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Abstract 

Mechanism of DNA Target Site Recognition by Group II Introns TeI3c and GsI-IIC 

and Splicing Activity of GsI-IIC Reverse Transcriptase 

Sean Yoon-Seo Kang, MA 

The University of Texas at Austin, 2016 

Supervisor:  Alan M. Lambowitz 

Mobile group II introns are self-catalytic ribozymes found in bacteria and eukaryotic 

organelles. They can mobilize within the genomes by retrohoming, which involves RNA-

catalyzed splicing followed by the excised intron reverse splicing into a target site. Both 

RNA splicing and retrohoming are facilitated by an intron-encoded reverse transcriptase 

(RT). Mobile group II introns are of interest as evolutionary ancestors of spliceosomal 

introns in higher organisms, for their use as bacterial gene targeting vectors known as 

targetrons, and as a source of thermostable group II intron reverse transcriptases 

(TGIRTs) for RNA-seq. The focus of this master’s thesis is on two thermophilic group II 

introns found in bacterial thermophiles: the subgroup IIB intron TeI3c and the subgroup 

IIC intron GsI-IIC. The TeI3c intron is known to rely on base pairing interaction between 

exon-binding site sequences 1/2 (EBS1/2), within the intron RNA, and intron-binding site 

sequences 1/2 (IBS1/2) in the 5’ exon of its target DNA, but it is not clear what targeting 

rules dictate one target sequence to be better or worse than others. I studied the targeting 

rules of TeI3c during retrohoming by using randomized libraries and next-generation 

sequencing followed by computational analysis of the sequence data. Understanding the 

targeting rules of TeI3c can be the important step in the development of thermostable 

targetron, which can be useful for metabolic engineering in the biofuel industry. Unlike 
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TeI3c, which relies primarily on base pairing for DNA target recognition, the GsI-IIC 

intron recognizes a 5’-exon hairpin secondary structure of the target DNA. However, the 

secondary structure requirements of good targets have not been studied. I studied the 

secondary structure requirements during GsI-IIC retrohoming by using doped target 

libraries and next-generation sequencing to find conserved positions within a hairpin 

target site followed by mobility assays on different target sites with mutated conserved 

positions. Finally, I studied the forward splicing of GsI-IIC intron by comparing different 

hairpin target sites including the same mutated target sites tested for their mobility 

efficiency. These experiments address whether the 5’-exon hairpin structure is recognized 

similarly for RNA splicing and intron mobility.  
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Chapter 1:  Introduction 

MOBILE GROUP II INTRONS 

Mobile group II introns are widespread self-catalytic ribozymes found in bacteria, 

archaea, and the mitochondrial and chloroplast DNAs of some eukaryotes1. They are 

thought to be evolutionary ancestors of spliceosomal introns, non-LTR-retrotransposons, 

and telomerase, which constitute more than half of the human genome2. The group II 

intron RNA splicing and mobility mechanisms have provided insight into the evolution of 

introns and splicing mechanisms in eukaryotes. Additionally, mobile group II introns 

have biotechnological applications as bacterial gene targeting vectors known as 

targetrons and as source of thermostable group II intron reverse transcriptases (TGIRTs), 

which are used for RNA-seq1,3. 

Group II introns have a conserved three-dimensional structure with six distinct 

helical domains1. Domains I and V are minimally required for the catalytic activity, while 

domain VI contains the branch point nucleotide necessary for intron splicing. Mobile 

group II introns encode an intron-encoded protein (IEP) with both reverse transcriptase 

(RT) activity, important for intron mobility, and maturase activity which promotes intron 

splicing by stabilizing the catalytically active ribozyme structure1. The open reading 

frame (ORF) encoding for the IEP is found in domain IV4,5. The catalytically active group 

II intron forms a ribonucleoprotein (RNP) complex with the IEP, whose cooperative 

action promotes intron mobilization within genomes. The structural features and mobility 

and splicing mechanisms of mobile group II introns strongly suggest that they are 

evolutionary ancestors of spliceosomal introns and retrotransposons in eukaryotes1,2.  

GROUP II INTRON SPLICING MECHANISM 

As shown in Figure 1, group II intron splicing begins when the 2’ OH of a bulged 

adenosine within the intron attacks the 5' splice site, creating an intermediate lariat still 

attached to the 3' exon. The 3’ OH of the newly cleaved upstream exon is now exposed 

and attacks the 3’ splice site, ligating the exons and excising the lariat intron6. The two 
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sequential transesterification reactions catalyzed by group II intron RNAs are identical to 

those of spliceosomal introns, which also result in spliced exons and an excised intron 

lariat RNA7-10. 

To catalyze splicing, the group II intron RNA must fold into a conserved three-

dimensional structure consisting of six secondary structure domains (DI-DVI), which 

form an RNA active site with catalytic Mg2+ ions11-14. The formation of active ribozyme 

structure is facilitated by the group II RT15-18. The group II intron domains forming the 

active site are structurally and functionally analogous to U2, U5, and U6 snRNAs 

that form the active site of the spliceosome. Moreover, the group II intron RT is 

homologous to the spliceosomal protein Prp8, which is crucial for the assembly of the 

spliceosomal catalytic core19. Recent cryo-EM structures of the spliceosome and a group 

II intron RNA show virtually identical RNA catalytic cores comprised of snRNAs or 

group II intron domains bound similarly by Prp8 or the group II intron RT, respectively, 

providing conclusive evidence for an evolutionary relationship19,20. 

MECHANISM OF MOBILE GROUP II INTRON MOBILITY: RETROHOMING 

Group II introns proliferate within genomes via a retrotransposition mechanism 

called retrohoming (Figure 2)1. During retrohoming the catalytically active group II 

intron forms an RNP complex with an IEP, whose RT and maturase activities are 

important for retrohoming. After promoting RNA splicing, the IEP remains tightly bound 

to the excised lariat intron RNA and aids in DNA target site recognition. Once the target 

is recognized, the excised intron RNA is then reverse spliced in the sense strand of the 

target DNA. If the IEP belongs to a class that has DNA endonuclease activity, it 

subsequently cleaves the antisense strand downstream of the insertion site. This exposes 

the 3’-end of the antisense strand, which is used as a primer for reverse transcription 

carried out by the IEP. The resulting intron cDNA is integrated into the genome after 

several additional steps including RNA degradation, second strand DNA synthesis, and 

repair (Figure 2)21,22. This RT-mediated mobility of group II introns is the basis of 

proliferation of group II introns in the genomes21. 



3  

DIFFERENT CLASSES OF MOBILE GROUP II INTRONS 

Group II introns are classified as three subclasses IIA, IIB, and IIC, which are 

characterized by subclass-specific structural features1. Group IIA and IIB introns are 

larger than group IIC introns and typically encode RTs with a C-terminal endonuclease 

(En) domain, whose endonuclease activity cleaves a target DNA to produce the primer to 

be used for reverse transcription during retrohoming. On the other hand, the smaller 

group IIC introns encode RTs without an En domain, and they use the nascent strands at 

DNA replication forks to prime reverse transcription during retrohoming1. Although the 

mobility mechanism of the group IIC introns seems inherently less efficient than that of 

group IIA and IIB introns, some of them have been able to successfully proliferate within 

bacterial genomes1,23. 

Surprisingly, the three classes of mobile group II introns are also differentiated from 

one another by their target DNA recognition mechanisms during retrohoming1. Group 

IIA and IIB intron rely on internal exon binding site (EBS) sequences that base pair with 

the complementary DNA target sequences known as intron-binding site (IBS) sequences. 

Such exon-binding sequences are denoted EBS1, EBS2, and δ for group IIA introns and 

EBS1, EBS2, and EBS3 for group IIB introns. The RT of group IIA and IIB recognizes 

additional target DNA sequences near the IBS sequences and helps promote local DNA 

melting, which enables base pairing between EBS and IBS sequences1. Although group 

IIC introns also contain an EBS1 and an EBS3, they lack an EBS2 and utilize a different 

targeting mechanism. Instead of relying on base pairing at the EBS2 position, group IIC 

introns recognize a hairpin structure of the target DNA, such as a bacterial transcription 

terminator that is located at the IBS2 position of the DNA target site24. 

OVERVIEW OF THESIS RESEARCH 

My research examines the DNA target recognition mechanism of two thermophilic 

group II introns (TeI3c and GsI-IIC) and splicing activity of GsI-IIC reverse transcriptase. 

TeI3c is a group IIB intron found in the cyanobacterium Thermosynechococcus elongatus, 

while GsI-IIC is a group IIC intron found in Geobacillus stearothermophilus. First, the 
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TeI3c targeting mechanism was studied by using deep sequencing with libraries having 

randomized EBS1/IBS1 or EBS2/IBS2 sequences. EBS/IBS combinations enabling 

intron mobilization were selected by mobility assays to provide sequences of efficient 

EBS1/IBS1 and EBS2/IBS2 pairs. This provided information about the nucleotide and 

base-pairing preference of EBS1/IBS1 and EBS2/IBS2, which are critical for TeI3c 

targeting. Similarly, a library of target site sequences and deep sequencing were used to 

study the GsI-IIC target recognition mechanism. Since GsI-IIC recognizes the secondary 

structure of the target site without heavily relying on base-pairing interactions, a doped 

library was used to avoid totally disrupting the secondary structures of the target sites. 

The doped library was then selected through mobility assay to obtain efficient targets that 

enabled successful retrohoming. This analysis elucidated conserved features and 

nucleotide positions, which allowed me to further study differential mobility efficiencies 

of mutated target sites. Finally, splicing activity of GsI-IIC reverse transcriptase was 

examined by using RNA transcripts with different target sites. Three WT target sites 

(TS7, TS22, and TS34) found in the genome and mutated versions of TS34 were tested 

for their effects on forward splicing. I found that recognition of a 5’-exon hairpin 

structure is required for retrohoming but not for RNA splicing.   
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Figure 1. Group II intron splicing mechanism. Group II intron splicing begins with 2’ 

OH of a bulged adenosine within the intron attacking the 5' splice site and creating an 

intermediate lariat still attached to the 3' exon. The 3’ OH of the newly cleaved upstream 

exon is now exposed and attacks the 3’ splice site, ligating the exons and excising the 

lariat intron. Adapted from Lambowitz and Zimmerly 200425. 
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Figure 2. Group II intron retrohoming mechanism. During retrohoming the 

catalytically active group II intron forms an RNP complex with an IEP. The splicing of 

group II introns involves two sequential transesterification reactions. In the first reaction, 

the 2’-hydroxyl group of the branch point A nucleotide makes a nucleophilic attack at the 

5’-splice site, forming an intron lariat still bound to the 3’-exon. In the second 

transesterification, the 3’-hydroxyl of the cleaved 5’-exon acts as a nucleophile and 

attacks the 3’-splice site, resulting in ligated exons and a lariat of intron RNA. The IEP is 

still tightly bound to the lariat intron RNA and aids in target site recognition. Once the 

target is recognized, the excised intron RNA is then reverse spliced in the sense strand of 

the target DNA. The IEP subsequently cleaves the antisense strand downstream of the 

insertion site. This exposes a 3’-DNA end at the cleavage site of the antisense strand, 

which is used as a primer for reverse transcription carried out by the IEP. The resulting 

intron cDNA is integrated into the genome after several additional steps, including RNA 

degradation, sense-strand DNA synthesis, and DNA repair. This RT-mediated mobility of 

group II introns is known as retrohoming and is the basis of proliferation of group II 

introns in the genomes22. 
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Chapter 2: Characterization of the DNA Targeting Site Recognition Rules of the 

TeI3c intron 

 TeI3c is a group IIB intron from the thermophilic cyanobacterium, 

Thermosynechococcus elongatus. It has been of interest because of its potential for use as 

a thermotargetron, which enables gene targeting in thermophiles3,26. As discussed 

previously (see Introduction), group IIA and IIB introns recognize their DNA target sites 

for retrohoming primarily through base-pairing interactions between exon-binding 

sequences (EBS1, EBS2 and δ or EBS3) with complementary intron-binding sequences 

(IBS1 and IBS2 in the 5’ exon and δ’ or IBS3 in the 3’ exon) (Figure 3). The group II 

intron RT recognizes additional target sequences flanking the IBS sequences and 

facilitates local melting of DNA, which allows base-pairing interactions between EBS 

sequences of the intron and IBS sequences of the target DNA. Because the DNA target 

site is recognized primarily through base pairing of the intron RNA, it is possible to 

retarget group IIA and IIB introns to insert into different sites by modifying the base-

pairing sequences in the intron RNA. This feature has enabled group II introns to be used 

as bacterial gene targeting vectors known as targetrons27,28. Two widely used targetrons 

are derived from mesophilic group IIA and IIB introns, the Lactococcus lactis Ll.LtrB 

intron and the E. coli EcI5 intron, respectively29,30. However, these mesophile-derived 

targetrons do not function in bacterial thermophiles, which include many biologically and 

industrially important organisms, including those used for bioethanol production26. 

Determining the detailed base-pairing rules of TeI3c is fundamental in the further 

development and use of the thermophilic targetron derived from the TeI3c group II intron. 
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RESULTS AND DISCUSSION 

Experimental strategy 

For TeI3c and other group IIB introns, the EBS1/IBS1 and EBS2/IBS2 base-

pairing interactions are major determinants of DNA target site recognition during 

retrohoming. To deduce nucleotide preferences for these interactions that could be used 

to develop targeting rules for TeI3c, I prepared two sets of randomized libraries: 1) 

Library 1 includes randomized EBS1 and IBS1 of intron donor plasmid and randomized 

IBS1 of recipient plasmid; 2) Library 2 includes randomized EBS2 and IBS2 of intron 

donor plasmid and randomized IBS2 of recipient plasmid. I used the intron mobility 

assay outlined in Figure 4 to select for successful retrohoming events. In this assay, an 

intron-donor plasmid expresses a derivative of the intron that carries a T7 promoter 

sequence near it’s 3’ end an integrates into a target site cloned in a recipient plasmid 

upstream of a promoterless tetracycline-resistance (tetR) gene, thereby activating that 

gene. For the library selections, the recipient plasmid of each library was electroporated 

first then followed by electroporating of the donor into E. coli HMS174 (DE3), which 

expresses an IPTG-inducible T7 RNA polymerase. The transformants carrying both 

donor and recipient plasmids were then selected overnight and used for intron mobility 

assays, which selected for successful retrohoming products in TetR colonies. The homing 

products were then deep sequenced and analyzed to elucidate the targeting rules utilized 

by TeI3c intron.  

The EBS1/IBS1 interaction 
For TeI3c, both EBS1 and IBS1 are 6 nt long and their entire length was 

randomized for the selection. After selection of TetR colonies, DNA was isolated and 

sequenced on Illumina HiSeq 4000 to obtain 2,310,942 paired-end reads of 150 bps. Each 

sequence contains the intron EBS sequence and the exon IBS sequence targeted during 

retrohoming, which makes it possible to match EBS sequences with their interacting 

partner IBS sequences.  
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The nucleotide preference was calculated at each position using WebLogo (Figure 

5A). In the retrohoming products IBS1 is immediately upstream of the inserted intron and 

IBS1 positions are denoted -1 to -6 from the intron insertion site. EBS1 positions are 

numbered by the IBS1 position with which they base pair. The EBS1 position -6 shows 

strong preference for C while its pairing partner strongly prefers G, which suggests this 

position has a preference for strong base-pairing interaction rather than UA found in the 

wild-type intron. Interestingly, the -6 position does not equally prefer a reciprocal CG 

(Figure 5A). The unselected libraries of donor EBSI (11,282,026 sequences) and 

recipient IBS1 (7,269,323 sequences) were sequenced to make sure the libraries are 

randomized. Figure 6 shows that the libraries are well randomized since the proportion of 

each nucleotide is close to 25% per position.   

Figure 7 shows that the most preferred EBS1/IBS1 pairs were CG, CG, TA, AT, 

GC, and CG at -6, -5, -4, -3, -2, and -1 positions, respectively. Watson-Crick (WC) and 

wobble base pairs are strongly preferred over non-base-pairing nucleotide combinations 

(Figure 8), which suggests that strong binding between the EBS1 and IBS1 is beneficial 

for efficient target recognition. No position is particularly tolerable for mismatches and 

all positions similarly exhibited strong preference towards base pairing.  

Figure 9 shows that EBS1/IBS1 interactions with 5 or 6 base pairs are strongly 

preferred for retrohoming. The 2,310,942 paired EBS1/IBS1 sequences were grouped 

into two categories: one in which the same sequences appeared once or twice and the 

other in which the same sequences appeared more than twice. The former group 

represents the less effective EBS1/IBS1, whereas the latter represents the more effective 

pairs resulting in successful retrohoming events. The distribution of sequences appearing 

only once or twice closely matches that of a set of randomized sequences (Figure 10). 

Together, my results show that there is strong selection for base pairing 

throughout the EBS1/IBS1 interaction. EBS1/IBS1 interactions with no more than one 

mismatch are strongly selected, and there is a strong preference for a CG (nucleotides in 

the order of EBS1 and IBS1 nucleotides) pair at position -6 and some preference for a CG 

pair at position -5 and -1. Position -1 also seems to show tolerance for a GT wobble pair. 
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The EBS2/IBS2 Interaction 

For TeI3c, both EBS2 and IBS2 are 5-nt long and their randomization was 

extended to neighboring nucleotides as shown in Figure 3. The randomization of EBS2 

was confined to the non-stem region so that it does not disrupt the secondary structure, 

which may be important for intron mobilization. The randomization of IBS2 was also 

extended to the two adjacent nucleotides between IBS1 and IBS2 (Figure 3).  

After selection of TetR colonies, DNA was isolated and sequenced on Illumina 

HiSeq 4000	   to obtain 822,341 paired-end (2 x 150 nt) sequences. The nucleotide 

frequency at each position within EBS2 and IBS2 was plotted using WebLogo (Figure 

11A). The randomization of EBS2 was extended to cover two more 3’ and three more 5’ 

nucleotide positions (Figure 11B). Unlike EBS1/IBS1 whose mobility efficiency was 

abolished by the initially attempted extension of the randomized region, EBS2/IBS2 with 

extended randomization still produced successful homing products. This suggests that the 

neighboring sequences of EBS2/IBS2 are more tolerant to randomization than the 

sequences flanking EBS1/IBS1. The most preferred nucleotides of IBS2 are C, A, T, C, 

and T from -13 to -6 positions, whereas the most preferred nucleotides of EBS2 are G, T, 

A, G, and A, which can Watson-Crick base pair with the IBS2’s most preferred 

nucleotides. The three nucleotides upstream of EBS2 exhibit preference for A, T, and T 

from 3’ to 5’, while the two nucleotides downstream of IBS2 prefer T. The two 

nucleotide positions upstream of EBS2 show selection against T. This may be because 

their potential base-pairing interactions with the two A residues at positions -14 and -15 

upstream of EBS1 can be detrimental to intron mobility (Figure 11A). A previous study 

showed that the two A residues at position -14 and 015 are recognized by IEP during 

retrohoming26. The unselected libraries of donor EBS2 (822341 sequences) and recipient 

IBS2 (1022247 Sequences) were sequenced to make sure the libraries are randomized. 

Figure 12 shows that the proportion of each nucleotide is closed to 25% per position.   

Each set of EBS2 and IBS2 was paired to calculate the frequencies of different 

base pairs at each position in the EBS2/IBS2 interaction (Figure 13). The most preferred 
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EBS2/IBS2 pairs were GC, TA, AT, GC, and AT at -13, -12, -11, -10, and -9 positions, 

respectively. The AT pair at position -9 appears to be strongly favored.  

As for the EBS2/IBS2 interaction, Watson-Crick and wobble base pairs are 

strongly preferred over non-base-pairing nucleotide combinations at each position of the 

EBS2/IBS2 interaction (Figure 14). However, positions -11 and 12 appear to be more 

tolerant of mispairings than do any of the other positions in either the EBS2/IBS2 or 

EBS1/IBS1 interactions.  

Similar to the analysis of EBS1/IBS1, the 833,431 paired EBS2/IBS2 sequences 

were grouped into two categories: one in which the same sequences appeared once or 

twice and the other in which the same sequences appeared more than twice (Figure 15).  

The first group includes the less effective EBS2/IBS2 interactions and is skewed toward 

those with a higher number of mismatches. On the other hand, EBS2/IBS2 interactions 

with five base pairs are strongly preferred over those with smaller number of base pairs 

(Figure 16).  

Together, my results show that as for the EBS1/IBS1 interaction, base pairing 

throughout the EBS2/IBS2 interaction is beneficial for efficient target recognition. In the 

case of EBS2/IBS2, there appears to selection for specific base pairs at some positions, 

including GC at position -13, TA at position -12, GC or CG at position -10, and AT at 

position -9. Also, strong selection is present for T at -7 and against C at position -8 

between IBS1 and IBS2. Within intron, there is selection against Ts at positions -14 and -

15 to prevent formation of TA base pairs that would interfere with protein recognition at 

these positions. 

EXPERIMENTAL DESIGN AND METHODS 

Library Preparation 

The insert fragments with randomized regions were cloned into donor (pACD2X) 

and recipient (pBRR3T2) plasmid backbones, as described in Mohr et al., 201031. The 

donor insert with the randomized EBS1 and IBS1 was produced by PCR with primers 

3c2aEBS1aLib3 and 3cIBSLib3(s). The donor insert with the randomized EBS2 and 
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IBS2 was produced by PCR stitching of two DNA fragments. The first PCR fragment 

was produced from the WT with primers 3cIBS12Lib(s) and 3cUniva, and the second 

PCR fragment was produced from the WT with primers 3c2aEBS2 and 3cBsibot. The 

two fragments sharing an overlapping region were then fused by the final round of PCR 

with primers 3cIBS12Lib(s) and 3cBsibot. The donor inserts and backbone (pACD2X) 

were digested with SpeI and BsiWI and ligated. The recipient inserts were produced by 

Klenow fill-up reaction. Oligonucleotides containing randomized IBS1 or IBS2 were 

filled up by 1hr Klenow (New England Biolabs) reaction at 37ºC (3cIBS1LibTop2 

contains the randomized IBS1, 3cIBS2LibTop2 contains the randomized IBS2, and 

4cLibrev us as a common reverse primer). The filled-in fragments were purified using 

MiniElute (Qiagen) then digested with EcoRI and PstI. The digested insert was purified 

again with MiniElute and ligated into a recipient plasmid (pBRR3T2) already digested 

with EcoRI and PstI. 

Mobility Assay 

Library selections were performed using the E. coli-based two plasmid intron 

mobility assay described in Mohr et al. (Figure 4)26,31. The ampicillin-resistant (AmpR) 

recipient plasmids were first electroporated into HMS174 (DE3) strain of E. coli cells 

then the transformed cells were treated to be electrocompetent. Chloramphenicol-resistant 

(CapR) donor plasmids were then electroporated into the electrocompetent HMS174 

(DE3) cells carrying the recipient plasmids. The order of the sequential electroporation 

seemed important since electroporating the donor before the recipient did not work. Also, 

electroporating both libraries at the same time did not work. Cells carrying both the donor 

and recipient plasmids were selected overnight in LB media with ampicillin (100 mg/L) 

and chloramphenicol (25 mg/L). The donor plasmid uses a T7lac promoter (PT7lac) to 

express a group II intron RNA flanked by two exons (E1 and E2) and the group II reverse 

transcriptase (RT) cloned downstream of the E2. Intron mobilization was induced with 

IPTG (0.5 mM) at 48°C for 1 h. The mobilized intron inserts into a target site (the ligated 

E1-E2) cloned in the AmpR recipient plasmids. The target site is followed by promoter-
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less tetracycline-resistance (tetR) gene, so that successful integration of the intron carrying 

a PT7lac promoter activates the tetR gene which confers tetracycline resistance to the 

homing product plasmid (Figure 4). The homing product was selected overnight in LB 

media with tetracycline (25 mg/L). 

Next-Generation Sequencing and Computational Analysis 

 The homing products were extracted from the overnight-selected culture using 

Qiagen HiSpeed Plasmid Maxi Kit. Illumina adaptors (IlluminaTOP and Illumina BOT) 

were added to the tetracycline-selected homing product through PCR. The PCR product 

was then purified with Agencourt AMpure XP and Illumina tails were added to the 

cleaned sample via PCR (6 cycles). The PCR product was cleaned with Agencourt 

AMpure XP again submitted for Illumina HiSeq 4000 paired-end (2 x 150 bases) 

sequencing at Genomic Sequencing and Analysis Facility (GSAF). Galaxy was used to 

convert the raw NextGen sequencing data to FASTA format and further trimming of the 

sequences. Python scripts were used to obtain nucleotide and base-pair frequencies of the 

doped region. The resulting nucleotide and pair frequencies were plotted using RStudio 

and Excel. 
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Figure 3. Schematic diagram of the TeI3c group IIB intron EBS sequences 
interacting with exon IBS sequences. DNA target site for group II intron TeI3c showing 

positions recognized by the IEP (shaded in blue) and intron RNA base pairing 

(nucleotides shown in red for EBS1/2 and IBS1/2 and shaded in red EBS3 and IBS3)26. 

The regions shaded in yellow were randomized for the library 1 and the ones in purple 

were randomized for the library 2. Adapted from Mohr et al. 201326.    
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Figure 4. Schematic diagram of two-plasmid E. coli mobility assay. Ampicillin-

resistant (AmpR) recipient plasmids were first electroporated into HMS174 (DE3) strain 

of E. coli cells and then the transformed cells were treated to be electrocompetent. 

Chloramphenicol-resistant (CapR) donor plasmids were then electroporated into the 

electrocompetent HMS174 (DE3) cells carrying the recipient plasmids. Cells carrying 

both the donor and recipient plasmids were selected overnight in LB media with 

ampicillin (100 mg/L) and chloramphenicol (25 mg/L). The donor plasmid uses a T7lac 

promoter (PT7lac) to express a group II intron RNA flanked between two exons (E1 and 

E2) and the group II reverse transcriptase (RT) cloned downstream of the E2. Intron 

mobilization was induced with IPTG (0.5 mM) at 48°C for 1 hour. The mobilized intron 

inserts into a target site (the ligated E1-E2) cloned in the AmpR recipient plasmids 
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upstream of a promoter-less tetracycline-resistance (tetR) gene. The successful integration 

of the intron carrying a PT7lac activates the tetR gene, which confers tetracycline 

resistance to cells carrying the homing product plasmid. The homing product was 

selected overnight in LB media with tetracycline (25 mg/L). T1 and T2 are ribosomal 

RNA transcription terminators that block background transcription of tetR gene by E. coli 

RNA polymerase. Tφ terminates T7 transcription. Adapted from Mohr et al. 201326. 
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Figure 5. Nucleotide frequency of each position of EBS1 and IBS1 in the library 1 
homing products. (A) WebLogo of homing product sequences shows different 

proportion of nucleotides at each position. The size of each letter represents the 

corresponding nucleotide’s proportion. (B) The EBS1 and IBS1 sequences are in red. For 

library 1, the randomization is confined to the sequences of EBS1 and IBS1.  
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Figure 6. The unselected libraries of donor EBSI and recipient IBS1. The unselected 

libraries of donor EBSI (11,282,026 sequences) and recipient IBS1 (7,269,323 

sequences) were sequenced to make sure the libraries are randomized. The size of each 

letter represents the percentage of the corresponding nucleotide at each position. It is 

evident that the proportion of each nucleotide is close to 25% per position.   
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Figure 7. EBS1/IBS1 pair frequency of each position of the library 1 homing 

products. This plot shows preference towards different EBS1/IBS1 pairs per position. 

The pairs are in the order of non-pairs, wobble pairs, and Watson-Crick (WC) pairs from 

left to right. The most preferred EBS1/IBS1 pairs were CG, CG, TA, AT, GC, and CG at 

-6, -5, -4, -3, -2, and -1 positions, respectively. WC base pairs are preferred over non-

canonical or wobble base pairs, which suggests that strong binding between the EBS1 

and IBS1 is beneficial for efficient target recognition. In the color chart to the right, 

EBS1 nucleotides are in lower case letters, and IBS1 nucleotides are in uppercase letters. 
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Figure 8. The percentage of wobble and WC base pairs versus non-pairs at each 
position in the EBS1/IBS1 interactions in the homing products of the library 1.  
The proportion of wobble and WC pairs (blue) is compared to that of non-pairs (orange) 

for each position of EBS1/IBS1. It is evident that WC and wobble base pairs are strongly 

preferred (>80%) over non-base-pairing nucleotide pairs. 
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Figure 9. The total number of wobble and WC base pairs in the EBS1/IBS1 
interaction for homing products of the library 1. EBS1/IBS1 interactions with 5 or 6 

base pairs are strongly preferred for retrohoming. Paired EBS1/IBS1 sequences were 

grouped into two categories: one in which the same sequences appeared once or twice 

(Red) and the other in which the same sequences appeared more than twice (Green). The 

former group represents the less effective EBS1/IBS1, whereas the latter represents the 

more effective pairs resulting in successful retrohoming events.  
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Figure 10. The total number of wobble and WC base pairs in the EBS1/IBS1 
interaction for homing product sequences occurred once or twice. 214,416 sequences 

that appeared once or twice were further grouped by the number of WC and wobble pairs. 

Each blue bar represents the percentage of sequences with the indicated number of base 

pairs observed experimentally. The red bars represent the expected percentages 

calculated based on nucleotide frequencies.  
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Figure 11. Nucleotide frequency of each position of EBS2 and IBS2 in the library 2 

homing products. (A) WebLogo of homing product sequences shows different 

proportion of nucleotides at each position. The size of each letter represents the 

corresponding nucleotide’s proportion. The randomization of EBS2 and IBS2 is extended 

to neighboring sequences and the blue box indicates the EBS2 and IBS2 regions.  (B) 

The WT EBS1 and IBS1 sequences are in red. For the library 2, the randomization of 

EBS2 and IBS2 is extended to the adjacent positions. The stem-forming positions of 

EBS2 are not randomized to avoid disrupting the catalytically important secondary 

structure of the intron. 
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Figure 12. Unselected libraries of donor EBS2 and recipient IBS2. Unselected 

libraries of donor EBS2 (822,341 sequences) and recipient IBS2 (1,022,247 sequences) 

were sequenced to make sure the libraries are randomized. The size of each letter 

represents the percentage of the corresponding nucleotide at each position. It is evident 

that the proportion of each nucleotide is closed to 25% per position in most cases.   
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Figure 13. EBS2/IBS2 pair frequency of each position of the library 2 homing 
products. This plot shows preference towards different EBS1/IBS1 pairs per position. 

The pairs are in the order of non-pairs, wobble pairs, and Watson-Crick (WC) pairs from 

left to right. The most preferred EBS2/IBS2 pairs were GC, TA, GC, GC, and AT at -13, 

-12, -11, -10, and -9 positions, respectively. WC base pairs are preferred over non-

canonical or wobble base pairs, which suggests that strong binding between the EBS2 

and IBS2 is beneficial for efficient target recognition. In the color chart to the right, 

EBS2 nucleotides are in lower case letters and IBS2 nucleotides are in uppercase letters. 
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Figure 14. The percentage of wobble and WC base pairs versus non-pairs at each 
position in the EBS2/IBS2 interactions in the homing products of the library 2.  

The proportion of wobble and WC pairs (blue) is compared to that of non-pairs (orange) 

for each position of EBS2/IBS2. WC and wobble base pairs are strongly preferred over 

non-base-pairing nucleotide pairs. Although position -12 exhibits relatively weaker 

preference towards WC and wobble pairs, the proportion of WC and wobble pairs is still 

around 70%. 
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Figure 15. The total number of wobble and WC base pairs in the EBS2/IBS2 
interaction for homing products of the library 2. EBS2/IBS2 interactions with five 

base pairs are strongly preferred for retrohoming. Paired EBS2/IBS2 sequences were 

grouped into two categories: one in which the same sequences appeared once or twice 

(red) and the other in which the same sequences appeared more than twice (green). The 

former group represents the less effective EBS2/IBS2, whereas the latter represents the 

more effective pairs resulting in successful retrohoming events. 
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Figure 16. The total number of wobble and WC base pairs in the EBS1/IBS1 
interaction for homing product sequences occurred once or twice. 11,844 sequences 

that appeared once or twice were further grouped by the number of WC and wobble pairs. 

Each blue bar represents the percentage of sequences with the indicated number of base 

pairs observed experimentally. The orange bars represent the expected percentages 

calculated based on nucleotide frequency.  
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Table 1. Oligonucleotides 

Name Sequence 
3cIBS12Li
b(s) 

AAAACTAGTAA(N:25252525)(N)(N)(N)(N)(N)(N)AAGGCAGTGCGACGCGAAAGCTAG 

3cUniva TAACGAGGCTTCTAGCG 
3c2aEBS2 CGCTAGAAGCCTCG(N:25252525)(N)(N)(N)(N)(N)(N)(N)(N)(N)CAGGCCAAAGATGCTG 
3cBsibot CCCCGTACGCTGAAAAGCAAGCAGCGTATCCAATCCGCTT 
3cIBS1Lib
3(s) 

AAAACTAGTAATGGAG(N:25252525)(N)(N)(N)(N)(N)(N)(N)GTGCGACGCGAAAGCTAG 

3cIBS1Lib
Top2 

AAACTGCAGCTGTAGAACCTCTTGAATGGAG(N:25252525)(N)(N)(N)(N)(N)(N)(N)AATGACG
GTGGACCAGAATTCGACAACCCAACAG 

3cIBS2Lib
Top2 

AAACTGCAGCTGTAGAACCTCTTGAA(N:25252525)(N)(N)(N)(N)(N)(N)AAGGCAAATGACGG
TGGACCAGAATTCGACAACCCAACAG 

4cLibrev CTGTTGGGTTGTCGAATT 
IlluminaT
OP 

AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCGACGATCA 

Illumina 
BOT 

CAAGCAGAAGACGGCATACGAGATATTCCGGTGACTGGAGTTCAGACGTGTGCTCTTCCGA
TCT 

TargetSeq ATGCGAGAGTAGGGAACTGC 
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Chapter 3: DNA target site recognition and splicing of the group IIC intron 

Geobacillus stearothermophilus GsI-IIC 

INTRODUCTION 

 Unlike the group IIB intron TeI3c, which utilizes three EBS-IBS base-pairing 

interactions for DNA target site recognition, group IIC introns, such as GsI-IIC, 

recognize a 5’-exon hairpin structure in place of the EBS2/IBS2 interaction1. However, it 

remains unclear what structural features of the 5’-exon hairpin region are important for 

DNA target site recognition by group IIC introns and whether this region is recognized 

by the intron RNA or the intron-encoded RT. To investigate these issues, I characterized 

DNA target site recognition and splicing activity of the thermostable GsI-IIC intron, both 

to identify critical feature of the 5’-exon hairpin region and to determine whether this 

region is recognized similarly for intron mobility and RNA splicing. My results indicate 

that the 5’-exon hairpin and at least one nucleotide base upstream of IBS1 are recognized 

by the intron-encoded RT for DNA integration, but are not required for protein-

dependent or self-splicing of the GsI-IIC intron. My results also provide new insights into 

mechanisms used by GsI-IIC to proliferate to relatively high copy number within its host 

genome. The work in this chapter was done in collaboration with Dr. Georg Mohr. 

RESULTS 

G. stearothermophilus group IIC introns 

 Figure 17A shows the predicted secondary structure of the GsI-IIC3 intron from 

Geobacillus stearothermophilus strain 10 (GenBank: NZ_CP008934). The structure 

consists of six secondary structure domains (DI-DVI), which are conserved in all group II 

introns and potentially interact via tertiary structure contacts (Greek letters; Figure 17). 

Like other group IIC introns, GsI-IIC contains EBS1 and EBS3 sequences, which can 

potentially base pair to IBS1 and IBS3 sequences in the 5’- and 3’-exons, respectively 

(Figure 17). 
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 A previous study identified 17 copies of the GsI-IIC intron in what was then the 

partial genome sequence of G. stearothermophilus strain 1032. The completed draft 

genome sequence revealed 45 copies of the intron, denoted GsI-IIC1-45, which comprise 

~2.3% of the genome (Table 2). 44 of these introns are intact and range in size from 

1,881 to 1,894 nt. The remaining intron, GsI-IIC41, has a 3,130-nt transposon inserted 

after amino acid residue 133 of the intron ORF. The different copies of the GsI-IIC intron 

have >95% sequence identity to each other and are closely related to the Oceanobacillus 

ihiensis group IIC intron, whose X-ray crystal structure has been determined14, and the 

Bacillus halodurans group IIC intron B.h.I1, whose splicing and mobility mechanisms 

have been studied previously (~50% and ~60% identity to GsI-IIC over 480-nt of the 

ribozyme core)24. All 45 copies of the GsI-IIC intron are inserted downstream of 

predicted hairpin structures, and introns inserted in the top and bottom strand are largely 

segregated on opposite sides of the genome (Table 2 and Figure 18). These features are as 

expected for group IIC introns, which typically insert preferentially at DNA hairpins in 

the lagging template-strand and would thus be segregated on opposite sides of a genome 

undergoing bidirectional replication1,24. However, while the requirement for a hairpin 

upstream of the intron-insertion site appears to be absolute, the genomic distribution 

(Figure 18) suggests that insertion in the leading template-strand can occur at lower 

frequency, as borne out by intron mobility assays described below.  

 The 45 intron copies fall into two secondary structure classes, which differ in the 

length of DIIb (Figure 17; Table 2). Most of the nucleotide sequence differences between 

different copies of the GsI-IIC intron correspond to single nucleotide changes or small 

insertions/deletions in or adjacent to loops or bulges within stems (intron positions 33, 

165, 213, and 257 in DI, 288 in DII, 347 in DIII, and 430 in DIV) and are not expected to 

affect intron function. Exceptions are GsI-IIC2, which has a potentially disruptive single-

nucleotide change at the base of DIII, and GsI-IIC21, which has the branch-point A 

residue in DVI changed to G and a 3-nt deletion in the loop of DIII (Figure 17; Table 2). 
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Group II intron-encoded RTs 

 All 45 copies of the GsI-IIC intron encode an RT of 420 aa with >99% identity to 

each other. Amino acid substitutions in different copies of the intron are found at only 

seven positions (Y40D, I41V, R49H, E66G, S105P, M137T, N379K). Except in the 

intron with a transposon insertion, all the RTs are full-length and have the conserved 

YADD motif at the RT active site along with other conserved motifs found in active RTs 

(Figure 19).  The purified GsI-IIC34 protein has been shown to have high RT activity24. 

GsI-IIC21, which has a mutation in the bulged A in DVI and deletion in the loop of DIII, 

also has the most changes in the RT (Y40D, I41V, R49H, S105P, N379K), including 

three (Y40D, I41V, N379K) that are not found in other copies of the intron (Figure 19). 

The divergence of the GsI-IIC21 intron may reflect that it was an early insertion that was 

rendered non-functional by the branch-point mutation and/or that it is inserted at a site 

that makes it less susceptible to purifying selection than other copies of the intron. 

Genomic insertion sites of the GsI-IIC intron 

 Previously, Moretz and Lampson32 described 17 insertion sites of the GsI-IIC 

intron in G. stearothermophilus strain 10 all of which have an upstream hairpin and 

predicted IBS1 and IBS3 sequences on either side of the intron-insertion site. This holds 

true for all 45 introns in the completed genome sequence (Figure 20 and Table 2). In 43 

cases, the intron is inserted downstream of a gene (22 to 1,625 bp from the stop codon), 

and the predicted hairpin corresponds to a putative transcription terminator. The two 

remaining introns (GsI-IIC39 and GsI-IIC24) are inserted within genes. GsI-IIC39 is 

found within a predicted hairpin in the coding sequence of a two-component sensor 

histidine kinase (WP_013144786.1), and GsI-IIC24 is inserted within a hairpin in the 

coding sequence of a short hypothetical protein (WP_053414214.1), but complementary 

to a putative transcription terminator of the GT50_RS08745 gene on the opposite strand. 

A web logo shows no strong sequence conservation within the hairpin, but does show 

strong conservation of the T residue at position -5, which is located in the single-strand 

region downstream of the hairpin immediately adjacent to the IBS1 sequence (Figure 20). 
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All copies of the Geobacillus GsI-IIC intron in the genome have the same EBS1 

(UGGA) and EBS3 (G) sequences, but the IBS1 and IBS3 sequences at the intron-

insertion sites differ slightly, with the IBS1 sequences containing as many as two 

mismatches (including dG:rU and dT:rG pairs) out of the four possible base pairs with 

EBS1. IBS3 corresponds to a single nucleotide that can base pair with the G residue at 

EBS (T in 36 introns and C in 8 introns), with one site (GsI-IIC11) having a non-

complementary A at the IBS3 position (Figures 17 and 20). The limited EBS1/IBS1 and 

EBS3/IBS3 interactions suggest that the insertion site specificity of the GsI-IIC intron is 

dictated primarily by recognition of the hairpin. 

Notably, except for introns GsI-IIC41 (transposon insertion) and GsI-IIC21 

(branch point A deletion and other mutations), all other copies of GsI-IIC appear to be 

intact and likely functional, indicating either recent insertion or selection against inactive 

copies of the intron, despite being inserted downstream of transcription terminators in 

most cases. BLASTN searches found several hundred related DNA sequences in the 

Genebank NR database, indicating wide distribution of this intron mainly in Bacilli and 

Clostridia and to a lesser degree in Bacteroidetes and Deltaproteobacteria (G. Mohr, 

personal communication). 

GsI-IIC mobility assays and effect of deletions in DIV on intron mobility 

To study the GsI-IIC mobility mechanism in detail, we adapted an E. coli two-

plasmid mobility assay used previously for the Lactococcus lactis Ll.LtrB and 

Thermosynechococcus elongatus group II introns (Figure 21A)24,31. In this assay, a CapR 

intron-donor plasmid (pADC2X-GsI-IICΔORF+T7) uses a T7lac promoter (PT7lac) to 

express a GsI-IIC-∆ORF intron carrying a T7 promoter (PT7) with short flanking 5’ and 

3’ exons (E1 and E2, respectively) along with the group II RT, which is cloned 

downstream of E2. The AmpR-recipient plasmid (pBRR3-GeoTS) contains a DNA target 

site (the ligated E1–E2 sequence, TS) cloned upstream of a promoterless tetR gene, such 

that retrohoming of the intron carrying the T7 promoter into the site activates that gene. 

Two versions of the recipient plasmid were made that differ in the orientation of the 
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target site and TetR cassette relative to the replication origin to test whether the nascent 

leading or lagging strand is used preferentially to prime reverse transcription (denoted 

LEAD and LAG, respectively)24. The assays were done in E. coli HMS174 (DE3), which 

contains an IPTG-inducible T7 RNA polymerase, and intron expression was induced with 

IPTG for 1 h at 48ºC, the highest temperature that could be used without affecting cell 

viability31. Mobility efficiencies were determined in plating assays as the ratio of 

(TetR+AmpR)/AmpR colonies.  

Recognition of the upstream hairpin is required for GsI-IIC mobility 

 The comparison of the different genomic insertion sites of the 45 copies of the 

GsI-IIC intron suggested that DNA target specificity is dictated largely by sequence 

elements in the 5’ exon with only the single IBS3 nucleotide in the 3’ exon contributing 

to DNA target site recognition (Figure 20). Supporting this inference, we found no 

significant difference in mobility efficiency for DNA target sites containing the TS34 5’ 

exon in combination with TS34, TS23, or TS12 3’ exons, all of which contain a canonical 

T residue at the IBS3 position, but have no other common features (Georg Mohr, 

unpublished data). We therefore focused of recognition elements in the 5’ exon, 

particularly the 5’ hairpin structure found upstream of all genomic GsI-IIC insertion sites. 

 To examine the contribution of the 5’-exon hairpin structure to DNA target site 

recognition, we selected 5’-exon sequences from three target sites with somewhat 

different hairpin features (TS7, TS22, and TS34) and tested each in combination with the 

3’-exon sequence from a fourth target site (TS12), thereby equalizing any contribution 

from the 3’ exon (Figure 21B). The TS7, TS22, and TS34 sites differ in the length of the 

hairpin (10 to 14 nt), the presence of unpaired nucleotides in the hairpin, the number of 

potential base pairs in the IBS1/EBS1 interactions (2 to 4), and the potential to form extra 

base pairs with additional sequences in the EBS1 loop (nucleotide residues indicated in 

blue. All three DNA target sites also contain the T-5 residue upstream of IBS1, which 

was strongly conserved in GsI-IIC genomic insertion sites (Figure 21).  
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 For all three target sites, the insertion frequency into the LAG recipient plasmid is 

higher (9- to 11-fold) than in the LEAD recipient, confirming preferential use of a 

lagging strand primer for initiation of reverse transcription as found for other group IIC 

introns. Comparing the three target sites, mobility efficiencies were highest for TS34 and 

lowest for TS22, which has the fewest potential base pairs between EBS1 and IBS1, as 

well as a bulged nucleotide in the middle of the hairpin stem (Figure 21B). 

 Deleting the hairpin from the TS34 target site, changing one side of the hairpin to 

match the other side so that it could no longer base pair with the other side, or replacing 

the hairpin with a sequence of equal length derived from the tetR gene decreased the 

mobility efficiency in the preferred LAG orientation by ~250-fold, with most if not all of 

the residual mobility found by colony PCR and sequencing to reflect ectopic insertion 

into a T2 transcription terminator, which is present in the recipient plasmid upstream the 

tetR marker to prevent read through by E. coli RNA polymerase24. These findings indicate 

that the 5’-hairpin structure contributes strongly to DNA target site recognition and 

identify some features of the hairpin that may be important for optimal recognition. 

Identification of critical features of the 5’-exon hairpin by in vivo selection and high-
throughput sequencing 

 To further characterize features of the 5’-exon hairpin region that are important 

for intron mobility, I carried out an in vivo selection experiment using the two-plasmid 

assay with a recipient plasmid in which the 5’-exon sequence encompassing the TS34 

hairpin (positions -5 to -37) was doped at 70% of the wild-type nucleotide residue and 

10% of each of the other three nucleotide residues. After induction of donor plasmid 

expression with IPTG, TetR colonies were selected and homing products were amplified 

by PCR and sequenced on an Illumina HiSeq4000 to obtain ~6 million paired-end (2 X 

150) reads. 

 The data show that the hairpin can be divided into conserved upper and lower 

stems, which contain strongly selected GC base pairs, separated by a TG elbow at which 

Watson-Crick base pairing is counterselected (Figure 22A and B). Other strongly 
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conserved nucleotides are two G-residues in the hairpin loop and the T and position -5, 

which lies in the unpaired region below the hairpin and is also conserved in all 45 GsI-

IIC target sites (see Figure 20). Analysis of mutant target sites showed that replacement 

of the GT elbow and adjacent AT pair with GC base pairs to make a stable continuous 

helix decreased the mobility efficiency about five-fold. By comparison, mutation of T-5, 

which lies in the unpaired region below the hairpin just upstream of IBS1, to any other 

nucleotide residue decreased the mobility efficiency by >250-fold, whereas mutating the 

adjacent nucleotide G-6 to a T residue had much less effect on intron mobility (decreased 

four-fold). The very strong effecting of mutating T-5 is surprising and identifies it as a 

nucleotide residue potentially recognized by the IEP. This would mirror the situation for 

the thermostable TeI4c group IIB intron, where a single/small number of nucleotide 

residues immediately upstream of IBS2 appear to be recognized by the IEP and may 

contribute to local DNA melting31.  

Protein-dependent and self-splicing of GsI-IIC 

 To investigate the splicing activity of the GsI-IIC RT, we used an in vitro assay in 

which the purified protein was incubated with a 32P-labeled precursor RNA containing 

the 656-nt GsI-IIC-∆ORF intron and short flanking 5’ and 3’ exons. Figure 23A shows 

that in reaction medium containing 5 mM Mg2+ at 50 ºC, the GsI-IIC-∆ORF intron could 

be spliced efficiently by GsI-IIC RT to produce ligated exons and excised intron lariat 

RNA. The intron was unable to self-splice under these conditions, but could self-splice 

hydrolytically to produce linear intron RNA and ligated exons in reaction medium 

containing 100 mM Mg2+ (Figure 23A). Both protein-dependent and self-splicing were 

more efficient with a construct containing the 5’ exon from the TS34 insertion site than 

with 5’ exons from the TS7 and TS22 insertion sites, and consequently, the construct 

with the 5’ exon from the TS34 insertion site was used for all subsequent experiments. 

 Time-course experiments with 40 nM GsI-IIC precursor RNA and different 

concentrations of GsI-IIC RT (20 to 200 nM) showed that protein-dependent splicing at 5 

mM Mg2+ and 50 ºC occurred at a rate of ~6 min-1 and was maximally efficient at a molar 
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ratio of 1:2, with ~75% of the precursor RNA spliced under the conditions (Figure 23B). 

Addition of fresh GsI-IIC protein after 10 min did not result in the splicing of additional 

precursor RNA, indicating that the unreactive fraction likely reflects precursor RNA 

molecules that had folded into an inactive conformation. When the amplitude of the 

reaction was corrected for percentage of active precursor RNA molecules, splicing is 

seen to have occurred with a stoichiometry of 2:1 protein:RNA throughout the 

concentration range tested. Together, these findings suggest that two molecules of GsI-

IIC, possibly functioning as a dimer, are required to splice one molecule of intron RNA, 

consistent with previous findings for the Ll.LtrB group IIA intron18,24. 

Effect of hairpin mutations on RNA splicing 

 Next, we tested the effect of mutations in the TS34 5’ exon on both protein-

dependent and self-splicing (Figure 24). The results showed that various mutations 

including deletion of the hairpin leaving only the IBS1 sequence (∆34HP), replacing the 

hairpin with a sequence of equal length derived from the tetR gene, changing T-5 to any 

other nucleotide, or G-6 to T did not strongly inhibit either protein-dependent or self-

splicing. In fact, some of the mutations (e.g., replacing the 5’-exon hairpin with a 

sequence of equal length derived from the tetR gene, changing T-5 to any other nucleotide, 

or changing G-6 to T) appeared to enhance RNA splicing. These findings differ from 

those for intron mobility assays, where the same mutations in the 5’ exon of the DNA 

target site strongly inhibited intron mobility compared to the WT TS34 site (see Figure 

22C). Interestingly, changing one side of the hairpin match the other side appeared to 

significantly decrease the RNA splicing efficiency. This mutation was the only one that 

leaves no predicted secondary structure in the 5’ exon, and it is possible that this feature 

or the repeat of part of the hairpin sequence have a detrimental effect on RNA splicing. 

Considered together, these findings indicate that recognition of 5’-exon hairpin is 

required for intron mobility but not for RNA splicing.   
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CONCLUSIONS 

 In this chapter, I characterized DNA target site recognition and RNA splicing of 

the G. stearothermophilus GsI-IIC, a group IIC intron that has proliferated to high copy 

number within its host genome. I found that GsI-IIC, like other group IIC introns, inserts 

downstream of DNA hairpins at sites having short IBS1 and IBS3 sequences recognized 

by EBS1 and EBS3 sequences within the intron. Both the distribution of genomic 

insertion sites and in vivo mobility assays indicate that insertions occur preferentially into 

the lagging templates strand, presumably in single-stranded DNA regions at a DNA 

replication fork, which facilitate formation of the DNA hairpin and enable direct use of 

lagging strand primers. Both the genomic target site distribution and mobility assays also 

show that insertions can occur into the leading template strand at lower frequency. 

 Analysis of genomic insertion sites suggests that insertion specificity is 

determined primarily by the recognition of the hairpin rather than IBS1 and IBS3 

interactions. All of the genomic insertion sites have an upstream hairpin, but some form 

only 2 of 4 EBS1/IBS1 base pairs and have mismatches at IBS3. This could reflect that 

retrohoming in G. stearothermophilus ordinarily occurs at high temperatures, which 

promote DNA melting, thereby facilitating the formation of hairpins on the separated 

strands, while decreasing the contribution of the base-pairing interactions. 

 In vivo selection and mutagenesis experiments identify features of the DNA 

hairpin and adjoining regions that contribute to DNA target site recognition. Thus, the 

most efficiently recognized hairpins consist of two stable stems separated by an elbow 

region, which presumably enables some bending. However, a bulged nucleotide in the 

elbow may be detrimental because HP22, the worst of the three genomic target sites 

tested, has a bulged G-residue in this region. The in vivo selections with the TS-34 

hairpin show selection against base pairing at the GT elbow, and replacement of the 

elbow and adjoining AT base pair with two GC pairs to make a stable continuous stem 

inhibits mobility by 5-fold. Surprisingly, I also found that T-5, which is located 

downstream of the hairpin adjacent to IBS1, contributes strongly to DNA target site 
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recognition. T-5 is conserved in all 34 GsI-IIC target sites, and mutations of T-5 to any 

other residue decrease mobility efficiencies by >250-fold. 

Although various mutations in the 5’-exon hairpin or T-5 nucleotide of the TS34 

target site significantly decreased intron mobility efficiencies, all but one of the same 

mutations had no strong negative effect on either protein-dependent or self-splicing. Only 

the 5’-exon mutation created by changing one side of the hairpin to match the other side 

significantly hindered RNA splicing, possibly reflecting an idiosyncratic effect of the 

mutation on the folding of the precursor RNA. Overall, my results suggest that the 5’-

exon hairpin and T-5 are not recognized in the same way for intron mobility and RNA 

splicing. A likely possibility is that these features in DNA target sites are recognized by 

the intron-encoded RT, similar to subgroup IIA and IIB introns where distal 5’-exon 

features upstream of IBS2 are recognized by the intron-encoded protein for intron 

mobility but not for RNA splicing1.  

Bacterial group II introns that have inserted outside of essential genes frequently 

degenerate, presumably reflecting that intron mobility is deleterious to the host, so that 

strains carrying active introns are lost by purifying selection33. Further, in previously 

studied cases where bacterial group II introns have proliferated to high copy number, a 

significant proportion of the copies are present as twintrons in which one copy of the 

intron has inserted into another34. Surprisingly, despite being inserted outside of genes, 

nearly all the GsI-IIC introns in the G. stearothermophilus genome are potentially active, 

as judged by retention of conserved structural features of both the intron RNA and intron-

encoded RT. Further, there are no GsI-IIC twintrons. The lack of GsI-IIC twintrons is 

readily explained by the lack of suitable hairpins targets within the intron. The finding 

that most copies of the GsI-IIC intron appear to be functional despite being inserted 

downstream of transcription terminators could reflect either recent insertion or purifying 

selection against inactive copies of the intron. The latter could in turn reflect that the non-

coding regions in which the intron has inserted are ordinarily transcribed at a low level 

and have important functions, which requires retention of RNA splicing activity to 

reconstitute functional transcripts. Finally, the ability of GsI-IIC to proliferate to 
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relatively high copy number in a bacterial genome is relatively rare for group II introns, 

which are typically found at one or two copies per genome35. The high copy number of 

GsI-IIC could be due to the large number of transcriptional terminator hairpin sequences 

that provide suitable target sites combined with mobility at high temperatures, which 

makes the intron less dependent on base-pairing interactions that would provide more 

specificity for DNA insertion. 

EXPERIMENTAL DESIGN AND METHODS 

Recombinant plasmids 

pGsI2C_35/32 is used for in vitro transcription of GsI-IIC RNAs for RNA 

splicing experiments and contains a 656-nt GsI-IIC-ΔORF intron (nucleotides 551-1791 

encoding the intron ORF replaced by CGC) with short flanking 5’ and 3’ exons (35 and 

32 nts, respectively) cloned downstream of a phage T3 promoter between the HindIII and 

BamHI sites in pUC19 (New England BioLabs). The 5’ exon is derived from target site 

34, and the 3’ exon is derived from target site 23. Derivatives of GsI2C-35/32 with 5’ 

exons from different target sites or mutations in the TS34 hairpin constructed by PCR 

stitching of two overlapping PCR products with outside primers Stch_HindIII_T3_For 

and Stch_BamHI, which appended HindIII and BamHI sites, respectively. 5’ fragments 

with different mutations were produced by hybridizing top- and bottom-strand primers, 

while the common 3’ fragment was created via PCR with a set of primers 

(GsI2Cintron_F and Stch_BamH1) were The PCR amplicons were purified with Wizard 

PCR Clean-Up System (Promega) then digested with HindIII (NEB) and BamHI (NEB). 

The digested inserts were purified again and ligated into pGsI2C_35/32 digested with 

HindIII and BamHI. 

The GsI-IIC RT, used for RNA splicing assays, was expressed from pGsI-IIC-

MRF and purified as described26. The construct expresses the GsI-II RT with an N-

terminal maltose-binding protein rigid fusion required to maintain solubility of the 

protein.  
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pADC2X-GsI-IICΔORF+T7, the intron-donor plasmid used for mobility assays, 

contains a cassette consisting of a shortened GsI-IIC intron with most of the RT ORF 

removed and the RT ORF cloned downstream of a T7lac promoter in a pADC184-derived 

vector. It was constructed in two steps. First, the ORF encoding the IEP was amplified 

from pETGsI-IIC DNA31 using Phusion PCR mix with 5’ primer GeoI2ORF5+SDPst 

(AAACTGCAGGAAGGAGATATACATATGGCTTTGTT), which appends PstI and 

NdeI sites and a Shine-Dalgarno sequence from pET3, and 3’ primer GeoI2ORF3Xho 

(GGACTCGAGTCAACCTTGACGGAGTTCGA), which appends a XhoI site. The PCR 

product was digested with PstI and XhoI, band isolated, and cloned into pACD2X31 cut 

with the same enzymes thereby replacing the LtrA sequence and producing 

pADC2XGeoRT. The GsI-IIC intron was amplified by two PCRs that separately amplify 

5’ and 3’ segments of the intron, while introducing a ~1.4-kb deletion in the ORF coding 

sequence (see above). These PCRs used outside primers that append short flanking exons 

(57 nts 5’ exon derived from target site 34 and 32 nts 3’ exon derived from target site 23) 

and unique cloning sites (XbaI (5’) and PstI (3’)) together with overlapping internal 

primers that replace the intron ORF in DIVb with a T7 promoter sequence and an MluI 

site. The two PCR products were then cloned between XbaI and PstI sites of 

pADC2XgeoRT resulting in pADC2X-GsI-IICΔORF+T7. 

Intron-recipient plasmids used in mobility assays contain GsI-IIC intron insertion 

sites (positions -40 to +20) cloned into pBRR3A and pBRR3B, which differ in the 

orientation of the target site and tetR gene relative to the replication origin31. They were 

constructed by replacing the Ll.LtrB target site in plasmids pBRR3A-ltrB (LEAD) and 

pBRR3B-ltrB (LAG) with target sites form G. stearothermophilus strain 10. pBRR DNA 

was digested with AatII and EcoRI and the backbone gel isolated and purified. Target 

sites were made from annealed top- and bottom-strand oligonucleotides that already 

contain the AatII and EcoRI overhangs. The annealed oligonucleotides were directly 

ligated into cut pBRR DNA resulting in pBRR-GeoTS34-LEAD and pBRR-GeoTS34-

LAG. Recipient plasmids containing the TS7 and TS22 5’ exon or mutated version of the 
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TS34 5’ exon were made similarly by starting with annealed top and bottom strand 

oligonucleotides containing the modifications.  

Intron mobility assays 

Mobility assays were done in E. coli HMS174(DE3) (Novagen, Madison, WI) 

grown in LB medium with antibiotics added as required at the following concentrations: 

ampicillin, 100 mg/ml; chloramphenicol, 25 mg/ml; tetracycline, 25 mg/ml. Cells that 

had been co-transformed with the CapR donor (pADC2X-GsI-IIC-ΔORF+T7) and AmpR 

recipient plasmids (pBRR-GeoTS-LEAD or pBRR-GeoTS-LAG) were inoculated into 5 

ml of LB medium containing chloramphenicol and ampicillin and grown with shaking 

(200 rpm) overnight at 37ºC. A small portion (50 µl) of the overnight culture was 

inoculated into 5 ml of fresh LB medium containing the same antibiotics and grown for 1 

h as above. The cells were then induced by adding 1 ml of fresh LB medium containing 

the same antibiotics and 3 mM IPTG (500 µM final) and incubating for 1 h at 48ºC. The 

cultures were then placed on ice, diluted with ice-cold LB, and plated at different 

dilutions onto LB agar containing ampicillin or ampicillin plus tetracycline. After 

incubating the plates overnight at 37ºC, the mobility efficiency was calculated as the ratio 

of (TetR+AmpR) / AmpR colonies.  

Hairpin selection 
For selection experiments, the target site in pBRR-TS34-LAG was replaced with 

one in which positions -5 to -38 were doped with 70% of the wild-type nucleotide and 10% 

of each other nucleotide. To construct this plasmid, the top strand oligonucleotide 

(Geo34TOP) was doped such that each of the doped nucleotide positions has 70% of the 

wild-type nucleotide residue and 10% of each of the three mutant nucleotide residues. 

The complementary strand was made by annealing a short primer (Geo34Bot) to the 

fixed 3’ end of the doped oligonucleotide and filling in the bottom strand across the 

doped region using the DNA-dependent DNA polymerase activity of the GsI-IIC RT. 

(Reaction conditions: 98 ºC 2 min -> 50 ºC 2 min -> 72 ºC 5 min for a single cycle). GsI-
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IIC RT was used because it was able to efficiently synthesize the complementary strand 

through the hairpin DNA while other DNA polymerases (Phusion (NEB), Klenow (NEB), 

and Taq (NEB) failed to complete bottom strand synthesis likely due to stable secondary 

structure. The product was then cleaned with a MinElute PCR Purification Kit (Qiagen), 

digested with AatII and EcoRI-HF (NEB), and cloned between the corresponding sites of 

pBRR3ltrbLAG. 

 For in vivo selection, the recipient plasmid containing the doped insert was 

electroporated into E. coli HMS174 (DE3) and transformants were selected for the AmpR 

marker on the plasmid. The transformants were grown and made electrocompetent for 

introduction of the donor plasmid pACD2-GsI-IIC-ΔORF+T7. The HMS174 (DE3) cells 

carrying both donor and recipient plasmids were used for mobility assay as described 

above. Illumina adaptors (NG_GsI-IIC_HomingProd_3_For and NG_GsI-

IIC_HomingProd_3_Rev) were appended to the tetracycline-selected homing product 

through PCR. The PCR product was then purified with Agencourt AMpure XP and 

Illumina tails were added to the cleaned sample via PCR (6 cycles). The PCR product 

was cleaned with Agencourt AMpure XP again ands sequenced on an Illumina HiSeq 

4000 paired-end to obtain 150-nt paired-end reads at the UT Austin Genomic Sequencing 

and Analysis Facility (GSAF). The selected library had 6,597,196 raw sequences and the 

unselected target library had 26,745,370 raw sequences. The raw data were then filtered 

by their 16-nt barcode so that the filtered sequences will only contain unique barcodes. 

Ambiguous sequences with Ns in the doped region and/or barcode were removed. The 

expected length of the doped region is 33-nt, but negligible fractions of the data had 

doped regions with shorter or longer than 33 nucleotides (<1% of the selected and ~1% 

of the unselected library). These sequences were also removed from further analysis. 

Galaxy was used to convert the raw NextGen sequencing data to FASTA format and for 

further trimming of the sequences. Python scripts were used to obtain nucleotide and pair 

frequencies of the doped region. The resulting nucleotide and pair frequencies were 

plotted using Excel. 
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RNA splicing assays 
Splicing assays were performed by using an internally 32P-labeled in vitro 

transcript containing a 656-nt GsI-IIC-ΔORF intron flanked by a 35-nt 5’ exon (positions 

-35 to -1 of TS34) and 32-nt 3’ exon (position +1 to +32 of TS23). This precursor RNA 

was transcribed from an amplicon generated by PCR from template plasmids constructed 

using pGsI2C_35/32 as described above, which contains the previously described intron 

and flanking exons cloned in a pUC19-based vector, using a 5’ primer that adds a phage 

T3 RNA polymerase promoter sequence upstream of the 5’ exon. In vitro transcription 

was done by using phage T3 polymerase (60 U per 100 µL reaction; ThermoFisher 

Scientific) with 2 mM of each NTP and 123.8 nM of [α-32P] UTP (3,000 Ci/mmol; 

Perkin-Elmer) for 2.5 h at 37°C. 2 mM dTTP was included in the reaction mixture to 

sequester excess free Mg2+ ions, which increase hydrolytic splicing during transcription. 

The transcription reaction (200 µL) was treated with 8 µL RNase-free DNase I (Thermo 

Scientific) for 15 min at 37°C and cleaned up by using a MEGAclear Transcription 

Clean-Up Kit (Thermo Scientific).  

Splicing reactions were carried out by incubating the 32P-labeled precursor RNA 

(20 and 40 nM) and purified GsI-IIC-MRF RT36 at various molar ratios of 1:0.5, 1:1, 1:2, 

1:3, 1:5 in 20 µL of 450 mM KCl, 5 mM MgCl2, and 20 mM Tris-HCl pH 7.5 at 50 ºC. 

The reactions were initiated by adding protein, which had been pre-warmed to 50 ºC for 

30 s (confirmed to result in no loss of activity), and terminated by adding a mixture of 30-

µL ice-cold phenol-chloroform-isoamyl alcohol and 0.5-µL 500 mM EDTA. Time-

course reactions were stopped at various time points, and end point splicing reactions 

were stopped after 10 min with phenol CIA (phenol:chloroform:isoamylalcohol, 25:24:1). 

After centrifugation, the phenol-extracted aqueous phase was mixed with an equal 

volume of Gel Loading Buffer II (Ambion). The splicing products were analyzed in a 

denaturing 4% polyacrylamide gel, which was dried and scanned using a phosphorimager 

(Typhoon FLA 9500; GE Healthcare Life Sciences). Band intensities were quantified by 

using ImageQuant TL (GE Healthcare Life Sciences). Data were normalized and fitted to 
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a two exponential function (Y = plateau + a*e-K1t + b*e-K2t) with Prism6 (GraphPad 

Software) 
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Figure 17. GsI-IIC intron RNA Secondary structure of the Geobacillus 

stearothermophilus strain 10 group IIC intron. The intron RNA is comprised of six 

secondary structure domains (DI-VI). The position of the RT ORF in DIV is indicated by 

a loop. Sequence variations between the different copies of the intron in the strain 10 

genome are indicated in red. Single base changes are circled (green circle, compensatory 

change in helix; red circle, non-compensatory change in helix; black circle, insertion, 

deletion, or change in an unpaired position). EBS1 and 3, exon-binding sites 1 and 3; 

IBS1 and 3, intron binding sites 1 and 3. Greek letters indicate sequence motifs involved 

in tertiary structure interactions. Figure prepared by Dr. Georg Mohr. 
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Figure 18. Position of GsI-II2C introns inserted in genome of G. stearothermophilus 
strain 10. Introns are indicated by arrows, and insertion site is indicated by vertical line. 

Top and bottom strand insertions are shown above and below the line, respectively. 

Vertical dashes on the outside and inside show coding regions on top and bottom strands, 

respectively. Figure prepared by Dr. Georg Mohr. 
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Figure 19. Schematic of the Geobacillus stearothermophilus group IIC intron RT 
protein. Conserved sequence blocks found in all RTs are denoted RT1-7 and indicated 

by black boxes37. RT-0, 2a, and 3a (red) indicate an extra N-terminal region and 

insertions between conserved RT sequence blocks found in group II intron and non-LTR-

retrotransposon RTs. Sequence variations in the 45 copies in the genome are indicated on 

top with the number of occurrences in parenthesis. Figure prepared by Dr. Georg Mohr. 
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Figure 20. Sequence alignment of exon-intron junction sequences in the G. 

stearothermophilus strain 10 genome with a sequence logo at the bottom showing 

sequence conservation in the 5’ and 3’ exons. Red letters indicate nucleotides that 

potentially base pair to form the hairpin structure upstream of the intron-insertion site. 

Green highlighting shows IBS1 sequences that potentially base pair to the EBS1 

sequences in the intron. Yellow highlights indicate expected C or T residues at the IBS3 

position. Grey highlight indicates mutation of bulged A residue in DVI. The vertical line 

indicates the exon-intron boundary. The logo was generated with WebLogo3 using 

standard parameters31. Figure prepared by Dr. Georg Mohr. 

5’ Exon            IBS1   Intron     IBS3             3’ Exon 
site 1     ATGGCGAAGTTCACTTCCTCACGTCCGCCCAACGCGCCAGATAACGGCGTTATAACGCGTTATAACGCCCCTTCA|GTACGCCCGG...CCTACTCGAT|TCGTTCGGGAAGTAGTTTAATACCTCCCGAACGTTCAGAAGGGAAAATAGGGGCGTTTTGGCGGCTATTCTTTCGG 
site 2     GATAAGCTGAAGTCCTTTTCTTGAAACGTGCGAAAGGTTGTTATTAAGTGACGGCGCTTAATAACAACCTTTCTA|GTACGCCCGG...CCTACTCGAT|TGTATTAGTGAATTATAAGTAGAGGAGTCGGGGGCATGGAAGAAAGCAAGCGGACTAGGCTAGTTTGAAAATCCAT 
site 3     GGCGAGACGGAATTGGCTGAGGAGGGCAGGAGGATGCTGTTTTCGGCGGTGGCCAAACGGCCGCCGCTGTTGGCG|GTACGCCCGG...CCTACTCGAT|CGCATGGGGGAGCACGTTCAATTTCCTCCGGTTCCGCTCGGTTGGCTGGGCAACGTGCAAACGGAGCGATGGGGGC 
site 4     GCCTGCTAGCACGCAGTATCAAGCGAAGGACGTAAAAACGCGGATGCCTGTCATCAAGGCATCCGCGTTTTTCCA|GTACGCCCGG...CCTACTCGAT|TCATTTAAACGCCATCGCCGCCCGCACCGCTTTTTTCCAGCCATCGTAGAGCATCGTTCGCTTGTCATCATCCATC 
site 5     AGACTTCGTTGACATAGACGAGAGAACGGGAGCGGAAAGAAAGGCATCCTGCACCATCGCAGGATGCCTTTTTCA|GTACGCCCGG...CCTACTCGAT|TTTGATTGGCATAAATTTCACCAAGCGGCAAACAATAAGGAAAAGGGGGTGTTCATATGGCCAGACGCGATGCCGA 
site 6     ACCGAACAGTAAGACCGACGGTACATACGCCGCCGAAAAAAAGGCGCCTTCCTTCGCGGAGGGCGCCTTTTGCCA|GTACGCCCGG...CCTACTCGAT|TTTCCCGTTTTCCTTCCGCGCCCGCTATTTGATCGACAAGCTCCTGCGTCACCCGAAGGGAAGTGAGGGACGAGGT 
site 7     AGCAAGACGGGTTCGGATTGCTTGAAGAATAACGGCACAAGGCGTCCTGGCAAGCTGCCGGGGCGCCTTTTTCCA|GTACGCCCGG...CCTACTCGAT|TCCGTCCGGCCTGCCAAGGAGAGCGATAAGCCTAAAAAGGACGGCGTGCGGAACGGTCTTGTTCCGTTGTCATCCT 
site 8     CATTAAACGGTTGCGCAAAGAATTCAATAAAATGATGTAGCGGGCGGCGGGAGCGAAATTCCGCCGCTTTTTCCG|GTACGCCCGG...CCTACTCGAT|CGTCGGACAGGCTGTGCATATTTTTCCCTTCCAAGGAGATACTGAAAACTGACGACTTAGCATCTCCTGATGGGAG 
site 9     CGATTTCGCTTCGCTTGCTGTTTCGGCGCCGCCCGTAGCAGCCGCCCGCTGGCCTAGGCCGGCGGGCGGTTTTCG|GTACGCCCGG...CCTACTCGAT|CTGATCGAAAGAAGGAAAATGACGAATGAGCGCGAATATGATTACTTAACACCATTCTTTTGTTGGAGGGATGACG 
site 10    TGGGCAGCTATCCATATTATTTTGCTTGACACAGACAAAAACACGCGGGCGGTCTGCTGCCGTCCGCCTGTTCCT|GTACGCCCGG...CCTACTCGAT|TTTTTAGACGGCCCGCCGCGCAGTATTCCGCAGGGAATGAACCGATGTTCGGCCAGGTCCAGTTTACGCTTCGATG 
site 11    AGCATGGGCGGCGCTTTTGCCGTTTGTGGCCTCATGACGAAAACACCAGCGATTCCGCTGGTGTTTTCACTTCCA|GTACGCCCGG...CCTACTCGAT|AGGCTATTTTCGCCTGGTCCATAATATATAGACGCCGATGGCGATGAGTCCGAGCGGCCAAAACTTCCAGACAGAG 
site 12    ACTACGAAGCGGCGATTGAAGCGGCGAAAGCGGCGAAATAATGAAAAGGCCCCGACCCGTTCGGGGCCTTTTCGT|GTACGCCCGG...CCTACTCGAT|TCGGCGCTTTTCTTGCGGCGCGAGGCGGACGGTCGTACAATATACAGAAGGGACGTTGGCAGAAAGGTGGGGGCGT 
site 13    CGTTGCCAGAAGCGGAGCGATGTCCGCGCGGCGGCCAAACAAGAGGGTGTCTCGTTGCGAGACACCCTCTTGCCG|GTACGCCCGG...CCTACTCGAT|CATGCGGTCGAACGGATTCGCCATTTTAGATCCGGTGTTTCGCCGGGAGAACAGACACACGCTTCACAAAAAGACG 
site 14    GCGGCTTGCGCTTCCCCGGTCCGCTTGCGGGGTAGGAGAGAAAAAGCGTCCCAGCTTTTTGGGGCGCTTTTTCCA|GTACGCCCGG...CCTACTCGAT|TTTTGTTTTAGTACCAAAGTGTGATGCAAGAAAAAAAAGGAAAGGATATAATTTTCGGTAAAATCAGACACTTGTT 
site 15    AAGCGCTGCAGCAACAGCGGACATCGTGCGCCAACAAAAAAGAGCTGCCGTGATCAGGCAGCTCTTTTTCTTTCA|GTACGCCCGG...CCTACTCGAT|TCACTTATCCGCCAACGCTAGCGCTTGTTCTTTCAACAAGGCGGCTTTGTCGGTGCTCTCCCACGGCAGGTCGATG 
site 16    ACCAGCCTCCCCGTCGGCTCGCCGCCCCGCTGGCGATAAAAAAATCCGAACAGCGGCCGCTGTTCGGATTTTTCA|GTACGCCCGG...CCTACTCGAT|TATTAAAACACTTGTTCCACTTCGACGACGCCCGGCACTTCTTCAAACAAGGCGCGCTCAATTCCGGCTTTGAGCG 
site 17    GCCGATTCGCTTTTGGAATGGCTTGACCGCTTGTAAACAACGCCGCTTTGCCAAAAAAGGCAAGGCGGCGTTTCA|GTACGCCCGG...CCTACTCGAT|TGTTGCTCGGCGCGGATGGAGGGCGCGCATGGGCAGCGCCGGCGTTACTCCGCATTGGCGGCCCGATGCGCCAGGC 
site 18    AAGGCCGCTCCGCAGGCCATTCCTCCTTCAGTTTTTAGGGGAGCGCTCTTTTTTGGGCGCTCCCCTGTCGTTCCT|GTACGCCCGG...CCTACTCGAT|TTTCCATGCCAGGCGGCTCTGTTCAGCCGTGTACGATCTCTCGGCTTAGTAGCCTTTTTAGGCGTGAAGTTAACAG 
site 19    ACCGCTATAGAGCTGCTTCCTGCACCGACATTGACGAAAAGGCTGCTTCCGTCCAAAACGGAGCAGCCTTTTCCA|GTACGCCCGG...CCTACTCGAT|TTCCTTTCCCCGCCAGCCCCACATGCTGCTTTACTTTTCCTTTTGCACATAGGCAGCGAGCTTTTCGATGGCTTCT 
site 20    AATTGTTCCGTTGACAAGATGCCGAGAGGACTGCTTGAAAGCGAACAGCGTGGGATCAATCCCACGCTGTTTCCG|GTACGCCCGG...CCTACTCGAT|TGAAAATGCACGCGTCTTGATGGGGCATTTTCATGCCCGGGTGAAGGGCAAAACGTTGCCCATGAGATTTTTCGAT 
site 21    CGGACGATCCGAACAAAGCTCACCAAGCACTTCATCGCCCAATGAAAACGCGCACCTCTTAAGGTGCGCGTCTCA|GTACGCCCGG...CCTGCTCGAT|TTTACTTCGCCGCCGTCGTTTTCAGCTCCAGATGCTCTTTCAACTCATTCGAAATCGCCAGCCGTTCGCTCTCTGG 
site 22    CGAGTTTGGCTCGTCCGGAAAAGCAGCGCGATGAATCGGCTTCGCGGGCGGCGTTTGGCCGCCGCGCGGCTGCCT|GTACGCCCGG...CCTACTCGAT|TTGCATGTGCAGCGAATAACAAGGAGGGTTCAGCATGAAATTTTTTATCGACACTGCCAACTTGGAAGAAATCAAA 
site 23    CATTTCTGTCGCCGCTGCGTTAGCGCTCTACGATGTCACCGAGCGGGCGCGCCGCCAGGCCGGCCGACACTACTA|GTACGCCCGG...CCTACTCGAT|TTTATTGCCTGGAGAGAAAAAGGCGTTGTATGAACAATGGATGTGGCAAACGTTAAACCCACGCATTCGTAAACAG 
site 24    CTGAAACGGCTGACCGCCGAAAGCCGTTTCCCATCATAAAAAAACCCGCCGTTGACCGGCGGGTTTTTTATGCCT|GTACGCCCGG...CCTACTCGAT|TTATTTTTTTACAACAGTAAATTGATCAGCGATCAGCCGCCAGTTTTGTGGAAAATCAATGCCAAGTTTCCAATAG 
site 25    GCTCTGTATCGGAAATCATCGAGTAATCACGGCAAAAAAGGGTGTCCAGCAATGGACATCCTTTTTTTGATGCCA|GTACGCCCGG...CCTACTCGAT|TCTTGACCGTCAGATTGGCGGCTGTGTTGAAAACGGGATGGCGGCTATGTATAATAGAAGAAGTGTGGGAAAAGCA 
site 26    CAAAAGGCGTTGTCAATGGGATATGAACGATGATGAAGGCGAGCCGCCCCCGCCTAACGGGGCGGCTTCTTTCCT|GTACGCCCGG...CCTACTCGAT|TGCAGCGGGGAGGAGCGGATGGACCGACGGCGAATACATAAAAGCGGAGAAACAGCTAAGCCTAATGGAGCTAGAA 
site 27    CGGCCGCCCGGACGGCTCAGCCCGCAGCCGGACGAAGAAACGGCGGATTACGGCGCATTAAGCGCCGTTTTTTCA|GTACGCCCGG...CCTACTCGAT|TAGCCGAGGCATGTAAAACGACGGCCACTTGGGGCGGATGAACAAAAAGGGGGCAAGCAGGCCGCCGACGGCGAAG 
site 28    CTTGTCTAGGCAGTTGGCTGAAACGCGAAAGACACCGAAGGGCGATCCGTTTGCGGCAGGCAAACGGATCATCCT|GTACGCCCGG...CCTACTCGAT|TTTTGTTTTCATGTGAAAAAAGTTTGTGTATATTTTTATCCACAAATCTGTGGACAATGTGGAAAAAGCGGTAAAA 
site 29    GAGGAATGGGTGAGACCGGAGAAAATGATTTAAGGGAAAAGCGCTCATCCCGCTTCCGTGGGATGGGCGTTTTCA|GTACGCCCGG...CCTACTCGAT|TTTTTGATTTCTCCCTTTTTTCTCCTTCCCCCTTTGTTGCAAATCCATTCCAAAAGTTGTGTATATTCGATATTAT 
site 30    TGTCTGCCCAAGAGGGCGAAAAGGTGCGCAAACAAACGAATCCCCCTTGCCTGCCCGGCAAGGGGGGGTCATCTA|GTACGCCCGG...CCTACTCGAT|TGTCAAAGGAGGGAAGGGGATTAGGCGTTATTGGCTTGGGCTTCTTTCCACTTGGCTAACTCACGTTCGACTTCTT 
site 31    CTGGCGTTTTTGCCGAATGTCGGTTGTTTGAAGCAAAAAAGAAGGTGTCCCGAAAGCAGCGGGACACCTTTTCCA|GTACGCCCGG...CCTACTCGAT|TTATGACTTGTTTGGAGAAAACAACCGTTTGGATGTTGCATTAGTCCTTTAAGGTGGCGCGGCGATGCCGATTCGA 
site 32    ACTGTCAAAAAAGCGGGGCGCCGGCGCATTCGCATTAAAAAAGCTGATAGCACAAGGCGGCTATCAGCTTTTTCT|GTACGCCCGG...CCTACTCGAT|TTTTTTGTTGTACTTTTCGTCAAACTCTTTTCCTTCCAGTTCGCGGTCTAACGTCAACGGTTCACGGCAAAACATA 
site 33    CAGGCGGGAGGCGCCTGATTCGCTCCCCGTTCCCATATGAAAGCGCCCCGGGCTGACTGCCCGGGGCGTTTGCCA|GTACGCCCGG...CCTACTCGAT|TCTATATGAAGTTGTTCGTTAAGGCGGTTATTGAATGTTGCCGAATTGGCCGCCAAGTTGTTGCTGAGCCATGGCG 
site 34    GGCATTTTTCTTGAAACACTCCACTTTTTCCATCCCTTTTCGCCGTTCGCCCGCGTTGGGCGGACGGTTGTTTCA|GTACGCCCGG...CCTACTCGAT|TTGTCCTGCAACTGCTGAACACTCCCCGCCCTTTATTTTTGTATCATATAGAAAAAACGAGAGCCATCGCTTGGCT 
site 35    GAAACGCGGTGTTGCCGAAAAGTTTGACGAAATGGAAAAAGGGGCTGTTTCCCCATTGGGACAGCCCCTTTTTCA|GTACGCCCGG...CCTACTCGAT|TTGTTTGGCCGCTCATCCGGCCTTTTCTTCCGTCCGTGCCATTTCATTCAGCTCACTATGCTTGCGGCCGTAGATA 
site 36    TGCTTCCGTCGTGAAGTCATCCGCAGCAATGGGAGACAATGCGCCCTCTCGTTCGTCCCGAGAGGGCGCTTTCCG|GTACGCCCGG...CCTACTCGAT|TTAACGCGGGCGTTTCTTGGATGGCTCTAGTGTGCCGACAAGATGAAACGGCGCATCACGCCGGATGGCGTCCATG 
site 37    GGCTGCACGAACATCAAGTCGAACAAGTGACGGTTCAGTAACGAAGGATGCCGAGGGAGGCATCCTTTTTTTCTA|GTACGCCCGG...CCTACTCGAT|CTCGTCTTTCTTGTCCGCTGCGGACATATATATAGAAGTAAAGCAACGGACAAGGAGAAGGAGAGGGCAGTCAGTG 
site 38    ACGTCGAGGAAGAGATGAAACGGTTTCAGTCGCTTTTTGAAGAGAAGTGATCCGCCCAGCGGATCACTTTTTCCG|GTACGCCCGG...CCTACTCGAT|TGCCGACGGAAGGGGTTCGTCGGTTTGAGCGCTGCGAGCCGGATGGACCCATCCCGGGGTTGATTCACGATGAGCG 
site 39    TTAGCCGGGAAGCCTGTTGTCAAAACGGGATACGAAAAGCGGTTCGGCCGCCGCGTGATGGCGGTCGTCGTTCCG|GTACGCCCGG...CCTACTCGAT|CTTTTGGACGGCAAGCGGCTTGAAGGAGCGATTTACTTGTATTTGCCGTTAGCCGACGTTCAGGAAGCAACGAAGC 
site 40    TGCCGGCCCGCGGACCGAAAGGAGCGTAGCGCCGTTTGGAAGAGCGGGGAAGCCACGGCTTCCCTGCTTCTTTCA|GTACGCCCGG...CCTACTCGAT|TGCTGAAGCGAACTGGTTGACGGATTTGTTTTAGTGGTATAGACAACTAGAATATATAATGTTATAATGAGAGACA 
site 41    ATCCAAACGACTGATCGCCGTTATCCGTTCTAACACAAAAAAGGTGTTCCGCAAACGATCGGAACACCTTTTTCA|GTACGCCCGG...CCTACTCGAT|TCGTATTGTCATTCGGCGCTATGCCACGCGAAACGGCCATGAACGTCAAGCCCTTCTCCTTGTTAGATCGTCTCCT 
site 42    TTGCAGCGCAAAGCGATATTCTTTTTTCCGCCGCAATAACAAAGGTGTCCCGAACGGCGCGGGACACCTCTTTCA|GTACGCCCGG...CCTACTCGAT|TGTAGACCGCTGACGGTTTTGGCTTGGCAGCTGTCGATCGAGTTCGTCAACGAGTTCGGCGAAATGACCTAAGACC 
site 43    GCTTGTGACGCAATACCGCCAAGCGCGGCAGGCGTTTTGGTCGACGAGGACGATGCCGTCCTCGTCGCGTTTGTA|GTACGCCCGG...CCTACTCGAT|CATGGCGCCTGACGGGCAGCTCGATACGCATGACGGATTGAGGCAATGCTCGCAAATGCGCGGCAAGTACATCATA 
site 44    AAAAATGGTGACCGCCCGCTGGTAATGCGTTCGAAAACGTATCAAGCGCCACAAGAGCGCTTGATACGTTTTCCG|GTACGCCCGG...CCTACTCGAT|TATATTGAAACAGAAAAGGAGGACGAACAATGCCGCTTGTGTCGATGAAAAACATGCTGCAACGGGCATGGCAAGG 
site 45    CCGACGGGGGACGGAACTGATCGAAGCAACCGGGCGGTGCGGGCAGGCGCCGTCAATCGATGCCTGCCGCTTCCA|GTACGCCCGG...CCTACTCGAT|CGCGGGAAAGGAACTGGCTAAGCGCCTCAAGAGACGGAAAAGCAGCTTGCCCCTGCCGCTCGTTGCCGCCCCCTTT 
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Figure 21. In vivo mobility assay and requirement for the 5’ hairpin structure. (A) 

Schematic of the assay. The CapR intron-donor plasmid (pADC2X-GsI-IIC-ΔORF+T7) 

uses a T7lac promoter (PT7lac) to express a group II intron RNA with short flanking 5’ 

and 3’ exons (E1 and E2, respectively) and the group II RT cloned downstream of E2. 

The group II intron, which has a T7 promoter sequence (PT7) inserted near its 3’ end, 

integrates into a target site (TS; the ligated E1–E2 sequence) cloned in a compatible 

AmpR recipient plasmid (pBRR-TS34-LEAD or pBRR-TS34-LAG) upstream of a 

promoterless tetR gene, thereby introducing the T7 promoter and activating that gene. The 

assays are done in E. coli HMS174 (DE3), which contains an IPTG-inducible T7 RNA 

polymerase. Intron expression is induced with IPTG for 1 h at 48oC, and mobility 

efficiencies are calculated as the ratio of (TetR+AmpR)/AmpR colonies. T1 and T2 are E. 

coli rRNA transcription terminators and TΦ is a T7 transcription terminator. (B) Mobility 

assays with three different target sites cloned in either the LEAD or LAG recipient 

plasmids. The top shows 5’-exon sequences of three target sites (TS7, TS22, and TS34 5’ 

exons with TS12 3’ exons, denoted TS7, TS22, and TS34, respectively). Base-paired 

regions of the 5’-exon hairpin are highlighted by red shading, and the IBS1 sequence is 

boxed. The complementary EBS1 sequence in the intron and three adjoining intron bases 

that could potentially base pair with 5’-exon sequence in some cases are shown in dark 

and light blue, respectively. Base pairs are indicated by dashes. The bar graphs below 

show the mobility efficiency of three target sites cloned in either the LEAD (blue) or 

LAG (orange) recipient plasmids. The data are the mean for three experiments with the 

error bars indicating the standard deviation. (C) Mutations in the TS34 target site and 

their effect on mobility efficiency. The top shows 5’-exon sequences of the TS34 target 

sites and three mutant target sites, with nucleotides that differ from the TS34 target site 

shown in green. Features of the target sites are depicted as in panel B. The bar graph 

below shows the mobility efficiencies of the three mutant target sites cloned in the LAG 

recipient plasmid compared to that of the TS34 target assayed in parallel. The inset in the 

plot at the bottom right shows an expanded scale for mutations that have very low 
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mobility efficiencies. The data are the mean for three experiments with the error bars 

indicating the standard deviation. 
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Figure 22. In vivo selection of 5’ exon hairpin region. The selection was done using the 

WT donor plasmid (pACD2-GsI-IIC-ΔORF+T7) and a recipient plasmid (pBRR-

GeoTS34-LAG) in which the portion of the target site containing the hairpin structure 

and flanking regions was partially randomized (doped at 70% of the wild-type nucleotide 

residue and 10% of each of the other nucleotide residues). Cells were grown in LB 

medium containing tetracycline overnight then plasmid DNA was isolated. PCR reactions 

using a primer in the recipient (TargetSeq) and one in the intron (GeoI2D3LoopUp) were 

done to amplify homing events from the plasmid pool. Subsequently, Illumina tags were 

added by a second PCR reaction and sequenced by an llumina HiSeq 4000 to obtain 150-

nt paired-end reads. The selected library had 6,597,196 raw sequences and the unselected 

target library had 26,745,370 raw sequences. The unselected library was sequenced to 

assess differences in the doping frequency at different positions. (A) Sequence and 

predicted structure of the wild-type TS34 target site and degree of selection at different 

nucleotide positions. The 5’-exon region of TS34 is shown to the left, with the base-
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paired region of the hairpin highlighted in red and the region partially randomized for the 

selection enclosed in a green box. The results of the selection are summarized to the 

right: +++, nucleotide present in >99% of selected sequences; ++, nucleotide present at 

>15% higher frequency in selected than in the unselected sequences but <99% of selected 

sequences; +, nucleotide present at >5-14% higher frequency in the selected than in 

unselected sequences; ±, nucleotide present at similar frequencies (±4%) in selected and 

unselected sequences; -, nucleotide present at 5-14% lower frequency in selected than in 

unselected sequences; --, nucleotide present at >15% lower frequency in selected than 

unselected sequences. (B) Selection for or against base-pairing within the hairpin and 

flanking regions. The bar graphs show the frequency of base-paired nucleotides at each 

position in the 5’ exon region of the TS34 hairpin in the selected and unselected 

sequences (blue and red, respectively). Brackets on the right delineate the upper and 

lower stems in which base pairing is selected for in active target sites, and the TG elbow 

in which base pairing is selected against. (C) Mobility assays with different mutants. The 

top shows 5’-exon sequences of wild-type TS34 and mutant target sites depicted 

schematically as in panel A (or Figure 3). Mutations in the hairpin are shown in green 

within red circles or boxes. The bar graphs below show mobility efficiencies for wild-

type and mutant target sites. The inset shows an expanded scale for the T-5 mutations, 

which have very low mobility efficiencies. The data are the mean for three-independent 

experiments with the error bars indicating that standard deviation. 
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Figure 23. Protein-dependent and self-splicing of the GsI-IIC intron. (A) Protein-

dependent and self-splicing of the GsI-IIC intron with different hairpins. Each RNA was 

incubated for 10 min at 50 ºC with the GsI-IIC RT (20 nM) in reaction medium 

containing 5 mM Mg2+ or without protein in reaction medium containing high Mg2+ (100 

mM, self-splicing conditions), no Mg2+ (non-splicing control), or in reaction medium 

containing 5 mM Mg2+ (5 mM; control for self-splicing under protein-dependent splicing 

conditions). Bands are identified to the right of the gel. The gel is split to show top and 

bottom regions. (B) Time courses. 40 nM GsI-IIC RNA was incubated with various 

amounts of purified GsI-IIC RT (20 nM, 40 nM, 80 nM, 120 nM, and 200 nM) giving 

ratios of RNA to protein of 0.5x, 1x, 2x, 3x, and 5x. Samples were taken at 0, 0.25, 0.5, 

0.75, 1, 2, 5, 10, 20, 30, and 60 min and run on a 4% denaturing polyacrylamide gel. The 

gel was dried and scanned with a PhosphorImager. Rate constants were obtained by 

fitting the data to a two exponential equation. The curves at the top shows disappearence 

of precursor RNA, and the curves at the bottom show appearance of lariat RNA.  
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Figure 24. Effect of mutations in the 5’-exon hairpin region on protein-dependent and 

self-splicing of GsI-IIC intron RNA. Splicing reactions for the indicated mutants were 

carried out for 10 min at 50 °C, as described in Figure 23. Bands are identified to the 

right of the gel.  
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Table 2. GsI-IIC introns in Geobacillus stearothermophilus strain 10 (accession 
number: CP008934).  

Introns are numbers by insertion position in the G. stearothermophilus genome. Intron 3 

is set as the standard for comparisons. The numbers of mismatches, deletions and 

insertions compared to intron 3 along with the position of each change in the intron 

nucleotide sequence are shown in columns 3 to 8. Columns 9 to 11 show the accession 

number for each RT protein, the number of mismatches against the RT of intron 3, and 

the position of each mismatch in the RT ORF. Columns 12 to 15 show the genes flanking 

each intron insertion, with numbers indicating the nucleotide distance from the 5’ or 3’ 

end of each intron insertion. Inside indicates that the intron is inserted in the annotated 

gene. Table prepared by Dr. Georg Mohr. 
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Table 3. Oligonucleotides 

Name Sequence 
GEOI2ORF5+SD
PST 

AAACTGCAGGAAGGAGATATACATATGGCTTTGTT 

GEOI2ORF3XHO GGACTCGAGTCAACCTTGACGGAGTTCGA 
GSI2#34TOP CCTTTTCGCCGTTCGCCCGCGTTGGGCGGACGGTTGTTTCATCGGCGCTTTTCTTGCG

GCGG 
GSI2#34BOT AATTCCGCCGCAAGAAAAGCGCCGATGAAACAACCGTCCGCCCAACGCGGGCGAAC

GGCGAAAAGGACGT 
GSI2#22TOP CTCGGCTTCGCGGGCGGCGTTTGGCCGCCGCGCGGCTGCCTTTTATTGCCTGGAGAG

AAAAG 
GSI2#22BOT AATTCTTTTCTCTCCAGGCAATAAAAGGCAGCCGCGCGGCGGCCAAACGCCGCCCGC

GAAGCCGAGACGT 
GSI2#7TOP CCACAAGGCGTCCTGGCAAGCTGCCGGGGCGCCTTTTTCCATGTTGCTCGGCGCGGA

TGGAG 
GSI2#7BOT AATTCTCCATCCGCGCCGAGCAACATGGAAAAAGGCGCCCCGGCAGCTTGCCAGGA

CGCCTTGTGGACGT 
primer A /Cy5/CATACAACGCCTTTTTCTCTCCAGG 
NG_GsI-
IIC_HomingProd_
3_For 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNNGAAGCAACGGCCCGA
CGTC 

NG_GsI-
IIC_HomingProd_
3_Rev 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNNNGCACCCATGCCGGG
CGTAC 

Geo#3TOP CCCGACCTTDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDTTCATCGGCGCTTT
TCTTGCGGCGAATTCTAA (D for doped) 

Geo#3Bot TTAGAATTCGCCGCAAGAAAAGCG 
TargetSeq ATGCGAGAGTAGGGAACTGC 
GeoI2D3LoopUp CTCCTGTTTCCAGGCCTCCCCGGATAAGG 
T3GSIc-F and GGAGAATTAACCCTCACTAAAGGCCGTTCGCCCGCGTT 
GsI2c35 3-EX CATACAACGCCTTTTTCTCTCCAGG 
HP34_dsrt_mirror CACCCATGCCGGGCGTAC TGAAACAACCGTCCGCCCAAC 
HP34_minus5Tto
C CACCCATGCCGGGCGTAC TGAAGCAACCGTCCGCCC 
HP34_dsrt_rando
m 

CACCCATGCCGGGCGTAC TGAAAGGATCGGGGTGGTG 

5AND6_universal AATTAACCCTCACTAAA G GCCGTTCGCCCGCGTTGG 
elbow_CGGC_F AATTAACCCTCACTAAA G GCCGCGCGCCCGCGTTGG 
elbow_GCCG_F AATTAACCCTCACTAAA G GCCGGCCGCCCGCGTTGG 
-5TtoC_F AATTAACCCTCACTAAAGGCCGTTCGCCCGCGTTGGGCGGACGGTTGCTTCA 
HP_dsrp_mirror_F AATTAACCCTCACTAAA G TGGCAGGCGGGTCGTTGGGCGGACGGTTGT 

TTCA 
HP_dsrp_rndm_F AATTAACCCTCACTAAA G TGATGCAACCTTACTCACCACCCCGATCCT 

TTCA 
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