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Abstract 

 

Choosing the Proper Link Function for Binary Data 

 

Jingwei Li, M.S.Stat 

The University of Texas at Austin, 2014 

 

Supervisor:  Daniel A. Powers 

   

 

Since generalized linear model (GLM) with binary response variable is widely 

used in many disciplines, many efforts have been made to construct a fit model. 

However, little attention is paid to the link functions, which play a critical role in GLM 

model. In this article, we compared three link functions and evaluated different model 

selection methods based on these three link functions. Also, we provided some 

suggestions on how to choose the proper link function for binary data. 
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1. Introduction 

Generalized linear models (GLM) are often used in analyzing binary response 

data. One key aspect for building a satisfactory model is choosing a proper link function. 

A link function is the function g(    ) that links the linear model specified in the design 

matrix (or linear predictor), where columns represent the matrix of predictor variables ( ) 

and rows the true parameters ( ) to the conditional mean of response variable μ. 

However, the choice of the link function is often made arbitrarily. Researchers tend to 

adopt the logit link for binary response data, since the logit link has a closed form and 

also generates easy to interpret results in the form of log odds and odds ratios. But logit 

link function cannot guarantee a good fit for all binary response data. We need to find out 

an efficient way to distinguish better link in statistic practice.  

In this report, I applied three different methods to compare models with different 

link functions. First approach uses the information indexes, which includes Bayesian 

information criterion (BIC) and Akaike information criterion (AIC). The second method 

involves evaluation of the posterior predictive distribution in a Bayesian approach. 

Finally, I applied a receiver operating characteristic (ROC) analysis to compare three 

common link functions, which are the logit link, the probit link and the complementary 

log-log link in a binary regression. For a more comprehensive description of the 

difference within these common link functions, I applied analysis to two different 

datasets. At the end of this article, I divided these datasets into two different categories 

and introduced two families of transformations which may fit better for the two 

categories. 
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The main purpose of this report is twofold: 1) to use real data to demonstrate the 

effectiveness of different model comparing approach; 2) to provide some suggestions for 

choosing proper link functions. 

This report is organized as follows: I will first discuss the role of link functions in 

GLM models and the characteristics of link functions in Section 2 and review different 

approaches for model comparison in Section 3. Then I will introduce two datasets for 

analysis and demonstrate the difference of these two datasets in Section 4 and compare 

three link functions will been proposed in Section 5. In Section 6, I will introduce two 

transformation families for binary response data, and Section 7 will be the conclusion 

section. 
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2. Link Functions for Binary Data 

In this section, we will introduce the generalized linear model and three common 

link functions for binary response data. Also, we will talk about different characteristics 

of these three link functions. 

2.1 GENERALIZED LINEAR MODEL  

Generalized linear models[1] are frequently used to model the dependence of a 

response variable Y on a set of possible explanatory variables   ,   ,…,   . In its 

simplest form, the generalized linear model is specified by: 

(i) independent observations   ,…,     distributed according to an exponential 

family distribution, 

(ii) a set of explanatory variables X, available for each observation, describing the 

systematic linear component through g[E(Y|X)] = g(μ) =       , and 

(iii) the link function g(μ)    relating the conditional mean response μ of an 

observation to the systematic linear component  . 

To find an appropriate generalized linear model for regression data involves 

choosing the independent variables, the link function and the variance function. In this 

article, I am focus on the different choice of the link functions in binary and binomial 

response models. 

2.2 LINK FUNCTION 

A link function is the function that links the linear model to the conditional mean 

response. The critical role that link function plays in GLM is linking the actual Y to the 

E(Y|X) = μ using a transformation, or linking function, that will allow the parameter 

range to be unbounded (from negative infinity to positive infinity) while ensuring that the 

model predictions will be in the plausible range. For example, in binary response models, 
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μ is a vector of probabilities, each element of which must be in the interval [0,1]. A 

proper link function will guarantee that regardless of the input, the model will produce 

predictions in the proper range. Also, without a properly specified link, the constant 

variance assumption of residuals will be violated. Because the observed Y has only two 

possible values 0 and 1, the residuals have only two possible values for each observation. 

With only two possible values, the residuals cannot be normally distributed. Moreover, 

the best line to describe the relationship between X and E(Y |X) is not likely to be linear, 

but rather an S-shape. 

In GLM, there are link functions called canonical links[2] for different 

distributions, such as logit link for binomial regression, log link for Poisson regression 

and inverse squared link for inverse Gaussian distribution. However, there are still many 

functions other than these canonical links that also can map the systematic linear 

component onto the interval [0, 1]. Also, Even though GLM’s with canonical links, such 

as the logit link in binomial regression, guarantee maximum information and a simple 

interpretation of the regression parameters, they do not always provide the best fit 

available to a given data set. Usually, the choice of link function is arbitrary, but link 

misspecification can lead to substantial bias in the regression parameters and the mean 

response estimates[3]. Thus, how to choose a proper link is still important. 

In this article, I consider comparing three link functions, which are logit, probit 

and complementary log-log. See Table 2.1 for details. Logit link is the canonical link 

function for binary response data, but the probit is also popular, or there are other options 

that are sometimes used, such as the complementary log -log. 
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Link   (μ) 

logit 

probit 

complementary log-log 

log[μ/(1-μ)] 

        
log[-log(1-μ)] 

  is cumulative standard normal distribution function 

Table 2.1 Binomial link functions 

The distributions of the conditional mean responses (or error distribution) implied 

by these three link function are logistic, normal and extreme value, respectively. The 

mean and variances of these three distributions are different. See Table 2.2 for details. 

 

Link Distribution Mean Variance 

logit Logistic 0      
probit Normal 0 1 

complementary log-log Extreme-value         

Table 2.2 Link functions and the corresponding distributions 

Here   is the Euler constant, for the complementary log-log function a possible 

shift in location will happen when estimating parameters. 

The cumulative density function plot below shows three functions are all S-

shaped. Logit and probit links are both symmetrical while complementary log-log link is 

asymmetric. It starts pulling away from 0 earlier, but more slowly, and approaches close 

to 1 and then turns sharply.  
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Figure 2.1 Cumulative density functions corresponding to the logit, probit and 

complementary log-log link functions. 
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3. Link Comparison 

Typically, different models are compared by using individual significance tests 

based on the asymptotic distribution of the deviance, which is called chi-square 

difference test (or likelihood ratio test). But this strategy cannot be used for comparing 

non-nested models[4]. Some other model comparison technics can avoid this difficulty. I 

use information indexes such as Bayesian information criterion (BIC) and Akaike 

information criterion (AIC) to compare models with different link functions. Also a 

Bayesian approach involving predictive posterior checks can compare non-nested 

models. Furthermore, since the response variable only value 0 or 1, so we can construct a 

classification table, using receiver operating characteristic (ROC) analysis applied to 

demonstrate how well a model predicts future outcomes. 

3.1 COMPARE LINK FUNCTION VIA BAYESIAN APPROACH 

In Bayesian theory, predictions of future observables are based on predictive 

distributions which refer to the distribution of the data averaged over all possible 

parameter values. For this reason, when data have not been observed yet, predictions are 

based on the marginal likelihood 

     ∫        |        ,                    (3.1) 

which is the likelihood averaged over all values supported by our prior beliefs. 

Hence,      is also called “prior predictive distribution”. 

Following the above logic, we can calculate the prediction of future data    after 

having observed data   

    |   ∫     |     |    ,                   (3.2) 

which is the likelihood of the future data averaged over the posterior distribution 

   |  . Hence,     |   is called “posterior predictive distribution.” 
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According to Press (1989)[5] inference must be based on predictive distributions 

since they involve observables while the posterior distribution also involves parameters 

which we are never observed. Hence, by using the predictive distribution we can quantify 

our knowledge about future as well as measure the probability of re-observing in the 

future each    assuming that the adopted model true. For this reason, we may use the 

predictive distribution not only to predict future observations but also to construct 

goodness of fit diagnostics and perform model checks for each model’s structural 

assumptions. 

The replicated data      reflect the expected observations after replicating our 

experiment in the future, having already observed y and assuming that the adopted model 

is true. If the adopted model is appropriate for describing the observed data then the 

vectors y and      will be close. Such a comparison can be facilitated by considering 

summary functions        which play the role of a test statistic for checking the 

assumption under investigation and measure discrepancies between the data and the 

model. Assessment of the posterior distributions of           and        provides 

individual as well as overall goodness of fit measures which can be summarized 

graphically or using tail area probabilities called posterior predictive p-values given by 

                                    |                 (3.3) 

Here we use a    type of statistic as the test statistic. 

        ∑
        |    

       |  

 
                        (3.4) 

The posterior p-value is obtained by 

                                       |              (3.5) 

Posterior p-values can be directly interpreted as the probability of observing in the 

future sample with higher         than the one already observed. Values around 0.5 
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indicate that the distributions of the replicated and actual data are close while values close 

to zero or one indicate difference between them. 

3.2 MODEL EVALUATION VIA ROC ANALYSIS  

Receiver operating characteristic (ROC)[6] analysis provides a systematic tool for 

quantifying the impact of variability among individuals’ decision thresholds. Sensitivity 

and specificity are the most commonly used measures of detection accuracy.  

            
                                 

                                 
                     (3.6) 

            
                                 

                                 
                    (3.7) 

In effect, sensitivity and specificity represent two kinds of accuracy: the first for 

actually positive cases and the second for actually negative cases. 

Accuracy, or the fraction of the study population that is decided correctly, is 

related to sensitivity and specificity by the simple formula: 

         

                                                                                   

                                                                             (3.8) 

From a binary regression model, we can make a replicate outcome variable     . 

The classification table below shows the how ROC analysis works in goodness of fit 

analysis. 
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  1 0 total 

     1             

0             

total             

                              |                              (3.9) 

                              |                             (3.10) 

         
   

   
 

   

   
 

   

   
 

   

   
                        |        

                    |                                       (3.11) 

While only comparing accuracy is insufficient in determining a better model, 

models with same accuracy can have different sensitivity and specificity. We may apply 

different weights to sensitivity and specificity. If we change the decision threshold to 

several levels, we will obtain several related sets of decision fractions. We need to keep 

track of how sensitivity and specificity change as the decision threshold is varied. We 

will get the receiver operation characteristic (ROC) curve, which represents all possible 

combinations of sensitivity and specificity. 

We can use accuracy and area under ROC curve to compare models with different 

link functions. 
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4. Data 

I used two different datasets to demonstrate the difference across the link 

functions. These two datasets are both have binary dependent variables and only one 

continuous independent variable. 

The first dataset is called “Age of Menarche,” originally   reported by Milicer 

and Szczotka(1966)[7] . They analyzed data determining the age of menarche in a sample 

of 3,918 Warsaw girls. The data are reported in Table 4.1. 

 

Table 4.1 Age of Menarche 

The second dataset is “Adult Beetle Mortality.”  This dataset is reported by Bliss 

(1935)[8] in a study of adult beetle mortality after five hours’ exposure to gaseous carbon 

disulphide. The data are reported in Table 4.2.  

     Total       1,610      2,308       3,918 

                                             

     17.58           0      1,049       1,049 

     15.83           2        112         114 

     15.58           2         92          94 

     15.33           4        107         111 

     15.08           5        117         122 

     14.83           7         95         102 

     14.58           7        113         120 

     14.33           7         90          97 

     14.08          19         79          98 

     13.83          29         88         117 

     13.58          24         81         105 

     13.33          39         67         106 

     13.08          52         47          99 

     12.83          57         51         108 

     12.58          61         39         100 

     12.33          64         29          93 

     12.08          84         16         100 

     11.83          94         17         111 

     11.58          95         10         105 

     11.33          83          5          88 

     11.08          88          2          90 

     10.83         118          2         120 

     10.58          93          0          93 

     10.21         200          0         200 

      9.21         376          0         376 

                                             

       age           0          1       Total

                      obs
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Table 4.2 Adult Beetle Mortality 

In the first dataset, the observed value represents the number of girls who 

menstruate, and in the second dataset, the observed value represents the number of adult 

beetles who are killed. By plotting the percentage of observed versus the explanatory 

variables as shown in Figure 4.1 below, I found these two curves are different. The dose 

response curve seems skewed while the age curve is symmetric. And the dose response 

curve has a fatter tail at the beginning. 

 

 

Figure 4.1 Success rate verses continuous predict variable 

     Total         190        291         481 

                                             

      1.88           0         60          60 

      1.86           1         61          62 

      1.84           6         53          59 

      1.81          11         52          63 

      1.78          28         28          56 

      1.76          44         18          62 

      1.72          47         13          60 

      1.69          53          6          59 

                                             

      dose           0          1       Total

                     kill
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From the figure above, we know three links should work differently for these two 

data, since the first one looks like probit or logit link, while the second one looks like 

complementary log-log link.  
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5. Results 

5.1 MODEL COMPARISON VIA INFORMATION INDEXES 

The distribution of predicted values from three different link functions is listed in 

Table 5.1 for the “Age of Menarche” data. 

 

Age observed logit probit 
clog-
log 

9.21 0 1 0 6 

10.21 0 2 1 8 

10.58 0 2 1 5 

10.83 2 3 3 8 

11.08 2 4 4 8 

11.33 5 5 6 9 

11.58 10 9 10 14 

11.83 17 14 16 18 

12.08 16 18 20 20 

12.33 29 23 25 23 

12.58 39 33 35 31 

12.83 51 46 47 40 

13.08 47 52 52 44 

13.33 67 67 65 56 

13.58 81 75 73 65 

13.83 88 93 90 82 

14.08 79 84 82 77 

14.33 90 87 86 83 

14.58 113 111 111 110 

14.83 95 97 97 98 

15.08 117 118 118 120 

15.33 107 109 109 110 

15.58 92 93 93 94 

15.83 112 113 113 114 

17.58 1049 1048 1049 1049 

Table 5.1 Predicted values for Age of Menarche data 
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Among these three link functions, the logit and probit fit the data well, while the 

clog-log link seems like have a relatively poor fit especially at the left tail. Because the 

inverse of the complementary log-log link has relatively fatter left tail, the predicted 

probabilities in the left tail are relatively higher than those in the other two link functions. 

Since the inverse-link functions for the probit and logit links imply symmetric 

distributions, they would be expected to provide a better fit to these data.   

The information indexes, BIC and AIC, are provided in Table 5.2. 

 

Age of Menarche Link function 

 logit   probit clog-log 

BIC 1655.851 1652.035 1747.969 

AIC 1643.305 1639.489 1735.422 

Table 5.2 Information indexes for Age of Menarche data 

The probit link and logit link have similar BIC and AIC values, while the 

complementary log-log link has relatively larger BIC and AIC values. The probit link 

seems to be the best fit, since it has the smallest BIC and AIC. 

The predicted distribution of the response values from the three different link 

functions is listed in Table 5.3 for the “Adult Beetle Mortality” data distribution. 
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dose observed logit probit clog-log 

1.69 6 4 3 6 

1.72 13 9 10 11 

1.76 18 25 26 23 

1.78 28 32 32 29 

1.81 52 50 49 47 

1.84 53 54 54 55 

1.86 61 59 60 61 

1.88 60 59 59 60 

Table 5.3 Predict values for Adult Beetle Mortality data 

Among these three link functions, the clog-log link fits the data well, while the 

logit link and probit link seem like have a respectively poor fit. The logit link and probit 

link tend to underestimate the predict probability at the left tail. This might be expected 

given the asymmetry in the data and the right-skew of the distribution implied by the 

inverse complementary log-log link. 

The information indexes, BIC and AIC, are listed in Table 5.4. 

 

Adult Beetle 

Mortality 

Link function 

 logit   probit clog-log 

BIC 387.2237 386.2318 379.2184 

AIC 378.8719 377.88 370.8667 

Table 5.4 Information indexes for Adult Beetle Mortality models 

The complementary log-log link has the smallest BIC and AIC, therefore this link 

function  seems to be the best one for these data. 
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5.2 LINK COMPARISONS USING POSTERIOR PREDICTIVE DISTRIBUTION CHECKS 

5.2.1 Model formulation and WinBUGS code 

WinBUGS (the MS Windows operating system version of BUGS: Bayesian 

Analysis Using Gibbs Sampling) is a versatile package that has been designed to carry 

out Markov Chain Monte Carlo (MCMC) computations for a wide variety of Bayesian 

model. In this article we use WinBUGS to do model comparisons[9]. 

WinBUGS implements various MCMC algorithms to generate simulated 

observations from the posterior distribution of the unknown quantities (parameters or 

nodes) in the statistical model. The idea is that with sufficiently many simulated 

observations, it is possible to get an accurate picture of the distribution. 

To calculate a posterior distribution it is necessary to tell WinBUGS what prior 

distribution to use and what likelihood distribution to use. 

For the datasets introduced, the outcome variables follow a binomial distribution 

with mean equal to the inverse-logit of  , thus, the logit transformation of   is the linear 

predictor of the conditional mean response  . We can express the likelihood in 

WinBUGS using the following syntax:  

 
for(i in 1:481){ 

 kill[i]~dbern(theta[i]) 

 logit(theta[i]) <- beta[1]+beta[2]*dose[i] }  

For the probit and complementary log-log models, the mean (inverse links) will 

be expressed as follows: 

  
theta[i] <- 1-exp(-exp(beta[1]+beta[2]*dose[i] 

theta[i] <- phi(beta[1]+beta[2]*dose[i]) 
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The main purpose of this report is to compare different link functions. Because 

there is no prior information for the regression coefficient vector β,  I used diffuse priors 

which allow the parameters have equal probability for each possible value. 

 
for(j in 1:2){ 

 beta[j] ~ dnorm(0, 1.0E-4) 

} 

After 10,000 iterations, we will get posterior distribution for each parameter. By 

applying a draw from a Bernoulli distribution with a posterior mean of    , we can get a 

replicate y. 

 kill.rep[i]~dbern(theta[i]) 

Calculation of the   -type statistic within WinBUGS can be done by defining the 

nodes sumT_obs and sumT_rep, which will calculate   (      ) and   (         ) for 

each iteration t of the MCMC algorithm.. 

 
for (i in 1:418) { 

 ## expected value for each data point 

   expect[i] <-theta[i]  

 ## variance for each data point 

   variance[i] <- theta[i]*(1-theata[i]    

    T_rep[i] <- pow(kill.rep[i] - expect[i], 2)/variance[i] 

} 

Referring to formula (3.4), T_rep is 
        |    

       |  
, by adding up T_rep, we get 

           for one iteration. Using similar syntax, we will get        . A corresponding 

posterior p-value must be also monitored as well. The posterior p-value is given by the 

posterior mean of the node p.chisq defined by 

 
p.chisq <- step (sumT_rep - sumT_obs) 
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Here the step function will return 1 if sumT-rep is larger than sumT_obs and 0 

otherwise. So by monitoring this node, we will get the posterior p-value. A p-value close 

to zero indicates a model with poor fit since the observed statistic will be away from what 

is expected under the assumed model.The complete WinBUGS code is shown in the 

Appendix.  

5.2.2 Results 

Posterior summary for the p-value from 10,000 MCMC iterations with  a 5,000 

iteration burn-in, I get the results shown in Table 5.5. 

 

 Link function 

p-value logit probit clog-log 

Age of Menarche 0.4325 0.5516 0.6013 

Adult Beetle Mortality 0.4893 0.5842 0.5033 

Table 5.5 Posterior summary for p.chisq 

From the table above, we can see p.chisq for the logit link and probit link are 

closer to 0.50 than for the complementary log-log link, so those two link functions  

provide better fit than the complementary log-log link function for the “Age of 

Menarche” data. For the “Adult Beetle Mortality” data, the complementary log-log link 

provides a better fit than the logit or probit links 

5.3 LINK COMPARISON VIA ROC ANALYSIS 

 The “Age of Menarche” data, all three link functions produce the same 

sensitivity, specificity and accuracy values, which are 92.59%, 87.76% and 90.61%, 

respectively. For the “Adult Beetle Mortality” data, all three link functions produce the 

same sensitivity, specificity and accuracy values, which are 87.29%, 75.79% and 82.74%, 

respectively. Sensitivity, which calculated by (3.9), is the probability of getting a 1 in a 
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replicate y given the observed y equals 1. It’s also called true positive rate (TPR). 

Specificity which is calculated by (3.10), is the probability of getting a 0 in a replicate y 

given the observed y equals to 0. It’s also called the true negative  rate TNR). We get 

accuracy by calculating the probability of true positive and true negative (3.11). 

In general, a model with better decision performance is indicated by an ROC 

curve that is higher and to the left in the ROC space, which means a high sensitivity 

versus a low specificity that contribute a high accuracy.  

All the three links produce identical ROC curves, and the chi-square test also 

shows there is no significant difference within these link functions (see Figure 5.1, Figure 

5.2, Table 5.6 and Table 5.7 for details). 

 

 

Figure 5.1 ROC for Age of Menarche 
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Table 5.6 Age of Menarche 

 

Figure 5.2 ROC for Adult Beetle Mortality 

 

Table 5.7 Adult Beetle Mortality 

As shown above, sensitivity, specificity and accuracy are all calculated with the 

summary data, it ignored accuracy for individual x level. For example, in “Adult Beetle 

    chi2(0) =     0.00       Prob>chi2 =        .

Ho: area(Logit) = area(Probit) = area(Cloglog)

                                                                         

Cloglog           3918     0.9721       0.0021        0.96805     0.97621

Probit            3918     0.9721       0.0021        0.96805     0.97621

Logit             3918     0.9721       0.0021        0.96805     0.97621

                                                                         

                   Obs       Area     Std. Err.      [95% Conf. Interval]

                              ROC                     Asymptotic Normal  

. roccomp  obs  Logit Probit Cloglog [fweight=freq], graph summary

    chi2(0) =     0.00       Prob>chi2 =        .

Ho: area(Logit) = area(Probit) = area(Cloglog)

                                                                         

Cloglog            481     0.9011       0.0135        0.87454     0.92763

Probit             481     0.9011       0.0135        0.87454     0.92763

Logit              481     0.9011       0.0135        0.87454     0.92763

                                                                         

                   Obs       Area     Std. Err.      [95% Conf. Interval]

                              ROC                     Asymptotic Normal  
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Mortality” data, we observed 291 killed in total of 8 levels of dosage, the predicted killed 

from three links are 292, 293 and 292 respectively. There seems to be no significant 

difference in prediction with these link functions. 

5.4 CONCLUSIONS REGARDING MODEL COMPARISON METHODS 

I used three model comparison methods. The information criterion index is the 

most efficient way to compare link functions. They are easy to get by using a single 

command in Stata [10], and the model selected by them predicts best for the dataset. 

Also, we can use posterior predictive distribution via a Bayesian approach, but the 

p-value we get is similar and hard to compare, making it difficult to select the preferred 

link for the data. However, the calculation for the test statistic is very tedious. 

The ROC analysis is not suitable for link comparison. Since ROC analysis 

compares the total number of success and failures predicted with total number observed, 

the poor fit in a signal level usually counteracts with each other. From Table 5.3, we can 

see in the “Adult Beetles Mortality” data, the predicted total number killed under all three 

links are almost identical, while the logit and probit links tend to under-estimate the 

number killed in the two tails and over-estimate in the middle, That is the reason why we 

got exactly same ROC curve for three link functions in both datasets. 
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6. Other Transformations for Binary Response Data 

The preceding analysis shows that for different datasets, we may need to choose 

different link functions to provide optimal fit. The binary response datasets fall mainly 

into two classes, one is symmetric and the other is asymmetric. Here, symmetric means 

that successes and failures are interchangeable. In other words, if we code 1 as failure and 

0 as success, we can get the same answer as when we code 1 as success and 0 as failure, 

except for opposite signs of the effects of covariates. Arando-Ordaz (1981)[11] mentions 

two families of transformations for binary response data, one is the symmetric family and 

the other one is the asymmetric family.  

6.1 SYMMETRIC TRANSFORMATION 

The symmetric transformation family is given by 

 

      
 

 

         

         
  ,                         (6.1) 

where       denotes the probability of success,   denotes the 

transformation parameter. Since    treats successes and failures in a symmetrical way, 

this implies that                 and             . 

When    ,    is a logistic transformation, and when    ,    it is linear 

transformation. 

6.2 ASYMMETRIC TRANSFORMATION 

The asymmetric transformation family is defined by 

     {         }                       (6.2) 

We assume that          , where   has a linear expression   . For    , it 

is the complementary log-log transformation. 
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6.3 CONCLUSION 

By choosing a different value for the transformation parameter, we can find the 

best link for the data, or we can use the data to choose a link function. 

Arando-Ordaz (1981) tests a set of transformation parameters for asymmetric 

model using the “Adult Beetle Mortality” data, the results are shown in Table 6.1. 

 

  Maximized log likelihood   Maximized log likelihood 

1 -186.24 0.4 -183.31 

0.8 -185.19 0.2 -182.64 

0.6 -184.20 0 -182.70 

Table 6.1 Maximized log likelihood for several values of   

While    , which conforms to  a complementary log-log link fits the data 

pretty well,       is the best one. 

Although the link function can be chosen from a set of transformation parameters, 

the differences between these choices are very small. As the example shows above, the 

best choice seem to be      , which has a log likelihood of -182.64, while     is 

also a decent choice, which has a log likelihood of -182.70. But when    , which is a 

complementary log-log link, the interpretation for the regression coefficients are much 

simpler than when      .  
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7. Conclusion 

As shown above, for the datasets I analyzed, the probit and logit link functions fit 

the symmetric one better, while the complementary log-log link fits the asymmetric one 

better.  

The dot in the figure below is the observed probability and the fitted lines under 

three link functions are also shown. Although we can see the dots are more concentrated 

around the complementary log-log model for the asymmetric dataset and more 

concentrated around probit and logit model for the symmetric dataset, these three models 

provide decent fit as a whole. 

 

 

Figure 7.1 Observed values verses fitted regression line 

I did a small simulation in R[12] to compare the probit and complementary log-log 

link functions. I generated 1,000 data points from normal distribution and fit the data in 

to a probit and clog-log model respectively, then compared the model deviance. 
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The probit model yields a better fit 93% of the time. That is because the shapes of 

probit and complementary log-log are different. Probit is symmetric while clog-log is not. 

If the probability of success rises slowly from zero, but then tapers off more quickly as it 

approaches one, we may choose complementary log-log link. 

For the two symmetric links, I did a similar simulation and got results as follows: 

 

 

Even when we know the data were generated by a probit model, the probit model 

only yields a better fit 69% of the time. That is because the similar shape between logit 

and probit link. They are practically identical except that the logit is slightly further from 

the bounds then they turn the corner. That means they only have a slight difference in the 

tail. Though quantitatively the logit link function and the probit link function are very 

close to each other, qualitatively they differ significantly. That means that  

mathematically we can choose either logit or probit functions, but we still need to 

consider the underlying theoretical model. 

From this point of view, if you are thinking of your covariates as directly 

connected to the probability of success, then the choice of a logit link is reasonable 

because it is a fairly simple transformation of the prediction curve and also provides odds 
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ratios after transforming the model coefficients. It is easy to compute and easy to 

interpret.  

However, for some dichotomous variables, one can argue that the dependent 

variable is a proxy for a variable that is really continuous. For example, if you model high 

blood pressure as a function of some covariates, one may assume that blood pressure 

itself is normally distributed in the population. Nonetheless, clinicians often dichotomize 

it using cut-off thresholds during a study (that is, they only record “High” or “Normal”). 

In this case, the probit model might be preferable a-priori for theoretical reasons. 
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Appendix 

WinBUGS code for goodness-of-fit assessment in Bayesian analyses 

model{ 

## priors 

for(j in 1:2){ 

 beta[j] ~ dnorm(0, 1.0E-4) 

 p2[j] <- step(beta[j]) 

   } 

 

## Likelihood  

for(i in 1:481){ 

kill[i]~dbern(theta[i]) 

logit(theta[i]) <- beta[1]+beta[2]*dose[i]      ##logit link 

theta[i] <- phi(beta[1]+beta[2]*dose[i])         ##probit link 

theta[i] <- 1-exp(-exp(beta[1]+beta[2]*dose[i]))##clog-log link 

 

## Check model fit--Generate replicate data and compute fit statistics for them 

  

  kill.rep[i]~dbern(theta[i]) ## replicate data for each data point 

  expect[i] <-theta[i] ## expected value for each data point 

  variance[i] <- theta[i]*(1-theta[i] ## variance for each data point 

  T_rep[i] <- pow(kill.rep[i] - expect[i], 2) / variance[i]  

  T_obs[i] <- pow(kill[i] - expect[i], 2) / variance[i]  } 

  sumT_rep <- sum(T_rep[])  ## Chi-square of replicated data 

  sumT_obs <- sum(T_obs[])  ## Chi-square of observed data  

  p.chisq  <- step(sumT_rep-sumT_obs ## p-value for chi-square discrepancy  

    } 

  } 
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