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Clustering is one of the most important unsupervised learning problem

in the machine learning and statistics community. Given a set of observations,

the goal is to find the latent cluster assignment of the data points. The obser-

vations can be either some covariates corresponding to each data point, or the

relational networks representing the affinity between pair of nodes. We study

the problem of community detection in stochastic block models and clustering

mixture models. The two kinds of problems bear a lot of resemblance, and

similar techniques can be applied to solve them.

It is common practice to assume some underlying model for the data

generating process in order to analyze it properly. With some pre-defined

partitions of all data points, generative models can be defined to represent

those two types of data observations. For the covariates, the mixture model is

one of the most flexible and widely-used models, where each cluster i comes
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from some distribution Di, and the entire distribution is a convex sum over all

distributions
∑r

i=1 πiDi. We assume that the data is Gaussian or sub-gaussian,

and analyze two algorithms: 1) Expectation-Maximization algorithm, which is

notoriously non-convex and sensitive to local optima, and 2) Convex relaxation

of the k-means algorithm. We show both methods are consistent under certain

conditions when the signal to noise ratio is relatively high. And we obtain the

upper bounds for error rate if the signal to noise ration is low. When there

are outliers in the data set, we show that the semi-definite relaxation exhibits

more robust result compared to spectral methods.

For the networks, we consider the Stochastic Block Model (SBM), in

which the probability of edge presence is fully determined by the cluster as-

signments of the pair of nodes. We use a semi-definite programming (SDP)

relaxation to learn the clustering matrix, and discuss the role of model pa-

rameters. In most SDP relaxations of SBM, the number of communities is

required for the algorithm, which is a strong requirement for many real-world

applications. In this thesis, we propose to introduce a regularization to the

nuclear norm, which is shown to be able to exactly recover both the number of

communities and cluster memberships even when the number of communities

is unknown.

In many real-world networks, it is more common to see both network

structure and node covariates simultaneously. In this case, we present a regu-

larization based method to effectively combine the two sources of information.

The proposed method works especially well when the covariates and network
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Chapter 1

Introduction

It would seem that mythological worlds have been built up only to be

shattered again, and that new worlds were built from the fragments.

Franz Boas, in Introduction to James Teitś Traditions of
the Thompson River Indians of British Columbia, Memoirs

of the American Folklore Society, VI (1898), 18

Identifying patterns is one of the most fundamental cognitive skills

human beings possess and it has been crucial in statistics and machine learning.

For unsupervised learning problems, the true value of the response (e.g. label)

is not available.

Clustering is one of the most fundamental tasks in unsupervised learn-

ing. It helps us to organize the data and often serve as an exploratory step

for more sophisticated tasks. The motivation of this thesis is to find latent

clusters in unlabeled data. There are two common types of observations in

real world: one is defined as features of a given object; the other is defined via

the relationship between pairs of objects, and is often collected in the form of
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networks. These two sources provide different aspects of the problem, yet a

systematic understanding on how the two sources can be combined to provide

better clustering is not theoretically well understood.

Take for example the Mexican political elites network (described in

detail in Chapter 4). This dataset comprises of 35 politicians (military or

civilian) and their connections. The associated covariate for each politician is

the year when one came into power. After the military coup in 1913, the polit-

ical arena was dominated by the military. In 1946, the first civilian president

since the coup was elected. Hence those who came into power later are more

likely to be civilians. Politicians who have similar number of connections to

the military and civilian groups are hard to classify from the network alone.

Here the temporal covariate is crucial in resolving which group they belong

to. On the other hand, politicians who came into power around 1940s, are

ambiguous to classify using covariates. Hence the number of connections to

the two groups in the network helps in classifying these nodes. In this work,

our goal is to provide a solution for such problems, and to effectively combine

networks and covariates for an accurate community detection algorithm with

theoretical guarantees under broad parameter regimes.

We study the problem under some generative models on both covari-

ates and networks, and assume there exists a ground truth cluster structure,

where our goal is to correctly recover this true labeling. For the covariates, we

assume the data comes from a mixture model. Formally, assume there are r

non-overlapping clusters for the n observations, and there are latent variables
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Zi ∈ [r], i ∈ [n] indicating the membership of each observation. With slight

mis-use of notation, we sometimes also use Z as a n×r binary matrix to repre-

sent the one-hot encoding of the memberships of all nodes. Each observation

is a d-dimensional vector, representing d different covariates. We further as-

sume there exist a collection of distribution D1, · · · ,Dr, with mixing weights

π = (π1, · · · , πr), such that given latent variable Zi = k, the covariates X is

generated from some distribution Dk:

Z ∼ Categorical(π)

X|Z = z ∼ Dz

For the convenience of analysis, we also make distributional assumptions on the

distribution Dz. One of the most commonly used one is Multivariate Gaussian

distribution. Under this setting, we analyze the Expectation-Maximization al-

gorithm and show that with a proper initialization, the mean of each Gaussian

distribution can be recovered with error scaling as O(
√
d/n).

In Section 2.8-2.10, we generalize this assumption to sub-gaussian dis-

tributions, whose tail decays no slower than a Gaussian. More specifically we

look at the model proposed in [38] where the dimension goes to infinity. For

these sub-gaussian mixtures, we propose and analyze a kernel-based convex

relaxation, and turn the problem into solving a semi-definite programming

(SDP). We prove that this method works well even at presence of outliers.

For the network, we study the Stochastic Block Model (SBM)[51]. SBM

has drawn much attention among theoretical statisticians and theoretical com-
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puter scientists due to its simplicity and flexibility. The model assumes the

network is undirected and unweighted, and the existence of edge between a

pair of nodes only depends on the membership of both nodes. The assortativ-

ity assumption assumes that the connecting probability between nodes in the

same cluster is higher than that between nodes in different clusters. Formally,

if we still follow the notation where Zi ∈ [r] represent the latent membership

of the i-th node, then

Aij|Zi = a, Zj = b ∼ Ber(Bab)

where B ∈ [0, 1]r×r is a parameter matrix.

The inference for SBM gets harder as the network gets sparser, due to

the fact that the number of edges observed decreases. It is shown in [122] that

when the average degree is of order Θ(1), there is no consistent algorithm for

clustering the nodes. One can at most recover a proportion of memberships

correctly. In the sequel, we will refer this regime as “sparse” regime, and refer

the regime where average degree is Ω(log n) as “dense” regime. In Chapter 3 we

analyze a SDP relaxation which does not require the knowledge of number of

clusters in the dense regime, and show that one can achieve exact recovery for

both the number of clusters and all cluster memberships. For sparse networks,

we show that the proposed SDP can outperform random guess and achieve a

constant error rate, which decays as the signal increases.

In Chapter 4, we study the problem where both network and covariates

are available. Our analysis states a bound combining both resources, and we

4



experimentally show that the combined problem outperforms that achieved by

merely using a single source of information.

Now we present some common notations for assymptotics and matrix

norms which will be used throughout.

1.0.1 Notations

Several matrix norms are considered in this manuscript. For a matrix

M ∈ Rn×n, we use ‖M‖F and ‖M‖ to denote the Frobenius and operator

norms of M respectively. Let the eigenvalues of M be denoted by λ1 ≥ · · · ≥

λn. The operator norm ‖M‖ is simply the largest eigenvalue of M , i.e. λ1.

For a symmetric matrix, it is the magnitude of the largest eigenvalue. The

nuclear norm is ‖M‖∗ =
∑n

i=1 σi. The `1 and `∞ norm are defined the same as

the vector `1 and `∞ norm ‖M‖1 =
∑

ij |Mij|, ‖M‖∞ = maxi,j |Mij|. For two

matrices M,Q ∈ Rm×n, their inner product is 〈M,Q〉 = trace(MTQ). The

`∞ → `1 norm of a matrix M is defined as ‖M‖`∞→`1 = max‖s‖∞≤1 ‖Ms‖1.

Throughout the manuscript, we use 1n to represent the all one n × 1

vector and En, En,k to represent the all one matrix with size n× n and n× k.

The subscript will be dropped when it is clear from context. We use ⊗ to

represent the kronecker product.

For the asymptotic analysis, we use the following standard notations

for approximated rate of convergence. T (n) is O(f(n)) if and only if for some

constant c and n0, T (n) ≤ cf(n) for all n ≥ n0; T (n) is Ω(f(n)) if for some

constant c and n0, T (n) ≥ cf(n) for all n ≥ n0; T (n) is Θ(f(n)) if T (n) is

5



O(f(n)) and Ω(f(n)); T (n) is o(f(n)) if T (n) is O(f(n)) but not Ω(f(n)). T (n)

is oP (f(n)) (or OP (f(n))) if it is o(f(n)) ( or O(f(n))) with high probability.

f(n) = Ω̃(g(n)) is short for Ω(g(n)) ignoring logarithmic factors, equivalent to

f(n) ≥ Cg(n) logk(g(n)), similar for others.
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Chapter 2

Covariate Clustering - Non-Convex and

Convex approaches

One of the most natural choices for generative model is a mixture of

Gaussians. In this chapter, we assume the data is generated from a collection

of distributions {D1, · · · ,Dr}, where r is the number of clusters. Each distri-

bution comes from a multivariate Gaussian with mean µi and some covariance

matrix. There are two questions to be asked when dealing with a Gaussian

Mixture Model (GMM), first is how do we estimate the model parameters, and

the second is whether we can label all points with high accuracy. In this chap-

ter, we will first discuss the first question and analyze a decades-old algorithm,

expectation-maximization (EM) [35] algorithm, and provide theoretical guar-

antees on the recovery of the parameters. Our result weakens the convergence

The content in this chapter was published in [1] Yan, Bowei, Mingzhang Yin, and Pur-
namrita Sarkar. ”Convergence of Gradient EM on Multi-component Mixture of Gaussians.”
In Advances in Neural Information Processing Systems, pp. 6959-6969. 2017. and [2] Yan,
Bowei, and Purnamrita Sarkar. ”On robustness of kernel clustering.” In Advances in Neural
Information Processing Systems, pp. 3098-3106. 2016. For [1], I participated in posing the
problem. I and the second author developed the population analysis with a little help from
Prof. Sarkar. Prof. Sarkar and I developed the sample analysis. I wrote the entire paper,
both the second author and I conducted the experiments, and Prof. Sarkar helped in revis-
ing and rewriting. For [2], Prof. Sarkar proposed the problem of robustness analysis. We
jointly formulated the problem, and developed the theory. I implemented and conducted the
experimental analysis, and wrote the manuscript. Prof. Sarkar helped revise and rewrite
the draft.
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criterion in previous work [9], and shows that under a fairly mild initialization

condition, the EM algorithm converges linearly to the global optimum.

Then we discuss a Gaussian mixture model in the high dimensional

space [38], where the kernel matrix concentrates when the dimension goes

to infinity. We use the SDP relaxation proposed in [92] and show that the

clustering matrix can be exactly recovered under certain separation conditions.

The SDP also enjoys robustness properties when the data is contaminated by

arbitrarily distributed outliers. We compare the robustness behavior of the

SDP and other commonly-used methods such as kernel PCA and conclude

that SDP has higher tolerance to outliers.

2.1 Convergence Analysis for EM Algorithm

Proposed by [35] in 1977, the Expectation-Maximization (EM) algo-

rithm is a powerful tool for statistical inference in latent variable models. A

famous example is the parameter estimation problem under parametric mix-

ture models. In such models, data is generated from a mixture of a known

family of parametric distributions. The mixture component from which a dat-

apoint is generated from can be thought of as a latent variable.

Typically the marginal data log-likelihood (which integrates the latent

variables out) is hard to optimize, and hence EM iteratively optimizes a lower

bound of it and obtains a sequence of estimators. This consists of two steps. In

the expectation step (E-step) one computes the expectation of the complete

data likelihood with respect to the posterior distribution of the unobserved

8



mixture memberships evaluated at the current parameter estimates. In the

maximization step (M-step) one this expectation is maximized to obtain new

estimators. EM always improves the objective function. While it is established

in [27] that the true parameter vector is the global maximizer of the log-

likelihood function, there has been much effort to understand the behavior of

the local optima obtained via EM.

When the exact M-step is burdensome, a popular variant of EM, named

Gradient EM is widely used. The idea here is to take a gradient step towards

the maxima of the expectation computed in the E-step. [64] introduces a

gradient algorithm using one iteration of Newton’s method and shows the

local properties of the gradient EM are almost identical with those of the EM.

Early literature [109, 111] mostly focuses on the convergence to the

stationary points or local optima. In [109] it is proven that the sequence of

estimators in EM converges to stationary point when the lower bound func-

tion from E-step is continuous. In addition, some conditions are derived under

which EM converges to local maxima instead of saddle points; but these are

typically hard to check. A link between EM and gradient methods is forged

in [111] via a projection matrix and the local convergence rate of EM is ob-

tained. In particular, it is shown that for GMM with well-separated centers,

the EM achieves faster convergence rates comparable to a quasi-Newton algo-

rithm. While the convergence of EM deteriorates under worse separations, it

is observed in [94] that the mixture density determined by estimator sequence

of EM reflects the sample data well.
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In recent years, there has been a renewed wave of interest in studying

the behavior of EM especially in GMMs. The global convergence of EM for a

mixture of two equal-proportion Gaussian distributions is fully characterized

in [110]. For more than two clusters, a negative result on EM and gradient EM

being trapped in local minima arbitrarily far away from the global optimum

is shown in [54].

For high dimensional GMMs with r components, the parameters are

learned via reducing the dimensionality via a random projection in [28]. In [30]

the two-round method is proposed, where one first initializes with more than

r points, then prune to get one point in every cluster. It is pointed out in this

paper that in high dimensional space, when the clusters are well separated,

the mixing weight will go to either 0 or 1 after one single update. It is showed

in [114, 79] that one can cluster high dimensional sub-gaussian mixtures by

semi-definite programming relaxations.

For the convergence rate of EM algorithm, it is observed in [84] that a

very small mixing proportion for one mixture component compared to others

leads to slow convergence. In [9] the authors give non-asymptotic convergence

guarantees in isotropic, balanced, two-component GMM; their result proves

the linear convergence of EM if the center is initialized in a small neighborhood

of the true parameters. The local convergence result in this paper has a sub-

optimal contraction region.

K-means clustering is another widely used clustering method. Lloyd’s

algorithm for k-means clustering has a similar flavor as EM. At each step,
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it recomputes the centroids of each cluster and updates the membership as-

signments alternatively. While EM does soft clustering at each step, Lloyd’s

algorithm obtains hard clustering. The clustering error of Lloyd’s algorithm

for arbitrary number of clusters is studied in [72]. The authors also show local

convergence results where the contraction region is less restrictive than [9].

We would like to point out that there are many notable algorithms [63,

8, 103] with provable guarantees for estimating mixture models. In [75, 40]

the authors propose polynomial time algorithms which achieve epsilon ap-

proximation to the k-means loss. A spectral algorithm for learning mixtures

of gaussians is proposed in [103]. We want to point out that our aim is not

to come up with a new algorithm for mixture models, but to understand the

interplay of model parameters in the convergence of gradient EM for a mixture

of Gaussians with r components. As we discuss later, our work also imme-

diately leads to convergence guarantees of Stochastic Gradient EM. Another

important difference is that the aim of these works is recovering the hidden

mixture component memberships, whereas our goal is completely different: we

are interested in understanding how well EM can estimate the mean parame-

ters under a good initialization.

In this chapter, we study the convergence rate and local contraction

radius of gradient EM under GMM with arbitrary number of clusters and

mixing weights which are assumed to be known. For simplicity, we assume that

the components share the same covariance matrix, which is known. Thus it

suffices to carry out our analysis for isotropic GMMs with identity as the shared
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covariance matrix. We obtain a near-optimal condition on the contraction

region in contrast to [9]’s contraction radius for the mixture of two equal

weight Gaussians. We want to point out that, while the authors of [9] provide

a general set of conditions to establish local convergence for a broad class

of mixture models, the derivation of specific results and conditions on local

convergence are tailored to the balance and symmetry of the model.

We follow the same general route: first we obtain conditions for popu-

lation gradient EM, where all sample averages are replaced by their expected

counterpart. Then we translate the population version to the sample one.

While the first part is conceptually similar, the general setting calls for more

involved analysis. The second step typically makes use of concepts from em-

pirical processes, by pairing up Ledoux-Talagrand contraction type arguments

with well established symmetrization results. However, in our case, the func-

tion is not a contraction like in the symmetric two component case, since it

involves the cluster estimates of all r components. Furthermore, the standard

analysis of concentration inequalities by McDiarmid’s inequality gets compli-

cated because the bounded difference condition is not satisfied in our set-

ting. We overcome these difficulties by taking advantage of recent tools in

Rademacher averaging for vector valued function classes, and variants of Mc-

Diarmid type inequalities for functions which have bounded difference with

high probability.

The rest of this chapter is organized as follows. In Section 4.2, we state

the problem and the notations. In Section 3, we provide the main results
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in local convergence rate and region for both population and sample-based

gradient EM in GMMs. Section 2.4 and 2.5 provide the proof sketches of

population and sample-based theoretical results, followed by the numerical

result in Section 4.4.

2.2 Problem Setup and Notations

Consider a GMM with r clusters in d dimensional space, with weights

π = (π1, · · · , πr). Let µi ∈ Rd be the mean of cluster i. Without loss of

generality, we assume EX =
∑

i πiµi = 0 and the known covariance matrix for

all components is Id. Let µ ∈ Rrd be the vector stacking the µis vertically. We

represent the mixture as X ∼ GMM(π,µ, Id), which has the density function

p(x|µ) =
∑r

i=1 πiφ(x|µi, Id). where φ(x;µ,Σ) is the PDF of N(µ,Σ). Then

the population log-likelihood function as L(µ) = EX log (
∑r

i=1 πiφ(X|µi, Id)).

The Maximum Likelihood Estimator is then defined as µ̂ML = arg max p(X|µ).

EM algorithm is based on using an auxiliary function to lower bound the log

likelihood. Define Q(µ|µt) = EX [
∑

i p(Z = i|X;µt) log φ(X;µi, Id)], where Z

denote the unobserved component membership of data point X. The standard

EM update is µt+1 = arg maxµQ(µ|µt). Define

wi(X;µ) =
πiφ(X|µi, Id)∑r
j=1 πjφ(X|µj, Id)

(2.1)

The update step for gradient EM, defined via the gradient operator G(µt) :

RMd → RMd, is

G(µt)(i) := µt+1
i = µti + s[∇Q(µt|µt)]i = µti + sEX

[
πiwi(X;µt)(X − µti)

]
.

(2.2)
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where s > 0 is the step size and (.)(i) denotes the part of the stacked vector

corresponding to the ith mixture component. We will also use Gn(µ) to denote

the empirical counterpart of the population gradient operator G(µ) defined in

Eq (2.2). We assume we are given an initialization µ0
i and the true mixing

weight πi for each component.

2.2.1 Notations

Define Rmax and Rmin as the largest and smallest distance between

cluster centers i.e., Rmax = maxi 6=j ‖µ∗i − µ∗j‖, Rmin = mini 6=j ‖µ∗i − µ∗j‖. Let

πmax and πmin be the maximal and minimal cluster weights, and define κ as

κ = πmax

πmin
.

2.3 Main Results

Despite being a non-convex problem, EM and gradient EM algorithms

have been shown to exhibit good convergence behavior in practice, especially

with good initializations. However, existing local convergence theory only

applies for two-cluster equal-weight GMM. In this section, we present our

main result in two parts. First we show the convergence rate and present a

near-optimal radius for contraction region for population gradient EM. Then

in the second part we connect the population version to finite sample results

using concepts from empirical processes and learning theory.
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2.3.1 Local contraction for population gradient EM

Intuitively, when µt equals the ground truth µ∗, then the Q(µ|µ∗)

function will be well-behaved. This function is a key ingredient in [9], where

the curvature of the Q(·|µ) function is shown to be close to the curvature of

Q(·|µ∗) when the µ is close to µ∗. This is a local property that only requires

the gradient to be stable at one point.

Definition 2.1 (Gradient Stability). The Gradient Stability (GS) condition,

denoted by GS(γ, a), is satisfied if there exists γ > 0, such that for µti ∈

B(µ∗i , a) with some a > 0, for ∀i ∈ [r].

‖∇Q(µt|µ∗)−∇Q(µt|µt)‖ ≤ γ‖µt − µ∗‖

The GS condition is used to prove contraction of the sequence of estima-

tors produced by population gradient EM. However, for most latent variable

models, it is typically challenging to verify the GS condition and obtain a

tight bound on the parameter γ. We derive the GS condition under milder

conditions (see Theorem 2.5 in Section 2.4), which bounds the deviation of the

partial gradient evaluated at µti uniformly over all i ∈ [r]. This immediately

implies the global GS condition defined in Definition 2.1. Equipped with this

result, we achieve a nearly optimal local convergence radius for general GMMs

in Theorem 2.1. The proof of this theorem can be found in Appendix 6.2.2.
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Theorem 2.1 (Convergence for Population gradient EM). Let d0 := min{d, r}.

If Rmin = Ω̃(
√
d0), with initialization µ0 satisfying, ‖µ0

i − µ∗i ‖ ≤ a,∀i ∈ [r],

where

a ≤Rmin

2
−
√
d0O

(√
log

(
max

{
r2κ

πmin

, Rmax, d0

}))
then the Population EM converges:

‖µt − µ∗‖ ≤ ζt‖µ0 − µ∗‖, ζ =
πmax − πmin + 2γ

πmax + πmin

< 1

where γ = r2(2κ+ 4) (2Rmax + d0)2 exp
(
−
(
Rmin

2
− a
)2√

d0/8
)
< πmin.

Remark 2.1. The local contraction radius is largely improved compared to that

in [9], which has Rmin/8 in the two equal sized symmetric GMM setting. It

can be seen that in Theorem 2.1, a/Rmin goes to 1
2

as the signal to noise ratio

goes to infinity. We will show in simulations that when initialized from some

point that lies Rmin/2 away from the true center, gradient EM only converges

to a stationary point which is not a global optimum. More discussion can be

found in Section 4.4.

2.3.2 Finite sample bound for gradient EM

In the finite sample setting, as long as the deviation of the sample

gradient from the population gradient is uniformly bounded, the convergence

in the population setting implies the convergence in finite sample scenario.

Thus the key ingredient in the proof is to get this uniform bound over all

parameters in the contraction region A, i.e. bound supµ∈A ‖G(i)(µ)−G(i)
n (µ)‖,

where G and Gn are defined in Section 4.2.
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To prove the result, we expand the difference and define the following

function for i ∈ [r], where u is a unit vector on a d dimensional sphere Sd−1.

This appears because we can write the Euclidean norm of any vector B, as

‖B‖ = supu∈Sd−1〈B, u〉.

gui (X) = sup
µ∈A

1

n

n∑
i=1

w1(Xi;µ)〈Xi − µ1, u〉 − Ew1(X;µ)〈X − µ1, u〉. (2.3)

We will drop the super and subscript and prove results for gu1 without

loss of generality.

The outline of the proof is to show that g(X) is close to its expectation.

This expectation can be further bounded via the Rademacher complexity of

the corresponding function class (defined below in Eq (2.4)) by the tools like

the symmetrization lemma [80].

Consider the following class of functions indexed by µ and some unit

vector on d dimensional sphere u ∈ Sd−1:

Fui = {f i : X→ R|f i(X;µ, u) = wi(X;µ)〈X − µi, u〉} (2.4)

We need to bound the r functions classes separately for each mixture. Given

a finite n-sample (X1, · · · , Xn), for each class, we define the Rademacher com-

plexity as the expectation of empirical Rademacher complexity.

R̂n(Fui ) = Eε

[
sup
µ∈A

1

n

n∑
j=1

εif
i(Xj;µ, u)

]
; Rn(Fui ) = EXR̂n(Fui )

where εi’s are the i.i.d. Rademacher random variables.
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For many function classes, the computation of the empirical Rademacher

complexity can be hard. For complicated functions which are Lipschitz w.r.t

functions from a simpler function class, one can use Ledoux-Talagrand type

contraction results [68]. In order to use the Ledoux-Talagrand contraction,

one needs a 1-Lipschitz function, which we do not have, because our function

involves µi, i ∈ [r]. Also, the weight functions wi are not separable in terms

of the µi’s. Therefore the classical contraction lemma does not apply. In our

analysis, we need to introduce a vector-valued function, with each element in-

volving only one µi, and apply a recent result of vector-versioned contraction

lemma [76]. With some careful analysis, we get the following. The details are

deferred to Section 2.5.

Theorem 2.2. Let Fui be as in Eq. (2.4) for ∀i ∈ [r], then for some universal

constant c,

Rn(Fui ) ≤ cr3/2(1 +Rmax)3
√
dmax{1, log(κ)}√
n

After getting the Rademacher complexity, one needs to use concen-

tration results like McDiarmid’s inequality [78] to achieve the finite-sample

bound. Unfortunately for the functions defined in Eq. (2.4), the martingale

difference sequence does not have bounded differences. Hence it is difficult to

apply McDiarmid’s inequality in its classical form. To resolve this, we instead

use an extension of McDiarmid’s inequality which can accommodate sequences

which have bounded differences with high probability [26].
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Theorem 2.3 (Convergence for sample-based gradient EM). Let ζ be the

contraction parameter in Theorem 2.1, and

εunif(n) = Õ(max{n−1/2r3(1 +Rmax)3
√
dmax{1, log(κ)}, (1 +Rmax)d/

√
n}).
(2.5)

If εunif(n) ≤ (1− ζ)a, then sample-based gradient EM satisfies

∥∥µ̂ti − µ∗i∥∥ ≤ ζt
∥∥µ0 − µ∗

∥∥
2

+
1

1− ζ
εunif(n); ∀i ∈ [r]

with probability at least 1− n−cd, where c is a positive constant.

Remark 2.2. When data is observed in a streaming fashion, the gradient up-

date can be modified into a stochastic gradient update, where the gradient is

evaluated based on a single observation or a small batch. By the GS condi-

tion proved in Theorem 2.1, combined with Theorem 6 in [9], we immediately

extend the guarantees of gradient EM into the guarantees for the stochastic

gradient EM.

2.3.3 Initialization

Appropriate initialization for EM is the key to getting good estimation

within fewer restarts in practice. There have been a number of interesting

initialization algorithms for estimating mixture models. It is pointed out in

[54] that in practice, initializing the centers by uniformly drawing from the data

is often more reasonable than drawing from a fixed distribution. Under this

initialization strategy, we can bound the number of initializations required to

find a “good” initialization that falls in the contraction region in Theorem 2.1.
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The exact theorem statement and a discussion of random initialization can be

found in Appendix 6.4. More sophisticated strategy includes, an approximate

solution to k-means on a projected low-dimensional space used in [8] and [63].

While it would be interesting to study different initialization schemes, that is

part of future work.

2.4 Local Convergence of Population Gradient EM

In this section we present the proof sketch for Theorem 2.1. The com-

plete proofs in this section are deferred to Appendix 6.2. To start with, we

calculate the closed-form characterization of the gradient of q(µ) as stated in

the following lemma.

Lemma 2.1. Define q(µ) = Q(µ|µ∗). The gradient of q(µ) is ∇q(µ) =

(diag(π)⊗ Id) (µ∗ − µ).

If we know the parameter γ in the gradient stability condition, then

the convergence rate depends only on the condition number of the Hessian of

q(·) and γ.

Theorem 2.4 (Convergence rate for population gradient EM). If Q satisfies

the GS condition with parameter 0 < γ < πmin, denote dt := ‖µt − µ∗‖, then

with step size s = 2
πmin+πmax

, we have:

dt+1 ≤
(
πmax − πmin + 2γ

πmax + πmin

)t
d0
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The proof uses an approximation on gradient and standard techniques

in analysis of gradient descent.

Remark 2.3. It can be verified that the convergence rate is equivalent to that

shown in [9] when applied to GMMs. The convergence slows down as the

proportion imbalance κ = πmax/πmin increases, which matches the observation

in [84].

Now to verify the GS condition, we have the following theorem.

Theorem 2.5 (GS condition for general GMM). Let d̃ = min{d, r} be the

effective dimension. If Rmin = Ω̃(
√
d̃), and µi ∈ B(µ∗i , a),∀i ∈ [r] where

a ≤ Rmin

2
−
√
d̃}max(4

√
2[log(Rmin/4)]+, 8

√
3),

then ‖∇µiQ(µ|µt)−∇µiq(µ)‖ ≤ γ
r

∑r
i=1 ‖µti − µ∗i ‖ ≤

γ√
r
‖µt − µ∗‖,

where γ = r2(2κ+ 4)
(

2Rmax + d̃}
)2

exp

(
−
(
Rmin

2
− a
)2
√
d̃}/8

)
.

Furthermore, ‖∇Q(µ|µt)−∇q(µ)‖ ≤ γ‖µt − µ∗‖.

Proof sketch of Theorem 2.5. W.l.o.g. we show the proof with the first cluster,

consider the difference of the gradient corresponding to µ1.

∇µ1Q(µt|µt)−∇µ1q(µ
t) =E(w1(X;µt)− w1(X;µ∗))(X − µt1) (2.6)

For any given X, consider the function µ→ w1(X;µ), we have

∇µw1(X;µ) =


w1(X;µ)(1− w1(X;µ))(X − µ1)T

−w1(X;µ)w2(X;µ)(X − µ2)T

...
−w1(X;µ)wr(X;µ)(X − µr)T

 (2.7)
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Let µu = µ∗+ u(µt−µ∗),∀u ∈ [0, 1], obviously µu ∈ Πr
i=1B(µ∗i , ‖µti−µ∗i ‖) ⊂

Πr
i=1B(µ∗i , a). By Taylor’s theorem,

‖E(w1(X;µt1)− w1(X;µ∗1))(X − µt1)‖ =

∥∥∥∥E [∫ 1

u=0

∇uw1(X;µu)du(X − µt1)

]∥∥∥∥
≤U1‖µt1 − µ∗1‖2 +

∑
i 6=1

Ui‖µti − µ∗i ‖2 ≤ max
i∈[r]
{Ui}

∑
i

‖µti − µ∗i ‖2

(2.8)

where

U1 = sup
u∈[0,1]

‖Ew1(X;µu)(1− w1(X;µu))(X − µt1)(X − µu1)T‖op

Ui = sup
u∈[0,1]

‖Ew1(X;µu)wi(X;µu)(X − µt1)(X − µu2)T‖op

Bounding them with careful analysis on Gaussian distribution yields the result.

The technical details are deferred to Appendix 6.2.

2.5 Sample-based Convergence

In this section we present the proof sketch for sample-based convergence

of gradient EM. The full proofs in this section are deferred in Appendix 6.3.

The main ingredient in proving Theorem 2.3 is the result of the following

theorem, which develops an uniform upper bound for the differences between

sample-based gradient and population gradient on each cluster center.

Theorem 2.6 (Sample-based EM guarantee). Denote A as the contraction

region Πr
i=1B(µ∗i , a). Under the condition of Theorem 2.1, with probability at

least 1− exp (−cd log n),

sup
µ∈A

∥∥G(i)(µ)−G(i)
n (µ)

∥∥ < εunif(n); ∀i ∈ [r]
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where

εunif(n) = cr3/2(1 + 3Rmax)3 max{1, log(κ)}
√
d log n

n
. (2.9)

Plugging in the expression of G and Gn we recognize the left hand side

as gui (X) defined in Eq. (2.3). The quantity gu1 (X) depends on the sample, the

idea for proving Theorem 2.6 is to show it concentrates around its expectation

when sample size is large. And its expectation is bounded by the Radamacher

complexity. Note that when the function class has bounded differences (chang-

ing one data point changes the function by a bounded amount almost surely),

as in the case in many risk minimization problems in supervised learning, the

McDiarmid’s inequality can be used to achieve concentration. However the

function class we define in Eq. (2.4) is not bounded almost everywhere, but

with high probability, hence the classical result does not apply. Here we prove a

concentration inequality following the classical Azuma-Hoeffding / McDiarmid

martingale procedure, but with a more careful treatment for the conditional

difference utilizing the gaussian tail properties. The proof uses similar tech-

niques as in Theorem 1 of [60]. The following bound improves upon the one

shown in [116] and have an optimal rate for dimension.

Theorem 2.7. Let g(X) be defined in Eq. (2.3) with i = 1 and some fixed u,

then

23



P

(
g(X)− Eg(X) > 2(1 + 3Rmax)

√
d log n

n

)
≤n−d

Now it remains to derive the Rademacher complexity under the given

function class. Note that when the function class is a contraction, or Lipschitz

with respect to another function (usually of a simpler form), one can use the

Ledoux-Talagrand contraction lemma [68] to reduce the Rademacher complex-

ity of the original function class to the Rademacher complexity of the simpler

function class. This is essential in getting the Rademacher complexities for

complicated function classes. As we mention in Section 3.4, our function class

in Eq. (2.4) is unfortunately not Lipschitz due to the fact that it involves all

cluster centers even for the gradient on one cluster. We get around this prob-

lem by introducing a vector valued function, and show that the functions in

Eq. (2.4) are Lipschitz in terms of the vector-valued function. In other words,

the absolute difference in the function when the parameter changes is upper

bounded by the norm of the vector difference of the vector-valued function.

Then we build upon the recent vector-contraction result from [76], and prove

the following lemma under our setting.

Lemma 2.2. Let X be nontrivial, symmetric and sub-gaussian. Then there

exists a constant C <∞, depending only on the distribution of X, such that for

any subset S of a separable Banach space and function hi : S→ R, fi : S→ Rk,
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i ∈ [n] satisfying ∀s, s′ ∈ S, |hi(s) − hi(s
′)| ≤ L‖f(s) − f(s′)‖. If εik is an

independent doubly indexed Rademacher sequence, we have,

E sup
s∈S

∑
i

εihi(s) ≤ E
√

2L sup
s∈S

∑
i,k

εikfi(s)k,

where fi(s)k is the k-th component of fi(s).

Remark 2.4. In contrast to the original form in [76], we have a S as a subset

of a separable Banach Space. The proof uses standard tools from measure

theory, and is to be found in Appendix 6.3.

This equips us to prove Theorem 2.2.

Proof sketch of Theorem 2.2. For any unit vector u, the Rademacher complex-

ity of Fu1 is

Rn(Fu1 ) =EXEε sup
µ∈A

1

n

n∑
i=1

εiw1(Xi;µ)〈Xi − µ1, u〉

≤EXEε sup
µ∈A

1

n

n∑
i=1

εiw1(Xi;µ)〈Xi, u〉︸ ︷︷ ︸
(D)

+EXEε sup
µ∈A

1

n

n∑
i=1

εiw1(Xi;µ)〈µ1, u〉︸ ︷︷ ︸
(E)

(2.10)

We bound the two terms separately. Define ηj(µ) : Rrd → Rr to be a vector

valued function with the k-th coordinate

[ηj(µ)]k =
‖µ1‖2

2
− ‖µk‖

2

2
+ 〈Xj,µk − µ1〉+ log

(
πk
π1

)

It can be shown that |w1(Xj;µ)− w1(Xj;µ
′)| ≤

√
r

4
‖ηj(µ)− ηj(µ′)‖

(2.11)
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Now let ψ1(Xj;µ) = w1(Xj;µ)〈Xj, u〉. With Lipschitz property (6.22)

and Lemma 6.11, we have

E

[
sup
µ∈A

1

n

n∑
j=1

εjwi(Xj;µ)〈Xj, u〉

]
≤ E

[√
2
√
r

4n
sup
µ∈A

n∑
j=1

r∑
k=1

εjk[ηj(µ)]k

]

The right hand side can be bounded with tools regarding independent sum

of sub-gaussian random variables. Similar techniques apply to the (E) term.

Adding things up we get the final bound.

Proof of Theorem 2.6. Combining Theorem 2.2, Lemma 6.12 and Theorem 2.7,

we have for any d-dimensional unit vector u, with probability at least 1−n−d,

gui (X) ≤|gui (X)− Egui (X)|+ Egui (X)

≤2(1 + 3Rmax)

√
d log n

n
+ 2Rn(Fui )

≤cr3/2(1 + 3Rmax)3 max{1, log(κ)}
√
d log n

n

By standard covering arguments, we have

sup
µ∈A

∥∥G(i)(µ)−G(i)
n (µ)

∥∥ ≤ 2 max
j=1,··· ,K

gu
(j)

i (X)

Using K ≤ e2d from Lemma 6.1 along with union bound, we have

sup
µ∈A

∥∥G(i)(µ)−G(i)
n (µ)

∥∥ ≤ cr3/2(1 + 3Rmax)3 max{1, log(κ)}
√
d log n

n

with probability at least 1− (ne−2)−d.

Combining the pieces we can now prove Theorem 2.3.
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Proof of Theorem 2.3. We show the result by induction. When t = 1,

∥∥µ1 − µ∗
∥∥

2
=
∥∥Gn(µ0)− µ∗

∥∥ ≤ ∥∥G(µ0)− µ∗
∥∥+

∥∥Gn(µ0)−G(µ0)
∥∥

≤ ζ
∥∥µ0 − µ∗

∥∥+ εunif(n)

If ‖µti − µ∗i ‖ < a and εunif(n) ≤ (1− ζ)a, we have
∥∥µt+1

i − µ∗i
∥∥ ≤ a. So µt lies

in the contraction region for ∀t ≥ 0.

Then iteratively we get

∥∥µt − µ∗∥∥ ≤ ζ
∥∥µt−1 − µ∗

∥∥+ εunif(n)

≤ ζt
∥∥µ0 − µ∗

∥∥+
t−1∑
i=0

ζ iεunif(n)

≤ ζt
∥∥µ0 − µ∗

∥∥+
1

1− ζ
εunif(n)

with probability at least 1− δ.

2.6 Experiments

In this section we collect some numerical results. In all experiments we

set the covariance matrix for each mixture component as identity matrix Id

and define signal-to-noise ratio (SNR) as Rmin.

Convergence Rate We first evaluate the convergence rate and com-

pare with those given in Theorem 2.4 and Theorem 2.5. For this set of experi-

ments, we use a mixture of 3 Gaussians in 2 dimensions. In both experiments

Rmax/Rmin = 1.5. In different settings of π, we apply gradient EM with vary-

ing SNR from 1 to 5. For each choice of SNR, we perform 10 independent
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(a) (b)

(c) (d)

Figure 2.1: (a, b): The influence of SNR on optimization error in different set-
tings. The figures represent the influence of SNR when the GMMs have differ-
ent cluster centers and weights: (a) π = (1/3, 1/3, 1/3). (b) π = (0.6, 0.3, 0.1).
(c) plots statistical error with different initializations arbitrarily close to the
boundary of the contraction region. (d) shows the suboptimal stationary point
when two centers are initialized from the midpoint of the respective true cluster
centers.

trials with N = 12, 000 data points. The average of log ‖µt − µ̂‖ and the

standard deviation are plotted versus iterations. In Figure 2.1 (a) and (b) we

plot balanced π (κ = 1) and unbalanced π (κ > 1) respectively.

All settings indicate the linear convergence rate as shown in Theorem

2.4. As SNR grows, the parameter γ in GS condition decreases and thus yields

faster convergence rate. Comparing left two panels in Figure 2.1, increasing

imbalance of cluster weights κ slows down the local convergence rate as shown

in Theorem 2.4.
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Contraction Region To show the tightness of the contraction region,

we generate a mixture with r = 3, d = 2, and initialize the clusters as follows.

We use µ0
2 =

µ∗2+µ∗3
2
− ε, µ0

3 =
µ∗2+µ∗3

2
+ ε, for shrinking ε, i.e. increasing a/Rmin

and plot the error on the Y axis. Figure 2.1-(c) shows that gradient EM

converges when initialized arbitrarily close to the boundary, thus confirming

our near optimal contraction region. Figure 2.1-(d) shows that when ε = 0,

i.e. a = Rmin

2
, gradient EM can be trapped at a sub-optimal stationary point.

2.6.1 Conclusion for analysis of EM algorithm

In previous sections, we have stated population and finite-sample based

local convergence results for the non-convex EM algorithm. In the following

sections, we study the convex relaxation of k-means in a high dimensional

model, and study its properties in the presence of outliers.

2.7 Robust Convex Relaxation for Covariate Clustering

The EM algorithm is one of the oldest clustering algorithm. Despite its

popularity in practitioners, it is non-convex and is sensitive to initialization.

Now we discuss some convex relaxations of a well-known clustering loss. K-

means, named by James MacQueen [73], was proposed by Hugo Steinhaus [101]

before. Despite being half a century old, k-means has been widely used and

analyzed under various settings.

One major drawback of k-means is its incapability to separate clusters

that are non-linearly separated, and that the loss is non-convex. This can be
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alleviated by mapping the data to a high dimensional feature space and do

clustering on top of the feature space [98, 36, 58], which is generally called

kernel-based methods. For instance, the widely-used spectral clustering [99,

86] is an algorithm to calculate top eigenvectors of a kernel matrix of affinities,

followed by a k-means on the top r eigenvectors. The consistency of spectral

clustering is analyzed by [106]. [36] shows that spectral clustering is essentially

equivalent to a weighted version of kernel k-means.

The performance guarantee for clustering is often studied under dis-

tributional assumptions; usually a mixture model with well-separated centers

suffices to show consistency. In [29], the authors use a Gaussian mixture model,

and proposes a variant of EM algorithm that provably recovers the center of

each Gaussian when the minimum distance between clusters is greater than

some multiple of the square root of dimension. In [8], the authors work with a

projection based algorithm and shows the separation needs to be greater than

the operator norm and the Frobenius norm of difference between data matrix

and its corresponding center matrix, up to a constant.

The non-convexity is often handled by using convex relaxations [79].

For example, SDP relaxations for k-means typed clustering were proposed in

[61, 92]. In a very recent work, it is shown in [79] that the effectiveness of

SDP relaxation with k-means clustering for subgaussian mixtures, provided

the minimum distance between centers is greater than the variance of the

sub-gaussian times the square of the number of clusters r.

On a related note, SDP relaxations have been shown to be consistent
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for community detection in networks [6, 17]. In particular, Cai et al. [17]

consider “inlier” (these are generated from the underlying clustering model,

to be specific, a blockmodel) and “outlier” nodes. The authors show that

SDP is weakly consistent in terms of clustering the inlier nodes as long as the

number of outliers m is a vanishing fraction of the number of nodes.

In contrast, among the numerous work on clustering, not much focus

has been on robustness of different kernel k-means algorithms in presence of

arbitrary outliers. Yang et al. [118] illustrate the robustness of Gaussian kernel

based clustering, where no explicit upper bound is given. Debruyne et al. [34]

detect the influential points in kernel PCA by looking at an influence function.

In data mining community, many find clustering can be used to detect outliers,

with often heuristic but effective procedures [89, 37]. On the other hand, kernel

based methods have been shown to be robust for many machine learning tasks.

For supervised learning, it is shown in [112] that the robustness of SVM by

introducing an outlier indicator and relaxing the problem to a SDP. [32, 33, 25]

develop the robustness for kernel regression. For unsupervised learning, [59]

proposes a robust kernel density estimation algorithms.

In the remaining part of this chapter, we ask the question: how robust

are SVD type algorithms and SDP relaxations when outliers are present. In

the process we also present results which compare these two methods. To be

specific, we show that without outliers, SVD is weakly consistent, i.e. the

fraction of misclassified nodes vanishes with high probability, whereas SDP

is strongly consistent, i.e. the number of misclassified nodes vanishes with
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high probability. We also prove that both methods are robust to arbitrary

outliers as long as the number of outliers is growing at a slower rate than the

number of nodes. Surprisingly our results also indicate that SDP relaxations

are more resilient to outliers than K-SVD methods. In Section 2.8 we set

up the problem and the data generating model. We present the main results

in Section 2.9. Proof sketch and more technical details are introduced in

Section 2.10. Numerical experiments in Section 2.11 illustrate and support

our theoretical analysis.

2.8 Problem Setup for High-dimensional Sub-Gaussian
Mixture

We denote by Y = [Y1, · · · , Yn]T the n × p data matrix. Among the

n observations, m outliers are distributed arbitrarily, and n −m inliers form

r equal-sized clusters, denoted by C1, · · · , Cr. Let us denote the index set

of inliers by I and index set of outliers by O, I ∪ O = [n]. Also denote by

R = {(i, j) : i ∈ O or j ∈ O}.

The problem is to recover the true and unknown data partition. With

a slight mis-use of notation, we use X as the clustering matrix and Y as the

input data matrix. We will also use Z to denote a binary membership matrix,

where Z = {0, 1}n×r, Zik = 1 if i belongs to the k-th cluster and 0 otherwise.

For convenience we assume the outliers are also arbitrarily equally assigned to

r clusters, so that each extended cluster, denoted by C̃i, i ∈ [r] has exactly n/r

points. A ground truth clustering matrix X0 ∈ Rn×n can be achieved by X0 =
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ZZT . It can be seen that X0(i, j) =

{
1 if i, j belong to the same cluster;

0 otherwise.

For the inliers, we assume the following mixture distribution model.

Conditioned on Zia = 1, Yi = µa +
Wi√
d
, E[Wi] = 0, Cov[Wi] = σ2

aId,

Wi are independent sub-gaussian random vectors.

Background materials on sub-gaussian random variables and random vectors

can be found in Appendix 7.1. We treat Y as a low dimensional signal hidden

in high dimensional noise. More concretely µa is sparse and ‖µa‖0 does not

depend on n or d; as n → ∞, d → ∞. Wi’s for i ∈ [n] are independent. For

simplicity, we assume the noise is isotropic and the covariance only depends

on the cluster. The sub-gaussian assumption is non-parametric and includes

most of the commonly used distribution such as Gaussian and bounded dis-

tributions. We include some background materials on sub-gaussian random

variables in Appendix 7.1. This general setting for inliers is common and also

motivated by many practical problems where the data lies on a low dimensional

manifold, but is obscured by high-dimensional noise [38].

We use the kernel matrix based on Euclidean distances between covari-

ates. Our analysis can be extended to inner product kernels as well. From now

onwards, we will assume that the function generating the kernel is bounded

and Lipschitz.

Assumption 2.1. For n observations Y1, · · · , Yn, the kernel matrix (some-

times also called Gram matrix) K is induced by K(i, j) = f(‖Yi−Yj‖2
2), where
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f satisfies:

|f(x)| ≤ 1, ∀x and ∃C0 > 0, s.t. sup
x,y
|f(x)− f(y)| ≤ C0|x− y|.

A widely used example that satisfies the above condition is the Gaussian

kernel. For simplicity, we will without loss of generality assume

K(x, y) = f(‖x− y‖2) = exp(−η‖x− y‖2). (2.12)

2.8.1 Two kernel clustering algorithms

Kernel clustering algorithms can be broadly divided into two categories;

one is based on semidefinite relaxation of the k-means objective function and

the other is eigen-decomposition based, like kernel PCA, spectral clustering,

etc. In this section we describe these two settings.

SDP relaxation for kernel clustering It is well known [36] that kernel

k-means could be achieved by maximizing trace(ZTKZ) where Z is the n× r

matrix of cluster memberships. However due to the non-convexity of the con-

straints, the problem is NP-hard. Several convex relaxations for k-means type

loss are proposed in the literature (see [92, 79, 114] for more references). In

particular in these settings one maximizes 〈W,X〉, for some positive semidef-

inite matrix X, where W is a matrix of similarities between pairwise data

points. For classical k-means Wij can be Y T
i Yj whereas for k-means in the
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kernel space one uses a suitably defined kernel similarity function between the

ith and jth covariates.

We analyze the following semidefinite programming relaxation. The

same relaxation has been used in stochastic block models [6] but to the best

of our knowledge, this is the first time it is used to solve kernel clustering

problems and shown to be consistent.

max
X

trace(KX) (SDP-1)

s.t., X � 0, X ≥ 0, X1 =
n

r
1, diag(X) = 1

While we use the SDP for equal-sized clusters for ease of exposition, in Chap-

ter 4 we analyze SDP relaxations for unequal cluster sizes.

The clustering procedure is listed in Algorithm 1.

Algorithm 1 SDP relaxation for kernel clustering

Require: Observations Y1, · · · , Yn, kernel function f .
1: Compute kernel matrix K where K(i, j) = f(‖Yj − Yj‖2

2);

2: Solve SDP-1 and let X̂ be the optimal solution;
3: Do k-means on the r leading eigenvectors U of X̂.

Kernel singular value decomposition Kernel singular value decomposi-

tion (K-SVD) is a spectral based clustering approach. One first does SVD on

the kernel matrix, then applies k-means on first r eigenvectors. Different vari-

ants include K-PCA [98], which uses singular vectors of centered kernel matrix

and spectral clustering [86], which uses singular vectors of normalized graph
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laplacian of the kernel matrix. The detailed algorithm is shown in Algorithm

2.

Algorithm 2 K-SVD (K-PCA, spectral clustering)

Require: Observations Y1, · · · , Yn, kernel function f .
1: Compute kernel matrix K where K(i, j) = f(‖Yj − Yj‖2

2);
2: if K-PCA then
3: K ← K −K11T/n− 11TK/n+ 11TK11T/n2;
4: else if spectral clustering then
5: K ← D−1/2KD−1/2 where D = diag(K1n);
6: end if
7: Do k-means on the r leading singular vectors V of K.

2.9 Main Results on Robustness of Kernel Clustering

In this section we summarize our main results in analyzing SDP relax-

ation of kernel k-means and K-SVD type methods. Our main contribution is

two-fold. First, we show that SDP relaxation produces strongly consistent re-

sults, i.e. the number of misclustered nodes goes to zero with high probability

when there are no outliers, without rounding. On the other hand, K-SVD is

weakly consistent, i.e. fraction of misclassified nodes goes to zero when there

are no outliers.

In presence of outliers, we see an interesting dichotomy in the behaviors

of these two methods. We present upper bounds on the number of outliers,

such that the output does not contain clusters that are purely consist of out-

liers. We see that SDP can tolerate more outliers than K-SVD. When the

number of outliers is controlled, both methods can be proven to be weakly
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consistent in terms of misclassification error. However, SDP is more resilient

to the effect of outliers than K-SVD, if the number of clusters grows or if the

separation between the cluster means decays.

Our analysis is organized as follows. First we present a result on the

concentration of kernel matrix around its population counterpart. The popu-

lation kernel matrix for inliers is blockwise constant with r blocks (except the

diagonal, which is one). Next we prove that as n increases, the optima X̂ of

(SDP-1) converges strongly to X0, when there are no outliers and weakly if

the number of outliers grows slowly with n. Then we show the eigenvectors

of X̂ and K are close to those of their reference matrices, which are piecewise

constant aligned with the true clustering structure. We further analyze the

k-means step with the eigenvectors as input, to present the conditions on the

number of outliers, under which the inliers are clustered into exactly r clus-

ters. Finally we show the mis-clustering error of the clustering returned by

Algorithm 1 goes to zero with probability tending to one as n → ∞ when

there are no outliers; and when the number of outliers is growing slowly with

n, the fraction of mis-clustered nodes from algorithms 1 and 2 converges to

zero.

We will start with the concentration of the kernel matrix. We show that

under our data model Eq. (2.12) the empirical kernel matrix with the Gaussian

kernel restricted on inliers concentrates around a ”population” matrix K̃I×I,

and the `∞ norm of KI×I
f − K̃I×I

f goes to zero at the rate of O(
√

log d
d

). We

extend the K̃ on the outlier points to be consistent with Z.
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Theorem 2.8. Let dk` = ‖µk − µ`‖, and Zi = k, Zj = `, define

K̃f (i, j) =

{
f(d2

k` + σ2
k + σ2

` ) if i 6= j,
f(0) if i = j.

. (2.13)

Then there exists constant ρ > 0, such that with probability at least 1−n2d−ρc
2
,

sup
i,j∈I
|Kij − K̃ij| ≤ c

√
log d

d
.

Remark 2.5. Setting c =
√

3 logn
d log d

, there exists constant ρ > 0, such that

P
(
‖KI×I − K̃I×I‖∞ ≥

√
3 logn
ρd

)
≤ 1

n
. The error probability goes to zero for a

suitably chosen constant as long as d is growing faster than log n.

While our analysis is inspired by [38], there are two main differences.

First we have a mixture model where the population kernel is blockwise con-

stant. Second, we obtain
√

log d
d

rates of convergence by carefully bounding

the tail probabilities. In order to attain this we further assume that the noise

is sub-gaussian and isotropic. From now on we will drop the subscript f and

refer to the kernel matrix as K.

By definition, K̃ is blockwise constant with r unique rows (except the

diagonal elements which are ones). Let B be‘ the r×r Gaussian kernel matrix

generated by the centers. An important property of K̃ is that λr−λr+1 (where

λi is the ith largest eigenvalue of K̃) will be Ω(nλmin(B)/r).

Lemma 2.3. If the scale parameter in Gaussian kernel is non-zero, and none

of the clusters shares a same center, let B be the r × r matrix where Bk` =

f(‖µk − µ`‖), then

λr(K̃)−λr+1(K̃) ≥ n

r
λmin(B)·min

k

(
f(σ2

k)
)2−2 max

k
(1−f(2σ2

k)) = Ω(nλmin(B)/r)
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Now we present our result on the consistency of (SDP-1). To this end,

we will upper bound ‖X̂ −X0‖1, where X̂ is the optima returned by (SDP-1)

and X0 is the true clustering matrix. We first present a lemma, which is crucial

to the proof of the theorem. Before doing this, we define

γk` := f(2σ2
k)− f(d2

k` + σ2
k + σ2

` ); γmin := min
`6=k

γk` (2.14)

The first quantity γk` measures separation between the two clusters k and

`. The second quantity measures the smallest separation possible. We will

assume that γmin is positive. This is very similar to the analysis in asymptotic

network analysis where strong assortativity is often assumed. Our results show

that the consistency of clustering deteriorates as γmin decreases.

Lemma 2.4. Let X̂ be the solution to (SDP-1), then

‖X0 − X̂‖1 ≤
2〈K − K̃, X̂ −X0〉

γmin

(2.15)

Combining the above with the concentration of K from Theorem 2.8

we have the following result:

Theorem 2.9. When d2
k` > |σ2

k − σ2
` |, ∀k 6= `, and γmin = Ω

(√
log d
d

)
then

for some absolute constant c > 0, ‖X0 − X̂‖1 ≤ max
{
oP (1), oP

(
mn
rγmin

)}
.
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Remark 2.6. When there’s no outlier in the data, i.e., m = 0, X̂ = X0 with

high probability and SDP-1 is strongly consistent without rounding. When

m > 0, the right hand side of the inequality is dominated by mn/r. Note that

‖X0‖1 = n2

r
, therefore after suitable normalization, the error rate goes to zero

with rate O(m/(nγmin)) when n→∞.

Although X̂ is consistent to the ground truth clustering matrix, in prac-

tice one often wants to get the labeling in addition to the X0. Therefore it is

usually needed to carry out the last eigen-decomposition step in Algorithm 1.

Since X0 is the clustering matrix, its principal eigenvectors are blockwise con-

stant. In order to show small mis-clustering error one needs to show that the

eigenvectors of X̂ are converging (modulo a rotation) to those of X0. This is

achieved by a careful application of Davis-Kahan theorem, a detailed discus-

sion of which is deferred to the analysis in Section 2.10.

The Davis-Kahan theorem lets one bound the deviation of the r princi-

pal eigenvectors Û of a Hermitian matrix M̂ , from the r principal eigenvectors

U of M as : ‖Û − UO‖F ≤ 23/2‖M − M̂‖F/(λr − λr+1) [119], where λr is

the rth largest eigenvalue of M and O is the optimal rotation matrix. For a

complete statement of the theorem see Appendix 7.6.

Applying the result to X0 and K̃ provides us with two different upper

bounds on the distance between leading eigenvectors. We will see in The-

orem 2.11 that the eigengap derived by two algorithms differ, which results

in different tolerance for number of outliers and upper bounds for number
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of misclustered nodes. Since the Davis-Kahan bounds are tight up-to a con-

stant [119], despite being upper bounds, this indicates that algorithm 1 is less

sensitive to the separation between cluster means than Algorithm 2.

To analyze the k-means step with eigenvectors being the input, note

that k-means assigns each row of Û (input eigenvectors of K or X̂) to one

of r clusters. One of the common hurdles for clustering with outliers is that

one mistakenly takes the outliers as separate clusters and miss out or merge

the inlier clusters in the k-means step. Let c1 · · · , cn ∈ Rr be defined such

that ci is the centroid corresponding to the ith row of Û , and {ci}ni=1 have

exactly r unique vectors. Similarly, for the population eigenvectors U (top r

eigenvectors of K̃ or X0), we define the population centroids as (Zν)i , for

some ν ∈ Rr×r. The following theorem shows that as long as the number of

outliers is not too large, then the inliers will not lie in smaller than r clusters.

Theorem 2.10. Let V̂ ∈ Rn×r be the input eigenvectors of k-means and V

be some eigenvectors of n × r such that V has r unique rows. Assume there

exists rotation matrix O such that ‖V O − V̂ ‖ ≤ uV̂ . If 3u2
V̂

+ 2mr
n
< 1, then

each cluster will have at least one inlier.

The upper bound u2
V̂

can vary for different algorithms, and it is a

function of m and the eigengap of the population matrix. When we apply

the upper bound generated from the Davis-Kahan Theorem, we can get some

explicit sufficient condition for m, as stated in the following corollary.

41



Corollary 2.1. 1. Algorithm 1 returns exactly r inlier clusters if m <

C1nγmin

r
;

2. Assume d
log d

> 2r + Cn2

(λr(K̃)−(λr+1(K̃))
, then Algorithm 2 returns exactly

r inlier clusters as long as m < C2n
n2

(λr−λr+1)
2 +C′r

. In particular, when all

clusters share the same variance, all clusters returned by Algorithm 2

contain inliers if m <
C3nγ2min

r2
.

Theorem 2.10 and Corollary 2.1 are proved in Appendix 7.7.

We now show that when the empirical centroids are close to the popu-

lation centroids with a rotation, then the node will be correctly clustered.

We give a general definition of a superset of the misclustered nodes

applicable both to K-SVD and SDP:

M = {i : ‖ci − ZiνO‖ ≥ 1/
√

2n/r} (2.16)

Theorem 2.11. Let Msdp and Mksvd be defined as Eq. 2.16, where ci’s are gen-

erated from Algorithm 1 and 2 respectively. Let λr be the rth largest eigenvalue

value of K̃ ′. We have:

|Msdp| ≤ max

{
oP (1), OP

(
m

γmin

)}
|Mksvd| ≤ OP max

{
mn2

r(λr − λr+1)2
,

n3 log d

rd(λr − λr+1)2

}

Remark 2.7. Getting a bound for λr in terms of γmin for general blockwise

constant matrices is difficult. But as shown in Lemma 2.3, the eigengap is
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Ω(n/rλmin(B)). Plugging this back in we have,

|Mksvd| ≤ max

{
OP

(
mr

λmin(B)2

)
, OP

(
nr log d/d

λmin(B)2

)}
.

In some simple cases one can get explicit bounds for λr, and we have

the following.

Corollary 2.2. Consider the special case when all clusters share the same

variance σ2 and dk` are identical for all pairs of clusters. The number of

mis-clustered nodes of K-SVD is upper bounded by:

|Mksvd| ≤ max

(
OP

(
mr

γ2
min

)
, OP

(
nr log d/d

γ2
min

))
(2.17)

Corollary 2.2 is proved in Appendix 7.9.

Remark 2.8. The situation may happen if cluster center for a is of the form

cea where ea is a binary vector with ea(i) = 1a=i. In this case, the al-

gorithm is weakly consistent (fraction of misclassified nodes vanish) when

γmin = Ω

(
max{

√
r log d
d
,
√

mr
n
}
)

. Compared to |Msdp|, |Mksvd| an additional

factor of r
γmin

. With same m,n, the algorithm has worse upper bound of errors

and is more sensitive to γmin, which depends both on the data distribution

and the scale parameter of the kernel. The proposed SDP can be seen as a

denoising procedure which enlarges the separation. It succeeds as long as the

denoising is faithful, which requires much weaker assumptions.
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2.10 Proof of the main results

In this section, we show the proof sketch of the main theorems. The

full proofs are deferred to supplementary materials.

2.10.1 Proof of Theorem 2.8

In Theorem 2.8, we show that if the data distribution is subgaussian,

the `∞ norm of K − K̃ concentrate with rate O(
√

log d
d

).

Proof sketch. With the Lipschitz condition, it suffices to show ‖Yi − Yj‖2
2

concentrates to d2
k` + σ2

k + σ2
` . To do this, we decompose ‖Yi − Yj‖2

2 =

‖µk − µ`‖2
2 + 2

(Wi−Wj)
T

√
d

(µk − µ`) +
‖Wi−Wj‖22

d
. Now it suffices to show the

third term concentrates to σ2
k+σ2

` and the second term concentrates around 0.

Note the fact that Wi−Wj is sub-gaussian, its square is sub-exponential. With

sub-gaussian tail bound and a Bernstein type inequality for sub-exponential

random variables, we prove the result.

With the elementwise bound, the Frobenius norm of the matrix differ-

ence is just one more factor of n.

Corollary 2.3. With probability at least 1 − n2d−ρc
2
, ‖KI×I − K̃I×I‖F ≤

cn
√

log d/d.

2.10.2 Proof of Theorem 2.9

Lemma 2.4 is proved in Appendix 7.4, where we make use of the op-

timality condition and the constraints in SDP-1. Equipped with Lemma 2.4
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we’re ready to prove Theorem 2.9.

Proof sketch. In the outlier-free ideal scenario, Lemma 2.4 along with the du-

altiy of `1 and `∞ norms we get ‖X̂ − X0‖1 ≤ 2‖K−K̃‖∞‖X̂−X0‖1
γmin

. Then by

Theorem 2.8, we get the strong consistency result. When outliers are present,

we have to derive a slightly different upper bound. The main idea is to divide

the matrices into two parts, one corresponding to the rows and columns of

inliers, and the other corresponding to those of the outliers. Now by the con-

centration result (Theorem 2.8) on K along with the fact that both the kernel

function and X0, X̂ are bounded by 1; and the rows of X̂ sums to n/r because

of the constraint in SDP-1, we obtain the proof. The full proof is deferred to

Appendix 7.5.

2.10.3 Proof of Theorem 2.11

Although Theorem 2.9 provides insights on how close the recovered

matrix X̂ is to the ground truth, it remains unclear how the final clustering

result behaves. In this section, we bound the number of misclassified points

by bounding the distance in eigenvectors of X̂ and X0. We start by presenting

a lemma that provides a bound for k-means step.

K-means is a non-convex procedure and is usually hard to analyze di-

rectly. However, when the centroids are well-separated, it is possible to come

up with sufficient conditions for a node to be correctly clustered. When the

set of misclustered nodes is defined as Eq. 2.16, the cardinality of M is directly

upper bounded by the distance between eigenvectors. To be explicit, we have
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the following lemma. Here Û denotes top r eigenvectors of K for K-SVD and

X̂ for SDP. U denotes the top r eigenvectors of K̃ for K-SVD and X0 for SDP.

O denotes the corresponding rotation that aligns the empirical eigenvectors to

their population counterpart.

Lemma 2.5. M is defined as Eq. (2.16), then |M| ≤ 8n
r
‖Û − UO‖2

F .

Lemma 2.5 is proved in Appendix 7.8.

Analysis of |Msdp|: In order to get the deviation in eigenvectors, note

the rth eigenvalue of X0 is n/r, and r + 1th is 0, let U ∈ Rn×r be top r

eigenvectors of X and Û be eigenvectors of X0. By applying Davis-Kahan

Theorem, we have

∃O, ‖Û − UO‖F ≤
23/2‖X̂ −X0‖F

n/r
≤

√
8‖X̂ −X0‖1

n/r
= OP

(√
mr

nγmin

)
(2.18)

Applying Lemma 2.5,

|Msdp| ≤
8n

r

(
23/2‖X̂ −X0‖F

n/r

)2

≤ cn

r

(√
mr

nγmin

)2

≤ OP

(
m

γmin

)

Analysis of |Mksvd|: In the outlier-present kernel scenario, by Corol-

lary 2.3,

‖K − K̃‖F ≤ ‖KI×I − K̃I×I‖F + ‖KR − K̃R‖F = OP (n
√

log d/d) +OP (
√
mn)

Again by Davis-Kahan theorem, and the eigengap between λr and λr+1

of K̃ from Lemma 2.3, let U be the matrix with rows as the top r eigenvectors

46



of K̃. Let Û be its empirical counterpart.

∃O, ‖Û − UO‖F ≤
23/2‖K − K̃‖F
λr − λr+1

≤ OP

(
max{

√
mn, n

√
log d/d}

λr − λr+1

)
(2.19)

Now we apply Lemma 2.5 and get the upper bound for number of

misclustered nodes for K-SVD.

|Mksvd| ≤
8n

r

(
23/2C max{

√
mn, n

√
log d/d}

λr(K̃)− λr+1(K̃)

)2

≤Cn
r

max

{( √
mn

λr − λr+1

)2

,
n2 log d

d(λr − λr+1)

}

≤OP max

{
mn2

r(λr − λr+1)2
,

n3 log d

rd(λr − λr+1)2

}

2.11 Experiments for Robustness of Kernel Clustering

In this section, we collect some numerical results. For implementation

of the proposed SDP, we use Alternating Direction Method of Multipliers that

is used in [6]. In each synthetic experiment, we generate n − m inliers with

r equal-sized clusters. The centers of the clusters are sparse and hidden in

a p-dim noise. For each generated data matrix, we add in m observations of

outliers. To capture the arbitrary nature of the outliers, we generate half the

outliers by a random Gaussian with large variance (3 times of the signal), and

the other half by a uniform distribution that scatters across all clusters. We

compare Algorithm 1 with 1) k-means by Lloyd’s algorithms; 2) kernel SVD

and 3) kernel PCA by [98]. For all methods, we assume the number of clusters

r is known. In practice when dealing with outliers, it is natural to assume
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(a) # clusters (b) # outliers (c) Separation

Figure 2.2: Performance vs parameters: (a) Inlier accuracy vs number of
cluster (n = p = 1500,m = 10, d2 = 0.125, σ = 1); (b) Inlier accuracy vs
number of outliers (n = 1000, r = 5, d2 = 0.02, σ = 1, p = 500); (c) Inlier
accuracy vs separation (n = 1000, r = 5,m = 50, σ = 1, p = 1000).

there is an extra cluster accounting for outliers, so we cluster both K-SVD

and K-PCA with r clusters and r + 1 clusters.

The evaluating metrics are accuracy of inliers, i.e., number of correctly

clustered nodes divided by the total number of inliers. To avoid the identi-

fication problem, we search for all permutations mapping predicted labels to

ground truth labels and record the best accuracy. Each set of parameter is run

10 replicates and the mean accuracy and standard deviation (shown as error

bars) are reported. For all k-means used in the experiments we do 10 restarts

and choose the one with largest objective.

For each experiment, we change only one parameter and fix all the oth-

ers. Figure 2.2 shows how the performance of different clustering algorithms

change when (a) number of clusters (b) number of outliers (c) minimum dis-

tance between clusters increases. The value of all parameters used are specified

in the caption of the figure. Setting number of clusters as r + 1 doesn’t help

with clustering the inliers, which is observed in all experiments, the curve is
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then not shown here.

Panel (a) shows the inlier accuracy for various methods as we increase

number of clusters. It can be seen that as we increase number of clusters in

presence of outliers, the performance of all methods deteriorate except for the

SDP, which matches the rate presented in Theorem 2.11. We also examine the

`1 norm of X0 − X̂, which remains stable as the number of clusters increases.

Note that the decrease in accuracy for K-SVD might result from the fact that

it fails to meet the condition in Corollary 2.1, which is stronger than the

condition for SDP. Panel (b) describes the trend with respect to number of

outliers. The accuracy of SDP on inliers is almost unaffected by the number

of outliers while other methods suffer with large m. Panel (c) compares the

performance as the minimum distance between cluster centers changes. Both

SDP and K-SVD are consistent as the distance increases. Compared to K-

SVD, SDP concentrates faster and with smaller variation across random runs,

which matches the analysis given in Section 3.4.

2.12 Discussion

In this chapter, we first analyze the EM algorithm, which optimizes a

non-convex loss. We then investigate the consistency and robustness of two

kernel-based clustering algorithms. In the first part, we give a tight contraction

bound for local convergence of EM, and propose novel techniques in handling

finite-sample analysis. In the second half, we show the semidefinite program-

ming relaxation is strongly consistent without outliers and weakly consistent
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in presence of arbitrary outliers. We also show that K-SVD is also weakly con-

sistent in that the mis-clustering rate is going to zero as the observation grows

and the outliers are of a small fraction of inliers. By comparing two methods,

we conclude that although both are robust to outliers, the proposed SDP is

less sensitive to the minimum separation between clusters. The experimental

result also supports the theoretical analysis.

While we obtain error bounds for SDP for high-dimensional sub-gaussian

mixtures [38] in the regime where the kernel matrix concentrates, it is inter-

esting to consider cases where the signal to noise ratio is low and such con-

centration does not hold. For ease of exposition, we defer this to Chapter 4

where we obtain error rates for general mixture of sub-gaussians and connect

the problem with community detection in sparse graphs.

In next chapter, we will look at community detection problems in net-

works and we will see the semi-definite relaxations can also be used in those

problems with provable guarantees.
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Chapter 3

Community Detection in Stochastic Block

Models

Community detection in networks is a fundamental problem in machine

learning and statistics. A variety of important practical problems like ana-

lyzing socio-political ties among leading politicians [41], understanding brain

graphs arising from diffusion MRI data [12], investigating ecological relation-

ships between different tiers of the food chain [53] can be framed as community

detection problems. Much attention has been focused on developing models

and methodology to recover latent community memberships. Among gener-

ative models, the stochastic block model [51] and its variants ([3] etc.) have

attracted a lot of attention, since their simplicity facilitates efficient algorithms

and asymptotic analysis [96, 5, 24].

In this chapter, we focus on the widely-used Stochastic Block Model

The content in this chapter was published in Yan, Bowei, Purnamrita Sarkar, and
Xiuyuan Cheng. ”Provable Estimation of the Number of Blocks in Block Models.” In In-
ternational Conference on Artificial Intelligence and Statistics, pp. 1185-1194. 2018. Prof.
Sarkar proposed the problem of finding the number of blocks in a block model automati-
cally. I mostly did the theoretical analysis independently with a little help from the other
authors. I wrote the paper, and implemented the methodology. Prof. Sarkar helped in
rewriting and revising the draft and brainstormed about experimental settings. Xiuyuan
Cheng participated the discussions, and provided feedbacks on the revision of the draft.
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(SBM) [51]. The model assumes the probability of an edge between two nodes

are completely determined by the unknown cluster memberships of the nodes.

Essentially, this imposes stochastic equivalence, i.e. all nodes in the same

cluster behave identically in a probabilistic sense. Despite its simplicity, the

SBM is used as a building block in more sophisticated models like the Degree

Corrected Block Models [57] and Mixed Membership Block Models [4] and has

been applied successfully for clustering real world networks.

We use a convex relaxation proposed in [92] and analyze the error for the

recovery. We consider two degree regimes in the analysis of random networks.

Let n be the number of nodes in the network. When the average degree

is Ω(log n), we can find consistent algorithm and exact recovery is possible;

whereas when the average degree is Θ(1), no algorithm can find a consistency

solution [122]. When the signal is strong enough, one can find a solution that

has a non-decreasing error rate which is better than random guess [67, 43, 83].

In the first section, we analyze SBM in the dense regime, whereas the

second section is dedicated to the sparse regime. As we will show below, the

technique used in both regimes vary significantly. For the dense regime, one

could expect exact recovery when the graph is large enough. For semi-definite

programming based methods, a common proof technique is construction of

primal-dual pairs [17, 21, 44]. In contrast, for sparse regime, a constant fraction

of nodes will always be mis-clustered. In this case, the primal-dual witness

method will not work, and we use the Grothendieck’s inequality to carry out

the upper bound.
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3.1 Community detection for dense graphs

Although community detection has drawn much attention from both

theorists and practitioners, most existing methods require the prior knowledge

of the true number of clusters, which is often unavailable in real data applica-

tions. In this chapter, we mainly focus on provably estimating the number of

clusters in a network.

While it is tempting to use a two-stage procedure [23] where the num-

ber of clusters is estimated first and then used as an input for clustering, an

erroneous estimation on the number of clusters can deteriorate the clustering

accuracy. Instead, we design an algorithm which estimates the true number of

clusters and recovers the cluster memberships simultaneously, with provable

guarantees.

Semi-definite programming (SDP) relaxations for network clustering

have been widely studied and many different formulations have been proposed.

It has been empirically observed that these methods have better clustering

performance compared to spectral methods [6, 114, 23]. As shown by [22, 6],

SDPs arise naturally when the likelihood of a SBM with equal cluster sizes is

relaxed. SDP returns a relaxation of the clustering matrix, which is a n × n

(n being the number of nodes) symmetric matrix whose ijth element is one

if nodes i and j belong to the same cluster and zero otherwise. We present

a detailed discussion on related work in Section 3.3. In this work, we use

the SDP formulation proposed by [92], which uses a normalized variant of

the clustering matrix. Similar relaxations have been used to study k-means
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clustering for sub-gaussian mixtures [79] and SBMs [113].

For community detection in SBM, an algorithm is considered effec-

tive if it is asymptotically consistent. There are two types of consistency in

the literature. When the number of nodes in the graph is large enough, the

network is sufficiently dense, and the signal (usually defined by the separa-

tion between intra-cluster probability and inter-cluster probability) is strong

enough, strongly consistent methods recover the ground truth labels exactly,

while the weakly consistent methods recover a fraction of labels correctly where

the fraction approaches one as n goes to infinity.

There have been a number of SDP relaxations for general unbalanced

cluster sizes which have been shown to be strongly consistent [93, 44, 17].

One can argue that these methods readily render themselves to estimation of

the number of blocks r. The idea would be to run the SDP with different

values of r, and for the correct one the clustering matrix will be the true

clustering matrix with high probability. However, all these methods require

the knowledge of model parameters. Furthermore, they work in the unequal

cluster size setting by introducing an additional penalty term, which requires

further tuning. Hence each run with a different choice of r would have an

internal tuning step adding to the already expensive computation of the SDP.

We propose a formulation that is a) entirely tuning free when the number of

clusters is known, and b) when it is unknown, is able to recover the number

of clusters and the clustering matrix in one shot.

Furthermore, our method provably works in the weakly assortative set-
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ting, whereas the usual necessary separation condition for recovery is that the

maximal inter-cluster connecting probability (think of this as noise) is smaller

than the minimal intra-cluster connecting probability (the signal) by a certain

margin. This separation condition is known as strong assortativity. In con-

trast, our work only requires that for each node, the probability of connecting

to the nodes in its own cluster is greater by a margin than the largest proba-

bility of connecting with nodes in other clusters. This property is called weak

assortativity. It is not hard to see that weakly assortative models are a su-

perset of strongly assortative models. Weak assortativity was first introduced

in [6], who establish exact recovery under this weaker condition for SDPs for

blockmodels with equal sized communities.

In Sec 4.4 we sketch a rather interesting empirical property of our algo-

rithm (also pointed out in [93]); namely it can identify different granularities of

separations as a byproduct. The tuning phase, which we sketch in Section 4.4,

finds different substructures of the network as it searches over different tuning

parameters. For example, if there are K meta clusters which are more well

separated than the rest, then as we tune, we will first find these meta-clusters,

and then finer substructures within them. While this is not the main goal

of this approach, it indeed makes our approach ideal for exploratory analysis

of networks. We also leave the theoretical analysis of finding multi-resolution

clusterings for future work.

We will formalize these concepts in Section 4.2 and discuss the related

work in more detail in Section 3.3. Section 3.4 contains our main theoretical
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contributions and finally, in Section 3.5 we demonstrate the efficacy of our

algorithm compared to existing methods on a variety of simulated and real

networks.

3.2 Problem Setup and Notations

Assume (S1, · · · , Sr) represent a r-partition for n nodes {1, · · · , n}.

Let mi = |Si| be the size of each cluster, and let mmin and mmax be the

minimum and maximum cluster sizes respectively. We denote by A the n× n

binary adjacency matrix with the true and unknown membership matrix Z =

{0, 1}n×r,

P (Aij = 1|Z) = ZT
i BZj ∀i 6= j, (SBM(B,Z))

P (Aii = 0) = 1, ZTZ = diag(m), (3.1)

where B is a r× r matrix of within and across cluster connection probabilities

and m is a length r vector of cluster sizes. The elements of B can decay with

graph size n. From this section to Section 3.5, we focus on the regime where

the average expected degree grows faster than logarithm of n. In this regime,

it is possible to obtain strong or weak consistency.

Given any block model, the goal for community detection is to recover

the column space of Z. For example if we can solve ZZT or its normalized

variant Zdiag(m)−1ZT , then the labels can be recovered from the eigenvectors

of the clustering matrix.
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The normalized clustering matrix: In this formulation we focus on re-

covering the following normalized version:

X0 = Zdiag(m)−1ZT (3.2)

It can be easily checked that X01n = 1n, since Z1k = 1n. Furthermore, X0

is positive semi-definite and its trace (which equals its nuclear norm as well)

equals the number of clusters r.

Assortativity (strong vs. weak): Assortativity is a condition usually re-

quired in membership recovery. The strong assortativity (see Eq. (3.3)) re-

quires the smallest diagonal entry to be greater than the largest off-diagonal

entry.

min
k
Bkk −max

k 6=`
Bk` > 0 (3.3)

min
k

(
Bkk −max

`6=k
Bk`

)
> 0. (3.4)

[6] first introduces an SDP that provably achieves exact recovery for weakly as-

sortative models (Eq. (3.4)) with equal cluster sizes, i.e., compared with (3.3),

weak assortativity only compares the probability within the same row and

column; it requires that any given cluster k, should have a larger probability

of connecting within itself than with nodes in any other cluster. It is easy to

check that strong assortativity indicates weak assortativity and not vice versa.

For any matrix X ∈ Rn×n, denote XSkS` as the submatrix of X on

indices Sk × S`, and XSk := XSk×Sk . Let 1 be all one vector, and 1Sk ∈ Rn
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be the indicator vector of Sk, equal to one on Sk and zero elsewhere. The

inner product of two matrices is defined as 〈A,B〉 = trace(ATB). We use ◦ to

denote the Schur (elementwise) product of two matrices. Standard notations

for complexity analysis o,O,Θ,Ω will be used. And those with a tilde are to

represent the same order ignoring log factors.

3.3 Prior Work on Estimating Number of Communi-
ties in a Network and Community Detection with
Convex Relaxations

While most community detection methods assume that the number of

communities (r) is given apriori, there has been much empirical and some

theoretical work on estimating r from networks.

Methods for estimating r: A large class of methods chooses r by

maximizing some likelihood-based criterion. While there are notable methods

for estimating r for non-network structured data from mixture models [91, 47,

11, 90], we will not discuss them here.

Many likelihood-based methods use variants or approximations of Bayesian

Information Criterion (BIC); BIC, while a popular choice for model selection,

can be computationally expensive since it depends on the likelihood of the

observed data. Variants of the Integrated Classification Likelihood (ICL, orig-

inally proposed by [11]) were proposed in [31, 65]. Other BIC type criteria are

studied in [74, 97, 77].

In [50] a computationally efficient variational Bayes technique is pro-
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posed to estimate r. This method is empirically shown to be more accurate

than BIC and ICL and faster than Cross Validation based approaches [20]. A

Bayesian approach with a new prior and an efficient sampling scheme is used

to estimate r in [95]. While the above methods are not provable, a provably

consistent likelihood ratio test is proposed to estimate r in [107].

Another class of methods is based on the spectral approach. The idea

is to estimate r by the number of “leading eigenvalues” of a suitably normal-

ized adjacency matrix [88, 56, 18, 39]. Of these the USVT estimator [18]

uses random matrix theory to estimate r simply by thresholding the empirical

eigenvalues of the adjacency matrix appropriately. In [13] it is shown that the

informative eigenvalues of the non-backtracking matrix are real-valued and

separated from the bulk under the SBM. In [66], the spectrum of the non-

backtracking matrix and the Bethe-Hessian operator are used to estimate r,

the later being shown to work better for sparse graphs.

Abbe et. al. [1] propose a degree-profiling method achieving the opti-

mal information theoretical limit for exact recovery. This agnostic algorithm

first learns a preliminary classification based on a subsample of edges, then

adjust the classification for each node based on the degree-profiling from the

preliminary classification. However it involves a highly-tuned and hard to

implement spectral clustering step (also noted by [93]). It also requires spe-

cific modifications when applied to real world networks (as pointed out by the

authors) .

In [124], communities are sequentially extracted from a network; the
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stopping criterion uses a bootstrapped approximation of the null distribution

of the statistic of choice. In [10], the null distribution of a spectral test statistic

is derived, which is used to test r = 1 vs r > 1 at each step of a recursive

bipartitioning algorithm. A generalization of this approach for testing a null

hypothesis for r blocks can be found in [69]. While the algorithm in [10] often

produces over-estimates of r, hypothesis test in [69] depends on a preliminary

fitting with an algorithm which exactly recovers the parameters. The final

accuracy heavily depends on the accuracy of this fit. Network cross-validation

based methods have also been used for selecting r. The cross-validation can

be carried out either via node splitting [4], or node-pair splitting [49, 20]; the

asymptotic consistency of these methods are shown in [20]. We conclude with

a comparison of our approach to other convex relaxations.

Comparison to other convex relaxations In recent years, SDP has drawn

much attention in handling community detection problems with Stochastic

Block Models. Various of relaxations have been shown to possess strong the-

oretical guarantees in recovering the true clustering structure without round-

ing [6, 44, 46, 17, 93, 81, 43]. Most of them aim at recovering a binary clustering

matrix, and show that the relaxed SDP will have the ground truth clustering

matrix as its unique optimal solution. For unbalanced cluster sizes, an extra

penalization is often introduced which requires additional tuning [17, 44, 93].

While one can try different choices of r for these SDPs until achieving exact

recovery, the procedure is slower since each run would need another internal
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tuning step.

SDP with a normalized clustering matrix was introduced by [92]. They

have been used for network clustering [113] and for the relaxation of k-means

clustering of non-network structured data [92, 79] .

max 〈A,X〉

s.t. X � 0, X ≥ 0, X1 = 1, trace(X) = r
(SDP-PW)

However the formulation in [113] requires an additional parameter as an lower

bound on the minimum size of the clusters; loose lower bounds can empirically

deteriorate the performance. Also the authors only establish weak consistency

of the solution.

Some of these methods do not require the knowledge of r in the con-

straints, but instead have the dependency implicitly. In [21], a convexified

modularity minimization for Degree-corrected SBM is proposed, which also

works for SBMs as a special case of degree corrected models. The authors

suggest one over total number of edges as the default value for the tuning

parameter, but when dealing with delicate structures of the network, this sug-

gested value can be sub-optimal and further tuning is required. The procedure

also requires r for the final clustering of the nodes via Spectral Clustering from

the clustering matrix.

A different convex relaxation motivated by low-rank matrix recovery

is studied in [23]. Here, first the eigenspectrum of A is used to estimate r,

which is subsequently used to estimate tuning parameters required in the main

algorithm. We can also tune the tuning parameter with other heuristics, but as
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the theorem in that paper implies, the tuning parameter needs to lie between

the minimal intra-cluster probabilities and maximal inter-cluster probabilities,

which is only feasible for strongly assortative settings. We provide more details

in the experimental section.

Hierarchical clustering structures A phenomenon that has been ob-

served [93, 23] is that convex relaxations can be used to find hierarchical

structures in the networks by varying the tuning parameter. In the experi-

mental section we demonstrate this with some examples.

Separation conditions In terms of the separation conditions, most afore-

mentioned convex relaxations are consistent in the dense regime under strong

assortativity except [6] and [113]. However, [6] only prove exact recovery of

clusters for equal sized clusters, whereas [113] only show weak consistency and

require the knowledge of additional parameters like the minimum cluster size.

[93] shows exact recovery while matching the information theoretical lower

bound, which is not the goal of this work.

In this section, we compare our algorithm with noted representatives

from the related work. From the Spectral methods, we compare with the

USVT estimator and the Bethe Hessian based estimator [66], which has been

shown to empirically outperform a variety of other provable techniques like [107]

and [20]. For these methods, we first estimate r and then use the Regularized

Spectral Clustering [5, 67] algorithm to obtain the final clustering. From the
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convex relaxation literature, we compare with [23] and [21], neither of which

require r for estimating the clustering except for the final clustering step.

3.4 Main result for community detection with unknown
number of clusters

In various SDP relaxations for community detection under SBMs, the

objective function is taken as the linear inner product of the adjacency matrix

A and the target clustering matrix X, some formulations also have some addi-

tional penalty terms. The inner product objective can be derived from several

different metrics for the opitimality of the clustering, such as likelihood or

modularity. The penalty terms vary depending on what kind of a solution

the SDP is encouraged to yield. For example, in low-rank matrix recovery

literature, it is common practice to use the nuclear norm regularization to

encourage low-rank solution. For a positive semi-definite matrix, the nuclear

norm is identical to its trace. When the number of clusters r is unknown, we

consider the following SDP.

max trace(AX)− λtrace(X)

s.t. X � 0, X ≥ 0, X1 = 1,
(SDP-λ)

where λ is a tuning parameter, and X ≥ 0 is an element-wise non-negativity

constraint. The following theorem guarantees the exact recovery of the ground

truth solution matrix, when λ lies in the given range for the tuning parameter.

Theorem 3.1. Let X̂ be the optimal solution of (SDP-λ) for A ∼ SBM(B,Z)

where mmin and mmax denote the smallest and largest cluster sizes respectively.
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Define the separation parameter δ = mink(Bkk −max`6=k Bk`). If

c1 max
k

√
mkBkk + c2

√
nmax

k 6=`
Bk` ≤ λ ≤ mmin

(
δ −max

k,`

√
Bk` logmk

mk

)

then X̂ = X0 with probability at least 1− n−1 provided

δ ≥ 2
√

6 log nmax
k

√
Bkk

mk

+6 max
` 6=k

√
Bk` log n

mmin

+
c
√
npmax

mmin

(3.5)

Remark 3.1. The above theorem controls how fast the different parameters

can grow or decay as n grows. For ease of exposition, we will discuss these

constraints on each parameter by fixing the others. The number of clusters r

can increase with n. In the dense setting, when Bkk = Θ(1), mmin = ω(
√
n)

and r = o(
√
n), which matches with the best upper bound on r from existing

literature. Finally when maxk Bkk = Θ(log n/n), we note that mmin = Θ̃(n)

and r = Θ̃(1).

We can see from the condition in Theorem 3.1 that the tuning pa-

rameter should be of the order
√
d where d is the average degree. In fact, as

shown in the following theorem, when the λ is greater than the operator norm,

(SDP-λ) returns a degenerating rank-1 solution. This gives an upper bound

for λ.

Proposition 3.1. When λ ≥ ‖A‖op, then the solution for (SDP-λ) is 11T/n.
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The proof of Proposition 3.1 is to be found in Appendix 8.1.2. Recall

the properties of the ground truth clustering matrix defined in Eq. (3.2). If

the optimal solution recovers the ground truth X0 exactly, we can estimate r

easily from its trace. Therefore we have the following corollary.

Corollary 3.1. Let X̂ be the optimal solution of (SDP-λ) with A ∼ SBM(B,Z),

where B ∈ [0, 1]r×r. Under the condition in Theorem 3.1, trace(X̂) = r with

probability at least 1− n−1.

In particular, when r is known, we have the following exact recovery

guarantee, which is stronger than the weak consistency result in [113].

Theorem 3.2. Let A ∼ SBM(B,Z), where B ∈ [0, 1]r×r. X0 is the opti-

mal solution of (SDP-PW) with probability at least 1− n−1, if the separation

condition Eq. (3.5) holds true.

We can see that the two SDPs (SDP-λ) and (SDP-PW) are closely

related. In fact, the Lagrangian function of (SDP-PW) is same as the La-

grangian function of (SDP-λ) if we take the lagrangian multiplier for the con-

straint trace(X) = r as λ. We use this fact in the proof of Theorem 3.1. Both

proofs rely on constructing a dual certificate witness, which we elaborate in

the following subsection.

3.4.1 Dual Certificate Witness

In this sketch we develop the sufficient conditions with a certain con-

struction of the dual certificate which guarantees X0 to be the optimal solution.
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(a) B (b) Adjacency (c) λ = 27 (d) λ = 21 (e) λ = 13.

Figure 3.1: Solution matrices with various choices of λ.

We derive the main conditions and leave the technical details to the supple-

mentary materials. To start with, the KKT conditions of (SDP-PW) can be

written as below.

First Order Stationary

− A− Λ + (1αT + α1T ) + βI − Γ = 0 (3.6)

Primal Feasibility

X � 0, 0 ≤ X ≤ 1, X1n = 1n, trace(X) = r (3.7)

Dual Feasibility

Λ � 0, Γ ≥ 0 (3.8)

Complementary Slackness

〈Λ, X〉 = 0, Γ ◦X = 0 (3.9)

For (SDP-λ), we replace β by λ and drop the trace constraint in the primal

feasibility. Since we use X0 as the primal construction, removing one primal

feasibility condition has no impact on the other part of the proof.

66



Consider the following primal-dual construction.

XSk = Emk/mk; XSkS` = 0, ∀k 6= ` (3.10)

ΛSk = −ASk + (1mkα
T
Sk

+ αSk1
T
mk

) + βImk ,

ΛSkS` = −(I − Emk
mk

)ASkS`(I −
Em`
m`

) (3.11)

ΓSk = 0,

ΓSk,S` = −ASk,S` − ΛSk,S` + (1mkα
T
S`

+ αSk1
T
m`

) (3.12)

αSk =
1

mk

(ASk1mk + φk1mk) (3.13)

φk = −1

2

(
β +

1TmkASk1mk
mk

)
(3.14)

The first order condition Eq. (3.6) is satisfied by construction. By Eq. (3.13)

and (3.14), it can be seen that

αTSk1mk =
1

mk

(
1TmkASk1mk

)
+ φk =

1TmkASk1mk
2mk

− β

2

In view of the fact that both Λ and X are positive semi-definite,

〈Λ, X〉 = 0 is equivalent to ΛX = 0. Now it remains to verify:

(a) ΛX = 0; (b) Λ � 0; (c) Γuv ≥ 0, ∀u, v

And it can be seen that (a) holds by construction.

Positive Semidefiniteness of Λ For (b), since span(1Sk) ⊂ ker(Λ), it suf-

fices to show that for any u ∈ span(1Sk)
⊥, uTΛu ≥ ε‖u‖2. Consider the
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decomposition u =
∑

k uSk , where uSk := u ◦ 1Sk , and uSk ⊥ 1mk .

uTΛu =
∑
k

uTSkΛSkuSk +
∑
k 6=`

uTSkΛSkS`uS`

=−
∑
k

uTSkASkuSk + β
∑
k

uTSkuSk −
∑
k 6=`

uTSkASkS`uS`

=−
∑
k

uTSk(A− P )SkuSk

−
∑
k 6=`

uTSk(A− P )SkS`uS` + β‖u‖2
2

=− uTAu+ β‖u‖2
2 ≥ ε‖u‖2

In order to obtain a sufficient condition on β, we will use the following lemma

from Theorem 5.2 of [70], which provides a tight bound for the spectral norm

‖A− EA‖ for stochastic block models.

Lemma 3.1 ([70] Theorem 5.2). Let A be the adjacency matrix of a random

graph on n nodes in which edges occur independently. Set EA = P = (pij)

and assume that nmaxij pij ≤ d for d ≥ c0 log n and c0 > 0. Then, for any

r > 0 there exists a constant C = C(r, c0) such that ‖A − P‖ ≤ C
√
d, with

probability at least 1− n−r.

By Lemma 3.1, a sufficient condition is to have

β = Ω(
√
npmax) ≥ ‖A− P‖2 (3.15)

Positiveness of Γ For (c), denote di(Sk) =
∑

j∈Sk Ai,j, which is the number

of edges from node i to cluster k, and d̄i(Sk) = di(Sk)
mk

. Define the average degree
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between two clusters as d̄(SkS`) =
∑
i∈S`

di(Sk)

m`
. For k 6= `, u ∈ Ck, v ∈ C`, we

have Γuv ≥ 0 equivalent to

d̄u(Sk)− d̄u(S`) +
1

2

(
d̄(SkS`)− d̄(SkSk)

)
+ d̄v(S`)− d̄v(Sk) +

1

2

(
d̄(SkS`)− d̄(S`S`)

)
− β

2m`

− β

2mk

≥ 0 (3.16)

By Chernoff bound and union bound, we have a sufficient condition of Γuv ≥ 0

for all pairs of (u, v):

δ ≥ 2
√

6 log nmax
k

√
Bkk

mk

+ max
`6=k

6

√
Bk` log n

mmin

+ c
npmax

mmin

A complete proof could be found in Appendix 8.1.

3.5 Experiments on Estimating Number of Clusters in
Block Models

First, we present a procedure for tuning λ in (SDP-λ) in subsection 4.4.2.

Then, in subsection 3.5.2 and 3.5.3 we present results on simulated and real

data.

3.5.1 Tuning and substructure finding

As shown in Proposition 3.1, choice of λ should not exceed the operator

norm of the observed network. Therefore we do a grid search for λ from 0

to ‖A‖op in log scale. For each candidate λ, we solve (SDP-λ) and get the

corresponding solution X̂λ. The estimated number of clusters is defined as
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Algorithm 3 Semidefinite Program with Unknown r (SPUR)

Input: graph A, number of candidates T ;
for i = 0:T-1 do
λ = exp( i

T
log(1 + ‖A‖op))− 1;

X̂λ = solution of (SDP-λ).

θ(λ) =
∑
i≤rλ

σi(Xλ)

trace(X̂λ)
;

end for
λ̂ = arg maxλ θ(λ);
Output: X̂λ̂, r̂ = [trace(X̂λ̂)];

rλ = [trace(X̂λ)], where [·] represent the rounding operator. Let σi(X) be

the i-th eigenvalue of X. We then pick the solution which maximizes the

proportion of leading eigenvalues λ̂ = arg maxλ
∑

i≤rλ σi(X̂λ)/trace(X̂λ). This

fraction calculates the proportion of leading eigenvalues in the entire spectrum.

If it equals to one, then the solution is low rank. The algorithm is summarized

in Algorithm 3. In the experiments, for scalability concerns we fix a smaller

range and search over the range 0.1
√
d̄ to 2

√
d̄, where d̄ denotes the average

degree.

In theory, when λ lies in the interval specified by Corollary 3.1 exact

recovery is possible. Yet, in practice, solutions with different choices of λ, even

outside of the theoretical range, still gives us some useful information about the

sub-structures of the network. Figure 3.1 shows a probability matrix which

has large separation into two big clusters and each further splits into two

smaller clusters with different separations. With a larger λ it returns an under

estimated r, but consistent to the hierarchical structure in the original network.

In this vein, the tuning method provides a great way to do exploratory analysis
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of the network.

(a) Expectation of network: (b) NMI;

Figure 3.2: The expectation matrix and NMI used for the known r setting.

3.5.2 Synthetic data

We present our simulation results in three parts - known r, increasing

r and unknown r. We report the normalized mutual information (NMI) of

predicted label and ground truth membership, and the accuracy of estimating

r. For each experiment, the average over 10 replicates is reported.

Known number of clusters We compare the NMI of SPUR against some

state-of-the-art methods, including Regularized Spectral Clustering (RSC) [5],

and two convex relaxations which do not require r as input to the optimization:

convexified modularity maximization (CMM) in [21]; and the `1 plus nuclear

norm penalty method proposed in [23] (L1+nuc). In this setting, we use

(SDP-PW) directly which does not involve any tuning. In contracst, due to

the hierarchical structure of the network, the default values for the tuning
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parameters in both methods would only be able to recover the lowest level

of hierarchy, which consists of two clusters. Hence for a fair comparison, we

try a grid search for those tuning parameters and choose the one that gives

largest eigengap between the r-th and (r + 1)-th eigenvalues of the clustering

matrices. The expectation of the network generated is shown in the left panel

of Figure 3.2. The right panel shows that the proposed method outperforms

the competing methods.

Figure 3.3: NMI under planted partition model with increasing (unknown)
number of clusters.
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(a) balanced setting NMI and Accuracy of r.

(b) unbalanced setting: NMI and Accuracy of r.

Figure 3.4: The first row shows weakly assortative models with balanced clus-
ter sizes and the corresponding NMI and accuracy in estimating r; the second
row shows those for unbalanced cluster sizes.

Figure 3.5: Adjacency matrix and predicted X for karate club dataset; ordered
by predicted labels.
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Increasing number of clusters In this experiment, we fix the number of

nodes as 400 and increase the number of clusters from 4 to 20. With each given

r we generate the graph with Bkk = 0.6, Bk` = 0.1,∀k 6= ` and mmax/mmin = 4,

then run the various estimation algorithms same as in previous experiment to

estimate both r and the cluster memberships. It is shown in 3.3 that as number

of clusters increases, all methods deteriorate, but the performance for SPUR

declines slower than the others.

Unknown number of clusters In this experiment, we carry out two syn-

thetic experiments for weakly assortative graphs for both balanced and unbal-

anced cluster sizes. We generate the network with expectation matrices shown

in the leftmost column of Figure 3.4, and show the NMI of predicted labels

with ground truth labels, and the fraction of returning the correct r, for both

balanced (Figure 3.4-(a)) and unbalanced (Figure 3.4-(b)) settings. We run

SPUR, and compare the result with 1) the Bethe-Hessian estimator (BH) in

[66], in particular BHac (which has been shown to perform better for unbal-

anced settings), 2) USVT in [18]. For all competing methods, we run spectral

clustering with the estimated r to estimate the cluster memberships. As we

can see here, SPUR has a better accuracy in label recovery than competing

methods. SPUR also achieves accurate cluster number faster than competing

methods.
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Datasets Truth SDP BH USVT CMM

College Football 12 13 10 10 10
Political Books 3 3 4 4 2
Political Blogs 2 3 8 3 2

Dolphins 2 5 2 4 7
Karate 2 2 2 2 2

Table 3.1: Estimated number of clusters for real networks.

3.5.3 Real Datasets

We apply the proposed method on several real world data sets1: the

college football dataset [42], the political books, political blogs [2], dolphins

and karate club [120] datasets. We compare the performance of SPUR with

BH, CMM and USVT in Table 4.1. As seen from [66], most algorithm correctly

finds r for about 2 or 3 of these networks. It is also worth pointing out that

this typically happens because different techniques finds different clusterings

of the hidden substructures [10]. We will now show one such substructure we

found in the Karate club data.

Figure 3.5 shows the adjacency matrix and X̂ for the Karate club data

set. For λ = 3.1, we find two clusters, whereas for λ = 1.4, we find 4 clusters,

which are further subdivisions of the first level. While our tuning method

picks up λ = 3.1 (r = 2) based on the scoring, we show the substructure for

λ = 1.4, r = 4 in Figure 3.5. The left panel shows the adjacency matrix of

1All datasets used here are available at http://www-personal.umich.edu/~mejn/

netdata/.
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the Karate club data ordered according to the clusters obtained with λ = 1.4.

The right panel of Figure 3.5 shows finer substructure of X̂; as suggested by

the adjacency matrix, within each group there are two small clique like groups

at the two corners, and the hubs from each group.

In the above sections, we present SPUR, a SDP-based algorithm which

provably learns the number of clusters r in a SBM under the weakly assortative

setting. Our approach does not require the knowledge of model parameters,

and foregoes the added tuning step used by existing SDP approaches for un-

equal size clusters when r is known. For unknown r, the tuning in the objective

provides guidance in exploring the finer sub-structure in the network. Sim-

ulated and real data experiments show that SPUR performs comparably or

better than state-of-the-art approaches.

While most dense network-based community detection schemes give

perfect clustering in the limit [5, 6, 17, 24, 115], in the sparse case no algorithm

is consistent; however semidefinite relaxations (among others) can achieve an

error rate governed by the within and across cluster probabilities [43, 82]. In

the following, we present the analysis for sparse graphs.

3.6 Community Detection for sparse networks

In this section, we discuss community detection in the sparse stochastic

block model.

There are many available semidefinite programming (SDP) relaxations
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for clustering blockmodels [6, 17, 24]. The common element in all of these is

maximizing the inner product between A and X, for a positive semidefinite

matrix X. Here X is a stand-in for the clustering matrix ZZT . Unequal-

sized clusters is usually tackled with an extra regularization term added to the

objective function (see [45, 93, 17] among others). While the above consistency

results are for dense graphs, it is shown in [43, 82] that in the sparse regime

one can use this method to obtain an error rate which is a constant w.r.t n

and depends on the gap between the within and across cluster probabilities.

There have been several papers talking about using SDP for cluster-

ing in sparse graphs [81, 43]. The key ingredient in their analysis is the

Grothendieck’s inequality, which uses the sub-optimality of the ground truth

matrix to turn the norm of the difference between optimal clustering matrix

and the ground truth clustering matrix. Below we present a key technical

lemma bounding ‖XM − X0‖F . The main goal of this lemma is to establish

an upper bound on the Frobenius norm difference between the solution to an

SDP with input matrix M to the ideal clustering matrix.

Lemma 3.2. Let XM be the solution of the following SDP for some input

matrix M .

max 〈M,X〉,

s.t. X � 0, 0 ≤ X ≤ 1

mmin

, X1 = 1, trace(X) = r.

Also let Q be a reference matrix where Qij = β
(in)
k ,∀i, j ∈ Ck, and β

(out)
k ≥
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Qij ≥ 0,∀i ∈ Ck, j ∈ C`, k 6= `. If mink(β
(in)
k − β(out)

k ) ≥ 0, then

‖XM −X0‖2
F ≤ 2

〈M −Q,XM −X0〉
mmin mink(β

(in)
k − β(out)

k )
(3.17)

Remark 3.2. The key to the above lemma is to find a suitable reference matrix

Q which satisfies some separation conditions between the blocks. The devia-

tion between XM and X0 is small if M−Q is small, and large if the separation

between blocks in Q is small. While the proof technique is inspired by [43],

the details are different because of our use of different constraints and because

our reference matrix Q does not have to be blockwise constant and can be

weakly assortative instead of strongly assortative.

The following Proposition shows the main result for SDP on sparse

graphs.

Proposition 3.2. Let ak, bk defined as in Theorem 4.1 are positive constants

and g ≥ 9. Then with probability tending to 1,

‖XA −X0‖F
‖X0‖F

≤ ε,

if mink(ak − bk) ≥ 23α2r
√
g

ε2
where α := mmax/mmin.

Note that in the above result, in order to have the error rate ε to go to

zero, one would require ak − bk to go to infinity, whereas by definition ak, bk

are constants. Therefore one can only hope for a small albeit constant ε. In

addition, in order to have a small ε, one needs r and α to be constants w.r.t

n.
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Remark 3.3 (Comparison with prior work). In contrast to having mink ak −

maxk bk (strong assortativity) in the denominator like [43], we have mink(ak−

bk) (weak assortativity), which allows for a much broader parameter regime.

3.7 Conclusion for network community detection

In this chapter, we presented the theoretical results obtained for both

dense and sparse graphs under the stochastic block model with SDP relax-

ations. When the number of communities is not known, we propose a new

SDP framework that is able to recover the memberships with proper tuning,

if the graph is relatively dense and well-separated. We have shown different

proof techniques that are used in both proofs, and experimental evidences of

the superior performance for SDP relaxations.

So far we have established the theoretical behavior of SDP relaxations

for both networks and covariates, in the next chapter, we will derive bounds

for k-means loss for sub-gaussian mixtures with low signal to noise ratio, and

combine the techniques used in these problems to investigate the inference on

graphs with node covariates.
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Chapter 4

Networks with Covariates

In this chapter, we investigate community detection in networks in the

presence of node covariates. In many instances, covariates and networks

individually only give a partial view of the cluster structure. One needs to

jointly infer the full cluster structure by considering both. In Statistics, an

emerging body of work has been focused on combining information from both

the edges in the network and the node covariates to infer community member-

ships. However, so far the theoretical guarantees have been established in the

dense regime, where the network can lead to perfect clustering under a broad

parameter regime, and hence the role of covariates is often not clear. In this

chapter, we examine sparse networks in conjunction with finite dimensional

sub-gaussian mixtures as covariates under moderate separation conditions. In

this setting each individual source can only cluster a non-vanishing fraction of

nodes correctly. We propose a simple optimization framework which provably

improves clustering accuracy when the two sources carry partial information

The content in this chapter was conducted in collaboration with Purnamrita Sarkar,
which is now available on arXiv (Yan, Bowei, and Purnamrita Sarkar. ”Convex Relaxation
for Community Detection with Covariates.” arXiv preprint arXiv:1607.02675 (2016).). Pur-
namrita Sarkar proposed the initial idea and all technical proofs were shown jointly by both
authors. The experimental part was mainly performed by Bowei Yan, and the writing was
mainly by Purnamrita Sarkar.
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about the cluster memberships, and hence perform poorly on their own. Our

experiments show that combining the two sources requires weaker separation

conditions for each individual source. Our optimization problem can be solved

using scalable convex optimization algorithms. Using a variety of simulated

and real data examples, we show that the proposed method outperforms other

existing methodology.

4.1 Background

Although most real world network datasets come with covariate infor-

mation associated with nodes, existing approaches are primarily focused on

using the network for inferring the hidden community memberships or labels.

Take for example the Mexican political elites network (described in detail in

Section 4.4). This dataset comprises of 35 politicians (military or civilian)

and their connections. The associated covariate for each politician is the year

when one came into power. After the military coup in 1913, the political arena

was dominated by the military. In 1946, the first civilian president since the

coup was elected. Hence those who came into power later are more likely to

be civilians. Politicians who have similar number of connections to the mili-

tary and civilian groups are hard to classify from the network alone. Here the

temporal covariate is crucial in resolving which group they belong to. On the

other hand, politicians who came into power around 1940’s, are ambiguous to

classify using covariates. Hence the number of connections to the two groups

in the network helps in classifying these nodes. Our method can successfully
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classify these politicians and has higher classification accuracy than existing

methods [12, 123].

In Statistics literature, there has been some interesting work on com-

bining covariates and dense networks (average degree growing faster than

logarithm of the number of nodes). In [12], the authors present assortative

covariate-assisted spectral clustering (ACASC) where one does Spectral Clus-

tering on the the gram matrix of the covariates plus the regularized graph

Laplacian weighted by a tuning parameter. A joint criterion for community

detection (JCDC) with covariates is proposed by [123], which could be seen

as a covariate reweighted Newman-Girvan modularity. This approach enables

learning different influence on each covariate. In concurrent work [108] provide

a variational approach for community detection.

All of the above works are carried out in the dense regime with strong

separability conditions on the linkage probabilities. ACASC also requires the

number of dimensions of covariates to grow with the number of nodes for

establishing consistency.

In contrast to the above, we prove our result for sparse graphs where

the average degree is constant and the the covariates are finite dimensional

sub-gaussian mixtures with moderate separability conditions. In our setting,

neither source can yield consistent clustering in the limit. We show that com-

bining the two sources leads to improved clustering accuracy under weaker

conditions on separability on each individual source.
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Widely known as multi-view clustering, leveraging information from

multiple sources have been long studied in Machine learning and Data min-

ing. In [62], the authors use a regularization framework so that the clustering

adheres to the dissimilarity of clustering from each view. In [71], the authors

optimize the nonnegative matrix factorization loss function on each view, plus

a regularization forcing the factors from each view to be close to each other.

The only provable method is by [19], where the authors obtain guarantees

where the two views are mixtures of Log-concave distributions. This algo-

rithm does not apply to networks.

In this chapter, we propose a penalized optimization framework for

community detection when node covariates are present. We take the sparse

degree regime of Stochastic Blockmodels, where one can only correctly cluster

a non-vanishing fraction of nodes. Similarly, for covariates, we assume that

the covariates are generated from a finite dimensional sub-gaussian mixture

with moderate separability conditions. We prove that our method leads to

an improved clustering accuracy under weaker conditions on the separation

between clusters from each source. As byproducts of our theoretical analysis

we obtain new asymptotic results for sparse networks under weak separability

conditions and kernel clustering of finite dimensional mixture of sub-gaussians.

Using a variety of real world and simulated data examples, we show

that our method has improved performance over existing methods. We also

illustrate in the simulation that if the two sources only have partial and in some

sense orthogonal information about the clusterings, then combining them leads
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to better clustering than using the individual sources.

In Section 4.2, we introduce relevant notation and present our opti-

mization framework. In Section 4.3, we present our main results, followed by

experimental results on simulations and real world networks in Section 4.4.

Majority of the proofs are presented in Appendix 9.

4.2 Problem Setup

In this section, we introduce our model and set up the convex relaxation

framework. For the covariates, we define,

(Covariate Model) Yi =
r∑

a=1

Ziaµa +Wi (4.1)

Wi are mean zero d dimensional sub-gaussian vectors with spherical covariance

matrices σ2
kId and sub-gaussian norm ψk (for i ∈ Ck). Compare with Eq. (2.12)

the key difference is that the noise does not scale with the square root of the

dimension, which makes the signal to noise ratio lower for high-dimensional

problems. We define the distance between clusters Ck and C` as dk` = ‖µk−µ`‖

and the separation as dmin = mink 6=` dk`.

4.2.1 Optimization Framework

We now present our optimization framework. We have talked about

many SDP relaxations for networks in Chapter 3. Yet

We analyze the widely-used Gaussian kernel defined in Eq. (2.12) to

allow for non-linear boundaries between clusters. This kernel function is upper
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bounded by 1 and is Lipschitz continuous w.r.t. the distance between two

observations. Same as in Chapter 3, we use X as a stand in for the normalized

variant of the clustering matrix ZZT , i.e. the desired solution X0 is as defined

in Eq. (3.2). It can be seen that ‖X0‖2
F = r.

We have already shown in Chapter 2 that SDP can be used as a convex

relaxations of the k-means loss. In our optimization framework, we propose

to add a k-means type regularization term to the network objective, which

enforces that the estimated clusters are consistent with the latent memberships

in the covariate space.

X = arg max
X
〈A+ λK,X〉 s.t. X ∈ F, (4.2)

where λ is a tuning parameter and the constraint set F = {X � 0, 0 ≤

X ≤ 1
mmin

, X1n = 1n, trace(X) = r} is similar to [92]. Compared with

Eq. (SDP-PW), the only different is that the element-wise upper bound of

X. The mmin in the constraint can be replaced by any lower bound on the

smallest cluster size, and is mainly of convenience for the analysis. In the

implementation, it suffices to enforce the element-wise positivity constraints,

and other linear constraints. For ease of exposition, we define

XM = arg max
X
〈M,X〉 s.t. X ∈ F, (4.3)

When K(i, j) = Y T
i Yj, then the non-convex variant of the objective

function naturally assumes a form similar to the work of ACASC (modulo

normalization of A).
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4.3 Main Results

Typically in existing SDP literature for sparse networks or sub-gaussian

mixtures [43, 79], one obtains a relative error bound of the deviation of XM

(the solution of the SDP ) from the ideal clustering matrix X0. This rela-

tive error is typically proportional to the ratio of the observed matrix with

a suitably defined reference matrix, and some quantity which measures the

separation between the different clusters. Our theoretical result shows that

the relative error of the solution to the combined SDP is proportional to the

ratio of the observed A + λK matrix to a suitably defined reference matrix

to a quantity which measures separation between clusters. This quantity is a

non-linear combination of the separations stemming from the two sources. We

first present an informal version of the main result. Main theorem (informal):

Let XA+λK be the solution of SDP (4.3). Let skG and skC be constants denot-

ing the separations of cluster k from the other clusters defined in terms of the

model parameters of the network and the covariates respectively. Then

‖XA+λK −X0‖2
F ≤

cG + `cC

mink
(
skG + `skC

) ,
where cG and cC are constants representing the error corresponding to the

graph and the covariates, and ` is a tuning parameter.

Note that in SBM, the separation is well-defined, i.e. when M = A, a

natural choice of the reference matrix is E[A|Z] which is blockwise constant.

In this case, the separation is given by mink(Bkk − max`Bk`), and leads to

a result on weakly assortative sparse block models which we present in more
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details in Section 3.6. However, for the kernel matrix K, the main difficulty

is that one cannot achieve element-wise or operator norm concentration of

K (also discussed in [106]). This makes the choice of the reference matrix

difficult.

The results on networks, covariates and the combination of the two

essentially reduces to identifying good reference matrices (Q) for the input

matrices A, K, and A+ λK, which

1. Satisfies the properties of Q in the above lemma.

2. Has a large separation mink(β
(in)
k −β(out)

k ) increasing the denominator of

Eq. (3.17).

3. Has a small deviation fromM , thereby reducing the numerator of Eq (3.17).

Now the main work is to choose the reference matrix Q for A + λK.

As pointed out before, a common choice for reference matrix of A is E[A|Z].

For the covariates, we divide the nodes into “good” nodes Sk := {i ∈ Ck :

‖Yi − µk‖ ≤ ∆k} and the rest. Also define S = ∪rk=1Sk. ∆k will be defined

such that the kernel matrix induced by the rows and columns in S is weakly

assortative, and 3∆k + ∆` ≤ dk`. Define

rk := f(2∆k), sk := max
`6=k

f(dk` −∆k −∆`), νk = rk − sk (4.4)

A simple use of triangle inequality gives mini,j∈Sk Kij ≥ rk and maxi∈Sk,j∈S`,` 6=kKij ≤

sk. Hence the separation for cluster k is νk := rk− sk. We define the reference
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matrix KI as:

(KI)ij =

{
f(2∆k), if i, j ∈ Ck

min{f(dk` −∆k −∆`), Kij}, if i ∈ Ck, j ∈ C`, k 6= `
(4.5)

The choice of ∆k is crucial. A large ∆k makes the size of non-separable nodes

Sc small, but drives down the separation νk.

We are now ready to present our main result. As we will show in the

proof, the new separation is γ = mink((pk−qk)+λνk). Typically, in the general

case with unequal sub-gaussian norms, one should benefit from using different

∆k’s for different clusters. For example for a cluster with a large pk − qk, we

can afford to have a small νk. To think in terms of ∆k, for this cluster one can

have a large ∆k, which will make |Sk| larger than before, but will not affect

the separation (pk− qk) +λνk of cluster k very detrimentally. We now present

our first main theorem.

Theorem 4.1. Let ak = nBkk, bk = nmax` 6=k Bk`, g := 2
(n−1)

∑
i<j Var(aij) ≥

9. Take λ = `/n, mk = nπk, mmin = nπmin, and π0 :=
∑

k(mk exp(−∆2
k/5ψ

2
k)+√

mk logmk/2)/n. Let XA+λK be defined as in Eq (4.3). If πmin = Θ(1) and

mink(ak − bk + `νk) > 0, then, with probability tending to one,

‖XA+λK −X0‖2
F ≤ 2KG

6
√
g + ` (2π0 +

∑
k π

2
k(1− f(2∆k)))

π2
min mink(ak − bk + `νk)

,

where νk = f(2∆k) − max` 6=k f(dk` − ∆k − ∆`) for some ∆k,∆` ≥ 0 and

max(∆k,∆`) ≤ dk`/4.

Here KG is the Grothendieck’s constant. The best value of KG is still

unknown, and the best known bound is KG ≤ 1.783 [16]. First note that in the
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sparse case, we take λ = `/n for some constant `. In general the upper bound

depends on several parameters such as λ and the scale parameter η in the

gaussian kernel. We provide procedures for tuning λ and η in Section 4.4. The

∆k’s show up in the numerator as well as the denominator. Finding the optimal

∆k is cumbersome in the general case with unequal ψk’s. In Section 4.3.1 we

derive an upper bound for equal ∆k’s for concreteness.

Remark 4.1. Ideally one would want to show that the upper bound obtained

in the above theorem is smaller than the Bayes Error rate for clustering with

either source alone. However, for clustering in Blockmodels finding a poly-

nomial time algorithm which achieves the Bayes error rate is still an open

problem.

Now we present a natural byproduct of our analysis, namely the result

on covariate clustering i.e. bounds on ‖X0 −XK‖F .

4.3.1 Result on Covariates

We present a result for covariates analogous to the sparse graph setting,

which establishes that, while SDP with covariates is not consistent with finite

signal-to-noise ratio, it achieves a small error rate if the cluster centers are

further apart. But before delving into our analysis, we provide a brief overview

of existing work.

For covariate clustering, it is common to make distributional assump-

tions; usually a mixture model with well-separated centers suffices to show

consistency. The most well-studied model is Gaussian mixture models, which
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can be inferred by Expectation-Maximization algorithm [116] and its vari-

ant [29]. The condition required for provable recovery on the separation is

usually the minimum distance between clusters is greater than some multiple

of the square root of dimension (or effective dimension).

Another popular technique is based on SDP relaxations. For example,

it is proposed in [92, 79] a SDP relaxation for k-means type clustering. To

make the analysis concrete, for Proposition 4.1, we use ∆k = ∆.

Proposition 4.1 (Analysis for Covariates). Let K be the kernel matrix gener-

ated from kernel function f . Denote νk as in Eq (4.4). If dmin

ψmax
> max

{√
d, 180√

d

}
,

then with properly chosen η, with probability at least 1−
∑

k
1
mk

,

‖XK −X0‖2
F

‖X0‖2
F

≤Cα2d
ψ2

max

d2
min

max

{
log

(
dmin

ψmax

√
d

)
, r

}

Remark 4.2 (Comparison with prior work). In recent work [79], it is shown

the effectiveness of SDP relaxation with k-means clustering for sub-gaussian

mixtures, provided the minimum distance between centers is greater than the

standard deviation of the sub-gaussian times the number of clusters r. We

provide a dimensionality reduction scheme, which also shows that the sepa-

ration condition requires that dmin = Ω(
√

min(r, d)). Our proof technique is

new and involves carefully constructing a reference matrix for Lemma 3.2.

Compare with EM algorithm, it is worth pointing out that SDP recovers

the membership and by de-noising the data using the SDP solution matrix [79]
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could give an estimate of the cluster centers, but it is not asymptotically con-

sistent. EM, on the other hand, can give estimates that converge to the global

optimum under mild initialization conditions for isotropic Gaussian mixture

models.

4.3.2 Analysis of Covariate Clustering when d� r

In high dimensional statistical problems, the signal is often assumed to

lie in a low dimensional subspace or manifold. This is why much of Gaussian

Mixture modeling literature first computes some projection of the data onto

a low dimensional subspace [103]. To reduce the dimensionality of the raw

data, one could do a feature selection for the covariates (e.g. [55, 105]). In

contrast, here we propose a much simpler dimensionality reduction step, which

does not distort the pairwise distances between cluster means too much. The

intuition is that, for clustering a subgaussian mixture, if d � r, the effective

dimensionality of the data is r since the cluster means lie in an at most r-

dimensional subspace.

Hence we propose the following simple dimensionality reduction algo-

rithm when d� r in a spirit similar to [19]. We show the effect of dimension-

ality reduction on the pairwise distance matrix in the Supplementary material.

[ADD]

We split up the sample into two random subsets P1 and P2 of sizes

n1 and n − n1 and compute the top r − 1 eigenvectors Ur−1 of the matrix

Ŝ =
∑
i∈P1

(Yi−Ȳ )(Yi−Ȳ )T

n1
∈ Rd×d, where Ȳ =

∑
i∈P1

Yi

n1
. Now we project the

91



covariates from subset P2 onto this lower dimensional subspace as Y ′i = UT
r−1Yi

to get the low dimensional projections. We take n1 = n/ log n.

Lemma 4.1. Let M :=
∑

k πkµkµ
T
k . If

∑
k πkµk = 0, and λr−1(M) ≥ 5ψ2

max +

C
√

d log2 n
n

for some constant C, the projected Y ′i are also independent data

points generated from an isotropic sub-gaussian mixture in r − 1 dimensions.

Furthermore the minimum distance between the means in the r−1 dimensional

space is at least dmin/2 with probability at least 1− Õ(r2n−d), where dmin is the

separation in the original space.

The proof of this lemma is deferred to Appendix. We believe the proof

can be generalized to non-spherical cases as long as the largest eigenvalue of

covariance matrix for each cluster is bounded. Typically λ signifies the amount

of signal. For example, for the simple case of mixture of two gaussians with

π1 = 1/2, and µ2 = −µ1, λ = ‖µ1‖2, which is essentially d2
min/4. Hence the

condition on λ essentially translates to a lower bound on the signal to noise

ratio, i.e. d2
min ≥ 48ψ2

max + C ′
√

d log2 n
n

for some constant C ′. When d > r,

if one applies Lemma 4.1 on the r − 1 dimensional space, then as long as

d2
min = Ω(ψ2

maxr), the separation in the low dimensional space also satisfies the

separation condition in Proposition 4.1. Thus the dimensionality reduction

brings down the separation condition in Proposition 4.1 from Ω(ψmax

√
d) to

Ω(ψmax

√
min(r, d)).

The sample splitting is merely for theoretical convenience which ensures

that the projection matrix and the projected data are independent, resulting
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(a) (b) (c)

Figure 4.1: Tuning: (a) B = 0.005E3, n = 1000, d = 6, dmin = 15σ; (b)
d = 6, dmin = 1.3, σ = (1, 1, 5), B = diag(0.004, 0.024, 0.024) + 0.004E3; (c)
d = 6, dmin = 0, B = 0.0144I3 + 0.0016E3.

in the fact that the final projection is also an independent sample from a

sub-gaussian mixture. To be concrete, the labels of P1 do not matter asymp-

totically, since they incur a relative error in ‖X0 − XK‖F/‖X0‖F less than√
n2/(m2

min log n)/
√
r ≤

√
α2r/ log n, where α and r are both constants. In

our setting, the relative error in Proposition 4.1 is a small but non-vanishing

constant, and so this additional vanishing error term does not affect it. How-

ever this sample splitting step is not necessary in practice [19], and so we do

not pursue this further.

We now present the tuning procedure, and experimental results.

4.4 Experiments

In this section, we present results on real and simulated data. The

cluster labels in our method are obtained by spectral clustering of the solution

matrix returned by the SDP. We will use SDP-comb, SDP-net, SDP-cov to

represent the labels estimated from XA+λK , XA and XK respectively. Perfor-
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mance of the clustering is measured by normalized mutual information (NMI),

which is defined as the mutual information of the two distributions divided by

square root of the product of their entropies. We have also calculated clas-

sification accuracy and they show similar trends, so only NMI is reported in

this section. For real and simulated data, we compare: (1) Covariate-assisted

spectral clustering (ACASC) [12]; (2) JCDC [123], (3) SDP-comb, (4) SDP-

net and (5) SDP-cov. The last two are used as references of graph-only and

covariate-only clustering respectively.

4.4.1 Implementation and computational cost

Solving semidefinite programming with linear and non-linear constraints

has been a challenging problems in numerical optimization community. Many

SDPs proposed in statistical literature [17, 24, 6] are solved by the alternating

descent method of multipliers (ADMM) algorithm [15]. Although ADMM

is tractable for middle-sized problems and reasonable numerical behavior,

whether it convergences in presence of non-negative constraints, which is preva-

lent in network literatures, remains an open problem. Recently, the authors

of [117] propose a majorized semismooth Newton-CG augmented Lagrangian

method, called SDPNAL+, which is provably convergent. We solve the SDP

using the matlab package of SDPNAL+ in all our experiments1. The package

provides an efficient implementation of the algorithm. Solving the SDP for

1The code used for the experiment can be found at https://github.com/boweiYan/

SDP_SBM_unbalanced_size.
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matrix of size 1000× 1000 takes less than a minute on a Macbook with a 1.1

GHz Intel Core M processor.

4.4.2 Choice of Tuning Parameters

As we pointed out earlier, the elementwise upper bound 1
mmin

is only for

convenience of theoretical analysis. In the implementation, we do not enforce

this constraint. So the main tuning parameters would be the scale parameter

in the kernel matrix η and the tradeoff parameter between graph and covariates

λ. In most of our experiments the number of clusters is assumed known. In

this section, we also provide a practical way to choose among candidates of r

when it is not given.

Choice of η We use the method proposed in [100] to select the scale pa-

rameter. The intuition is to keep enough (say 10%) of the data points in the

“range” of the kernel for most (say 95%) data points. Given the covariates,

we first compute the pairwise distance matrix. Then for each data point Yi,

compute qi as 10% quantile of d(Yi, Yj),∀j ∈ [n]. The bandwidth is defined as

w =
95% quantile of qi√
95% quantile of χ2

d

and scale parameter η = 1
2w2 .

Note when the data is high-dimensional, we will first conduct dimen-

sionality reduction as in Section 4.3.2, then use the intrinsic dimension to tune

the scale parameter.
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Choice of λ As λ increases, the resultingXA+λK clustering gradually changes

from XA clustering to XK clustering. Our theoretical results show that, with

the right λ, XA+λK and X0 should be close, and hence also have similar

eigenvalues. Define the eigen gap function for clustering matrices g(X) :=

(λr(X)−λr+1(X))/λr(X). Using Weyl’s inequality and the fact that ‖XA+λK−

X0‖op ≤ ‖XA+λK−X0‖F , we have: λr(X0)−‖XA+λK−X0‖F ≤ λr(XA+λK) ≤

λr(X0) + ‖XA+λK − X0‖F . Since g(X0) = 1, we pick the λ maximizing

g(XA+λK). In Figure 4.1 (a)-(c), figures from left to right represent the situ-

ation where graph is uninformative (Erdős-Rényi), both are informative and

covariates are uninformative. We plot g(XA+λK) and NMI of the clustering

from XA+λK with the true labels against λ. Figure 4.1 shows that g(XA+λK)

and NMI of the predicted clustering have a similar trend, justifying the effec-

tiveness of the tuning procedure.

Unknown number of clusters In many real world settings, it is generally

hard to possess the knowledge of number of clusters. Methods are proposed

for selecting number of blocks under sparse stochastic block models [66], but

most of these methods are designed specific for graph adjacency matrix and

cannot be generalized to continuous matrix scenarios. We observe that the

eigen gap acts as an informative indicator for picking the number of clusters.

So when the number of clusters is unknown, we run the SDP over a grid

of λ, k, and choose the pair that maximizes the eigen gap. As we show in

Figure 4.2, we construct two settings and test the performance of using eigen
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gap to select r. In the first setting, the true model has 3 clusterings with

proportion 3 : 4 : 5, the probability matrix is B = 0.01 ∗

 1.6 1.2 0.16
1.2 1.6 0.02
0.16 0.02 1.2

. And

the covariates are high dimensional gaussian centered at µ1 = (0, 2, 0 · · · , 0),

µ2 = (−1,−0.8, 0 · · · , 0), µ3 = (1,−0.8, 0 · · · , 0). We sample n = 800 data

points, and run SDP on top of it with different choice of λ and specified number

of clusters k. For each pair of parameter, we compute the NMI and eigengap

and plot them on the upper and lower panel of Figure 4.2-(a). As we can see,

the eigen gap presents a similar trend as the NMI, hence picking the pair that

optimizes eigen gap will have a relatively high NMI as well. Note here the

mis-specified k = 2 has a higher NMI than that of the true value of r. This

tells us even the number of clusters is mis-specified, the SDP is still able to

find structure that correlates with the underlying model. This phenomenon is

also observed in several other works [115, 93].

In the second scenario, we generate a planted partition model with 10

equal-sized clusters, where B = 0.046I10 + 0.004E10, along with Gaussian co-

variates centered at [3∗I10 | 03,90]. We conduct the same type of experiment as

above and plot the NMI and eigengap. In this case, the eigen gap succussfully

recovered the true number of clusters.

4.4.3 Simulation Studies

In this part we consider two simulation settings. In the first setting, we

generate three clusters with sizes 3:4:5, with n = 800. The probability matrix

is B = 0.01∗

 1.6 1.2 0.16
1.2 1.6 0.02
0.16 0.02 1.2

, and the covariates for each cluster are generated
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(a) true r = 3 (b) true r = 10.

Figure 4.2: NMI and eigen gap for various choice of r.

with 100 dimensional unit variance isotropic Gaussians, whose centers are

only non-zero on the first two dimensions with µ1 = (0, 2, 0 · · · , 0), µ2 =

(−1,−0.8, 0 · · · , 0), µ3 = (1,−0.8, 0 · · · , 0). This is the same setting as in the

first simulation for unknown r. In this example, the network cannot separate

out clusters one and two well, whereas the covariates can. On the other hand,

clusters two and three are not well separated in the covariate space, while

they are well separated using the network parameters. The experiments are

repeated on 10 independently generated samples and the box plot for NMI

is shown as in Figure 4.3(c). In the second row of Figure 4.3, we examine

covariates with nonlinear cluster boundaries. The graph used here is the same

as above, and the covariates are 2-dimensional, whose scatter plot is shown in

Figure 4.3(e). In this case, the kernel matrix is able to pick up local similarities

hence performs better than combination via inner product similarity as used
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Simulation 1: (a) Graph (b) Covariates - 1 (c) NMI - 1

Simulation 2: (d) Graph (e) Covariates - 2 (f) NMI - 2

Figure 4.3: The first and second rows have results for isotropic Gaussian co-
variates and covariates lies on a nonlinear manifold respectively. We plot the
adjacency matrix A in (a) and (b), where blue, red and purple points repre-
sent within cluster edges for 3 ground truth clusters respectively and yellow
points represent inter-cluster edges. In (b) and (e) we plot covariates ; differ-
ent shapes and colors imply different clusters. (c) and (f) show the box plots
for NMI.

in ACASC. In both simulations, SDP-comb outperforms others.

4.4.4 Real World Networks

Now we present results on a real world social network and an ecological

network. The performance of clustering is evaluated by NMI with the ground

truth labels.
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(a) Ground truth (b) Node feature (c) Predicted by SDP-comb

Figure 4.4: Mexican political network.

Mexican political elites As discussed before, this network [41] depicts the

political, kinship, or business interactions between 35 Mexican presidents and

close collaborators, etc. The two ground truth clusters consist of the military

and the civilians, indicating the background of the politician. The year in

which a politician first held a significant governmental position, is used as a

covariate. Figure 4.4(b) shows that the covariate gives a good indication of

the labels. This is because the military dominated the political arena after

the revolution in the beginning of the twentieth century, and were succeeded

by the civilians.

Table 4.1 shows the NMI of all methods, where our method outperforms

other covariate-assisted approaches. From Figure 4.4(a, c), for example, node

35 has exactly one connection to each of the military and civilian groups, but

seized power in the 90s, which strongly indicates a civilian background. On the

other hand, node 9 took power in 1940, a year when civilian and military had

almost equal presence in politics, making it hard to detect node 9’s political

affiliation. However, this node has more edges to the military group than
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the civilian group. By taking the graph structure into consideration, we can

correctly assign the military label to it.

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Weddell sea network: (a) True labels; (b) Log body mass; (c)
Constructed adjacency matrix Aτ ; we show labels from (d) SDP-comb; (e)
SDP-net; (f) SDP-cov.

Weddell sea trophic dataset The next example we consider is an ecologi-

cal network collected by [53] describing the marine ecosystem of Weddell Sea,

a large bay off the coast of Antarctica. The dataset lists 489 marine species

and their directed predator-prey interactions, as well as the average adult body

mass for each of the species. We use a thresholded symmetrization of the di-

rected graph as the adjacency matrix. Let G be the directed graph, the (i, j)th
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Dataset SDP-net SDP-cov SDP-comb ACASC JCDC
Mexican politicians 0.37 0.43 0.46 0.37 0.25
Weddell Sea 0.36 0.22 0.50 0.32 0.42

Table 4.1: NMI with ground truth for various methods

entry of GGT captures the number of other species which i and j both feed on.

We create binary matrices Aτ = 1(GGT ≥ τ). Choosing different τ ’s between

1 to 10 gives similar clustering. We use τ = 5.

All species are labeled into four categories based on their prey types.

Autotrophs (e.g. plants) do not feed on anything. Herbivores feed on au-

totrophs. Carnivores feed on animals that are not autotrophs, and the remain-

ing are omnivores, which feed both on autotrophs and other animals (herbi-

vore, carnivore, or omnivores). Since body masses of species vary largely from

nanograms to tons, we work with the normalized logarithm of mass following

the convention in [85]. Figure 4.5(b) illustrates the log body mass for species.

Without loss of generality, we order the nodes as autotrophs, herbivores, car-

nivores and omnivores.

In Figures 4.5(c), we plot Aτ . Since the autotrophs do not feed on other

species in this dataset, and since herbivores do not have too much overlap in

the autotrophs they feed on, the upper left corner of the input network is

extremely sparse. On the other side, the body sizes for autotrophs are much

smaller than those of other prey types. Therefore the kernel matrix clearly

separates them out.

We see that SDP-net (Figure 4.5(e)) heavily misclusters the autotrophs
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since it only replies on the network. SDP-net (Figure 4.5(f)) only takes the

covariates into account and cannot distinguish herbivores from omnivores,

since they possess similar body masses. However, SDP-comb (Figure 4.5(d))

achieves a significantly better NMI by combining both sources. Table 4.1

shows the NMI between predicted labels and the ground truth from SDP-

comb, JCDC and ACASC. While JCDC and ACASC can only get as good as

the the best of graph or covariates, our method achieves a higher NMI.

4.5 Discussion

In this paper, we propose a regularized convex optimization framework

to infer community memberships jointly from sparse networks and finite di-

mensional covariates. We theoretically show that our framework can improve

clustering accuracy of either source under weaker separation conditions. In

particular, when each source only has partial information about the cluster-

ing, our methodology can lead to high clustering accuracy, when either source

fails. We demonstrate the performance of our methodology on simulated and

real networks, and show that it in general performs better than other state-

of-the-art methods. While for ease of exposition we limit ourselves to two

sources, our method can be easily generalized to multiple views or sources.

Empirically, we demonstrate that our method works for covariates with non-

linear cluster boundaries; we intend to extend our theoretical analysis to this

setting and non-isotropic covariates as well.
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Chapter 5

Conclusion and Open Problems

In this thesis, I have summarized my work on theoretical analysis for

several convex and non-convex optimization problems, EM algorithm for Gaus-

sian mixture models and SDP relaxation for sub-gaussian mixture models,

stochastic block models and network with node covariates. We have proved

the theoretical upper bounds and exact recovery results for sparse and dense

SBM respectively, and have shown the effectiveness of the proposed SDP with

experimental evidences.

For future directions, there are still many open problems in the area. In

covariate clustering, it is very strong to assume one knows the number of latent

clusters beforehand. When the number of clusters is unknown, few methods

could find that with provable guarantees, even for isotropic Gaussian mixture

models [102].

There are many other non-convex algorithms that uses alternating min-

imization to find the distribution of latent variables in clustering problems. For

example, the Latent Dirichlet Allocation, which is widely used in topic mod-

eling for natural language processing, and the mean field variational inference

for stochastic block models, are both methods that optimize a non-convex loss
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function. The behavior of these methods and whether they can converge to

the global optima is largely unknown. There has been some effort in this di-

rection [7, 121], but more work needs to be done for a complete understanding

of these problems.

The power of SDP in community detection under stochastic block mod-

els has been extensively studied as we saw in the main part of the thesis.

However, for more complicated structured networks, for example those with

hierarchical cluster structures or dynamic networks, whether SDP can be used

to get theoretical guarantees is still largely unknown.

Identifying the latent structures in unsupervised data is a key ingredient

in a diverse set of applications, starting from finding friends on a social network

like Facebook to studying drug-drug or protein-protein interactions in med-

ical problems; from viral marketing to image-segmentation; from documents

understanding to context-based keyword search in databases. Networked data

and relational data are being generated from corporate and public sources ev-

ery day. Understanding the behavior of clustering algorithms holds the key

to effectively utilizing these data sets and helps us define the boundary of our

algorithmic conclusion.
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Chapter 6

Appendix for EM Algorithm

6.1 Accompanying Lemmas

In this subsection, we collect some lemmas on Gaussian distribution

and basic properties of Gaussian mixture model. Most of them can be derived

with fundamental analysis techniques. The following lemma from [104] bounds

the covering number of a unit sphere.

Lemma 6.1 (Lemma 5.2 [104]). Let Sn−1 be the unit Euclidean sphere equipped

with Euclidean metric. Denote N(Sn−1, ε) as the covering number with ε-net,

then

N(Sn−1, ε) ≤
(

1 +
2

ε

)n
Specifically, when ε = 1/2, we have

N(Sn−1,
1

2
) ≤ exp(2n)

The following lemma is useful while carrying out spherical coordinate

transformation.

Lemma 6.2. (1) The volume for a d-dimensional r-ball is π
d
2

Γ( d2+1)
rd;
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(2)
∫ π

0
sink(x)dx =

√
πΓ( k+1

2
)

Γ( k2 +1)
, and

∫ 2π

θd−1=0

∫ π

θd−2=0

· · ·
∫ π

θ1=0

sind−2(θ1) · · · sin(θd−2)dθ1 · · · dθd−1 =
2π

d
2

Γ
(
d
2

)
(3) If X ∼ N(µ, σ2Id), then

EX‖X − µ‖p = 2
p
2

Γ
(
p+d

2

)
Γ
(
d
2

) σp

Proof. (1, 2) can be proven by elementary integration. Now we prove (3). By

spherical coordinate transformation,

EX‖X − µ‖p =(2πσ2)−
d
2

∫ ∞
u=0

up+d−1e−
u2

2σ2 du
2π

d
2

Γ
(
d
2

) = 2
p
2

Γ
(
p+d

2

)
Γ
(
d
2

) σp

Lemma 6.3 (Gamma tail bound [14]). If X ∼ Gamma(v, c), then P (X >
√

2vt+ ct) ≤ e−t. Or equivalently,

P (X > t) ≤ exp

(
− v
c2

(
1 +

ct

v
−
√

1 +
2ct

v

))

In particular, if ct
v
≥ 4,

P (X > t) ≤ exp

(
− v
c2

√
ct

v

)
= exp

(
−
√
vt

c3

)

Lemma 6.4. For ∀d > 0, if δ ≥ 2
√
d+ 1, then∫ ∞

δ

ude−
u2

2 du ≤ 2
d−1
2 Γ

(
d+ 1

2

)
exp

(
−δ

2

√
d+ 1

)
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For p ∈ {0, 1, 2}, when δ ≥ 2
√
d+ p,∫ ∞

δ

(u+ x)pud−1e−
u2

2 du ≤ 2
d
2
−1Γ

(
d

2

)
(x+ d)p exp

(
−δ

2

√
d

)

Proof. By changing of variables v = u2

2
and integration by parts, we have∫ ∞

r

ude−
u2

2 du =2
d−1
2

∫ ∞
r2

2

v
d−1
2 e−vdv

=2
d−1
2 Γ

(
d+ 1

2

)
P (V >

r2

2
)

where V ∼ Gamma(d+1
2
, 1). By Lemma 6.3, if r2 ≥ 4(1 + d),

P

(
V >

r2

2

)
≤ exp

(
−r

2

√
d+ 1

)
Hence we have the first inequality. For the second, when p = 0, it follows

directly from first part. When p = 1,∫ ∞
r

(u+ x)pud−1e−
u2

2 du =

∫ ∞
r

ude−
u2

2 du+ x

∫ ∞
r

ud−1e−
u2

2 du

≤2
d−1
2 Γ

(
d+ 1

2

)
exp

(
−r

2

√
d+ 1

)
+ x2

d
2
−1Γ

(
d

2

)
exp

(
−r

2

√
d
)

≤2
d
2
−1Γ

(
d

2

)
(x+ d) exp

(
−r

2

√
d
)

where we use Γ
(
d+1

2

)
< Γ

(
d
2

+ 1
)

= d
2
Γ
(
d
2

)
, and exp

(
− r

2

√
d+ 1

)
< exp

(
− r

2

√
d
)

in the last step.
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When p = 2,∫ ∞
r

(u+ x)2ud−1e−
u2

2 du =

∫ ∞
r

ud+1e−
u2

2 du+ 2x

∫ ∞
r

ude−
u2

2 du

+ x2

∫ ∞
r

ud−1e−
u2

2 du

≤2
d
2 Γ

(
d

2
+ 1

)
exp

(
−r

2

√
d+ 2

)
+ 2x · 2

d−1
2 Γ

(
d+ 1

2

)
exp

(
−r

2

√
d+ 1

)
+ x22

d
2
−1Γ

(
d

2

)
exp

(
−r

2

√
d
)

≤(d+
√

2dx+ x2)2
d
2
−1Γ

(
d

2

)
exp

(
−r

2

√
d
)

≤(x+ d)22
d
2
−1Γ

(
d

2

)
exp

(
−r

2

√
d
)

Using Lemma 6.4, we can get an easy to use tail bound for Euclidean

norm of a Gaussian vector.

Lemma 6.5. If X ∼ N(0, Id), for r ≥ 2
√
d, we have

P (‖X‖ ≥ r) ≤ exp(−r
√
d

2
)

Proof. By spherical coordinate transformation,

P (‖X‖ ≥ r) =

∫
(2π)−d/2 exp(−‖x‖2/2)dx

=(2π)−d/2
2πd/2

Γ
(
d
2

) ∫ ∞
r

rd−1e−r
2/2dr

≤ exp
(
−r

2

√
d
)
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Lemma 6.6. If X ∼ GMM(π,µ∗, σ2Id), then X is a sub-gaussian random

vector with sub-gaussian norm σ +
∑M

i=1 πi‖µ∗i ‖.

Proof. For any unit vector u, consider the random variable Xu = 〈X, u〉. By

the definition in [104], it suffices to show that Xu has a sub-gaussian norm

upper bounded by σ +
∑M

i=1 πi‖µ∗i ‖.

‖Xu‖φ2 = sup
p≥1

(E|Xu|p)1/p

For any p ≥ 1, let Z be the latent variable in the mixture model, we have

p−1/2 (E|Xu|p)1/p =p−1/2

(
M∑
i=1

E[|Xu|p|Z = i] · P (Z = i)

)1/p

≤p−1/2

M∑
i=1

πi (E[|Xu|p|Z = i])1/p

(i)

≤p−1/2

M∑
i=1

πi
(
E[|Xu − µ∗i |p|Z = i]1/p + ‖µ∗i ‖

)
≤p−1/2

(
M∑
i=1

πip
1/2σ + ‖µ∗i ‖

)
≤ σ +

M∑
i=1

πi‖µ∗i ‖

where (i) follows from Minkovski’s inequality.

The following lemma characterize the relation between ‖µ∗max‖ and

Rmax.

Lemma 6.7. If X ∼ GMM(π,µ∗, σ2Id) with EX = 0, let ‖µ∗max‖ = maxi ‖µ∗i ‖,

then

‖µ∗max‖ ≤ Rmax ≤ 2‖µ∗max‖
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Proof. We first prove ‖µ∗max‖ ≤ Rmax by contradiction. Assume ‖µ∗max‖ >

Rmax, by definition ofRmax, all the cluster centers lies in the ball B(‖µ∗max‖, Rmax),

but the origin is outside of the ball, which contradicts the fact that EX =∑
i πiµ

∗
i = 0.

The second inequality follows from triangle inequality, assume Rmax is

achieved at Rij, then

Rmax ≤ ‖µ∗i ‖+ ‖µ∗j‖ ≤ 2‖µ∗max‖.

Lemma 6.8. A function f : Rn → R is
√
nL Lipschitz if there exists a

constant L such that the restriction of f on a certain coordinate is L-Lipschitz.

Proof. We first relax the norm of difference via a chain of triangle inequalities

where each pair of terms only vary on one dimension.

|f(x1, x2, · · · , xn)− f(y1, y2, · · · , xn)|

≤
n∑
i=1

|f(y1, y2, · · · , yi−1, xi, xi+1, · · · , xn)− f(y1, y2, · · · , yi−1, yi, xi+1, · · · , xn)|

≤
n∑
i=1

L|xi − yi| ≤
√
nL ‖x− y‖
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6.2 Proofs in Section 2.4

Proof of Lemma 2.1. By (2.2), ∇µiq(µ) = EXwi(X;µ∗)(X − µi). Without

loss of generality, we only show the claim for i = 1. That is equivalent of

saying, if X ∼ GMM(π,µ∗), we have E[w1(X;µ∗)(X − µ∗1)] = 0. Denote

N(µ∗i ,Σ) as Ni and its distribution as φi(X). Decompose the left hand side

with respect to the mixture components, we have

E[w1(X)X] =
∑
i

πiEX∼Ni [w1(X)X]

=
∑
i

πi

∫
φi(X)

π1φ1(X)∑
k πkφk(X)

Xdx

=π1EX∼N1X = π1µ
∗
1

Similarly E[w1(X)] = π1. Hence ∇µ1q(µ) = EXw1(X;µ∗)(X − µ1) =

π1(µ∗1 − µ1).

This completes the proof.

Proof of Theorem 2.4. Define By Lemma 2.1, the GS condition is equivalent

to

∥∥∇Q(µ|µt)−∇q(µ)
∥∥ ≤ γ‖µt − µ∗‖
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By triangle inequality,

∥∥µt+1
1 − µ∗1

∥∥ =
∥∥µt1 − µ∗1 + s∇Q(µ|µt)

∥∥
≤
∥∥µt1 − µ∗1 + s∇q(µ)

∥∥+ s
∥∥∇Q(µ|µt)−∇q(µ)

∥∥
≤πmax − πmin

πmax + πmin

∥∥µt1 − µ∗1∥∥+
2

πmax + πmin

γ
∥∥µt1 − µ∗1∥∥

≤πmax − πmin + 2γ

πmax + πmin

∥∥µt1 − µ∗1∥∥
To see why the last inequality hold, notice that q(µ) has largest eigenvalue

−πmin and smallest eigenvalue −πmax. Apply the classical result for gradient

descent, with step size s = 2
πmax+πmin

guarantees

∥∥µt1 − µ∗1 + s∇q(µ)
∥∥ ≤ πmax − πmin

πmax + πmin

∥∥µt1 − µ∗1∥∥

6.2.1 Proofs of Theorem 2.5

We start with two lemmas.

Lemma 6.9. For X ∼ GMM(π,µ∗, Id), if Rmin = Ω̃(
√
d), and µi ∈ B(µ∗i , a),∀i ∈

[r] where

a ≤ Rmin

2
−
√
dmax(4

√
2[log(Rmin/4)]+, 8

√
3).

Then for p = 0, 1, 2 and ∀i ∈ [r], we have

EXwi(X;µ)(1− wi(X;µ))‖X − µi‖p ≤ 2r

(
3

2
Rmax + d

)p
exp

(
−
(
Rmin

2
− a
)2√

d/8

)
.
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Using the same techniques, for the cross terms, we have the following

lemma.

Lemma 6.10. Assume X ∼ GMM(π,µ∗, Id), and µi ∈ B(µ∗i , a),∀i ∈ [r].

Under the same conditions as in Lemma 6.9, we have for ∀i 6= j ∈ [r],

EX [wi(X;µ)wj(X;µ)‖X − µi‖ · ‖X − µj‖]

≤(1 + 2κ)

(
3

2
Rmax + d

)2

exp

(
−
(
Rmin

2
− a
)2√

d/8

)

Proof of Lemma 6.9. Without loss of generality, we prove the claim for i = 1.

Recall the definition of wi(X;µ) from Equation 2.1. For p ∈ {0, 1, 2},

EXw1(X;µ)(1− w1(X;µ))‖X − µ1‖p

=
∑
i∈[r]

πiEX∼N(µ∗i )w1(X;µ)(1− w1(X;µ))‖X − µ1‖p

≤π1EX∼N(µ∗1)w1(X;µ)(1− w1(X;µ))‖X − µ1‖p +
∑
i 6=1

πiEX∼N(µ∗i )w1(X;µ)‖X − µ1‖p

(6.1)

First let us look at the first term. Define event E
(1)
δ = {X : X ∼ N(µ∗1); ‖X −

µ∗1‖ ≤ δ} for some δ > 0. We will see later that we need δ < Rmin

2
− a. Then

for X ∈ E
(1)
δ using triangle inequality, we have

‖X − µi‖

{
≤ ‖X − µ∗i ‖+ ‖µ∗i − µi‖ ≤ δ + a i = 1

≥ ‖µi − µ∗1‖ − ‖X − µ∗1‖ ≥ ‖µ∗i − µ∗1‖ − ‖µ∗i − µi‖ − δ ≥ Rmin − δ − a i 6= 1

(6.2)
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EX∼N(µ∗1)w1(X;µ)(1− w1(X;µ))‖X − µ1‖p

=E[w1(X;µ)(1− w1(X;µ))‖X − µ1‖p|E(1)
δ ]P (E

(1)
δ )

+ E[w1(X;µ)(1− w1(X;µ))‖X − µ1‖p|E(1)c
δ ]P (E

(1)c
δ )

In view of the fact that w1(X;µ) is monotonically decreasing w.r.t. ‖X −µi‖

and increasing w.r.t. ‖X − µ1‖, we have

1− w1(X;µ) ≤
(1− π1) exp

(
− (Rmin−δ−a)2

2

)
π1 exp

(
− (δ+a)2

2

)
+ (1− π1) exp

(
− (Rmin−δ−a)2

2

)
≤1− π1

π1

exp

(
−1

2
Rmin(Rmin − 2δ − 2a)

)
Also notice that w1(X;µ) ≤ 1, we have

E[w1(X;µ)(1− w1(X;µ))‖X − µ1‖p|E(1)
δ ]P (E

(1)
δ )

≤1− π1

π1

exp

(
−1

2
Rmin(Rmin − 2δ − 2a)

)
(δ + a)p

For E
(1)c
δ , note w1(X;µ)(1− w1(X;µ)) ≤ 1

4
, we have for p = 1,

E[w1(X;µ)(1− w1(X;µ))‖X − µ1‖|E(1)c
δ ]P (E

(1)c
δ )

≤1

4

∫ ∞
u=δ

(u+ a)(2π)−
d
2 exp

(
−u

2

2

)
· 2π

d
2

Γ
(
d
2

)ud−1du

≤1

4
(2π)−

d
2

2π
d
2

Γ
(
d
2

) ∫ ∞
u=δ

(u+ a) exp

(
−u

2

2

)
ud−1du

(i)

≤a+ d

4
exp

(
−δ

2

√
d

)
The inequality (i) follows from Lemma 6.4 when δ > 2

√
d+ 1. Similarly, for
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p = 2,

E[w1(X;µ)(1− w1(X;µ))‖X − µ1‖2|E(1)c
δ ]P (E

(1)c
δ )

≤2−
d
2
−1

Γ
(
d
2

) ∫ ∞
δ

(u+ a)2ud−1e−
u2

2 du
(ii)

≤ (a+ d)2

4
exp

(
−δ

2

√
d

)
The inequality (ii) follows from Lemma 6.4 when δ > 2

√
d+ 1 and p = 2.

Therefore for the first mixture we have,

π1EX∼N(µ∗1)w1(X;µ)(1− w1(X;µ))‖X − µ1‖p

≤(1− π1)(δ + a)p exp

(
−1

2
Rmin(Rmin − 2δ − 2a)

)
+ π1

(a+ d)p

4
exp

(
−δ

2

√
d

)
(6.3)

Next we bound EX∼N(µ∗i )w1(X;µ)‖X−µ1‖p for i 6= 1. For some 0 < δ < R
2
−a,

we have

πiEX∼N(µ∗i )w1(X;µ)‖X − µ1‖p

=

∫
X

π1φ(X;µ1) · πiφ(X;µ∗i )∑
j πjφ(X;µj)

‖X − µ1‖pdX

=

∫
X∈B(µ∗i ,δ)

π1φ(X;µ1) · πiφ(X;µ∗i )∑
j πjφ(X;µj)

‖X − µ1‖pdX︸ ︷︷ ︸
I
(p)
1

+

∫
X 6∈B(µ∗i ,δ)

π1φ(X;µ1) · πiφ(X;µ∗i )∑
j πjφ(X;µj)

‖X − µ1‖pdX︸ ︷︷ ︸
I
(p)
2

(6.4)

When ‖X − µ∗i ‖ ≤ δ, since by assumption ‖µi − µ∗i ‖ ≤ a,

φ(X;µ∗i )

φ(X;µi)
= exp

(
‖X − µi‖2

2
− ‖X − µ

∗
i ‖2

2

)
= exp

((
X − µi + µ∗i

2

)T
(µi − µ∗i )

) (6.5)
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Since by Cauchy-Schwarz we have |(X − µi+µ∗i
2

)T (µi − µ∗i )| = |(X − µ∗i +

µ∗i−µi
2

)T (µi − µ∗i )| ≤ (δ + a/2)a, we have:

exp
(
−(δ +

a

2
)a
)
≤ φ(X;µ∗i )

φ(X;µi)
≤ exp

(
(δ +

a

2
)a
)

(6.6)

For such X, φ(X;µ1) ≤ (2π)−
d
2 exp

(
− (Rmin−δ−a)2

2

)
, and we have

I
(p)
1 =

∫
X∈B(µ∗i ,δ)

π1φ(X;µ1)πiφ(X;µ∗i )∑
j πjφ(X;µj)

‖X − µ1‖pdX

≤
∫
X∈B(µ∗i ,δ)

π1φ(X;µ1)πiφ(X;µi) exp
(
(δ + a

2
)a
)∑

j πjφ(X;µj)
‖X − µ1‖pdX

≤π1 exp
(

(δ +
a

2
)a
)∫

X∈B(µ∗i ,δ)

φ(X;µ1)‖X − µ1‖pdX

≤π1(2π)−d/2 exp
(

(δ +
a

2
)a
)

(Rmax + a+ δ)p exp

(
−(Rmin − δ − a)2

2

)
πd/2

Γ(d
2

+ 1)
δd

≤ π12−d/2

Γ(d
2

+ 1)
exp

(
(δ +

a

2
)a− (Rmin − δ − a)2

2

)
(Rmax + a+ δ)pδd

≤π121−d exp

(
Rmin

(
a− Rmin

2
(1− δ/Rmin)2

))
(Rmax + a+ δ)pδd

The last inequality follows from the fact that Γ
(
d
2

+ 1
)
≥ ([d

2
])! ≥ 2

d
2
−1. On

the other hand, for I2, since w1(X;µ) ≤ 1, taking spherical coordinate trans-

formation we have,

I
(p)
2 ≤

∫
‖X−µ∗i ‖≥δ

πiφ(X;µ∗i )‖X − µ1‖pdX

≤πi
∫
‖X−µ∗i ‖≥δ

(2π)−d/2 exp(−‖X − µ
∗
i ‖2

2
)‖X − µ1‖pdX

≤πi2
1−d/2

Γ(d
2
)

∫ ∞
u=δ

ud−1 exp

(
−u

2

2

)
(u+Rmax + a)pdu
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Apply Lemma 6.4, when δ ≥ 2
√
d+ 2, for p ∈ {0, 1, 2}

I
(p)
2 ≤πi (Rmax + a+ d)p exp

(
−δ

2

√
d

)
(6.7)

Summing up I1 and I2, for any 0 < δ < Rmin/2, from (6.4) we get:

πiEX∼N(µ∗i )w1(X;µ)‖X − µ1‖p

≤π121−d exp

(
Rmin

(
a− Rmin

2
(1− δ/Rmin)2

))
(Rmax + a+ δ)pδd (6.8)

+ πi (Rmax + a+ d)p exp

(
−δ

2

√
d

)
(6.9)

Now plugging Eq. (6.3) and Eq. (6.9) into Eq. (6.1) gives,

EXw1(X;µ)(1− w1(X;µ))‖X − µ1‖p

≤(1− π1)(δ + a)p exp

(
−1

2
Rmin(Rmin − 2δ − 2a)

)
+ π1

(a+ d)p

4
exp

(
−δ

2

√
d

)
+ π1(r − 1)21−d exp

(
Rmin

(
a− Rmin

2
(1− δ/Rmin)2

))
(Rmax + a+ δ)pδd

+ (1− π1) (Rmax + a+ d)p exp

(
−δ

2

√
d

)
≤ (1− π1)(r + a)p exp

(
−1

2
Rmin(Rmin − 2δ − 2a)

)
︸ ︷︷ ︸

(A)

+ (Rmax + a+ d)p exp

(
−δ

2

√
d

)
︸ ︷︷ ︸

(B)

+ 2π1(r − 1) exp

(
Rmin

(
a− Rmin

2
(1− δ/Rmin)2

)
+ d log(δ/2)

)
(Rmax + a+ δ)p︸ ︷︷ ︸

(C)

Note that in order to have a negative term inside exponential of (A),

we require δ + a < Rmin

2
. In order to ensure the same for (C), we need:

a <
Rmin

2

(
1− δ

Rmin

)2

(6.10)
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If δ2 ≥ 2d log(δ/2), then we have:

exp

(
Rmin

(
a− Rmin

2
(1− δ/Rmin)2

)
+ d log(δ/2)

)
≤ exp

(
Rmin

(
a− Rmin

2
(1− δ/Rmin)2

)
+ δ2/2

)
≤ exp

(
Rmina−

(
R2

min

2
− δRmin +

δ2

2

)
+
δ2

2

)
= exp

(
−1

2
Rmin(Rmin − 2δ − 2a)

)
Therefore, (A)+(C) ≤ (1−π1+2π1(r−1))(Rmax+a+δ)p exp

(
−1

2
Rmin(Rmin − 2δ − 2a)

)
.

Finally, if δ ≤ Rmin
Rmin/2−a
Rmin+

√
d/2

, we have:

exp

(
−1

2
Rmin(Rmin − 2δ − 2a)

)
≤ exp(−δ

2

√
d)

Hence,

(A) + (B) + (C) ≤(2− π1 + 2π1(r − 1))

(
3

2
Rmax + d

)p
exp

(
−δ

2

√
d

)
≤2r

(
3

2
Rmax + d

)p
exp

(
−δ

2

√
d

)

Set

δ =
Rmin/2− a

4
, a ≤ Rmin

2
(6.11)

then Eq (6.10) and a+ δ ≤ Rmin

2
are automatically satisfied. When Rmin ≥

√
d

6
,

we have δ ≤ Rmin
Rmin/2−a
Rmin+

√
d/2

. Finally in order to meet the constraints

δ ≥ 2
√
d+ 2⇐ δ ≥ 3

√
d (6.12)

δ2 ≥ 2d log δ/2 (6.13)
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we need

Rmin/2− a
4

≥ max(
√

2d[log(Rmin/4)]+, 2
√

3
√
d)

a ≤ Rmin

2
−
√
dmax(4

√
2[log(Rmin/4)]+, 8

√
3)

The right hand side of last inequality is non-negative when Rmin = Ω̃(
√
d).

Under these conditions, with Eq. (6.11) plugged in, we have

EXw1(X;µ)(1− w1(X;µ))‖X − µ1‖p ≤ 2r

(
3

2
Rmax + d

)p
exp

(
−
(
Rmin

2
− a
)2√

d/8

)

Proof of Lemma 6.10. For any δ ≤ Rmin

2
−a, define E0 = {X : ∃i, such that ZX =

i, ‖X − µ∗i ‖ > δ} and Ek = {X : ZX = k, ‖X − µ∗k‖ ≤ δ}.

EX [wi(X;µ)wj(X;µ)‖X − µi‖ · ‖X − µj‖]

≤EX [wi(X;µ)wj(X;µ)‖X − µi‖‖X − µj‖|E0]P (E0)︸ ︷︷ ︸
I0

+
∑
k∈[r]

πkEX∼N(µ∗k) [wi(X;µ)wj(X;µ)‖X − µi‖‖X − µj‖|‖X − µk‖ ≤ δ]︸ ︷︷ ︸
Ik

First we look at I0, this again can be decomposed as the sum over mixtures.

Similarly as in Eq. (6.7), we have

I0 ≤ (Rmax + a+ d)2 exp

(
−δ

2

√
d

)
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For Ik, by Eq. (6.6),

Ik =

∫
X

πiφ(X;µi)πjφ(X;µj)πkφ(X;µ∗k)

(
∑

` π`φ(X;µt))2
‖X − µi‖ · ‖X − µj‖dX

≤
∫
X

πiφ(X;µi)πjφ(X;µj)πkφ(X;µk) exp((δ + a/2)a)

(
∑

` π`φ(X;µ`))2
‖X − µi‖ · ‖X − µj‖dX

≤κπk2π−
d
2 exp(−

R(min − δ − a)2

2
) exp((δ + a/2)a)(Rmax + δ + a)2 πd/2

Γ
(
d
2

+ 1
)δd

≤πkκ2−d/2
1

Γ
(
d
2

+ 1
)δd exp

(
(δ + a/2)a− (Rmin − δ − a)2

2

)
(Rmax + δ + a)2

≤2πkκ exp

(
Rmin

(
a− Rmin

2

(
1− δ

Rmin

)2
)

+ d log(δ/2)

)
(Rmax + δ + a)2

(6.14)

Adding up Ik’s and I0, we have

EX [wi(X;µ)wj(X;µ)‖X − µi‖‖X − µj‖]

≤ (Rmax + a+ d)2 exp

(
−δ

2

√
d

)
+ 2κ exp

(
Rmin

(
a− Rmin

2

(
1− δ

Rmin

)2
)

+ d log(δ/2)

)
(Rmax + δ + a)2

Take δ = 1
4

(
Rmin

2
− a
)
, we have Rmin

(
a− Rmin

2

(
1− δ

Rmin

)2
)

+ d log(δ/2) ≤

− δ
2

√
d. Therefore,

EX [wi(X;µ)wj(X;µ)‖X − µi‖ · ‖X − µj‖]

≤(1 + 2κ)

(
3

2
Rmax + d

)2

exp

(
−
(
Rmin

2
− a
)2√

d/8

)

Proof of Theorem 2.5. Consider the difference of the gradient corresponding
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to µi, without loss of generality, assume i = 1.

∇µ1Q(µt|µt)−∇q(µt) =E(w1(X;µt)− w1(X;µ∗))(X − µt1) (6.15)

For any given X, consider the function µ→ w1(X;µ), we have

∇µw1(X;µ) =


w1(X;µ)(1− w1(X;µ))(X − µ1)T

−w1(X;µ)w2(X;µ)(X − µ2)T

...
−w1(X;µ)wr(X;µ)(X − µr)T

 (6.16)

Let µu = µ∗+u(µt−µ∗),∀u ∈ [0, 1], obviously µu ∈ ⊗ri=1B(µ∗i , ‖µti−µ∗i ‖) ⊂

⊗ri=1B(µ∗i , a). By Taylor’s theorem,

‖E(w1(X;µt1)− w1(X;µ∗1))(X − µt1)‖ =

∥∥∥∥E [∫ 1

u=0

∇uw1(X;µu)du(X − µt1)

]∥∥∥∥
=

∥∥∥∥∫ 1

u=0

Ew1(X;µu)(1− w1(X;µu))(X − µu1)T (µt1 − µ∗1)(X − µt1)du

−
∑
i 6=1

∫ 1

u=0

Ew1(X;µu)wi(X;µu))(X − µu2)T (µt2 − µ∗2)(X − µt1)du

∥∥∥∥∥
≤U1‖µt1 − µ∗1‖2 +

∑
i 6=1

Ui‖µti − µ∗i ‖2

(6.17)

where

U1 = sup
u∈[0,1]

‖Ew1(X;µu)(1− w1(X;µu))(X − µt1)(X − µu1)T‖op

Ui = sup
u∈[0,1]

‖Ew1(X;µu)wi(X;µu)(X − µt1)(X − µu2)T‖op
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For U1 by triangle inequality we have,

U1 ≤ sup
u∈[0,1]

‖Ew1(X;µu)(1− w1(X;µu))(X − µu1)(X − µu1)T‖op

+ sup
u∈[0,1]

‖Ew1(X;µu)(1− w1(X;µu))(µu1 − µt1)(X − µu1)T‖op

≤ sup
u∈[0,1]

‖Ew1(X;µu)(1− w1(X;µu))(X − µu1)(X − µu1)T‖op

+ a sup
u∈[0,1]

‖Ew1(X;µu)(1− w1(X;µu))(X − µu1)‖ (6.18)

We now develop an uniform bound for the operator norm. For any u ∈ [0, 1],

there exists a rotation matrix O, such that all Rµui , i ∈ [r] have non-zero entries

in the leading d̃ coordinates, and zeros for the remaining [d− r]+ coordinates.

Denote X̃ := OX, then X̃|Z = i ∼ N(Oµ∗i , Id). Let

Oµui = [µ̃ui , 0[d−r]+ ] and Oµ∗i = [vd̃i , v
[d−r]+
i ], µ̃ui ∈ Rd̃

For ease of notation, we assume d ≥ r for now, the other case can be derived

without much modification. We can rewrite

(X − µu1)(X − µu1)T = OT

[
(X̃r − µ̃u1)(X̃r − µ̃u1)T (X̃r − µ̃u1)(X̃d−r)T

(X̃d−r)(X̃r − µ̃u1)T (X̃d−r)(X̃d−r)T

]
O

Note by the rotation, wi(X;µ) only depend on the first r coordinates.

And by isotropicity, X̃r and X̃d−r are independent. By EX̃d−r = 0 (since

we assume that the centroid of the means is at zero, and a rotation does not

change that) and EX̃d−r(X̃d−r)T = Id−r +
∑

i πi(v
d−r
i )(vd−ri )T , we have,

‖Ew1(X;µu)(1− w1(X;µu))(X − µu1)(X − µu1)T‖op =

∥∥∥∥[D1 0
0 D2

]∥∥∥∥
op

≤max{‖D1‖op, ‖D2‖op}
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D1 and D2 are defined below. Applying Lemma 6.9 with dimension d̃, when

Rmin = Ω(
√
d̃),

‖D1‖op = ‖Ew1(X̃; µ̃u)(1− w1(X̃; µ̃u))(X̃ d̃ − µ̃u1)(X̃ d̃ − µ̃u1)T‖op

≤2r

(
3

2
Rmax + d̃

)2

exp

(
−
(
Rmin

2
− a
)2√

d̃/8

)

For D2, by independence and Lemma 6.9, when Rmin = Ω(
√
d̃),

‖D2‖op =

∥∥∥∥∥Ew1(X̃; µ̃u)(1− w1(X̃; µ̃u))

(
I[d−r]+ +

∑
i

πi(v
[d−r]+
i )(v

[d−r]+
i )T

)∥∥∥∥∥
op

=

∥∥∥∥∥(EX̃d̃w1(X̃d̃; µ̃
u)(1− w1(X̃d̃; µ̃

u))
)
· EX[d−r]+

(
I[d−r]+ +

∑
i

πi(v
[d−r]+
i )(v

[d−r]+
i )T

)∥∥∥∥∥
op

≤(R2
max + 1)2r exp

(
−
(
Rmin

2
− a
)2√

d̃/8

)

Combining the two and plugging in Eq. (6.18),

U1 ≤2r exp

(
−
(
Rmin

2
− a
)2√

d̃/8

)
·(

max

{(
3

2
Rmax + d̃

)2

, (R2
max + 1)

}
+ a

(
3

2
Rmax + d̃

))

≤2r
(

2Rmax + d̃
)2

exp

(
−
(
Rmin

2
− a
)2√

d̃/8

)

The max will always be achieved at the first term as d̃ ≥ 1. Similarly, with

the same rotation, for Ui, i 6= 1,

Ui ≤ sup
u
‖Ew1(X;µu)wi(X;µu)(X − µu1)(X − µui )T‖op + a‖Ew1(X;µu)wi(X;µu)(X − µui )‖
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By Lemma 6.10, when Rmin = Ω(
√
d̃), we have

Ui ≤ exp

(
−
(
Rmin

2
− a
)2√

d̃/8

)
·(

max

{
(1 + 2κ)

(
3

2
Rmax + d̃

)2

, 2r(R2
max + 1)

}
+ 2ra

(
3

2
Rmax + d̃

))

≤ exp

(
−
(
Rmin

2
− a
)2√

d̃/8

)(
3

2
Rmax + d̃

)
·
(

max{(1 + 2κ), 2r}
(

3

2
Rmax + d̃

)
+ 2ra

)
≤ exp

(
−
(
Rmin

2
− a
)2√

d̃/8

)(
3

2
Rmax + d̃

)2

·max{3r, r + 2κ+ 1}

≤r(2κ+ 4)

(
3

2
Rmax + d̃

)2

exp

(
−
(
Rmin

2
− a
)2√

d̃/8

)

The second inequality is because R2
max + 1 ≤

(
3
2
Rmax + d̃

)2

and the third

inequality is because 2a ≤ 3
2
Rmax + d̃. Taking back to Eq. (6.17), and summing

over i ∈ [r], we have

‖∇µiQ(µ|µt)−∇µiq(µ)‖

≤r(2κ+ 4)
(

2Rmax + d̃
)2

exp

(
−
(
Rmin

2
− a
)2√

d̃/8

)
r∑
i=1

‖µti − µ∗i ‖

This completes the proof.
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6.2.2 Proof of Theorem 2.1

Proof of Theorem 2.1. By Theorem 2.5 and Theorem 2.4, it suffices to check

γ ≤ πmin. Solving the inequality we have

a ≤ Rmin

2
− 2
√

2
4
√
d̃

√√√√log

(
r2(2κ+ 4)(2Rmax + d̃)2

πmin

)

Combined with the condition in Theorem 2.5, we have

a ≤Rmin

2
−max

2
√

2
4
√
d̃

√√√√log

(
r2(2κ+ 4)(2Rmax + d̃)2

πmin

)
,

√
d̃max(4

√
2[log(Rmin/4)]+, 8

√
3)
}

=
Rmin

2
−
√
d̃o(Rmin)

because

max

{
c

√
log(c1

r2κ

πmin

+ 2 log
(

2Rmax + d̃
)
,
√
d̃max{c2

√
log(Rmin/4)+, 8

√
3}

}

≤max

{
c

√
log(c1

r2κ

πmin

+ c2Rmax + c3d̃), c′
√
d̃
√

log(Rmax + e)

}

≤
√
d̃O

(√
log

(
max

{
r2κ

πmin

, Rmax, d̃

}))

The condition in Theorem 2.5 can be rewritten as

a ≤ Rmin

2
−
√
d̃O

(√
log

(
max

{
r2κ

πmin

, Rmax, d̃

}))
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6.3 Proofs for sample-based gradient EM

In this section we develop the error bound for sample-based gradient

EM. Our proof is based on the Rademacher complexity theory and some new

tools for contraction result. In [76], Maurer has the following contraction result

for the complexity defined over countable sets.

Lemma 6.11 (Theorem 3 [76]). Let X be nontrivial, symmetric and sub-

gaussian. Then there exists a constant C < ∞, depending only on the dis-

tribution of X, such that for any countable set S and function hi : S → R,

fi : S→ Rk, i ∈ [n] satisfying ∀s, s′ ∈ S, |hi(s)− hi(s′)| ≤ L‖f(s)− f(s′)‖. If

εik is an independent doubly indexed Rademacher sequence, we have,

E sup
s∈S

∑
i

εihi(s) ≤ E
√

2L sup
s∈S

∑
i,k

εikfi(s)k,

where fi(s)k is the k-th component of fi(s).

We prove Lemma 2.2 by generalizing this result to any subset of sepa-

rable Banach space.

Proof of Lemma 2.2. First note that a subset of a separable subspace is sepa-

rable, and has a dense countable subset; lets call this S0. Now note that if the

Lipschitz condition holds for s, s′ ∈ S, then it also holds for s, s′ ∈ S0. Now

applying Lemma 6.11, we see that

E sup
s∈S0

∑
i

εihi(s) ≤ E
√

2L sup
s∈S0

∑
i,k

εikfi(s)k,
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All we need to prove is that the two supremas over S0 on the LHS and RHS of

the above equation can be replaced by supremum over S. We will only show

this for the LHS. The argument for the RHS is identical. In order to show

this, we need to also make sure that g(s) :=
∑

i εihi(s) over S is measurable.

We show this using standard tools from measure theory.

We want to show that:

sup
s∈S

g(s) = sup
s∈S0

g(s). (6.19)

Since g(s) is continuous, its also measurable for all s ∈ S. The above state-

ment, once proven, essentially implies that the sup over S is the same as

the sup over a countable set S0. Since pointwise sup over measurable func-

tions is measurable, we are done. We now prove Eq. (6.19). It is clear that,

sups∈S g(s) ≥ sups∈S0 g(s). So all we need is to prove that for all ε > 0.

sup
s∈S

g(s) ≤ sup
s∈S0

g(s) + ε (6.20)

Since g(s) is continuous, let D1(s) = {s′ ∈ S : |g(s)−g(s′)| ≤ ε}. Furthermore,

since S0 is dense in S, we also haveD2(s, ε) := D1(s)∩S0 6= φ. So for each s ∈ S,

and ε > 0, ∃s′ ∈ S0 (to be precise, s′ ∈ D2(s, ε)) such that g(s) ≤ g(s′) + ε.

Taking a sup over the LHS over S and a sup of RHS over S0, we get Eq. (6.20).

This completes the proof.

Proof of Theorem 2.2. For any unit vector u, the Rademacher complexity of
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F is

Rn(F) =EXEε sup
µ∈A

1

n

n∑
i=1

εiw1(Xi;µ)〈Xi − µ1, u〉

≤EXEε sup
µ∈A

1

n

n∑
i=1

εiw1(Xi;µ)〈Xi, u〉︸ ︷︷ ︸
(D)

+EXEε sup
µ∈A

1

n

n∑
i=1

εiw1(Xi;µ)〈µ1, u〉︸ ︷︷ ︸
(E)

(6.21)

We bound the two terms separately. Define ηj(µ) : Rrd → Rr to be a vector

valued function with the k-th coordinate

[ηj(µ)]k =
‖µ1‖2

2
− ‖µk‖

2

2
+ 〈Xj,µk − µ1〉+ log

(
πk
π1

)
We claim

|w1(Xj;µ)− w1(Xj;µ
′)| ≤

√
r

4
‖ηj(µ)− ηj(µ′)‖ (6.22)

This vectorized Lipschitz condition simply follows from the fact that

w1(Xj,µ) =
1

1 +
∑r

k=2 exp([ηj(µ)]k)

∂w1(Xj,µ)

∂[ηj(µ)]k
=

exp([ηj(µ)]k)

(1 +
∑r

k=2 exp([ηj(µ)]k))2
≤ 1

4

so w1(Xj,µ) is 1
4
-Lipschitz continuous w.r.t. [ηj(µ)]k. By Lemma 6.8, w1(Xj,µ)

is
√
r

4
Lipschitz w.r.t ηj(µ). Now let ψj(µ) = w1(Xj;µ)〈Xj, u〉.
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With Lipschitz property (6.22) and by Lemma 6.11, we have

E

[
sup
µ∈A

1

n

n∑
j=1

εjw1(Xj;µ)〈Xj, u〉

]
≤ E

[
1

n
sup
µ∈A

n∑
j=1

r∑
k=1

εjk[ηj(µ)]k

√
2r

4
〈Xj, u〉

]

=E

[√
2r

1
2

4n
sup
µ∈A

n∑
j=1

r∑
k=2

εjk

(
‖µ1‖2

2
− ‖µk‖

2

2
+ 〈Xj,µk − µ1〉+ log(

πk
π1

)

)
〈Xj, u〉

]

≤E

[√
2r

4n
sup
µ∈A

n∑
j=1

r∑
k=1

εjk

(
‖µ1‖2

2
− ‖µk‖

2

2
+ log(

πk
π1

)

)
〈Xj, u〉

]
︸ ︷︷ ︸

(D.1)

+ E

[√
2r

4n
sup
µ∈A

n∑
j=1

r∑
k=1

εjk〈Xj,µk − µ1〉〈Xj, u〉

]
︸ ︷︷ ︸

(D.2)

(6.23)

To bound (D.1), note that the sum over k = 1, · · · , r can be considered as an

inner product of two vectors in Rr. The supremum of ‖µ‖ can be bounded as

maxµ∈A ‖µi‖ ≤ ‖µ∗max‖+ a ≤ 3
2
Rmax.

(D.1) =E


√

2r

4
sup
µ∈A


‖µ1‖2

2
− ‖µ1‖2

2
+ log(π1

π1
)

...
‖µ1‖2

2
− ‖µr‖

2

2
+ log(πr

π1
)


T 

1
n

∑n
j=1 εj1〈Xj, u〉

...
1
n

∑n
j=1 εjr〈Xj, u〉




≤cr(9R2
max/4 + log(κ))E

∥∥∥∥∥∥∥


1
n

∑n
j=1 εj1〈Xj, u〉

...
1
n

∑n
j=1 εjr〈Xj, u〉


∥∥∥∥∥∥∥ (6.24)

By Lemma 6.6, and ‖u‖ = 1, we know 〈Xj, u〉 is sub-Gaussian with parameter

upper bounded by 1 + Rmax. So each element of the vector in Equation 6.24

is the average of n independent mean 0 sub-Gaussian random variables with

sub-gaussian norm upper bounded by 1+Rmax (since w.l.o.g we have assumed
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that σ = 1 and maxi ‖µ‖ ≤ Rmax, by Lemma 6.7). Consequently, ∀k ∈ [r],

E
∣∣∣ 1
n

∑n
j=1 εjk〈Xj, u1〉

∣∣∣ ≤ c(1 +Rmax)/
√
n for some global constant c [104], and

(D.1) ≤cr3/2(9R2
max/4 + log(κ))(1 +Rmax)

1√
n

≤cr3/2(1 +Rmax)3 max{1, log(κ)} 1√
n

On the other hand, for (D.2), we have

(D.2) =E

[√
2r

4n
sup
µ∈A

n∑
j=1

r∑
k=1

εjk〈Xj,µk − µ1〉〈Xj, u〉

]

= E

[√
2r

4n
sup
µ∈A

r∑
k=1

(µk − µ1)T

(
n∑
j=1

εjkXjX
T
j

)
u

]

≤
r∑

k=1

E

√2r

4
sup
µ∈A
‖µk − µ1‖

∥∥∥∥∥ 1

n

n∑
j=1

εjkXjX
T
j

∥∥∥∥∥
op


≤

r∑
k=1

√
2r

2
‖µmax‖E

∥∥∥∥∥ 1

n

n∑
j=1

εjkXjX
T
j

∥∥∥∥∥
op



(6.25)

For each k ∈ [r], the operator norm ‖ 1
n

∑n
j=1 εjkXjX

T
j ‖op can be bounded by

the same discretization technique with the 1/2-covering of the unit sphere. To

be specific, since for any matrix A, ‖A‖op = supu∈Sd−1 ‖Au‖,

∀u,∃uj s.t. ‖Au‖ ≤ ‖Auj‖+ ‖A‖op‖u− uj‖ ≤ max
j
‖Auj‖+

1

2
‖A‖op

Taking supu∈Sd−1 on the left side, we get ‖A‖op ≤ 2 maxj ‖Auj‖. Therefore

‖ 1
n

∑n
j=1 εjkXjX

T
j ‖op ≤ 2 max`

1
n

∑n
j=1 εjk〈Xj, u`〉2. The square of sub-gaussian

random variable 〈Xj, u`〉 is sub-exponential, from Lemma 5.14 in [104] we know

E

[
exp

(
1

n

n∑
j=1

εjk〈Xj, u〉2t

)]
≤ exp

(
c4t

2(1 +Rmax)4

n

)
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With the 1/2-covering number of Sd−1 bounded by exp(2d), we have

E

[
exp

(
t · ‖ 1

n

n∑
j=1

εjkXjX
T
j ‖op

)]
≤ exp

(
2d+

c5t
2(1 +Rmax)4

n

)
Hence, ∀t > 0,

E

∥∥∥∥∥ 1

n

n∑
j=1

εjkXjX
T
j

∥∥∥∥∥
op

 =
1

t
log

exp

tE
∥∥∥∥∥ 1

n

n∑
j=1

εjkXjX
T
j

∥∥∥∥∥
op


≤1

t
log

E

exp

t∥∥∥∥∥ 1

n

n∑
j=1

εjkXjX
T
j

∥∥∥∥∥
op


≤2d

t
+
ct(1 +Rmax)4

n

Taking t = c
√
nd

(1+Rmax)2
,

E

∥∥∥∥∥ 1

n

n∑
j=1

εjkXjX
T
j

∥∥∥∥∥
op

 ≤ c

√
d

n
(1 +Rmax)2

Plugging back to Eq. (6.25), and use supµ∈A ‖µ‖ ≤ supk ‖µ∗k‖ + a ≤ 3
2
Rmax,

we have

(D.2) ≤cr(1 +Rmax)3
√
d√

n

Plugging the bound back to Eq. (6.23), we have

(D) ≤cr
3/2(1 +Rmax)3

√
dmax{1, log(κ)}√
n
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Apply Lemma 6.11 on the (E) term in Eq. (6.21), we have

(E) =E

[
sup
µ∈A

1

n

n∑
j=1

εjwi(Xj;µ)〈µi, u〉

]

≤E

[√
2r

4n
sup
µ∈A

n∑
j=1

r∑
k=1

εjk

(
‖µ1‖2

2
− ‖µk‖

2

2
+ 〈Xj,µk − µ1〉+ log(

πk
π1

)

)
〈µi, u〉

]

≤
√

2r

4
Eε

[
sup
µ∈A

1

n

n∑
j=1

r∑
k=1

εjk

(
‖µ1‖2

2
− ‖µk‖

2

2
+ log

πk
π1

)
〈µi, u〉

]
︸ ︷︷ ︸

E.1

+

√
2r

4
EX,ε

[
sup
µ∈A

1

n

n∑
j=1

r∑
k=1

εjk〈Xj,µk − µ1〉〈µi, u〉

]
︸ ︷︷ ︸

E.2

We will now bound (E.1) and (E.2).

(E.1) ≤
√

2r

4
Eε

[
sup
µ∈A

1

n

n∑
j=1

r∑
k=1

εjk

(
‖µ1‖2

2
− ‖µk‖

2

2
+ log

πk
π1

)
sup
µ∈A
〈µi, u〉

]

≤
√

2r

4
RmaxEε

sup
µ∈A


‖µ1‖2

2
− ‖µ1‖2

2
+ log(π1

π1
)

...
‖µ1‖2

2
− ‖µr‖

2

2
+ log(πr

π1
)


T 

1
n

∑n
j=1 εj1
...

1
n

∑n
j=1 εjr




≤ crRmax(9R2
max/4 + log κ)Eε

∥∥∥∥∥∥∥


1
n

∑n
j=1 εj1
...

1
n

∑n
j=1 εjr


∥∥∥∥∥∥∥ (6.26)

Note that each element of the vector in Equation 6.26 is the average of n

i.i.d mean 0 Radamacher random variables, which are essentially sub-gaussian

radnom variables with subgaussian norm upper bounded by 1. Consequently,

∀k ∈ [r], E
∣∣∣ 1
n

∑n
j=1 εjk

∣∣∣ ≤ c′/
√
n for some global constant c [104], and

(E.1) ≤ c′r3/2Rmax(9R2
max/4 + log κ)/

√
n
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As for (E.2), we have

(E.2) ≤
√

2r

4
EX,ε

[
sup
µ∈A

1

n

n∑
j=1

r∑
k=1

εjk〈Xj,µk − µ1〉 sup
µ∈A
〈µi, u〉

]

≤ 3
√

2r

8
RmaxEX,ε

[
sup
µ∈A

r∑
k=1

(µk − µ1)T

(
1

n

n∑
j=1

εjkXj

)]

≤ 3
√

2r

8
Rmax

r∑
k=1

EX,ε

[
sup
µ∈A

(µk − µ1)T

(
1

n

n∑
j=1

εjkXj

)]

≤ 9
√

2r

8
R2

max

r∑
k=1

EX,ε

∥∥∥∥∥ 1

n

n∑
j=1

εjkXj

∥∥∥∥∥ (6.27)

In Eq (6.27), the vector 1
n

∑n
j=1 εjkXj is the average of n independent mean

zero isotropic subgaussian random vectors. Another using of the discretizing

technique along with the moment generating function with t ≥ 0 gives:∥∥∥∥∥ 1

n

n∑
j=1

εjkXj

∥∥∥∥∥ ≤ 2 max
`
〈 1
n

n∑
j=1

εjkXj, u`〉

E

[
exp

(
t

∥∥∥∥∥ 1

n

n∑
j=1

εjkXj

∥∥∥∥∥
)]
≤
∑
`

E

[
exp

(
2
t

n

n∑
j=1

εjk〈Xj, u`〉

)]

≤ exp

(
2d+

c′(1 +Rmax)2t2

n

)
E

∥∥∥∥∥ 1

n

n∑
j=1

εjkXj

∥∥∥∥∥ ≤ c′′ + 2d+ c′(1+Rmax)2t2

n

t
Using Jensen’s inequality

Taking t = Θ
(√

nd/(1 +Rmax)
)

,

(E.2) ≤ cr3/2R2
max(1 +Rmax)

√
d/
√
n

Thus, combing (E.1) and (E.2) we get:

(E) ≤cr
3/2(1 +Rmax)3 max{1, log(κ)}

√
d√

n
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The final bound follows by combining (D) and (E):

Rn(F) ≤ cr3/2(1 +Rmax)3
√
dmax{1, log(κ)}√
n

For proving Theorem 2.6 we first recall the following symmetrization

lemma in learning theory.

Lemma 6.12 (See e.g. [80]). Let F be a function class with domain X. Let

{X1, X2, · · · , Xn} be a set of sample generated by a distribution P on X. As-

sume σi are i.i.d. Rademacher variables, then

E

(
sup
f∈F

(Ef − 1

n

n∑
i=1

f(Xi))

)
≤ 2Rn(F)

Here Rn(F) = E
[
supf∈F | 1n

∑n
i=1 σif(Xi)

]
is the Rademacher complexity.

Proof of Theorem 2.7. We will use the notation Xj
i = (Xi, · · · , Xj) for all se-

quences, and sequence concatenation is denoted multiplicatively: xjix
k
j+1 = xki .

We will also use that fact that X0
1 is the empty set. The proof will proceed via

the Azuma-Hoeffding-McDiarmid method of martingale differences. Defining

Vi = E[g|X i
1]− E[g|X i−1

1 ], we see that g(X)−E[g(X)] =
∑

i Vi. We also note

that Vi is a function X i
1. We have,

E[g|X i
1] =

∑
xni+1∈Xni+1

P (xni+1)g(X i
1x

n
i+1),

which along with Jensen’s inequality gives:
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eλVi = e
λ
∑
x′
i
,xn
i+1

P (xni+1)P (x′i)(g(X
i−1
1 ,xi,x

n
i+1)−g(Xi−1

1 ,x′i,x
n
i+1))

≤
∑
x′i,x

n
i+1

P (xni+1)P (x′i)e
λ(g(Xi−1

1 ,xi,x
n
i+1)−g(Xi−1

1 ,x′i,x
n
i+1))

E
[
eλVi |X i−1

1

]
≤
∑
xni+1

P (xni+1)
∑
xi,x′i

P (xi)P (x′i)e
λ(g(Xi−1

1 ,xi,x
n
i+1)−g(Xi−1

1 ,x′i,x
n
i+1))

For fixed X i−1
1 ∈ Xi−1

1 and xni+1 ∈ Xn
i+1, define Fi : Xi → R by Fi(y) =

g(X i−1
1 yxni+1). Let X ′ denote X i−1

1 x′iX
n
i+1, which only differ with X on the i-th

position. Using the definition of g(X) and denoting by µ̃ the µ that achieves

the supremum in g(X i−1
1 yxni+1), we get:

Fi(y)− Fi(y′)

= sup
µ∈A

(
1

n

n∑
i=1

w1(Xi;µ)〈Xi − µ1, u〉 − EXw1(X;µ)〈X − µ1, u〉

)

− sup
µ∈A

(
1

n

n∑
i=1

w1(X ′i;µ)〈X ′i − µ1, u〉 − EX′w1(X ′;µ)〈X ′ − µ1, u〉

)

≤

(
1

n

n∑
i=1

w1(Xi; µ̃)〈Xi − µ̃1, u〉 − EXw1(X; µ̃)〈X − µ̃1, u〉

)

−

(
1

n

n∑
i=1

w1(X ′i; µ̃)〈X ′i − µ̃1, u〉 − EXw1(X ′; µ̃)〈X ′ − µ̃1, u〉

)
=

1

n
(w1(y; µ̃)〈y − µ̃1, u〉 − w1(y′; µ̃)〈y′ − µ̃1, u〉)

Take µ̄ as the maximizer for the supremum of X ′ we get the other side of the
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inequality. Hence

|Fi(y)− Fi(y′)| ≤
1

n
sup
µ∈A

(|〈y − µ, u〉|+ |〈y′ − µ, u〉|)

≤ 1

n

(
|〈y − µ∗Zy , u〉|+ |〈y

′ − µ∗Z′y , u〉|+ 4Rmax

)
:= ρ(y, y′)

Note for all t such that |t| < s, we have et + e−t ≤ es + e−s, we have

eλ(F (y)−F (y′)) + e−λ(F (y)−F (y′)) ≤ eλρ(y,y′) + e−λρ(y,y′)

By symmetry, we have:

∑
y,y′

P (y)P (y′)eλ(F (y)−F (y′)) ≤1

2

(
Ey,y′eλρ(y,y′) + Ey,y′e−λρ(y,y′)

)
=EεEy,y′eλερ(y,y′)

(i)

≤ eλ
2/n2

E[e4λεRmax/n]

(ii)

≤eλ2/n2+8λ2R2
max/n

2 ≤ eλ
2(1+3Rmax)2/n2

where ε is a Rademacher random variable independent of y, y′. Note

that ε|〈y−µ∗Zy , u〉| is identically distributed as a Gaussian random variable with

mean zero and variance 1. Also since by construction y and y′ are independent,

inequality (i) follows using the moment generating function of a Gaussian.

Inequality (ii) follows from Hoeffding’s Lemma (Eq (3.16) in [48]) since ε ∈

[−1, 1]. Therefore,

E
[
eλVi |X i−1

1

]
≤ eλ

2/n2+8λ2R2
max/n

2 ≤ eλ
2(1+3Rmax)2/n2

(6.28)
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Applying standard Markov inequality, we have

P (g(X)− Eg(X) > t) = P

(
n∑
i=1

Vi > t

)
≤e−λtE

[
Πn
i=1e

λVi
]

(i)
=e−λtE

[
E
[
Πn
i=1e

λVi |Xn−1
1

]]
=e−λtE

[
Πn−1
i=1 e

λViE
[
eλVn|Xn−1

1

]]
(ii)
=e−λtE

[
Πn
i=1E

[
eλVi |X i−1

1 ]
]]

(iii)

≤ exp

(
−λt+

λ2(1 + 3Rmax)2

n

)
where step (ii) follows by applying step (i) repeatedly and step (iii) follows

by applying Eq (6.28). Optimizing over λ we have P (g(X) − Eg(X) > t) ≤

exp
(
− nt2

4(1+Rmax)2

)
. Taking t = 2(1 + 3Rmax)

√
d logn
n

, we have

P

(
g(X)− Eg(X) > 2(1 + 3Rmax)

√
d log n

n

)
≤n−d

6.4 Initialization

This section provides the number of initializations needed for the con-

dition in Theorem 2.1.

Proposition 6.1. Let πi = 1
M
,∀i ∈ [M ], Rmin = Ω(

√
d), and let a satisfy the

conditions in Theorem 2.1. Then with log(1/δ)√
2πM

(
e

1−e−a
√
d/2

)M
initializations, the

probability of having at least one good initialization is greater than 1− δ.
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The proof follows directly from some combinatorial arguments and

Lemma 6.5.

Proof of Proposition 6.1. Define event Einit(a) = {µ0
i ∈ Bµ∗i (a), ∀i ∈ [M ]}.

By equal weights assumption, the probability of randomly sampled M points

having exactly one from each cluster is M !
MM . By Sterling’s formula, we have

M ! ≥
√

2πMe−M . For each center, by Lemma 6.5 we have the probability of

it lying in Bµ∗i (a) is no less than 1− e−a
√
d/2. Hence

P (Einit(a)) ≥
√

2πM

(
1− e−a

√
d/2

e

)M

=: p

Now assume the number of initializations is T , in order to satisfy the required

property, we need (1− P (Einit(a)))T ≤ δ. A sufficient condition is

T ≥ log(1/δ)

log (1− p)

Note that log(1 − x) ≥ −x,∀0 ≤ x ≤ 0.5. Since p < .5 for M ≥ 2, we see

that as long as T ≥ log(1/δ)√
2πM

(
e

1−e−a
√
d/2

)M
, with probability 1 − δ we will have

a good initialization.

Remark 6.1. Perhaps not so surprisingly, the above theorem requires a stronger

separation condition, i.e. Rmin = Ω(
√
d), whereas all our analysis requires

Rmin = Ω(
√
d0) where d0 := min(d,M) can be thought of as effective dimen-

sion. This difficulty can be alleviated by using projections schemes similar to

those in [8, 63]. We leave this for future work.
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Chapter 7

Appendix in SDP-based Kernel Clustering
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7.1 Sub-gaussian random vector

In our analysis, we make use of some useful properties of sub-gaussian

random variables, which are defined by the following equivalent properties.

More discussions on this topic can be found in [104].

Lemma 7.1 ([104]). The sub-gaussian norm of X is denoted by ‖X‖ψ2,

‖X‖ψ2 = sup
p≥1

p−1/2(E|X|p)1/p.

Every sub-gaussian random variable X satisfies:

(1) P (|X| > t) ≤ exp(1− ct2/‖X‖2
ψ2

) for all t ≥ 0;

(2) (E|X|p)1/p ≤ ‖X‖ψ2

√
p for all p ≥ 1. In particular, Var(X) ≤ 2‖X‖2

ψ2
.

(3) Consider a finite number of independent centered sub-gaussian random

variables Xi. Then
∑

iXi is also a centered sub-gaussian random vari-

able. Moreover,

‖
∑
i

Xi‖2
ψ2
≤ C

∑
i

‖Xi‖2
ψ2

We say that a random vector X ∈ Rn is sub-gaussian if the one-

dimensional marginals 〈X, x〉 are sub-gaussian random variables for all x ∈ Rn.

We will also see the square of sub-gaussian random variables, the fol-

lowing lemma shows it will be sub-exponential. A random variable is sub-

exponential if the following equivalent properties hold with parameters Ki > 0
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differing from each other by at most an absolute constant factor.

P (|X| > t) ≤ exp(1− t/K1) for all t ≥ 0; (7.1)

(E|X|)1/p ≤ K2p for all p ≥ 1; (7.2)

E exp(X/K3) ≤ e. (7.3)

Lemma 7.2 ([104]). A random variable X is sub-gaussian if and only if X2

is sub-exponential. Moreover,

‖X‖2
ψ2
≤ ‖X2‖ψ1 ≤ 2‖X‖2

ψ2

We have a Bernstein-type inequality for independent sum of sub-exponential

random variables.

Lemma 7.3 ([104]). Let X1, · · · , XN be independent centered sub-exponential

random variable, and M = maxi ‖Xi‖ψ1. Then for every a = (a1, · · · , aN) ∈

RN and every t ≥ 0, we have

P

(∣∣∣∣∣
N∑
i=1

aiXi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

[
−cmin

(
t2

M2‖a‖2
2

,
t

M‖a‖∞

)]
where c > 0 is an absolute constant.

7.2 Proof of Theorem 2.8

To prove Theorem 2.8, we work with the elementwise expansion, for

ease of notation, we slightly abuse K and K̃ to represent KI×I and K̃I×I in
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this proof. We use c to represent any constant that does not depend on the

parameters, and its value can change from line to line. For i ∈ Ck, j ∈ C`,

recall that Wi is sub-gaussian random vector with mean 0, covariance σ2
kI and

sub-gaussian norm bounded by b. We have

‖Yi − Yj‖2
2 = ‖µk − µ`‖2

2 + 2
(Wi −Wj)

T

√
d

(µk − µ`) +
‖Wi −Wj‖2

2

d
(7.4)

As Wi and Wj are independent, Wi−Wj has mean 0 and covariance (σ2
k+σ2

` )I.

Define

βij = ‖Wi −Wj‖2
2/d− (σ2

k + σ2
` ),

αij = (Wi −Wj)
′(µk − µ`)/

√
d.

Hence Eβij = 0. By the Lipschitz continuity of f ,

|Kij − K̃ij| ≤ 2C0|βij + 2αij| (7.5)

By Lemma 7.1-(3), αij is also sub-gaussian, with sub-gaussian norm upper

bounded by 2bd2
k`C/d, for some C > 0. Then by Lemma 7.1-(1), ∃C1 > 0 s.t.

P

(
|αij| ≥ c

√
log d

d

)
≤ d−C1c2 (7.6)

To bound βij, note each summand in Eq. (7.7) is a squared sub-gaussian

random variable, thus is a sub-exponential random variable by Lemma 7.2.

βij =
d∑
d=1

(W
(d)
i −W

(d)
j )2/d− (σ2

k + σ2
` ). (7.7)
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By Lemma 7.3 with t = c
√

log d
d

, we see that with a = (1, . . . , 1)/p,

min
(
c2 t2

M2‖a‖22
, c t

M‖a‖∞

)
= min

(
c2 log d
M2 , c

√
d log d
M

)
≥ c′ log p for large enough p.

Thus ∃C2 > 0 such that for large enough p,

P

(
|βij| ≤ c

√
log d

d

)
≥ 1− d−C2c2 (7.8)

By union bound, for some ρ > 0, with probability at least 1− n2d−ρc
2
,

sup
i,j∈I
|Kij − K̃ij| ≤ c

√
log d

d
.

7.3 Proof of Lemma 2.3

Define a diagonal matrix D where Dii = f(σ2
k), if i ∈ Ck and 0 if i ∈ O.

Write K̃0 = K̃−I+D2, which is basically replacing the diagonal of K̃ to make

it blockwise constant. By the fact f(d2
k` + σ2

k + σ2
` ) = f(d2

k`)f(σ2
k)f(σ2

` ), K̃0

has the decomposition K̃0 = DZBZTD where B ∈ Rr×r and Bk` = f(d2
k`). In

fact, B is exactly the Gaussian kernel matrix generated by {µi}ri=1 centers, and

is strictly positive semi-definite when the scale parameter η 6= 0 and centers

are all different. Hence K̃0 is rank r.

λr(DZBZ
TD) = λr(B

1/2ZTD2ZB1/2) = λr(BZ
TD2Z)

The first equality uses the fact that XXT and XTX has the same set

of eigenvalues. The second step uses the fact that B is full rank, since all

clusters have distinct means. Now B and ZTD2Z are both r × r positive
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definite matrices. So the rth eigenvalue is the smallest eigenvalue. Now we

use, λmin(BZTD2Z) ≥ λmin(B)λmin(ZTD2Z) and have

λr(K̃0) ≥ λr(Z
TD2Z)λr(B) ≥ n

r
λmin(B) ·min

k

(
f(σ2

k)
)2
.

Then λr(K̃0) = Ω(n
r
). On the other hand, ‖I−D2‖2 ≤ maxk(1− f(2σ2

k)). Let

λr(K̃), λr+1(K̃) be the rth and r + 1th eigenvalue of K̃, by Weyl’s inequality,

λr(K̃) ≥ λr(K̃0)−max
k

(1− f(2σ2
k)) = Ω(

n

r
λmin(B))

λr+1(K̃) ≤ max
k

(1− f(2σ2
k)) = O(1) (7.9)

Putting pieces together,

λr(K̃)−λr+1(K̃) ≥ n

r
λmin(B)·min

k

(
f(σ2

k)
)2−2 max

k
(1−f(2σ2

k)) = Ω
(n
r
λmin(B)

)
.

7.4 Proof of Lemma 2.4

Proof. First note that X̂ is the optimal solution of (SDP-1), so 〈K, X̂〉 ≥

〈K,X0〉. Hence 〈K − K̃, X̂ −X0〉 ≥ 〈K̃,X0 − X̂〉.

Let a := mink f(2σ2
k), b := maxk 6=` f(d2

k` + σ2
k + σ2

` ) and γmin := a− b,

we have
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〈K̃,X0 − X̂〉

=
∑
k

∑
i∈C̃k

∑
j∈C̃k

f(2σ2
k)(1− X̂ij)−

∑
`6=k

∑
j∈C̃`

f(d2
k` + σ2

k + σ2
` )X̂ij


≥
∑
k

∑
i∈C̃k

a∑
j∈C̃k

(1− X̂ij)− b
∑
` 6=k

∑
j∈C̃`

X̂ij


≥
∑
k

∑
i∈C̃k

a∑
j∈C̃k

(1− X̂ij)− b

n
r
−
∑
j∈C̃k

X̂ij


≥ γmin

∑
k

∑
i∈C̃k

∑
j∈C̃k

(1− X̂ij)

(7.10)

On the other hand, by the fact that X̂ij ≥ 0 and row sum is n/r,

‖X0 − X̂‖1 =
∑
k

∑
i∈C̃k

∑
j∈C̃k

(1− X̂ij) +
∑
`6=k

∑
j∈C̃`

X̂ij


=
∑
k

∑
i∈C̃k

∑
j∈C̃k

(1− X̂ij) +

n/r −∑
j∈C̃k

X̂ij


≤ 2

∑
k

∑
i∈C̃k

∑
j∈C̃k

(1− X̂ij)

(7.11)

Equations (7.10) and (7.11) gives us:

‖X0 − X̂‖1 ≤
2

γmin

〈K̃,X0 − X̂〉 ≤
2〈K − K̃, X̂ −X0〉

γmin
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7.5 Proof of Theorem 2.9

By Lemma 2.4,

‖X0 − X̂‖1 ≤
2〈K̃,X0 − X̂〉

γmin

≤ 2〈K − K̃, X̂ −X0〉
γmin

Divide the inner product into inlier part and outlier part, and note that 0 <

|Kij − K̃ij| < 1,∀i, j. By Theorem 2.8, w.p. at least 1− n2d−ρc
2
, we have

〈K − K̃, X̂ −X0〉

=〈KI×I − K̃I×I, X̂ −X0〉+ 〈KR − K̃R, X̂ −X0〉

≤‖X̂ −X0‖1 · ‖KI×I − K̃I×I‖∞ +
∑

(i,j)∈R

(X̂ij − (X0)ij)(Kij − K̃ij)

≤‖X̂ −X0‖1 · ‖KI×I − K̃I×I‖∞ +
∑

(i,j)∈R

X̂ij(Kij − K̃ij)−
∑

(i,j)∈R

(X0)ij(Kij − K̃ij)

≤‖X̂ −X0‖1 · ‖KI×I − K̃I×I‖∞ +
∑

(i,j)∈R

X̂ij +
∑

(i,j)∈R

(X0)ij

≤C
√

log d

d
‖X0 − X̂‖1 +

4mn

r

Thus, (
γmin − 2C

√
log d

d

)
‖X̂ −X0‖1 ≤

4mn

r

When
√

log d
d

= o(γmin), rearranging terms gives

‖X0 − X̂‖1 ≤
4mn
r

γmin − C
√

log d
d

(7.12)

≤ 4mn

rγmin

(
1 +

C

γmin

√
log d

d

)
= O

(
mn

rγmin

)
(7.13)
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7.6 Davis-Kahan Theorem

Theorem 7.1 ([119]). Let Σ, Σ̂ ∈ Rd×d be symmetric, with eigenvalues λ1 ≥

· · · ≥ λd and λ̂1 ≥ · · · ≥ λ̂d respectively. Fix 1 ≤ r ≤ s ≤ p and assume that

min(λr−1 − λr, λs−1 − λs) > 0, where λ0 := ∞ and λp+1 := −∞. Let d0 :=

s− r + 1, and let V = (vr, vr+1, · · · , vs) ∈ Rd×d0 and V̂ = (v̂r, v̂r+1, · · · , v̂s) ∈

Rd×d0 have orthonormal columns satisfying Σvj = λjvj and Σ̂v̂j = λ̂j v̂j, for

j = r, r + 1, · · · , s. Then there exists an orthogonal matrix Ô ∈ Rd0×d0 such

that

‖V̂ Ô − V ‖F ≤
23/2‖Σ̂− Σ‖F

min(λr−1 − λr, λs−1 − λs)
.

7.7 Proof of Theorem 2.10

Proof. Let R be a n × n matrix with R(O,O) = I and zero otherwise, V̂r =

RV, V̂O = (I − R)V . V̂I
T
V̂I = V̂ T (I − R)V̂ . For any input matrix W ,

define lossk(W ) := minM has exactly k unique rows ‖W −M‖2
F as the k-means loss

of clustering W corresponding to cluster number k. Furthermore, define two

feasible sets: C1 = {M ∈ Rn×r : MI has exactly r unique rows} and C2 =

{M ∈ Rn×r : MI has no more than r − 1 unique rows}. We want to obtain a

condition such that

min
M∈C1

‖V̂ −M‖2
F < min

M∈C2

‖V̂ −M‖2
F (7.14)

Intuitively, this condition indicates the k-means loss of inlier nodes

assigned to no more than r − 1 clusters is strictly larger than the k-means
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loss for assigning inliers to exactly r clusters. By optimality, minM∈C1 ‖V̂ −

M‖2
F ≤ ‖V̂ − V O‖2

F , therefore a sufficient condition of Eq. (7.14) would be

‖V̂ −V O‖2
F < minM∈C2 ‖V̂ −M‖2

F . Now, we will obtain a lower bound on the

k-means loss on C2. In order to do so, we will use [87] to write the k-means

loss for any number of clusters k and input matrix W as the following 0-1 SDP

problem for any input matrix W .

lossk(W ) = min
X

trace(WW T (I −X)),

s.t X1 = 1, X = XT , X ≥ 0, trace(X) = k, X2 = X.

Note that by relaxing the constraints, we can see that:

lossk(W ) ≥ min
X

trace(WW T (I −X)), s.t X = XT , X2 = X, trace(X) = k

The right hand side is essentially finding the trailing k eigenvectors of WW T

[87]. Let the singular values of W be σ1, . . . , σr.

lossk(W ) ≥
r∑

i=k+1

σ2
i (7.15)

Let M∗ = arg minM∈C2 ‖V̂ −M‖2
F , then

min
M∈C2

‖V̂ −M‖2
F =‖V̂ −M∗‖2

F

=‖V̂I −M∗
I ‖2

F + ‖V̂O −M∗
O‖2

F

≥ min
s≤r−1

losss(V̂I) + 0
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The last inequality comes from the fact that M∗
I has no more than r − 1

unique rows since M∗ ∈ C2. Note that losss is non-increasing as s increases.

To see this, consider the following procedure. Suppose the solution for (k− 1)

centroids are {ci}k−1
i=1 , now generate a feasible k centroid solution by keeping

{ci}k−1
i=1 and picking the kth centroid as the point that has largest distance with

its corresponding centroid (there will always exist such a point that does not

overlap with the existing centroids as long as loss is greater than 0). This

consists an upper bound for the k-means loss with k clusters, which is smaller

than the k-means loss with k − 1 clusters.

Therefore without loss of generality, we assume the inliers are assigned

r − 1 clusters and one cluster contains only outliers. By Eq. (7.15) we have

lossr−1(V̂I) ≥ σr(V̂I)
2 = λr(V̂I

T
V̂I) ≥ λr(V̂

T V̂ )− ‖V̂ TRV̂ ‖ ≥ 1− ‖V̂O‖2
F

Now, ‖V̂O‖F ≤ ‖VOO‖F + ‖V̂O − VOO‖F However, recall that V = Zν, and

since V TV = Ir, ν
Tν = r/nI. Thus every row of V is of norm

√
r
n
. Using

(a+ b)2 ≤ 2(a2 + b2), we have:

‖V̂O‖2
F ≤ 2(‖VOO‖2

F + ‖V̂O − VOO‖2
F ) ≤ 2

(mr
n

+ ‖V̂ − V O‖2
F

)
Let u2

V̂
denote an upper bound on ‖V̂ − V O‖2

F , then we have:

lossr−1(V̂I) ≥ 1− 2
(mr
n

+ u2
V̂

)
On the other hand, lossr(V̂ ) ≤ ‖V̂ − V O‖2

F ≤ u2
V̂

by optimality. Hence, we

use the condition,
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1− 2
(mr
n

+ u2
V̂

)
≥ u2

V̂
⇒ 3u2

V̂
+ 2

mr

n
< 1 (7.16)

Proof of Corollary 2.1

Proof. By Eq. (2.18), we have for eigenvectors of X̂,

‖Û − UO‖F ≤ OP

(√
mr

nγmin

)
Plug it to Theorem 2.10 we have uV̂ = C

√
mr
nγmin

, therefore

m <
nγmin

r(C + 2γmin)
=
C ′nγmin

r

For K-SVD, by Eq. (2.19), uV̂ = max

{
OP

( √
mn

λr−λr+1

)
, OP

(
n
√

log d/d

λr−λr+1

)}
.

We first consider the scenario wherem = O
(
n log d
d

)
, now uV̂ =

C1n
√

log p/p

λr−λr+1
.

Plugging this into inequality (7.16), we have

m <
n

2r

(
1− Cn2 log d

d(λr − λr+1)2

)
When d

log d
> 2r+ Cn2

(λr(K̃)−(λr+1(K̃))2
, we have n

2r

(
1− Cn2 log d

d(λr−λr+1)2

)
> n log d

d
,

therefore m = O
(
n log d
d

)
= O

(
n

2r+ Cn2

(λr−λr+1)
2

)
.

In the second scenario where m = Ω
(
n log p
p

)
, we have uV̂ = C2

√
mn

λr−λr+1
.

Now (7.16) solves

m <
Cn

n2

(λr−λr+1)2
+ C ′r

(7.17)
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which shares the same formulation as the first condition.

In particular, when all clusters share the same variance, by Lemma 2.3,

λr − λr+1 = Θ
(
nγmin

r

)
. Substituting into Eq. (7.17), we have m <

Cnγ2min

r2
.

7.8 Proof of Lemma 2.5

We prove the result for k-means on X̂. Let Û be the top r eigenvectors

of X̂, U ∈ Rn×r be the top r eigenvector of X0, then by construction, it

can be written as U =

[
U I

UO

]
. Let ν ∈ Rr×r be the population value of the

eigenvector corresponding to each cluster, U = Zν. U is a unit basis so we

know I = UTU = νTZTZν = n
r
νTν. So νTν = r

n
Ir.

Define C = {M ∈ Rn×r : M has no more thanr unique rows}. Then

minimizing the k-means objective for Û is equivalent to

min
{m1,··· ,mr}⊂Rr

∑
i

min
g
‖ûi −mg‖2

2 = min
M∈C
‖Û −M‖2

F

So C = [c1, · · · , cn] = arg minM∈C ‖Û −M‖2
F and ‖C − Û‖ ≤ ‖ZνO − Û‖. ci

is the center assigned to point i by running k-means on Û .

When i, j ∈ I, Zi 6= Zj,

‖Ziν − Zjν‖ =‖(Zi − Zj)ν‖ ≥
√

2 min
x:‖x‖2=1

√
xTνTνx =

√
2r

n

So

‖ci − ZjνO‖ ≥ ‖Ziν − Zjν‖ − ‖ci − ZiνO‖ ≥
√

2r

n
−
√

r

2n
=

√
r

2n
(7.18)
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Therefore when i, j ∈ I and Zi 6= Zj, ‖ci − ZiνO‖ <
√

r
2n
⇒ ‖ci − ZiνO‖2 <

‖ci − ZjνO‖2, which means node i is correctly clustered.

Now we bound the cardinality of M.

|M| ≤ 2n

r

∑
i∈I

‖ci − ZiνO‖2
F

=
2n

r
‖CI − U IO‖2

F

≤ 2n

r
(‖CI − Û I‖F + ‖Û I − U IO‖F )2

‖CI − Û I‖2
F = ‖Û − C‖2

F − ‖CO − ÛO‖2
F

≤ ‖Û − C‖2
F ≤ ‖Û − UO‖2

F

Therefore,

|M| ≤ 2n

r
(‖Û − UO‖F + ‖Û I − U IO‖F )2 ≤ 8n

r
‖Û − UO‖2

F

For k-means procedure on K, note that K̃ is blockwise constant except

for the diagonals. It can be shown that the top r eigenvectors of K̃ are also

piecewise constant. The rest of the analysis is similar to that of X̂.

7.9 Proof of Corollary 2.2

Proof. Denote by d0 the distance between clusters, α = f(2σ2), β = f(d2
0 +

2σ2), hence γmin = α− β. Then K̃ has the form (α− β)X0 + βE + (1− α)I,

and λr(K̃) ≥ γminn/r, since βE + (1− α)I is positive semidefinite.

On the other hand, from Lemma 2.3 and Eq. (7.9), λr+1(K̃) ≤ 1 −

f(2σ2) ≤ 1. Hence λr−λr+1 ≥ n
r
γmin− 1. By Lemma 2.5 the misclassification
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rate of K-SVD becomes:

|Mksvd| ≤ C
n

r

(
23/2‖K̃ −K‖F
λr(K̃)− λr+1(K̃)

)2

≤ C
n

r

max

{
n
√

log d
d
,
√
mn

}
n
r
γmin


2

≤ max

(
OP

(
mr

γ2
min

)
, OP

(
nr log d/d

γ2
min

))
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Chapter 8

Appendix for Semi-definite Relaxation for

Dense and Sparse Stochastic Block Models
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In this chapter, we present the detailed proofs for guarantees of semi-

definite relaxation for both dense and sparse networks generated by stochastic

block model. The proof for dense graphs is in Section 8.1. And the proof for

sparse graph can be found in Section 8.3.

8.1 Proofs for dense networks

8.1.1 Proof of Theorem 3.1 and 3.2

Proof of Theorem 3.2. The construction (3.11)-(3.14) together with X0 is a

primal-dual certificate, if (3.6)-(3.9) are satisfied. In view of the fact that

both Λ and X are positive semi-definite, 〈Λ, X〉 = 0 is equivalent to λX = 0.

We need to check the following:

(a) ΛX = 0;

(b) Λ � 0;

(c) Γuv ≥ 0,∀u, v.

Note that span(X)=span(1Sk), therefore we only need to show Λ1Sk =

0,∀k ∈ [r]. Or equivalently ΛSk1mk = 0 and ΛSkS`1m` = 0. The latter holds

by (3.11). For the former, recall that αTSk1mk = 1
mk

(
1TmkASk1mk

)
+ φk.

0 =ΛSk1mk = −ASk1mk + (1mkα
T
Sk

1mk + αSk1
T
mk

1mk) + β1mk

=− ASk1mk +

(
1TmkASk1mk

mk

+ φk

)
1mk + ASk1mk + φk1mk + β1mk

=

(
1TmkASk1mk

mk

)
1mk + 2φk1mk + β1mk
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The equation holds by taking

φk = −1

2

(
β +

1TmkASk1mk
mk

)
. (8.1)

Positive Semidefiniteness of Λ For (b), since span(1Sk) ⊂ ker(Λ), it suf-

fices to show that for any u ∈ span(1Sk)
⊥, uTΛu ≥ ε‖u‖2. Consider the

decomposition u =
∑

k uSk , where uSk := u ◦ 1Sk , and uSk ⊥ 1mk .

uTΛu =
∑
k

uTSkΛSkuSk +
∑
k 6=`

uTSkΛSkS`uS`

=−
∑
k

uTSkASkuSk + β
∑
k

uTSkuSk −
∑
k 6=`

uTSkASkS`uS`

=−
∑
k

uTSk(A− P )SkuSk −
∑
k 6=`

uTSk(A− P )SkS`uS` + β‖u‖2
2

=− uTAu+ β‖u‖2
2 ≥ ε‖u‖2

In order to have β ≥ ‖A − P‖2, using Lemma 3.1, we propose the

following sufficient condition:

β = Ω(
√
npmax) ≥ ‖A− P‖2 (8.2)

Positiveness of Γ For (c), denote di(Sk) =
∑

j∈Sk Ai,j, which is the number

of edges from node i to cluster k, and d̄i(Sk) = di(Sk)
mk

. Define the average

degree between two clusters as d̄(SkS`) =
∑
i∈S`

di(Sk)

m`
. For k 6= `, we plug
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(3.13) into (3.11) and get

ΓSkS` =− ASkS` + (I − 1

mk

Emk)ASkS`(I −
1

m`

Em`) +
1

mk

(ASk1mk + φk1mk) 1Tm`

+ 1mk
1

m`

(
1Tm`AS` + φ`1

T
m`

)
=− 1

mk

EmkASkS` −
1

m`

ASkS`Em` +
1

mkm`

EmkASkS`Em`+(
ESkS`AS`

m`

+
ASkESkS`

mk

)
+

(
φk
mk

+
φ`
m`

)
Emk,m`

(8.3)

Therefore for u ∈ Ck, v ∈ C`, we have

Γuv = −d̄v(Sk)− d̄u(S`) + d̄(SkS`) + d̄v(S`) + d̄u(Sk) +
φk
mk

+
φ`
m`

(8.4)

Plugging in Eq (8.1), we have Γuv ≥ 0 equivalent to

d̄u(Sk)− d̄u(S`) +
1

2

(
d̄(SkS`)− d̄(SkSk)

)
+ d̄v(S`)− d̄v(Sk)+

1

2

(
d̄(SkS`)− d̄(S`S`)

)
− β

2m`

− β

2mk

≥ 0

(8.5)

By Chernoff bound, we have

P

(
d̄u(Sk) ≤ Bkk −

√
6Bkk log n

mk

)
≤ n−3

P

(
d̄u(S`) ≥ Bk` +

√
18Bk` log n

m`

)
≤ n−3

P

(
d̄(SkSk) ≥ Bkk +

√
18Bkk log n

mk(mk − 1)

)
≤ n−3

P

(
d̄(SkS`) ≤ Bk` −

√
6Bk` log n

mkm`

)
≤ n−3
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Apply union bound we have,

P

(
d̄u(Sk)− d̄u(S`) +

1

2

(
d̄(SkS`)− d̄(SkSk)

)
+ d̄v(S`)− d̄v(Sk) +

1

2

(
d̄(SkS`)− d̄(S`S`)

)
≤

1

2
(Bkk −Bk`) +

1

2
(B`` −Bk`)−

√
6 log n

(√
Bkk

mk

+

√
p`
m`

)

−

√
18Bk` log n

(
1

mk

+
1

m`

))
≤ 4n−3

We then apply union bound over all pairs of nodes and clusters, and combined

with Eq. (3.15), Γuv ≥ 0 for all pairs of (u, v) if

1

2
(Bkk −Bk`) +

1

2
(B`` −Bk`)−

√
6 log n

(√
Bkk

mk

+

√
B``

m`

)

−

√
18Bk` log n

(
1

mk

+
1

m`

)
− c
√
npmax

mmin

≥ 0

The proof follows by relaxing Bkk−Bk` with the minimum over all clusters.

For the proof of Theorem 3.1, we use the same dual certificate construc-

tion Eq. (3.11)-(3.14), with β = λ. The existence of the primal-dual certificate

is guaranteed by the proof of Theorem 3.2.

8.1.2 Proof of Proposition 3.1

Proof. When λ ≥ ‖A‖op, Ã = A− λI � 0. From the constraint we know that

X � 0, and has at least one eigenvalue 1 with eigenvector 1/
√
n. Consider

an eigen-decomposition X = 1
n
11T +

∑n
i=2 siuiu

T
i where si ≥ 0. Then the

objective is

〈Ã,X〉 = 1T Ã1/n+
∑
i

siu
T
i Ãui
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Note that si ≥ 0 and Ã � 0, so the above objective is maximized when

si = 0,∀i ≥ 2. Therefore X∗ = 11T/n.

8.2 Proof of Lemma 3.2

We start with the following lemma, whose proof can be found in [79].

Lemma 8.1. For any X that satisfies X � 0, X ≥ 0, X1 = 1, we have

‖X‖2
F ≤ trace(X).

Proof of Lemma 3.2. Note that both X0 and XM are in the feasible set F, by

optimality, we have 〈M,XM〉 ≥ 〈M,X0〉. We construct Q as stated in the

lemma to obtain: 〈Q,XM −X0〉, 〈M −Q,XM −X0〉 ≥ 〈Q,X0 −XM〉. Note

that Q is constant on diagonal blocks and upper bounded by qk on off-diagonal

blocks, with respect to the clustering of nodes. Using the fact that |Ck| = mk,

we have:

〈M,X0 −XM〉 =
∑
k

∑
i∈Ck

(
β

(in)
k

∑
j∈Ck

(
1

mk

− X̂ij

)
+
∑
`6=k

∑
j∈C`

Qij(0− (XM)ij)

)

≥
∑
k

∑
i∈Ck

(
β

(in)
k

∑
j∈Ck

(
1

mk

− (XM)ij

)
− β(out)

k

∑
` 6=k

∑
j∈C`

(XM)ij

)

=
∑
k

∑
i∈Ck

(
β

(in)
k

(
1−

∑
j∈Ck

(XM)ij

)
− β(out)

k

(
1−

∑
j∈Ck

(XM)ij

))

=
∑
k

∑
i∈Ck

(β
(in)
k − β(out)

k )

(
1−

∑
j∈Ck

(XM)ij

)
≥ min

k
(β

(in)
k − β(out)

k )
∑
k

∑
i∈Ck

(
1−

∑
j∈Ck

(XM)ij

)

The third line and last inequality uses the constraint that
∑

j X̂ij = 1,
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and 1−
∑

j∈Ck X̂ij ≥ 1−
∑

j X̂ij = 0. On the other hand,

‖XM −X0‖2
F =‖XM‖2

F − ‖X0‖2
F + 2〈X0 −XM , X0〉

By Lemma 8.1, and the fact that ‖X0‖2
F = r, we have ‖XM‖2

F − ‖X0‖2
F ≤

trace(XM)− r = 0. Since mink(β
(in)
k − β(out)

k ) ≥ 0,

‖XM −X0‖2
F ≤ 2〈X0 −XM , X0〉 = 2

∑
k

∑
i∈Ck

∑
j∈Ck

1

mk

(
1

mk

− (XM)ij

)

=2
∑
k

∑
i∈Ck

1

mk

(
1−

∑
j∈Ck

(XM)ij

)
≤ 2

mmin

∑
k

∑
i∈Ck

(
1−

∑
j∈Ck

(XM)ij

)

≤ 2

mmin mink(β
(in)
k − β(out)

k )
〈Q,X0 −XM〉 ≤

2

mmin mink(β
(in)
k − β(out)

k )
〈M −Q,XM −X0〉

8.3 Analysis of sparse graph

We first introduce the following result on sparse graph with Grothendieck’s

inequality by [43].

Lemma 8.2 ([43]). Let M+
G = {X : X � 0, diag(X) � In}, A = (aij) ∈ Rn×n

be a symmetric matrix whose diagonal entries equal 0, and entries above the

diagonal are independent random variables satisfying 0 ≤ aij ≤ 1. Let P =

E[A|Z]. Assume that p̄ := 2
n(n−1)

∑
i<j Var(aij) ≥ 9

n
. Then, with probability

at least 1 − e35−n, we have maxX∈M+
G
|〈A− P ,X〉| ≤ KG‖A − P‖`∞→`1 ≤

3KGp̄
1/2n3/2, where KG is the Grothendieck’s constant, and its best know upper

bound is 1.783.
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Proof of Proposition 3.2. Notice that A and P := E[A|Z] has zero diagonals.

Therefore,

〈P −Q,XA −X0〉 =
∑
k

∑
i∈Ck

pk

(
1

mk

− (XA)ii

)
≤
∑
k

pk − pmintrace(XA) ≤ r(pmax − pmin)
, (8.6)

where pmax = maxk pk and pmin = mink pk. Thus by Lemma 3.2 and Eq (8.6),

‖XA −X0‖2
F ≤

2

mmin mink(pk − qk)
(〈A− P ,XA −X0〉+ r(pmax − pmin))

In sparse regime, both mminX0 and mminXA belong to the set M+
G. Let g =

np̄ ≥ 9, applying Lemma 8.2 we get with probability at least 1− e35−n,

‖XA −X0‖2
F ≤

22
√
n3p̄

m2
min mink(pk − qk)

+
2r(pmax − pmin)

mmin mink(pk − qk)

Substituting pk = ak/n, qk = bk/n, and using the fact that

2r(pmax − pmin)

mmin mink(pk − qk)
=

2rmmin(pmax − pmin)

m2
min mink(pk − qk)

≤ 2 maxk ak
m2

min mink(pk − qk)
= o(

√
n3p̄),

Recall that α := mmax/mmin, we get with probability tending to 1,

‖X̂ −X0‖2
F

‖X0‖2
F

≤
23n2√g

rm2
min mink(ak − bk)

≤
23α2r

√
g

mink(ak − bk)
.
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Appendix for Covariate Regularized

Community Detection
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9.1 Proof of Lemma 8.1

Proof of Lemma 8.1. We first show that for all such X, the eigenvalues of X

are in [0, 1]. Let vi be the eigenvector of X corresponding to the ith largest

eigenvalue λi. Since X is positive semi-definite, λi ≥ 0, ∀i. Without loss of

generality, let i∗ = arg maxi |v1(i)|, i.e. be the index of the entry with the

largest absolute value of v1. Since Xv1 = λ1v1, and
∑

j Xij = 1, Xij ≥ 0, we

have:

|λ1v1(i∗)| = |
∑
j

Xi∗jv1(j)| ≤
∑
j

Xi∗j|v1(j)| ≤ |v1(i∗)|.

Therefore |λ1| ≤ 1.

‖X‖2
F =

∑
i

λ2
i ≤

∑
i

λi = trace(X)

9.2 Proof of Proposition 4.1

Proof of Proposition 4.1. Recall that by definition, for i ∈ Ck, Yi − µk is sub-

gaussian random vector with sub-gaussian norm ψk. Using the following con-

centration inequality from [52] for sub-gaussian random vectors, we have:

For i ∈ Ck, P (‖Yi − µk‖2
2 > ψ2

k(d+ 2
√
td+ 2t)) ≤ e−t

We take t = c2
kd for ck ≥ 1. Since 1 + 2ck + 2c2

k ≤ 5c2
k for ck ≥ 1, we get

P (‖X − EX‖2 ≤ 5c2
kψ

2
kd) ≥ 1 − exp(−c2

kd). Let ∆k =
√

5ckψk
√
d, we can
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divide the nodes into “good nodes” (those close to their population mean) Sk

and the rest as follows:

Sk = {i ∈ Ck : ‖Yi − µk‖ ≤ ∆k}, S = ∪rk=1Sk (9.1)

Let m
(k)
c = mk − |Sk|. We want to bound m

(k)
c with high probability.

Note that m
(k)
c =

∑
i∈Ck 1(‖Yi− µk‖ ≥ ∆k) is a sum of i.i.d random variables.

Therefore, using the Hoeffding bound we have:

P
(
m(k)
c −mkP (i 6∈ Sk) ≥ mkδ

)
≤ exp(−2mkδ

2)

Using δ =
√

logmk/2mk, we have:

P
(
m(k)
c −mkP (i 6∈ Sk) ≥

√
mk logmk/2

)
≤ 1

mk

Since P (i 6∈ Sk) ≤ exp(−c2
kd), we have:

P
(
m(k)
c ≥ mk exp(−c2

kd) +
√
mk logmk/2)

)
≤ 1

mk

Finally, using union bound over all clusters we get:

P

(
mc ≥

∑
k

mke
−c2kd +

∑
k

√
mk logmk/2

)
≤
∑
k

1

mk

(9.2)

Now define

(KI)ij =

{
f(2∆k), if i, j ∈ Ck

min{f(dk` −∆k −∆`), Kij}, if i ∈ Ck, j ∈ C`, k 6= `
(9.3)

By Lemma 3.2, all diagonal blocks are blockwise constant and the off-diagonal

blocks are upper bounded by f(dk`−∆k−∆`). Let νk = f(2∆k)−max`6=k f(dk`−

∆k −∆`), and γ = mink νk. If νk ≥ 0, we have

‖XK −X0‖2
F ≤

2

mminγ
〈K −KI , XK −X0〉
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Apply Grothendieck’s inequality,

‖XK −X0‖2
F ≤

2KG

m2
minγ
‖K −KI‖`∞→`1 (9.4)

Now it remains to bound the `∞ → `1 norm of K − KI . Note that if i ∈

Sk, j ∈ S`, k 6= `, then by a simple use of triangle inequality we have Kij ≤

f(dk` −∆k −∆`), so Kij = (KI)ij; and if i, j ∈ Sk, then Kij ≥ f(2∆k).

‖K −KI‖`∞→`1 = max
x,y∈{±}n

∑
i,j

xiyj (Kij − (KI)ij)

≤ max
x,y∈{±}n

∑
i,j∈S

xiyj (Kij − (KI)ij) + max
x,y∈{±}n

∑
i 6∈S∪j 6∈S

xiyj (Kij − (KI)ij)

(i)

≤ max
x,y∈{±}n

∑
i,j∈S

xiyj (Kij − (KI)ij) + 2mcn

(ii)
= max

x,y∈{±}n

∑
k

∑
i,j∈Sk

xiyj (Kij − f(2∆k)) + 2mcn

≤
∑
k

m2
k(1− f(2∆k)) + 2mcn

(9.5)

where (i) is due to |Kij − (KI)ij| ≤ 1, and (ii) comes from the definition of

KI . Now Eq 9.4 follows as

‖XK −X0‖2
F ≤

4KG (
∑

km
2
k(1− f(2∆k)) + 2mcn)

m2
minγ

=
4KG

m2
min

∑
k

(
m2
k

1− f(2∆k)

γ
+ 2mkne

−c2kd/γ

)
+

√
2KGn

m2
minγ

∑
k

√
mk logmk

(9.6)

Recall that f(x) = exp(−ηx2), and γ = mink {f(2∆k)−max`6=k f(dk` −∆k −∆`)}.

For simplicity, we assume ck = c0. We take c0 =

√
log
(

d2min

ψ2
maxd

)
/d and the scale
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parameter η = φ
20c20ψ

2
maxd

, for some φ > 0, which will be chosen later. Further-

more, we also define

ξ =
dmin

2
√

5c0ψmax

√
d
− 1. (9.7)

If ξ > 1, then dmin > 4
√

5c0ψmax
√
d, and hence γ > 0. Also, since

η(dmin−2
√

5c0ψmax

√
d)2 = φξ2, ∀k, ` ∈ [r], if dmin := mink` dk` > 4

√
5c0ψmax

√
d,

then

γ ≥ f(2
√

5c0ψmax

√
d)− f(dmin − 2

√
5c0ψmax

√
d) = exp(−φ)− exp(−φξ2).

and

1− f(2∆k) ≤ 1− f(2
√

5c0ψmax

√
d) = 1− exp(φ).

Recall α = mmax

mmin
,

‖XK −X0‖2
F (9.8)

≤4KGrα
2 · 1− f(2

√
5c0ψmax

√
d) + 2r exp(−c2

0d)

γ
+

2
√

2KGmmaxr
2
√
mmax logmmax

γm2
min

≤4KGrα
2

γ

(
1− exp(−φ) +

2rψ2
max

√
d

d2
min

+ r
√

logmmax/2mmax

)

≤4KGrα
2

(1− exp(−φ) + 2rψ2
maxd/d

2
min

exp(−φ)− exp(−φξ2)︸ ︷︷ ︸
A

+
r
√

logmmax/2mmax

exp(−φ)− exp(−φξ2)︸ ︷︷ ︸
B

 (9.9)

We will first bound part (A).

(A) =
exp(φ)− 1 + exp(φ)2rψ2

maxd

d2min

1− exp(φ− φξ2)

(i)

≤
φ+ φ2

2
exp(φ) + exp(φ)2rψ2

maxd

d2min

1− exp(φ− φξ2)
(9.10)
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where (i) uses the Mean value theorem: for ex − 1 ≤ x+ eyx2/2 for y ∈ [0, x].

If dmin

ψmax

√
d
> max

{
1, 180

d

}
, using the fact that log x ≤

√
x, we have:

d2
min

ψ2
maxd

>
180

d2

dmin

ψmax

>
180

d
log

(
d2

min

ψ2
maxd

)
= 180c2

0.

Using Eq 9.7, we see that ξ >
√

180
2
√

5
− 1 = 2, and hence γ > 0. Now we pick

φ = log ξ
ξ2

.

Now we will use this to obtain a lower bound on 1−exp(φ−φξ2). Since

ξ ≥ 2, we have ξ2/4 ≥ 1. Hence

1− exp(φ− φξ2) ≥ 1− exp(φξ2/4− φξ2)

= 1− exp(−φ3ξ2/4) = 1− exp(−3 log ξ/4) = 1− ξ−3/4

≥ 1− 2−3/4 = .4

Using the fact that the function log x
x2

is monotonically decreasing when x > 2,

we see that φ < log 2/22 and exp(φ) ≤ 1.2. Furthermore,

γ ≥ exp(−φ)(1− exp(φ(1− ξ2))) ≥ .3 (9.11)

Now Eq. (9.10) yields:

(A) ≤
φ+ 1.2

(
φ2

2
+ 2rψ2

maxd

d2min

)
.4

≤ c log ξ

ξ2
+

3rψ2
maxd

d2
min

(ii)

≤ c
′ log(ξ + 1)

(ξ + 1)2
+

3rψ2
maxd

d2
min

≤ c′′
ψ2

maxd

d2
min

log

(
dmin

ψmax

√
d

)
+

3rψ2
maxd

d2
min

,

for some constant c. To get (ii), note that

log ξ

ξ2
≤ log(ξ + 1)

ξ2
≤ 2.25 log(ξ + 1)

(ξ + 1)2
,∀ξ > 2
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Finally, we bound (B) in Eq 9.9 using Eq 9.11.

(B) =
r
√

logmmax/2mmax

exp(−φ)− exp(−φξ2)
≤ c1r

√
logmmax

mmax

for some constant c1 > 0. Putting pieces together, we have

‖XK −X0‖2
F

‖X0‖2
F

≤Cα2 max

(
ψ2

maxd

d2
min

max

{
log

(
dmin

ψmax

√
d

)
, r

}
, r

√
logmmax

mmax

)

9.2.1 Analysis for XA+λK

Proof of Theorem 4.1. Let KI be defined as in Eq (9.3). Let γ = mink(pk −

qk + λ(f(2∆k) − max 6̀=k f(dk` − ∆k − ∆`))). When γ ≥ 0, Lemma 3.2 with

Q = ZBZT + λKI , we have

‖XA+λK −X0‖2
F ≤

2

mminγ
(〈A− P ,XA+λK −X0〉+ r(pmax − pmin) + λ〈K −KI , XA+λK −X0〉)

Now by Grothendieck’s inequality on both 〈A− P ,XA+λK −X0〉 and 〈K −KI , XA+λK −X0〉,

one gets,

‖XA+λK −X0‖2
F ≤

2KG

m2
minγ

(2‖A− P‖`∞→`1 + r(pmax − pmin) + 2λ‖K −KI‖`∞→`1)

By Lemma 8.2 and Eq (9.5),

‖XA+λK −X0‖2
F ≤

4KG

m2
minγ

(
6
√
n3p̄+ λ

(
2mcn+

∑
k

m2
k(1− f(2∆k))

))

Recall that for the sparse graph, pk = ak/n, qk = bk/n, g = p̄/n. Using

λ = `/n, mk = nπk, mmin = nπmin, and π0 :=
∑

k(mk exp(−∆2
k/(5ψ

2
k)) +
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√
mk logmk/2)/n in conjunction with Eq (9.2), we get with probability tend-

ing to 1,

‖XA+λK −X0‖2
F ≤ 4KG

6
√
g + ` (2π0 +

∑
k π

2
k(1− f(2∆k)))

π2
min mink(ak − bk + `νk)

9.3 Analysis of covariate clustering when d� r

Before proving Lemma 4.1, we clearly state our assumptions and other

useful lemmas.

Assumption 9.1. We assume that M is of rank r− 1, i.e. the means are not

collinear, or linearly dependent, other than the fact that they are centered.

Lemma 9.1. Let M =
∑

k πkµkµ
T
k and S be the covariance matrix of n data

points from a sub-gaussian mixture, then S = M +
∑

i πiσ
2
i Id. Let Ŝ be the

sample covariance matrix Ŝ =
∑n
i=1(Yi−Ȳ )(Yi−Ȳ )T

n
. We have ‖Ŝ−S‖ ≤ C

√
d logn
n

for some constant C with probability bigger than 1−O(n−d).

This is a direct consequence of Corollary 5.50 from [104]. The main

ingredient of the proof is provided below.

Lemma 9.2. Let Ur−1 be the top r − 1 eigenvectors of Ŝ estimated using P1,

and λ be the smallest positive eigenvalue of M . For any vector v in the span

of {µi}ri=1, as long as λ > 5

(
ψ2

max + C
√

d log2 n
n

)
we have ‖UT

r−1v‖ ≥ ‖v‖/2

with probability at least 1− Õ(n−d).
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Proof. Take n1 = n
logn

and v to be a vector in the span of {µi}ri=1. By def-

inition, we have ‖Mv‖ ≥ λ‖v‖. Let R = Ŝ − S. Denote σ̄2 =
∑

i πiσ
2
i , by

Lemma 9.1, S = M + σ̄2Id. We also know that σ̄2 ≤ σ2
max ≤ ψ2

max by the

property of sub-gaussian distributions. Since S is estimated from P1 with n1

points, applying Lemma 9.1 with n = n1 we get ‖R‖ ≤ ε = C
√

d logn1

n1
. By

Weyl’s inequality, ‖Ŝv‖ = ‖(M + R +
∑

i σ
2
i Id)v‖ ≥ (λ − σ2

max − ε)‖v‖. Let

Ur:d be the eigenspace orthogonal to Ur−1.

Assume the contradiction that ‖UT
r−1v‖ < ‖v‖/2. Then there has to

be a unit d dimensional vector u ∈ span(Ur:d), such that |uTv| > ‖v‖/2. On

one hand, if we write u = c v
‖v‖ +

√
1− c2v⊥, for |c| > 1/2 and some unit

vector v⊥ orthogonal to v, we have ‖Ŝu‖ ≥ λ−σ2
max−ε
2

−
√

1− c2‖Ŝv⊥‖. Note

‖Ŝv⊥‖ = ‖(M + R + σ̄2Id)v
⊥‖. Since v⊥ is orthogonal to the span of M ,

‖Ŝv⊥‖ ≤ (σ2
max + ε). Hence

‖Ŝu‖ ≥ λ− 3(σ2
max + ε)

2
. (9.12)

On the other hand, since u ∈ span(Ur:d), by Weyl’s inequality, ‖Ŝu‖ ≤

|λk(Ŝ)| ≤ σ2
max + ε. This contradicts with Eq. (9.12) since we assume λ >

5(ψ2
max + ε) ≥ 5(σ2

max + ε). The result is proven by contradiction.

Remark 9.1. Note that the result can be generalized to non-spherical case as

long as the largest eigenvalue of covariance matrix for each cluster is bounded.

We are now ready to prove Lemma 4.1.
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Proof of Lemma 4.1. Recall that Y ′i = UT
r−1Yi where Ur−1 and Yi are from

two different partitions and hence independent. Let Zi ∈ [r] denote that

latent variable associated with i. Thus, E[Y ′i |Zi = a, P2] = UT
r−1E[Yi|Zi =

a] = UT
r−1µa. Thus the means of the new mixture are µ′a := UT

r−1µa and the

covariance matrix is isotropic, i.e. E[(Y ′i −µ′a)(Y ′i −µ′a)T |P2, Zi = a] = σ2
aIr−1.

Furthermore, using Lemma 9.2 we have mink 6=` ‖µ′k−µ′`‖ = mink 6=` ‖UT
r−1(µk−

µ`)‖ ≥ ‖dmin‖/2. Since this requires an application of Lemma 9.2 to each of

the vectors µk − µ`, k, ` ∈ [r], the success probability is at least 1− Õ(r2n−d)

by union bound.
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