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Abstract 

 

Seismic and Sparse Data Integration through the use of Direct Sampling 

 

 

Travis Payton Hampton, M.S.E. 

The University of Texas at Austin, 2013 

 

Supervisor:  Sanjay Srinivasan 

 

 

The integration of seismic attributes and well data is an important step in the 

development of reservoir models. These models draw upon large data sets including 

information from well logs, production history, seismic interpretation, and depositional 

models. Modern integration techniques use the extensive data sets to develop precise 

models using complex workflows at increased cost of time and computational power. 

However, a gap exists in which a geostatistically driven procedure could integrate pattern 

statistics inferred from seismic images and those integrated from analogous geologic 

systems in order to develop spatially accurate reservoir models. 

Direct Sampling Seismic Integration Process, DSSIP, was first proposed by 

Henke and Srinivasan (2010) as an alternative to traditional seismic integration methods. 

The process provides a probabilistic mapping tool for fast reservoir analysis based on 

sparse conditioning data in a target reservoir and fully interpreted data from an analog 

field. DSSIP combines the structural information present in seismic data and facies 
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patterns present in a training reservoir to create a fully realized output map for the target 

field. In this work, the basic DSSIP algorithm has been further optimized by performing a 

detailed parameter sensitivity study. The basic DSSIP algorithm has been demonstrated 

for a real field data set for a deepwater Gulf of Mexico reservoir. The basic DSSIP 

algorithm has also been analyzed to understand and model the effects of features such as 

salt canopy that can blur the seismic image. Finally, a modification to the basic algorithm 

is also presented that uses only a training model and the seismic data for the target 

reservoir in order to generate reservoir models for the target reservoir. This procedure 

eliminates the requirement to have a matching pair of training data sets for both the facies 

distribution and the corresponding seismic response.  
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Chapter 1: Introduction 

The integration of seismic attributes and well data is an important step in the 

development of reservoir models. These models draw upon large data sets including 

information from well logs, production history, seismic interpretation, and depositional 

models. Modern integration techniques use the extensive data sets to develop precise 

models using complex workflows at increased cost of time and computational power. 

However, a gap exists in which a geostatistically driven procedure could integrate pattern 

statistics inferred from seismic images and those integrated from analogous geologic 

systems in order to develop spatially accurate reservoir models. 

Direct Sampling Seismic Integration Process, DSSIP, was first proposed by 

Henke and Srinivasan (2010) as an alternative to traditional seismic integration methods. 

The process provides a probabilistic mapping tool for fast reservoir analysis based on 

sparse conditioning data in a target reservoir and fully interpreted data from an analog 

field. DSSIP combines the structural information present in seismic data and facies 

patterns present in a training reservoir to create a fully realized output map for the target 

field. 

To perform the base spatial recognition processes, the method adapts the Direct 

Sampling algorithm as developed by Mariethoz et al. (2010). In the first step of DSSIP, 

unknown facies locations in the target reservoir are filled using patterns developed by 

comparing seismic attribute maps from the training and target reservoirs. The first step 

captures the large structural patterns that can be extracted from the low resolution seismic 

data sets. The second step retrieves the high resolution facies relationships from the 

analog reservoir model and places them into the appropriate location in the target field 

map based on information gathered during the first step. 
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The following thesis presents a study of DSSIP and modifications that have to be 

performed to the base algorithm in order to implement the process on realistic data sets.  

Several data sets were used to advance the understanding of the parameters, data 

preparation, and importance of data quality to the results obtained by application of the 

method. A major advance reported in this thesis is the ability to model a reservoir using a 

single training reservoir model, target seismic information for a target reservoir and field 

specific conditioning data, rather than a matching pair of training reservoir model and 

seismic data that is required in the base algorithm to calibrate the relationship between 

the two. The base algorithm and the modifications are demonstrated on several cases – 

both synthetic as well as some based on actual field data. 

This report is divided into eight chapters. Chapter 1 introduces the motivation for 

DSSIP. Chapter 2 provides a background on the processes and background literature that 

the algorithm draws upon. Chapter 3 states the order of operations for the algorithm and 

illustrates this using a basic synthetic case study. Chapter 4 is an optimization study for 

DSSIP and recommends specific parameter values. Chapter 5 applies DSSIP to Lobster 

Field and introduces possible modifications to the algorithm. Chapter 6 demonstrates the 

data preparation process using information from provided internal company reports. 

Chapter 7 examines the impact of low resolution or mixed resolution seimic data on the 

model characteristics. Chapter 8 concludes the report and summarizes the ideas explored 

in this thesis. 
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Chapter 2: Literature Review 

Two focus areas of research have strongly contributed to the development of 

DSSIP, seismic integration and multiple-point statistics. Seismic integration techniques 

focus on the linking together of large seismic data sets and sparse geologic information to 

develop comprehensive reservoir models. Multi-point statistics based algorithms utilize 

patterns of reservoir objects described in terms of  joint variability on a spatial template 

in order to develop complex reservoir relationships. 

2.1 SEISMIC INTEGRATION TECHNIQUES 

Current seismic integration techniques focus on developing extensive workflows 

that utilize large amounts of qualitative geologic information to guide facies 

interpretation (Lindseth, 1979, Riddiford and Goupillot, 1994, Narhari et al., 2008). Other 

methods use well and production data to constrain the seismic inversion process (King et 

al., 1993, Russell et al., 2001, Hampson et al., 2001, Andersen et al., 2006). These 

methods develop accurate reservoir models at the cost of high computation times. 

However, several authors have shown the added value of faster model creation using 

statistical techniques to evaluate the geologic information. One such set of methods use 

variograms and probability densities to capture spatial variance (Silva et al., 1998, Yang 

et al., 1995). 

Calabrese et al. (2011) created probability maps using relationships between 

known lithology at the well locations and their relationships to inverted seismic 

attributes. The process is a supervised Bayesian classification using a set of conditional 

probability information for each lithofacies and seismic attribute pair. The probability of 

a selected facies (A) at an unknown location with a known seismic attribute (B) is then 

calculated using the probability functions developed at the known locations, yielding the 



 4 

P(A|B) at the unknown location. Specific reservoir models were then created through the 

qualitative evaluation of the probability maps. 

Al-Anezi et al. (2013) provided a detailed workflow on the statistical integration 

of a 3D seismic information and a facies model derived from well logs and depositional 

models. The core of the process is the truncated pluriguassian algorithm inspired by work 

done by Matheron et al. (1987). The algorithm truncates multiple Gaussian simulations 

and combines them to create categorical maps (Mariethoz et al., 2008). The workflow 

developed by Al-Anezi calculates facies proportions using data from seismic inversion 

and then simulates the location of facies based on variograms and conditioning data 

locations. 

Quinto et al. (2013) developed a quantitative approach to integrate basin-scale 

geologic knowledge with locally known reservoir specific data in order to create a final 

static model of the reservoir. In addition to the traditional data - seismic and well data, 

Quinto also proposed a novel data integration scheme that takes into account the 

sequence stratigraphy information. The technique uses a method similar to that of Al-

Anezi et al. in order to calculate a final output map using calibrated probability density 

functions. The locations of structures in the static model are not determined. Instead, the 

final volume consists of proportion of a cell volume occupied by channels. A notable 

aspect of the approach is a reliance on knowledge of several geologic parameters such as 

topography and sediment source. 

The disadvantage of these papers is that variograms and PDFs fail to capture the 

multi-directional nature of anisotropy in reservoirs. They can only accurately recreate 

structures such as channels and fault systems. Multi-point statistical models recall 

patterns from specified training maps (analog reservoirs) and can better match geologic 

heterogeneities. 



 5 

Caers (2002) utilized a multi-point statistical approach to develop reservoir 

models based on a set of production data and a geologic training image. His technique 

utilized the snesim algorithm to retrieve structural patterns from the training map. The 

method has been subsequently demonstrated for seismic integration case studies (Castro 

et al., 2006, Caers et al., 2006). The studies combine probability maps created during 

seismic inversion (Andersen et al., 2006) to develop an ensemble of facies models using 

snesim. The final reservoir model is chosen through history matching to prior production 

data. 

Despite the inclusion of geostatistical procedures, the techniques discussed are 

still reliant on large amounts of qualitative interpretation and rely on workflows rather 

than algorithms. They also do not develop the reservoir model through the simultaneous 

comparison seismic and field data patterns. The DSSIP method discussed in this thesis 

provides a user with a powerful modelling tool given limited information about the target 

reservoir. The process differentiates itself through the use of pattern recognition in multi-

point statistics without the requirement of extensive analysis and the building of reservoir 

models through simultaneous integration of seismic information.  

2.2 MULTIPLE-POINT STATISTICAL MODELING 

Multiple-point statistics addresses the spatial uncertainty present in geologic 

model development. As previously mentioned, the processes create reservoir models for 

an unstudied field from a set of conditioning data and a training image. Over the past two 

decades, several multi-point statistical methods have been developed for application in 

the geosciences (Hu and Chugunova, 2008). 

Kriging is one of the earliest of the geostatistics methods, developed by Matheron 

(1976).  The technique interpolates a sparse data map based on the proximity and value of 
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neighboring locations. The following equation shows the linear predictor used to estimate 

the value of the random variable Z at an unknown location so using conditioning data at 

local known points Z = (z(s1), z(s2), … , z(sn)). The weights, λi, are not assigned as in 

typical distance driven estimations, rather they are based on a semivariogram. 

 

 ̂(  )   ∑   (  )

 

   

 

 

Semivariograms are a function describing the spatial variance across a given data 

set. For a given lag or distance between two points h, the variance is calculated across the 

map at all points a distance of h apart and returned to the semivariogram (Bohling, 2005). 

  

 ( )  
 

  ( )
∑[ (    )   (  )]

 

 ( )

   

 

 

 The number of pairs separated by the lag h are designated as n(h). The weights are 

then assigned such that they minimize the variance of the error of estimation as seen 

below: 

 

  
     { ̂( )   ( )} 

 { ̂( )   ( )}    

The second condition ensures unbiasedness of the estimator. 

 If the random field value z(s) is broken down into a residual R(s) and trend 

component m(s) such that: 

    ( ) ( ) ( )o o oZ s m s R s  and  
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Then the kriged value ( )oz s can be identified with the mean ( )om s and to this a stochastic 

residue that has a mean 0 can be added.     covariance CR(h) is the residual covariance 

function derived from the semivariogram model calculated earlier. 

 
  ( )        ( ) 

This becomes the basis for stochastic simulation. Secondary data such as seismic can be 

added to this procedure by extending the kriging expression to include data of other type. 

Co-kriging introduces the idea that instead of only one variable Z1 multiple variables can 

be used   (       ) such that the estimator is now: 
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Semivariograms are still utilized to determine spatial similarity and the weights    . 
 

 Indicator kriging modifies the original algorithm to utilize a set of binary data 

which may be formed by setting a threshold, in the equation below, on the original data 

used in kriging (Journel, 1983). A set of semivariograms corresponding to different 

thresholds will be used. 
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 Sequential indicator simulation (sisim) builds upon the structure of indicator 

kriging and introduces an algorithm for direct estimation at each location without the 

need of iteration (Guardiano and Srivastava, 1993). The process begins by defining a path 

through all unknown locations. Then, neighboring known data points are recovered at the 

next path location. Indicator kriging is performed at the given location to generate a 

conditional probability density function (cpdf) for the variable. A value is drawn from the 

cpdf and returned to the unknown location in the estimation path. The process is repeated 

at each location in the path until the sparse map is filled (Mu et al., 2011). The variable is 

discretized in the case of a continuous value. Indicator kriging and simulation does away 

with the Gaussian restriction of traditional kriging and stochastic simulation as described 

earlier. 

 The main disadvantage with the listed kriging processes and sisim is that they still 

utilize semivariograms. Variograms limit the functions to measures of linear similarity or 

similarity between two points. The following algorithms address this limitation and create 

measures of similitude using the patterns seen in the conditioning data Z. 

 Strebelle (2002) proposed an algorithm that utilized a training image to develop 

patterns without the need for variogram calculation, snesim. Single normal equation 

simulation (snesim) begins by moving a template over each pixel of the training image 

sequentially and storing the pattern of variability at each location within the template, 

resulting in a database of all of the pattern configurations for a given template size. The 

simulation then proceeds sequentially over the un-informed nodes of a simulation grid by 

acquiring conditioning data from the sparse grid, finding an exact match from the 

database, and designating the matched pattern to the simulation node. The creation of the 

database is intended to provide rapid recall of a pattern during the simulation process. 
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 The major limitations of snesim are the inability to reproduce large image-scale 

relationships and the inability to process continuous data. In addition, the simulation 

procedure requires substantial computer storage for complex training images. Pattern 

reproduction is limited to the size of the template, and increasing the size of the template 

greatly increases computing costs. Efforts to streamline the data storage in snesim and to 

speed up the pattern recall process are currently underway (Straubahr, 2012). 

 Zhang et al. (2006) introduced a multi-point algorithm that operated similar to 

snesim, but pasted entire patterns from the training image into the sparse map. Rather 

than simulating one grid location at a time, filtersim scores patterns from the training 

image, places the pattern into a binned database, retrieves the pattern for each set of 

conditioning data during simulation, and places the entire pattern onto the simulation 

grid. 

 In this work a still newer algorithm for multiple point statistics called direct 

sampling (Mariethoz, 2010) is used for simulating complex patterns in the reservoir. This 

method is similar to the snesim algorithm described earlier, however, instead of scanning 

and saving the pattern statistics information and then retrieving those statistics during 

simulation, in direct sampling, the training image is directly scanned during simulation 

and the first match to the conditioning data pattern observed in the training image is 

exported back to the simulation grid. Details of this algorithm and its extension to reflect 

patterns exhibited by secondary data such as seismic is discussed in the next and 

subsequent chapters. 
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Chapter 3: Direct Sampling of Spatial Patterns and Seismic Integration 

3.1 DIRECT SAMPLING 

The Direct Sampling (DS) method was proposed by Gregoire Mariethoz (2010) as 

a multi-point geostatistical process that populates a sparse data field using patterns seen 

in a fully realized training image conditioned to sparse field data. The method 

differentiates itself from other geostatistical processes due to its very minimal use of 

computer memory storage and its application to continuous variables. 

3.1.1 Development and Background of Direct Sampling 

Direct sampling was initially developed to model geologic heterogeneity in 

hydrogeology and, therefore, shared inspiration from multi-point geostatistical methods 

seen in Chapter 2, such as snesim and filtersim. The direct sampling process differentiates 

itself from these methods by skipping the entire process of scanning and storing patterns 

observed on a training image. It instead simulates the outcome at the simulation node by 

directly finding the first match in the training image, rather than by scanning a database 

of prior patterns. The idea is grounded in the early work of Claude Shannon, more 

specifically his work on replicating English text using a Markov chain (Shannon, 1948). 

In A Mathematical Theory of Communication, Shannon demonstrated the ability to 

mathematically approximate English word and sentence structure using probabilities 

based on prior characters in a string. 

The letter approximations used 27 characters (26 alphabetic letters and a space) 

and were categorized according to dependence on prior characters. Zero-order letter 

approximations estimated each character independently and with equal weight. First-

order letter approximations again estimated each character independently but with a 

probability equal to the frequency of appearance in the English language. Second- and 
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third-order letter approximations were calculated using the probability of a current 

character based on the prior two/three letters. The probability was not calculated prior to 

the approximation and retrieved from a database. Rather, Shannon chose a page out of a 

book at random and read until the prior combination of characters was found. The 

following character after the match was recorded and the process reiterated. The word 

approximation system follows an identical ordering nomenclature but replace characters 

with words as the basic unit. These methods exhibited the ability of algorithms to 

accurately estimate patterns using present neighbors (prior characters/words) and a 

training set (book), not a stored database of the probability of all possible combinations. 

 

 
1. Zero-order letter approximation. 

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD 

QPAAMKBZAACI 
 

2. First-order letter approximation. 

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA 
 

3. Second-order letter approximation. 

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D 

ILONASIVE 
 

4. Third-order letter approximation. 

IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID OF DEMONSTRURES 

OF 
 

5. First-order word approximation. 

RESPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN 

DIFFERENT 
 

6. Second-order word approximation. 

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE 

Figure 3.1 Shannon’s series of approximations to English (adapted from Shannon, 

1948). 
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3.1.2 Direct Sampling Algorithm 

The following algorithm has been adapted from The Direct Sampling method to 

perform multiple-point geostatistical simulations (Mariethoz et al., 2010). It provides the 

order of operations originally specified by Mariethoz. 

 

1. Assign conditioning data to simulation grid (SG). 

2. Define a random path through the remaining unknown nodes in SG. 

3. For each successive point x in the path: 

a. Assign n number of closest known neighbors to unknown location x. 

b. Compute the lag vector L for the location x, containing n subsets. In 

Figure 3.2a, the neighborhood lag vector for the gray node consists of 

three subsets, L = {(1,2), (2,1), (-1,1)}. 

c. Specify a data event dn corresponding to the values at each neighbor 

location. In Figure 3.2a, dn = {0, 0, 1}. 

d. Define a search window in the training image (TI) such that all nodes in 

the event pattern (L and dn) will be within the TI. 

e. Define a random path through the TI search window. 

f. For each successive point in the search path: 

i. Retrieve the data event in the TI dTI for the lag vector L. In Figure 

3.2c, dTI = {1, 0, 1}. 

ii. Calculate the difference d between dn and dTI. The difference may 

be computed using various methods and for both continuous and 

categorical fields. 

iii. Store d, grid location, and value of the point in TI if d is the lowest 

calculated in the search path. 

iv. Return the stored value if d is less than the specified threshold t, 

signifying an appropriate match, Figure 3.2d. Proceed to next point 

x. 
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v. Return the stored value if the total number of iterations in steps i-iv 

exceed a specified fraction of the TI search path f. Proceed to next 

point x. 

3.1.3 Discussion of Direct Sampling Algorithm 

The direct sampling algorithm begins with the choice of an un-informed 

simulation node as a starting location in the sparse target field and storing the nearest data 

event surrounding that point. The stored data event is a patterned template containing the 

local coordinates and conditioning value of a specified number of known neighboring 

data points in the sparse field. The training image is then searched for a pattern best 

matching the data event previously retrieved. A limited search window and pattern 

matching tolerances may be specified to save computational time. Once a suitable match 

has been made, the value corresponding to the central node of the search template is 

obtained from the training image and transferred back into the original sparse data field. 

This value replaces the unknown value at the simulation node and a new un-informed 

location is chosen in the sparse field. The process repeats itself until the sparse field is 

fully realized. 

One of the advantages of multi-point geostatistical algorithms based on 

conditioning data is the adaptive nature of the search template as the simulation process 

continues, seen in Figure 3.3. As data events are filled in to the simulation grid, more 

conditioning data become available for the next data event. The conditioning event 

template therefore become smaller since the specified maximum number of known 

neighboring locations can be found within a shorter distance away from the simulation 

node. These tighter patterns will enable reproduction of the small scale structures found 

in the training image. 
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Figure 3.2 Visual order of operations for direct sampling (adapted from Mariethoz et 

al., 2010), a) Search window definition and acquisition of neighbors, b) 

Specifying the search window and path in the training image, c) Pattern does 

not match desired event pattern, d) Pattern match has been found and center 

node is stored, e) Stored value is returned to the original sparse map 

 

 

Figure 3.3 Search window reduction (adapted from Mariethoz et al., 2010). 

 

3.2 SEISMIC INTEGRATION WITHIN THE DIRECT SAMPLING FRAMEWORK 

Development on the Direct Sampling Seismic Integration Process (DSSIP) was 

first conceived by Henke and Srinivasan (2011). DSSIP synthesizes structural and 
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geologic variability in a simulation grid using a training pair and of a facies map with its 

corresponding seismic data (the target pair). The relationship between the training image 

and the seismic map is established and subsequently imposed on the simulated image 

conditioned to the available data. A two-step simulation procedure is implemented to 

convert the sparse facies map into a fully realized geologic output image. 

There are two main iteration loops in DSSIP. The first loop uses the coarse 

pattern related information seen in the seismic data to preserve the approximate location 

of the facies in the simulation domain. The second loop fills in small-scale geobody 

relationships that cannot be captured by the seismic data but may be contained in the 

training image. The two loops complement each other and at the end of the algorithm, 

yield a map that is both structurally and geologically accurate. Details of this 

implementation are presented in the next section. 

3.2.1 DSSIP Input Requirements 

The target reservoir is the subject of DSSIP analysis. The location and continuity 

of geologic facies bodies present in this reservoir are largely unknown as the conditioning 

data is only available at a few wells. Limited knowledge of the reservoir will make it 

difficult to infer facies characteristics without additional information in the training 

reservoir model. However, in order to pinpoint the location of the facies, an exhaustive 

seismic map of the target reservoir is necessary.  

The training reservoir is the data set from which relationships between patterns 

from the seismic and facies information have to be developed. Therefore, it must be a 

geologic analog for the target reservoir in order to preserve the spatial relationships 

between facies. The interpretation of what defines an analog field will change depending 
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on the situation. Analogs can include fields that share similar depositional environments 

or fields that neighbor one another in a common play. 

 

 

Figure 3.4 Data requirement for the DSSIP algorithm, a) Conditioning data for the 

target reservoir, b) Exhaustive seismic data for the target reservoir, c) 

Training reservoir model depicting the pattern of facies variability, d) 

Seismic response simulated on the training model in order to obtain the 

corresponding seismic training data. 

As already discussed, the information regarding the reservoir is represented in 

map pairs composed of a facies map and a seismic map. Acoustic impedance, wave 

velocity, and density are all acceptable seismic attributes for developing the reservoir 

TI Facies

 

 

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100 0

0.5

1

1.5

2

2.5

3

3.5

4

Seismic

 

 

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100
7.4

7.6

7.8

8

8.2

8.4

8.6

TI Seismic

 

 

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100 7.4

7.6

7.8

8

8.2

8.4

8.6

a) Target facies map b) Target seismic map 

d) Training seismic map c) Training facies map 

 

 

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100 0

0.5

1

1.5

2

2.5

3

3.5

4



 17 

model. It is recommended though not necessary, that the seismic variable for the target 

and training reservoirs be the same so that a correspondence between the patterns can be 

established. 

 

 

Figure 3.5 Differences in pattern information for different seismic data types, values 

have been converted to a neutral 0 to 1 scale. 
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3.2.2 The DSSIP Algorithm 

The first section, Loop 1, of DSSIP focuses on information that can be gathered 

from the target seismic map. Figure 3.6 below illustrates the procedure inside the first 

loop. Starting with the target facies conditioning data, a random path through the un-

informed nodes is first created. The random path defines the order in which each location 

in the simulation grid is visited. For the first location (u1), the nearest known neighbors 

are identified and their locations relative to u1 are noted. This data subset creates the data 

event pattern. The pattern is then transferred to the accompanying target seismic map 

centered on the same location (u1). The seismic value at each location on the event 

pattern is stored. The event pattern now contains the facies data in the neighborhood of 

the simulation node as well as the corresponding seismic pattern event. 

The seismic event pattern is carried into the training seismic map. Another 

random path is generated but, now, it is a search path through the training seismic map. 

The seismic event pattern is moved from location to location on the specified search path 

until a match in the training map is observed. A suitable tolerance for the matching 

process must be specified due to the continuous nature of the seismic data. Once a 

suitable match occurs, the location of center node of the matching location in the training 

pair is noted (u2). The corresponding facies at location u2 in the training facies map is 

returned to the original simulation grid. This provides the simulated facies at the location 

u2. This process is repeated until all unknown facies locations in the sparse target 

reservoir model are filled. 
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Figure 3.6 DSSIP pattern Loop 1 algorithm, a) Sparse facies map of unknown field, 

Field 1. An event pattern is created, storing the location of nearest known 

data points.   b) Event pattern is transferred into seismic map of Field 1, and 

impedance is stored at pattern locations.   c) Seismic map of geologic 

analog, Field 2, is searched for best match to updated event pattern.   d) Best 

match location is transferred to Field 2 well data map and well data at 

location is stored. Well data value is transferred to event pattern center of 

Field 1 and process repeats. 

At this point, the target facies map has been filled in completely using information 

from the relationship between the two seismic maps. The second loop begins by sampling 

a specified number of conditioning data from the target model generated to create a new 

simulation grid. The target facies map is sampled to allow for the next direct sampling 
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step to insert higher resolution geologic patterns. These sampled conditioning data values 

can be considered as pilot points that are used to further develop the higher frequency 

structures observed in the training model. It is recommended that only 10% of the 

previously simulated facies values are carried into the new map. More discussion of the 

algorithm parameters is presented later in the thesis. Now, the sparse new simulation map 

and the training facies map are inserted into the direct sampling algorithm. The process 

fills in the gaps in the new simulation grid, creating the final output facies map for the 

target reservoir. 

Figure 3.7 summarizes the DSSIP process using a basic example run. The target 

facies map uses far more conditioning data than will be typically used in a true 

application of DSSIP. Again, the first loop captures the larger structures as seen in the 

results of the first loop, the seismically-filled facies map that starts the second loop. The 

second loop fills in the details and finalizes the map. 



 21 

 

 

Figure 3.7 Implementation of the DSSIP algorithm. 
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3.2.3 DSSIP Output Maps 

In Figure 3.8, the target seismic map and the training facies map are compared to 

the simulated facies realization. The previously discussed influences of the first and 

second loops become clear. The final simulated model shares the characteristics of the 

training model and yet retains the locations of the main facies as dictated by the seismic 

impedance. The higher impedance in red in the target seismic map roughly corresponds 

to the dark blue facies in the simulated realization. In the final simulated realization, four 

small regions of high impedance are present in the top left corner, one medium region in 

the bottom center, and one large object in the bottom right. These three features are also 

seen in the final simulated realization. Looking specifically at the facies object in the 

bottom right, the shape of the object has been preserved in addition to its location and 

size. A majority of the other objects have also been similarly preserved. 

By comparing the training facies map to the fully realized simulated facies map, it 

is possible to see the high resolution details not captured by the seismic imaging. The 

dominant dark blue facies in the fully realized map is consistently outlined by the same 

pattern of facies (orange to green) as is present in the training image. The thin orange and 

green objects protruding from the dark blue facies are captured. At the top right of the 

fully realized map, the shape and connections of the red facies object has been copied 

over from the training facies map nearly identically. It is important to note that process 

also successfully replicates the frequency of small objects, such as the thin orange and 

green connections. 

The application of the direct sampling algorithm has difficulty in connecting long 

thin objects as seen in the fully realized map along a corridor from the bottom left to the 

top right. Thin objects will begin at two separate locations and will have difficulty joining 

because each object lacks knowledge of the location of the other object. 
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Figure 3.8 Information derived from the seismic map and the training image for the 

simulation of facies in the target reservoir model. 

The following output maps reinforce the relationships seen in Figure 3.9 and 

discussed in the prior paragraphs. The same target and training reservoir models were 

used for each run and the following realizations were obtained by implementing the 

algorithm and the random path along which the nodes are visited. The realizations are 

compared against a reference facies model from which the initial conditioning data for 

Loop 1 were extracted. Large structural patterns are maintained in each of these output 

maps and the models share similar facies architecture in each instance. 
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Figure 3.9 Ten realizations of the reservoir facies model obtained conditioned to the 

same “hard” data and the training image. 
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Figure 3.10 places the actual and training facies maps beside run (c) to further 

demonstrate the structures and relationships replicated. There are three main 

considerations to note between the actual map and the output map: location of structures, 

shape of structures, presence of thin structures, and proportion of facies. A majority of 

the large bodies were accurately placed in the simulated model, as evidenced by the 

replication of the dark blue structures in run (c). Two dark blue bodies are present in the 

bottom left quadrant of the reference facies map. The general location and shape of these 

bodies are also present in the output map. However, the algorithm does have difficulty in 

producing smooth transitions between facies, resulting in shapes that may capture the 

general outline but cannot be used to define facies boundaries. 

 

 

Figure 3.10 Comparison between the reference facies model, training facies model, and 

a simulated realization (Run (c) from Figure 3.9). 

Thin bodies were propagated throughout the simulated model and in the correct 

direction of anisotropy. But they do not occur with the same frequency as those in the 

actual map. Instead, they appear to be more similar to the thin bodies in the training 

image. The similarity between the thin bodies in the training and output maps is expected. 

The reproduction of large structures relies on the conditioning influence of the seismic 
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impedance data. Thin and high detail structures will be reproduced based on the 

characteristics of the training image in the second loop. 

The proportion of facies is dependent on the proportion represented in the 

conditioning data for Loop 1 of the algorithm. A large number of known conditioning 

points at the start of Loop 1 will more accurately reproduce the desired facies 

proportions. A small number of conditioning locations where chosen in this simple 

example, to better represent a real field case for the implementation of the algorithm. 

Therefore, the facies proportions in run (c) are largely dependent on the facies present in 

the training image. 
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Chapter 4: Optimization of the DSSIP Algorithm 

In the previous chapter a pattern search algorithm was presented for performing 

multiple point simulation of a reservoir model conditioned to seismic data. The algorithm 

uses the direct sampling algorithm for multiple point simulation. In this chapter, the 

seismic integration algorithm (DSSIP) is explored further in order to understand its 

sensitivity to model parameters and also to optimize the data integration process.  A 

comprehensive sensitivity analysis for several internal parameters of DSSIP was 

conducted to optimize estimation quality and minimize computational cost. During the 

construction of the algorithm, small training models containing 10,000 nodes were used 

and search thresholds were held strict. However, once the process is scaled up to cases 

with greater than 25,000 simulation or training nodes, the base case parameters becomes 

extremely inefficient and optimum  parameters must be specified. Search tolerances must 

be relaxed while maintaining an acceptable final facies model. 

4.1 BASE CASE SURVEY 

A base case simulation was performed to serve as a benchmark for further testing. 

Table 4.1 displays the main parameters defining the computational cost and simulation 

quality using DSSIP. The accompanying values are the initial values as specified by 

Henke (2011) and used in the base case. They are described in further detail in the 

following sections. 
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Table 4.1 Base parameter specification 
 Parameter Description Value 

Lo
o

p
 1

 

Full map fill 
Loop 1 is completed prior to 
sampling into Loop 2. 

Yes 

Fraction of TI to search 
Defines the length of the search 
path in Loop 1. 

90% 

Number of neighbors 
Number of neighbors required to 
create a data event in Loop 1. 

15 

Location threshold 
Measure of similitude between 
matching patterns in Loop 1. 

0.03 

Lo
o

p
 2

 

Conditioning points, Loop 2 
Percentage of Loop 1 map 
sampled to start Loop 2. 

2.50% 

Fraction of TI to search 
Defines the length of the search 
path in Loop 2. 

90% 

Number of neighbors 
Number of neighbors required to 
create a data event in Loop 2. 

15 

Location threshold 
Measure of similitude between 
matching patterns in Loop 2. 

0.03 

 

4.1.1 Input Data 

The input maps used for the base case are as shown in Figure 4.1. The reservoirs 

were synthetically created, and the seismic maps were similarly generated using the 

paired facies map. These maps demonstrate the dependency of the structural patterns in 

the seismic map on the location of facies in the facies map. However, the seismic 

impedance describes variations at a much coarser resolution. Values within the seismic 

map are continuous and intended to represent acoustic impedance. The target facies map 

was sampled to mimic sparse wells in a reservoir. 
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Figure 4.1 Input target and training maps utilized in parameter optimization. 

4.1.2 Results and Discussion 

The base case runs yielded results that matched the actual target reservoir as 

shown in Figure 4.2. As previously discussed in Chapter 2, DSSIP retains the direction of 

facies continuity and replicates the small-scale relationships between geologic bodies. 

This is evidenced in the output reservoir maps below. A summary of the computational 

times for each run is presented in Table 4.1. These times will increase dramatically once 

the process is applied to reservoirs any larger in size. Therefore, the following discussion 

of parameter optimization is warranted by a desire to reduce the computational time 

required to complete DSSIP. 
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Table 4.1 Loop completion time for base case runs. 

Run 
Completion Time (s) 

Loop 1 Loop 2 

a 2301 1679 

b 2313 1708 

c 2316 1682 

d 2275 1465 

e 2341 1665 

Avg. 2309 1640 

 

 

Figure 4.2 Output fully-realized target facies map for base case runs with actual facies 

map for reference. 

The slight variations in loop completion times between the runs are due to the 

different number of loop iterations that are terminated earlier in some realizations due to 

accurate matches. An accurate match prior to the end of the search path will end the loop 

and return that value to the sparse map. The completion times for Loop 1 are larger than 

that of Loop 2 due to the extra steps of seismic integration. In Loop 2, pure direct 

sampling will immediately search the training image for patterns and return a match to 
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the sparse map. In Loop 1 on the other hand, the pattern search is conducted twice over 

the training pair. In addition, a larger number of conditioning points are present at the 

start of Loop 2, decreasing the total number of un-informed simulation nodes for 

iteration. 

4.2 PARAMETER OPTIMIZATION 

After the completion of the base case survey, five parameters were identified 

according to criticality and potential time improvement. They included the “full map fill” 

option, fraction of the training image to search, number of neighbors required to create an 

event pattern, event pattern shape/location tolerance, and the number of conditioning 

points transferred to Loop 2. The testing was conducted using the same input maps and 

reservoir pairs as the base case. 

4.2.1 Full Map Fill 

“Full map fill” indicates whether or not the first loop completely fills the sparse 

image with facies data prior to being sampled into the new map at the start of the second 

loop. If this option is not selected, the first loop will terminate after the required number 

of conditioning points for Loop 2 have been simulated, and those points will be used as 

conditioning data in the second loop. Skipping additional iterations to fill simulation 

nodes in Loop 1significantly decreases the calculation time for the first loop. However, 

this also limits the extent of information extracted from the seismic. As the sparse map is 

filled, the event patterns contain known locations closer to the unknown central node and, 

therefore, the matching process will more accurately return the details of small scale 

features. However, one could argue that the seismic only informs large scale reservoir 

structures and consequently, terminating the first loop earlier will be acceptable. 
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The results obtained by selecting or not-selecting this option is presented in 

Figure 4.3 where they are compared to the set of base case maps. In the “full map fill” 

case, all locations were simulated in Loop 1 and 250 points were sampled into Loop 2. In 

the non-“full map fill” cases, 250 conditioning points were calculated in the first loop and 

transferred directly into the second loop. All other parameters were held constant. Table 

4.2 displays the completion time information for each run. 

 

Table 4.2 Loop completion time for non-“full map fill” runs. 

 Case B) 250 cond. pts. Case C) 1250 cond. pts. 

Run 
Completion Time (s) Completion Time (s) 

Loop 1 Loop 2 Loop 1 Loop 2 

a 77 1662 472 1657 

b 80 1680 459 1643 

c 76 1761 471 1611 

d 77 1624 463 1676 

e 79 1698 484 1634 

Avg. 78 1685 470 1644 

 

In Figure 4.3, the first column contains Runs a-e for the base case algorithm, and 

the final two columns display the results of not completing Loop 1 and stopping with 250 

and 1250 conditioning points (Case B and Case C, respectively). In Case B and C, the 

location of large structures was correctly reproduced and the presence of thin structures 

was accurately represented. However, the increased proportion of large dark blue 

structures in these two cases show the importance of full Loop 1 simulation. 
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Figure 4.3 Non-“full map fill” and base case output target reservoirs. 

Another difference between Cases B and C is the presence of the channel 

overbank facies indicated in red. Case C contains a large amount of this facies in the top 

Run (a) 
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Case A) Full map fill, 
250 Loop 2 cond. pts. 
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Case C) Non-full map fill, 
1250 Loop 2 cond. pts. 
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Run (c) 

Run (d) 

Run (e) 

Run (a) 

Run (b) 

Run (c) 

Run (d) 

Run (e) 
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right quadrant, while Case B has amounts similar to that seen in the base case. When 

compared to the actual facies map in Figure 4.2, Case C has correctly identified the facies 

proportion and the general location of the red facies. It marks an improvement over the 

base case in this aspect. The overbank structures are small objects that are not sampled by 

the original “hard” conditioning data and therefore have to be sampled at the end of Loop 

1 in order to be represented in the second loop. The higher number of conditioning points 

transferred from the results of Loop 1 in Case C creates a higher number of seeded 

locations at the start of Loop 2. 

4.2.2 Fraction of TI to Search 

“Fraction of TI (training image) to search” defines the maximum number of 

training nodes that are visited for matching the conditioning data pattern within the 

training image. The best match is stored during each iteration loop and is carried into the 

target simulation grid if a match to the conditioning event pattern within the specified 

criterion is not obtained by the end of the search path. In Loop 1, the search path is 

calculated through the training reservoir’s seismic map. In Loop 2, the search path is 

conducted through the training model’s facies map. 

By optimizing the length of the search path by minimizing the “fraction of the TI 

to search,” the main computational cost of the first loop can be directly lowered. Once 

again, it comes at a cost of accuracy due to a limited search window. The results in 

Figure 4.4 below show that a minimal difference exists between the large and small 

search windows, but an optimal value can still be chosen. Each iteration loop contains a 

separate “fraction of TI to search” modifier requiring a more complex analysis procedure. 

Table 4.3 specifies the parameters for each case and displays the average run times. The 

images shown in Figure 4.4 are representative for each case. 
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Figure 4.4 “Fraction of the TI to search” output target reservoirs. The models in the left 

column are realizations of the base case. Two realizations corresponding to 

each value of the parameter are shown on the right. 

Case B) Fraction of TI (Loop 1 = 0.6, Loop 2 = 0.6) 
Case A) Fraction of TI 

(Loop 1 = 0.9, Loop 2 = 0.9) 

Case C) Fraction of TI (Loop 1 = 0.3, Loop 2 = 0.3) 

Case E) Fraction of TI (Loop 1 = 0.9, Loop 2 = 0.3) 

Case F) Fraction of TI (Loop 1 = 0.3, Loop 2 = 0.9) 

Case D) Fraction of TI (Loop 1 = 0.1, Loop 2 = 0.1) 
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The continuity of features in the output maps decrease as the “fraction of TI to 

search” decreases, but the structure locations are maintained. Case D is at the lowest 

extreme and searches only 10% of the training image. The mudstone (dark blue) facies 

bodies in Case D are too large and begin to merge together unlike in the reference. The 

minimal difference between Case A and Case B supports setting the “fraction of TI to 

search” to 60%. 

Cases E and F explore the sensitivity to the search parameter in Loop 1 and Loop 

2 separately. Case E shortens the search length in Loop 2 and produces poorer quality 

output realizations than in Case F. Loop 2 was found to be more sensitive to reductions in 

search pattern length. Therefore, it is recommended that the “fraction of the TI to search” 

for Loop 1 be set at 0.6 and 0.9 for Loop 2. 

 

Table 4.3 Average loop completion time for “fraction of the TI to search” cases. 

Case 
Frac. of TI to search Completion Time (s) 

Loop 1 Loop 2 Loop 1 Loop 2 

a 0.9 0.9 2301 1679 

b 0.6 0.6 1727 1214 

c 0.3 0.3 1034 717 

d 0.1 0.1 592 455 

e 0.9 0.3 2290 722 

f 0.3 0.9 1050 1748 

 

4.2.3 Number of Neighbors 

Neighbors are the closest known conditioning data in the vicinity of the 

simulation node. “Number of neighbors” identifies the required number of nearby known 

data points to create a data event pattern. These event patterns are created on the sparse 
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target maps where few conditioning data values are known. As the target map begins to 

fill in with new data, the neighbors become closer and more related to the central 

simulation node. Increasing the number of neighbors will increase the amount of 

information required to estimate an unknown node, increasing both the accuracy but at 

the expense of computational time. 

The “number of neighbors” surrounding a simulation node will define the total 

amount of information within an event pattern. It is a parameter defined within both 

iteration loops and is set to a default value of 15 in Loop 1 and 20 in Loop 2. Table 4.4 

shows the decrease in completion time corresponding to the decrease in the number of 

neighbors. 

Case B produced results with structures similar to that of the base case.  The large 

mudstone (blue) structures are in the correct locations and the smaller overbank (red) 

facies are correctly located in the top right quadrant. In Case C, the limited number of 

neighbors used for simulation causes the geobodies in the simulated image to be broken 

up. Further, the proportion of facies favors the larger blue structures. Case D decreased 

the number of neighbors in Loop 2, resulting in inaccurately placed red facies and an 

increased number of thin structures. Of the three modified cases, only Case B produced 

results that capture the variability in the reference facies model. 
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Figure 4.5 “Neighbor of neighbors” output target reservoirs. 

Table 4.4 Loop completion time for “number of neighbor” cases. 

 

 

 

 

 

4.2.4 Location Threshold 

Once an event pattern is created from neighbors in the simulation grid, the 

training map is searched for a matching pattern. The “location threshold” is an allowance 

Case 

Num. of 
neighbors 

Completion Time 
(s) 

Loop 1 Loop 2 Loop 1 Loop 2 

a 15 20 2301 1679 

b 10 20 1562 1775 

c 5 20 583 1617 

d 10 10 2336 832 

Case B) Num. of neighbors (Loop 1 = 10, Loop 2 = 20) 
Case A) Num. of neighbors 
(Loop 1 = 15, Loop 2 = 20) 

Case C) Num. of neighbors (Loop 1 = 5, Loop 2 = 20) 

Case D) Num. of neighbors (Loop 1 = 15, Loop 2 = 10) 
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given for any difference in the exact location of matching data points defining a data 

event. Flexibility in the exactitude of matched patterns allows for faster simulation and 

more diversity in the simulated facies maps. 

Figure 4.6 summarizes the effect of changing the “location threshold” on the 

simulation results. Similar to decreasing the number of neighbors, relaxing the location 

threshold (increasing the value) in either loop causes an increase in the proportion of the 

large structures. The most extreme case, Case D, showed structures that begin to merge 

together. Case B increased the threshold value the least, and, even at that increment, the 

geobodies begin to form incorrect shapes with noticeably inaccurate facies proportions. 

The computational time savings realized by relaxing the location threshold parameters do 

not justify the inaccuracies seen in Cases B - F in Figure 4.6. 

 

Table 4.5 Loop completion time for “location threshold” cases. 

Case 
Loc. threshold Completion Time (s) 

Loop 1 Loop 2 Loop 1 Loop 2 

a 0.03 0.03 2301 1679 

b 0.06 0.06 1616 1295 

c 0.09 0.09 989 1030 

d 0.12 0.12 398 737 

e 0.03 0.12 2294 842 

f 0.12 0.03 432 1389 
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Figure 4.6 Sensitivity of simulated facies maps to “location threshold.” 

 

Case B) Location threshold (Loop 1 = 0.06, Loop 2 = 0.06) 

Case A) Location threshold 
(Loop 1 = 0.03, Loop 2 = 0.03) 

Case C) Location threshold (Loop 1 = 0.09, Loop 2 = 0.09) 

Case E) Location threshold (Loop 1 = 0.03, Loop 2 = 0.12) 

Case F) Location threshold (Loop 1 = 0.12, Loop 2 = 0.03) 

Case D) Location threshold (Loop 1 = 0.12, Loop 2 = 0.12) 
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4.2.5 Loop 2 Conditioning Points 

Loop 1 utilizes patterns in the seismic dataset to create a basic facies 

configuration map. The transitioning to the second loop utilizes a specified number of 

conditioning values sampled from this fully realized structural map that are used together 

with the original “hard” conditioning data in order to populate the simulation grid. The 

following exercise uses the “full map fill” option as seen in the base case. Increasing the 

number of transferred conditioning points will cause the final simulated map to reflect 

closely the structural information gained from the seismic. Decreasing the number of 

Loop 2 conditioning points will decrease the impact of the field-scale structural data and, 

instead, cause short-scale facies relationships observable in the training model to be pre-

dominant in the simulated model. In the following results, the number of conditioning 

points does not impact the total iteration time significantly, because the first loop is 

allowed to finish and the conditioning points are sampled directly from the full map 

produced by Loop 1. As seen earlier, the computation time for Loop 2 is a smaller 

fraction of the total computational cost. 

The mudstone (dark blue) structures’ locations and facies proportions are 

consistent across Cases A, B, and C. In addition, the thin border facies (orange/green 

bodies) occur at a similar frequency and in the correct direction. The main difference is 

the presence of the overbank (red) facies in the top right quadrant for Case B. In this case, 

a large increase in conditioning points at the start of Loop 2 increased the final output’s 

reliance on the results of the first loop and the actual seismic information. The increased 

number of sampled locations from Loop 1 increased the number of red facies seed points, 

leading to an increased presence of the red facies. It was found that any further increase 

in conditioning points limited the effectiveness of the second loop. 
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Figure 4.7 Sensitivity of the simulation models to the number of conditioning data at 

the end of the first loop. 
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Table 4.6 The computation time for different number of conditioning points at the end 

of the first loop. 

Case 
Cond. pts., 

Loop 2 

Completion Time (s) 

Loop 1 Loop 2 

a 250 2301 1679 

b 1000 2369 1661 

c 150 2380 1672 

 

4.3 FINAL RECOMMENDATION 

Three changes to the parameters of the base simulation are recommended as a 

result of the optimization analysis. The first is a decrease in the number of search 

locations in the first loop. Limiting the fraction of the training image to search did not 

decrease the quality of the facies organization developed during Loop 1. The Loop 1 

search path is through the target seismic map, and as a result of the decrease potential 

search locations are spread evenly throughout the image but at a lower frequency. This 

lower frequency is acceptable for searching and simulating features from the low 

resolution seismic map. 

The second parameter modification decreases the number of neighbors required to 

create a data event in the first loop. The low resolution of seismic images implies that a 

coarser event pattern is sufficient to capture the large structures present. The increased 

detail introduced by additional neighbors does not justify the increase in computational 

time. Both changes decreased the amount of information extracted during Loop 1 in favor 

of decreased completion time. 

The last recommended modification is to increase the number of conditioning 

points transferred from the Loop 1 output into the start of Loop 2. Structure location and 

facies proportion more closely resemble the actual facies map after increasing the number 
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of Loop 2 conditioning points to 10% of the total grid locations. The change does not 

increase total computational time and creates a better balance between fine and large 

scale facies reproduction. 

 

Table 4.7Base and final recommendation parameter specifications. 

 Parameter Base Final 

Lo
o

p
 1

 

Full map fill Yes Yes 

Fraction of TI to search 90% 60% 

Number of neighbors 15 10 

Location threshold 0.03 0.03 

Lo
o

p
 2

 

Conditioning points, Loop 2 
250 

(2.5%) 
1000 
(10%) 

Fraction of TI to search 90% 90% 

Number of neighbors 20 20 

Location threshold 0.03 0.03 

 

The results of the final recommendation runs are located in Figure 4.8. The 

accuracy of both the large and thin structures did not change when relaxing the Loop 1 

parameters from Case A to Case B. The increased number of conditioning points at the 

end of Loop 1 created a more accurate representation of the overbank (red) facies 

locations corresponding to the recommended parameters. In Table 4.8, the Loop 1 

computational time showed a 46.6% decrease as a result of the recommendations. Across 
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both iteration loops, Case A (base parameters) had an average run time of 3949 seconds 

and Case B (final recommendation) finished in 2898 seconds, a decrease of 26.6%. 

 

 

Figure 4.8 Base and final recommendation case output maps. 
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Table 4.8 Comparison of base and final recommendation case completion times. 

 Base case Final recommendation 

Run 
Completion Time (s) Completion Time (s) 

Loop 1 Loop 2 Loop 1 Loop 2 

a 2301 1679 1244 1700 

b 2313 1708 1207 1634 

c 2316 1682 1220 1596 

d 2275 1465 1237 1712 

e 2341 1665 1258 1683 

Avg. 2309 1640 1233 1665 

 

The parameter optimization exercise has resulted in the algorithm representing the 

observed features more accurately and trimming the computation time. The 

recommendations are a general set of parameters that will provide users a starting point 

for DSSIP application. However, each application will differ in resolution, size, and 

desired accuracy. To that end, the optimization exercise has revealed that deep reductions 

in time can be offered for a minimal reduction in accuracy. 
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Chapter 5: Implementation of DSSIP to Lobster Field 

The DSSIP algorithm described in the previous chapters requires a training 

reservoir model and the corresponding seismic in order to learn the relationship between 

the reservoir heterogeneity and the corresponding seismic response. Then, when the 

seismic response for the target reservoir is known, the “hard” conditioning data for the 

target reservoir together with the seismic response are used to develop models for the 

reservoir. These models incorporate the relationship between seismic response and the 

target reservoir characteristics such as facies distribution learned from the training pair. 

However, often it is difficult to obtain the forward seismic response corresponding to a 

training reservoir model. Representative synthetic seismic response is often difficult to 

compute because of the limiting assumptions incorporated in those models. Therefore, it 

is beneficial to develop a method of determining facies information given a single 

volume of seismic response for the target reservoir. The following exercise explores two 

different applications of DSSIP to handle this scenario. 

DSSIP is capable of adapting to these circumstances without major modification 

to the base algorithm by utilizing the conditioning data and the training reservoir model 

to create a suite of reservoir models using direct sampling. A single seismic map is then 

used to match the data event in the vicinity of the simulation node to a similar pattern at 

another location in the same map. The matching facies pattern is then searched among the 

suite of reservoir models and the facies outcome at the simulation node corresponding to 

the closest match is pasted in the simulation grid. If more than one reservoir model has 

the same facies pattern, the facies outcome with the highest frequency of occurrence at 

the simulation node is returned.  
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In the following Lobster field example, a slight variation to the above was 

implemented. A coarse visual interpretation of the seismic response was performed in 

order to delineate channel-like features. This coarse interpretation was used as the 

training image and the seismic impedance values were used as the training seismic data. 

The training pair will thus consist of the partial interpretation facies map and the seismic 

map, and the target pair will contain the sparse well data and the same seismic map. The 

objective is to fill in more details in the target reservoir model based on an understanding 

of the relationship between the seismic response and the channel interpretation. The 

identical seismic input maps causes the event patterns created in the seismic image to be 

searched within the same seismic image for matching locations. The search path should 

be limited to ensure that the same location on the partial map is not directly transferred to 

the simulation grid. 

We start first with a description of the Lobster field and the accompanying data 

for this field. The data was afforded to us by Marathon Corporation. 

5.1 DESCRIPTION OF LOBSTER FIELD 

 Lobster field is a turbidite complex in the Gulf of Mexico that has been 

extensively studied since its discovery in 1991. The seismic amplitude volume for this 

field as well as a partial suite of well logs and production information was made available 

to the University as part of an ultra-deepwater reservoir characterization project funded 

by RPSEA. 

5.1.1 Overview of Turbidite Geology 

 Turbidite complexes are formed from clastic deposits on the deep ocean 

floor transported by gravity flows. At deposition, the complexes contain silt, mud, and 

sand and form in overlapping fan patterns. The sediments are carried downslope and onto 
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the basin plain in turbidity currents, high density currents containing sediments. Turbidity 

currents travel faster than the lower density surrounding fluids enabling the sediments to 

maintain suspension within the turbulent flow. High density particles fall out of the 

turbidity current as the flow slows down, leading to lower densities as the velocity 

decreases. 

Figure 5.1, below, shows the general pattern of deposition for a turbidite complex. 

Sediments from a delta are fed along incised submarine canyons across the continental 

shelf at high velocities. Once the turbidity currents reach the basin floor, they begin to 

lose velocity and are transported within leveed channels to the location of deposition. 

Distributary channels may diverge from the main leveed channels creating larger and 

more complex systems. Deposit fans, or lobes, occur at the end of the distributary or 

leveed channels and are the final resting place for the sediments. The geometry, 

composition, and architecture of the fans vary according to deposit location and source 

material. Fan widths range from 10 – 300 km with lengths reaching as far as 3000 km. 

The fans are deposited in bathymetric lows, gradually raising the lowest elevations. As 

more sediment is deposited over time, the fans begin to overlap and shift deposit 

locations. 

Reservoir architecture and stratigraphy of the turbidite complexes is defined by 

the nature of the sediment supply and the slope gradients in the receiving basin (Lomas 

and Joseph, 2004). Lomas and Joseph make the case that the bounds and contours of the 

ocean floor play a critical role in the development of turbidite formations. The traditional 

model of radial fans growing uniformly across the basin is inadequate for a vast majority 

of complexes. The two large categories advocated by Lomas and Joseph have been 

further divided by Arnold Bouma into four key controls: tectonics, climate, sea-level 

fluctuations, and sedimentary characteristics (Bouma, 2004). Bouma identifies tectonics 
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as the most influential factor on the formation of a turbidite system. Tectonics includes 

faulting, slopes, trenches, diapirism, and any other physical bound on the turbidity 

current. After deposition, tectonic activity and salt diapirs often break and separate the 

turbidite formations leading to compartmentalization (Edman and Burk, 1998). Sea-level 

fluctuations and climate alter the characteristics (velocity, sediment, and location) of the 

fluvial run-off and source. Sediment make-up is dependent on the three prior controls and 

will be discussed further in the following paragraph. It is the complex interaction between 

all four controls that make each turbidite system unique, requiring a case-by-case 

approach to analysis. 

 

 

Figure 5.1 General overview of a turbidite complex (adapted from Pattison, 2005). 

5.1.2 Lobster Field Geology 

 Lobster Field, or Ewing Bank 873, is located approximately 200 miles 

south of New Orleans in the Gulf of Mexico. It contains turbiditic structures and has been 

chosen for further study based on the completeness of the data set. The following work 
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focuses upon the Bulminella 1 reservoir within the larger Lobster Field. This reservoir is 

composed of six stacked and overlapping Pliocene turbidite lobes comprising three 

separate compartments. The system was formed by deltaic sediment settling on a salt 

canopy and has received multiple hydrocarbon charges since deposition. The boundaries 

of the reservoir are defined by an updip pinch out of the turbidite sands and faults on the 

east and west sides. 

Figures 5.2 and 5.3 contain a conceptual overview of the location of reservoir 

compartments in Lobster field. A7 is the smallest of the three compartments (Edman and 

Burk, 1998). It contains the oldest lobe (Lobe 5) and the lowest quality/most biodegraded 

oil of the reservoir. Lobe 5 is located on the western portion of the system, below Lobes 

10, 20, and 30. The “West” compartment is comprised of Lobes 10, 20, and 30 and is 

characterized by massive sand-rich amalgamated channels and high porosity sheet sands. 

The “East” compartment is composed of the youngest lobes, Lobes 70 and 80. It contains 

notable amounts of channel and overbank deposits. The three compartments are separated 

by shales and do not communicate. 
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Figure 5.2 Overview of lobe deposition in Lobster Field. 

 

 

Figure 5.3 Overview of lobe deposition in Lobster Field (adapted from Edman and 

Burk, 1998) 
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5.2 Preparation of Data 

 Model and map creation is a vital step prior to the application of DSSIP. Seismic 

data and facies interpretations must be acquired and condensed into the corresponding 

data maps for use in the algorithm. Seismic data in the form of RMS velocity were 

provided for Lobes 10, 20, 30, 70, and 80. Root mean square (RMS) velocity is a form of 

average velocity across multiple flat layers and can be calculated using the equation 

below. It is typically used in CMP (Common Midpoint Gather) stacking and in the 

application of NMO (Normal Moveout) correction. Seismic wave velocity of a rock can 

be tied back to the rock properties, such as bulk modulus and density, and provides a 

good connection to facies location for use in DSSIP. Figure 5.4 displays the overlapping 

sets of RMS velocity data provided. The data was taken from a depth slice near the base 

of the lobes. Lobe 30 is not visible in Figure 5.4, because it is overshadowed by data from 

Lobes 80 and 70. 

 

      √
∑   

    
 
   

∑   
 
   

 

where: 

    seismic wave velocity of the i
th

 layer 

    vertical two-way travel time within the i
th
 layer 

 

Heterogeneities within the lobes, seen in Figure 5.4, motivate the application of 

DSSIP at the lobe scale. Lobe 10 was chosen as the focus of the study due to the large 

extent of the seismic map and also because a coarse interpretation of channels based on 

the velocity variations is available for that lobe. Figure 5.5 shows the interpretation of 

channels based on the observed velocity variations. Based on this interpretation, the 
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description of reservoir heterogeneity was separated into three categories: channel, splay, 

and background. At the time of deposition, the channels transported sediments within the 

lobe and were located throughout the center region. Splays are located near the edges of 

the lobe and were confined locations where sediments pooled. The two attributes are 

differentiated by shape and their location within the lobes rather than by a clear contrast 

in the RMS velocity value. Figure 5.6 shows the categorized facies interpretation map. 

 

 

Figure 5.4 RMS velocity variations in Lobes 10, 20, 70, and 80. 
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Figure 5.5 Original facies interpretation map for Lobe 10. 

 

 

Figure 5.6 Categorized facies map for Lobe 10. 
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5.3 APPLICATION OF DSSIP USING THE LOBSTER FIELD DATASET 

Figure 5.6 represents the reference facies model for the reservoir. Starting with a 

limited interpretation of channels based on RMS velocities, the strategy is to use it as a 

training model to model more detailed facies variations in the reservoir. Two 

modifications were implemented. In the first, conditioning data were chosen at random 

from the reference model in order to perform the simulation. In the second, the 

conditioning data in Loop 2 of the simulation was sampled so as to match the known 

facies proportions of analog reservoirs. The following section discusses the results of 

these modifications and makes recommendations for future development. 

5.3.1 Adaptation of Input Data 

As mentioned above, based on the channels and other facies observed in the 

reference model, a second interpretation was created to mimic partial knowledge of the 

facies locations. The data for the target reservoir model consisted of the conditioning data 

map (sampled from the fully categorized facies map in Figure 5.6) and the reservoir’s 

seismic image. The training reservoir pair was composed of the partial interpretation of 

the original facies map and the same seismic image. 

The maps in Figure 5.7 have been prepared for use in DSSIP. They have been 

realigned to overlap and resized to 150x150 pixel grids for efficient processing. The 

seismic map was imported from the data files and left unaltered after resizing. 
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Figure 5.7 Lobe 10 seismic and facies input maps for DSSIP. 

5.3.2 Results and Discussion 

The DSSIP algorithm with the final set of recommended set of simulation 

parameters discussed in the previous chapter was implemented. The only change was to 

reduce the Loop 1 search path to limit the number of exact seismic location matches. The 

conditioning points for Loop 1 were sampled at random, but held constant across all runs. 

Case 2 was identical to the first except that the Loop 1 conditioning points were not 

randomly sampled. The conditioning points were chosen to reflect the proportions within 

the reference facies map. Both cases used the input maps in Figure 5.7 and started with 

25 conditioning points in Loop 1. 
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Case 1 

Case 1 results are located in Figure 5.8. The output maps do not resemble the 

reference facies map (target/actual) from which the initial conditioning locations were 

sampled. Instead, they are more similar to the training facies map. The inaccuracy is due 

to the inability of the first loop to identify new locations away from the established 

pattern locations in the partially analyzed training facies map. Our assumption was that 

the event pattern matching process between the identical target and training seismic maps 

would produce channel or splay facies matches in locations that have only been identified 

as background in the training map. If the algorithm starts at a “hard” data location which 

in the training map would be in the background facies, the subsequent steps anticipated 

are: 

• Event pattern is transferred into the target seismic map and a matching 

location is searched for in the training seismic image 

• After a match is made, the corresponding channel facies value is 

introduced into the unknown location in the sparse map. 

 

Figure 5.9 contains a representative output map from the end of Loop 1 prior to 

sampling into Loop 2. It is a near match to the partially interpreted training map. The 

image verifies the inability of Loop 1 to reproduce the desired full facies interpretation 

map. An increased number of conditioning points at the start of Loop 1 would resolve 

this issue, because a larger number of know channel and splay locations encourages the 

development of these particular facies. It is necessary for the sampled “hard” data to at 

least reflect the target facies proportion. 
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Figure 5.8 Reservoir models obtained by application of the DSSIP process. The “hard” 

conditioning data at the start of Loop 1 does not reflect the facies proportion 

in the reference reservoir model (Case 1). 
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Figure 5.9 Output map (Case 1) at the end of Loop 1 prior to sampling and starting 

Loop 2. 

Case 2 

Case 2 addresses the issue of the conditioning data not reflecting the target 

proportions.  In this case, the Loop 1 conditioning points were randomly sampled 

according to the facies proportion reflected in the target facies map. Facies proportions in 

the Loop 1 conditioning data and target facies map were identical across runs. Case 2 

results are located in Figure 5.10. Again, the output maps resemble the partial 

interpretation and do not correct the issue of incorrect facies proportion in the final output 

map. 
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Figure 5.10 Reservoir models obtained by implementing DSSIP using “hard” data that 

reflect the facies proportion in the reference reservoir model (Case 2). 

5.3.3 Recommended Modifications 

The results from Cases 1 and 2 show that while the DSSIP algorithm is able to 

model reservoir objects that exhibit complex connectivity and place them in the correct 
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simulation are performed using the same data set, the final simulated image resembles the 

training model too closely. However, modifications to the algorithm may provide the 

proper changes to correct these issues. Currently, there is no way to force the target facies 

proportion in the reservoir models and consequently, the simulation ends up bearing too 

much resemblance to the training model. A weight system could be added into the 

algorithm using which the simulation at a node would favor the selection of certain 

facies, such as the channels and splays based on the observed proportions. 

Another change would be to specify the location of the search path rather than just 

limiting the length. Limiting the search window to a certain region of the training 

reservoir that has been fully evaluated would produce facies patterns similar to those seen 

in the training image. The search path order should still be random after each iteration to 

ensure unbiased pattern matching. 

5.4 ENSEMBLE DIRECT SAMPLING SEISMIC INTEGRATION PROCESS 

One of the problems with the DSSIP algorithm described in the previous section 

is that it requires a correspondence between the training reservoir model and the seismic 

data set. As mentioned previously, it is very difficult to have a matching pair between the 

training model and corresponding seismic maps. In the following section, a modification 

to the DSSIP algorithm is presented that takes into consideration the available “hard” 

data for the reservoir and a generic training image in order to obtain an ensemble of 

reservoir models. The available seismic data for the reservoir is then used to refine the 

prior ensemble in order to find a posterior set of models that exhibit the patterns similar 

to that observed in the seismic. This modified algorithm is described next. 
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5.4.1 Description of Ensemble DSSIP 

A suite of training images is created from the original partial interpretation map 

and the conditioning data locations using direct sampling. Next, an event pattern is 

created at an unknown location in the sparse map containing the conditioning data. The 

corresponding seismic values are recorded and the same seismic image is searched for a 

matching location. Once a matching location is found, the new center node location is 

transferred to each facies training image in the suite and the corresponding facies values 

are recorded. The highest frequency facies value is calculated and returned to the original 

unknown location in the sparse map. This process is repeated for each unknown location 

until the sparse map is filled. 

5.4.2 Results and Discussion 

Figures 5.11 and 5.12 contain the results of Ensemble DSSIP. Figure 5.11 

displays the suite of training maps generated during the first loop of the process. As 

previously discussed, they are created using the main training image and the conditioning 

data sampled from the target field. The final output of the process is the set of probability 

maps located in Figure 5.12. 

The process showed results very similar to that of the original modifications to 

DSSIP seen in Section 5.3. The probability maps do not show an increased presence of 

the channel or splay facies. Again, they reproduce the training facies map rather the target 

reservoir that was conditioned. This is because, in the direct sampling procedure there is 

no way to dial in a required facies proportion in the algorithm. The reproduced facies 

proportion in the ensemble of initial models reflects the facies proportion of the training 

model even though the facies proportion indicated by the well conditioning data sampled 

from the reference are quite different. This problem can be rectified by using another 
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algorithm such as filtersim to generate the initial ensemble. The algorithm filtersim has a 

mechanism for imposing the target facies proportions. 

 

Figure 5.11 Selected training images developed during first loop of Ensemble DSSIP. 

 

Figure 5.12 Probability maps produced as an output of Ensemble DSSIP. 
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Chapter 6: Data Preparation for DSSIP 

DSSIP requires extensive knowledge of reservoir geology and subsurface 

attributes prior to applying the algorithm. An opportunity was presented to applying 

DSSIP to model the spatial variations of a reservoir in the Gulf of Mexico. However, 

prior to application of the DSSIP algorithm it was necessary to analyze the data in order 

to identify the main reservoir facies.  In the following study, data preparation techniques 

were applied to the real data set in order to produce maps and conditioning data for 

application of the DSSIP algorithm. Internal company reports have provided an 

exhaustive data set for the two fields to be used for the study. The training reservoir will 

be referred to as Field A, and the target reservoir will be referred to as Field B. The data 

set contains log data, core analysis, seismic volumes, and petrophysical data. In this 

chapter, we present the data analysis that was performed prior to application of the 

DSSIP algorithm. 

6.1 GEOLOGY IN FIELD A AND FIELD B 

The evaluation focused on the two fields located in the southern portion of the 

Gulf of Mexico. Both fields are part of a large complex of oolitic structures that comprise 

the Kimmeridgian play in the Mexican part of the Gulf of Mexico. The play has been 

manipulated by salt diapirism and dolomitization due to subaerial diagenesis, which has 

led to the formation of a large anticline and the entrapment of hydrocarbons. The fields 

are adjacent and are both categorized in the same geologic subsection of the oolitic 

structure. Field A has been more extensively studied and has been in production for a 

longer period of time than Field B. 
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6.1.1 Classification of the Local Region Based on Oolitic Structure 

 The Kimmeridgian play is composed of a large oolitic structure comprehensively 

studied in internal sedimentology reports provided. Oolites are sedimentary rocks 

comprised of ooids, which originate as small spherical grains of concentric layers of 

calcite. The calcite can later be replaced by other minerals such as dolomite, as is the case 

in parts of the Kimmeridgian play. It has been reported that the productivity in this region 

is strongly determined by the extent of dolomitization exhibited by the carbonate facies. 

Therefore, mapping spatial variations in dolomitic facies was an added focus during 

facies classification. Oolitic banks form in tropical climates and highly energetic, shallow 

environments. The structures in oolitic banks are not homogeneous and require multiple 

sections to define the geology. 

 

 

Figure 6.1 Diagram of an oolitic bank complex at the time of deposition. 

The oolitic banks of the Kimmeridgian Play have been divided into four large 

sections that describe the paleoenvironments: external ramp, internal ramp, lagoon, and 

restricted lagoon. These categories are based on the position on the ramp where they are 

formed and are differentiated by facies present and formation mechanism. The lagoon 

and restricted lagoon are in the eastern half of the formation and are composed of a wide 
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range of facies including dolomite, slightly calcareous shale, mudstone, and sandy 

siltstone. The external ramp is on the western most edge of the play and was formed in 

the deepest part of the carbonate ramp. This environment contains argillaceous mudstone 

with concentrations of calcareous shale. The internal ramp is located between the lagoon 

and the external ramp and is the main area of interest for the Kimmeridgian Play in the 

Field A-Field B complex. It is the most productive area of the formation and contains the 

most oolitic bank development. 

 

 

Figure 6.2 Paleoenvironments of the Kimmeridgian Play. 

The internal ramp has been subdivided into separate lithofacies to provide further 

geologic clarification: front bank, oolitic bank, and inside bank. All three lithofacies 

contain oolitic deposits but can differ greatly in composition and productivity. The front 
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bank is nearest the external ramp and is composed of wackestone-packstone sediments 

containing slightly dolomitized peloids with interbedded shales. The oolitic bank is in the 

middle of the internal ramp. It contains packstone-grainstone with ooids and minor 

amounts of dolomitized ooids. The inside bank is generally on the border between the 

internal ramp and lagoon and is largely composed of dolomites with a small presence of 

ooids and interbedded shales. 

 

 

 

Figure 6.3 Lithofacies present within the Kimmeridgian Play. 

6.1.2 Field A and B Classification 

Fields A and B are located in the internal ramp, more specifically within the 

inside bank lithofacies. As described above, dolomitization is an important feature of 

these internal bank lithofacies. The interval of interest in the reservoirs is within the 

Jurassic Kimmeridgian (JSK) geologic zone. This zone is defined by an Oxfordian base 
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and Tithonian ceiling. The size of the Kimmeridgian producing section in the Field A is 

roughly 12.9 km
2
. 

In Field A, five distinct facies have been identified within the desired Jurassic 

horizon, from F1 at the top to F5 at the bottom. F3 is the most productive subinterval and 

is composed of dolomitized oolites and dolomites with a small amount of dolomitized 

mudstone. F1 and F2 contain partially dolomitized mudstone and packstone, the only 

difference being a larger clay content in F2. F4 is composed of mudstone with 

interspersed shale layers. F5 consists of interbedded mudstone, wackestone, and 

packstone facies with a small amount of grainstone of oolites and, to a lesser extent, shale 

intervals. Lateral continuity between the fifteen wells in Field A has been shown and 

studied. Field B has not been studied as thoroughly as Field A and has only nine wells 

from which information can be gathered. 

6.2 WELL LOG PREPARATION AND ANALYSIS 

The goal of the well log analysis was to define the internal facies variations within 

Fields A and B and to locate the desired facies. Extensive log information was coupled 

with sparse core facies descriptions to generate facies proportion and dolomitization 

estimations. The initial work focused upon using established log cross plots to identify 

variations in lithology. This approach was followed by multivariate statistical analysis of 

the well logs through the application of principal component analysis (PCA) and neural 

networks. 

6.2.1 Cross-plot Analysis 

A common method in well log analysis is to cross-plot log properties in order to 

determine the lithology and porosity of a sample. Lithology is identified by comparing to 

cross-plot curves for known geologies (Zimmerle, 1995). Two such cross-plots were used 
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to evaluate geologies in Fields A and B: the neutron-bulk density cross-plot and the 

sonic-neutron porosity cross-plot. 

Figures 6.4 and 6.5 exhibit the neutron-bulk density and sonic-neutron porosity 

cross plots at the F3 interval for several wells in Field A. Only six locations were plotted 

for Field A due to a limited number of wells containing the appropriate log 

measurements. In both cross-plots, the log values for the Field A – Well 58, Well 38, 

Well 7, and Well 2 wells track the dolomite curve indicating that the F3 interval at these 

locations is more dolomitized. All the plots suggest a carbonate facies with very little 

clastic remnants, agreeing with prior geologic knowledge of the reservoir. 

Figures 6.6 and 6.7 display the neutron-bulk density and sonic-neutron porosity 

cross plots for the Field B – Well 1 and Field B – Well 12 wells within the F3 interval. 

Again, available log measurements limited the scope of cross-plot application to only a 

fraction of the total wells. The plots show that the two wells are not as heavily 

dolomitized as those in Field A. 
 

 

Figure 6.4 Neutron-density cross-plots within F3 interval in Field A. 
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Figure 6.5 Sonic-neutron porosity cross-plots within F3 interval in Field A. 

 

Figure 6.6 Neutron-density cross-plots within F3 interval in Field B. 
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Figure 6.7 Sonic-neutron porosity cross-plots within F3 interval in Field B. 

6.2.2 Principal Component Analysis 

Cross plot analyses provide a broad indication of whether a dolomitized rock 

facies is present. More details about the facies variations indicated by logs may be 

obtained by performing multivariate statistical analysis. One of these methods, principal 

component analysis (PCA), reduces the complexity of a problem using the inherent 

interdependencies in the data. Classification performed after PCA can then be compared 

to data from core analysis. 

The process is based on sample statistics and to that extent, blind to geologic 

interpretation and requires that the log attributes used for PCA be available at all wells. 

PCA was applied to the well logs to obtain a clustering of data locations and then 

compared against the geologic interpretations from core analysis to develop lithological 

correlations. Facies categorization can be assigned to each cluster once these correlations 

have been created. 

Background on Principal Component Analysis 

Principal component analysis calculates the normalized covariance matrix of a 

data set and reduces the matrix into a set of eigenvalues and corresponding eigenvectors 

(Joliffe, 2002). The vectors corresponding to the highest eigenvalues are noted as the 
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principal components, and the vectors corresponding to the lowest eigenvalues are 

discarded. The higher the amount of redundancy in the data set, fewer will be the number 

of principal components required to describe the data. In this fashion, a large number of 

attributes can be condensed down to a core number of eigenvectors with minimal loss of 

information. 

Transforming a new data set into the principal component space yields a set of 

principal scores. The principal scores are a projection of this data onto the principal 

components. After the principal scores are calculated, k-means clustering is utilized to 

categorize the data into separate groupings. In this case, our conjecture is that the clusters 

correspond to facies groupings that can then be compared to actual core evaluations for 

validation. 

Application of PCA on the F3 Facies within Field A 

An attempt was made to obtain facies indicators using PCA for the F3 facies 

interval across all wells in Field A. Principal component analyses were conducted on 

each well separately. In the Field A, seven wells contained the F3 facies, had adequate 

core data, and the proper number of log attributes to conduct the analysis (Field A – Well 

2, Well 3, Well 4, Well 7, Well 38, Well 42, and Well 58). An example of an output 

principal score plot for Field A – Well 58 prior to the clustering process is located in 

Figure 6.8. The final output of the process for Field A – 58 after clustering has been 

presented in Figure 6.9. 
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Figure 6.8 Principal scores prior to clustering process for the F3 interval within Field A 

– Well 58. 

 Clustering is a method to create groups of objects such that the profiles of objects 

in the same cluster are very similar. K-means clustering was utilized to group the scores 

seen in Figure 6.8. K-means clustering treats each data point as a location in space and 

finds a partition between clusters such that objects within each cluster are as close as 

possible. Silhouette values are calculated to determine the appropriate number of clusters 

after k-means clustering. The silhouette value is a measure of how close a point in one 

cluster is to points in neighboring clusters. Higher silhouette values correspond to tightly 

grouped clusters. The silhouette scores produced during the analysis of Field A suggested 

four facies clusters. The color bands in Figure 6.9 correspond to the four clusters 

specified during PCA. At this point, they have not been correlated to core data. 

  



 75 

 

Figure 6.9 PCA and cluster results overlaying multiple log attributes for the F3 interval 

within Field A – Well 58. 

Application to Core N2 in Field A – Well 2 

After conducting PCA application on only the F3 interval, PCA was then applied 

across all known geologic points in Field A. Again, the goal of the analysis was to 

develop a clustering model that accurately matched known lithology groupings so that it 

could be applied to points with unknown geologies. 

The interval of Field A – Well 2 – Core N2 (6187.04 – 6193.23m) was used to 

create a standard set of criteria prior to conducting the joint principal component analysis. 

The core was chosen because it contained three representative lithofacies, minor 

dolomitization, and extensive log attributes. Table 6.2 contains the results of PCA 

alongside the core geology interpretations. The team conducted the analysis using the 

gamma ray, deep resistivity, neutron porosity, density, and sonic log attributes. The 
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eigenvalue threshold was set at 95% to determine the appropriate number of principal 

scores to use. In this case, the first two principal scores reached the threshold as seen in 

Table 6.1. 

The results indicate that it is very difficult to capture the actual transitions in 

geology present in the core sample. Similar results were obtained for two other core 

samples Field A – Well 3 – N3 and Field A – Well 4 – N3C. PCA was unsuccessful over 

the regions tested. It was unable to adequately predict the geologic facies. 

 

Table 6.1 Eigenvalues for PCA in Field A – Well 2 – Core N2. 

Eigen 
values 

% of total 
EV value 

13414.47 0.999292 

7.044588 0.999816 

2.464705 1 

0.001029 1 

3.23E-05 1 
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Table 6.2 Facies comparison for the PCA process in Field A – Well 2 – Core N2. 

Depth GR NP Density 

Resistivity 
(deep) Sonic PS 1 PS 2 

Cluster 
Value Geology 

6187.04 16.0 0.0494 2.7953 181.776 45.4 8.98507 2.28571 3 Grainstone 

6187.25 14.173 0.0628 2.7912 188.615 47.6355 6.30694 3.36253 3 Grainstone 

6187.50 10.35 0.0639 2.7953 216.439 48.44 2.56989 2.22203 1 Grainstone 

6187.75 5.8620 0.0658 2.7801 286.751 49.7224 -1.97969 1.17960 2 Grainstone 

6188.27 5.6009 0.0665 2.7391 383.198 47.3578 -1.06791 -1.01748 1 Mudstone 

6188.48 5.6168 0.067 2.7432 433.029 46.7297 -0.75088 -1.55994 1 Mudstone 

6188.75 5.0901 0.0673 2.7114 453.323 48.0595 -1.85418 -0.64937 2 Mudstone 

6189.01 4.7677 0.0723 2.6569 448.464 47.4941 -1.86439 -1.30017 2 Grainstone 

6189.25 4.3477 0.0844 2.6099 453.322 49.4655 -3.18403 0.22387 2 Grainstone 

6189.50 3.9209 0.0911 2.6161 457.994 52.0300 -4.79515 2.26410 2 Grainstone 

6189.75 3.9776 0.0834 2.6719 476.618 50.8620 -4.18125 1.26845 2 Grainstone 

6190.12 5.3467 0.0728 2.7199 452.979 49.3834 -2.26815 0.63403 2 Grainstone 

6190.25 5.3467 0.0728 2.7199 452.979 49.3834 -2.26815 0.63403 2 Grainstone 

6190.76 6.66 0.0727 2.7262 472.372 45.53 0.74140 -2.10733 1 Grainstone 

6190.99 6.36 0.0774 2.7302 485.001 46.18 0.16506 -1.68276 1 Grainstone 

6191.25 6.0823 0.0825 2.7397 504.662 47.5232 -0.72615 -0.64028 1 Grainstone 

6191.73 6.6135 0.0723 2.7495 416.543 46.3657 0.29772 -1.39779 1 Floatstone 

6192.04 7.4467 0.0604 2.768 319.382 44.4072 1.97269 -2.71115 1 Grainstone 

6192.26 8.575 0.0444 2.7805 250.09 44.140 3.08998 -2.40077 1 Grainstone 

6192.51 8.58 0.0428 2.7804 240.315 44.06 3.13296 -2.46843 1 Grainstone 

6193.23 6.8564 0.0878 2.7653 184.254 52.2360 -2.32184 3.86108 2 Mudstone 

 

6.2.3 Neural Network Application 

Artificial neural networks utilize non-linear regression methods to create a 

training network. The training network learns from a set of input data with known outputs 

and can be used to predict outcomes from another set of input data. Neural networks can 

be generated using differing configurations and functions, but, at their most basic, they 

can be thought of as consisting of three layers: input, transform, and output. Training data 
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sets shape the learning transform (neurons) over a series of repeating tries until a 

satisfying rule set is created. In this application, the training phase develops a relationship 

between the multiple log attributes and the corresponding facies at known locations. The 

trained neural network is then applied to a full set of log attributes at all locations, and the 

resulting outcomes are the predicted facies. The validation step is important to ensure that 

the network is not overfitted. 

Neural Network Training Algorithm 

Ten wells in Field A were evaluated using neural networks. The networks were 

trained using the data available for selected intervals from the seven wells used during 

PCA (Field A – Well 2, Well 3, Well 4, Well 7, Well 38, Well 42, and Well 58). The size 

of the training data set was limited by the amount of geologically evaluated locations. 

They were trained using the Neural Network Toolbox within the Matlab software suite. 

Several different neural network models were created: 

 

1. Detection of dolomite 

2. Detection of partial dolomitization 

3. Detection of mudstone 

4. Detection of grainstone, 

5. General network for simultaneous detection of packstone, wackestone, mudstone 

and grainstone 

 

All the networks, except for the general network, used a single training network 

with only one indicator output. They all used ten hidden nodes and the Levenberg-

Marquardt method (Pujol, 2007), a widely accepted training function and the default 
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training algorithm within the Neural Network Toolbox. The training data set consisted of 

100 locations that have both known geology and the required log attributes. The input 

attributes required are the sonic, gamma ray, deep resistivity, neutron porosity, PEF, and 

density log values. 

The dolomite, mudstone, and grainstone networks identify only the locations of 

pure dolomite, mudstone, or grainstone, respectively, within the data set. The partial 

dolomitization filter can separate sources that have only been partially dolomitized from 

fully dolomitized facies. The general neural network is a multi-layered network created 

by combining the results of multiple neural networks to identify all types of geologies. 

The steps of the algorithm are specified below in Figure 6.10. The general neural network 

delineates between seven geologies: dolomite, mudstone, wackestone, packstone, 

grainstone, dolomitized mudstone, and dolomitized packstone. It uses four separately 

trained networks to filter out different geologies in a hierarchical fashion. 

 

 

Figure 6.10 Flow diagram of the general neural network algorithm. 

Network Training Results 

All four trained neural networks have a high degree of accuracy in facies 

estimation. Table 6.3 summarizes the results for the final neural networks. In each case, 

several iterations were required before resolving the most representative neural network. 
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The most accurate networks are the four that identify the lithologies - dolomite, partial 

dolomite, grainstone, and mudstone. 

The results for the general network have been broken down into the four different 

component networks. As a whole, it has the lowest accuracy as compared to the previous 

neural networks. Therefore, when only knowledge on the location of dolomite is 

required, it is faster and more accurate to use the binary networks. However, the general 

network will still provide a good estimation of the overall geology in instances when 

facies pattern studies is desired. 

 

Table 6.3 Summary of trained neural network accuracy. 

Network Type 
Accuracy 

Training Validation 

Dolomite 94.0% 93.0% 

Grainstone 83.3% 95.0% 

Mudstone 89.7% 100.0% 

General - - 

     Identify pure dolomite 94.0% 93.0% 

     Partial dolomitization identification 96.0% 90.0% 

     Identify geology under partial dolo. 100.0% 100.0% 

     Identify non-dolomite facies 89.0% 80.0% 

 

Neural Network Based Prediction of Facies Variation 

After training, the networks were applied across all data points in Field A 

containing the required suite of log data. This new data set was composed of information 

from ten wells with measurements at approximately 14,000 unique depths (observations). 
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The output data was used to conduct the interpretation and analysis in the following 

section. 

The size of the training data set was significantly smaller than the prediction data 

set to which the neural networks were applied. This problem could not be avoided due to 

the limited number of data points with detailed geologic classification based on core data. 

A limited number of training data points could potentially create a lack of geologic 

diversity and, consequently, prediction inaccuracy. However, the wide range of locations 

and geologies present in the current training set counteract some of these concerns. Table 

6.4 summarizes the percentages of the lithologies in each well obtained after application 

of the trained neural network model. 

Table 6.4 Neural network estimated facies proportion by well. 

 

 

6.3 DATA EXTRACTION FROM FIELD B SEISMIC VOLUME 

The next step was to investigate the seismic data sets for the reservoirs and 

delineate the information in that data. Six attribute volumes were provided for Field B. 

The attribute volumes contain inversion results for dolomitization, acoustic impedance, 

amount of limestone, density, amount of clay, and the ratio of compressional to shear 
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velocity. The following section details some of the analysis that has been done using the 

data. 

6.3.1 Covariance Matrices and Correlation Coefficients 

The similarity between the attribute volumes was assessed by computing the 

covariance matrix between pairs of attributes. Covariance is a measure of similarity 

between multiple objects, seen in the equation below. The final output of the equation is a 

measurement of the similarity or dissimilarity of two attribute arrays, X & Y. 

 

    (   )   
∑ (    ̅)(    ̅)
 
   

   
 

  where: 

             two independent variables (vectors) 

            individual components at location   
 ̅       ̅̅ ̅̅     means of       

                number of components in       

In order to perform this computation, a time slice was extracted from each volume 

at a specified time. Figures 6.11 – 6.13 demonstrate the extraction process from the 

seismic volume to the final input matrix. Figure 6.11 shows the 3D visualization of the 

acoustic impedance attribute volume. The horizontal slice in Figure 6.11 is the time slice 

seen in Figure 6.12 prior to any intensity value manipulation. Figure 6.12 displays the 

time slice after the values have been normalized for comparison to other attribute 

volumes. A smaller portion of the time slice was used to reduce computational time. 

Figure 6.13 contains this specific portion of the time slice used in the final similarity 

calculations. Petrel was used for visualization of the seismic volumes and Matlab was 

utilized to process calculations and intensity manipulation. 
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Figure 6.11 3D visualization of the acoustic impedance attribute volume. 

 

Figure 6.12 Acoustic impedance time slice after intensity manipulation. 
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Figure 6.13 Portion of the time slice in Figure 6.12 utilized in covariance calculations. 

6.3.2 Seismic Attribute Similarity 

The following figure contains the time slices of the attribute data extracted from 

their respective volumes after intensity correction had been applied. Images a, c, and e 

are all apparently identical. These lithology-based seismic attributes are likely based on 

linear variations in the other seismic attributes and, for that reason, the data is exactly 

identical. This exact similarity between all three lithology attribute volumes was 

confirmed during the covariance matrix calculations. The results are located in Table 6.5 

below. 

 

20 40 60 80 100 120 140

20

40

60

80

100

120

140



 85 

 

Figure 6.14 Time slices utilized in similarity measurement. 

The following table contains all of the normalized covariance values for each 

possible pairing of attribute volumes. The value in each cell corresponds to the similarity 

between the attributes on the intersecting row and column. For example, to find the 

similarity between the limestone and density attribute volumes, one would go to the 

column specifying “c) Limest.” and go down until the intersecting “d)” row was reached. 

A normalized covariance value of one corresponds to a pair of identical attribute 

volumes. As the values approach negative one, the volumes become more dissimilar and 

entirely independent. 
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Table 6.5 Covariance matrix displaying similarity between attribute volumes. 

 a) Dolo. b) AI-dep c) Limest. d) Dens. e) Clay f) VPVS 

a) 1 -0.03117 1 -0.01775 1 -0.15099 

b) -0.03117 1 -0.03117 -0.34126 -0.03117 -0.01123 

c) 1 -0.03117 1 -0.01775 1 -0.15099 

d) -0.01775 -0.34126 -0.01775 1 -0.01775 0.08203 

e) 1 -0.03117 1 -0.01775 1 -0.15099 

f) -0.15099 -0.01123 -0.15099 0.08203 -0.15099 1 

 

The computed covariance values confirm that the lithology indicators for 

limestone, clay, and dolomite are based on the same combination of underlying seismic 

attribute and, consequently, exhibit perfect correlation between them. The results also 

indicate weak correlation between vpvs, density, and acoustic impedance. This indicates 

that each of these seismic attributes bring independent information that can be used to 

model spatial variations in properties such as variation in lithology, porosity, and 

dolomitization in future work. Therefore, subsequent analysis will only consider the 

directly inverted seismic attributes such as acoustic impedance, density, and vpvs ratio. 

6.4 DISCUSSION ON THE PREPARATION OF DATA PRIOR TO DSSIP 

The log property study highlighted the large amounts of data preparation to create 

the facies interpretation maps required in DSSIP. Cross-plot analysis gave a broad 

overview of the local geology and confirmed prior background research. Multivariate 

non-linear regression based algorithms provided a more accurate estimation of the facies 

present in each interval. The neural network study showed dolomitization was maximum 

in wells located in the thickest parts of the reservoir and near major faults. Cross 

comparison with production data for wells in the Field A revealed that the productivity of 

wells was directly related to the extent of dolomitization. 
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The seismic exercise showed the importance in reducing data sets prior to map 

extraction. Covariance calculations determined interdependency between multiple 

attribute volumes. The next step in the analysis is to generate suitable training image for 

oolitic bank reservoirs. This aspect is discussed in the next chapter. That chapter also 

investigates the impact of seismic data quality on the modeling results obtained using the 

DSSIP algorithm.  
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Chapter 7: Modeling Reservoirs with Low Seismic Resolution 

The quality of information recovered during DSSIP is directly related to the 

amount of information present in the seismic maps. Connected geobodies identifiable in 

the seismic images dictate the structural accuracy of the final output map. Therefore, it is 

important to collect the highest quality seismic maps. However, seismic imaging may not 

always generate a clear rendition of the important geologic structures that influence 

reservoir connectivity. Factors such as the salt canopy in the Gulf of Mexico and surface 

noise near high population areas will inhibit seismic capture and resolution (Farmer et al., 

1994). This chapter provides an overview of how the quality models obtained by DSSIP 

are dependent on the quality of the seismic inputs. This work was initiated in the context 

of the Field B reservoir data set, which is impacted by the presence of a salt canopy. 

However, the study was performed prior to embarking on modeling the facies distribution 

in those reservoirs, as an exploratory investigation to delineate what information might be 

extractable from the seismic data set for those reservoirs. The facies and seismic models 

used were synthetically created based on field examples of oolite reservoirs. 

7.1 SYNTHETIC OOLITIC FACIES MODELS 

Oolite reservoirs are composed of ooids, small spherical grains, and often are oil-

bearing reservoirs (Middleton, 2003). Modern depositional locations include the 

Bahamas Great Bank in areas of lagoons, tidal flats, and beaches (Kindler and Hine, 

2012). The models used in the following exercise are based on the geology seen in the St. 

Louis Limestone in southwest Kansas. A more thorough discussion of the subsections 

and characteristics of oolite reservoirs is located in Section 6.1. 
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7.1.1 Modeled Geology 

The St. Louis Limestone is an ancient oolite deposit dating to the Mississippian 

time period. The reservoir is defined by porous oolitic bodies largely composed of 

intergranular porosity of up to 20% and permeabilities greater 600 md (Carr and 

Lundgren, 1994). An extensive study conducted by Qi et al. on the Big Bow and Sand 

Arroyo Creek Fields within the St. Louis Limestone play will form the backbone of the 

lithologic breakdown (Qi et al., 2007). 

Qi et al. divided the geology into six lithofacies: quartz-rich carbonate grainstone, 

argillaceous limestone, skeletal wackestone, skeletal grainstone-packstone, ooid 

grainstone, and cemented ooid grainstone. A diagram containing the representative 

depositional environment for each of these facies is located in Figure 7.1. Quartz-rich 

grainstones are deposited in eolianite sand dunes and consist of well-sorted grains. 

Argillaceous limestones and skeletal wackestones are deposited in the deepest settings 

and are less porous than most neighboring material. The skeletal grainstone-packstone 

matrix generally has a lower porosity than the ooid lobes but is very well sorted with fine 

skeletal grains. Ooid grainstones are the target facies and contain the highest reservoir 

potential. Cemented ooids contain little to no pore space and will have suffered heavily 

from cementation and compaction. 
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Figure 7.1 Depositional environment associated with oolitic bank reservoirs. 

 

Table 7.1 Dimensions and proportion of oolitic objects used to generate training 

images. 

    
Length (m) Width (m) Orientation (deg) 

 

Facies # Vol. Min Avg Max Min Avg Max Min Avg Max 

Se
t 

3
 

Oolite 1 0.42 7750 9000 10250 5500 6250 6750 67.5 90 112.5 

Oolite (cem) 2 0.18 5000 5500 6000 2750 3000 3250 67.5 90 112.5 

Eolianite 3 0.08 13500 17000 20500 6500 9000 11500 62.5 85 107.5 

Tidal-flat 4 0.25 7750 9000 10250 6000 10000 14000 72.5 95 117.5 

 

7.1.2 Facies Map Creation 

Synthetic geologic models were created using the relationships developed during 

the study of oolite banks and summarized in the table above. The training image 

generator within Stanford Geostatistical Modeling Software (SGeMS) was utilized to 

create the images (Remy, 2004). SGeMS is an open-source platform built for fast 

computing of spatial statistics, specifically problems in the geosciences. 
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The parameters in Table 7.1 were input into the training image generator as 

ellipses and several models were created. The erosion rules were set as follows, from no 

erosion to most eroded: cemented oolites, oolites, tidal flats, eolian sands, and marine 

deposits. In addition, the cemented oolites were forced to overlap, or neighbor, oolite 

geobodies. The final facies maps were created using the sisim algorithm and 4000 

conditioning points from the training images to retain the structure and volume 

proportions specified in Table 7.1. By introducing sisim into the creation process, the 

geobodies within the final facies maps were more misshapen, better representing the 

fuzzy transition between facies in any geologic deposit. 

7.2 SYNTHETIC SEISMIC MODEL 

7.2.1 Mimicking the Blurring of Seismic Surveys 

After the training and final facies maps were created, a blurring mechanism was 

used to create synthetic seismic images similar to how the processed seismic data would 

look like in the presence of high density features such as salt. Forward seismic modeling 

is generally used in conjunction with seismic acquisition to develop appropriate 

acquisition parameters given the expected geology and to assist in interpretation 

(Anderson and Cardimona, 2002). The process uses an impedance map based on the 

anticipated facies with depth and transforms the data into a reflection amplitude map with 

two-way travel time. Forward seismic algorithms mimic the actual seismic acquisition 

process and calculate travel times and amplitudes based on the changes in acoustic 

impedance and source/receiver location. 

In addition to a general loss of data resolution during seismic surveys, salt bodies 

will further obscure the visualization of underlying layers. Salt has a sharply higher p-

wave velocity than any neighboring facies leading to an unrecoverable loss of 
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information (Raymer et al., 2000, Jardin et al., 2011). The blurring mechanism that we 

implemented mimics this influence of a salt canopy in the form of a loss of information. 

The blurring algorithm used in this research is a highly simplified recreation of the output 

of forward seismic processes. A large amount of information is lost due to the low 

resolution of the seismic capturing process, and, as a result, the seismic image looks hazy. 

The seismic blurring algorithm begins by replacing the indicator facies values in 

the geologic maps created in Section 7.1 with impedance values. Acoustic impedance is 

the product of wave velocity and density of the rock, and it governs the speed at which a 

wave will travel through a body. The impedance values used in this exercise are typical to 

the respective facies. 

At this point, a Gaussian filter is applied to the indicator impedance map. 

Gaussian filters are commonly used in single-dimensional signal processing and two-

dimensional image editing applications. The two dimensional Gaussian function, as used 

here, applies weights to all locations surrounding a given point and replaces the original 

point’s value with a weighted average of the neighbors. The filter more heavily weighs 

locations closer to the starting point according to the parameters that define the Gaussian 

curve, seen in the equation below. The main advantages of the Gaussian filter as 

compared to other convolution matrices are the lack of an overshoot into the negative 

weight domain and the heavy weighting of the central value. These attributes allow the 

blurring mechanism to preserve the edges and location of structures in the image while 

applying a loss of information evenly. 

 

 (   )   
 

    
  
 
     

    

 

where   and   are the distances from the original point and   is the standard deviation. 
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7.2.2 Synthetic Seismic Map Results 

The results obtained by applying the Gaussian filter are located in Fig. 7.2 below. 

The filter grid sizes in Fig. 7.2b, c, and d govern the standard deviation for each run and 

define the location of the third standard deviation. Points at distances further than three 

standard deviations from the original location are effectively weighted zero due to the 

shape of a Gaussian curve. Therefore, the standard deviation was defined as one third of 

the grid size to create an effective cutoff at the edge of the filter grid. 

 

 

Figure 7.2 Results of Gaussian filter application to a 400x400 impedance map. 
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7.3 IMPLEMENTATION IN DSSIP 

The impact of quality of seismic information in DSSIP was tested using two 

separate data sets. The first exercise decreased the resolution of both the training and 

target seismic images. The second exercise held training seismic data at a higher 

resolution while the seismic map for the target reservoir was decreased in resolution. 

7.3.1 Decreased Resolution in Both Seismic Maps 

As mentioned, the first exercise studied a general decrease in seismic quality. The 

cases within this study are differentiated by the size of the Guassian blur: a) 5x5 blur, b) 

9x9 blur, c) 15x15 blur, and d) 31x31 blur. The training facies maps were held constant 

across all cases and the final recommendation set of parameters from Chapter 3 were 

used. Note that the original implementation of the DSSIP algorithm using two sets of 

seismic data was used for in these cases. Because the objective is to investigate the 

impact of the quality of seismic data on the results of the seismic integration algorithm, 

the most straightforward implementation of the algorithm using matching pairs of 

training and target reservoir data was used. 

Figures 7.4 and 7.4 display the seismic input maps. The size of the different filters 

ranged from no filter to a filter that averaged half of the map for a single point. The black 

box in each of the images corresponds to the size of blurring filter. As the filter size 

increased, the extremes of the impedance map began to disappear. In Seismic Map (a) 

within Figure 7.3, a large series of low impedance bodies can be observed in the right 

side of the image, but, as the blurring mechanism increases in intensity, the borders of the 

objects become unclear and the impedance values in the objects increase. 
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Figure 7.3 Application of Gaussian blur on the training reservoir impedance data. 

 

 

Figure 7.4 Application of Gaussian blur on the target reservoir impedance data. 

a) Original 

d) 15x15 Blur e) 31x31 Blur c) 9x9 Blur 

b) 5x5 Blur 
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 The results obtained by the DSSIP algorithm are presented in Figure 7.6. The 

output maps are difficult to differentiate because the impact of the training image in the 

second loop. However, one can note the increase in oolites from Case A to Case D. 

Figure 7.6 contains the results after only the first loop iterations have completed. This 

provides a much better representation of the impact of resolution on the structures 

identified using the seismic. The continuity of the geobodies is much better represented 

using the higher resolution seismic maps, but the overall structure locations are still 

maintained even in Case D. 

 

 

Figure 7.5 Training and target reservoir pair inputs for Case A. The facies maps were 

used in all following cases. The seismic maps were changed accordingly. 

 

Figure 7.6 Results after completion of Loop 1 from study of decreased resolution in 

both seismic images. 
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Figure 7.7 Results obtained using the DSSIP algorithm with training and target seismic 

images containing different amounts of Gaussian blur. 

7.3.2 Decreased Resolution in Only One Seismic Map   

The second exercise studied the impact of differing quality seismic data for the 

target reservoir. Cases A and B were simulated with higher resolution training image but 

using seismic data for the  target reservoir that was of poor quality, while Cases C and D 
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tested the opposite situation. Table 7.2 summarizes the dimensions of the blur filter used 

for each case. This case used the same facies maps, seismic images, and algorithm 

parameters as in the first study. 

Table 7.2 Summary of filter dimensions used in Figure 7.8 

Case Train. Target 

A 5x5 31x31 

B 5x5 15x15 

C 31x31 5x5 

D 15x15 5x5 

 

 The results after Loop 1 are located in Figure 7.8. Again, increasing the resolution 

created a better interpretation as can be seen when comparing Case A to Case B and Case 

C to Case D. More important to note is that the difference in resolution between the 

training and target seismic maps had a large impact on the overall image quality. Due to 

this difference, the first DSSIP loop was unable to create accurate pattern matches. 

Decreasing the resolution of the target reservoir seismic map decreased the accuracy of 

results at the end of Loop 1 more than decreasing the resolution of the training seismic 

image. 
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Figure 7.8 Results after Loop 1 when seismic data of variable quality was used to train 

and simulate the reservoir model. 

7.3.3 Discussion of Results 

The effect of decreased seismic information may not be obvious, as seen in Figure 

7.7, due to the ability of the second loop to match the training image. However, the loss 

of structural data at the end of Loop 1 of the algorithm will limit the accuracy of 

placement of geobodies and result in simulated reservoir models that bear close 

resemblance to the training reservoir model. The two studies showed that the decrease in 

seismic quality does have a large impact on the information collected during the first loop 

in DSSIP. This lack of structural information affects the results shown in Figures 7.6 and 

7.8. Decreasing the resolution of the target seismic map decreases the accuracy of the 

final simulated model more than decreasing the resolution of the training reservoir model. 

This is important because in most practical cases the seismic data corresponding to the 

training reservoir model will be obtained by running a forward seismic algorithm and that 

algorithm might yield a very fuzzy indication of facies variation in the reservoir. 
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Chapter 8: Conclusions 

This thesis presents the application of Direct Sampling Seismic Integration 

Process on several synthetic and real data sets. The results show that the current version 

of DSSIP can be successfully applied in a wide context, but further modifications to the 

algorithm may lead to even broader application. Based on the results in previous 

chapters: 

 Direct sampling provides a solid basis for the pattern matching process within 

DSSIP. It has been shown to accurately reconstruct and identify patterns in both 

continuous and categorical variables. 

 The user possesses a large set of controls on the speed and accuracy of DSSIP by 

adjusting the internal parameters of the algorithm. The parameter optimization 

study showed steep decreases in computational time with only minor loss in 

output quality. 

 A final set of optimum simulation parameters for DSSIP has been recommended. 

 Using the current version of DSSIP in a self-iterating function reproduces the 

training image without adding knowledge from the seismic map. However, the 

addition of an ensemble of produced training images shows promise. Future work 

in this area includes using filtersim in the second loop. 

 Careful data processing is necessary prior to application of the DSSIP algorithm. 

Robust techniques for determining facies based on well log values and combining 

that information with the available seismic information are necessary. DSSIP can 

address this second issue but only after reliable classification of facies 

information are available. 
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 A sharp decrease in seismic image resolution, such as when under a salt canopy, 

reduces the overall quality of information gathered during the first loop of DSSIP. 

Decreased seismic resolution in the target map will decrease the output quality 

more than similarly decreased resolution in the training map.  
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