p1, p2) ≤ c, where the

corresponding critical value c is determined by solving the following equation:

α1 +

∫ α0

α1

∫ 1

0

1[C(x,y)≤c]dydx = α (2.9)

which maintains the overall type I error rate at α regardless of the design

adaptation after interim analyses.

Although p-values can be combined in many different ways, there are

two prominent examples of combination functions in general. One is Fisher’s

product criterion C(p1, p2) = p1p2 [10], and the other is the weighted inverse

normal combination function [9]. The weighted inverse normal combination

function has the following form:

C(p1, p2) = 1− Φ[w1Φ−1(1− p1) + w2Φ−1(1− p2)], (2.10)
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where w1 and w2 denote pre-specified weights such that w2
1 + w2

2 = 1, and Φ

denotes the cumulative distribution function of the standard normal distribu-

tion. The weights of this function are often defined as w2
1 = n1/(n1 +n2), w2

2 =

n2/(n1 + n2), where n1 and n2 indicate the pre-planned sample size for the

stage1 and 2, respectively. The weighted inverse normal combination function

with this weight definition is equivalent to a classical group sequential when a

single null hypothesis is considered without any interim adaptation [24].

The choice of α0 for the futility stopping is sometimes important and

there can be two different stopping rules for futility: Binding versus non-

binding rules. Binding futility rules choose α0 < 1, allowing a futility stop at

the interim analysis whenever p1 > α0. Alternatively by fixing α0 = 1, non-

binding rules provide more flexibility in interim stopping criteria, but they

often result in less statistical power than binding rules.

2.3 Multiplicity and the Closure Principle

Clinical designs in practice involve the test of multiple hypotheses.

When several experimental treatments need to be compared to one single

standard treatment, multiple null hypotheses are constructed and tested si-

multaneously. Multiplicity, also known as the multiple testing problem, occurs

in this situation because simply performing an α-level test for each hypothesis

leads to inflation of the probability of rejecting at least one true null hypoth-

esis, i.e., the family-wise error rate. For instance, suppose that we test two
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hypotheses simultaneously with α = 0.05. Then the probability of at least

one null hypothesis being rejected is 1− (0.95× 0.95) = 0.0975, a much larger

value than that of one single null hypothesis. However, we want this rate to

be within α when multiple treatments are tested in multiple stages.

The closure principle is a general methodology to handle this issue,

which strongly controls the family-wise error rate at a pre-specified α level

[25]. It considers all possible intersection hypotheses and reject an elementary

(original) hypothesis only when all relevant intersections are rejected at α level.

More precisely, the test procedure is conducted as follows:

1. Let K be the number of hypotheses, and Hk denotes the kth hypothesis

for every k = 1, . . . , K.

2. Construct all intersection hypotheses. That is, define HI = ∩k∈IHk for

every subset I ⊂ {1, 2, . . . , K}.

3. Perform an α-test for each intersection hypothesis.

4. Reject Hk if all the intersection hypotheses HI where k ∈ I are rejected.

2.3.1 An Example for Group Sequential Design

Group sequential designs can be extended to incorporate multiple treat-

ments in many ways (e.g., [26, 27]), and here is one example suggested for the

closure principle. Note that the following design is summarized as a step-by-

step algorithm in the section 4.1.2. Suppose we compare two experimental

13



treatments to one single standard in stage K using Pocock’s group sequential

design. The experimental treatments are named treatment 1 and 2, while the

standard is treatment 0. Based on the case of the previous section, there are

two elementary null hypotheses, H0j = µj − µ0, j = 1, 2 and three intersec-

tion hypotheses, {H01, H02, H01

⋂
H02}. At each interim stage, all intersection

hypotheses are individually tested based on the Pocock’s critical value. Note

that any proper multiplicity adjustment such as Bonferroni correction [28] can

be applied for intersection hypotheses involving more than one elementary hy-

pothesis. When all intersection hypotheses that includes H0j are rejected at

this interim analysis, we reject the elementary null hypothesis H0j and stop

the trial early for the superiority of the treatment j. Otherwise, the trial con-

tinues to the next stage unless it reaches the maximum number of stage K.

The multiple treatment case for O’Brien and Fleming’s design follows exactly

the same procedure except using different critical values.

2.3.2 An Example for Combination Test Approach

The closure principle also provides an α level test for adaptive designs

for combination tests with multiple null hypotheses [1, 23]. The following

procedure also can be found as a step-by-step algorithm in the section 4.1.3.

Suppose two experimental treatments are compared to one single standard in

two stages. There are two elementary null hypotheses, H0j = µj−µ0, j = 1, 2

and three intersection hypotheses, {H01, H02, H01

⋂
H02}. At the interim stage,

all intersection hypotheses are tested individually using p-values based on the
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data from the first stage. That is, all intersection hypothesis are examined

whether their p-values are greater than stopping boundary for futility α0 or

less than the boundary for superiority α1. Any proper multiplicity adjustment

can be applied for p-values of intersection hypotheses involving more than

one elementary hypothesis. If all intersection hypotheses that includes H0j

demonstrates smaller p-values than α1 at this interim analysis, we early reject

the elementary null hypothesis H0j and stop the trial for superiority of the

treatment j. If any intersection that includes H0j has greater p-value than α0,

we early accept the elementary null hypothesis H0j and drop the treatment

j for futility. Otherwise, the trial continues to stage 2 with treatment j and

rejects H0j if combined stage-wise p-values for all relevant intersections are

smaller than the critical value c. At stage 2, intersections involving both

dropped and remaining treatments are replaced by intersections of remaining

treatments. For example, we assume that experimental treatment 1 is dropped

at interim analysis. Then, the 2nd stage p-value for the intersection hypothesis

involving H01 and H02 is replaced by the 2nd stage p-value for H02. H02 will

be rejected at stage 2 if C(p[1,H02], p[2,H02]) < c and C(p[1,H01
⋂
H02], p[2,H02]) < c,

where p[i,H02] is the p-value at stage i for H02 and p[i,H01
⋂
H02] is the p-value at

stage i for H01

⋂
H02.
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Chapter 3

Bayesian Adaptive Design

Traditional frequentist designs such as group sequential designs and

combination test approaches have been developed to provide more flexibility in

clinical trials by introducing proper interim data analyses. In order to control

the overall type I error rate, however, these designs still depend in part on

pre-specified design components, e.g., the maximum number of stages, and

statistical inferences are only meaningful when these critical design features

are maintained as planned. In this regard, Bayesian methods can offer more

flexibility, as they can make various posterior inferences based on the data

without pre-determined design constraints or asymptotic assumptions of test

statistics [11, 12]. Bayesian methods directly derive a posterior distribution of

parameters given the data and thus do not require calculation of type I error in

advance for mid-trial adaptation. While conceptually a Bayesian design does

not require the evaluation of type I error, in practice, any real implementation

would include an extensive discussion of type I error under a variety of realistic

scenarios [11]. This chapter describes the concept of Bayesian methods and

an Bayesian adaptive design for the comparison study, which is summarized

as a step-by-step algorithm in the section 4.1.4. More extensive reviews about

Bayesian adaptive designs can be found in Berry et al. (2010) [11].
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3.1 A Bayesian Model for Adaptive Design

Bayesian models often incorporate additional information through prior

distributions of parameters and produce a posterior distribution so that infer-

ences are made based on the distribution of parameters given the data [29].

Priors can be constructed from various sources such as insights from experts

and results from previous analyses. Priors also can be non-informative if there

is no relevant prior knowledge. According to the Bayes theorem, the joint

posterior distribution is obtained from the following equation:

p(θ|y) =
p(y|θ)p(θ)
p(y)

(3.1)

where y is observed data and θ is a parameter vector of interest. p(θ) is an

assumed prior distribution for the parameters.

3.1.1 A Bayesian Hierarchical Model for Multiplicity

One popular Bayesian approach in clinical trial designs is based on a

hierarchical Bayesian model, which borrows strength from the related sub-

populations. The related subpopulations can be different treatments on the

same disease or the same treatment on the related disease types. In a hi-

erarchical Bayesian approach, information from one treatment is shared with

other treatments through presumed underlying structure, and the result of one

treatment can provide information about the effect of the other related treat-

ments [11, 12]. For the Bayesian adaptive model in this report, a hierarchical

Bayesian model was constructed based on Thall et al. (2003) [12]. Thall et
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al. (2003) [12] proposed a clinical trial design for a disease with multiple sub-

types, allowing treatment effects to differ but correlated through a hierarchical

structure. By using a Bayesian hierarchical model, multiple treatments also

can be tested in multiple stages. For a rigorous discussion of a Bayesian view

of multiple testing problems, see, for example, Scott and Berger (2010) [33].

Suppose that we are interested in testing multiple one-sided null hy-

potheses in K stages, i.e., comparing multiple experimental treatments to one

standard treatment. We assume that there are J+1 treatments for the same

disease, where one is the standard treatment (treatment 0) and the others

are different experimental treatments (treatment 1,..,J). Similar to other de-

signs in this report, outcomes are considered as normal random variables with

treatment-specific means and the known common variance. Since they are

independent conditioned on the unknown treatment means, i-th observation

of j-th treatment, yij, has the following distribution:

yij|µj ∼ N(µj, σ
2), i = 1, ..., njk, j = 0, ..., J (3.2)

where µj denotes the mean of j-th treatment, σ2 denotes the known common

variance, and the njk denotes the number of patients enrolled in j-th treatment

up to stage k=1,..,K.

µj’s are different across treatments but allowed to be correlated by

presumed underlying structures. Therefore, this model assumes each µj follows

the same normal prior distribution with mean γ and variance τ 2:

µj ∼ N(γ, τ 2), j = 0, .., J (3.3)
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where γ is a normally distributed parameter with mean m and variance V ,

and τ 2 is a parameter whose inverse follows a Gamma distribution with the

parameters a and b.

µ ∼ N(m,V ) (3.4)

1/τ 2 ∼ Ga(a, b) (3.5)

These hyper parameters, m,V, a, b, are often determined in advance so

that µ and τ 2 have non-informative vague priors under the absence of any

relevant information. In this study, the values for m,V, a, b are determined as

follows to reflect this lack of prior information.

m = 0 (3.6)

V = 100 (3.7)

a = 0.01 (3.8)

b = 0.01 (3.9)

3.1.2 Posterior Estimation

Bayesian models make inferences based on posterior distributions, which

are usually estimated by Markov Chain Monte Carlo (MCMC). Markov Chain

Monte Carlo is a popular technique to simulate posterior distributions when

the model is too complicated to obtain direct estimation through traditional

methods. In this study, Gibbs sampling can be effectively exploited to gen-

erate posterior samples of parameters [30]. Gibbs Sampling is one of MCMC
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methods and needs only full conditional posterior distributions of parameters.

Thus, it allows a convenient way to simulate the joint posterior distribution for

the models with well-known full conditional posterior distributions. At stage

k, the full conditional posterior distributions for the parameters in this study

are calculated as follows:

p(µj|γ, τ 2, y) = N

((
njk
σ2

+
1

τ 2

)−1(∑njk

i=1 yij
σ2

+
γ

τ 2

)
,

(
njk
σ2

+
1

τ 2

)−1
)
(3.10)

p(γ|θ, τ 2, y) = N

((
J + 1

τ 2
+

1

V

)−1
(∑J

j=0 µj

τ 2
+
m

V

)
,

(
J + 1

τ 2
+

1

V

)−1
)

(3.11)

p(1/τ 2|θ, γ, y) = Ga

(
J + 1

2
+ a,

∑J
j=0(µj − γ)2

2
+ b

)
(3.12)

3.1.3 Decisions and Design

At each interim stage, experimental treatments are tested based on

their estimated posterior distributions to determine whether they should be

early stopped or proceed to the next stage. That is, i-th treatment is dropped

for futility if the posterior probability p(µi − µ0 > µj − µ0|y) is smaller than

α for the all other experimental treatment j:

p(µi − µj > 0|y) < α, for all j 6= i (3.13)

where α is a fixed cut-off value such as 0.025 or 0.05.

If this posterior probability is not smaller than α at least for one ex-

perimental treatment, the treatment continues to the next stage after interim
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adaptation such as sample size modification. When the trial reaches the final

stage K, the null hypotheses with respect to on-going treatments are exam-

ined individually at the final analysis using Bayes Factor. Bayes Factor is

a Bayesian approach for hypothesis testing, which summarizes evidence pro-

vided by data in favor of one hypothesis against the other hypothesis [31, 32].

Let the hypotheses for the i-th treatment effect be:

H0i : µi − µ0 ≤ 0, H1i : µi − µ0 > 0 (3.14)

Then, Bayes Factor is the ratio of probabilities that we observe data given H1i

versus H0i such that

BF10 =
p(y|H1i)

p(y|H0i)
=
p(H1i|y)/p(H1i)

p(H0i|y)/p(H0i)
(3.15)

where y is all previous data associated with the treatment i up to stage K. If

BF10 is greater than 3, we conclude that there is substantial evidence in favor

of H1 against H0 and reject the null hypothesis for the treatment i as the final

decision. If BF10 is not greater than 3, we cannot reject the null hypothesis

for the treatment i.
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Chapter 4

Comparison Study for Adaptive Designs

This chapter illustrates a simulation study that compares statistical

power of adaptive designs when multiple stages are conducted with multiple

treatments. The study mainly targets adaptive designs introduced in the pre-

vious chapters, but one fixed-sample design is also included to see the difference

with adaptive designs. The fixed-sample design in this study regards stages

as separate trials and only use the final stage data for the final decision. The

mid-stage data can be used to configure the next stage design. The detailed

simulation scenarios for four designs are given in the first section, and the

main findings from the study are discussed in the second section. The designs

are presented and compared in the following order: 1) fixed-sample design;

2) group sequential design; 3) combination test approach; and 4) Bayesian

adaptive design.

4.1 Simulation Scenarios

The simulation in this study includes seven scenarios for four designs,

two for each frequentist design and one for the Bayesian design. The trial

settings and assumptions are based on the simulation study of Bretz et al.
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(2009) [1] which compares adaptive designs based on combination tests in

various settings, but individual scenarios are extended to meet the unique

feature of designs considered in this study. This section first illustrates the

common trial settings for simulation, and then provides simulation algorithms

(or scenarios) for each design.

We assume that a trial is conducted in two stages with three treatments,

where two are the experimental treatment and the other is the standard (or

control) treatment. The experimental treatments are named treatment 1 and

2, while the standard treatment is treatment 0. One interim analysis and

one final analysis are allowed in this setting. As described in the previous

chapters, observations are normally distributed with treatment-specific means

µj, j = 0, 1, 2 and the common known variance σ2. Here we follow the Britez

et al. (2009)’s assumption that σ2 = 62, µ0 = 0, µ1 = 2, and µ2 varying in

the interval (0,3].

The trial is aimed to compare each experimental treatment to the stan-

dard treatment, and all tests in this study are based on one-sided hypotheses

H0j : µj −µ0 ≤ 0, H1j : µj −µ0 > 0. The family-wise error rate α for frequen-

tist designs is controlled at significance level of 0.025. To address multiplicity

issue, Bonferroni correction and the closure principle are used for frequentist

designs as discussed before. The sample size per each treatment per stage is

set to 72 so that a single test has a statistical power of 0.8 when the true mean

difference is 2.

To compare performances of designs in terms of statistical power, suit-
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able power concept needs to be implemented throughout the simulation. The

general definition of statistical power is the probability of rejecting null hypoth-

esis when the alternative is true, but this is not obvious for multiple treatment

case with multiple null hypotheses. In this regard, this study computes power

as the probability of rejecting at least one false null hypothesis [34]. Since

this study only includes true alternative hypotheses (thus false null hypothe-

ses), the simulation measures statistical power by computing the proportion

of times at least one null hypothesis is rejected.

Overall, two adaptation rules are considered for the interim analysis

in this study. One is to continue with all treatments to the second stage

(adaptation I), and the other is to drop the inferior experiment treatment based

on the first stage mean value (adaptation II), i.e. drop treatment j if µ̂j < µ̂i

(frequentist) or p(µj > µi|y) < α (Bayesian). In the case that one treatment is

dropped at the interim analysis, the scheduled second stage sample size for the

discontinued treatment is evenly assigned to the continued treatments. These

interim adaptation rules can only be applied on frequentist designs when they

can maintain the family-wise error rate at pre-specified level, whereas there is

no restriction on the Bayesian design. For this reason, the above adaptation

rules were not included in the simulation for group sequential designs. The

fixed-sample design can exploit the rules because it derives the final decision

only based on the final stage, and the combination test approach allows the

interim adaptation by construction. Although the Bayesian design in this

study does not have restrictions on the interim rules, only adaptation II was
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included in the simulation due to the several practical reasons. For example,

posterior distributions of true means given the first stage data would not be

very different each other because of the relatively large variance of observations

and the vague priors. This leads to similar results for both interim rules, so

adaptation II was only implemented in this study (See appendix A).

Based on the trial settings above, seven simulation algorithms for the

four designs were produced. The scenarios share the common assumptions

and methodology to calculate statistical power, but follow the procedures cor-

responding to their own design features. For each scenario, 1000 trials were

simulated for each 1000 different µ2 ∈ (0, 3]. The whole process of analyses

was implemented using the statistical software R.

4.1.1 Algorithm for Fixed-Sample Design

In this study, a fixed-sample design is assumed to use only the second

stage data to derive the final decision for treatment differences. The first stage

data are used to determine which experimental treatment should be dropped

in case that adaptation II is considered. In case of adaptation I, practical

problems such as safety issues can be addressed based on the first stage data

although there is no change in the design. For adaptation I case, the algorithm

for the fixed-sample design is as follows:

1. Set µ0 = 0, µ1 = 2, µ2 = 0.003, σ2 = 62, α = 0.025, n1 = n2 = 72

2. Set success=0

25



3. Simulate observations for stage 1: Generate samples Y0j ∼ N(µ0, σ
2), Y1j ∼

N(µ1, σ
2), Y2j ∼ N(µ2, σ

2), j = 1, ..., n1, where Yij is j-th observation

from treatment i.

4. Simulate observations for stage 2: Generate samples Y0j ∼ N(µ0, σ
2), Y1j ∼

N(µ1, σ
2), Y2j ∼ N(µ2, σ

2), j = 1, ..., n2.

5. Test for the final decision: Based on the second-stage data, obtain the

second stage p-values p(2,1), p(2,2), and p(2,12) for three null hypotheses

H01 : µ1 − µ0 ≤ 0, H02 : µ2 − µ0 ≤ 0, and H01

⋂
H02, respectively. The

p-value for H01

⋂
H02 is calculated by min{1, 2min(p(2,1), p(2,2))} using

Bonferroni correction. If either [p(2,1) < α and p(2,12) < α] or [p(2,2) < α

and p(2,12) < α], increase success by one.

6. Calculate power: Repeat 2-5 steps 1000 times and calculate power as

success/1000

7. Increase µ2 by 0.003 and Repeat 2-6 steps by µ2 = 3

For adaptation II case, one experiment treatment is dropped based on

the first stage mean value, and the sample size for the discontinued treatment

is evenly reallocated to the continued treatments.

1. Set µ0 = 0, µ1 = 2, µ2 = 0.003, σ2 = 62, α = 0.025, n1 = n2 = 72

2. Set success=0
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3. Simulate observations for stage 1: Generate samples Y0j ∼ N(µ0, σ
2), Y1j ∼

N(µ1, σ
2), Y2j ∼ N(µ2, σ

2), j = 1, ..., n1, where Yij is j-th observation

from treatment i.

4. Drop the inferior treatment: Obtain the mean value of each experimental

treatment and drop the treatment which has the smaller value.

5. Simulate observations for stage 2: Let Y ∗j be j-th observation from

the continued experimental treatment and µ∗ be the corresponding true

mean. Generate samples Y0j ∼ N(µ0, σ
2), Y ∗j ∼ N(µ∗, σ2), j = 1, ..., n∗,

where n∗ = n2 + n1/2.

6. Test for the final decision: Based on the second-stage data, obtain the

second stage p-value p(2,∗) for the null hypothesis H0∗ : µ ∗ −µ0 ≤ 0. If

p(2,∗) < α, increase success by one.

7. Calculate power: Repeat 2-6 steps 1000 times and calculate power as

success/1000

8. Increase µ2 by 0.003 and Repeat 2-7 steps by µ2 = 3

4.1.2 Algorithm for Group Sequential Design

The group sequential designs included in this study are two classic

designs: 1) Pocock’s design and 2) O’Brien and Fleming’s Design. These

group sequential designs do not allow interim adaptation other than early

stopping for superiority. Thus, adaptation rule I and II for this study were
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not considered here, and instead the algorithms follow their own rules, i.e.,

stopping an experimenal treatment at interim if test statistics are greater

than pre-specified critical values. The critical values for two designs were

obtained from the simulation based on three equal-mean treatments with the

significance level 0.025. The calculated Pocock’s critical value is 2.178, and

O’Brien and Fleming’s is 1.977. The following is an algorithm for the group

sequential design when Pocock’s design is used.

1. Set µ0 = 0, µ1 = 2, µ2 = 0.003, σ2 = 62, n1 = n2 = 72, cPO = 2.178

2. Set success=0

3. Simulate observations for stage 1: Generate samples Y0j ∼ N(µ0, σ
2), Y1j ∼

N(µ1, σ
2), Y2j ∼ N(µ2, σ

2), j = 1, ..., n1, where Yij is j-th observation

from treatment i.

4. Test for early stopping at interim analysis: Based on the first stage

data, obtain z-statistics Z1 = Ȳ1−Ȳ0√
2σ2/n1

and Z2 = Ȳ2−Ȳ0√
2σ2/n1

for the null

hypotheses H01 : µ1 − µ0 ≤ 0 and H02 : µ2 − µ0 ≤ 0, respectively.

The hypothesis test for H01

⋂
H02 can be conducted by max(Z1, Z2) ≥

cPO∗ using Bonferroni correction, where cPO∗ is a constant such that

p(Z > cPO∗) = p(Z > cPO)/2, Z ∼ N(0, 1). If either [Z1 ≥ cPO and

max(Z1, Z2) ≥ cPO∗] or [Z2 ≥ cPO and max(Z1, Z2) ≥ cPO∗], increase

success by one and jump to step 7 (stop a trial). Otherwise, continue to

step 5.
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5. Simulate observations for stage 2: Generate samples Y0j ∼ N(µ0, σ
2), Y1j ∼

N(µ1, σ
2), Y2j ∼ N(µ2, σ

2), j = 1, ..., n2.

6. Test for the final decision: Based on the first and second stage data,

obtain z-statistics Z1 and Z2 for the null hypotheses H01 : µ1−µ0 ≤ 0 and

H02 : µ2 − µ0 ≤ 0, respectively. If either [Z1 ≥ cPO and max(Z1, Z2) ≥

cPO∗] or [Z2 ≥ cPO and max(Z1, Z2) ≥ cPO∗], increase success by one.

7. Calculate power: Repeat 2-6 steps 1000 times and calculate power as

success/1000

8. Increase µ2 by 0.003 and Repeat 2-7 steps by µ2 = 3

The O’Brien and Fleming’s design has the exactly same procedure ex-

cept different critical values for hypothesis testings. Let cOB = 1.977. Instead

of the critical value of Pocock’s, cOB
√

2 is used at the interim analysis, and

cOB is used at the final analysis. Critical values to test H01

⋂
H02 also should

be computed differently for interim and final analyses based on cOB
√

2 and

cOB.

4.1.3 Algorithm for Combination Test Approach

Adaptive designs based on combination tests allow early stopping at

interim based on the pre-determined α0 and α1 values. However, the choice of

these values is usually application-specific and depends on a case-by-case basis.

For this reason, a non-binding rule was considered here by setting α0 = 1 and
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α1 = 0. Non-binding rules can still provide flexible interim adaptation, but

have more conservative power. The critical values for two adaptation rules

were obtained from the simulation using three equal-mean treatments, which

results in 0.0406 and 0.0300 for adaptation I and adaptation II, respectively.

The stage wise p-values were combined using the weighted inverse normal

combination function with weights w1 =
√
n1/(n1 + n2), w2 =

√
n2/(n1 + n2).

For adaptation I case, the algorithm for the combination approach is:

1. Set µ0 = 0, µ1 = 2, µ2 = 0.003, σ2 = 62, c = 0.0406, n1 = n2 = 72

2. Set success=0

3. Simulate observations for stage 1: Generate samples Y0j ∼ N(µ0, σ
2), Y1j ∼

N(µ1, σ
2), Y2j ∼ N(µ2, σ

2), j = 1, ..., n1, where Yij is j-th observation

from treatment i.

4. Calculate the first stage p-values: Based on the first stage data, obtain

the first stage p-values p(1,1), p(1,2), and p(1,12) for three null hypotheses

H01 : µ1 − µ0 ≤ 0, H02 : µ2 − µ0 ≤ 0, and H01

⋂
H02, respectively. The

p-value for H01

⋂
H02 is calculated by min{1, 2min(p(1,1), p(1,2))} using

Bonferroni correction.

5. Simulate observations for stage 2: Generate samples Y0j ∼ N(µ0, σ
2), Y1j ∼

N(µ1, σ
2), Y2j ∼ N(µ2, σ

2), j = 1, ..., n2.

6. Calculate the second stage p-values: Based on the second-stage data,

obtain the second stage p-values p(2,1), p(2,2), and p(2,12) for three null
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hypotheses H01 : µ1− µ0 ≤ 0, H02 : µ2− µ0 ≤ 0, and H01

⋂
H02, respec-

tively. The p-value forH01

⋂
H02 is calculated bymin{1, 2min(p(2,1), p(2,2))}

using Bonferroni correction.

7. Test for the final decision: Let C(p,q) denotes the weighted inverse

normal combination function with weights w1 =
√
n1/(n1 + n2), w2 =√

n2/(n1 + n2). If either [C(p(1,1), p(2,1)) < c and C(p(1,12), p(2,12)) < c] or

[C(p(1,2), p(2,2)) < c and C(p(1,12), p(2,12)) < c], increase success by one.

8. Calculate power: Repeat 2-7 steps 1000 times and calculate power as

success/1000

9. Increase µ2 by 0.003 and Repeat 2-8 steps by µ2 = 3

For adaptation II case, one experiment treatment is dropped at the

interim based on the first stage mean value, and the sample size for the dis-

continued treatment is evenly reallocated to the continued treatments.

1. Set µ0 = 0, µ1 = 2, µ2 = 0.003, σ2 = 62, c = 0.0300, n1 = n2 = 72

2. Set success=0

3. Simulate observations for stage 1: Generate samples Y0j ∼ N(µ0, σ
2), Y1j ∼

N(µ1, σ
2), Y2j ∼ N(µ2, σ

2), j = 1, ..., n1, where Yij is j-th observation

from treatment i.

4. Calculate the first stage p-values: Based on the first stage data, obtain

the first stage p-values p(1,1), p(1,2), and p(1,12) for three null hypotheses
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H01 : µ1 − µ0 ≤ 0, H02 : µ2 − µ0 ≤ 0, and H01

⋂
H02, respectively. The

p-value for H01

⋂
H02 is calculated by min{1, 2min(p(1,1), p(1,2))} using

Bonferroni correction.

5. Drop the inferior treatment: Obtain the mean value of each experimental

treatment and drop the treatment which has the smaller value.

6. Simulate observations for stage 2: Let Y ∗j be the j-th observation from

the continued experimental treatment and µ∗ be the corresponding true

mean. Generate samples Y0j ∼ N(µ0, σ
2), Y ∗j ∼ N(µ∗, σ2), j = 1, ..., n∗,

where n∗ = n2 + n1/2.

7. Calculate the second stage p-value: Based on the second stage data,

obtain the second stage p-value p(2,∗) for H0∗ : µ ∗ −µ0 ≤ 0.

8. Test for the final decision: Let C(p,q) denotes the weighted inverse

normal combination function with weights w1 =
√
n1/(n1 + n∗), w2 =√

n ∗ /(n1 + n∗). If C(p(1,∗), p(2,∗)) < c and C(p(1,12), p(2,12)) < c, increase

success by one.

9. Calculate power: Repeat 2-8 steps 1000 times and calculate power as

success/1000

10. Increase µ2 by 0.003 and Repeat 2-9 steps by µ2 = 3
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4.1.4 Algorithm for Bayesian Adaptive Design

The Bayesian adaptive design proposed in the previous section provides

multiple treatment testing based on the posterior distributions of parameters.

Gibbs sampling method was exploited to generate posterior samples from the

proposed Bayesian model, with one chain run with 500 iterations. The number

of MCMC iterations is relatively small since each chain converges very quickly

from the simulated data (See appendix B). As discussed earlier, it was expected

that two adaptation cases show little difference in terms of statistical power.

Thus, only adaptation II was implemented in this simulation, dropping one

inferior experimental treatment based on the distributional difference p(µ2 −

µ1 > 0|y) < α or p(µ1 − µ2 > 0|y) < α.

1. Set µ0 = 0, µ1 = 2, µ2 = 0.003, σ2 = 62, α = 0.025, n1 = n2 = 72

2. Set success=0

3. Simulate observations for stage 1: Generate samples Y0j ∼ N(µ0, σ
2), Y1j ∼

N(µ1, σ
2), Y2j ∼ N(µ2, σ

2), j = 1, ..., n1, where Yij is j-th observation

from treatment i.

4. Drop if there is an inferior treatment: Estimate posterior distributions

given the first stage data by Gibbs sampling. Drop treatment 1 if p(µ1−

µ2 > 0|y) < α, or drop treatment 2 if p(µ2 − µ1 > 0|y) < α. Otherwise,

proceed with all treatments.
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5. Simulate observations for stage 2: If one of treatment is dropped, gener-

ate samples Y0j ∼ N(µ0, σ
2), Y ∗j ∼ N(µ∗, σ2), j = 1, ..., n∗, where Y ∗j

is the j-th observation from the continued experimental treatment, µ∗ is

the corresponding true mean, and n∗ = n2 + n1/2. Otherwise, generate

samples Y0j ∼ N(µ0, σ
2), Y1j ∼ N(µ1, σ

2), Y2j ∼ N(µ2, σ
2), j = 1, ..., n2.

6. Derive the final decision: Based on the first and second stage data,

estimate posterior distributions by Gibbs sampling. If one of treatment

was dropped, test H0∗ : µ ∗ −µ0 ≤ 0 vs. H1∗ : µ ∗ −µ0 > 0 using Bayes

factor. Increase success by one when the Bayes factor is greater than 3

in favor of the alternative hypothesis. If all treatments were continued

to stage 2, test H0i : µi − µ0 ≤ 0 vs. H1i : µi − µ0 > 0 for treatment

i=1,2 individually using Bayes factor. Increase success by one if one of

Bayes factors is greater than 3 in favor of the corresponding alternative

hypothesis.

7. Calculate power: Repeat 2-6 steps 1000 times and calculate power as

success/1000

8. Increase µ2 by 0.003 and Repeat 2-7 steps by µ2 = 3

4.2 Results

This section presents results of the simulation study described in the

previous section. Since statistical power increased in order of fixed-sample de-
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signs, group sequential designs, combination test approaches, and the Bayesian

adaptive design, pairwise comparisons were made between fixed-sample versus

group sequential designs, group sequential versus combination test approaches,

and combination test approaches versus the Bayesian adaptive design.

4.2.1 Fixed-Sample vs. Group Sequential Designs
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Figure 4.1: Statistical power of Fixed-sample vs. Group sequential designs

The Figure 4.1 shows the power of fixed-sample and group sequen-

tial designs. As discussed earlier, two group sequential designs, Pocock’s and
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O’Brien and Fleming’s, cannot incorporate interim adaptation other than early

stopping for superiority. For fixed-sample design, two adaptation cases were

considered, where one is the case in which all treatments proceed to the second

stage (adaptation I), and the other is dropping the inferior experimental treat-

ment based on the mean value of the first stage (adaptation II). The power

trend with respect to the selected values of µ2 is also given as numbers at the

end of this section (Table 4.1).

Overall, the graph demonstrates that group sequential designs have

greater power than the fixed-sample design regardless of types of adaptation.

Different amount of information may play an important role in this gap, since

larger information leads to more power in hypothesis testing. Fixed-sample

design derives the final decision only based on the second stage data, whereas

group sequential designs exploit all stage data unless they stop a trial early at

the interim. The difference between fixed-sample and group sequential designs

decreases as the value of second treatment mean, µ2, increases.

For the fixed-sample design, the power of adaptation II is greater than

that of adaptation I due to the increased sample-sizes from the dropped treat-

ment. Note that the power of adaptation II is not monotonous in µ2. This can

be explained by the behavior of treatment selection as follows [1, 35]. When

µ2 is much smaller than µ1 = 2, there is little chance for the treatment 2 to be

selected for the stage 2. As µ2 increases toward µ1, however, the probability

of selecting treatment 2 also increases although µ2 is still less than µ1. A trial

may loses statistical power until it reaches the point where both treatments
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equally effective, because the inferior treatment can be tested for the final

decision.

For the group sequential designs, O’Brien and Fleming’s design shows

greater power than Pocock’s design. This is not surprising because these two

designs are exactly the same except the critical values used in hypothesis

testings. O’Brien and Fleming’s design has the smaller second stage critical

value (and thus larger critical region) compared to Pocock’s: 1.977 (O’Brien

and Fleming’s) and 2.178 (Pocock’s) in this study. As a result, it is more likely

that the power of O’Brien and Fleming’s is higher than that of Pocock’s.

4.2.2 Group Sequential vs. Combination Test Approaches

In Figure 4.2, group sequential and combination test approaches were

compared in terms of statistical power. The two group sequential designs,

Pocock’s and O’Brien and Fleming’s, allow only early stopping for superiority

at the interim analysis, while the combination test approach allows two adap-

tation cases: continue to the second stage with all treatments (adaptation I)

or only with the superior treatment based on the first stage mean value (adap-

tation II). In this comparison, both group sequential and combination test

approaches incorporate all stage data for the final decision, but use different

test statistics: z-statistics (group sequential design) and p-values (combina-

tion test approach). Designs based on p-values can be conservative than those

based on z-statistics, because p-values are not sufficient statistics and thus

can lose information contained in data [15]. Note that z-statistics are from
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Figure 4.2: Statistical power of Group sequential vs. Combination test ap-
proaches

mean value of the data and preserve all the information in data as a sufficient

statistic.

From the Figure 4.2, it can be seen that the combination test approach

performs better than group sequential designs. This is consistent with the re-

sults from previous researches (i.e. [35]). The combination test approach with

adaptation II has the largest power among four cases in this comparison, indi-

cating that reallocated sample sizes compensated possible loss of information
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caused by p-values. This shows that the conservative nature of test statistics

in the combination test approach can be overcome by the advantage of flexible

interim adaptation. The Pocock’s design has the lowest power among the four

cases, and the other cases are located between Pocock’s and the combination

test approach with adaptation II. The power trend with respect to the selected

values of µ2 is also given as numbers at the end of this section (Table 4.1).

For the combination test approach with adaptation I and the O’Brien

and Fleming’s design, it is hard to say that one is better than the other.

O’Brien and Fleming’s design shows slightly higher power than the other for

small values of µ2, but shows lower power for moderate and large values of

µ2. This can be partly explained by the difference in test statistics, since

combination test approaches based on p-values and the closure principle do

not lead to sufficient test statistics when multiple treatments are considered

[35]. The simulation result in this study indicates that the use of insufficient

statistics can lower the power, while the effect is alleviated by the large value

of the true mean (µ2 in this study).

4.2.3 Combination Test Approach vs. Bayesian Adaptive Design

For the final comparison, the power of the Bayesian adaptive design

was plotted with the power of combination test approach (Figure 4.3). The

combination test approach assumes two adaptation rules, I and II, and the

Bayesian adaptive design only considers adaptation rule II because of the in-

difference of the results. Although the adaptation rule II is implemented for
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Figure 4.3: Statistical power of Combination test approaches vs. Bayesian
adaptive design

both combinatio n test and Bayesian adaptive designs, dropping criterion at

the interim is different each other. The combination test approach drops the

inferior treatment based on the mean value of the first stage data, while the

Bayesian model make this decision by comparing posterior distributions of

parameters conditioned on the first stage data. For the final decision, both

combination test approaches and the Bayesian adaptive design exploit all stage

data but use different statistics: p-values for the combination test approach
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and posterior distributions for the Bayesian model. In addition, unlike the

Bayesian model, the combination test approach uses Bonferroni correction

and the closure principle to deal with the multiplicity issue.

In Figure 4.3, the Bayesian model shows larger power than the com-

bination test approaches regardless of types of adaptation. The difference is

substantial for small values of µ2 and decreases as µ2 increases. Note that the

Bayesian model is hardly dropping a treatment at the interim analysis, and

thus, there are much fewer chances to increase second stage sample size than

the combination test approach with the same adaptation. This indicates that

Bayesian model has strong points in terms of power other than interim adap-

tation or sample size reallocation. There can be several possible explanations.

First, the Bayesian model derives the final decision based on the posterior dis-

tributions of parameters. These distributions are conditioned on the full data,

so there is usually no loss of information compared to insufficient statistics

such as p-values. Second, the Bayesian model does not need to incorporate

methods for type I error rate such as Bonferroni correction and the closure

principle. Especially for the Bonferroni correction, it is known that the type

I error rate is controlled in a very conservative sense. This means that the

actual type I error rate is mostly smaller than the significance level, resulting

in less power than expected. Overall, the Bayesian model performs better than

all the other designs included in this study. The power trend with respect to

the selected values of µ2 is also given as numbers at the end of this section

(Table 4.1).
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Chapter 5

Discussion

The present report provided a comparative investigation of both fre-

quentist and Bayesian adaptive designs when more than one experimental

treatments are tested in multiple stages. Researches on the adaptive designs

have been mostly restricted to limited comparison of frequentist methods, and

there is little evidence for the relative performance of Bayesian models or for

the situation when multiple treatments are involved in a trial. To address

this issue, various adaptive designs were included in this study. They are

mainly three designs: group sequential design, combination test approach,

and Bayesian adaptive design. More precisely, Pocock’s [3] and O’Brien and

Fleming’s designs [4] for the group sequential design, Bretz et al. (2009) model

[1] for the combination test approach, and a hierarchical Bayesian model based

on Thall et al. (2003) [12] for the Bayesian adaptive design were considered.

The comparison was made through a simulation study under various scenarios,

focusing on statistical power of the different designs. The simulation was based

on a two-stage clinical trial with one interim analysis and assumed two different

interim adaptation rules for the all designs except group sequential designs. A

fixed-sample design was also included in simulation as a non-adaptive baseline

design.
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According to the simulation results, it was shown that the Bayesian

adaptive design outperforms than all other designs in the setting of this study.

The power of the combination test approach was consistently higher than

O’Brien and Fleming’s design when there is an early-dropped treatment which

allows sample size reallocation, but not always higher when there is no dropped

treatment. O’Brien and Fleming’s design was better than Pocock’s design

as expected. It was also emphasized that all adaptive designs demonstrated

higher statistical power compared to the non-adaptive fixed-sample design re-

gardless of adaptation rules considered in this study. Overall, statistical power

increased in order of fixed-sample design, group sequential design, combination

test approach, and Bayesian adaptive design. The difference decreased as the

true mean of the second experimental treatment increased.

The findings of the current study are consistent with Bretz et al. (2009)

[1] in that combination test approaches show higher power than fixed-sample

designs regardless of the interim adaptation rules. The results of these two

designs from both studies seem exactly the same since the assumptions used

in this study are mostly based on those of Bretz et al. (2009). The findings of

the present study also confirm the findings of Tsiatis and Mehta (2003) [13]

and Jennison and Turnbull(2003,2006) [14, 15] that there can be reduction of

power due to the use of insufficient statistics. In the case of multiple experi-

mental treatments, however, the reduction was small and appeared only when

not all experimental treatments are sufficiently different from the standard.

This result is consistent with the insight of Kelly et al (2005) [16] but was not

44



shown in the study of Friede and Stallard (2008) [35]. The current study also

investigated the impact of interim adaptation regarding sample size realloca-

tion, which was not considered in Friede and Stallard (2008). The superior

power of the combination test approach indicates that the use of insufficient

statistics can be compensated by appropriate interim adaptation. For the

Bayesian adaptive design, the present study provided new evidence of rela-

tive performance in terms of statistical power. The Bayesian adaptive model

demonstrated higher power with great flexibility, compared to the various fre-

quentist adaptive designs included in this study. This result has important

implication for the future design development and may help us to find better

adaptive designs in clinical trials.

The findings in this report are subject to at least the following limita-

tions. First, the study focused on only a few adaptive designs in clinical trials.

There are other group sequential designs which incorporate various interim

situations and other combination test approaches with different combination

functions [36, 37]. The Bayesian adaptive model can also be extended to take

into account various design considerations. Since it is expected that different

design assumptions affect statistical power differently, the results in this study

cannot be extrapolated to all adaptive designs. Second, the simulation study

is based on the specific assumptions and scenarios. The design considerations

are mainly influenced by the primary study objectives in practice, and the

setting of this study is not always satisfied. For example, the power concept

measuring the probability of rejecting at least one false null hypothesis may
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not be appropriate in some settings. Power can be defined as the probability

of rejecting all false null hypotheses or adjusted in many different ways to ful-

fill the specific goals of trials [34]. Finally, the Bayesian model in this study

assumed only non-informative priors. Informative priors improve the quality

of analyses by delivering additional information. In most cases, clinical trials

are likely to have previous researches, trials or standard regimens. Thus, if

there exist qualified prior information, the Bayesian model can result in more

practical and insightful conclusions.
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Appendix A

Two Adaptation Cases in the Bayesian Model
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Figure A.1: Statistical power of the Bayesian model: two adaptation cases

A short simulation result of the Bayesian model comparing two adap-

tation cases (Figure A.1). Each case was implemented using 200 trials with

200 different µ2 as an example. The figure demonstrates that two adaptation

cases are not very different in terms of power in the setting of this study.
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Appendix B

Convergence in the Bayesian Model

Posterior distributions of the Bayesian model were estimated using

Gibbs sampling with 500 iterations, and samples mostly showed sufficient con-

vergence to the target distributions. As an example, the following illustrates

convergence of a posterior sample conditioned on first stage data in a trial. µ2

was chosen to be 3.

First, Geweke diagnostic [38] was calculated as one of the convergence

diagnostics. Geweke diagnostic is based on a test for equality of means of the

first 10% and the last 50% of a Markov chain. This asymptotically has normal

distribution under the equality and uses a standard Z-score as a test statistic.

From a posterior sample drawn by Gibbs sampling, Geweke diagnostic showed

0.4529 for µ0, -0.2952 for µ1, 0.4215 for µ2, -1.136 for γ, and -0.8639 for τ 2.

Since no values are bigger than 1.96, it can be concluded that this chain is

converged to the target distribution. (1.96 is corresponding to 0.05 significance

level for a two-sided test)

Next, convergence was visually inspected through trace plots of param-

eters (Figure B.1). According to the plots, there is no evidence of severe lack

of convergence in this sample.
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