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Distributed Resource Integration Analysis and Network

Design of Electric Power Distribution Systems

Anamika Dubey, Ph.D.

The University of Texas at Austin, 2015

Supervisor: Surya Santoso

The integration of high percentages of distributed energy resources and

controllable loads into the distribution system coupled with the strict power

quality and service reliability requirements at the power distribution level are

necessitating a significant change in the planning, operation and control of the

traditional power distribution system. The future power distribution circuits

should be able to accommodate the new technologies while simultaneously pro-

viding a desired level of power quality and service reliability to the customers.

This thesis aims to address the current and future grid requirements of both

existing as well as new distribution systems with regard to power quality and

service reliability issues. Several methods are proposed to evaluate and mit-

igate power quality and service reliability concerns due to the integration of

smart grid technologies into both existing and new distribution circuits. No-

tably, for the existing distribution circuits, integration studies are simulated

to analyze and mitigate the impacts of electric vehicle loads and photovoltaic

generation on the distribution voltages. Furthermore, the problem of siting,

viii



sizing and deployment of distributed energy storage systems in meeting distri-

bution planning requirements with regard to integrating distributed generation

and providing contingency requirements is also addressed. A new distribution

system both grid-connected and operating in islanded mode, however, could

be designed to the new requirements. The new distribution circuit could be

designed to meet the power quality and service reliability standards directly,

thus more efficiently mitigating the concerns. In the thesis, the new distri-

bution circuit design is approached from the perspective of maximizing the

service reliability. For the new distribution circuit, approaches to reliability

based distribution circuit design are proposed.
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Chapter 1

Introduction

The utility distribution systems are designed to deliver reliable electric

power economically to the electrical consumers at their place of consumption.

Distribution system planning is essential to provide a cost-effective, reliable,

and quality power supply. A distribution planning problem can be modeled

to satisfy multiple design requirements including the ability to efficiently serve

the load demand, minimize feeder losses, adaptability to change in the supply

and demand, service continuity during outage, etc. An optimization problem

satisfying all design constraints could be complicated. To simplify the prob-

lem, the distribution circuit requirements are prioritized, and the planning

is done by solving multiple smaller optimization problems. Traditionally the

distribution system is planned for the lowest cost that can provide the power

supply reliably to the connected loads. The reliability of the circuit operation

and quality of the service are ensured by installing the equipment systems

on top of the earlier designed distribution circuit. Thus, to date the tradi-

tional distribution planning algorithms do not include power quality and grid

reliability directly into the distribution circuit design problem.

However, over the last decade, the electric power grid has been transform-

ing in an unprecedented way, necessitating a significant change in the way we

design, operate, and control the traditional power systems. Starting with the

high penetration of distributed generation, the integration of electric vehicle
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technology, bi-directional power flow, and smart metering the energy sector is

going through vast and rapid technical and policy related transformations. The

inherent variability of renewable generation and the vulnerability of traditional

power systems to the demand and generation stochasticity can potentially re-

sult in grid-related problems, thus necessitating it to include the impacts of

new technologies into the distribution planning framework. Additionally, in

recent years, with the increased dependence on electric power systems and

the increased complexity of the distribution circuits, ensuring a higher level

of reliability is becoming increasingly important. Particularly, in the case of

microgrids operating independent of the grid, for example, an all-electric ship,

where service continuity is crucial, the distribution planning problem should

be approached from the perspective of improving the service reliability.

This dissertation aims to address the current and future grid requirements

of both existing as well as new distribution systems with regard to power

quality and service reliability issues. Several methods are proposed to evalu-

ate and mitigate the power quality and service reliability concerns due to the

integration of smart grid technologies into both existing and new distribution

circuits. Since redesigning an existing distribution circuit is both uneconom-

ical and impractical, methods are proposed to evaluate the impacts and to

mitigate the concerns of integrating smart grid technologies into the existing

distribution systems. A new distribution system both grid-connected and op-

erating in islanded mode, however, could be designed to meet the power quality

and service reliability standards directly, thus, more efficiently mitigating the

concerns. In the thesis, the new distribution circuit design is approached from

the perspective of maximizing the service reliability. Therefore, for the cases

where a new distribution system can be economically implemented, approaches
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to reliability based distribution circuit design problem are proposed.

In sum, the objectives of this work are to 1) evaluate existing utility distri-

bution circuit for voltage and power quality issues and suggest control schemes

to mitigate power quality concerns, and 2) design a reliable distribution circuit

topology for a new distribution system such as an electric ship power system.

1.1 Existing Distribution Circuits

The general objectives regarding the existing distribution system are: 1)

to develop methods for evaluating the effects of smart grid technologies on

distribution circuit power quality, and 2) to propose mitigation schemes for

enabling the integration while maintaining the desired levels of power quality.

First, the effects of smart grid technologies such as electric vehicles (EVs),

photovoltaic systems (PVs), and distributed energy storage (ES) systems on

the circuit’s power quality are evaluated. Once the power quality concerns are

understood, suitable control schemes to mitigate the effects and to improve

the distribution circuit power quality are proposed. The detailed objective

and approach for the analysis is discussed here.

1.1.1 Electric Vehicle Loads

This work evaluates the impacts of integrating EV loads on utility dis-

tribution circuits and presents their solutions. The aim is to understand,

identify, and mitigate EV charging effects on a residential distribution circuit.

The analysis begins with evaluating the effects of EV charging on both pri-

mary and secondary services voltages. A three-phase model is simulated for

the distribution circuit under evaluation. The representative models for EV

charger and EV battery collectively termed EV load are developed using dif-
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ferent modeling techniques. Three different EV load models are developed:

a time-domain model, an average-value model [2, 3], and a constant-power

model. Note that each model is suited for a specific type of impact analysis.

Several circuit parameters affecting the distribution circuit voltage quality are

identified, and their effects on the distribution circuit are evaluated. To eval-

uate the impacts, several EV deployment scenario are simulated, and the load

flow analysis is executed for a day in a 15 min interval, termed daily load flow

solution. The results of daily load flow solutions with and without EV loads

are compared. The proposed impact analysis approach identifies several fac-

tors such as EV load location, size, distribution, and percentage penetration

affecting primary and secondary distribution voltage quality while EV loads

are charging [4–7]. The study concludes that EV load charging may increase

the peak load demand potentially overloading service transformers and may

result in unnecessary voltage drops in the secondary service voltages.

Given the impacts of EV charging on transformer loading and service volt-

age quality, the study presents the following infrastructural upgrades to miti-

gate EV load concerns: increasing the size of service transformer, and reconfig-

uring the distribution circuit using an additional service transformer. Since,

infrastructural upgrades require significant efforts and cost, to mitigate EV

load concerns we present both indirect and direct control algorithm for EV

charging. The impact of indirectly controlling EV charging using TOU pric-

ing is discussed first, followed by the proposed approach to identify an optimal

time to begin off-peak rates in a TOU pricing scenario while avoiding EV

customer inconvenience [8]. It is observed that the simultaneous charging of

EV loads during off-peak hours under a TOU schedule may result in a second

peak in the load demand. To address this concern a smart charging algorithm

4



directly controlling EV charging rate and time while aiming to minimize the

voltage variations at each EV load node is proposed. By reducing voltage

variations, the proposed algorithm optimally shifts the EV load demand to

off-peak load hours, thus mitigating loading concerns as well [9].

1.1.2 Photovoltaic Generation (PV)

A high penetration of residential photovoltaic (PV) panels can potentially

cause a number of operational issues on the distribution circuit. This study

further evaluates the impacts of integrating large percentages of distributed

photovoltaic systems (PVs) on the existing distribution circuits. First, the

representative models for the distribution circuit and the PV system are de-

veloped. Depending on the existing percentages of PV penetration, PV panel

efficiency, solar irradiance data, and the yearly load demand profiles of the con-

ventional loads, the distribution circuit is evaluated for any existing voltage

regulation concerns.

The increasing PV penetration and the undesirable impacts of PVs on

distribution circuit necessitate the task of determining the largest PV capac-

ity a given distribution circuit can accommodate without violating circuit’s

operational limits. The obtained PV capacity is referred to as the circuit’s

PV hosting capacity. The PV hosting capacity can be defined with respect

to several impact criteria, for example, system overvoltage, thermal stress,

harmonics, etc. This study presents a Monte Carlo based hourly stochastic

analysis framework to determine circuit’s PV hosting capacity. In the proposed

approach, Monte Carlo method is used to simulate the scenarios of probable

PV locations and sizes while the hourly analysis framework is used to include

the daily variations in load and PV generation. A mathematical formulation
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of the hosting capacity problem for bus overvoltage concerns is presented first,

followed by the proposed stochastic analysis approach [10]. A thorough in-

terpretation of PV hosting results is presented, and various factors that may

affect feeder’s voltage quality are identified [11]. Additionally, a method to

evaluate the percentage accuracy of the hosting capacity results is proposed

as well. Once voltage regulation effects are assessed, mitigation schemes to

increase the PV hosting capacity of the distribution circuit are proposed. The

application of smart inverters in mitigating PV impacts is investigated. Multi-

ple control methods including active and reactive power regulation using smart

inverter are implemented, and circuit’s PV hosting capacity is calculated.

1.1.3 Distributed Energy Storage Systems

In recent years, the advancement of smart-grid technologies and the in-

tegration of distributed photovoltaic (PV) generation have led to an increase

in distributed energy storage (ES) deployments. This calls for a standard

methodology, analytics, and tools to quantitatively evaluate the effectiveness

of energy storage solutions. In this thesis, a framework for the integration of

ES systems including impacts analysis of integrating ES and identifying ES

sizes and locations is presented. The proposed framework begins with identify-

ing application scenarios for ES deployment. Based on the selected application

scenarios, the starting point for the analysis including ES deployment type,

planning duration, feeder load conditions, and existing and future PV gener-

ation are identified. The ES size both power and energy system ratings are

calculated, and potential ES locations are determined. Finally, the grid impact

analysis is conducted to quantify the benefits of deploying ES and in meeting

the desired grid service objective.
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In this study, the ES is implemented for following application scenarios: 1)

meet substation N-1 contingency requirement, 2) increase feeder’s PV hosting

capacity, and 3) mitigate voltage variability concerns due to PV generation

variability. The study details the method to size, place, and control ES for

each application scenario.

1.2 New Distribution Circuits

On the contrary to existing distribution circuits, for a new distribution

circuit, the study aims to design an economical and reliable distribution circuit

topology. To date, the distribution circuit design problem is approached from

the perspective of minimizing the circuit losses. The future distribution circuit

requires a shift in the circuit design paradigm, from minimizing circuit losses

to optimizing service reliability and power quality. For example, the critical

loads such as weapons, communication systems, and propulsion systems of an

electric ship, require a reliable and space efficient distribution circuit topology.

As service reliability is becoming an increasingly important issue, the study

aims to explore the design of a reliable distribution circuit topology.

The objective of this work is to investigate and develop network topologies

for an all-electric shipboard power system (SPS), that will ensure quality and

continuity of service as well as survivability in the event of outage or failure.

For this reason, the work is based on a two-level distribution topology: the pri-

mary distribution system, and the secondary zonal electric distribution (ZED)

system. These two systems interact in much the same way that primary net-

works and secondary circuits operate in terrestrial power distribution systems

designed in a mesh topology, such as those found in urban centers. In fact, it

is important to note that while the specifics of this work applies to shipboard
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distribution systems, the concepts addressed can be applied to many types of

small-scale distribution systems, such as substations or microgrids. In sum,

the proposed framework aims to - 1) develop analytics to compare the relia-

bility of the distribution system topologies, and 2) investigate approaches to

improve the reliability and service availability of an SPS.

1.2.1 Primary Distribution System

As for the shipboard’s primary distribution system, the prior work to en-

sure a higher level of service continuity focused on evaluating several existing

topologies such as a ring bus and a breaker-and-a-half topology, and selecting

the best circuit topology. It is observed that the overall systems reliability also

depends upon the relative placement of loads and generation units within the

system. To obtain an optimal equipment arrangement in a given SPS topol-

ogy, an equipment placement algorithm based on particle swarm optimization

(PSO) is developed as well in the prior work [12].

In this study, we propose to investigate the gains in reliability that can

be achieved through designing three-dimensional (3D) shipboard primary dis-

tribution system topologies. Ship’s planar topologies are extended into three-

dimensional (3D) structures by distributing equipment loads to different pla-

nar SPS designs and connecting those using vertical tie-buses. Note that a 3D

topology can be unfolded into multiple planar nets by simply disconnecting

vertical tie-buses. A 3D topology adds structural robustness to the ship’s pri-

mary distribution system. Since equipment loads are distributed in multiple

decks of the ship, in an event of damage to one of the ship’s decks, equip-

ment loads in non-damaged decks may remain operational. Additionally, 3D

topologies also result in a slight improvement in the service reliability when
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compared with the respective planar configurations [13].

1.2.2 Zonal Distribution System

Generally, to ensure maximum level of service availability for zonal loads,

a grid topology is deployed for the zonal electric distribution (ZED) system.

However, due to the physical space constraints, designing a ZED topology with

a required level of availability while using a minimum number of conductors

would be more suitable. In this work, an algorithm is developed to find an

resilient distribution topology that minimizes the number of conductors (or de-

sign economy) while satisfying a required service reliability measure of electric

service. Here, the reliability for ZED systems is quantified in terms of network

availability, which is defined as the steady-state probability of a network being

in an operational state.

First, ship’s ZED systems designed in several existing distribution circuit

topologies including radial, loop, and grid are compared for their reliability

and design economy. A novel mathematical formulation and an efficient graph

theory-based algorithm to solve the topology design problem is developed [14]

next. Using the algorithm, an optimal distribution circuit topology is designed

while satisfying a given network availability requirement. The proposed algo-

rithm, termed as successive minpath generation, is evaluated using 15 and

30 node ZED systems, supplied by single as well as multiple power sources.

The findings confirm that the algorithm is significantly efficient in designing

reliable circuit topologies. Compared to grid topology, the proposed approach

results in ZED systems with network availability more than 0.99 by using 3

fewer and 12 fewer conductors for a 15-node and a 30-node ZED, respectively.
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1.3 Contributions

With the advent of distributed energy resources and increased service qual-

ity and reliability standards, new methods for distribution planning and de-

sign are required for the future distribution systems. This thesis explores

the control and design of distribution networks in order to address the grid

requirements of both existing as well as new distribution systems. For exist-

ing distribution circuits, the impacts of integrating distributed generation and

controllable loads are evaluated and their solutions are proposed. As for the

new distribution systems, methods to design new distribution circuits with

consideration to improved service reliability and continuity are developed.

For existing distribution circuits, first, the impacts of the EV load charg-

ing on the utility distribution circuit are evaluated. Simulation models for

the distribution circuits, conventional loads, and the EV loads are developed.

For an EV load, three different models were developed namely; a time-domain

mode, an AVM model [2,3], and a constant-power model. Next, several factors

affecting secondary circuit voltage profile due to charging of the electric vehi-

cles (EVs) are identified and evaluated [4–7]. Several methods to mitigate EV

charging impacts are investigated including infrastructural upgrades, indirect

controlled charging using TOU pricing [8], and directly controlled charging

using the proposed smart charging algorithm [9]. Next, the voltage regulation

issues of integrating high percentages of the PV systems into the distribution

circuit are evaluated. An hourly stochastic analysis framework is proposed

to determine the largest PV generation capacity a feeder can accommodate

[10,11]. The obtained PV capacity is termed as feeder’s PV hosting capacity.

The application of smart inverter in mitigating feeder voltage regulation issues

of integrating large percentages of PV systems into the grid are investigated
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as well. The thesis further presents a method for integrating energy storage

systems into the existing distribution circuit. The application of ES systems

for the distribution circuit are evaluated using multiple application scenarios.

The study evaluated the benefits of integrating ES both at substation-level

and at feeder-level. For the substation-level application, the ES is deployed to

meet N-1 contingency requirement for the substation transformer. As for the

feeder-level applications, the use of ES in increasing feeder’s PV accommoda-

tion limit and in mitigating voltage variation concerns due to PV generation

variability is investigated.

The objectives for new distribution circuit are explored using an all-electric

shipboard power system (SPS). Methods to design a reliable distribution cir-

cuit topology for an SPS, both at primary and zonal distribution levels are

proposed. For ship’s primary distribution system, the reliability gains ob-

tained from designing a three-dimensional (3D) shipboard power system are

explored. Several planar SPS topologies are extended to 3D structures by dis-

tributing loads to different levels of the ship, where each level is designed in

a planar SPS configuration and different planes are connected using vertical

tie-buses [12, 13]. At the zonal distribution level, a reliable network topology

is developed using graph theory foundation. A successive minpath generation

approach is developed and implemented to design a reliable circuit topology

supplied by both single and multiple power sources [14]. Although the methods

for new distribution circuit design are explored using shipboard power system,

the proposed approaches are applicable for designing any new distribution

circuit connected to the grid or working in an islanded mode.
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Chapter 2

Integrating Distributed Resources to Existing

Distribution Systems

An electric distribution system is required to supply a cost-effective, re-

liable, and quality power supply to the electrical consumers at their place of

consumption. A distribution system planning is essential to achieve the objec-

tives of the utility distribution system. Traditionally, the distribution systems

are planned for the lowest cost that can provide the power supply reliably to

the connected loads. In the past few years, with the rapid adoption of elec-

tric vehicles and distributed generation technologies, the distribution system

paradigm is changing. Additionally, energy storage is receiving increasing at-

tention by utility engineers and regulators alike for its potential to solve a

wide number of technical challenges in the management of electric power. The

distribution planning framework should include the impacts and solutions of

integrating new technologies into the distribution system.

In this chapter, first, a short discussion on the traditional distribution plan-

ning methods followed by the requirement for integrating new technologies to

the planning framework is presented. Next, the proposed approach to evalu-

ating and mitigating the impacts of integrating variable loads and distributed

generation is detailed. The method to incorporating the benefits of deploying

energy storage systems into the distribution grid is also presented. Further-

more, the analysis tools required for simulating the proposed methodology and
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the specifics regarding the feeder data requirement are detailed as well. For

the distribution system analysis, a distribution simulator supporting detailed

feeder and equipment modeling with advanced distribution system analysis

capabilities is required. This study uses Open Distribution System Simulator

(OpenDSS) [1], an open source distribution system simulator for the planning

analysis. OpenDSS is a comprehensive simulation tool for electric utility dis-

tribution systems. The program supports all frequency domain (sinusoidal

steady-state) analyses commonly performed for utility distribution systems.

Additionally, it supports sequential power flows that can be simulated over

successive time intervals for a specified period of time. This capability allows

us to perform daily and yearly load flow studies with consideration to the

variations in EV charging profiles, PV generation profiles, ES charging and

discharging profiles, and daily and yearly conventional load variations.

2.1 Distribution Planning

Distribution system planning is essential to achieve the objectives of the

utility distribution systems of providing economical and reliable power supply.

The planning ensures that the forecasted loading figures can be met by the

planned stage-by-stage deployments. Traditionally, the distribution system is

planned for the lowest cost that can provide the power supply reliably to the

connected loads. The primary concern has been to provide a cost-effective

power supply to the customer load demand while maintaining the required re-

liability and voltage quality. In the past few years with the rapid adoption of

electric vehicles and distributed generation technologies, the distribution sys-

tem paradigm is changing. Additionally, energy storage is receiving increasing

attention by utility engineers and regulators alike for its potential to solve
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a wide number of technical challenges in the management of electric power.

The distribution planning, therefore, need to include the impacts and benefits

of incorporating distributed generation and energy storage systems into the

distribution system.

2.1.1 Existing Planning Framework

Traditionally, distribution systems are designed for the lowest cost that

meets the desired service reliability and demand security [15]. The planning

objective is set to minimize the installation cost of the substations and feeders

plus implied costs associated with maintenance and operation while satisfy-

ing several constraints related to allowable voltage regulation, reliability, and

service availability, etc.

A power distribution system should be able to provide a reliable power

supply economically to consumers. A few essential features of the power dis-

tribution system are as follows [15]:

1. Coverage - The supply system should be able to reach each consumer

willing to purchase power covering the entire utility territory.

2. Capacity - The system should have sufficient capacity to meet the peak

load demand of the consumers.

3. Reliability - The power should be delivered reliably with satisfactory

continuity of the supply.

4. Voltage quality - A stable voltage should be maintained regardless of the

load level and feeder conditions.

Based on the above requirements, traditionally the distribution planning

is categorized in three stages: long-term planning, network planning, and con-

struction planning. First, load forecasting models are used to determine the
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location of the primary substation. The long-term planning is used to de-

termine the most optimal network arrangements and associated investments

with respect to the future developments. The substation is prepared for a

long-term plan for example 10 years. Next, the planning is escalated to the

network level, and the locations of service transformers and conductor config-

urations are determined. The network arrangement is determined based on

the reliability criteria. The network level planning also includes appropriate

sizing, siting and feeder layout selection. Additionally, the distribution system

needs to be planned for feeder voltage control and feeder protection. Finally,

the component planning stage begins which includes actual engineering and

design of distribution components. The major components of the traditional

distribution planning algorithms are as follows:

1. Load forecasting - The distribution planning and expansion depend upon

the prospective load growth in the utility service territory. Distribution

utilities directly meter their customers and have access to the extensive

load database. The metered load demand and the information regarding

the development projects in the locality are used to predict the potential

load growth and to make planning or expansion decisions.

2. Planning for reliability - Distribution system reliability is measured in

terms of customer reliability indices (SAIDI, SAIFI, CAIDI, etc.). The

evaluation of reliability for a distribution system is not unique but in-

cremental. This is because the expansion and reinforcements are done

considering their impact on reliability. In fact, multiple expansion op-

tions are weighted for their reliability benefits and the one providing the

best cost-benefit ratio is implemented.

3. Frequency and voltage support - To maintain voltage quality and stabil-
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ity, voltage regulation equipment including capacitors and var compen-

sators are implemented in the distribution circuit. The planning includes

sizing and siting of the voltage regulation equipment depending upon the

feeder and load characteristics.

4. Power system protection - Finally, the protection system including se-

lecting the numbers and locations of reclosers and sectionalizes is de-

signed and installed. Fuse-recloser coordination and overcurrent protec-

tion schemes are implemented as well.

2.1.2 Including Distributed Resources to the Planning Framework

In recent years, with the advancement of smart-grid technologies and the

integration of distributed resources including electric vehicles technology, dis-

tributed PV generation, and energy storage units, the electric distribution

system is transforming in an unprecedented way. Additionally, because of the

strict requirements enforced for the quality and reliability of electric supply,

the challenges for the electric distribution service providers are increasing. Dis-

tribution planning now faces complex analytical scenarios with power flow in

different directions driven by generation and storage technologies connected in

medium and low voltage networks. Additionally, the intermittent generation

from distributed energy resources and variable and controllable loads may pose

voltage, loading, and protection related concerns.

For an instance, several research articles have speculated that if charging

infrastructure is not planned properly, the widespread adoption of EVs over the

distribution circuit can significantly increase the substation load demand and

might necessitate generation capacity expansion of the existing distribution

grid. Furthermore, the increased peak load demand due to EV load charging
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may overload the service transformer and result in transformer overheating.

This could potentially deteriorate the transformer’s life and increase the eco-

nomic burden on distribution utilities. Additionally, increased EV penetration

may result in sustained secondary service under-voltages, violation of the rec-

ommended under-voltage limits, and unbalance in three-phase power supply.

Evidently, the growing presence of EVs on the grid necessitates including EVs

to the distribution planning framework.

Similarly, it has been projected that deploying large percentages of dis-

tributed generation specifically PV systems may result in voltage, loading,

and protection related concerns. Voltage issues arise due to excess PV gen-

eration resulting in bus overvoltage conditions, undesirable voltage devia-

tions/variations, and voltage unbalance conditions. Loading issues arise when

service transformers and conductors are overloaded and thermal limits are vi-

olated. Note that loading concerns may decrease the life-span of the feeder

equipment due to overheating and necessitate grid upgrades. Protection-

related issues occur when protection equipment such as relays, reclosers, break-

ers, network protectors and fuses operate improperly. Such misoperations oc-

cur when PV interferes with the existing protection equipment. Given the

impacts of PV generation on the distribution grid and the rapid adoption of

the PV generation at the distribution level, a planning framework incorporat-

ing the impacts and solutions of potential PV deployments is required.

Furthermore, it is recognized by the utilities and the researchers alike that

many of the challenges due to the integration of the distributed generations

and variable loads can be solved using energy storage (ES) systems. This has

propelled the deployment of the distributed energy storage systems in the past

few years. Additionally, energy storage technology is an important potential
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option for utilities, system operators, and end users to increase reliability and

reduce the cost of electricity. The energy storage systems may be especially

important as a flexibility asset to address the integration of variable generation

resources such as wind and solar. However, the widespread use of energy

storage is unlikely without the additional development of the technology and

examples of its successful applications. Therefore, a planning framework while

incorporating potential benefits of energy storage deployments is required.

2.2 Proposed Analysis Framework

As discussed before, with the increased penetration of distributed re-

sources, there is the pressing need to include new technologies into the dis-

tribution planning framework. In this section, our methodology to including

various distributed technologies into the distribution system analysis frame-

work is presented. The approach is to evaluate the potential impacts of new

technologies into the grid and to propose potential solutions to mitigate the

impacts. The analysis requires a complete electrical model of the distribution

circuit starting from the substation down to the individual customer loads in-

cluding equipment models for three-phase transformers, three-phase primary,

laterals, secondary networks, and service transformers. Therefore, a suitable

distribution system simulator enabling detailed feeder modeling and analysis

is required. This study is done using OpenDSS [1] an open-source distribution

system simulator. The details regarding the requirements of the analysis tools

and properties of OpenDSS are discussed in the later sections of this chapter.

In addition to the detailed feeder model, a realistic impact study requires a

representative load model for the secondary customer loads. In this study, the

customer loads are modeled as a constant power load with an associate load
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shape profile. The daily and yearly load shape profile measured at the substa-

tion meter is used to generate the customer load profiles. Next, models for the

additional equipment systems added to the distribution feeder for example,

EV, PV, and ES systems are developed either using the selected distribution

system simulator or analytical methods. OpenDSS has in-built models for PV

and ES systems. As for the EV loads, we have developed three representative

models namely a time-domain model, an average value model, and a constant

power model each suitable for a different impact study. Once the impacts

are evaluated, methods to mitigate the concerns are accessed. The steps are

detailed as follows.

2.2.1 Distribution Circuit Model

As discussed before, a detailed feeder model staring from the substation

down to individual customer locations is required for implementing the pro-

posed impact analysis framework. A detailed feeder model for actual dis-

tribution circuits under evaluation is simulated in OpenDSS. Additionally,

representative models for customer loads and equipment loads are also devel-

oped using the load demand data available at the substation and customer load

characteristics. In order to evaluate the impacts, representative models for the

new technology to be integrated in the feeder are developed as well. OpenDSS

supports equipment models for PV and ES systems. In this study represen-

tative models for EV loads are developed using MATLAB [16] and OpenDSS

[1] (see Chapter 3). The feeder, load, and equipment data required for the

distribution circuit modeling in OpenDSS are detailed in the later sections of

this chapter.
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2.2.2 Methodology to Evaluate Impacts

A framework is required to systematically evaluate the impacts of the in-

tegration of distributed resources. The proposed formulation aims to develop

several representative scenarios for integrating the distributed resources into

the feeder and for accessing their impacts on the feeder voltages. For example,

for EV integration analysis, several factors affecting distribution voltage qual-

ity due EV load charging are identified. The analysis is done by simulating

several EV deployment scenarios at the primary and secondary circuit level.

Additionally, large-scale EV deployment scenarios are simulated to analyze

the impacts of EV integration on overall distribution system voltage quality.

As for the PV integration, the objective is to identify the maximum PV pen-

etration that can be accommodated into a given distribution circuit without

resulting in the violation of the acceptable voltage limits. Although, the pro-

posed PV analysis method is implemented to primarily determine PV limits

for overvoltage conditions, the approach is generic and can be implemented

for other voltage, current, or protection related impacts as well.

2.2.3 Approaches to Mitigate Impacts

Once the impacts are understood, methods to mitigate the feeder voltage

quality concerns are developed. For EV loads, first several practical methods

to mitigate voltage related concerns such as increasing transformer size and

reconfiguring the feeder are implemented. Next, the impact of EV charging

with Time-of-use (ToU) pricing and a method to device optimal ToU schedule

is presented. Finally, a controlled charging method aiming to minimize voltage

variation concern in the feeder due to EV charging is implemented. As for PV

integration, the use of smart inverters in increasing PV integration limit is
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explored. The thesis further explores the utility of deploying ES systems in

facilitating PV integration and mitigating voltage related concerns arising due

to PV generation variability.

2.3 Analysis Tools

This section presents a discussion on the analysis tools required for imple-

menting the proposed framework of distribution planning analysis. A distri-

bution simulator is required to evaluate the impacts and benefits of including

distributed resources in the traditional planning framework. The selected dis-

tribution simulator must support detailed feeder and equipment modeling with

advanced distribution system analysis capabilities. First, a short discussion on

a few distribution system simulators is presented. Then the required charac-

teristics of the simulation platform including the available circuit, equipment

models, and solution algorithms are discussed. For the purpose of the discus-

sion, OpenDSS is used as an example, and the available solution interface and

circuit models are elaborated.

2.3.1 Distribution Circuit Simulator

The benefits of incorporating distributed energy resources into the distri-

bution circuit can be evaluated only by simulating potential planning scenarios

on an actual detailed feeder model. The planning framework to incorporate

the impacts and benefits of distributed energy resources requires a detailed

feeder model. A distribution system simulator is required to simulate the de-

tailed feeder model for the planning analysis. This study uses OpenDSS, an

open source distribution system simulator. Another distribution system simu-

lator CYMDIST [17], widely used by utilities is briefly discussed as well. The
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analysis also requires an interface to conveniently simulate multiple planning

objectives and potential future load and generation scenarios. In this study, we

have used MATLAB [18] as the interface to OpenDSS for simulating multiple

planning scenarios on the selected feeders. This section also details the charac-

teristics and requirements of the interface required to connect the distribution

system simulator to the programming environment.

2.3.1.1 CYMDIST

The CYMDIST [17] distribution analysis software is a suite of applications

composed of a network editor, analysis modules, and user-customizable model

libraries. The program is designed for planning studies and simulating the be-

havior of electrical distribution networks under different operating conditions

and scenarios. It includes several built-in functions that are required for dis-

tribution network planning, operation, and analysis. The analysis functions

such as load flow, short-circuit, and network optimizations can be applied to

balanced or unbalanced distribution networks that are built with any combi-

nation of phases and configurations. Although CYMDIST is versatile in its

application modules, a more flexible simulation platform is desired for includ-

ing new technologies into the distribution planning framework. The analysis

requires a simulation platform more flexible in modeling new components and

in simulating multiple planning scenarios of different time-scales.

2.3.1.2 OpenDSS

The OpenDSS [1] is a comprehensive electrical system simulation tool for

electric utility distribution systems. The program supports all frequency do-

main (sinusoidal steady-state) analyses commonly performed for utility dis-
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tribution systems planning and analysis. Additionally, it supports sequential

power flows that can be simulated over successive time intervals (e.g., hourly

or yearly) for a specified period of time. This capability allows us to perform

the daily and yearly load flow study for the distribution system with considera-

tion to the daily variations in EV charging schedule, PV generation profile, ES

charging and discharging profiles, and daily and yearly conventional load vari-

ations. One of the major benefits of OpenDSS is its extraordinary capability

to support planning and analysis of distributed generation (DG) technologies.

OpenDSS is able to capture both the time- and location-dependent value of

DG, thus providing a valuable analysis platform for DG integration.

OpenDSS can be implemented as both a stand-alone executable program

and an in-process Component Object Model (COM) server DLL designed to

be driven by a variety of existing software platforms. The executable version

has a basic text-based user interface on the solution engine to assist users in

developing scripts and viewing solutions. The COM interface is implemented

on the in-process server DLL version of the program to allow users to use the

features of the program to perform new types of studies. Through the COM in-

terface, the user is able to design and execute custom solution modes. In this

study OpenDSS is executed using MATLAB program. The external execu-

tion of OpenDSS provides powerful analytical capabilities as well as excellent

graphics for displaying results.

2.3.2 Required Characteristics of the Analysis Tools

Once the distribution circuit model is available, the next task is to perform

power system analysis on the selected distribution feeder. The distribution

system analysis tools must fully capture the static, quasi-static (time-series),
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and dynamic impacts of distributed resources under a wide range of time-

scales. The basic features of the required distribution system analysis tool are

as follows:

1. The simulator must support power flow analysis for radial/looped net-

works including time-series analysis in several solution modes supporting

a wide range of time-scales. The power flow algorithm must support bal-

anced, and unbalanced load flow analysis.

2. The tool should provide the capability for transient/dynamic analysis

required for evaluating the impacts of dynamic phenomenon such as

flicker, the interaction of different control elements, and fault studies

during islanding.

3. The simulator must provide analysis platform to include the control

equipment such as shunt capacitors, voltage regulators, on-load tap chang-

ers, etc. and support typical and user-defined control algorithms.

4. Additionally, the simulator must incorporate pre-defined models or pro-

vide the flexibility to design models of the new equipment systems and

their control blocks. Also, the simulator should be sufficiently flexible

in incorporating control algorithm while allowing both time-dependent

and location-dependent deployments of distributed energy resources.

2.3.2.1 Power Flow

The power flow study results in a detailed information about the distri-

bution feeder for a given timestamp or a given time period (24-hour, 1-year,

etc.). The analysis details the feeder losses, voltage levels, line currents, active

and reactive power flows, capacitor and tap positions, etc. Depending upon

the planning criteria, the power flow may need to be executed for a single time
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step (snapshot), for 1 day (daily), or for 1 year (yearly). OpenDSS supports

power flow simulation in several solution modes including the standard single

snapshot mode, daily mode (24 hour), dutycycle mode (¡ 1 sec), Monte Carlo

mode while considering the variation in the customer load with respect to the

time. Additionally, the program supports detailed harmonic load flow analysis

required for underspending the impacts of the new technologies on voltage and

current harmonics.

2.3.2.2 Fault Study

Fault study or short-circuit analysis is yet another power system analysis

algorithm required to be solved for the distribution planning. The short-

circuit analysis determines the current and voltage levels for a given distri-

bution feeder in the event of a fault. The fault study is very crucial when

designing the protection system for the distribution feeder. Additionally, de-

ploying distributed energy resources may change the fault current levels thus

necessitating modifications in the existing protection architecture. Therefore,

fault study is crucial to distribution planning analysis especially when PV and

ES are to be integrated within the distribution planning framework.

OpenDSS supports several fault study modes including conventional fault

flow, snapshot fault study, and Monte Carlo fault study. The conventional fault

study mode simulates faults for all buses and reports currents and voltages on

all phases for all types of faults: All-phase fault, SLG faults in each phase,

LL and LLG faults. The snapshot fault mode allows the user to place one or

more faults on the system at selected buses while defining the type of fault

and the value of the fault resistance. In the Mote Carlo mode, the fault is

applied at random locations as specified in the simulation. Monte Carlo fault
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study is useful in understanding the impacts of DG integration on the existing

distribution system protection scheme. For example, a Monte Carlo fault study

can be used to estimate the typical voltage levels observed at a DG site for

various faults on the utility system and to compute voltage sag indices.

2.3.2.3 Control Study

In a utility distribution circuit, shunt capacitors and voltage regulators are

placed along the feeder for voltage support. The status of the voltage support

equipment changes depending upon the load condition. For a representative

simulation, the distribution simulator must support control system modeling.

Particularly when distributed energy systems are deployed, the controls may

vary more frequently depending upon the PV variability or ES control inter-

face.

OpenDSS supports the modeling of standard utility distribution system

control for capacitor and regulator elements. The capacitor control monitors

the voltage and current at a terminal of a power delivery equipment and sends

switching messages to the capacitor object. Depending upon the status of

the power delivery element, the capacitor state is changed. The regulator

control object emulates a standard utility voltage regulator or LTC control.

In OpenDSS, control elements are modeled separately from the power-carrying

elements, thus, providing significant flexibility in creating user-defined control

models. The control blocks for PV systems and ES systems are also available

in OpenDSS.
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2.3.2.4 Electric Vehicle (EV) Model

A simple low-cost EV charger circuit is composed of single-phase rectifier

with boost converter (or any other filter) as power factor correction stage

followed by a DC-DC converter for insulation of battery from AC grid (see

Figure 2.1). The manner in which power is delivered to batteries is also very

crucial to th battery life. Hence, EV charger also includes a control circuit for

battery power management. The charging circuit consists of two parts:

1. Power processing unit - This unit ensures that the AC power supplied by

the grid to the battery is processed to DC supply of appropriate voltage

and current levels.

2. Battery management unit - Battery management unit consists of sensors

and control circuitry to monitor the charging current, voltage, and state-

of charging (SOC) and accordingly control the charging status.

Figure 2.1: Simplified block diagram of battery charging system.

The integration analysis of EV load charging on distribution circuit re-

quires a representative model of the EV charger and battery. In this work,

three different models for EV loads are developed: time-domain model, average-

value model, and constant-power model. The detailed time-domain model is

developed in PSCAD and used to simulate the switching dynamics of the

EV load. An average-value model capturing the average dynamics of the EV

charger is developed using MATLAB. Additionally, a constant-power model

27



is also simulated and implemented in OpenDSS and used for the distribution

feeder analysis.

2.3.2.5 Photovoltaic (PV) System Model

A simplified block diagram for the entire PV system, from solar cells to the

grid is illustrated in Figure 2.2. The inverter control, which provides volt-var,

volt-watt, and dynamic reactive current control modes is shown as well in the

figure. A PV system consists of one or more solar cell modules or panels that

take insolation from the sun (direct and indirect) and convert that into a DC

signal. The DC signal is passed on to an input filter capacitor. Following the

input filter capacitor, a DC to AC inverter transforms the current from the

DC stage into a grid synchronized AC signal.

Figure 2.2: Simplified block Diagram of the PV system model and its control interface. [1]

OpenDSS provides an in-built distribution system model for PV systems

capable of simulation studies in time steps greater than or equal to 1s. The

model assumes the inverter is able to find the max power point (mpp) of

the panel quickly. This simplifies the modeling of the individual components

(PV panels and inverter). The PV system is modeled as a power delivery
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object producing power, according to some generation function. In this case,

the active power, P, is a function of the irradiance, temperature, and rated

power at the mpp (Pmpp) at a selected temperature and at an irradiance of 1.0

kW/m2 (see Figure 2.3). For PV system, reactive power is specified separately

from the active power and may be specified as either fixed kvar values or a

fixed power factor value.

Figure 2.3: PV system model in OpenDSS. [1]

2.3.2.6 Energy Storage (ES) System Model

The storage element is essentially a generator that can be dispatched to

either produce power (discharge) or consume power (charge) within its power

rating and its stored energy capacity. In OpenDSS, energy storage is mod-

eled as a generator. The storage element can also produce or absorb reactive

power (vars) within the kVA rating of the inverter (see Figure 2.4). The ES

model available in OpenDSS supports time-varying simulation modes includ-

29



Figure 2.4: ES system model in OpenDSS. [1]

ing snapshot, daily, yearly, and duty cycle simulation study. For ES integration

study, daily or yearly modes are typically required to understand the use of ES

in providing for peak load management and looking at general energy issues

over a period of time. As for short term power variations such as generation

variability due to cloud transients affecting solar PV generation, a duty cycle

mode would be required to study the effectiveness of storage. In addition to

equipment model and solution interfaces, OpenDSS also provides several con-

trol models for ES systems. The control modes help in simulating the cases to

demonstrate the utility of ES in providing grid benefits.

2.4 Feeder Circuit Data

A discussion on the feeder data required for the distribution system plan-

ning study with distributed energy resources is presented in this section. The

feeder data requirements are categorized into three sections: circuit data, load

data, and distributed energy resource (DER) data. The circuit data details

the substation characteristics, circuit topology, feeder characteristics such as

impedance, length, and rated nominal and emergency loadings, and locations
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and types of distribution equipment including distribution transformers, reg-

ulators, capacitors, and loads. The load data information includes load char-

acteristics including rated load demand, power factor, allocation factor, load

profiles, etc. The DER data includes location, capacity, and control data

corresponding to EV, PV, and ES systems.

2.4.1 Circuit Data

The planning framework proposed in this dissertation requires a detailed

circuit model. A simplified electronic one-line diagram showing substation,

feeders, capacitor banks, feeder regulators, and lumped load points should

first be made available. Information regarding substation characteristics, dis-

tribution lines, capacitors, service transformers, and customer loads is required

to simulate the actual feeder model of the given distribution feeder. In the fol-

lowing section, the details required for each equipment type for the proposed

planning analysis are discussed.

2.4.1.1 Source Object

The source object specifies the equivalent circuit for the upstream trans-

mission and generation system supplying for the selected distribution substa-

tion. The source object is represented as two-terminal voltage sources behind

an impedance. The impedance is equal to the Thevenin equivalent of the trans-

mission and generation system upstream from the substation transformer. The

required data are as follows:

� Line-to-line voltage (kV) at the source bus,

� Short-circuit currents or MVA at the high-voltage side bus for each sub-

station (three-phase and line-ground), or the equivalent impedance at
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the high-side (transmission-side) of the substation.

2.4.1.2 Substation Transformers

The substation transformer is connected to the sub-transmission level and

steps down the voltage to the distribution levels. The following details are

required for modeling the substation transformer:

� Number of transformer banks at the substation,

� Transformer connections for all transformers in the substation,

� High- and low-side voltages for each transformer in the substation,

� Transformer size, X/R ratio, leakage impedance (% on substation MVA),

� Substation bus configuration and number of feeders served from each bus

(i.e., which banks feed which feeders in parallel, etc.),

� Substation load tap changer (LTC) control settings or regulator settings

if not LTC.,

� Characterization of the territory (rural/urban/suburban),

� Any AMR and AMI penetration along the circuit.

2.4.1.3 Distribution Lines

The distribution line details should include conductor size, type, length,

construction, emergency ampacity, and the sequence impedance for each seg-

ment of circuit. Additionally, the latitude and longitude coordinates of each

feeder bus should be specified to determine the topology of the feeder. Note

that the conductor data could be provided in a different format as well. For

example, instead of linecode data, the conductor detail could be provided in

terms of line geometry and wire data. Please refer to OpenDSS manual for

detail [1].
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2.4.1.4 Distribution Service Transformers

Distribution transformers or service transformers connect the primary dis-

tribution lines to the secondary networks. The distribution transformer steps

down the primary distribution voltages (13.2 kV) to secondary levels (120V,

240 V, 480 V). The necessary details for the simulation are the same as for

the substation transformer. The required data are as follows:

� Primary and secondary buses connected to the transformer,

� Transformer MVA rating,

� High- and low-side voltages for each xfmr in the substation,

� Transformer size, X/R, leakage impedance (% on sub MVA).

2.4.1.5 Capacitor Banks

The planning analysis also requires information about the capacitor banks

installed in the feeder. The required data for capacitors are as follows: bus

connection, cap bank sizes, control mechanism (fixed, voltage, current, kvar,

time, etc.), control settings (on/off settings, delay), and three-phase connection

configurations (grounded-wye/ungrounded-wye).

2.4.2 Load Data

A detailed description of load models, loading characteristics, and metered

loading data is required for the planning analysis. Note that the analysis needs

to be simulated for yearly, daily, and in minutes resolution. Therefore, yearly

load demand data measured at the substation meter, preferably in hourly or

15-minute resolutions, needs to be acquired. In addition to the metered load

demand, information regarding the rated load demand, power factor, and load

allocation factor is required for each customer load supplied by the circuit.
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Additional information about the load type and load shape for each customer

load, or class of load, is optional, but useful, in simulating close to real feeder

operating conditions.

2.4.2.1 Hourly Metered Loading Data at the Substation

The yearly active and reactive power generation at the substation meter

should be made available. The load demand data is useful in identifying

feeder’s typical maximum and minimum load conditions. Additionally, the

peak reactive power demand is used to determine the status of the capacitor

banks for the base case simulation. The capacitor banks are adjusted so that

during the base case simulation the reactive power matches the peak reactive

power demand.

An ideal (complete) data-set of the metered loading data would consist of

the following:

� Apparent energy (MVAh),

� Real energy into and out of the load (MWh) and Absolute real energy

(MWh),

� Reactive energy into and out of the load (Mvarh), Absolute Reactive

Energy (Mvarh),

� Apparent Power Total (MVA),

� Real Power Total (MW),

� Reactive Power Total (Mvar),

� Per phase real and reactive power,

� Frequency,

� Line Voltages, Line Currents,

� Line Voltages THD, Line Currents THD,
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� Power Factor Total, PF A, PF B, PF C,

� Displacement Power Factor Total,

� Displacement PF A, Displacement PF B, Displacement PF.

2.4.2.2 Customer Loads

As discussed before, the load data corresponding to each customer load

present in the distribution feeder is required for the analysis. The following

details for each customer load are required.

� Rated load demand at individual customer locations (kW, power factor,

allocation factor),

� Type of customer loads (residential/commercial). Information regarding

the customer class categories.

� Base load profiles for different customer load classes and subclasses.

Information on base load profile characteristics for different customer

classes and subclasses.

� Total loads on other circuits. If possible, the MW/Mvar without other

circuits’ capacitors in service (un-corrected reactive power)

� Load duration curves (15 min interval data, or minute interval) aggregate

for the circuit, as well as individual customers’, classes or subclasses.

2.4.3 Distributed Energy Resource (DER) Data

The objective of this work is to evaluate and mitigate the impacts of inte-

grating modern technologies such as electric vehicles (EVs), photovoltaic sys-

tems (PVs), and distributed energy storage (ES) systems in the distribution

circuit. The task includes designing circuit and equipment models, identify-

ing simulation criteria, evaluating grid impacts of the new technologies, and
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developing control strategies to mitigate the impacts and facilitate the integra-

tion. Therefore, for the analysis, the following additional data corresponding

to electric vehicles, photovoltaics (PV) systems, and energy storage (ES) units

are required.

2.4.3.1 Electric Vehicles (EV)

For a realistic analysis of EV load impacts, details regarding existing or

expected EV penetration level for the given feeder are required. Additionally,

the data regarding EV charging levels, average miles driven by EV consumers,

and EV charger locations should be provided. Note that if the information

regarding EV consumers is not available, potential EV charging scenarios may

be simulate to evaluate the possible impacts on the given distribution circuit.

The desired information regarding the EV chargers is listed below.

1. Existing or future electric vehicle penetration level,

2. Electric vehicle charging levels (Level 1, Level 2, or Level 3),

3. Existing or planned EV charger location and power levels.

2.4.3.2 Photovoltaic System (PV) Data

For the given distribution feeder the details regarding the existing PV gen-

eration system is required. This includes the location, size, and efficiency of

the deployed PV panels and typical 24-hour PV generation profiles character-

izing the typical PV variability for the given feeder. The following information

is required for including existing PV into the distribution feeder model. Note

that the details regarding the location and size of the existing PV is required

while rest of the data regarding irradiance, temperature curve and PV effi-

ciency curve are optional.
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1. Existing PV locations and size along the feeder,

2. Solar Irradiance data,

3. 24-hr temp shape curve,

4. P-T curve (rated Pmpp vs temperature),

5. PV efficiency curve.

For realistic analysis a high resolution PV generation data is required. The

PV generation profile is particularly required for the evaluation of the impacts

of PV variability of distribution voltages. The data is required to understand

and evaluate benefits of deploying ES for voltage management in an event of

cloud transients. Typically, a PV generation data should be provided in 1 sec

resolution for the entire year or longer.

2.4.3.3 Energy Storage (ES) Data

The data corresponding to the energy storage system must be prepared if

the feeder is equipped with the energy storage systems. The following data

list is required for modeling the energy storage unit.

1. Existing ES locations and size along the feeder,

2. Operating/control algorithms for the existing ES systems,

3. Future ES deployment penetrations and possible locations along the

feeder,

4. Possible ES application/operating mode (if known),

5. Operational range, ramp rates, etc. (if known).
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Chapter 3

Electric Vehicles - Modeling, Impacts, and

Mitigation

The promise of clean and efficient transportation coupled with the ad-

vances in battery technologies and generous federal incentives are promoting

transportation electrification and in the near future, electric vehicles (EVs) are

expected to dominate the vehicle market [16,19–21]. The success of EV tech-

nology depends on the availability and easy access of EV charging stations.

Utilities are rapidly installing EV charging stations, both at residential and

commercial locations. In North America, a residential EV charging station

provides a 120V (Level-1) or a 240V (Level-2) voltage supply to the connected

EV, either using a normal wall outlet or a dedicated charging circuit. Commer-

cial chargers are generally high-power fast AC/DC chargers installed in heavy

traffic corridors and at public charging stations. Since commercial chargers are

still in the primary stages of deployment, the most common charging method

used by EV owners is overnight charging using residential charging stations,

primarily Level-2 chargers. The increasing number of residential EV charg-

ers may result in several challenges for the distribution system, necessitating

the system level analysis of the impacts of EV integration into the residential

distribution circuits and its solutions.

The EV integration study presented in literature has primarily focused on

the following issues, namely the impacts of EV loads on: electricity generation
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adequacy [21–27], transformer aging [27–31], and distribution system power

quality [4–7, 27–41]. A short literature review of the impacts of EV loads ad-

dressing the above issues is presented in this chapter. In short, it is speculated

that if charging infrastructure is not planned properly, the widespread adoption

of EVs over the distribution circuit can significantly increase the substation

load demand and might necessitate generation capacity expansion of the ex-

isting distribution grid. Furthermore, the increased peak load demand due to

EV load charging may overload service transformers, resulting in transformer

overheating, thus deteriorating the transformer’s life and increasing the eco-

nomic burden on distribution utility companies. Additionally, increased EV

penetration may result in sustained secondary service undervoltage conditions,

violation of undervoltage limits, and unbalance in three-phase power supply

thus deteriorating the service voltage quality.

In literature, several methods to mitigate the EV impacts are proposed.

The mitigation strategies are primarily grouped into two categories. In the first

approach, utilities indirectly control EV charging using Time-of-Use (TOU)

pricing [42–48]. The decreased off-peak electricity rates in a TOU pricing

scenario motivates EV owners to charge their vehicles during off-peak hours,

thereby significantly decreasing the peak load demand and mitigating trans-

former overloading and heating concerns. In the second approach, utilities di-

rectly control EV charging rate and time of EV customers using smart charging

algorithms [49–68]. To date, algorithms proposed to control EV load charg-

ing aim to achieve two objectives. One is to maximize utility benefits by

shifting EV charging to off-peak load hours, and the other is to maximize cus-

tomer benefits by optimally charging EVs aiming to decrease the customer’s

total electricity cost in a real-time electricity market. Both smart charging
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methods have certain limitations. By shifting the EV charging profile to off-

peak hours, the first method ignores customer inconvenience. As for the other

method, many utilities still do not deploy real-time electricity pricing for the

residential customers, rendering the method inapplicable. Furthermore, none

of the smart charging methods directly aims to decrease EV load impacts on

feeder voltages.

This study presents the impacts of integrating EV loads on utility distribu-

tion circuits and their solutions. The objective is to understand, identify, and

mitigate EV charging impacts on a residential distribution circuit. A detailed

literature review including EV charging impacts and solutions is presented

first. The chapter further details the proposed approach to evaluating EV load

impacts on the distribution system and presents several mitigation schemes to

address the EV charging concerns. The proposed mitigation schemes include

infrastructural upgrades, indirect EV charging control using TOU pricing, and

direct EV charging control using smart charging algorithms.

3.1 Analysis Approach

This study is conducted to help utilities in evaluating impacts of EV loads

on their distribution circuits. In particular, the study evaluates how EV loads

affect the voltages on the primary and the secondary wires and identifies oper-

ating and system conditions that give rise to poor voltage quality in terms of

additional voltage drops due to the EV load charging. Once the EV charging

effects are understood, several mitigation plans are developed to solve the EV

load grid integration issues. To evaluate the EV load effects, three different EV

load models are simulated namely; time-domain model, average-value model,

and constant power model. A time-domain model simulates the complete EV
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charger model with its switching dynamics and is mainly used to evaluate the

effects of EV loads during short-circuit or fault conditions. An average value

model (AVM) simulates an analytical model for EV load by averaging the

switching actions involved in one power cycle. AVM models are used to eval-

uate steady-state effects of EV charging such as voltage drop concerns due to

the EV load charging. In a constant power model, the EV load is represented

as a constant power load with an associated load shape, thereby further sim-

plifying the EV load model. A constant power model is used to simulate daily

load flow solutions evaluating the effects of EV load charging i.e. increased

load demand and voltage drop concerns, over a day.

Next, a complete electrical model of distribution circuits from the sub-

station down to individual customer loads including three-phase transformers,

three-phase primary, laterals, secondary networks, and service transformers is

specified in the three-phase steady-state load flow model. The evaluation of

the impacts of EV loads on the distribution circuit voltage quality requires

simulation and comparison of load flow solutions, with and without EV loads.

This is done by analyzing the load flow at a suitable interval over one day,

referred to as ‘daily load flow solutions’. In this study, the load flow solutions

are simulated every 15 minute. Clearly, this analysis requires daily load shape

profiles for all conventional loads present in a given distribution feeder. The

required load shapes for each conventional load are generated and assigned

using the kW consumption data (measured at the substation) over a year, and

the stratified pricing information, provided by utilities. The effects of a Level-

2 (low) and a Level-2 (high) EV charger with respective power ratings of 3.84

kW (240V/16A) and 7.2 kW (240V/30A) charging a 16kWh/24kWh EV load

are evaluated. A charging efficiency of 90% is assumed for all EV chargers con-
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sidered in this study. The proposed impact analysis approach identifies several

factors such as EV load location, size, distribution, and percentage penetration

affecting primary and secondary distribution voltage quality while EV loads

are charging. The study concludes that EV load charging may increase in the

peak load demand potentially overloading service transformers and may result

in unnecessary voltage drops in the secondary service voltages.

Given the impacts of EV charging on transformer loading and service volt-

age quality, the following infrastructural upgrades to mitigate EV load con-

cerns are presented: increasing the size of service transformer, and reconfig-

uring the distribution circuit using an additional service transformer. Since,

infrastructural upgrades require significant efforts and cost, to mitigate EV

load concerns the study presents both indirect and direct control algorithms

for EV charging. The impact of indirectly controlling EV charging using TOU

pricing is discussed first, followed by the proposed approach to identify an

optimal time to begin off-peak rates in a TOU pricing scenario while avoiding

inconveniencing EV customers. It is observed that the simultaneous charging

of EV loads during off-peak hours under a TOU schedule may result in a second

peak in the load demand. To address this concern a smart charging algorithm

directly controlling EV charging rate and time while aiming to minimize the

voltage variations at each EV load node is proposed. By minimizing voltage

variations, the proposed algorithm optimally shifts the EV load demand to

off-peak load hours, thus mitigating loading concerns as well.

3.2 Electric Vehicle Charging Technology

This section presents a review of the current electric vehicle (EV) charging

technologies. A brief discussion of different EV technologies including the types
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of EV batteries is presented, followed by a discussion on EV charging standards

and EV charging levels for North American (NA) distribution circuits.

3.2.1 Background of Electric Vehicle Technologies

There are three types of EV technologies currently available on the mar-

ket; hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs)

and battery electric vehicles (BEVs) [6]. HEVs contain an internal combustion

engine that runs on conventional liquid fuel but is also supplemented by an

electric motor and onboard battery. PHEVs contain both an internal combus-

tion engine and an electric motor and battery. The battery can be charged

in three different ways; by plugging in, by the combustion engine, or by re-

generative braking. BEVs also referred as all-electric vehicles, do not contain

internal combustion engine. Instead, they use batteries to store electricity and

run on the stored electricity [6].

Since, HEVs do not require a separate charging infrastructure, this study

concerns with PHEVs and BEVs only, collectively referred as EVs. EV bat-

teries are quite different from the batteries used in consumer electronic devices

such as laptops and cell phones; they should be light in weight and small in size

while able to handle up to a hundred kW of power and high energy capacity

(up to tens of kWh). Currently, two major battery technologies are used in

EVs [6], nickel metal hydride (NiMH) and lithium ion (Li-ion).

3.2.2 Electric Vehicle Charging Standards

The EV charging is either provided using a normal wall outlet or a dedi-

cated charging circuit (e.g. wall box or charge pole). Usually EV charging is

provided by a 120V (Level-1) or a 240V (Level-2) voltage supply (see Figure
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) in North America. The EV’s charge couplers are described in SAE J1772

and for residential and public EV charging the Type 1 coupler (SAE J1772)

is preferred for the U.S. market. Although, the couplers are specified for up

to 690 V AC and up to 250 A at 50 to 60 Hz, Level-1 (up to 16 A) and Level

2 (up to 32A) are most commonly implemented [41]. Fast charging circuits,

for example, CHAdeMO and the Combined Charging System usually deployed

close to highways or on parking sites are also becoming popular. The impacts

of fast chargers are however not discussed herein.

3.2.3 EV Charging - North American (NA) Distribution Circuit

The NA power system maintains its tri-phase characteristic down to the

mid-voltage (MV) level. At the MV level, electric power is distributed to the

low-voltage (LV) level through a pole-mounted transformer. On the LV side

of the transformer, a single-phase three-wire supply provides power at 120V

and 240V to each consumer, as shown in Figure 3.1.

Figure 3.1: The structure of the North American power distribution system.
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3.2.3.1 EV Charging Modes

The Society of Automotive Engineers (SAE) is responsible for the stan-

dardization of EV charging stations. SAE Surface Vehicle Recommended

Practice J1772 (SAE J1772) is the NA standard for EV electrical connec-

tors. SAE identifies three charging levels (see Table 3.1) depending upon the

energy transfer rate. Note that, Level-1 and Level-2 chargers are deployed at

the residential facilities while Level-3 chargers are used at commercial charging

stations. Figure 3.2 shows the connection of EVs to the power distribution

circuit for Level-1 and Level-2 charging.

Table 3.1: EV Charging Levels and Charger Specifications (NA Standards)

Charging Level Type Voltage Level Power Level

Level-1 120 VAC Up to 1.8 kW

Level-2 208-240 VAC Up to 19.2 kW

Level-3 or DC Charging 480VDC 50 kW-150 kW

Figure 3.2: The structure of the North American power distribution system.

3.2.3.2 Grid Requirements and Restrictions in NA

For a reliable power distribution, grid requirements and restrictions are

imposed when connecting loads, such as EVs, to the distribution circuit. For
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the NA distribution system, ANSI C84.1-2011 [62] provides the national stan-

dard for voltage regulation. As per the standard, typically, the service voltage

should range within ±5% of the nominal voltage rating and the three-phase

voltage unbalance should not exceed 3%.

3.3 Modeling EV Charger

The power quality impacts of the EV load charging on distribution circuits

requires a representative model of the EV charger. In this study, three different

models for EV load are developed: time-domain model, average-value model

and constant-power model.

A time-domain model simulates the actual device behavior with its switch-

ing actions and is useful in evaluating the EV load during fault conditions. EV

load time-domain model is deployed for the evaluation of the overcurrent pro-

tection coordination while EV loads are charging. Due to the converter’s high

switching frequency, a time-domain model can take a significant amount of

time to run and therefore is not suitable for the voltage quality study. An

average model (or small-signal model) eliminates the switching actions of the

device by using appropriate averaging techniques. To facilitate voltage quality

study, an average-value model (AVM) of the EV load is developed by averaging

the effects of switching actions which happen within one power cycle. Further-

more, an even more simplified EV load model using the actual field measure-

ments and EV load characteristics, referred to as constant-power model, is

developed. The constant-power model is more flexible in simulating daily load

flow solutions and in performing voltage quality and harmonics evaluations.

All three EV load models are explained in the following section. Note that,

the voltage quality analysis conducted in this chapter uses the constant-power
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EV load model.

3.3.1 Literature Review

The electric vehicle (EV) battery chargers connected to a secondary distri-

bution circuit often raise voltage regulation concerns both in the primary dis-

tribution lines and secondary wires. To evaluate the concerns and to provide a

better understanding of the impacts of EV loads on the distribution voltages, a

representative simulation model of EV chargers must be developed. Switching

models or detailed device-level models of EV chargers are accurate in mim-

icking a wide range of charging conditions. However, these simulation models

usually take a significant amount of time to run due to the converter’s high

switching frequency. Furthermore, the evaluation of voltage regulation issues

in the primary and secondary circuits requires running hundreds of multi-hour

load demand scenarios making the detailed model impractical. In addition,

voltage regulation is not an electromagnetic transient phenomenon, therefore

the use of detailed model is not necessary. For these reasons, a small-signal

model of EV chargers is called for. The small signal model averages the effects

of fast switchings in the device that occur within one power cycle, thus making

the simulation fast and less computationally intensive.

An EV charger circuit is composed of a single-phase rectifier with a boost

converter as the power factor correction stage, followed by a DC-DC converter

for insulation of the battery from the AC supply [69]. An equivalent switching

model of the EV charger based on empirical data obtained for a range of

actual EVs is presented in [70]. However, the model is manufacturer specific

as it is empirically derived. A model for a population of EV loads is developed

in [71]. As such, this model does not represent device-level characteristics
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and is mainly intended to evaluate the effects of a large number of EV loads

on system harmonics. A detailed EMTP-RV model or switching model for a

Level-1 (120V/12A) battery charger is presented in [72]. Since the developed

model is a switching model, it takes a significant amount of time to run and is

therefore not suitable for evaluation of voltage regulation concerns. Average-

value modeling is the most general method used for developing the small-signal

models for power electronic equipment. Average-value models for DC-DC

converters and various three-phase rectifier circuits have been developed in [73–

80]. A mathematical model for electric vehicle charging demand specifically for

rapid charging stations is developed in [81]. The developed EV charging model

considers both spatial and temporal uncertainty of electric vehicle charging

demand.

3.3.2 EV Charger Circuit

A battery charger takes power from an electric energy supply (mostly AC

voltages) and delivers power to battery packs. Since battery packs take DC

power, the supply power needs to be processed by battery chargers. The man-

ner in which the power is delivered to the batteries is also very crucial to

battery life, hence a charger also includes a control circuit for battery power

management [80, 82]. Evidently charging circuit consists of two parts as de-

scribed below.

Figure 3.3: Simplified block diagram of battery charging system.
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3.3.2.1 Power Processing Unit

Power processing unit of a general EV charger consists of an AC-DC con-

verter. The general architecture is shown in Figure 3.3. Due to safety re-

quirements and standards, battery chargers are generally isolated from the

AC power grid. Traditionally, battery chargers consist of AC-DC full bridge

rectifier followed by a capacitor (to reduce voltage ripples). The supply side

current injected by such a converter is not sinusoidal and is rich in harmonics,

hence undesirable. A power factor correction stage (PFC) (generally using a

boost converter) with an appropriate control circuit is used to improve the

supply current waveforms. In commercial chargers, the boost converter uses

pulse width modulation (PWM) control to provide power factor correction at

the input terminals. As a result, the charger operates at near unity power

factor with minimum low frequency harmonic current content during normal

operation. From modeling perspective, power processing unit till the power

factor correction stage is sufficient enough to study the impact of a battery

charger on AC grid.

3.3.2.2 Battery Management Unit

Battery management unit determines the efficiency and performance of

the battery charger. It consists of a micro-controller and sensors to monitor

the status of charging current, voltage, and battery’s state-of charging (SOC).

Micro-controller contains charging algorithms, which enables it to determine

when to start and stop the charging process. Conventional charging meth-

ods include passive charging, constant current (CC) charging, constant volt-

age (CV) charging and CC-CV charging. Recently a pulsed current charging

method is gaining popularity as a fast charging algorithm.
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3.3.3 Generic Time-Domain EV Load Model

A generic time domain model for an EV load being charged by a Level-1

(120V/12A) battery charger is simulated and shown in Figure 3.4 [72]. The

model consists of an AC-DC full bridge rectifier followed by a power factor

correction (PFC) stage, a DC-DC insulation stage, and a battery load. Table

3.2 presents the circuit parameters for the EV load model shown in Figure 3.4.

For the EV load being charged by a Level-2 EV charger, all circuit parame-

ters shown in Table 3.2 are assumed identical, with the exception that Vac is

changed to 240 V.
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Figure 3.4: Time-domain model for a Level-1 (120V/12A) EV battery charger

Table 3.2: Level-1 (120V/12A) EV Charger Circuit Parameters

Supply side Boost converter DC-DC converter Battery model

circuit parameters circuit parameters circuit parameters

Vac = 120V Lb = 1.8 mH L1 = 5 mH Rbat = 0.1 Ω

Ls = 0.5 mH Cb = 500 µF C1 = 50 µF Vbat = 384 V

Cs = 10 µF

The PFC stage ensures a sinusoidal supply-side current control methodol-

ogy for which is shown in Figure 3.5. The difference between the output of the

boost converter (Vload) and the reference voltage (in this case 370 V) is used to

generate an error signal which is then fed to the voltage controller, Gv(s). The
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output of the voltage controller is then multiplied by the haversine to generate

a reference signal for the boost inductor current. Using this current as the

reference and the measured current from the boost inductor (idc), a new error

signal is formed which is fed into the current controller, Gi(s). The output of

the current controller is then compared with a ramp signal to provide PWM

control of the switch resulting in a sinusoidal supply current.

Figure 3.5: Block diagram of PWM control of PFC boost converter

The full-bridge DC-DC converter associated with the insulation stage is

controlled using the PWM technique, the block diagram for which is shown in

Figure 3.6. The PWM scheme controls all four switches using bi-polar voltage

switching. The difference between the reference (IREF = 3.65 A) and the

measured battery current (IBAT ) is fed to a PI controller and the output is

compared against a 50 kHz ramp signal. The output determines the transistor

pairs needed to be switched on, (TA+,TA-) or (TB+,TB-).

Figure 3.6: Block diagram of PWM control of DC-DC converter

A 330V-10kWh Li-ion battery is used as the battery load. The battery

model used in this case is a 384 V DC voltage source (fully charged voltage of

battery) behind a 0.1 Ω series resistance.
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Figure 3.7: Reduced-order time-domain model for a Level-1 (120V/12A) EV battery
charger

Furthermore, a reduced-order model for an EV load charged by a Level-

1 (120V/12A) EV charger is also developed as shown in Figure 3.7. In the

reduced-order model the DC-DC converter and the battery are replaced by an

102 Ω resistor. Similarly, equivalent resistance for the reduced-order model of

an EV load being charged by a Level-2 EV charger (240V/16A) is simulated

by replacing the DC-DC converter and the battery load by a 58 Ω resistor.

3.3.4 Average Value Model for the Electric Vehicle (EV) Loads

In this section an AVM for the reduced-order EV load model is developed

[2], [3]. Specifications for the EV charger assembly are the same as in the

time-domain model, shown in Figure 3.7. The AVM model for the EV load is

developed in two stages for which the time-domain model is divided into two

blocks :

� Rectifier block - converting AC supply voltage to low ripple DC voltage

and

� Boost converter block - for power factor correction
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In order to break the model into two stages it is required to introduce

an isolation between the two blocks. This is achieved by dividing the boost

converter inductance into two equal halves (Lb and Ldc) and introducing a

very low capacitance (Cdc) between the two stages, as shown in Figure 3.8.

Since the capacitance introduced in very low, overall circuit behavior of the

EV charger shown in Figure 3.8 remains unaffected. The equivalent switching

model is shown in Figure 3.8.
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V
dc

V
ac Cs

iac

E
dc

Lb

Cb R
lo

ad

V
lo

ad

iL iload

Ldc

Cdc

idc

Rdc

Figure 3.8: Equivalent time-domain model for the generic EV battery charger

3.3.4.1 Rectifier Block - AVM Model Derivation

The AVM model for a three-phase rectifier is developed by assuming that

the DC current flowing through the filter inductor is smooth enough to be

represented approximately by a first order Taylor series [83]. In (3.1), current

idc0 is the instantaneous DC current flowing through the inductor (Ldc) halfway

through commutation, u is the overlap angle and k is the rate of rise of DC

current with respect to θ = ωt.

idc = idc0 + k(θ − u

2
) (3.1)

Although an EV load is a constant current device, i.e. it draws a con-

stant RMS supply side current and a constant RMS DC current, the current
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waveforms are not constant. The PWM control for the EV charger modifies

DC current waveform as haversine wave making the instantaneous value of

DC current variable. Hence, an AVM cannot be developed for instantaneous

values of current waveforms. Since, for an EV charger, the RMS values of AC

and DC current waveforms remain constant, the AVM can be derived for the

RMS values of current waveforms. In this work, the AVM is developed for

the RMS value of the DC current waveform and for the derivations herein,

(3.1) represents the RMS value of the DC current waveform. Since the PWM

control results in a sinusoidal supply (AC) current, the harmonic distortion

in current waveforms could be assumed to be minimal and the actual current

and voltage waveforms could be reproduced from their RMS values, obtained

using the developed AVM model. The analytical derivation for the AVM of

the rectifier block is presented below.

Generally, a single-phase bridge rectifier exhibits a two-switch conduction

configuration (see Figure 3.9(a)). However because of the presence of source

impedance, during commutation the current cannot be transferred instanta-

neously from the outgoing device to the incoming device and thus the rectifier

exhibits a four-switch conduction configuration (see Figure 3.9(b)).

In order to represent current delay during commutation, the RMS current

on the supply side (i′ac) is expressed as the difference of two current waveforms

i1 and i2. Currents i1 and i2 flow in opposite directions through the source

impedance as shown in Figure 3.10. It is clear that during positive half cycle

commutation mode, i1 increases from 0 to I0 and i2 decreases from I0 to 0.

Then i1 and i2 currents stay at I0 and 0 respectively until the next commu-

tation. Similarly during negative half cycle commutation mode, i2 increases

from 0 to I0 and i1 decreases from I0 to 0. Then i2 and i1 currents stay at
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Figure 3.9: a) Two-switch conduction configuration, b) Four-switch conduction
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I0 and 0 respectively until the next commutation. Note that, I0 is the RMS

value of supply side AC current (i′ac) waveform after commutation. Using the

above discussion and Figure 3.10, for entire power cycle:

i′ac = i1 − i2

i′ac = iac + Cs

∫
Vdcdt

idc = i1 + i2 − Cs
∫
Vdcdt (3.2)

where idc is the RMS DC current.
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Figure 3.10: Piece-wise representation of the RMS AC current (i′ac)
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3.3.4.2 During Commutation

Applying Kirchhoff’s voltage law (KVL) to the commutation circuit in Fig-

ure 3.9(b), the following equation is obtained. Note that, during commutation,

Vdc = 0.

Vac = Ls
di′ac
dt

(3.3)

Substituting (3.2) in (3.3), eliminating i2 and substituting idc and Vdc, then

integrating from 0 to θ yields:

i1(θ) =

√
2Va

2ωLs
(1− cos(θ)) +

1

2
(kθ) (3.4)

At the end of the commutation, current i1 will be equal to DC current idc. By

substituting i1(u) = idc(u) in (3.1), where u is angle of commutation:

i1(u) = idc(u) = idc0 +
1

2
(ku) (3.5)

At the end, commutation (overlap) angle is given as:

u = cos−1
(

1− 2ωLsidc0√
2Va

)
(3.6)

3.3.4.3 After Commutation

Applying Kirchhoff’s voltage law (KVL) to the circuit in Figure 3.9(a), we

get:

Vdc(ωt) =
√

2Va sinωt− ωLs
di1
dωt

+ ωLs
di2
dωt

(3.7)

Clearly (3.7) is applicable for all time. By averaging (3.7) over 0 ≤ θ ≤ π, the

average value for dc voltage V dc(t) can be obtained.

V dc =
1

π

∫ π

0

[√
2Va sinωt− ωLs

di1
dωt

+ ωLs
di2
dωt

]
dωt (3.8)
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The bar over the variables in the equations indicate that these are averaged

values.

During commutation Vdc = 0. Hence, for 0 < θ ≤ u, i1 is derived by (3.5)

and i2 = idc − i1. For the period u < θ ≤ π, i2 is zero and using (3.1), i1 = idc + Cs
∫
Vdcdt.

Using above arguments, substituting (3.5) and (3.1) in (3.8), and solving for

V dc we get:

V dc(t) =
2
√

2

π
Va −

2ωLs
π

idc0 + Ls

(
1− u

π

) didc
dt

+
CsLs
π

V dc(t)

= g

(
2
√

2

π
Va −

2ωLs
π

idc0 + Ls

(
1− u

π

) didc
dt

)
where

g =
1

1− CsLs
π

(3.9)

Also applying KVL on the ‘DC’ side, we get:

V dc = Edc + Ldc
didc
dt

+Rdcidc0 (3.10)

Substituting (3.10) in (3.9) we get:

didc
dt

=

2g
√

2Va
π

−
(

2gωLs
π

+Rdc

)
idc0 − Edc

Ldc + gLs

(
1− u

π

) (3.11)

Eq. (3.11) represents the DC current dynamics of the single phase bridge

rectifier circuit.

Using (3.2), and the RMS current waveform in Figure 3.10, the supply

side AC current waveform for one power cycle is given by (3.12). Note that

the supply side AC current waveform is represented as i′waveac .

i′waveac (θ) =
√

2a · sin(θ) ; 0 < θ ≤ u

57



=
√

2

(
idc + Cs

∫
Vdcdt

)
sin(θ) ;u < θ ≤ π

= −
√

2b · sin(θ − π) ; π < θ ≤ π + u

= −
√

2

(
idc + Cs

∫
Vdcdt

)
sin(θ − π) ; else

where

a = 2

(√
2Va

2ωLs
(1− cos(θ)) +

k

2
(θ)

)
− idc

b = 2

(√
2Va

2ωLs
(1− cos(θ − π)) +

k

2
(θ − π)

)
− idc (3.12)

The DC current waveform is generated using (3.13). Note that the DC current

waveform is represented as iwavedc .

iwavedc (θ) =
√

2a · sin(θ) ; 0 < θ ≤ u

=
√

2 (idc) sin(θ) ;u < θ ≤ π

=
√

2b · sin(θ − π) ; π < θ ≤ π + u

=
√

2 (idc) sin(θ − π) ; else (3.13)

3.3.4.4 Boost-Converter - Analytical Model

The circuit diagram for the boost-converter part of the EV load time-

domain model is shown in Figure 3.11. The average value model for a boost

converter is given as:

Lb
diL(t)

dt
= Edc − (1− d)Vload(t)

Cb
dVload(t)

dt
= (1− d)iL(t)− iload

iload =
Vload
Rload

(3.14)
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where d is the duty cycle of the converter, given by.

q(t) = d =
Ton

Ton + Toff
(3.15)

where, q(t) represents status of the switch or switching signal. (ON: q(t) = 1,

OFF: q(t) = 0)

E
dc

Lb

Cb R
lo

ad

V
lo

ad

iL iload

Figure 3.11: Boost converter - power factor correction stage

3.3.5 Constant-power EV Load Model

The voltage variations recorded over a day in the distribution feeder is a

steady-state event; hence a steady-state model for the EV load would be suf-

ficient in conducting the voltage quality analysis. This section describes the

constant power EV load model simulated for voltage quality study. The sim-

ulation of steady-state model requires an understanding of the steady state

behavior of EV loads. To understand the steady state characteristics, field

measurements were taken at an EV charging facility. Figure 3.12 shows the

one-line diagram of the charging facility under consideration. The charging

station shown in Figure 3.12 is equipped with four Level-2 (240V-15A) charg-

ers.
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Figure 3.12: One-line diagram of the charging facility

The measurement conditions are specified as follows. Four EVs were being

charged between measurement time, 0 and 420 s for a total power demand of

13.9 kW or 3.5 kW per EV with line current of 15 A. Later between 420 s

and 470 s, two EVs were being charged while the other two went offline. A

representative snapshot for the measurement of EVs’ power demand is shown

in Figure 3.13. It can be seen that the power demand remains constant while

EV loads are charging. Clearly, the field measurements suggest that the EV

loads draw constant power when plugged in for charging. This observation

is justified by the fact that the commercial charging circuits are equipped

with advanced control strategies, designed to draw a constant current while

maintaining a constant charging voltage, thus supplying a constant power to

the EV. The constant power demand justifies a constant power model for the

EV loads.

For the voltage quality evaluations, the daily load shape profile for the

EV load is also required. Therefore, based on the type of EV battery, vehicle

traffic, and the type of charging facility (residential or commercial facility) to

which the EV load is connected to, the load shape profile for the EV load is

generated.
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Figure 3.13: Power demand measured at the secondary service

Figure 3.14: Daily load shape profiles for an 8 kWh EV load (charger efficiency is 90%)

An example load shape profile of an EV load with an 8-kWh battery pack

is shown Figure 3.14 [79]. The electrical demand over time for an EV load is

clearly not constant for all time. In a battery charger, the kW demand remains

constant until the state of charge (SOC) of the battery reaches 90%. After

which, the rate of charge is decreased until the battery is fully charged. Based
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on the observations drawn from the measurements and Figure 3.14, a daily load

shape profile for a 16 kWh EV load with 20% SOC [69], being changed by a

240V-16A Level 2 EV charger connected to a residential facility, is developed

and shown in Figure 3.15. The load shape profile of EV load is developed

using the constant power load characteristic and a fixed EV charging starting

time. To simulate the worst case scenario, the EV load demand is assumed to

overlap with the peak demand hours of the service transformer i.e. 6 -10 pm.

Figure 3.15: An example EV load shape profile of a 16 kWh EV load being charged by a
Level-2 charger (240V/16A-3.84kW)

3.3.6 Application and Validation of the EV load AVM model

This section illustrates the application of the AVM model for an EV load

being charged by a Level-2 (240V/16A) EV charger in evaluating the secondary

circuit voltage drops due to the EV load charging. The section also validates

the AVM against the time-domain model. The selected parameters for the

battery charging system shown in Figure 3.8 are given as follows: Ls = 0.5

mH, Cs = 10 µF, Ldc = 0.9 mH, Lb = 0.9 mH, Cdc = 1 pF, Cb = 500 µF. The
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value of the supply voltage (Vac) is 240 V and the equivalent load resistance

(Rload = 58 Ω) is used.

The system is subjected to four case studies. In Case 1, a Level-1 EV

charger of rating 120V/12A is simulated and validated against the switch-

ing model. Case 2 validates both the AVM model and switching model of

the EV charger against the actual measurements taken at an EV charging

facility. In Case 3, a simple distribution feeder model is simulated. Three

Level-2 (240V/16A) EV chargers are connected to phase A of the secondary

distribution transformer. Case 4 validates the accuracy of the AVM model

in evaluating the effects of EV load on the secondary network voltage profile.

These case studies are discussed in details below.

3.3.6.1 Case 1 - Validation and Comparison of the proposed AVM
Model

An AVM model for a Level-1 (120V/12A) EV battery charger is developed

in Matlab/Simulink [18]. The AVM is validated against an equivalent switch-

ing model developed using PSCAD/EMTDC [84]. The RMS supply voltage

for the charging system is Vac = 120 V. To simulate the reduced-order model,

the DC-DC converter and the battery load are replaced by an equivalent load

resistance (Rload) equal to 102 Ω. It should be noted that for the developed

AVM model, the PWM control is maintaining the battery charging voltage at

370 V.

Figure 3.16 shows the load voltage (Vload), rectified DC current (idc) and

supply current (i′ac) waveforms for the proposed AVM model and the switching

model. The load voltage is constant at approximately 370 V. The rectified

DC current (idc) waveform has a peak value of 17.5 A. Also, the AC current
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waveform is sinusoidal for the proposed AVM model with the peak value of

17.5 A, the same as in the switching model. Hence, the RMS value of supply

side AC current is approximately 12.3 A as required by a Level-1 (120V/12A)

EV charger. Graphs generated by the proposed AVM model clearly overlap

with the graphs generated by the switching model, thus validating the AVM

model.

3.3.6.2 Case 2 - Validation against the Actual Measurements

Real time measurements are taken at a charging facility using a power

quality analyzer. The secondary network voltage and current profiles during

EV charging are recorded. The charging facility is populated with two 3.5

kW EV loads. The one-line diagram of the secondary network chosen for the

measurements is shown in Figure 3.17.

An equivalent switching model and an AVM model is developed for this

case. Both AVM and switching models are validated against the actual mea-

surements taken at the charging facility. The supply-side current waveforms

are shown in Figure 3.18. From Figure 3.18, the peak value of supply side

current is 41 A, which gives peak current contribution per charger equal to

41
2

A. Hence RMS current supplied to each EV charger is 41
2
√
2

= 14.5 A. Also,

current required by each 3.5 kW EV load at a voltage level of 240 V is equal

to 3.5
0.24

= 14.58 A, which is same as RMS current supplied to each EV load

in Figure 3.17. Hence, the above argument validates the supply side current

profile for the measurements taken.

Clearly the supply side AC current measured for both switching model

and AVM model overlap with the actual measurements taken, thus validating

both models.
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Figure 3.16: Current and voltage waveforms for the EV charger models: (a) output DC
voltage (Vload); (b) DC current (idc) waveform; (c) supply side AC current (i′ac) waveform
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Figure 3.18: Supply side AC current (iac) waveform

3.3.6.3 Case 3 - Application to the Distribution Feeder

A simple distribution feeder model is simulated in this section and the

EV charging characteristics are validated for the equivalent AVM model. A

three-phase 13.8 kV source is connected to a 10 km long distribution line.

The distribution line is supplying a single-phase center-tap distribution trans-

former of voltage rating 7.97kV/240V, and two single-phase loads as shown in

Figure 3.19(a). Three Level-2 (240V/16A) EV chargers are connected to the

secondary side of the center tap transformer. To simulate the reduced-order

model for the Level-2 EV charger (Figure 3.19(b)), the DC-DC converter and

the battery load are replaced by an equivalent load resistance of 58 Ω. For the
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AVM model, PWM control is maintaining battery charging voltage at 370 V.

AVM model is validated against the switching model for the center-tap

transformer secondary (AC) current, DC current inside one of the EV charg-

ers, and battery charging voltage. Figure 3.20 shows the load voltage (Vload),

rectified DC current (idc) waveform for a particular battery charger, and the

transformer secondary current (iac) waveform for both models.
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Figure 3.19: (a) Distribution feeder model under evaluation; (b) Switching model for a
Level-2 (240V/16A) EV charger

As expected due to PWM control, the load voltage is constant at 370

V. The AVM model is averaging the DC current waveform generated by the

switching model, thus validating the AVM model. Also, the rectified DC

current (idc) has a peak value of 23 A. The DC current waveform is a fully

rectified sine wave (haversine). The current waveforms on the secondary side
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of the center-tap transformer are sinusoidal for both models. The peak value

of the current waveform is 70 A giving the peak current contribution per EV

charger equal to 70
3

A. Hence, the RMS current required per EV charger comes

out to be 70
3
√
2

= 16.3 A, as required by the Level-2 (240V/16A) EV charger.

Graphs generated by the AVM model clearly overlap with the graphs generated

by the switching model, thus validating the AVM model.

3.3.6.4 Case 4 - Evaluation of Voltage Drop in the Secondary Cir-
cuit due to EV Load Charging

The one-line diagram of a 13.8 kV distribution feeder model under eval-

uation is shown in Figure 3.21. A single-phase center-tap distribution trans-

former of voltage rating 7.97kV/240V is connected to phase A of one of the

three phase lines. The service transformer is connected to a 500 m long sec-

ondary feeder. The secondary circuit supplies two 2.5 kW conventional loads

and a 240V/16A (3.84 kW) EV charger.

The RMS voltage profile is recorded at the load node for both the AVM

model and switching model, with and without the EV load. The RMS voltage

profiles for both models are shown in Fig. 3.22. Without EV load, both models

record 116.9 V RMS voltage at the load node. The RMS voltage drops to 112.7

V when one 240V/16A EV load is connected to the network. Both, the AVM

and switching models record an additional voltage drop of 4.2 V (3.5 %) due

to EV load charging. This case concludes that the AVM model satisfactorily

evaluates steady state effects of EV load charging on the secondary network

voltage profile.
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Figure 3.20: Current and voltage waveforms for the EV charger with PWM control: (a)
output DC load voltage (Vload) for an EV charger; (b) rectified DC current (idc) waveform
for an EV charger; (c) AC current (iac) waveform measured at the transformer secondary

3.4 Evaluating and Mitigating the Distribution System
Impacts of EV Charging - A Literature Review

This section presents a detailed literature review on the impacts and miti-

gation of EV charging on the distribution system. The impact analysis details
69



PI SECTION

EV 

Charger

P + jQ

vload

P + jQ

P + jQ

PI SECTION

3 phase line

3.16 km 

3 phase line

1.6 km 

3 phase line

1.6 km 

1 phase line

500 m 

a b c

a

b

c

a b c

a
 b

 c

a
 b

 c

1 phase line

500 m 

Figure 3.21: One-line diagram of the distribution feeder model (Application of the EV
load AVM model)

the evaluation of the EV load impacts on generation adequacy of the existing

distribution circuits, on transformer aging due to overloading, and on distribu-

tion system power quality. Several mitigation schemes proposed in literature

including indirect control using TOU rates and direct control using smart

charging algorithms are detailed next.

3.4.1 Impacts of EV Charging on Distribution System

The growing EV charging infrastructure comes with several challenges for

the existing distribution system. These challenges have been thoroughly eval-

uated in the past few years. In the existing literature, EV impact analysis

is primarily conducted to evaluate the effects of EVs on electricity genera-

tion adequacy, transformer aging, and distribution system power quality. It is

speculated that EV charging during peak load hours may increase the peak

load demand and necessitate generation capacity expansion. Additionally, in-

creased EV load demand may overload substation and service transformers

thus deteriorating transformers’ life. Additionally, EV charging may result
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Figure 3.22: Voltage waveforms (vload) at the load node with and without EV load using
the: (a) switching model; (b) AVM model

in power quality issues including voltage drops, power unbalances, and volt-

age/current harmonics.

3.4.1.1 EV Load Impacts on Electricity Generation Adequacy

Several EV integration studies [21–27] have analyzed the existing and

planned generation capacity to meet current and future EV demands. These

studies conclude that the requirement for new power plants due to EV charg-

ing is unlikely if EVs do not increase the system peak load demand. In other

words, if vehicles are charged during off-peak hours, EV charging will not
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have a significant impact on the power generation adequacy. It is observed

that without controlled charging, a large-scale EV deployment could decrease

supply adequacy, and, therefore, will necessitate the construction of additional

power plants. Specifically, [28] concludes that depending on the time and place

of the vehicle additions, EV charging could require additional power genera-

tion or increase the utilization of existing capacity and possibly reduce the

reserve margins thus resulting in serious reliability concerns.

3.4.1.2 EV Load Impacts on Transformer Aging

The large-scale EV deployment is likely to cause problems in the distribu-

tion system such as increased load demand, an increase in system losses, and

additional voltage drops in distribution voltages [4–7, 27–41]. The increased

load demand due to EV loads can overload service transformers and increase

system losses. Furthermore, EV charging can create new load peaks exceed-

ing the service transformer’s rated capacity, thereby, accelerating equipment

aging [29–31]. Specifically, [29] characterizes the impacts of EV charger char-

acteristics particularly system harmonics on distribution transformer life. The

analysis results in a quadratic relationship between the transformer life and

the total harmonic distortion (THD) of the battery charger current. In order

to have a reasonable transformer life expectancy, it is suggested that the cur-

rent THD should not exceed 25-30%. Similarly, [30] evaluates the impacts of

EV charging on transformer capacity overloading and concludes that a time-

controlled EV charging can successfully mitigate the transformer overloading

concerns. An EV charging analysis using actual load consumption data from

Austin, Texas, during a typical summer day is conducted in [85]. The study

anticipates that in such areas a high density of EVs may reduce distribution
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transformer life unless EV charging is managed adequately. A separate study

concludes that depending upon charging condition, EV charging may have

both positive and negative effects on transformer aging [20]. An increased

peak load demand may decrease transformer life expectancy; however, if EVs

are primarily charged during off-peak hours, a flatter load profile could reduce

the daily expansion and contraction of the transformer, resulting in a positive

effect on transformer’s life. In another study [86], authors evaluate the im-

pacts of EV loads on distribution transformers and conclude that the existing

distribution assets are able to support a number of electric vehicles without

resulting in any adverse impacts.

3.4.1.3 EV Load Impacts on Distribution Power Quality

EV charging is also likely to cause power quality problems in the distri-

bution circuit including, but not limited to undervoltage conditions, power

unbalances, voltage and current harmonics. As the number of EVs increases

so is the electricity demand required to charge their batteries. An EV load

being charged by a Level-2 charger can almost double the peak load demand

of the homeowner [6]. The increased load demand due to EVs leads to addi-

tional voltage drops in the secondary service voltages, thus affecting the service

voltage quality.

Several studies have been conducted to evaluate the impacts of EV charg-

ing on distribution voltages. The existing methods simulate multiple represen-

tative EV charging scenarios and project the potential impacts of EV charging

using distribution circuit analysis tools. For example, [32] evaluates the im-

pacts of the additional demand due to EV charging on system power losses and

voltage deviations. The study further recommends using a controlled charging
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method to mitigate the EV charging impacts. In [33], the impacts of quick

EV charging on the power distribution system particularly on power system

harmonics are evaluated and the maximum EV penetration level while avoid-

ing serious harmonic impacts is determined. Furthermore in [35], the impacts

of EV integration on the power system loading and voltage profile are evalu-

ated and the benefits of several charging scenarios i.e. dumb charging, timed

charging, and controlled charging on service voltage quality are quantified.

Similarly, [36] investigates the effects of EV charging on distribution voltages,

line drops, and system losses and [37] evaluates EV impacts particularly on

voltage limits, power quality, and power imbalance. In [4–7], several circuit

parameters, both at local and global level affecting distribution voltages during

EV charging are evaluated. Based on the analysis, it is concluded that that

a large-scale EV deployment could violate recommended limits for secondary

wire voltages and might result in voltage unbalance. Another study uses ac-

tual measurements and survey data to determine EV charging characteristics

including feeder load demand, EV charging starting time, battery state-of-

charge (SOC), and proposes a stochastic approach to analyze the impacts of

EV charging [39]. A Monte Carlo approach to evaluate the impacts of EV

charging on feeder voltage quality including under/over voltages and voltage

imbalances is proposed in [40]. Ref. [41] presents a comparative analysis on

EV charging impacts of typical NA and EU distribution circuits.

Since maintaining an appropriate voltage level for residential customers is

a matter of prime importance for utility companies, a detailed analysis of the

impacts of EV charging on distribution voltages is required. In Section 3.5,

we present our approach to evaluating the voltage quality impacts of EV loads

on residential customers.
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3.4.2 Time-of-Use (TOU) Pricing to Mitigate EV Load Impacts

The EV impacts analysis concludes that EV load charging during peak

load hours can lead to undesirable grid impacts, such as an increase in the

peak load demand and undervoltage conditions, thus necessitating the grid

expansions. Thus, an uncontrolled charging of EV loads can limit the per-

centage penetration of EV loads into the distribution grid [4–7, 27–41]. To

avoid EV charging during peak load hours, utility companies deploy a TOU

pricing structure. In a TOU scheme, the electricity usage are rated differently

during peak and off-peak hours (lower rate), which motivates the customers

to utilize the electricity generated during off-peak hours [43–45]. The schedule

to begin peak and off-peak rates in a TOU scheme is referred to as a TOU

schedule. In [45], the customer’s response to time-varying rates for EV charg-

ing is investigated. The study aimed to understand the behavior and choices

of EV customers to different EV tariff structures. The study concluded that

EV customers were responsive to TOU prices, and most of the EV owners pro-

grammed their vehicle to charge during the off-peak tariff periods. Therefore,

TOU pricing can successfully stimulate EV charging during off-peak hours and

flatten the demand profile [43–45].

Implementing TOU pricing is a useful demand-side management scheme.

However, if while designing the TOU schedule the total demand and load

profile of EV load is not taken into consideration, the effects of EV charging

under a TOU schedule might get worse [46–48]. The reduced electricity rates

during off-peak hours may result in simultaneous charging of multiple EV loads

causing an even higher increase in peak load demand and thus larger additional

voltage drops. To date, the implemented TOU schemes do not consider EV

loads while setting up the TOU schedule. This calls for the development of an
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optimal TOU schedule that considers the EV load demand and thus minimizes

the effects of EV load charging.

An optimized TOU schedule taking EV load demand into consideration is

developed in [48]. The paper proposed an approach to minimize peak value

and peak-valley difference of the load demand. However, the proposed TOU

structure in [48] does not take the convenience of EV owners into consideration.

An optimal TOU schedule that benefits both utility companies and customers

while taking EV charging into consideration is developed and presented here

[8]. The objective is to develop a practical approach for setting up a TOU

schedule based on customer load demand, EV charging demand, and service

transformer loading constraint. The selected time to begin off-peak rates in

a TOU scheme should minimize the effects of EV charging on the secondary

service voltages while ensuring that EVs are fully charged by 7 am (worst

case), thus maximizing grid and customer benefit simultaneously. The analysis

suggests that the optimal time to begin off-peak rates is between 11 pm and

12 am, but no later than 12 am [8].

3.4.3 Smart Charging Algorithms to Mitigate EV Load Impacts

The TOU pricing structure that essentially aims to minimize the EV load-

ing during peak load hours by shifting the EV demand to off-peak hours is

not an optimal solution for significantly higher levels of EV penetration. Un-

der TOU pricing, the simultaneous charging of several EV loads can create a

second peak in load demand, during off-peak hours [46]. The second peak will

essentially limit the number of EVs that can be included in the distribution

circuit. It should be noted that even after implementing TOU rates, a signifi-

cant amount of power system capacity remains underutilized. This is because
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in the TOU pricing scenario all EV loads begin to charge simultaneously at

the beginning of off-peak rates. The power system could be utilized more ef-

ficiently if the EV charging rate and time are controlled to optimize a desired

grid objective [49,50]. The grid objective could be, including, but not limited

to, flattening the overall load shape profile, minimizing the charging cost, or

minimizing power losses. This calls for the development of smart charging

algorithms aiming to accommodate a higher percentages of EVs into the grid

without causing any negative impact on the distribution feeders.

Given the potential benefits of the smart charging scheme, several articles

[51–68] have addressed the problem and have proposed algorithms to deter-

mine the EV schedule while optimizing for a given grid objective. The objec-

tives are primarily divided into two categories, maximizing utility benefits and

maximizing the benefits of EV owners.

3.4.3.1 Controlled EV Charging - Maximize Utility Benefits

Several articles sought to address the first objective, i.e. maximizing utility

benefits are summarized as follows. To maximize utility benefits, an aggrega-

tor is generally deployed by the utility and the decision for EV charging rate

and time is made based on the current load demand or electricity pricing level.

For example, Clement et al. [51] proposed a coordinated charging scheme to

minimize system power losses. The authors proposed a dynamic programming

algorithm to determine the EV charging profiles for each EV load, under both

deterministic and stochastic setting. An EV charging strategy is proposed in

[52] while aiming to minimize the peak load demand. Both local and global

control strategies based on quadratic programming are proposed to control

EV load charging based on the local load information and overall global load
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information, respectively. Sortomme et al. [53] established the relationship

between feeder losses, load factor, and load variance and formulated several

optimal charging algorithms to minimize the impact of EVs on the distribu-

tion system. A real time EV charging control strategy aiming to minimize the

total electricity generation cost and associated grid energy losses is proposed

in [54]. Furthermore, [55] proposes a demand response strategy to decrease

the potential impacts of new load peaks created by EV integration while min-

imizing the infrastructure investments. Also, in [56] the authors propose a

different demand response (DR) strategy to accommodate EV charging while

keeping the peak demand unchanged, thus maximizing the grid usage. In [57],

authors aim to flatten the total load demand and formulated the optimal EV

charging scheduling problem as a discrete optimization problem. In [58] and

[59], the optimal charging control for EVs is achieved by optimizing the energy

usage of the distributed EVs for V2G frequency regulation services. In [60]

a near real-time algorithm while taking the dynamic nature of EV charging

demand into account is proposed. The EV charging problem is formulated

as a receding horizon optimization problem while taking the transformer and

line capacity limits, phase unbalance, and voltage stability constraints into

account. Ref. [61] proposes another receding-horizon optimization approach

to obtain EV charging schedule while including the future EV penetration

into the algorithm. Authors claim that the proposed approach, after including

future EV deployments, results in a flatter demand profile and better demand-

side management.
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3.4.3.2 Controlled EV Charging - Maximize Customer Benefits

In a TOU/real-time electricity market, EV charging rate and time can be

controlled to follow the TOU/real-time rate structure, thereby minimizing the

cost of EV charging for the EV owners. Several researchers have utilized this

property and have proposed controlled charging techniques by actively adjust-

ing the EV charging rate and time based on a real-time electricity market,

thus maximizing benefits for the EV customers. For instance, a control model

for EV charging based on real-time electricity price information is introduced

in [62]. In [63], a quadratic programming technique is used to optimize the

charging-discharging process such that the charging cost is minimized while

maximizing the discharging profit. A heuristic method is proposed in [64] to

control the EV charging rate and time in response to the TOU pricing sched-

ule. A real time V2G control algorithm with price uncertainty is proposed in

[65], aiming to maximize the profit to each EV owner. The profit includes the

payment received by the EV owners from the utility company for selling power

minus the cost of purchasing power from the grid. In [66], both global and

local optimal EV control strategies are proposed while aiming to minimize the

total cost of electricity paid by EV owners for EV charging. Similarly, [67]

solves the EV charging scheduling problem by jointly maximizing the aggre-

gator’s profits and EV owner’s costs. A linear programming based optimal

control strategy is proposed for the static charging scenario while a heuristic

is developed for the dynamic scenario. In [68], the customer benefits are max-

imized by optimizing for the local grid level constraints. The authors propose

an EV charging strategy targeting to deliver the maximum amount of energy

to the EV loads while maintaining the circuit parameters (substation demand

and feeder voltages) within the specified limits.
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The proposed smart charging algorithms in literature have a few limi-

tations. By optimally scheduling EV charging rate and time to maximize

utility benefits, the proposed algorithms ignore customer inconvenience. Ad-

ditionally, many utilities do not implement real-time price for the residential

customers thus rendering the optimal EV charging methods to maximize EV

customers’ charging benefits inapplicable. In Section 3.8, we propose a con-

trolled charging algorithm aiming to minimize voltage variations during EV

charging thus resulting in a flat voltage profile at each EV customer location.

The proposed algorithm takes EV charging start and end time as a user input

thus avoiding customer inconvenience and obtains an optimal EV charging

schedule while minimizing the voltage impacts of EV charging.

3.5 Evaluation of the Impacts of EV Charging on Util-
ity Distribution System

In the following section, we present our approach to evaluate EV load

impacts on the distribution circuit, primarily focusing on the voltage quality

issues of integrating EVs into the system. The analysis first aims to iden-

tify several factors affecting distribution voltage quality while EV loads are

charging. This is done by simulating several EV deployment scenarios at local

secondary circuit and global distribution circuit level [4–6]. The local circuit

analysis aims to understand the effects of EV load charging at the local dis-

tribution circuit level. The objective is to evaluate several distribution circuit

parameters that can potentially affect the distribution circuit voltage qual-

ity. Using this analysis, utilities can determine potential conditions leading

to poor voltage quality and can take specific mitigating actions for the cus-

tomers most susceptible to EV charging impacts. The local level effects will
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be evaluated at both secondary and primary voltage levels. Next, large-scale

EV deployment scenarios are simulated to analyze EV integration impacts on

overall distribution voltage quality [7]. The analysis is termed global circuit

analysis and is conducted to understand the EV charging effects on a larger

scale. This analysis will help to understand the EV capacity of distribution

circuit, helping in planning, expanding or forming strategic policies concerning

the distribution circuit. For example, based on identified most affected areas,

utilities can find out an optimal location to deploy distributed energy storage

units or distributed generation plants to mitigate the impacts. The details

regarding the simulation method and impact analysis can be found [5].

3.5.1 Preparing the Distribution Circuit

This study is performed using two typical real-world 13.8-kV radial dis-

tribution circuits, one serving predominantly 120/240V single-phase three-

wire residential loads, and the other service both single-phase residential and

three-phase commercial loads. The selected real-world 13.8-kV radial distribu-

tion circuit serving predominantly 120/240V single-phase three-wire residential

loads is shown in see Figure 3.23. The distribution circuit has approximately

7,000 buses and supplies over 13,000 devices, where a majority of the cus-

tomer loads are single-phase. For the analysis, a complete electrical model of

the distribution circuit from the substation down to individual customer loads

including three-phase transformers, three-phase primary, laterals, secondary

networks, and service transformers is specified in the three-phase steady-state

load flow model. A daily load shape profile for all secondary network loads is

generated and assigned using load demand data measured at the substation

and the stratified billing rates. The EV loads are modeled as a constant power

81



load with an associated load shape. Load shapes of EV loads are then gen-

erated based on the temporal diversity in EV load charging patterns and the

characteristics of the EV charging station. The study presented herein is car-

ried out for Level-2 EV chargers with power ratings of 3.84-kW (240V/16A)

and charging efficiency of 90% charging a 16-kWh EV battery. To evaluate the

impacts of EV loads on the distribution voltages, three-phase load flow anal-

ysis with consideration to the load shape profile of EV loads and conventional

loads is performed for a day at every 15-minute time interval. Finally, the EV

load effects both at the local and global secondary circuit level are evaluated.

Figure 3.23: One line diagram of the residential distribution circuit (Courtesy of the
electric utilities).
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3.5.2 EV Load Impacts at Local Circuit Level

Several factors affecting the primary and secondary service voltage quality

due to EV charging are identified and evaluated. A detailed summary of

various potential factors that could affect voltage quality is presented in Tables

3.3 and 3.4.

Table 3.3: Summary of effects of EV charging on the primary wire (the selected secondary
circuit has EV loads equivalent to 50-100% of residential loads)

Circuit parameters
under evaluation

Different
conditions

evaluated for

Short-circuit
capacity (MVA)

Largest additional
voltage drop in the

Primary
Wire

Secondary
Wire

Primary
Wire

Secondary
Wire

Location of the
service transformer

w.r.t the
substation

Remote from the
substation

42.5 0.174 0.13% 4.41%

Nearby the
substation

240 0.178 0.023% 4.32%

Comparison of
short-circuit

capacity

Primary Wire Higher short-circuit capacity at the primary
wire of the nearby service transformer

Secondary Wire Comparable short-circuit capacities at the
load node of both secondary services

(remote/nearby)

Comparison of
additional voltage

drop

Primary Wire Essentially experience very minor voltage
drops during EV charging (0.13% vs.

0.023%)

Secondary wire Comparable secondary service voltage drops
are recorded at both locations of the service

transformer (remote/nearby

Fortunately, the most severe voltage drop occurs at the EV load node itself.

Other non-EV load nodes are not impacted unless they lie along the path of

the EV charging current. It has been observed that EV loading does not

cause a significant additional voltage drop in the primary wires. However, the

secondary service voltages are affected more significantly due to EV loading.
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Table 3.4: Summary of effects of various factors evaluated on the secondary circuit
supplied by a single-phase service transformer (One EV load)

Circuit parameters
under evaluation

Different
conditions

evaluated for

Largest voltage
drop

Condition for the
largest voltage

dropResidential
circuit

Mixed
circuit

Location of the
service transformer

w.r.t the
substation

Remote from the
substation

1.7% 1.65% Comparable voltage
drop (comparable

short-circuit capacity)Nearby the
substation

1.69% 1.64%

Location of the EV
load w.r.t. the

service transformer

Remote from the
service transformer

1.7% 1.65% EV load is remote
from the service

transformerNearby the service
transformer

0.8% 0.14%

Size of the EV load
240V/16A 1.7% 1.65% EV load of size

240V/30A240V/30A 3.24% 3.14%

An EV load added
adjacent to an

existing EV load

One EV load 1.7% 1.65% Additional EV load
increases the
voltage drop

One + One EV
loads

3.2% 2%

The key observations drawn from the analysis are as follows:

1. EV loads result in more severe voltage drops in the secondary circuit as

compared to the primary feeder. The short-circuit capacities at both re-

mote (174 kVA) and nearby (178 kVA) secondary circuits are relatively

low, thus resulting in significant additional voltage drops at both loca-

tions while EV loads are charging. On the other hand, the short-circuit

capacities at the primary distribution circuits, both remote (240 MVA)

and nearby (42.5 MVA), are too high for EV loads to significantly affect

the voltage profiles.

2. It has been observed that two similar secondary circuits possess approx-

imately the same short-circuit capacity at their load nodes (120V/240V)

irrespective of their relative locations from the substation, i.e., nearby
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(178 kVA) or remote (174 kVA) from the substation. This results in

approximately equal additional voltage drops due to EV load charging

for both locations of the secondary service.

3. An EV load within the secondary circuit at the farthest load node from

the service transformer causes a greater voltage drop than the case when

the EV load is located at the load node closer to the service transformer.

The difference in the largest additional voltage drop depends upon the

short-circuit capacity measured at the respective load nodes. The lower

the short-circuit capacity, the higher the additional voltage drop.

4. The voltage drop due to a 240V/30A EV load is approximately double

that of a 240V/16A EV load. Also, an EV load added adjacent to an

existing EV load worsens the voltage quality of the secondary circuit

under evaluation.

3.5.3 EV Charging Impacts at Global Circuit Level

The effects of increasing EV penetration on the distribution circuit voltages

are summarized in Table 3.5. The largest additional voltage drops for the

primary wires are recorded for different percentages of EV penetration. The

number of EV loads per secondary service is increased from 1 to 4. Mean and

standard deviation of the distribution of additional voltage drops recorded at

various primary wires are also reported. The largest additional voltage drop

increases with the increase in the number of EV loads. It should be noted

that the EV charging time coincides with the duration of peak load hours for

the secondary loads. Also, to evaluate the worst case condition, all EVs are

assumed to be charging simultaneously.

The effects of the EV load clustering on the primary wire voltages are
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Table 3.5: Effects of increasing EV penetration on the primary wire voltages

Total number of
EV loads

Percentage voltage drop recorded for 13.8 kV primary
wires

Additional
loading due
to EV (%)

Largest
additional

voltage drop

Mean value Standard
deviation

669 35.27% 1.35% 0.95% 0.24%

1338 71.13% 2.77% 1.95% 0.51%

2007 107.77% 4.25% 3.04% 0.80%

2676 144.92% 5.7% 4.19% 1.09%

summarized in Table 3.6. The analysis suggests that the clustering of EV

loads leads to an imbalance in the three-phase power demand. As a result,

one of the phases (Phase C, in this case) of the primary wire records an increase

in the supply voltage (also shown in Table 3.6). Again, all EVs are charging

simultaneously and the charging time coincides with the secondary service

peak load hours. Based on the analysis the following observations are made:

Table 3.6: Effects of EV load clustering on the primary wire voltages

Total number of
EV loads

Effects on the primary wire voltages

Additional loading
due to EV load (%)

Largest additional
voltage drop

Largest increase in
service voltage

(Phase C)

22 1.16% 0.45% 0.22%

44 2.33% 0.88% 0.45%

66 3.52% 1.35% 0.68%

88 4.75% 1.81% 0.91%

1. The primary of service transformers farther away from the substation

tends to experience more severe additional voltage drops. Load nodes

in secondary services supplied by these transformers experience much
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higher additional voltage drops than those experienced at the primary

of the transformers. Hence, the secondary services farther away from

the substation are of prime concern for the utilities in terms of voltage

quality problems due to EV loads.

2. Higher EV penetration results in a higher additional voltage drop at the

primary wire.

3. As for EV load clustering, the largest additional voltage drop increases

significantly for the primary phase supplying for the EV load clusters.

Further, clustering of EV loads causes an imbalance in the load demand

which may result in voltage increase in one or both of the other phases.

3.6 Infrastructural Upgrades to Mitigate EV Load Im-
pacts

It has been shown in the previous section that EV charging has consid-

erable effects on the secondary service voltages and the service transformer

load demands. This calls for the evaluation of effective mitigation actions

addressing the effects of EV charging. This section evaluates the mitigation

of EV charging impacts by upgrading the distribution system infrastructure.

The mitigation schemes evaluated are increasing the kVA rating of the ser-

vice transformer, and reconfiguring the secondary circuit using an additional

service transformer. The analysis is conducted using the 13.8-kV residen-

tial distribution circuit, shown in Figure 3.23. The impacts of EV charging

on feeder voltages before and after implementing the mitigation schemes are

compared.

It has been observed that increasing the kVA rating of the service trans-
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former although mitigates the transformer load demand concerns; it results

in a negligible decrease in the feeder voltage drops. The largest additional

voltage drop due to EV load charging decreases significantly on reconfiguring

the secondary circuit by adding an additional service transformer. Adding a

service transformer and reconfiguring the secondary circuit, however, require

additional infrastructural expenses.

3.6.1 Increasing Size of the Service Transformer

This section summarizes the effects of increasing the size of a service trans-

former on the secondary service voltage drops during EV load charging. The

secondary service served by a 50 kVA service transformer remote from the

substation is selected for the analysis. The secondary service is populated

with four 240V/16A EV loads. The kVA rating of the service transformer is

increased to three times of its nominal value in the steps of 10 kVA. A compar-

ison of the largest additional voltage drops recorded in the secondary circuit

with respect to the size of service transformer is shown in Figure 3.24. The

largest additional voltage drops due to EV charging decreases only by approx-

imately 0.2% when service transformer rating is increased to thrice its nominal

rating. Based on the analysis, increasing the size of a service transformer does

not significantly improves the secondary service voltage quality.

3.6.2 Reconfiguring the Secondary Circuit by adding an Additional
Service Transformer

The effects of reconfiguring the secondary circuit by adding an additional

service transformer in mitigating the secondary circuit voltage drop concerns

are evaluated in this section. A 50-kVA service transformer supplying five
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Figure 3.24: Largest additional voltage drop recorded in secondary circuits populated with
four EVs with respect to the size of the service transformer

secondary loads is selected for the study (Figure 3.25). The circuit is loaded

with four EV loads and the largest additional voltage drop due to EV load

charging is recorded. This is referred to as the base case in the following

discussion.

An additional 50-kVA service transformer is added to split the secondary

circuit into two circuits, as shown in Figure 3.26. The original transformer is

now supplying two loads, and the new transformer is supplying the remaining

three loads while each service transformer is supplying two EV loads. The

voltage profile with and without the EV loads (at the load node) is recorded

and compared to the base case. In order to validate further that the size of

the transformer does not play a significant role in mitigating secondary circuit

voltage, an additional case is simulated. The kVA rating of both transformers

is decreased to 25-kVA, making their sum 50 kVA. The additional voltage drop

in the secondary circuit is recorded with and without EV loads, with the same
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Figure 3.25: Secondary circuit selected for the analysis (Courtesy of the electric utilities).

arrangement of EV loads as in the base case. The results are summarized in

Table 3.7.

It is observed that splitting and reconfiguring the secondary circuit using

an additional service transformer significantly decreases the additional voltage

drops due to EV load charging. Furthermore, the mitigation of secondary

circuit voltage drops due to an additional service transformer depends upon

its location; placing the additional transformer closer to the new secondary

circuit results in a larger mitigation in the voltage drop concerns. The primary

disadvantage of this method is the additional infrastructural cost incurred due

to the additional service transformer, rendering the method expensive in terms

of efforts and cost
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Figure 3.26: Secondary circuit selected for the analysis (Courtesy of the electric utilities).

Table 3.7: Effects of reconfiguring the secondary service using an additional service
transformer

Number
of EV

load node

Largest additional voltage drop in the secondary circuit

Base case
circuit

Case 1 - Splitting the
circuit into two (using 50

kVA + 50 kVA
transformers)

Case 2 - Splitting the
circuit into two (using 25

kVA + 25 kVA
transformers)

EV 1 3.2 V (2.61 %) 0.46 V (0.37 %) 0.62 V (0.49%)

EV 2 3.29 V (2.68 %) 0.54 V (0.43 %) 0.69 V (0.55 %)

EV 3 2.77 V (2.55 %) 1.77 V (1.57 %) 1.93 V (1.27%)

EV 4 2.32 V (1.88 %) 1.34 V (1.08 %) 1.51 V (1.21%)

3.7 Time-of-Use (TOU) Pricing to Mitigate EV Load
Impacts

The infrastructural upgrades implemented to mitigate EV load concerns

such as resizing/adding a service transformer and reconfiguring the secondary
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circuit require significant efforts and cost. To avoid any unnecessary cost, util-

ities implement TOU pricing structure. TOU pricing encourages EV owners

to charge their EVs during off-peak hours, thus flattening the load demand

profile and reducing the additional voltage drops resulting from EV charging

[43,44].

A few studies have projected that if the off-peak rates in a TOU schedule

are not set to an optimal time, the effects of EV charging can get worse [46–48].

This is because the reduced electricity prices during off-peak hours will result

in the simultaneous charging of multiple EV loads and may result in an even

higher increase in peak load demand and thus larger additional voltage drops.

To date, utility companies do not consider EV loads while setting up the TOU

schedule. This calls for the development of an optimal TOU schedule that

considers the EV load demand and thus minimizes the effects of EV load

charging.

In this section, we develop a practical method to set up an optimal TOU

schedule that benefits both the utility and customers while taking EV charging

into consideration. The aim is to develop a practical approach for setting

up the time to begin off-peak rates in a TOU schedule so that the largest

additional voltage drops and substation peak load demand are decreased while

ensuring EVs are fully charged by 7 am, thus avoiding customer inconvenience.

A summary of our evaluation approach and results are discussed in this section.

Please refer to [8] for the detailed approach and results.

3.7.1 Simulated Charging Scenarios

The effects of time-controlled charging of the EV loads in mitigating volt-

age quality concerns are evaluated in this section. Various time-controlled
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charging scenarios with EV charging beginning at different hours of the day

are simulated. A 50-kVA service transformer remote from the substation is

selected for the analysis. The secondary circuit supplied by the transformer is

loaded with four EV loads. The analysis is performed for a 240V/16A Level-2

EV charger, with 20% SOC on the incoming vehicle. The EV load profile is

specified by the charging scenario under evaluation. Various charging scenar-

ios considered in this section and their evaluation parameters are summarized

in Table 3.8. It should be noted that the charging scenarios specified in Table

3.8 are simulated for both a 24-kWh (Nissan Leaf [87]) and a 16-kWh (Chevy

Volt [88]) EVs.

The unscheduled charging scenario represents the case when the TOU rates

are not implemented and the starting time of EV charging is not scheduled

by the utilities. Under this scenario, residential customers do not program

their EVs to begin charging at a particular time. The PDF given in Figure

3.27 represents the uncertainty in the EV charger starting time for this case.

Multiple Monte-Carlo runs are simulated by randomizing the EV chargers’

starting times (using Figure 3.27). The largest increase in load demand and

the largest additional voltage drops are recorded for each case. As mentioned

in Table 3.8, 100 runs are simulated and the load flow results recorded for each

case are averaged to obtain the voltage profile and the load shape profile for

the unscheduled EV charging scenario.

Next, the time-controlled charging scenarios with simultaneous starting of

EV loads are simulated for different hours. The start time of EV charging

is varied in the range of 8 pm to 3 am and all EVs are assumed to begin

charging simultaneously at that hour. The largest increase in load demand

and the largest additional voltage drop for each case is recorded individually
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Table 3.8: Various charging scenarios simulated for both 24-kWh and 16-kWh EV battery
loads charged using a 240V/16A EV charger

Charging scenario Probability Density Function
(PDF) for EV charging

starting time

Number of
Monte Carlo

runs

Unscheduled charging Gaussian distribution with mean at
8 pm (Figure 3.27)

100 runs

Simultaneous charging at
8 pm, 10 pm, 11 pm, 12

am, 1 am, 2 am, and 3 am

No PDF, all EVs start charging at
the same time

Not required (there
is no randomness
in starting time)

Randomized charging at
8 pm, 10 pm, 11 pm, 12

am, 1 am, 2 am, and 3 am

Positive half of Gaussian
distribution with mean at the time
of the controlled charging (Figure

3.28)

100 runs
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Figure 3.27: Probability Density Function for EV charger starting time (unscheduled
starting time)

and reported for the comparison.

To make the analysis of time-controlled charging of the EV loads more

general, randomness is added to the EV charger start time. Multiple cases

are simulated by shifting the EV charger start time to different hours of the

day, ranging from 8 pm to 3 am. For each hour, multiple Monte-Carlo runs
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Figure 3.28: Probability Density Function for EV charger starting time (randomized
starting time)

are simulated by randomizing the EV chargers’ start times using the PDF

for that hour (Figure 3.28). The largest increase in load demand and the

largest additional voltage drops are recorded for each case. The load flow

results corresponding to multiple Monte-Carlo runs are averaged to obtain the

voltage profile and load shape profile for the randomized charging scenario

beginning at a particular hour. The process is repeated for different hours

ranging from 8 pm to 3 am.

3.7.2 Results and Discussions

Table 3.9 represents the additional voltage drop and the increase in peak

load demand recorded on charging EV loads under the unscheduled charging

scenario. Clearly, a significant voltage drop is recorded when the starting

time for EV load charging is not scheduled. Note that the analysis is done

for both 24 kWh (Nissan Leaf [87]) and 16 kWh (Chevy Volt [88]) EVs. A

24 kWh EV load requires around 6 hours 30 minutes, while a 16 kWh EV
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load requires around 4 hours to fully charge from 20% state of charge (SOC)

using a 240V/16A charger. This is the minimum SOC generally allowed by

EV manufacturers [69].

Table 3.9: Characteristic of secondary circuit for unscheduled starting time

EV battery
size

EVs fully
charged by

Increase in peak load
demand (kW) due to EV

charging

Largest additional
voltage drop

24 kWh 6 am 12.6 kW 4.7 V (3.9%)

16 kWh 3:30 am 11.4 kW 4.2 V (3.5%)

Next, the results for various ‘time-controlled charging scenarios’ simulated

for both 24-kWh and 16-kWh EV loads are discussed. For both 24 kWh and

16 kWh EV loads, the increase in peak-load demand decreases as the starting

time of EV charging is shifted to the off-peak load hours, i.e. to any time

after 8 pm. A second peak in load demand is seen when the starting time

of EV loads is shifted to any time after midnight. However, the second peak

recorded for any of the time-controlled charging scenarios is not as significant

as that due to EV charging under the unscheduled charging scenario. As the

start time of EV charging is shifted from 8 pm to 3 am, the largest additional

voltage drop decreases. Also, when the starting time of EV charging is 1 am

or 2 am, no additional voltage drop is recorded in the secondary circuit. Note

that, all EV loads might not be fully charged in the morning upon shifting

the EV charging starting time to any time after midnight. The merits and

drawbacks of few time-controlled charging scenarios are presented in Table

3.10.

Note that the optimal time to begin off-peak rates should minimize the

effects of EV charging on secondary service voltage drops while ensuring EVs

are fully charged by 7 am. Clearly, the time-control scenario should at least

96



Table 3.10: Characteristic of secondary circuit for unscheduled starting time

Charging
begins at

Merits Drawbacks

8 pm Both 24-kWh and 16-kWh EVs are
fully charged before 7 am

The largest additional voltage drop
increases and is 0.6% more than the
unscheduled charging case.

11 pm Both 24-kWh and 16-kWh EVs are
fully charged before 7 am and the
increase in the peak load demand
and the additional voltage drop is
less than the unscheduled charging
case (24-kWh/16-kWh).

The increase in the peak load de-
mand and an additional voltage
drop in the secondary service is still
significantly high.

12 pm All 16-kWh EVs are fully charged
before 7 am. Also the additional
voltage drop decreases significantly

24-kWh EVs might be charged to
only 90% before 7 am if randomness
is assumed in the EV charger start-
ing times.

1 am No additional voltage drop is
recorded.

24-kWh EVs are not fully charged
before 7 am

be an improvement upon the ‘base case’ (unscheduled starting time) in terms

of the largest additional voltage drop and increase in the peak load demand.

Based on the observations the optimal time to begin off-peak rates in a

ToU pricing scenario is established. The analysis suggests that the optimal

time to begin off-peak rates in a ToU pricing scenario is as early as 11 pm,

but no later than 12 am (midnight). If EV charging were to begin at these

hours the effects of EV charging on the secondary service voltage drop would

be minimal while ensuring that EVs are fully charged by 7 am.

3.7.3 Optimal Time to begin Off-peak rates in a TOU Scheme

The analysis suggests that the optimal time to begin off-peak rates in a

TOU pricing scenario is between 11 pm and 12 am (midnight) [8]. Note that

a 24-kWh EV load requires around 6 hours 30 minutes, while a 16-kWh EV
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load requires around 4 hours to fully charge from 20% SOC using a 240V/16A

charger. The off-peak rates should begin at a time such that the effects of EV

charging on the secondary service voltages and load demands are minimized

while ensuring EVs are fully charged by 7 am. Since, a 24-kWh battery takes

a longer time to recharge, the best time to begin off-peak rates will mainly

depend upon the 24-kWh EV loads.

The impacts of TOU schedule beginning at 11 pm and 12 am on the 24-

kWh EV loads are detailed here. Figure 3.29 and Figure 3.30 show the load

shape profiles and voltage profiles when four 24-kWh EV loads are charging

under TOU schedules beginning at 11 pm and 12 am. Upon starting off-peak

rates at 11 pm, and assuming there are four 24-kWh EVs (each is equipped

with a 240V/16A charger) in a given secondary service, and that most EV

owners would program their vehicles to start charging at or soon after 11 pm,

a largest additional voltage drop of 1.8 V (1.5%) is recorded with an increase in

peak load demand of approximately 4 kW. Furthermore, on beginning off-peak

rates at 11 pm, all 24-kWh EVs with an initial SOC of 20% are fully charged

by 7 am. If off-peak rates begin at 12 am and most EV owners program their

vehicles to start charging at or soon after 12 am, no increase in peak demand

and no additional voltage drop are recorded in the secondary circuit; however,

in this case, 24-kWh EV loads that begin to charge after 12:30 am with an

initial SOC of 20% are only charged up to 90% by 7 am.

TOU pricing scheme is a popular method of implementing time-controlled

charging of EV loads. The optimal time selected to begin off-peak rates should

minimize the effects of EV charging while ensuring EVs are fully charged by 7

am, thus optimizing both grid and customer benefits. Based on our analysis,

we conclude that the optimal time to begin off-peak rates is between 11 pm
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Figure 3.29: Load shape profiles with off-peak rates beginning at 11 pm and 12 am
(24-kWh EVs)

Figure 3.30: Voltage profiles with off-peak rates beginning at 11 pm and 12 am (24-kWh
EVs)

and 12 am (midnight). Furthermore, we also demonstrate that scheduling off-

peak rates at 11 pm or 12 am is a trade-off between secondary service voltage

quality and customer satisfaction.
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3.8 Smart Charging Algorithm

A TOU pricing structure can successfully shift EV charging to off-peak

load hours, thus mitigating the EV charging impacts on peak load demand

and secondary voltage drops. The simultaneous charging of a large number of

EV loads under a TOU schedule, however, may result in a second peak in the

load demand during off-peak hours [46]. The second peak can essentially limit

the number of EVs that can be accommodated into the distribution circuit.

It is observed that even after implementing TOU rates, a significant amount

of power system capacity remains underutilized. Several studies conclude that

the direct control of EV charging rate and time using a smart charging algo-

rithm may help in utilizing the power system more efficiently. An optimal EV

charging schedule can be obtained by optimizing for a desired grid or customer

objective. Several articles [51–68] have proposed smart charging algorithms to

directly control EV charging schedule while aiming to either maximize utility

benefits or EV customers’ benefits. The utility benefits are maximized by op-

timally shifting EV load demand to off-peak hours. As for customer benefits,

methods are proposed to control EV charging while decreasing EV charging

cost in a real-time electricity market. The smart charging methods proposed

in the literature have certain limitations. By shifting EV charging to off-peak

hours, the first approach ignores the convenience of EV owners. The second

approach is limited in its application as many utilities still do not deploy real-

time electricity pricing for the residential customers [89]. Furthermore, none

of the methods directly aims to decrease EV charging impacts on the service

voltages.

In this section, a smart EV charging algorithm while aiming to minimize

the voltage quality impacts of residential EV chargers is proposed [9]. The al-
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gorithm aims to find an optimal charging schedule for each EV in the system

by locally minimizing the voltage variation at each EV load node, thus flatten-

ing the service voltage profile. To avoid customer inconvenience, the algorithm

takes customers’ inputs regarding EV charging start and end times. Since the

secondary wire voltage drop is observed due to an increase in the load de-

mand during EV charging, minimizing voltage variations optimally shifts the

EV load demand to off-peak load hours, thus mitigates both voltage quality

and service loading impacts of EV charging. Simulation results conclude that

the proposed controlled charging method is efficient in mitigating both voltage

drop and transformer loading concerns, even when 100% of residential loads

are deployed with EV loads. Additionally, it is demonstrated that the pro-

posed method helps in efficiently utilizing the distribution grid when compared

with EV charging scenario under TOU schedule.

3.8.1 Problem Formulation

The problem is formulated as an optimal control problem aiming to mini-

mize daily voltage variation by controlling the daily EV charging profiles. The

voltage deviation is measured as the difference between the base voltage (1

p.u.) and voltage at each EV load node, over a day, as shown in (3.16). The

mathematical formulation for the problem statement is given as follows.

Let there be M electric vehicles connected to a distribution circuit, with

battery capacity Ei where i ∈ {1, . . .M}. The battery content of each vehicle

is represented by Qi(t). The battery content at any time depends upon the EV

charger power level. Let EV charger power levels be represented by variable

Pi(t). The target is to minimize the overall voltage variability in the secondary
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wires supplying for the EVs. The voltage variability is given by

Vvar (t,Q(t),P(t)) =
M∑
i=1

(1− Vi (t,Q(t),P(t))) (3.16)

where,

Q(t) =

 Q1(t)
...

QM(t)

 battery content of each EV at time t,

P(t) =

 P1(t)
...

PM(t)

 EV charger power level at time t, and

Vi(t,Q(t),P(t)), is per unit voltage at time t and at the node supplying for ith

EV, when battery states are given by Q(t) and charging power given by P (t).

The proposed controlled charging algorithm is formulated as an optimal

control problem, where, Vvar(t) defines the cost function, and Q(t) corresponds

to the state variable which evolves as per the control variable P(t). The

objective is to minimize Vvar(t) over time t ∈ (0, T ), by optimizing the EV

charger power levels and ensuring the batteries are completely charged at the

end of the charging period (t = T ), where charging begins at t = 0. The cost

function is defined as the following:

J =

∫ T

0

Vvar (t,Q(t),P(t)) dt (3.17)

Next, the optimal control problem for the proposed controlled charging of

EV is formulated as follows:

min(J) = min

(∫ T

0

Vvar (t,Q(t),P(t)) dt

)
(3.18)

Subject to

Q̇i(t) = Pi(t) ∀i ∈ {1, . . .M} (3.19)
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For optimal control problem, the control variable Pi(t) should be bounded

and integrable. Therefore, the control variable is defined as:

0 ≤ Pi(t) ≤ Pi ∀i ∈ {1, . . .M} (3.20)

where, Pi is peak charging power of the charger supplying for ith EV.

Next, we will define the initial and terminal conditions for the state variable

Qi(t). The initial time is taken as zero and initial and final conditions for the

battery content for M vehicles are given as following.

Qi(0) = Qi,0 ∀i ∈ {1, . . .M} (3.21)

Qi(T ) = Ei ∀i ∈ {1, . . .M}

where

Qi,0, is the initial battery content of the ith EV when plugged in for charging,

i.e. at t = 0.

Ei, is the battery capacity of the fully charged ith EV, at time T (specified by

EV owners).

(0, T ) is the charging period.

3.8.2 Proposed Methodology

This section describes the methodology to solve the EV charging problem

formulated in the previous section. Since the battery charger power level

could only be varied in some discrete steps, the optimal control problem is

discretized. Further, the load flow solution to calculate the voltage variability

is also executed in discrete time steps, so a discrete optimization model is more

practical.
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Here, the discrete version of proposed EV charging problem is solved using

dynamic programming. The EV charging period (0, T ) is discretized in 15

min intervals, resulting in T time stages equal to the number of hours EVs

are charging multiplied by 4. Since the EV charging study is conducted for

residential chargers, EV charging hours are from 6 pm to 6 am, resulting in

T = 48 time stages. The battery contents of M EVs are discretized for T

stages and the battery content of ith EV at time t is given by Qt,i. Also, the

charging power level at a time step t for ith EV is represented by Pt,i.

The optimal control problem for EV charging (3.18)-(3.21) formulated in

previous section is discretized in this section (3.23)-(3.25). The discrete version

of the controlled EV charging problem is expressed in a backward recursive

formulation to be solved using dynamic programming approach. Let,

ft+1(Qt+1), represents the total optimal voltage variability measured from time

period t+ 1 to T .

Vvar(t,Qt,Pt), is the voltage variability at time t with Qt battery content and

Pt EV charger power level.

Qt =

 Qt,1
...

Qt,M

 is an M dimensional vector with each element Qt,i represent-

ing battery content for the ith EV at time t.

P(t) =

 Pt,1
...

Pt,M

 is an M dimensional vector with each element Pt,i represent-

ing EV charger power for the ith EV at time t.

The possible values for charging power Pt,i are also discretized and it is

assumed that Pt,i can take three values: Pi (charger working at peak charging

power), Pi/2 (charger working at half its peak charging power), and 0 (charger

is off). The discrete charging power results in Ri discrete values for EV battery
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content (Qt,i) at time t. Ri is given by (3.22), where Pi, is the peak charging

power available at the charger supplying for the ith EV.

Ri =
Ei −Q0

i

Pi/8
(3.22)

The problem formulation is given as follows:

ft(Qt) = min (Vvar(t,Qt,Pt) + ft+1(Qt+1)) t = 1, 2, . . . T (3.23)

Subject to

Qt = Qt+1 −Pt∆t (3.24)

Q0
i ≤ Qi,t ≤ Ei ∀i ∈ {1, . . .M}

Pt,i =


0
Pi/2, ∀i ∈ {1, . . .M}
Pi

(3.25)

Qi,T = Ei ∀i ∈ {1, . . .M}

where

Qi,0, is the initial battery content of the ith EV when plugged in for charging.

Pi is the peak charging power available at the charger supplying for the ith

EV.

Since state variable Qt is an M dimensional vector, the “curse of dimen-

sionality” arises in the dynamic programming formulation. This is avoided

by sequentially solving for each electric vehicle charging profiles using dy-

namic programming technique successive approximation (DPSA) [49]. DPSA

decomposes the multidimensional problem to a sequence of one-dimensional

problems, each solving for optimal charge profile for an EV.

In the following section, the proposed controlled charging scheme is eval-

uated for its effectiveness in mitigating voltage quality issues. The results for
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the controlled charging algorithm are compared against two cases: the un-

controlled charging scenario and the charging scenario with an optimal TOU

schedule (off-peak rate beginning at 12 am).

3.8.3 Evaluation of the Proposed Charging Scheme

In the following section, the proposed controlled charging scheme is eval-

uated for its effectiveness in mitigating voltage quality issues. The analysis is

first done for 16-kWh EV loads charged by Level-2 (240V/16A) chargers with

a peak charging power (Pi) equal to 3.84 kW and 90% of charging efficiency.

The initial (Q0
i ) and the final battery capacity (Ei) for each EV are 3.2 kWh

(20% SOC) and 16 kWh (100% SOC), respectively. It is also assumed that

each EV can start charging as early as 6 pm and must be fully charged by 6 am.

Note that for all cases, the initial SOC of the vehicle is 20%. A more practical

SOC for vehicles using travel statistics could be used, but since the objective

of this section is to evaluate the proposed charging strategy, the starting SOC

of the vehicle is irrelevant. Besides, using the minimum allowed SOC permits

us to evaluate the charging strategies under the worst possible conditions.

The proposed algorithm is evaluated for its effectiveness in mitigating sec-

ondary circuit undervoltage concerns. The results for the controlled charging

algorithm are compared against two cases: the uncontrolled charging scenario

and the charging scenario with an optimal TOU schedule (off-peak rate be-

ginning at 12 am). The three charging methods are compared for the number

of EVs the selected distribution circuit can accommodate without violating

the feeder undervoltage limit (< 0.95 pu). The number of EVs that can be

accommodated by a given distribution circuit without violating the feeder un-

dervoltage limit is referred to as the EV accommodation capacity of the circuit
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3.8.3.1 Impact on Voltage Variability during EV Charging

In this section, the results for uncontrolled charging and charging under

optimal TOU schedule are compared against the proposed controlled charging

algorithm. An example secondary circuit, which is supplied by a 13.8kV/120V

distribution transformer and supplies for 8 customer loads, is selected (see

Figure 3.31). Four EVs are connected at the customer load locations and each

EV charging method i.e. uncontrolled charging, charging with optimal TOU

schedule, and proposed controlled charging, is evaluated. The load demand at

the service transformer and voltage profiles at each EV load node are recorded

for each charging method.

Figure 3.31: One line diagram for the 120V/240V secondary distribution circuit (Courtesy
of the electric utilities).

The voltage profile at an EV load node for each charging method is shown

in Figure 3.32. It can be seen from the figure that the proposed charging algo-

rithm successfully minimizes the voltage variability at the EV load node and

maintains the node voltage near 1 pu. Using the proposed charging method,

the total EV load demand is optimally scheduled so that the voltage devia-
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tions at each EV load node with respect to 1 pu are minimized. The minimum

voltages recorded at each EV load node for the three charging methods are

shown in Table 3.11. From the customer’s perspective, the proposed algo-

rithm efficiently mitigates under-voltage concerns and decreases the voltage

variability

A rather important observation is made when the impacts of proposed

charging scheme are evaluated on the service transformer load demand. The

daily load demand profiles for the service transformer are shown in Figure 3.33.

The proposed charging algorithm results in a smoother load demand at the

service transformer location. Additionally, the proposed charging algorithm

fills the off-peak load demand valley and balances the service transformer load

demand. Although mitigating the transformer load demand is not modeled

as the control objective, the proposed charging method efficiently shifts the

EV load demand to off-peak load hours. The proposed algorithm therefore

mitigates the service transformer load demand issues as well, and thus is able

to meet utility concerns efficiently.

Figure 3.32: Voltage profile at the EV load location for each charging method.

As for the EV charging using optimal TOU schedule, the EV load demand
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Figure 3.33: Daily load demand profile at the service transformer for each charging
method.

shifts to off-peak load hours but results in a second peak in the load demand.

The load demand for second peak (42.5 MW), however, is lower than the peak

demand recorded for uncontrolled EV charging (50 kW). As for the proposed

controlled charging method, no additional peak load demand is recorded while

EV loads are charging.

Table 3.11: Minimum Feeder Voltages Recorded due to EV Load Charging (pu)

EV Load Uncontrolled Charging Charging with TOU pricing Controlled Charging

EV 1 0.9611 0.9790 1.002

EV 2 0.9475 0.9654 1.00

EV 3 0.9557 0.9718 1.003

EV 4 0.9579 0.9741 1.004

3.8.3.2 Increasing Accommodation Limit with the Proposed Charg-
ing Scheme

The EV accommodation capacity of a distribution circuit is defined as

the number of EVs the circuit could accommodate without violating ANSI
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under-voltage limit (0.95 pu). The EV accommodation capacity is defined for

both primary and secondary wire voltages. Since the future EV deployment

and EV charger locations are unpredictable, stochastic analyses are required

to better understand the impacts of future EV loads on distribution circuits.

The stochastic analysis evaluates multiple EV deployment scenarios by ran-

domly varying EV locations and percentage penetration. This analysis there-

fore helps in understanding the impacts of EV location and penetration on the

distribution feeder voltages.

To make the stochastic analysis systematic, EV deployment scenarios are

simulated in the following order [67]. First, for a 5% customer penetration

level, EV loads with Level-2 240V/16A chargers and 16-kWh batteries are

deployed at randomly selected customer locations. Note that customer pene-

tration is defined as the percentage of total customer loads deployed with EV

loads. The customer locations are selected by uniformly sampling the pool of

secondary customers (total = 1473) supplied by the distribution feeder. Each

EV charging method (uncontrolled, TOU, and smart charging) is implemented

for each EV load at a given customer penetration level. A load flow analysis is

carried out for each charging method and the minimum primary and secondary

voltages are recorded. The customer penetration is increased in an increment

of 5% and additional EV loads are deployed at the remaining customer load

locations. The process is repeated until the customer penetration level reaches

100%. This gives 20 EV deployment scenarios, one at each customer penetra-

tion level {5%, 10%, . . . , 100%}. Next, the above process is repeated 100 times,

resulting in 2000 EV deployment scenarios, 100 at each customer penetration

level. A daily load flow analysis is performed on the 2000 EV deployment sce-

narios and the minimum voltages over a day are recorded. The above process
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is called a stochastic EV analysis.

Figure 3.34 shows the result of the stochastic EV analysis corresponding to

the uncontrolled charging case. In Figure 3.34, each point represents the result

corresponding to one EV deployment scenario. The graph consists of 4000

points, 2000 points corresponding to the minimum voltages recorded for the

primary and secondary wires corresponding to 2000 EV deployment scenarios.

From Figure 3.34, the primary wire voltages do not violate the undervoltage

limit, even with 100% customer penetration. For the secondary wire voltages,

the under voltage limit is violated at the 5% customer penetration level (73

EV loads). The minimum secondary voltage decreases to 0.92 pu with 5%

customer penetration and 0.87 pu with 100% customer penetration.
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Figure 3.34: EV accommodation capacity for uncontrolled charging case.

Next, the EV accommodation capacity is calculated for the case when EV

loads are charging under TOU pricing schedule with off-peak rates starting

at 12 am (see Figure 3.35). From the figure, the first voltage violation is
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recorded at 10% EV penetration (147 EV loads). Thus, TOU pricing increases

the circuit accommodation capacity to 10%. Furthermore, the lowest voltages

recorded for each EV deployment scenario increases on implementing TOU

pricing structure. Also, the customer penetration increases to 70% to record

an under-voltage under each EV deployment scenario, which was 40% for

uncontrolled charging case.
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Figure 3.35: EV accommodation capacity, when EV loads are charging under optimal
TOU schedule (off-peak rates beginning at 12 am ).

Next, to understand the quantitative improvement provided by TOU pric-

ing at the secondary voltage level, the percentage of secondary customers

recording under-voltage for each EV deployment scenario are plotted for both

uncontrolled charging scenario and charging under TOU pricing schedule.

Note that at each customer penetration level the percentage of secondary cus-

tomer experiencing a voltage violation (voltage ¡0.95 pu) decreases significantly

on implementing the TOU pricing schedule (see Figure 3.36). With 100% EV

penetration (1473 EV loads), the percentage of secondary customers recording
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under-voltage decrease to 0.8% in a TOU schedule, as compared to 2.8% for

uncontrolled charging.

Figure 3.36: Percentage of secondary customers reporting under-voltage violation for
uncontrolled charging and charging under TOU schedule.

Next, the proposed controlled charging method using dynamic program-

ming is implemented at each customer penetration level. First, at each cus-

tomer penetration level, the charging scenario resulting in the lowest voltages

in secondary wire are identified. Then the proposed smart charging algorithm

is implemented, aiming to minimize the voltage variations at each EV load

node. The analysis is based on the assumption that the best improvement

provided by the control charging algorithm can be observed by improving

the worst-performing EV deployment case. Therefore, the algorithm is im-

plemented for the EV deployment scenario, resulting in the lowest minimum

voltages in secondary wires at each customer penetration level.

Using the proposed algorithm, an optimal charging schedule is determined

for each EV load present in the circuit. The circuit peak load demand, min-
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imum primary and secondary wire voltages, and number and percentage of

customers reporting under-voltage violations are recorded and compared in

Table 3.12 for the three charging strategies

A comparison of three charging methods at each customer penetration

level for the worst-performing EV deployment scenario is shown in Table 3.12.

From the table, using the proposed charging method, we are able to improve

the EV accommodation capacity of the grid by 70%. Even with more than 75%

and until 100% EV penetration, only one case of secondary voltage violation

is recorded at the secondary customer location. Also, the minimum voltage

with 100% EV penetration is only 0.946 pu, against 0.891 for the charging

scenario using TOU pricing and 0.867 for the uncontrolled charging scenario.

Furthermore, until 70% EV penetration, no additional peak load demand is

recorded at the substation transformer when EV loads are charged using the

proposed algorithm.

Figure 3.37: Load demand profile at the substation transformer at 100% EV penetration
for each charging method.
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The peak load demand recorded at the substation transformer without any

EV load is 7.7 MW. It should be noted that the when EV charging is done

under optimal TOU schedule, no additional peak load demand is recorded until

30% EV penetration (441 EV load). Therefore, the optimal TOU schedule is

able to mitigate the load demand concerns till 30% EV penetration. If EV

load penetration is increased beyond 30%, a second peak at the substation

transformer appears during off-peak load hours. From the table, the proposed

charging method is able to accommodate up to 70% of EV without increasing

the substation transformer peak load demand.

To further understand the impacts of three charging schemes on substation

load demand, the load demand profiles at 100% customer penetration level is

recorded (see Figure 3.37). For uncontrolled charging case, the peak load

demand with EV charging increases to 12.5 MW from 7.7 MW (without any

EV). As for the case with EV charging under TOU pricing, at 100% customer

penetration, a significantly large second peak (at midnight) in load demand is

recorded (11.9 MW). The proposed control charging algorithm performs the

best, and even at 100% customer penetration, the load demand increases to

only 7.88 MW.

3.9 Conclusion

The objective of this study to understand, identify, and mitigate the im-

pacts of EV charging on distribution circuit voltages. To investigate the EV

charging impacts, analytical models for EV charger units and EV battery

loads are developed. This study presents three different models for EV loads:

a time-domain model, an average-value model, and a constant power load

model. Next, a thorough literature review on the evaluation and mitigation of
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the impacts residential EV charging on distribution circuit is presented. Our

analysis on the impacts of EV load charging concludes that residential EV

charging is likely to affect secondary circuit voltages more than the primary

wires. Furthermore, if a controlled charging method is not deployed, higher

penetration of EV load may result in increased peak load demand and undesir-

able secondary service voltage drops. In conclusion, the local and global circuit

analysis conducted for the selected distribution circuit suggests the following:

1. The location of secondary service with respect to the substation trans-

former does not affect the additional voltage drop due to EV load charg-

ing.

2. An EV load located close to the service transformer results in lower

additional voltage drops as compared to one located farther from the

service transformer.

3. Doubling the size of EV charger or adding an EV load to the secondary

circuit almost doubles the additional voltage drop.

4. Increasing EV load penetration may lead to significantly higher voltage

drops in secondary wires as compared to the primary wire voltages.

5. EV load clustering results in an unbalance in the load demand, thus

increasing the voltages at few secondary service locations.

Next, several practical methods deployed by utilities to mitigate EV charg-

ing concerns are evaluated. The analysis concludes the following:

1. Increasing the size of service transformer, though it mitigates load de-

mand concerns, is unable to mitigate the voltage drop issues.

2. The additional voltage drops due to EV load charging are efficiently mit-

igated by upgrading the distribution circuit using an additional trans-

former; however, the method requires infrastructural changes and hence
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is expensive.

3. Implementing a TOU schedule efficiently shifts the EV load charging to

off-peak load hours.

We also determine an optimal time to begin off-peak rates in TOU sched-

ule. The proposed optimal TOU schedule performed well up to 30% customer

penetration with EV, but resulted in second peak in load demand on further

increasing the customer penetration.

A smart controlled charging algorithm to mitigate voltage quality issues

due to EV charging is proposed next. The algorithm aims to minimize the

voltage variation at each load node while taking customer inconvenience into

account. An optimal EV charging profile is determined for each EV load

by minimizing the overall voltage variation by optimally controlling the EV

charger power level. The proposed algorithm is validated for its effectiveness.

We conclude that the proposed charging method significantly decreases the

substation load demand by optimally shifting the EV load demand to off-

peak load hours. Although designed to mitigate voltage variability issues at

secondary customer level, the proposed algorithm is also able to deliver utility

benefits by minimizing the substation peak load demand.
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Table 3.12: Comparison of three charging methods for each EV penetration level

% EV
penetration

Num. of
EV loads

Peak load demand Minimum sec-
ondary voltage

Num. of secondary
customer violations

Charging Method Charging Method Charging Method

1 2 3 1 2 3 1 2 3

5 73 8.02 7.77 7.77 0.922 0.951 0.953 4 0 0

10 147 8.26 7.77 7.77 0.918 0.943 0.953 5 1 0

15 220 8.51 7.77 7.77 0.907 0.928 0.953 5 4 0

20 294 8.75 7.77 7.77 0.899 0.923 0.953 7 4 0

25 368 8.98 7.77 7.77 0.899 0.911 0.953 9 4 0

30 441 9.20 7.77 7.77 0.888 0.911 0.953 9 4 0

35 515 9.47 7.91 7.77 0.886 0.910 0.953 10 5 0

40 589 9.69 8.21 7.77 0.887 0.910 0.953 10 5 0

45 662 9.93 8.52 7.77 0.885 0.903 0.953 13 7 0

50 736 10.16 8.82 7.77 0.877 0.902 0.953 17 7 0

55 810 10.40 9.13 7.77 0.879 0.900 0.953 15 8 0

60 883 10.60 9.44 7.77 0.875 0.896 0.953 15 8 0

65 957 10.84 9 .75 7.77 0.876 0.894 0.953 20 9 0

70 1031 11.11 10.06 7.77 0.871 0.893 0.953 21 11 0

75 1104 11.36 10.36 7.78 0.871 0.893 0.946 25 11 1

80 1178 11.58 10.68 7.82 0.871 0.892 0.946 28 12 1

85 1252 11.79 10.99 7.85 0.869 0.891 0.946 32 12 1

90 1325 12.03 11.30 7.85 0.867 0.891 0.946 39 12 1

95 1399 12.28 11.61 7.88 0.867 0.891 0.945 v41 14 1

100 1473 12.52 11.92 7.88 0.867 0.891 0.945 44 14 1

*Charging method 1 - uncontrolled charging

*Charging method 2 - charging under TOU pricing schedule (off-peak rates beginning at 12 am)

*Charging method 3 - proposed controlled charging using dynamic programming
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Chapter 4

Integrating Photovoltaic Generation - Impacts

and Mitigation

The integration of distributed energy resources (DER), especially residen-

tial photovoltaic (PV) systems into the distribution circuit has rapidly in-

creased in the past decade [90]. Since utility distribution systems are designed

for centralized power generation and are optimized for the unidirectional power

flow, the integration of DER may disrupt system’s normal operating condi-

tions. In literature, several studies have been conducted to determine the

impacts of PV systems on distribution circuit operations. A high PV pene-

tration may result in several operational issues, including, but not limited to

voltage quality problems [91–100], increased thermal stress, additional feeder

losses [101], and a higher number of capacitor switching and regulator tap

operations [102, 103]. Also, a study [104] conducted using recorded field data

from a residential community in Austin, Texas concludes that PV sources may

adversely affect distribution system power factor.

The increasing PV penetration and the undesirable impacts of PVs on dis-

tribution circuit necessitates the task for determining the largest PV capacity

a given distribution circuit can accommodate without violating circuit’s op-

erational limits. The obtained PV capacity is referred to as the circuit’s PV

hosting capacity. The PV hosting capacity can be defined with respect to sev-

eral impact criteria, for example, system overvoltage, thermal stress, harmon-

119



ics, etc. However, given the strict regulations enforced for the bus overvoltage

[105] condition, in this work the PV hosting capacity is defined and calculated

for bus overvoltage concerns.

Several methods to determine the feeder’s maximum PV penetration limit

have been proposed [106–113], however, the existing methods have a few limi-

tations. A simplified feeder model was used in [107–109] thus, not representing

the actual circuit conditions. In [106–109] the PV systems were simulated only

at a few specific locations, thus not considering the stochasticity of potential

residential PV panel sizes and locations. In [107, 108], small test feeders were

used, thus questioning the method’s application for an actual distribution cir-

cuit. In [111–113], a stochastic analysis framework is used to obtain the PV

hosting capacity of actual distribution feeders. The method simulates large

numbers of potential PV deployment scenarios by varying residential PV panel

locations and sizes. The method however, poorly considers representative load

condition for hosting capacity calculation. Additionally, the accuracy of the

PV hosting results is not quantified, which is required given that the framework

is stochastic. Moreover, the PV hosting capacity will depend upon the hourly

variations in load demand and PV generation, which none of the proposed

methods take into consideration.

In this chapter, an hourly stochastic analysis framework addressing the

limitations of the existing PV hosting methods is developed. In order to un-

derstand the PV hosting problem better, first a mathematical formulation for

the feeders’ PV hosting capacity problem is developed. The impacts of the

circuit loading and hourly variations in PV generation on feeder voltages and

hosting capacity are discussed next. To solve the PV hosting problem, an

hourly stochastic analysis framework based on percentile load calculation is
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presented. The proposed framework includes the effects of hourly variations

in load demand and PV generation profile while calculating the PV hosting

capacity. The accuracy of the obtained PV hosting capacity is quantified us-

ing the proposed accuracy assessment approach. Although, in this study, the

PV hosting capacity is calculated for the circuit overvoltage concerns, the ap-

proach is applicable to calculate PV hosting capacity with respect to any other

operating criteria.

4.1 Potential Impacts of PV Integration

There are three categories of concerns related to the impact high PV

penetration has on the distribution grid: voltage, loading, and protection-

related. Voltage issues include bus overvoltages, voltage deviations, and un-

balanced conditions in a three-phase system. Loading issues arise when service

transformers and conductors are overloaded, and thermal limits are violated.

Protection-related issues occur when protection elements, such as relays, re-

closers, breakers, network protectors, and fuses misoperate. Such misopera-

tions occur when PV interferes with the existing protection elements in the

distribution grid. Each of the three issues are explained in detail in the fol-

lowing sections.

4.1.1 Voltage Related Issues

Importantly, high PV penetration can degrade the voltage quality at the

point of common coupling (PCC), where the load is connected. Voltage quality

is expected to be in accordance with the specifications of American National

Standard Institute (ANSI) [105]. It is possible for high PV penetration to

cause the voltage at the PCC to increase when power is over-generated (over-
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voltage), unbalanced, or having a significantly ramp-up or down deviation.

The following sections elaborate on each of these conditions.

4.1.1.1 Overvoltage

Overvoltage is common on a sunny day when the load is low, and the

PV panels are generating at their maximum capacity, typically during the

afternoon (10 to 2 pm). An overvoltage condition due to local generation is

more likely to be observed when PV is located at the feeders remote from the

substation. An example overvoltage scenario with PV located at the remote

feeder end is shown in Figure 4.1. Without PV, the typical voltage profile for

the feeder is a drooping curve with lower voltages recorded towards the feeder

end. On adding PV generation, the voltages recorded at feeder end increases

thus potentially resulting in an overvoltage condition.

Figure 4.1: Overvoltage scenario.

The maximum allowable range of voltage at any bus is 5% of the rated

voltage, i.e., 1.05 per-unit (p.u.), as specified by ANSI C84.1. The per-unit

values are obtained by scaling the quantity by their rated values.

Vi < 1.05 p.u. (4.1)

where, Vi is the voltage at any bus i in the distribution feeder.
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4.1.1.2 Voltage Deviation

Voltage deviation occurs in PV systems when PV power generation sud-

denly ramps up or ramps down. This occurs typically when there is cloud

interference on the PV panel. The voltage deviation problem is more critical

during the maximum load conditions. The steady-state voltage deviation of

PV integration should be within the limits specified by ANSI C84.1:

Vi − V b
i < ε p.u. (4.2)

where,

Vi is the voltage at a bus i after PV integration.

V b
i is the voltage at a bus i prior to PV integration.

Voltage deviation at a primary wire should not vary more than 3% and

the secondary by 5%. Therefore, ε = 0.03 p.u. for primary wires and ε = 0.05

p.u. for secondary wires.

Figure 4.2: Voltage deviation scenario.

4.1.1.3 Voltage unbalance

The unplanned integration of PV on residential rooftops (mostly single-

phase connections) can cause voltage unbalance in the three-phase system.

This phenomenon occurs when more power is injected (into the distribution
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grid) in a single phase than in the other two phases. The ANSI C84.1 limits

voltage unbalance to less than 3%.

Power losses and line overloading can occur when power injection is un-

balanced in the three-phase system of the distribution network. This voltage

unbalance problem, however, can be rectified by modifying the circuit topology

in two ways. First, the single-phase load can be transferred from the highest

loaded phase to one of the other two more lightly loaded phases. Second, the

PV can be connected to the highest loaded phase.

Figure 4.3: Voltage deviation scenario.

4.1.2 Current Related Problems

The net transformer load demand profile exhibits a characteristic ”duck”

curve: power is over-generated during the day, but peak electric demand occurs

in the evening, as PV output decreases [114]. This case illustrates a reverse

power flow condition when the transformer load becomes negative during the

day; i.e. the power is fed back to the grid (see Figure 4.4).

Reverse power flow is a major concern in secondary grids and spot net-

works, which are common in big cities. Unlike radial distribution circuits,
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Figure 4.4: Reverse power flow scenario.

these networks contain protectors that are designed to open in case of even a

small fraction of reverse power flow. It is specified in IEEE Std. 1547-2003 that

the PV integration should not cause the opening of the network protectors.

Therefore, if the distribution circuit is laid out in spot or grid topology, then

the PV installed capacity is not allowed to cause any reverse power flow. For

a radial network, the presence of On-Load Tap Changer (OLTC) transformers

pose a limit on the reverse power flow. This is because tap changing trans-

former have reduced capability to handle reverse power. For instance, the Y-y

single resistor tap changer transformers with 23 MVA rating have 42% reverse

power capability. The reverse power capability of the transformer depends on

vector group, the size of transformers, the resistance of the bridging resistor

and power factor [115].

4.1.3 Overcurrent Protection Related Problems

The conventional grid has protection elements such as overcurrent relays,

circuit breakers and fuses to interrupt fault current in the grid. With the
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integration of a high PV penetration, a number of instances of misoperation

of these protection devices have been reported. Two of the main concerns

due to the fault contribution by PV are sympathetic tripping and reduction

of breaker reach.

4.1.3.1 Sympathetic tripping of relays

Sympathetic tripping is an unnecessary isolation of the healthy feeder due

to a fault in an upstream parallel feeder. A scenario with a fault at a parallel

feeder of a circuit is illustrated in Figure 4.5. In Figure 4.5, both the substation

and the PV panel connected to Feeder 1 contribute to the fault. The relay

trips when the current magnitude contributed by the PV in Feeder 1 exceeds

the setting of the relay at the head of the feeder. The relay isolates the healthy

feeder, interrupting service in the feeder.
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Figure 4.5: Sympathetic tripping in case of three-phase fault.

4.1.3.2 Breaker reduction of reach/Breaker insensitivity

A breaker is expected to identify and isolate any fault in a distribution

system. However, high PV penetrations can cause the breaker to go blind to
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the faults in the grid. Such a case can arise when the substation fault current

is recorded below the breaker’s reach. This problem occurs when there is a

high impedance fault and also high reverse power flow from the distributed

generation towards the substation. Therefore, it is required to evaluate the PV

capacity that can be accommodated in the distribution grid without reducing

the reach of the breaker.

4.2 PV Hosting Capacity Problem

A feeder’s PV hosting capacity is defined as the largest PV generation

that can be accommodated without violating the circuit’s operational limits.

This study is concerned with the overvoltages recorded in the primary wires

due to PV integration. An overvoltage violation is recorded if any primary

bus in the feeder records a voltage greater than 1.05 pu. The hosting capacity

problem aims to determine the largest PV generation that can be integrated

into a given feeder without resulting in an overvoltage violation. Since, the

locations and sizes of the future residential PV panels are not known, the

hosting capacity problem requires simulating and analyzing a large number of

potential PV deployment scenarios. Although, the methodology is developed

for feeder overvoltage concerns, the proposed framework can be applied to

determine the hosting capacity for other impact criterion as well.

4.2.1 Definitions

This section defines the terms used in the mathematical formulation of the

PV hosting capacity problem in the following sections.
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4.2.1.1 Customer Penetration Level (Ci
pen)

Customer penetration level defines the number of customers (in percent-

age) equipped with PV panels in a given distribution circuit. Thus, an ith

customer penetration level is obtained by populating i% customers with PV

panels, where 0 ≤ i ≤ 100. Note that, for a given customer penetration level,

by varying individual PV panel location and size multiple PV deployment

scenarios are possible.

4.2.1.2 PV Penetration Level (PV i
pen)

PV i
pen is defined as the total PV generation in kW added to the distribu-

tion circuit corresponding to the ith customer penetration level (Ci
pen). Thus,

corresponding to each customer penetration level (Ci
pen), a PV penetration

level (PV i
pen) is obtained.

4.2.1.3 PV Deployment Scenarios (xij)

A PV deployment scenario characterizes the locations and sizes of individ-

ual PV panels at each customer load location for a given customer penetration

level. Corresponding to each customer penetration level, multiple potential PV

locations and sizes each characterizing a PV deployment scenario, are possible.

Here, a PV deployment scenario, xij, represents jth PV deployment scenario

corresponding to ith customer penetration level.

4.2.2 PV Hosting Capacity - Problem Formulation

The results of a large number of potential PV deployment scenarios are

quantified using two representative PV hosting capacities, minimum-hosting

(Hmin) and maximum-hosting capacity (Hmax). The minimum-hosting capac-
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ity (Hmin) is defined as the lowest PV generation resulting in the first case

of overvoltage condition. The maximum-hosting (Hmax) capacity is defined as

the lowest PV generation corresponding to which all PV deployment scenarios

in all report an overvoltage condition.

Mathematically, PV hosting capacity problem for a given distribution cir-

cuit is defined as follows. Let,

S be the set of discrete customer penetration levels indexed by
i, S ∈ {1, 2, . . . , i, . . . , 100}.

PVpen be the set of all PV penetration levels in-
dexed by customer penetration level, i,
{PV 1

pen, PV
2
pen, PV

3
pen, . . . , PV

i
pen, . . . , PV

100
pen }.

X i be the set of all PV deployment scenarios corresponding to
Ci
pen, indexed by j, {xi1, xi2, . . . , xij, . . . , xiLi}.

V i
max be the set of largest primary voltages recorded for all de-

ployment scenarios corresponding to Ci
pen. Vmax(x

i
j) is the

largest primary voltage recorded for PV deployment scenario
xij, {Vmax(xi1), Vmax(xi2), . . . , Vmax(xij), . . . , Vmax(xiLi)}

Li be the total number of PV deployment scenarios correspond-
ing to Ci

pen.

The hosting capacity problem is defined as follows. Determine Hmin and

Hmax, where:

Hmin = min
i∈S

{
PV i

pen

∣∣max(V i
max) > 1.05

}
(4.3)

Hmax = min
i∈S

{
PV i

pen

∣∣min(V i
max) > 1.05

}
(4.4)
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4.2.3 Monte Carlo Based Method for PV Hosting Problem

The minimum- and maximum-hosting capacity as defined in (4.3) and (4.4)

can be obtained only after simulating all possible PV deployment scenarios,

which is impractical. The PV hosting analysis is therefore, done by simulating

a finite number of PV deployment scenarios using the Monte Carlo approach.

The PV hosting problem based on Monte Carlo approach is defined in this

section.

For a given distribution circuit, let k number of PV deployment scenarios

are simulated at each customer penetration level, each representing one Mote

Carlo run. Since in this study, k Monte Carlo runs/scenarios are simulated

at each customer penetration level, the method is termed k-run Monte Carlo

study (k-run MCS). The feeder’s hosting capacity is characterized using the

first- and all-hosting capacity defined as follows:

4.2.3.1 First-hosting Capacity (H1,k)

The first-hosting capacity is equal to the lowest PV penetration for which

at least one scenario in a k-run MCS observes an overvoltage condition.

4.2.3.2 All-hosting capacity (H100,k)

The all-hosting capacity is defined as the lowest PV penetration such that

all k scenarios (i.e. 100%) in a k-run MCS observe an overvoltage condition.

The first-hosting capacity (H1,k) and all-hosting capacity (H100,k) are ob-

tained by solving (4.5) and (4.6).

H1,k = min
i∈S

{
PV i

pen

∣∣∣∣P (V i
max,k > 1.05) ≥ 1

k

}
(4.5)

H100,k = min
i∈S

{
PV i

pen

∣∣P (V i
max,k > 1.05) = 1

}
(4.6)
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where,

X i
k : Set of k PV deployment scenarios simulated using Monte

Carlo method at Ci
pen, {xi1, xi2, xi3, . . . , xik}.

V i
max,k : Set of maximum primary voltages recorded for

k PV deployment scenarios simulated at Ci
pen,

{Vmax(xi1), Vmax(xi2), . . . , Vmax(xik)}.

4.2.4 Additional Factors Affecting PV Integration Limits

The PV hosting problem formulated in the previous section models the

uncertainty in the locations and sizes of the future PV panel deployments.

However, there are additional factors that may impact PV hosting capacity.

The bus voltages are closely related to the circuit load demand and overvoltage

concerns are most likely to arise when the circuit is lightly loaded. The hourly

variations in the circuit load and PV generation profile may also affect the

feeder’s PV hosting capacity. This section presents a discussion on the impacts

of the above two factors on circuit voltages.

4.2.4.1 Effect of the Minimum Load Condition

To understand the impact of circuit loading on circuit voltages, the cir-

cuit’s minimum load is increased and the largest circuit voltages at multiple

additional PV penetration levels are recorded (see Figure 4.6). From the fig-

ure, at a given PV penetration level, as the feeder’s minimum load increases,

the largest circuit voltage decreases. For example, for PV penetration equal

to 6 MW, on varying minimum load from 0.2 pu to 0.7 pu of the peak load de-

mand, the largest primary voltage decreases from 1.075 pu (overvoltage limit

violated) to 1.045 pu (within overvoltage limit). Thus, the PV integration
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limit depends significantly upon the minimum load condition, consequently

selecting a non-representative load may result in an inaccurate hosting capac-

ity.
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Figure 4.6: Effects of minimum load on voltage rise due to PV.

4.2.4.2 Hourly Variations in Circuit Load and PV Generation

In the stochastic analysis framework presented in [112], the mean or me-

dian value of the daily daytime minimum load demand recorded over a year is

selected as the circuit’s representative minimum load, and the PV analysis is

done for the obtained load. However, for the majority of days, the minimum

load is recorded either in the early morning or later in the evening (see Figure

4.7), when PV generation is low (see Figure 4.8). Thus, the PV analysis based

on the statistical minimum load gives a conservative estimate of the feeder’s

hosting capacity.

Additionally, the PV hosting capacity obtained using the mean or median
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Figure 4.7: Duration of daily daytime minimum load recorded over a year.

value of the daily daytime minimum load demand is unable to statistically

quantify the possibility of observing feeder overvoltage condition. In other

words, the study cannot determine the potential number and hour of over-

voltage violations when PV capacity equal to the feeder’s PV hosting limit is

deployed. We recommend that the PV hosting analysis should be conducted in

an hourly interval using a statistically representative minimum load condition.
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Figure 4.8: Typical per-unit PV generation profile on a clear sunny day.
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4.3 Hourly Stochastic Analysis Framework

This section presents the proposed hourly stochastic analysis framework

for solving the PV hosting capacity problem. The additional factors related

to circuit loading and hourly variations in load and PV generation are in-

cluded in the proposed framework. The PV hosting capacity is calculated for

the statistically representative minimum daytime load demand, termed effec-

tive minimum load (Effhrload). A percentile analysis is done on the measured

yearly load demand to obtain Effhrload. Future PV scenarios are characterized

by simulating multiple PV deployment scenarios (xij) using the Monte Carlo

approach. For each hour, using Effhrload, load flow analysis is conducted and

the largest primary wire voltages are obtained. Based on the hourly load flow

analysis, PV hosting capacities (H1,k and H100,k) are calculated (see Figure

4.9).

4.3.1 Identify Hourly Effective Minimum Load

The hourly effective minimum load (Effhrload) for a given distribution cir-

cuit is calculated using the yearly load demand measured at the substation.

The measured load demand at the substation includes the generation from the

existing PV panels. To obtain the net feeder load demand, the demand satis-

fied by the existing PV panels should be added to the measured load demand.

For each day of the year, the measured load demand and the existing PV

generation are sampled in an hourly interval (see Figure 4.8) and a percentile

analysis is done to obtain Effhrload, as detailed in the following section.
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Figure 4.9: Proposed hourly stochastic analysis framework for determining circuit’s PV
hosting capacity.
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4.3.1.1 Hourly Minimum Load (Minhrload)

The measured yearly load demand is sampled in an hourly interval and

for each hour the 5th-percentile value, termed Minhrload is obtained. Here, for a

given hour, the yearly load demand will be higher than the Minhrload for 95%

of the time (see Figure 4.10). Thus, Minhrload characterizes circuit’s measured

minimum load demand. It should be noted that the measured load includes

the circuit’s existing PV generation. The effective minimum load demand

(Effhrload) is obtained by adding the hourly existing PV generation to Minhrload.
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5th percentile load demand
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Figure 4.10: 5th percentile minimum load corresponding to hour = 12.

4.3.1.2 Hourly Existing PV Generation (PV hr
existing)

A representative value for the existing PV generation for each hour of the

day is calculated. Here, the PV generation profile for a clear sunny day (see

Figure 4.8) is used to obtain PV hr
existing. The normalized PV generation profile

shown in Figure 4.8 is multiplied to the peak existing PV generation capacity

of the feeder and sampled in an hourly interval to obtain PV hr
existing.
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4.3.1.3 Hourly Effective Minimum Load (Effhrload)

Hourly effective minimum load is defined as the actual 5th-percentile value

of the yearly feeder load demand. Since, hourly minimum load demand (Minhrload)

includes the existing PV generation (PV hr
existing) present in the circuit, Effhrload

is obtained by adding PV hr
existing to Minhrload (4.7).

Effhrload = Minhrload + PV hr
existing (4.7)

It should be noted that an hourly load demand lower than the Effhrload is

likely to be observed 5% of the days over a year. Then, ignoring the accuracy

of the Monte Carlo simulations, for 95% of days during the year, the actual

PV hosting capacity will be at least equal to or greater than the PV hosting

capacity calculated using the feeder’s effective minimum load demand. Thus, if

a PV capacity equal to the calculated hosting capacity is deployed, the circuit

is not likely to observe an overvoltage condition for at least 95% of the days

over the year.

4.3.2 PV Deployment Scenarios

The method to simulate PV deployment scenarios by varying PV panel lo-

cations and sizes is detailed in this section. Using the Monte Carlo approach,

k PV deployment scenarios (X i
k) are simulated at each customer penetration

level (Custipen) by associating a uniform random variation in PV panel lo-

cations [112]. Additionally, the PV panel size at each customer location is

determined based on the customer type (commercial or residential) and the

corresponding distributions for the PV panel size [38]. By associating varia-

tions in PV deployment locations and sizes, the proposed framework results

in multiple unique deployment scenarios.
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Figure 4.11: The stochastic analysis framework - Generate PV Deployment Scenarios

The method to systematically simulate jth PV deployment scenario, where

j ∈ {1, 2, . . . , k} is as follows. First, a 2% of customers (Cust2pen) are selected

randomly using a uniform distribution from the pool of customers served by

the distribution feeder. At each of the selected customer locations, a PV panel

is deployed. The installed PV capacity at each selected customer location is

determined based on the customer load type and the corresponding peak load

demand using the method described in Figure 4.12. The customer penetration

is increased in an increment of 2% and additional PV systems are deployed

by selecting locations from the remaining customer loads not connected to

PV panels. The customer penetration level is increased and the deployment

process is repeated until it reaches 100% (Cust100pen). This constitutes one set

of PV deployment scenario corresponding to each customer penetration level.

The above process is repeated k times, to obtain a total of k PV deployment

scenarios (X i
k) at each i customer penetration level.

4.3.3 Hourly PV Impact Analysis

The PV impacts are analyzed in an hourly interval while including the

impacts of hourly variations in PV generation and circuit loading. The hourly
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Figure 4.12: The stochastic analysis framework - Identify PV Size

impact analysis is done for the daylight hours starting from 6 am to 6 pm.

To evaluate the impacts of PV generation on circuit voltages, a steady-state

load flow analysis is simulated for each PV deployment scenario correspond-

ing to each customer penetration level. Note that for a given hour, hr, the

steady-state load flow analysis is simulated at the circuit loading equal to

Effhrload (4.7). For each hour, the net active power generation of each PV

panel is prorated based on the parabolic hourly PV generation profile (see

Figure 4.8)(4.8). Using the load flow analysis, the largest primary voltages

(Vmax,k(hr)) are recorded corresponding to each PV deployment scenario.

PV i
pen(hr) = PV i

pen × PV hr
norm (4.8)

where,
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PV i
pen(hr) : PV generation at hour = hr corresponding to ith PV penetration.

PV hr
norm : Normalized PV generation at hour = hr.

4.3.4 Determine PV Hosting Capacity

Based on the hourly load flow analysis, the first-hosting (H1,k(hr)) and

all-hosting capacity (H100,k(hr)) are determined for each hour using (4.9) and

(4.10), respectively. Here, V i
max,k(hr) is the set of maximum primary voltages

recorded for k PV deployment scenarios simulated for ith customer penetration

level at hour = hr. Finally, feeder’s first-hosting (H1,k) and all-hosting capacity

(H100,k) are obtained by taking a minimum of the respective hourly values (see

Figure 4.9).

H1,k(hr) = min
i∈S

{
PV i

pen(hr)

∣∣∣∣P (V i
max,k(hr) > 1.05) ≥ 1

k

}
(4.9)

H100,k(hr) = min
i∈S

{
PV i

pen(hr)
∣∣P (V i

max,k(hr) > 1.05) = 1
}

(4.10)

4.4 Accuracy Assessment Framework

A distribution circuit may be supplying for thousands of customer loads.

For example, the circuit analyzed in this study is supplying for 1218 cus-

tomers (see Section 4.5). Thus, for a 2% customer penetration (' 25 cus-

tomers), the total possible number of PV deployment scenarios will be equal

to
(
1218
25

)
= 1.4581× 1050. The Monte Carlo approach, however simulates only

a finite number of scenarios. Given the large number of possible PV deploy-

ment scenarios, it is important to quantify the accuracy of the hosting capacity

results obtained using the proposed Monte Carlo approach.

The method to define and quantify the percentage accuracy of the PV

hosting capacity results is presented in this section. The percentage accuracy
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is defined for the hosting capacity results obtained using a k-run MCS. The

framework is based on the hosting capacity probabilistic intervals identified

using the distribution of the hosting capacity results. The probabilistic interval

defines the percentage of times the hosting capacity result obtained from an

independent k-run MCS is expected to lie within a given percentage interval.

For instance, the pth probabilistic interval for the hosting capacity, both first-

hosting and all-hosting, is defined as the interval that contains p% of the

corresponding hosting capacity results obtained using multiple k-run MCS.

The corresponding hosting capacity obtained using a k-run MCS is accurate

for p% of the time if its pth probabilistic interval is accurate.

4.4.1 Impact of Multiple k-run MCS on Hosting Capacity

Given a large number of possible PV deployment scenarios, for a different

k-run MCS a different hosting capacity is likely to be observed. This obser-

vation is illustrated using the first-hosting capacity. We simulated 200 sets

of independent k-run MCS, where the number of Monte Carlo runs, k = 100

(100-run MCS). The PV hosting capacity is calculated based on the proposed

framework, resulting in 200 values for first-hosting capacity (H1,k). The distri-

bution for (H1,k) is shown in Figure 4.13. From Figure 4.13 it can be observed

that using a 100-run MCS, the first-hosting capacity (H1,k) for the feeder can

be obtained anywhere from 5.9 MW to 6.1 MW. Since the absolute mini-

mum value cannot be obtained unless we simulate all possible deployments, it

is necessary to determine the accuracy of the results obtained using a k-run

MCS.

141



5,850 5,900 5,950 6,000 6,050 6,100 6,150
0

5

10

15

20

25

30

35

40

Additional PV (kW)

N
um

be
r 

of
 s

ce
na

rio
s

h
1,k
50  = [5.976 MW − 6.029 MW] − 

interval containing 50% of the hosting capacity values

Figure 4.13: First-hosting capacity using multiple k-run MCS, where k = 100.

4.4.2 Hosting Capacity Probabilistic Intervals

We begin with obtaining the probability distribution functions (PDF) for

both first-hosting (H1,k) and all-hosting capacity (H100,k). The PDF is then

used to obtain the probabilistic intervals for both hosting capacities. The

approach to obtain probabilistic intervals is illustrated using H1,k.

The PDF (χkh1) for H1,k is obtained by approximating the distribution

shown in Figure 4.13 using a Gaussian distribution. For the obtained PDF

(χkh1), µ = 6.002 MW and σ = 41.52 kW.

H1,k ∼ χkh1 = N(µ, σ2) (4.11)

Using χkh1, the pth probabilistic interval for the first-hosting capacity (hp1,k)

is calculated using (10).

hp1,k =

{
F−1

(
1− p

2

∣∣∣∣µ, σ) , F−1(1 + p

2

∣∣∣∣µ, σ)} (4.12)
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Here, x = F−1(y|µ, σ) is defined as {x : (F (x|µ, σ) = y)}. where,

y = F (x|µ, σ) =
1

σ
√

2π

∫ x

−∞
e

−(t−µ)
2σ2 dt

The probabilistic intervals for the first-hosting capacity (hp1,k) calculated

for p = 10% to 99% are shown in Figure 4.14.

The distribution for the largest voltages recorded for multiple PV deploy-

ments corresponding to each probabilistic interval (hp1,k) is obtained next. The

corresponding distribution for p = 50% is shown in Figure 4.15. Note that

hp1,k will be accurate if the probability of observing an overvoltage for the cor-

responding deployment scenarios is positive but sufficiently small. Also, by

definition if hp1,k is accurate, then H1,k will be accurate at least for p% of time.
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Figure 4.14: Probabilistic interval for first-hosting capacity.

4.4.3 Percentage Accuracy of the Monte Carlo Simulation

For a k-run MCS, the percentage accuracy of feeder’s first-hosting and all-

hosting capacity is characterized using Accεk(H1) and Accεk(H100), respectively.
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Figure 4.15: Largest voltages recorded for 50% hosting capacity interval (h501,k).

4.4.3.1 First-hosting Capacity Percentage Accuracy, Accεk(H1)

First-hosting capacity (H1,k) obtained using a k-run MCS is expected to

be accurate for p% time if the probability of observing an overvoltage for

PV deployment scenarios in pth probabilistic interval is greater than zero but

sufficiently small, as characterized by the tolerance parameter (ε). Accεk(H1) is

equal to the maximum pth probabilistic interval satisfying the above definition.

4.4.3.2 All-hosting Capacity Percentage Accuracy, Accεk(H100)

All-hosting capacity (H100,k) obtained using a k-run MCS is expected to

be accurate for p% time if the probability of observing an overvoltage for

PV deployment scenarios in pth probabilistic interval is less than or equal

to one but sufficiently high, as characterized by the tolerance parameter (ε).

Accεk(H100) is equal to the maximum pth probabilistic interval satisfying the

above definition.

Based on the above definitions, the hosting capacity accuracy, Accεk(H1)
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and Accεk(H100), are obtained using (4.13) and (4.14), respectively.

Accεk(H1) = max
0≤p≤100

{
p
∣∣0 < P (Vmax,k|hp1,k > 1.05) ≤ ε

}
(4.13)

Accεk(H100) = max
0≤p≤100

{
p
∣∣(1− ε) < P (Vmax,k|hp100,k > 1.05) ≤ 1

}
(4.14)

where,

Vmax,k : Set of largest voltages recorded for each Monte Carlo scenario
corresponding to each k-run MCS.

hp1,k : pth probabilistic interval for first-hosting capacity.

hp100,k : pth probabilistic interval for all-hosting capacity.

ε : the tolerance parameter.

4.5 Results and Discussions

The proposed PV analysis framework is used to determine the PV hosting

capacity for an actual 12.47-kV distribution circuit. The results of the PV

integration analysis obtained using the proposed hourly stochastic analysis

framework are compared against those obtained using the statistical minimum

load condition. The accuracy of the PV hosting results are calculated and the

impacts of tolerance parameter and the number of Monte Carlo runs on the

PV hosting accuracy are determined.

4.5.1 Characterizing Distribution Circuit

The selected 12.47-kV distribution circuit is supplied by a 24-MVA sub-

station transformer and is connected to a total of 1.196 MW of PV system.

The distribution circuit serves 1218 customer loads out of which 71% are res-

idential customers. For voltage support, the distribution circuit is connected
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to seven capacitor banks, as shown in Figure 4.16. Among the seven capacitor

banks, six are rated at 600 kvar each. Of these six capacitor banks, two are

kvar controlled, two are time-controlled, and the other two are fixed. The sev-

enth capacitor bank is kvar controlled and rated at 900 kvar. The three-phase

circuit model for the distribution system starting from the substation down to

single-phase individual customer load location is simulated.

Figure 4.16: One-line diagram of the selected distribution feeder (Courtesy of the electric
utilities).

The yearly load demand data measured at the substation for Year 2013 is

available. Using the method discussed in Section 4.3, the effective minimum

load (Effhrload) is calculated for each hour of the day (see Figure 4.17). The
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effective minimum load accounts for the existing PV in the circuit. From

Figure 4.17, the hourly effective minimum load varies from 4.8 MW to 6.8

MW, resulting in a variation of approximately 2 MW.
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Figure 4.17: Hourly effective load calculated for the selected feeder.

Additionally, using the yearly load demand measured at the substation for

the year 2013, the representative minimum loads for the distribution circuit

are obtained. The minimum load condition is obtained using a statistical

analysis carried on the yearly load demand for the feeder. First, the monthly

average sunrise and sunset times are identified and, using this data, the daily

minimum daytime load demand is obtained. Next, a histogram plot for the

minimum daytime load demand is generated (see Figure 4.18), and the mean

and the median of the distribution are calculated. The analysis yields a mean

value equal to 6.1792 MW and a median value equal to 6.13 MW. Based on

the statistical analysis, a minimum load equal to 6 MW is selected for the

analysis.
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Figure 4.18: Obtaining a statistically representative minimum load condition.

4.5.2 PV Hosting Capacity using the Proposed Framework

Multiple PV deployment scenarios (xij) are simulated using the Monte

Carlo simulation approach. Since Ci
pen is varied from 2% to 100% in a step

of 2%, a total of 50 penetration levels are simulated. In this study we have

simulated 100 PV deployment scenario corresponding to each Ci
pen. Thus, a

total of 5000 cases are simulated for the PV impact analysis.

Using Effhrload, PV hosting capacities are calculated for each hour of the

day. The hourly first-hosting and all-hosting capacities are shown in Figure

4.19. The minimum of the obtained hourly hosting capacities is taken as the

circuit’s actual PV hosting capacity. From Figure 4.19, the minimum values

for both first-hosting capacity and all-hosting capacity are obtained at 12 pm.

Therefore, the hosting capacities calculated at 12 pm represent circuit’s actual

PV hosting capacity (see Table 4.1).

The PV hosting results are compared against those obtained for a fixed

minimum loading condition. The minimum load is obtained using a statisti-

cal analysis carried on the yearly load demand for the feeder. Based on the
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Figure 4.19: Hourly PV hosting capacities obtained using proposed framework.

statistical analysis a minimum load equal to 6 MW, which corresponds to the

mean of the daily daytime minimum load demand, is selected for the analysis.

The PV hosting capacities are calculated for the corresponding circuit load,

and the results are summarized in Table 4.1.

Table 4.1: PV Hosting Results

Cases Additional PV
Size (kW)

Using Hourly Analysis
First-hosting Capacity (H1,k) 6,084

All-hosting Capacity (H100,k) 6,374

Using Statistical
Minimum Load

First-hosting Capacity (H1,k) 5,454

All-hosting Capacity (H100,k) 5,722

The results for primary bus voltages corresponding to all 100 PV deploy-

ment scenarios (xij) simulated for all 50 customer penetration levels (Ci
pen) at

12 pm are shown in Figure 4.20. Note that each point in the figure corresponds

to the maximum primary bus voltage recorded for a particular PV scenario.
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The circuit records first violation for primary bus voltages on adding 6.084

MW of additional PV, while an all-hosting capacity comes out to be 6.374

MW. In between the first- and all-hosting capacities, some scenarios record an

overvoltage violation while others do not.
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Figure 4.20: Maximum voltages recorded for each PV deployment scenario corresponding
to hour 12.

Assuming Monte Carlo simulation can capture the representative PV de-

ployments, the first-hosting capacity (H1,k = 6.084 MW) is the minimum

PV penetration resulting in an overvoltage violation for at least one PV de-

ployment scenario. Since 5th percentile minimum load is selected, any PV

generation less than H1,k will not result in an overvoltage for 95% of the days

over the year. For 5% of the days when the daily minimum load demand may

be lower than the selected 5th percentile minimum load, an overvoltage may

be recorded on adding an additional PV generation less than H1,k. It should

be noted that this interpretation is not possible for the PV hosting capacity

obtained using a fixed minimum load condition. Therefore, the hourly analysis
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coupled with percentile load estimation helps in interpreting the PV hosting

results.

4.5.3 Accuracy of Hosting Capacity Results

The accuracy of the first- and all-hosting capacities is calculated using the

proposed accuracy assessment framework in Section IV. The tolerance param-

eter, ε, is assumed to be 0.05. The accuracy is calculated for the stochastic

analysis using 100 PV deployment scenarios at each customer penetration level,

i.e. a 100-run MCS. Figure 4.21 shows the results for first-hosting capacity.

The probability of observing an overvoltage for each probabilistic interval of

the hosting capacity is obtained and plotted. Using Fig. 12, for ε = 0.05,

Accεk(H1) = 98%, implying that the first-hosting capacity obtained using a

100-run MCS is expected to be accurate 98% of the time over the year. Simi-

larly, the accuracy of all-hosting capacity is obtained (Figure 4.22). From the

figure, the all-hosting capacity calculated using an independent 100-run MCS,

is expected to be accurate 98% of the time for ε = 0.05.

The impact of the tolerance parameter on the accuracy of hosting capaci-

ties is analyzed next. Figure 4.23 shows the percentage accuracy of first- and

all-hosting capacities with respect to the tolerance parameter (ε). As expected,

as the tolerance is increased the accuracy of hosting capacity increases. Also,

for ε = 0.06, both Accεk(H1) and Accεk(H100) are greater than 99%.

4.5.4 Impacts of the Number of Monte Carlo Runs

As discussed before, the hosting capacity accuracy also depends upon the

number of Monte Carlo runs/scenarios. Increasing the number of Monte Carlo

runs can better approximate the PV deployment scenario and increase the
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Figure 4.21: Probability of observing an overvoltage corresponding to 10% to 99%
probabilistic interval for first-hosting capacity.
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Figure 4.22: Probability of observing an overvoltage corresponding to 10% to 99%
probabilistic interval for all-hosting capacity.

confidence in the obtained hosting capacity values. Therefore, it is important

to understand the impact of the number of Monte Carlo runs on the percentage

accuracy of the hosting capacity.
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Figure 4.23: Hosting capacity percentage accuracy vs. tolerance parameter.

The PV hosting capacity is calculated for different numbers of Monte Carlo

runs. The tolerance parameter is assumed to be 0.05. The number of Monte

Carlo runs are varied from 45 to 200 at each customer penetration level, and

the percentage accuracy of both first- and all-hosting capacity are obtained.

Figure 4.24 shows the relation between hosting capacity accuracy and the

number of Monte Carlo runs. From the figure, as the number of runs increases

the percentage accuracy increases, in fact, more than 90% accuracy is obtained

only by simulating 75 Monte Carlo runs at each customer penetration level.

4.6 Discussion on Impacts of PV on Bus Overvoltages

The PV system impacts on system overvoltages are discussed here in detail.

For overvoltage violations, lower PV hosting capacities are observed during the

minimum load condition, implying that PVs affect the distribution voltages

most when the circuit is lightly loaded. In the following discussion, first, the

PV size and location resulting in the largest impacts on feeder voltages are
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Figure 4.24: Hosting capacity percentage accuracy vs. the number of Monte Carlo runs.

characterized. The numbers and locations of buses observing an overvoltage

violation are also identified. Finally, the impacts of feeder loading and PV

deployment locations on hosting capacity are evaluated.

4.6.1 PV Hosting Capacities for Overvoltage Condition

Increasing the PV penetration increases the likelihood of overvoltage vio-

lation, but there are additional factors as well. Even after the first violation

scenario, we observe several scenarios with a higher PV penetration but not

reporting an overvoltage. The objective of this section is to observe the PV

deployment scenario corresponding to the first violation and to identify the

factors potentially resulting in an overvoltage.

Figure 4.25 shows the locations and sizes of PV systems corresponding

to the first violation scenario. The first violation is observed for a customer

penetration of 52%. From the figure, it can be observed that for this scenario,

large PV systems were located farther away from the substation. These nodes

generally have low short-circuit capacities and therefore, installing a large PV
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system may result in an overvoltage violation. Thus, locating large PVs farther

away from the substation is more likely to result in an overvoltage violation

Figure 4.25: PV locations and sizes corresponding to PV deployment scenario for the first
overvoltage violation (Courtesy of the electric utilities).

4.6.2 Bus Locations observing Overvoltages

Corresponding to the first violation case, the bus locations reporting over-

voltages are identified (see Figure 4.26). This analysis helps in understanding

which buses are the first to observe an overvoltage violation due to PV in-

tegration. In Figure 4.26, a heat-chart is plotted representing all buses with

voltages more than 1.05 pu in red and the rest in orange. From the figure,

it is observed that all buses observing overvoltages are farther away from the

substation.

Next, for each PV deployment scenario, the number of primary buses

recording an overvoltage violation are identified (see Figure 4.27). From the
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Figure 4.26: Heat plot for primary bus voltages corresponding to the first overvoltage
violation scenario.

figure, it is observed that for the PV hosting corresponding to the first vio-

lation, only three primary buses report an overvoltage violation. As the PV

penetration is increased, the number of primary buses reporting an overvoltage

violation increases rapidly. In fact, for all violation case, around 300 primary

buses observe an overvoltage condition. Therefore, increasing PV penetration

not only increases the maximum bus voltage, but also the number of customers

observing a violation.

4.6.3 Effects of Minimum Load on PV Hosting Capacity

The objective of this section is to understand the impact of the minimum

load on the circuit’s PV hosting capacity. For this study, the minimum load

for the circuit is increased from 4 MW to 12 MW in a step of 1 MW, and

the stochastic steady-state PV analysis is simulated at each loading condition.
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Figure 4.27: Number of primary buses observing overvoltage during the minimum load
condition for each PV deployment scenario.

The corresponding first hosting capacity is calculated at each loading condition

and is shown in Figure 4.28. It is observed that on increasing the minimum

load, the PV hosting capacity of the circuit increases. In fact, for every 1 MW

increase in the minimum load, the circuit can accommodate approximately

543 kW of additional PV capacity.

Figure 4.28: Hosting capacity vs. Minimum load.
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4.6.4 Effects of PV Locations on Hosting Capacity

In the previous section, we observed that a few PV deployment scenarios

may have a higher impact on system voltages, based on the relative PV sizes

and locations. It may not be possible to schedule the locations of customer-

owned PVs, but utility-owned PVs may be installed at those locations which

potentially have the least impact on the circuit voltages. For this purpose, an

additional analysis typically for the utility-owned PV system is conducted.

Figure 4.29: PV hosting results for each selected PV deployment locations

For this study, four locations for PV deployment are selected, at substa-

tion, mid-feeder, and at two feeder ends (see Figure 4.16). A 500-kW three-

phase PV system is selected for the analysis. The number of PV systems is

increased from one to twenty, thus adding a total of 10 MW of additional PV

at each location. For each location and each number of PV systems, the high-

est primary wire voltage is recorded (see Figure 4.29). The hosting capacity is

calculated for each location by identifying the additional PV capacity leading

to an overvoltage violation. From Figure 4.29, no violation is recorded when

PV systems were placed at the substation. The hosting capacity is lowest at
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the feeder ends. To further understand the locational impacts, the distance of

the PV deployment location from the substation is increased in an approxi-

mate step of 0.25 miles. As the distance from the substation increases the PV

hosting capacity of the circuit decreases, as shown in Figure 4.30.

Figure 4.30: Impact of PV deployment location on PV hosting capacity.

4.7 Mitigating Overvoltage Concerns using Smart In-
verters

As detailed in the previous sections, integrating large percentages of PVs

into the distribution system may result in overvoltage conditions, thus dete-

riorating the feeder voltage quality. In the previous section, the largest PV

generation capacity that a given distribution circuit can accommodate is cal-

culated using the stochastic analysis framework. The obtained generation

capacity is termed as feeder’s PV hosting capacity. Note that we have consid-

ered PV panels with unity power factor for PV hosting capacity calculations.

Therefore, the use of PV-based reactive power or other PV-based means of
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regulating voltage were not considered. The simplest PV models with no

capability for generating or absorbing reactive power were simulated in the

previous discussion.

The objective of this section is to investigate the application of implement-

ing smart inverter controls in mitigating feeder overvoltage concerns. In this

section, the use of smart inverter in increasing feeder’s PV hosting capacity by

controlling the PV power output is demonstrated. Three voltage regulation

methods are implemented: 1) Fixed power factor control, 2) Volt-Var control,

and 3) Volt-Watt control. The details regarding each control method and PV

hosting results are presented in the following sections.

4.7.1 Fixed Power Factor Control

Usually, the PV panels operate at unity power factor, meaning they only

generate active power. The smart inverter connecting the PV panel to the grid

can be used to modify the power factor of the PV panel, thus allowing it to

absorb or generate reactive power. Since the objective is to avoid overvoltage

concerns due to excess PV generation, the PVs must be programmed to operate

at negative power factor implying they are absorbing reactive power. The

smart inverter can be programmed to allow PV panels to operate at a lagging

power factor. Note that the negative power factor (PF) means that the flow

of active and reactive power is opposite. In this section, the results for the

feeder’s PV hosting capacity when PV panels are operating at PF = −0.99

and PF = −0.98 are presented.
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4.7.2 Volt-Var Control

This function allows a control on the reactive power output of the PVs

according to, 1) the voltage at the point of connection (the terminals of the

PV system), and 2) the available apparent power capacity of the inverter at

that point in time. For the volt-var control implemented in this study, the

reactive power generated or absorbed by the smart inverter follows the curve

shown in Figure 4.31. In Figure 4.31, the available reactive power (Qavailable)

is calculated using (4.15).

Qavailable =

√
(SPV )2 − (PPV )2 (4.15)

where,

SPV - is the apparent power rating of the smart inverter connected to PV.

PPV - is the current active power generation of the PV panel.
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Figure 4.31: Volt-Var Curve followed by smart inverters to control the VAR output of the
PVs.

Note that from Figure 4.31, for bus voltages between 0.5 pu and 1 pu, the

Qavailable is positive meaning that the PV panel exhibits a capacitive behavior.
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Since, bus voltages are in an undervoltage condition, the smart inverter is

programmed to supply reactive power in order to avoid undervoltage. When

bus voltages are between 1 pu to 1.5 pu, the Qavailable are negative implying

PV has an inductive behavior. In this case, the PV is programmed to absorb

reactive power in order to avoid overvoltage.

4.7.3 Volt-Watt Control

Same as the Volt-Var control, the Volt-Watt control function allows con-

trolling the real power output from the PVs. The smart inverters only control

the active power output of the PV panel based on the bus voltages at the point

of connection. The plot shown in Figure 4.32 is used to control the PV panel

active power. For bus voltages between 0 to 1 pu at terminal of PV system,

the active power generation at the PV panel is not modified. However, from

bus voltages between 1 and 1.1 pu, the PV generation is controlled to avoid

bus overvoltages. Beyond 1.1 pu, the active power output of the PV panels is

set to zero.

4.7.4 Results

The above three control methods are implemented and the PV hosting

capacities for the selected feeder (see Figure 4.16) are calculated. The PV

hosting capacity is obtained using the hourly stochastic analysis method pro-

posed in this chapter. The results are compared against the simplest PV

models with no capability of regulating feeder voltages using active or reactive

power support. The results are shown in Table 4.2 and Figure 4.33.

From Figure 4.33, on implementing smart inverter based controls, the PV

hosting capacity of the feeder increases for each control method. The feeder
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Figure 4.32: Volt Watt Curve followed by smart inverters to control the active power
output of the PVs.

Table 4.2: PV Hosting Results

Cases Additional PV
Size (kW)

PF = 1
First-hosting Capacity (H1,k) 6,084

All-hosting Capacity (H100,k) 6,374

PF = -0.99
First-hosting Capacity (H1,k) 8,775

All-hosting Capacity (H100,k) 8,979

PF = -0.98
First-hosting Capacity (H1,k) >10,000

All-hosting Capacity (H100,k) >10,000

Volt/Var
First-hosting Capacity (H1,k) 8,438

All-hosting Capacity (H100,k) 8,896

Volt/Watt
First-hosting Capacity (H1,k) 8,371

All-hosting Capacity (H100,k) 8,741

is able to accommodate 2 MW of additional PV on enabling smart inverter

control for active and/or reactive PV generation. It is also observed that the

fixed power control with PV panels operating at 0.98 lagging power factor
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results in the largest increase in the feeder’s PV hosting capacity.
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Figure 4.33: PV hosting capacity with smart inverter control.

4.8 Conclusion

This chapter presents a novel framework to understand and solve the im-

pacts of PV integration on feeder voltages. First, a mathematical formula-

tion for the hosting capacity problem is developed. To solve the formulated

problem, an hourly stochastic analysis approach is proposed. The method is

illustrated by calculating the hosting capacity of an actual 12.47-kV feeder

for overvoltage concerns. The results obtained using the proposed method are

compared against those obtained using a fixed minimum load condition. It

is concluded that the proposed approach results in a better estimate of the

feeder’s PV hosting capacity. Next, an approach to evaluating the percent-

age accuracy of the hosting capacity results is developed. The method aims

to identify the percentage of time a hosting capacity obtained using a k-run

MCS is expected to be accurate. The percentage accuracy is determined with

respect to a tolerance parameter (ε). The results conclude that for ε = 0.05,
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both first- and all-hosting capacities calculated using a 100-run MCS are ex-

pected to be accurate for 98% of time.

Additional factors related to bus overvoltage concerns resulting from PV

integration are also investigated. To do so, the study analyzes the impacts

PV panel size, location, and distribution on the bus overvolatge violations.

Furthermore, the buses most affected due to PV integration and the impacts

of feeder’s minimum load condition on PV hosting capacity are also examined.

Based on the analysis, the following conclusions are drawn:

1. The voltage quality impact of PV system varies with the loading condi-

tion.

2. For the same customer penetration, the PV system impact varies with

the PV deployment scenario, depending on the relative PV locations and

sizes.

3. PV deployment scenarios with larger PVs at farthest load nodes result

in higher impacts on the voltage quality.

4. Primary buses farther away from the substation are more likely to ob-

serve overvoltages.

5. On increasing the system’s minimum load, the PV hosting capacity in-

creases.

6. As the distance of PV system location with respect to substation in-

creases, the PV hosting capacity decreases.

Next, methods to mitigate feeder overvoltage concerns due to PV gener-

ation using smart inverters are investigated. Three control methods namely

fixed power factor, volt-var control, and volt-watt control are implemented.

It is observed that on implementing smart inverter control methods, the PV

hosting capacity of the feeder increases.
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It should be noted that the PV hosting capacity obtained using the pro-

posed framework is still conservative as the PV variability over the year based

on seasons and based on PV panel locations is not included. However, given

the hourly analysis framework, the seasonal and location dependent PV data

can be statistically analyzed to obtain a representative hourly PV generation

profile at each PV location. The obtained hourly PV profiles can be used

instead of the clear sky PV profile in the proposed analysis framework.

Although, the results are demonstrated using overvoltage condition, the

proposed framework can be applied to determine the hosting capacity for other

impact criterion, such as voltage deviation, voltage imbalance, etc. In sum, by

developing a mathematical formulation, an hourly stochastic analysis frame-

work, and an approach to quantify the percentage accuracy of the results,

this work presents a comprehensive understanding of the PV hosting capacity

problem.
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Chapter 5

Grid Impacts and Benefits of Deploying

Distributed Energy Storage Systems

In recent years, due to the advances in smart-grid technologies and the

integration of distributed photovoltaic (PV) generation systems, the electric

distribution network has been changing rapidly. These infrastructure changes

pose multiple challenges for electric distribution service providers with regard

to quality and reliability of the power supply. Energy storage (ES) systems

have been identified as a potential solution to maintain strict power quality

and reliability standards by both utilities and researchers. Including ES tech-

nology in distribution plans can enable utilities, system operators, and end

users to increase power reliability and reduce the cost of electricity. Addi-

tionally, ES systems aid distribution grid flexibility as they can help integrate

variable generation resources such as wind and solar. Given various applica-

tions of ES systems, a distribution system planning framework is called for,

that incorporates the potential impacts and benefits of ES deployments.

The impact and value of integrating ES systems into the distribution cir-

cuit have been assessed in several technical studies [116–121]. So far, however,

these technical studies have not quantified the benefits of various ES system

sizes and deployment locations. Because ES deployment has been increasing,

it is necessary to evaluate its value and impact on the distribution system.

As such, methods that can evaluate the grid impacts and benefits of ES are
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needed. Grid integration tools should be able to identify suitable ES applica-

tions, sizes, and deployment locations by using domain-specific knowledge.

This chapter presents a methodology to evaluate impacts and benefits of

integrating ES systems into the distribution circuit. The purpose of this task is

to develop a consistent methodology to understand the potential grid impacts

and benefits of various ES deployment scenarios (utility-connected as well as

customer-sited) on the distribution system. The presented analysis framework

begins with identifying application scenarios for ES deployment for a given

distribution feeder. Depending upon the feeder characteristics, the ES may be

required to provide one or more utility or customer level benefits. Next, based

on the application scenarios, ES is sized for both power and energy subsystem

ratings. To understand the impacts of ES locations, multiple location scenarios

by placing ES at different bus locations along the feeder are simulated. Finally,

a time-series three-phase load flow analysis is simulated to understand the

impacts of ES in meeting the respective application scenarios.

In this chapter, the effectiveness of ES is investigated for the following

three application cases:

1. Satisfy N-1 contingency requirement : For this application case, ES

is deployed to satisfy the N-1 contingency requirement for the substation

transformer. The ES application period is assumed to be 3 to 5 years.

2. Increase PV hosting capacity : ES is deployed to increase feeder’s

PV hosting capacity so that the feeder can accommodate a total PV

generation capacity equal to 75% of the feeder’s peak load demand.

3. Feeder voltage management : In this application scenario, the ES

is deployed to provide voltage regulation service through volt-var con-

trol. This analysis assumes PV systems connected to the feeder cause
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unacceptable levels of voltage variations.

5.1 Operational Uses of Deploying Distributed Energy
Storage Systems

Figure 5.1 portrays the operational uses where energy storage could be

deployed across the electric value chain including generation, transmission,

distribution, and end-user locations [116]. Using the figure, the operational

uses for ES systems can be broadly categorized as having system-level benefits

or customer-level benefits. For system-level benefits, ES systems are deployed

to meet grid service objectives, that are directly beneficial to utility companies.

As for customer-level benefits, ES systems are deployed at individual customer

locations to meet objectives directly beneficial to customers. The following

section illustrates both the system-level and customer-level benefits through

multiple cases.

5.1.1 System-Level Benefits

This section details ES applications as seen from the system-level, i.e.,

from the perspective of utilities. ES systems are deployed to specifically meet

service objectives directly beneficial to utility companies. A few system-level

benefits of ES deployment are as follows.

1. Distribution system upgrade deferral - For this application, ES sys-

tems are deployed to defer any immediate or future distribution system

upgrades, including substation and distribution lines, by decreasing the

yearly peak load demand.

2. Distributed energy resource (DER) integration - ES can be used

to integrate large percentages of distributed generation resources. Since
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Figure 5.1: Operational uses of energy storage systems [115].

distributed energy resources (DERs) tend to generate during off-peak

hours, ES can be programmed to shift the load from peak load to off-

peak load hours, thus facilitating DER integration.

3. Time-of-Use/electricity price shift - ES can be used to decrease the

cost of electricity in a real time or TOU price market. For this purpose,

ES is programmed to charge when the electricity rates are higher and

discharge when the rates are lower, thus decreasing the yearly cost of the

electricity.

4. Regulation Services - ES can be programmed to provide ancillary ser-

vices for frequency regulation based on the circuit’s open access trans-

mission tariff.
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5.1.2 Customer-Level Benefits

As for the customer-level benefits, ES systems are planned and deployed

to meet specific customer requirements. For this application case, ES systems

are deployed at the end-user premises to provide service benefits to either com-

mercial or residential customers. A few customer-level benefits of integrating

ES systems are listed below.

1. Reliability benefits - The energy storage systems can be deployed at a

few selected commercial customer locations to provide improved service

reliability. In the event of an outage, ES will discharge to support the

connected loads, thus decreasing both the Customer Average Interrup-

tion Frequency Index (CAIFI) and the Customer Average Interruption

Duration Index (CAIDI).

2. Demand charge management - The demand charge is a billing mech-

anism used to recover the cost of providing transmission and distribution

service to commercial customers. The demand charge for a particular

month is calculated based on the largest peak demand recorded over

the month. ES systems are deployed to decrease the monthly peak load

demand and decrease the total customer demand charge.

3. Voltage Management - The ES can be deployed at the customer site

to provide voltage regulation applications for the end-user. This scenario

could be particularly beneficial for the feeders with high percentages of

distributed PV generation.

5.1.3 Energy Storage Deployment

Depending on the feeder and utility requirements, the energy storage sys-

tem can be integrated into a distribution circuit in different deployment stages.
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For instance, if a substation supplies a feeder with large percentages of PV in-

tegration, voltage violations and reverse power flow are primary concerns for

the feeder. In this case, the utility may upgrade only the feeder instead of

the entire distribution circuit supplied by the substation. This type of ES

deployment is referred to as the feeder-level deployment. If, instead, the load

demand is the major problem, the utility may plan ES integration at the

substation-level to defer the transmission and distribution (T&D) upgrades.

This deployment is referred to as the substation-level deployment. The type

of storage deployment will depend upon the upgrade requirements and utility

preferences. In this chapter, both substation-level and feeder-level ES deploy-

ment cases are discussed using different application scenarios.

Note that, the ES can be programmed to simultaneously provide mul-

tiple/stacked benefits at the substation-level, at the feeder-level, or at the

customer-level. Deploying ES for stacked benefits makes the ES deployment

cost-effective. In case of stacked benefits, first, based on a distribution cir-

cuit’s characteristics, a primary application for ES deployment is identified.

The primary application should also provide significant monetary benefits to

the utility company justifying the cost of deploying ES. Based on the primary

application scenario, the ES deployment type (substation or feeder-level de-

ployment) is identified. Next, ES is programmed for the secondary application

scenarios as identified in the stacked application scenario.

5.1.3.1 Substation-level Deployment

In this case, utilities plan to deploy ES for a given substation to meet

substation-level requirements. This deployment strategy may be adopted by

the utility if the potential substation-level benefits of the ES are higher than
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the cost of installing ES. The substation-level benefits may include T&D defer-

ral, providing ancillary services using frequency regulation, energy arbitrage,

etc.

5.1.3.2 Feeder-level Deployment

ES may also be deployed at the feeder-level. In this case, utilities upgrade

individual feeders supplied by the substation. Depending on the technological

changes, instead of the entire substation, only a particular feeder may require

upgrades. In this case, ES may be sized to address the primary concerns

of only the affected feeder. Note that if the sum of ES systems deployed

for the individual feeders equals the required ES capacity for the substation-

level application case, feeder-level ES deployment will be able to meet the

substation-level benefits as well.

5.2 Distributed Energy Storage Analysis - Proposed
Framework

The objective of this chapter is to develop a methodology to evaluate the

grid impacts and benefits of integrating distributed ES systems. To do so,

this chapter presents a framework to integrate ES into the distribution sys-

tem. The proposed approach includes the following stages: determining the

requirement for ES, calculating ES size, identifying ES locations, and evalu-

ating grid impacts of integrating ES. Several potential application scenarios

for ES deployment are simulated, and the grid impacts and benefits of ES in

meeting the simulated application scenarios are assessed. The method for the

ES integration analysis is detailed as following.
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5.2.1 Define Application Scenarios

The first step is to identify the ES application scenarios for the given

feeder. The application of ES for both feeder and substation level deployments

are investigated in this chapter using the following application scenarios. Note

that the proposed approach can be easily applied to plan ES deployment for

other application scenarios as well.

1. N-1 Contingency (Substation-level deployment) : For this ap-

plication case, ES is primarily deployed to satisfy the N-1 contingency

requirement for the substation transformer. The ES application period

is assumed to be 3 to 5 years.

2. Increase PV Hosting Capacity (Feeder-level deployment) : The

ES is deployed to increase the feeder’s PV hosting capacity. For the

selected case study, the feeder is required to accommodate a total PV

generation equal to 75% of the feeder’s peak load demand.

3. Voltage management (Feeder-level deployment) : In this appli-

cation scenario the ES is deployed to provide voltage regulation services

through reactive power (volt-var) control. This analysis assumes PV

modules cause unacceptable voltage variations for the selected feeder

and ES is required to mitigate the voltage concerns.

5.2.2 Identify Starting Point for ES Analysis

Once the application scenarios are defined, the next step is to identify

the starting circuit conditions for the ES grid impact analysis. The starting

conditions will depend on the selected application scenario. For example, if ES

is deployed to defer the substation upgrade, the starting point for the analysis

will be the year substation overloading is projected. On the other hand, if the
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application scenario is PV integration, a circuit already experiencing adverse

impacts due to PV integration will be selected as the starting condition.

Therefore, in this step, based on the ES application scenario, the initial cir-

cuit conditions are simulated. To simulate the initial circuit condition, several

assumptions for ES deployment are specified. The assumptions may include:

1. Yearly load profile used for the analysis.

2. Load growth rate.

3. The number of years ES will be used to defer substation or feeder up-

grade.

4. Initial percentage penetration of distributed energy resources (DERs),

for example, PVs.

5. Feeder’s PV hosting capacity.

6. Assumptions regarding the PV variability.

5.2.3 Determine ES Size

Energy storage needs to be sized for two systems, the power subsystem

(MW) and the energy subsystem (MWh). The power subsystem (MW) rating

defines the largest power demand the energy storage can supply. The energy

subsystem rating (MWh) defines the total energy the energy storage can pro-

vide without recharging. The size of both subsystems are obtained based on

the application scenario.

5.2.4 Identify ES Locations

The next task is to identify potential ES locations. The ES locations are

more flexible for system-level benefits. Utilities can deploy storage units at

any feasible location along the feeder including the substation, at feeder-ends,
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or at mid-feeder. For customer level benefits, however, ES must be deployed

at the individual customer locations. If multiple ES locations are possible, the

best ES locations for providing stacked benefits are identified.

5.2.5 Conduct Grid Impact Analysis

The grid impacts of ES are quantified using a time-series load flow analysis

simulated for each ES application scenario. The analysis demonstrates the

usefulness of ES in meeting the desired grid objective. A three-phase load flow

analysis is conducted for each energy storage deployment scenario, and the

corresponding distribution system parameters are calculated. The grid impact

analysis involves evaluating the utility of ES in improving the performance of

the distribution system for a given grid objective or planning criteria.

5.3 Application 1 - Energy storage to meet N-1 Con-
tingency

This case study demonstrates the application of ES systems in meeting

the N-1 contingency requirement for the substation transformer. The case

study simulates two identical substation transformers supplying for two dis-

tribution feeders with identical load demand characteristics and equal peak

load demands. Under the N-1 contingency case, one of the transformers is

out-of-service, and the other transformer is supplying both feeders. The ES

is deployed to avoid the transformer overloading under the N-1 contingency

case. The ES is planned to operate for 5 years. The steps for integrating and

evaluating the effectiveness of ES are detailed as follows.
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5.3.1 Selected Distribution Circuit

The one-line diagram for the distribution circuit under analysis is shown in

Figure 5.2. Two identical 40 MVA transformers are connected to the substa-

tion. Each transformer serves a distribution feeder with a peak load demand of

20.6 MW measured in year 2013. It is assumed that under normal condition,

both transformers are in service. Clearly, under normal operating condition,

none of the transformers records an overloading.���������	�
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Figure 5.2: One-line Diagram of the Distribution Circuit Selected for Analysis (Courtesy
of the electric utilities).

Next, the N-1 contingency condition is simulated by applying a fault at

the secondary terminal of one of the transformers so that the transformer (T1)

is out-of-service. In this case, the other 40 MVA transformer (T2) is required

to serve both feeders (see Figure 5.3). Based on the peak load demands of
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both feeders, the worst-case demand of transformer T2 in year 2013 is 20.6 +

20.6 = 41.2 MW. Since the worst-case load demand exceeds the transformer

rating, the N-1 contingency requirement is not satisfied for year 2013.���������	�
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Figure 5.3: Simulated N-1 Contingency Case (Courtesy of the electric utilities).

The task of this case study is to demonstrate the application of ES in

meeting the N-1 contingency requirement for the substation transformer. The

ES is planned for 5 years after the year the N-1 contingency is not met. In

the simulated case study, the N-1 contingency requirement is not met in year

2013. Therefore, ES will be planned for years 2013 to 2017.

The assumptions made for the ES integration study are as follows:

1. Criteria for ES deployment: ES will be required starting from the

year when the N-1 contingency requirement is not met.

2. The number of years ES is planned: The ES is planned for 5 years

since the N-1 contingency requirement is not met. In this case, the
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contingency requirement for the substation transformer is not met in

year 2013. Therefore, ES will be planned for years 2013 to 2017.

3. Load assumptions: For each feeder, the peak load demand recorded

for year 2013 is assumed to be 20.6 MW. This results in a total peak

load demand of 41.2 MW.

4. Load shape profile: The yearly load shape profile (for Year 2013)

provided for the Feeder A is used for the analysis (Figure 5.4).

5. Load growth rate: A 3% load growth rate per year is assumed for

the selected feeders. Using 3% load growth and the load demand profile

measured for year 2013, the peak load demands and yearly load profiles

for the future years are projected.

Figure 5.4: Yearly load shape profile measured at the Node A (Year 2013).

5.3.2 Identify Starting Point for ES Analysis

In this case, two identical 40-MVA transformers are connected at the sub-

station and supply two identical feeders, each with a peak load demand of

20.6 MW measured in year 2013. During N-1 contingency case, one of the
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transformers is out-of-service, and both feeders are served by one 40-MVA

transformer. The objective is to determine if the transformer is adequate to

meet the load demand for both feeders. The N-1 contingency requirement

is satisfied if the transformer can supply both feeders without recording any

overloading. As detailed in the previous section, for the simulated case study,

the substation is not able to provide N-1 contingency requirement for Year

2013, necessitating ES deployment in year 2013.

5.3.3 Determine Energy Storage Size

The next objective is to identify a suitable ES size so that the N-1 contin-

gency can be met for a duration of 5 years starting from year 2013. ES needs

to be sized for the power subsystem (MW) and energy subsystem (MWh). The

power subsystem rating defines the largest capacity that ES can supply. The

energy subsystem rating defines the total energy an ES can provide without

recharging. Since sizing the ES for the worst case peak load and duration

could be expensive and wasteful, ES MW rating and duration are calculated

using a typical peak load demand and overload duration. The ES size is deter-

mined according to the statistical analysis of the peak load demand and the

energy supplied during the overload condition using the current and projected

substation load demand for years 2013 to 2017.

Note that the load demand is available for a total of 315 days for year 2013

in hourly intervals. The available load demand data for Year 2013 results in

7560 (315×24) data points corresponding to each hour of the day. The yearly

profile for year 2013 is projected to future years at a load growth rate of 3%

per year. The measured and projected load demand are analyzed together to

understand the loading condition for the ES plan duration (i.e., from 2013-
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2017). The current and projected yearly load demands for Years 2013 to 2017

result in a total of 37800 data points (dataset), with 7560 data points for each

year. A percentile analysis is done on the obtained data set to obtain ES size.

The details of the analysis approach are as follows.

5.3.3.1 Percentile Analysis

The objective of the percentile analysis is to obtain a representative size

for the ES based on the feeder’s typical peak load and its duration. Given

the uncertainty in the load demand, sizing ES based on the worst case peak

load demand is not advisable. Instead, a statistically representative peak load

should be selected. A percentile analysis assists in doing the same. Addition-

ally, the percentile analysis helps in quantifying the risk as well. For example,

if a median (50th-percentile) value is selected for the peak load, there is a 0.5

probability that if a transformer overloading occurs, the selected ES size will

not be able to mitigate the overloading concern. Note that the probability

of the peak load occurring should be included while calculating the net N-1

transformer contingency parameter. Assume that over the span of 5 years, a

transformer overloading is expected to occur with a probability p. Let the ES

be sized for 50 percentile peak load. In this case, the N-1 contingency for the

transformer will not be met with a pfail = 0.5× p probability.

5.3.3.2 Energy Storage Power System Rating

The ES MW capacity required to mitigate transformer’s overloading con-

cern is determined using the current and projected load demand profiles. The

required ES MW capacity for each overloading condition is determined by sub-

tracting the recorded overload demand and the substation transformer rating
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(40 MVA). A percentile analysis is done on the obtained ES MW capacities

and a representative ES MW rating is identified. The percentile plot for the

ES MW capacity is shown in Figure 5.5.

Figure 5.5: Percentile plot of ES size based on overload recorded for Years 2013-2017.

From the figure, the required ES capacity to meet N-1 contingency require-

ment decreases significantly from the 100th-percentile to the 75th-percentile

value. Assuming 3% load growth, the required ES capacity decreases from

6.37 MW (100th-percentile) to 2.8 MW (75th-percentile). The 75th-percentile

shows that, under the worst-case scenario, there is a 0.25 probability that the

ES will be not be able to mitigate a transformer overload resulting from an

N-1 contingency scenario. For the simulated case study, in a span of 5 years

(2013-2017), a transformer overloading is recorded only for a total of 111 hours.

This results in a 0.0029 probability of observing an overvoltage for the duration

of 5 years. While calculating the absolute probability of ES being unable to

meet N-1 contingency requirement, the probability of observing an overvoltage

over the duration for which ES is deployed should be included. Essentially, if

the ES capacity corresponding to a 75th-percentile value is deployed, the N-1

contingency may not be met with a probability of 7.34× 10−4(0.0029× 0.25).

182



5.3.3.3 Energy Storage Energy System Rating

Next, the energy subsystem rating, or the energy storage MWh capacity,

is determined. For the worst-case scenario, the ES MWh capacity should, at

least, equal the largest energy (MWh) supplied above the substation trans-

former rating. For this analysis, the daily energy served above the substation

transformer rating for the 5-year duration under consideration is calculated.

To do so, the area between the load demand curve and substation transformer

rating is calculated. Next the percentile analysis is done for the energy served

above transformer rating (see Figure 5.6). Using Figure 5.6 the ES MWh ca-

pacity for a selected percentile value can be obtained. For a 3% load growth,

the required ES MWh capacity is 9.95 MWh for the 75th-percentile value.

Figure 5.6: Percentile plot of the energy served above transformer rating for Year
2013-2017.

The detailed results for the percentile calculation are shown in Table 5.1.

The table also shows the probability of not meeting N-1 continency require-

ment corresponding to each percentile value. Note that the actual probability
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of not meeting contingency will also depend upon the probability of observing

a fault at either of the transformer terminals. For the results shown in Table

5.1, it is assumed that the fault occurs with a 100% certainty.

Table 5.1: Percentile values for the required ES capacity based on load demand for years
2013-2017 and using a 3% load growth

Percentile ES power subsys-
tem rating (MW)

ES energy subsys-
tem rating (MWh)

Probability that N-1 contin-
gency not met

100 6.37 40.01 0

99 6.31 40.01 0.29× 10−4

97 5.71 35.81 0.84× 10−4

95 5.01 29.52 1.45× 10−4

90 4.35 19.8 2.9× 10−4

75 2.8 9.95 7.34× 10−4

50 1.5 2.4 14.5× 10−4

5.3.4 Determine Energy Storage Location

To satisfy the N-1 contingency criteria, the ES can be located anywhere

along the distribution feeder. Figure 5.7 portrays some potential locations of

the ES with regard to this particular case study. For each ES location in the

figure, when one of the transformers is out of service under the fault condition,

the ES can be dispatched successfully to mitigate the potential overloading of

the healthy transformer.

5.3.5 Conduct Grid Impact Analysis

The utility of deploying a 75th-percentile ES capacity, which corresponds

to 2.8 MW/9.95MWh ES, on meeting N-1 contingency criteria for Years 2013-

2017 is demonstrated in this section. Figure 5.8 shows the reduction in the

overload demand recorded from Years 2013-2017. It can be seen that the
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Figure 5.7: Potential Locations for Energy Storage Deployment to meet N-1 contingency
requirement (Courtesy of the electric utilities).

deployed ES is able to provide for the contingency requirements for most of

the time. At the 75th-percentile, the N-1 contingency requirement is not met

for a few hours. Note that the ES is programmed to discharge to keep the

substation load demand less than 40 MW and the ES is programmed to begin

charging at 2 am.

The total energy served above the transformer rating and the total number

of hours the transformer overloading is recorded for each year is shown in Table

5.2. For years 2013 and 2014, no event of transformer overloading is expected.

However, when a 75th-percentile ES capacity is deployed, at the worst case,

the transformer will be required to supply 12.64, 41.92 and 95.61 MWh above

its rating for years 2015, 2016, and 2017, respectively.
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Figure 5.8: Application of energy storage is the substation mitigating transformer
overloading during an N-1 contingency scenario.

Table 5.2: Energy served above transformer rating for Years 2013-2017

Year Energy served above trans-
former rating (MWh)

Time above trans-
former rating (hr)

2013 0.00 0

2014 0.00 0

2015 12.64 10

2016 41.92 29

2017 95.61 55

5.4 Application 2 - Energy Storage to Increase PV Host-
ing Capacity

In this application scenario, ES is deployed to increase the PV hosting

capacity of the distribution circuit. As discussed in Chapter 4, the PV hosting

capacity of a distribution feeder is defined as the largest PV generation ca-

pacity that the feeder can accommodate without violating the feeder’s normal

operating conditions. PV hosting capacity can be defined with respect to sev-

eral impacts criteria including overvoltage concerns, voltage deviation, reverse
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power flow, and protection related issues. This study however aims to mitigate

overvoltage concerns of integrating PV and calculates hosting capacity using

feeder overvoltages only.

The application scenario is detailed as following. The selected distribution

feeder is required to accommodate a total PV generation equal to the 75% of

the feeder’s peak load demand. First, the PV hosting capacity of the selected

distribution circuit without any energy storage unit is calculated. Next, the ES

system is sized depending upon the feeder’s PV hosting capacity and required

PV accommodation limit. Finally, the PV hosting capacity for the feeder

is calculated after deploying ES. The impact of ES locations on feeder’s PV

hosting limit is also investigated. In this study, the PV hosting capacity is

calculated only for the overvoltage concerns. The PV hosting capacity for

other impact criteria could be calculated and included in the analysis as well.

5.4.1 Selected Distribution Circuit

The selected 12.47-kV distribution circuit is supplied by a 24-MVA sub-

station transformer and is connected to a total of 1.196 MW of PV system.

The distribution circuit serves 1218 customer loads out of which 71% are res-

idential customers. The feeder records a peak load demand of 12.5 MW for

year 2013. The objective of this ES application scenario is to increase the PV

hosting capacity of the feeder so that 75% of the feeder’s peak load demand

i.e. 9.375 MW is supplied by PV units.

5.4.1.1 Feeder’s PV Hosting Capacity

Next, the PV hosting capacity of the selected feeder is calculated using

the stochastic analysis framework proposed in Chapter 4. The method, anal-
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Figure 5.9: One-line diagram of the selected distribution feeder (Courtesy of the electric
utilities).

ysis, and results are detailed in Chapter 4. Based on the analysis, the selected

feeder can accommodate 6.084 MW of additional PV without resulting in any

case of overvoltage violations. Beyond 6.084 MW and up to 6.374 MW, a

few PV deployment cases may record an overvoltage while others may not.

After including 6.374 MW of additional PV, the selected feeder is expected to

record an overvoltage violation irrespective of the PV locations. Considering

the most conservative case where the feeder records no case of voltage viola-

tion (irrespective of PV locations), the feeder can accommodate 6.084 MW

additional PV and 1.196 kW of existing PV. The actual PV hosting capacity
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of the feeder is (6.084+1.196) MW = 7.28 MW.

5.4.1.2 Assumptions for ES Deployment

The objective is to increase feeder’s PV hosting capacity so that it can

accommodate a total PV generation equal to 75% of the feeder’s peak load

demand, i.e. 9.375 MW. Therefore, it is required to increase the feeder’s PV

hosting capacity by 2.095 MW. An overvoltage condition is observed due to the

excess PV generation. To compensate for the excess PV generation, ES should

operate as a sink for active power generated using PV panels. Therefore, ES is

sized and programmed to charge (act as load) when the excess PV generation

may result in a case of overvoltage violation.

The assumptions for ES deployment are as follows:

� Circuit load condition - PV hosting is calculated using the effective

minimum load obtained for the feeder. The details regarding the effective

load calculation is given in Chapter 4.

� Energy storage control - To mitigate overvoltage regulation concerns,

ES is programmed to charge using the excess PV generation thus allowing

the feeder to accommodate additional PV capacity.

� Energy storage size - Energy storage size is determined based on the

required PV hosting capacity of the feeder. In this case, it is required

to increase the PV hosting capacity of the feeder to 75% of the feeder’s

peak load demand, i.e. 9.375 MW. The ES should be sized so that it can

absorb the excess PV generation beyond the feeder’s PV hosting limit.

� Energy storage location - Three location scenarios are simulated: 1)

at substation, 2) at FeederEnd1, and 3) at FeederEnd2 (see Figure 5.9).
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5.4.2 Energy Storage Size

The PV hosting capacity calculated for the feeder is shown in Figure 5.10.

The results shown in Figure 5.10 includes 1.196 MW of the existing PV. Based

on the case study, the PV hosting capacity should be increased to 9.375 MW.

The energy storage should absorb the excess PV generation above the feeder’s

PV hosting capacity limit.
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Figure 5.10: PV hosting capacity for overvoltage concern (Additional + Existing PV
generation).

5.4.2.1 Energy Storage Power Subsystem Rating

The ES should provide for the peak power generation beyond the feeder’s

hosting capacity. The ES MW size is determined by subtracting the feeder’s

PV hosting capacity by the required PV hosting capacity. Therefore, to in-

crease the PV hosting capacity to 9.375 MW, an ES with power subsystem

rating equal to 9.375− 7.28 = 2.095 MW is required.
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5.4.2.2 Energy Storage Energy Subsystem Rating

The ES should provide for the energy generated beyond the feeder’s host-

ing capacity limit. The ES MWh size is determined by calculating the area

between the required PV hosting capacity and the feeder’s hourly first hosting

capacity plots. The obtained MWh capacity for the ES is equal to 8.37 MWh.

5.4.3 Energy Storage Location

To understand the impact of ES location on feeder’s PV hosting limit, three

location scenarios are simulated. The ES is deployed at the substation, Feed-

erEnd1, and FederEnd2 (see Figure 5.9). An ES of size 2.095MW/8.37MWh

is deployed at the three selected locations separately and is programmed to

charge. The PV hosting capacity of the feeder is calculated using the proposed

PV hosting analysis framework (see Chapter 4). The PV accommodation limit

after deploying ES is compared against the feeder’s actual PV hosting capacity.

5.4.4 Grid Impact Analysis

The PV hosting capacity calculated for each ES location scenario is shown

in Table 5.3. On integrating ES, the PV hosting capacity for feeder overvolt-

age concern increases for each location scenario. The increase in the hosting

capacity, however, depends upon the ES location. The feeder can accommo-

date a larger PV capacity on placing the ES at feeder ends compared to when

placed at the substation. Therefore, based on the findings, for increasing the

PV accommodation limit of the feeder, the ES should be placed towards feeder

ends.
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Table 5.3: PV Hosting Results

Cases PV Hosting Capacity (Ex-
isting + Additional) (kW)

No Energy Storage
First-hosting Capacity (H1,k) 6,084

All-hosting Capacity (H100,k) 6,374

At substation
First-hosting Capacity (H1,k) 7,610

All-hosting Capacity (H100,k) 7,900

At Feeder End 1
First-hosting Capacity (H1,k) 9,617

All-hosting Capacity (H100,k) 9,864

At Feeder End 2
First-hosting Capacity (H1,k) 9,277

All-hosting Capacity (H100,k) 9,535

5.5 Application 3 - Energy Storage to Mitigate PV Vari-
ability

High penetrations of photovoltaic generation (PV) in the distribution cir-

cuit can cause voltage variability concerns. For example, a sudden drop in

PV generation caused by rapid cloud movements can cause feeder voltages to

suddenly ramp up or ramp down to unacceptable levels. This section demon-

strates the application of energy storage units in regulating voltage variations

caused by PV generation. The case study investigates the effectiveness of ES in

providing voltage regulation services using reactive power control (Volt/Var)

in the event when the existing PV generation suddenly ramps up or down. The

location of ES units affect their ability to mitigate voltage regulation concerns.

To understand ideal ES placement, ES is deployed at several locations along

the feeder. Then, voltage variation levels for feeders with and without ES sys-

tems are recorded and compared. Finally, using actual PV generation data,

the ability of ES to mitigate feeder voltage variation concerns is demonstrated.
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5.5.1 PV Variability

An example PV generation profile recorded on a typical day at a PV

plant is shown in Figure 5.11. The figure shows the 24-hour PV generation

profile on a high variability day due to cloud transients. It can be seen from

the figure that, depending on the weather conditions, the PV profile may be

highly variable, with sudden generation drops from 1 pu to as low as 0.2 pu.

Figure 5.11: A typical PV generation profile with cloud transients.

Energy storage (ES) systems can be used to provide active and/or reactive

power support to mitigate voltage regulation concerns caused by PV variabil-

ity. When used for providing active power support, the energy storage units

will be programmed to charge and discharge in accordance with the rate of

change in PV generation. Therefore, in this case the ES compensates for the

sudden change in PV generation thus effectively mitigating variability on the

PV generation itself and in turn reducing the voltage variability. However,

when ES is used to provide reactive power (VAR) support, the ES will not
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affect active PV power generation. Instead, the ES will directly mitigate volt-

age variability concerns by generating or absorbing reactive power. Note that

the reactive power based voltage regulation is preferred over the active power

control because ES based active power support requires battery to charge and

discharge thus deteriorating battery’s life-cycle. This section demonstrates the

effectiveness of using ES reactive power support to mitigate voltage variation

concerns caused by PV variability.

5.5.1.1 Mathematical Analysis of Voltage regulation Concern

The analytical derivation of the voltage variation observed due to PV pan-

els injecting active power into the grid is presented here. The change in feeder

voltages on changing the active power generation of the PV panels is obtained

using the Zbus matrix of the distribution circuit. For a distribution circuit,

assuming PV panels are the current injection sources, the voltage deviation

depends upon the real part of the Zbus matrix, termed as Rbus matrix. The

detailed derivation is as follows.

Figure 5.12: A simplified one-line diagram of the distribution feeder connected to PV.

The bus voltages recorded for the feeder is given by (5.1), where loads and

distributed generation units are represented as the current injection sources.

Vbus = Zbus × Iinj (5.1)
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Zbus = Rbus + jXbus (5.2)

Iinj =
(Pinj + jQinj)

∗

Vnorm
(5.3)

Substituting (5.2) and (5.3) in (5.1)

Vbus = (Rbus + jXbus)×
(Pinj + jQinj)

∗

Vnorm
(5.4)

Next, the change in bus voltage with respect to the change in injected

active (dPinj) and reactive power (dQinj) is given as following:

dVbus =
∂Vbus
∂Pinj

dPinj +
∂Vbus
∂Qinj

dQinj (5.5)

Since, PV is assumed to be generating at the unity power factor, dQinj=0.

The change in bus voltages with respect to active power injected at PV bus

is obtained by differentiating (5.4) with respect to change in injected active

(∂Pinj).
∂Vbus
∂Pinj

=
Rbus

Vnorm
− j Xbus

Vnorm
(5.6)

Ignoring the imaginary component in (5.6) we obtain:

∂Vbus
∂Pinj

=
Rbus

Vnorm
(5.7)

Figure 5.13: Change in voltage.
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Therefore, the change in bus voltage with respect to the change in injected

active (dPinj) is equal to

dVbus =
Rbus

Vnorm
dPinj (5.8)

It can be observed from (5.8), that the voltage deviation observed due to

PV generation depends upon the Rbus matrix of the distribution circuit and

the rate of change of PV generation.

5.5.1.2 Energy Storage to mitigate Voltage Regulation Concern

The utility of energy storage (ES) in mitigating voltage variations result-

ing from the PV generation variability is analyzed. To do so, ES units are

connected to a few selected feeder locations. The feeder voltages before and

after implementing ES are derived. Finally, the reactive power required to

mitigate voltage variability resulting from PV generation is calculated.

Figure 5.14: Mitigating PV voltage variation concern using ES.

Prior to implementing ES units, the change is bus voltages with respect

to the change in injected active power due to PV units is given as:

dVbus =
Rbus

Vnorm
dPinj (5.9)

After implementing ES, the change in bus voltages is as follows:

dV ′bus =
Rbus

Vnorm
(dPinj + dPES) +

Xbus

Vnorm
dQES (5.10)
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The objective of installing ES is to result in a lesser or no voltage deviation

due to PV generation, i.e. dV ′bus ' 0. From (5.10), it is clear that to mitigate

voltage variations, the ES can be programmed for both active (Volt/Watt)

and reactive power (Volt/Var) control. The Volt/Var control, however, unlike

Volt/Watt control, does not involve the cycling of battery and hence does not

affect ES life-cycle cost.

Assuming ES is only providing reactive power support, the reactive power

required by ES to mitigate voltage variability is obtained as follows:

dQES = −X−1bus ×Rbus × dPinj (5.11)

Note that ES reactive power requirement depends upon the feeder’s R/X

ratio.

5.5.2 Selected Distribution Feeder and Assumptions

The objective of this scenario is to demonstrate the use of ES in providing

voltage regulation services for the feeder for year 2013. Note that the selected

feeders are connected to a total of 1.196 MW of existing PV generation. The

locations and installed capacities of the existing PV panels for the selected

feeder are shown in Figure 5.15.

In order to understand the impacts of PV variability on the feeder volt-

ages and the utility of ES in mitigating the voltage concerns, two extreme

PV variability cases are simulated. The simulated scenarios are described as

follows:

1. Case 1 - PV Ramping Up : In this case, the existing PV generation

ramps up from zero to the full rated power output of 1.196 MW in 1
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Figure 5.15: One-line diagram of the selected distribution feeder with existing PV
locations and generation capacities Courtesy of the electric utilities).

minute. As the PV generation ramps up, the feeder voltages are expected

to ramp up as well. The energy storage is required to decrease the rate

of voltage ramping by providing reactive power support.

2. Case 2 - PV Ramping Down : In this case, the existing PV generation

ramps down from the full power output of 1.196 MW to zero in 1 min.

In this case the feeder voltages will decrease as the PV generation ramps

down and the ES is required to decrease the rate with which the feeder

voltages ramp down by providing reactive power support.

The feeder loading conditions, criteria for voltage support using ES, ES

size and locations, and PV variability assumptions are detailed as following.

� Circuit Load Condition - Circuit is operating at the minimum load
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condition.

� Energy Storage Control - To mitigate voltage regulation concerns,

ES is programmed to provide reactive power support (Volt/Var control).

� PV Variability - Time taken for PV generation to ramp up from 0 MW

to full power (1.196 MW) or ramp down from full power (1.196 MW) to

0 MW = 1 min.

� Simulation conditions - The latency of the communication system

is assumed to be 0.02 sec. This means that the information regarding

the change in PV generation arrives at the energy storage location ex-

actly 0.02 sec after the change in PV generation. The simulation for ES

analysis is done for a total time duration of 300 sec at each 1 sec time

step.

5.5.3 Energy Storage Size

In this application scenario the ES is deployed to provide reactive power

support. Therefore, MW and MWh ES capacities do not directly depend

upon this application scenario. For the simulation, it is assumed that ES

was primarily deployed to increase feeder’s PV hosting limit and providing

voltage regulation service is a secondary application. Therefore, an ES of size

2.094 MW/8.37 MWh, as obtained from the PV hosting application scenario

is selected for the study. Note that at any time the available reactive power

at ES will depend upon its apparent power rating and current active power

generation (5.12). For the study presented in this section it is assumed that

100% of reactive power is available for voltage regulation, i.e. PES = 0.

Qavailable =

√
(SES)2 − (PES)2 (5.12)
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where,

SES - is the apparent power rating of the smart inverter connected to ES.

PES - is the current active power generation of the ES unit.

5.5.4 Energy Storage Location

Several location scenarios are simulated to understand how the location of

the energy storage system affects its ability to mitigate bus voltage variations

caused by PV variability. The ES is placed on several buses along the feeder

and programmed in Volt/Var control mode. The largest voltage variations

with and without ES are recorded. The selected locations for ES deployment

are shown in Figure 5.16. Starting with the substation, ES is deployed at thir-

teen different locations along the feeder. The distance of each ES deployment

location with respect to the substation is shown in Figure 5.16 as well.

5.5.5 Energy Storage Control

For voltage regulation, the energy storage is used to absorb or generate re-

active power. The relationship between the reactive power supplied/absorbed

by ES and the change in PV generation is as follows:

Qstorage = PPV ×
Rbus

Xbus

(5.13)

where,

PPV - is the change in PV generation power,

Rbus - is the real part of the short-circuit impedance (Zbus) measured at the

ES location.

Xbus - is the imaginary part of the short-circuit impedance (Zbus) at the ES

location.
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Figure 5.16: Energy Storage Locations (Courtesy of the electric utilities).

5.5.6 Grid Impact Analysis

The utility of ES as a reactive power support (Volt/Var control) to mit-

igate voltage variation caused by PV generation variability is illustrated in

this section. Furthermore, the effect of different ES deployment locations on

feeder voltage variations is also demonstrated. First, the ES is deployed at

FeederEnd1 (see Figure 5.17) and programmed in the Volt/Var control mode.

The largest voltage variations at four feeder buses are measured and shown

in Figure 5.17 for both PV ramping up and down cases. From the figure,

it can be seen that on deploying ES, the largest voltage variations decrease

significantly for all buses. For example, the largest voltage variation at the

FeederEnd1 decreases from 1.2% to 0.08%. Since, the ES is located closer to
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the PV panels, it is more effective in mitigating voltage variability.

Figure 5.17: Voltage profiles (with and without energy storage), with energy storage
located at FeederEnd1 (Courtesy of the electric utilities).

Next, the impact of ES locations on its ability to mitigate voltage varia-

tion concern is investigated. The ES is deployed at several feeder buses and

programmed to absorb or supply reactive power for voltage regulation. At

different ES locations, the largest voltages without energy storage and with

energy storage are recorded. Figure 5.18 shows the largest voltage variations

caused by both PV ramp up and PV ramp down cases, for different ES loca-

tion scenarios. From Figure 5.18, the largest improvement in voltage profile

at one of the PV buses (PVBus2) is observed when the ES is placed on Bus

3924444 (i.e. FeederEnd1) or at the buses closer to the PV buses, i.e. Bus

1416962, Bus 1416990, and Bus 1410998. On placing the ES farther away from
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the PV locations, either at another feeder end or closer to the substation, a

lesser improvement in the voltage profile is observed.

Figure 5.18: Largest voltage variation measured at PV bus 2 for different ES locations
(Courtesy of the electric utilities).

Finally, the utility of deploying energy storage system for voltage manage-

ment using volt-var control is demonstrated for actual PV generation data.

The ES is programmed to supply reactive power when the PV generation is

ramping down and vice versa. The PV irradiance profile for a high variabil-

ity day, measured for an actual PV plant, is shown in Figure 5.19. The ES

application scenario is simulated for 1 hour of the day, from 12 pm to 1 pm.

The PV generation profile for the existing PV panels in the selected feeders is

simulated using the high variability irradiance profile for 1 hour duration from
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12:00 pm to 1:00 pm (see Figure 5.19). Note that the PV generation suddenly

ramps up and down over the simulated time period, which could cause voltage

variability.

Figure 5.19: a) PV irradiance profile with high variability, b) Existing PV generation at
the selected feeders from 12:00 pm to 1:00 pm using the high variability PV profile.

The voltage profiles with and without energy storage recorded at the sub-

station, feeder end, and PV buses are shown in Figure 5.20. After deploying

energy storage, the rate of change in feeder voltages due to PV variability

decreases. Thus, the ES is successfully able to mitigate short-term voltage

variations at each of the feeder buses. The voltage profile after ES deployment

is smoother with a reduced rate of voltage ramping.

204



Figure 5.20: Voltage profiles (with and without energy storage) at; a) substation, b)
FeederEnd1, c) PVBus1, d) PVBus2.

5.6 Conclusion

In recent years, the advancement of smart-grid technologies and the inte-

gration of distributed photovoltaic (PV) generation have led to an increase in

distributed energy storage deployment. This calls for a standard methodol-

ogy, analytics, and tools to quantitatively evaluate the effectiveness of energy

storage solutions. In this chapter, a framework for evaluating the grid impacts

and benefits of integrating ES systems into the distribution circuit is presented.

The proposed framework begins with identifying application scenarios for ES

deployment. Based on the selected application scenarios, the starting point

for the analysis including ES deployment type, planning duration, feeder load

conditions, and existing and future PV generation are identified. For each

application scenario, the ES is sized for both power and energy system ratings
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and potential ES locations are identified. Finally, the grid impact analysis is

conducted to quantify the benefits of deploying ES and in meeting the desired

grid service objective.

In this chapter, ES is deployed for the following application scenarios: 1)

meeting substation N-1 contingency requirement, 2) increasing feeder’s PV

hosting capacity, and 3) mitigating voltage variability concerns due to PV

generation variability. The finding of the study are as follows:

� ES systems can be deployed to provide multiple system-level benefits

such as T&D upgrade deferral, DER integration, energy arbitrage, and

frequency regulation, as well as customer-level benefits, for example, bus

voltage management, and reliability benefits.

� The ES size will depend upon the application scenario. For example, for

N-1 contingency requirement ES size is determined based on the feeder

load demand recorded above the substation transformer rating. However,

the ES size for increasing feeder’s PV hosting limit will depend upon the

required PV accommodation limit and current PV hosting capacity.

� Same as ES size, ES location will also depend upon the application

scenario. When deployed for substation-level benefits, optimal locations

would be close to the substation transformer thus avoiding power loses

along the feeder. However, when deployed for feeder applications, such as

voltage management or for increasing PV accommodation limit, optimal

locations would be at the feeder ends or at the buses already observing

voltage limit violations.
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Chapter 6

Designing New Distribution Circuits

In the previous chapters, the effects of integrating smart grid technologies

into the existing utility distribution circuits are discussed. To mitigate the

impacts, various control schemes which can be incorporated into the exist-

ing distribution circuit are proposed. However, while installing a new utility

distribution circuit or an islanded distribution circuit (such as, microgrids,

distribution circuit for a multi-story building, and shipboard power systems),

a complete circuit redesign could be more efficient and economical in meeting

future service quality and reliability requirements. Therefore, as the challenges

faced by the power distribution systems are expected to increase in the coming

decades, we propose to design distribution circuit models more compatible for

future service requirements.

At present, a majority of the distribution circuits are designed in radial

topology; the design, operation, and analysis of which has been thoroughly

analyzed and automated. However, with the integration of the distributed

generation resources and the increased service reliability and power quality

requirements, the distribution circuits supplying for urban and metropolitan

area are increasingly adopting more complex topologies. Lately, in order to

provide maximum reliability and operating flexibility, utilities are deploying

spot and grid network systems in congested areas such as metropolitan and

suburban business districts. Additionally, a high level of service reliability is of
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primary concern for some microgrids for example, a shipboard power system in

an all-electric ship. Given the trend towards more complex distribution archi-

tectures and the requirement for the improved service reliability, an analytical

framework for designing new distribution circuits is required.

The work presented in this thesis aims to design a reliable circuit design for

an all-electric shipboard power system. To achieve this objective, the design

considerations of ship’s primary distribution system and its secondary zonal

distribution networks are considered separately. Note that ship’s primary and

zonal load centers interact in the same way as the primary and secondary cir-

cuits of the terrestrial power distribution system designed in a mesh topology.

For ship’s primary distribution system topology, we aim to investigate the reli-

ability gains of designing three-dimensional power system topologies, spanning

multiple levels of the ship, in contrast to the planar distribution systems that

are currently used. As for ship’s zonal distribution system, a new approach to

design the distribution topology by prioritizing service reliability as the design

objective is proposed. Although, the distribution circuit design framework is

developed for a shipboard power system, the method is applicable to all kinds

of new distribution circuit installations.

6.1 Shipboard Power Distribution System

A discussion on a typical shipboard power system deployed in an all-electric

ship is presented in this section. As discussed before, same as terrestrial dis-

tribution systems, the shipboard power system is composed of a primary dis-

tribution and a secondary or zonal distribution system. The two systems are

discussed separately in the following section.
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6.1.1 Primary Distribution System

Figure 6.1 shows the primary distribution circuit of an all-electric ship

designed in a breaker-and-a-half (BAAH) configuration. The shipboard power

system shown in Figure 6.1 is supplying for nine equipment loads using four

generators, two main and two auxiliary. The equipment loads supplied by

the distribution circuit is as follows: radar, energy storage, pulsed load, port

propulsion motor, starboard propulsion motor, and four zonal load centers.

Figure 6.1: A shipboard distribution system in BAAH topology.

Several other configurations based on terrestrial distribution substation

design can be adopted for the ship’s primary distribution topology. Figure 6.2

shows simplified one-line diagrams of the additional topologies considered in

this study, one is based in ring bus configuration and other is a double bus,

double breaker arrangement (DBDB). In the ring bus topology, a ring of busbar

runs around the ship’s perimeter with circuit breakers sectionalizing the ring

to connect several equipment loads and generators. In a BAAH topology, two
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parallel bus bars run across the port and starboard side of the ship connected

by several conducting wires called bays protected using three circuit breakers.

Each incoming and outgoing wire is protected using 1.5 circuit breakers. In

DBDB configuration, same as the BAAH topology, two parallel busbars are

connected using cross-hull bays. Each bay is protected using two circuit break-

ers and contains only one line to equipment load or generator. Therefore, each

incoming or outgoing line is protected using two circuit breakers.

Figure 6.2: Comparison of (a) ring bus; (b) breaker-and-a-half; and (c) double breaker,
double bus topologies.

6.1.2 Zonal/Secondary Distribution System

The ship’s zonal load centers are similar to utility secondary distribution

circuit supplying electric power to the end-users. To realize a high level of

service reliability, ship’s ZEDs are designed in a grid topology (see Figure 6.3).

A ZED is usually doubly connected to the primary distribution system, thus

allowing two levels of redundancy in the power supply. Note that several other
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topologies based on terrestrial distribution circuits may be adopted for the

ZED such as radial and loop topologies. The reliability of the other topologies

will however be lower than the grid arrangement. Additionally, instead of

selecting a given topology, a ZED distribution circuit could be designed for

the required service availability measure.

Figure 6.3: A zonal electric distribution (ZED) system in grid topology.

6.2 Shipboard Power System Reliability Analysis - A
Literature Review

Ensuring the continuity of service of the shipboard power/electrical system

(SPS) to the equipment loads in an all-electric ship is of paramount impor-

tance. A failure of the shipboard power system can result in critical loads and

power equipment such as radar, weapons, and propulsion motors, to mention

just a few, being left without service until repairs can be performed. Poor and

irregular continuity of service may potentially pose serious threats to the crew

211



and the mission. Therefore, a SPS must be designed to achieve the desired

reliability so as to minimize the frequency of unplanned service interruptions.

This section presents a short discussion on the state-of-the-art reliability

analysis methods proposed for the shipboard power system. The probabil-

ity that service to an equipment load might be interrupted depends on two

factors: the overall topology of the distribution system and the relative place-

ment of loads and generation units within the system [12]. In order to ensure

the highest possible level of continuity of service in equipment loads, work

to date has sought to improve the reliability of shipboard electrical distribu-

tion systems through the choice of distribution system topology [122–125].

Reliability of the shipboard’s power system, primarily the primary distribu-

tion circuit, is measured as the expected frequency and duration of service

interruptions experienced by equipment loads resulting from failures of distri-

bution system components. The reliability analysis undertaken has combined

fault-tree analysis, used to identify the sets of component failures that lead to

service interruptions, with Markov modeling, used to derive system reliability

indices from component failure rates and mean times to repair [126]. Three no-

tional topologies based on terrestrial distribution systems have been compared

namely, ringbus, breaker-and-a-half (BAAH), and double-bus double-breaker

(DBDB). An evolutionary algorithm to identify an optimal placement of equip-

ment loads and generation units within an existing topology is also proposed

[12].

6.2.1 Quantify Distribution System Reliability

During peacetime operations, service interruptions are most often caused

by failures of individual components within the distribution system. In the
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literature, methods have been proposed to evaluate the system reliability from

the perspective of the overall distribution network topology, that is, the re-

lationship between the reliability of a distribution circuit and the high-level

topology of its connections. For example, [122] proposes a metric to calcu-

late the peacetime quality of service (QOS) in shipboard power distribution

systems. The QOS metric, defined as the mean time between service interrup-

tions (MTBSI), has been applied to shipboard power system design, but these

studies have primarily focused on design choices such as generator size and

control interfaces, not on comparisons of overall system topologies [123, 124].

Several studies have proposed methods to quantify and compare the reliabil-

ity metrics of terrestrial utility power system substation topologies [127, 128].

These studies propose a detailed computational technique for reliability cal-

culation including Markov modeling approaches while incorporating complex

failure scenarios.

A method to quantify the reliability of shipboard power system using

Markov modeling and fault tree analysis is proposed in [125]. The method

quantifies the reliability of a given SPS topology by calculating system inter-

ruption rate, mean time to repair, and total downtime for each equipment

load connected to the SPS. The proposed approach results in a relationship

between the reliability of a distribution circuit and the high-level topology of

its connections. The method is specifically applied to the distribution system

of an electric naval vessel, but the approaches described here can apply to

most small-scale distribution systems, such as substations or microgrids.
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6.2.2 Comparing Distribution System Topologies

Using the method proposed in [125], three notional shipboard distribution

systems based on the ring bus, BAAH, and DBDB topologies found in terres-

trial utility substations are compared for system reliability. The equipment

reliability indices of three notional shipboard electrical distribution systems

based on the three topologies are derived. The derived service interruption

rates for each equipment system in each topology are compared in Figure 6.4.

The details regarding the methodology and calculations can be found in [125].

Figure 6.4: Equipment interruption rates for ring bus, BAAH, and DBDB topologies. For
Radar and Zonal loads, the number of interruptions per year for BAAH topology are very

small (not visible on the graph).

The BAAH topology, as shown in Figure 6.1, confers a greater level of reli-

ability to the equipment loads than the other two topologies. The interruption

rates shown for each equipment load signifies the expected number of service

interruptions that equipment load will experience in a given year. With the

exception of the propulsion system, in which the ring bus performs slightly
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better than the BAAH, the BAAH topology has a lower rate of interruption

than the other topologies. In the cases of the radar and zonal load centers,

the BAAH interruption rate is so low as to not be visible on the chart. The

DBDB topology, although contains more circuit breakers, results in a higher

rate of service interruptions to every equipment system than the other two

topologies.

6.2.3 Optimal Equipment Placement

Another way of improving SPS reliability is by optimally placing the equip-

ment loads within a given shipboard distribution topology. In literature, the

system reconfiguration problems, which aim to reconfigure the power path in

a SPS to serve the critical loads in an event of fault or damage, have been

extensively studied [129–133]. For example, [129] proposes a multi-agent sys-

tem (MAS) to reconfigure the ship’s electric propulsion system in an event of

fault. In [130], the SPS reconfiguration problem is formulated as a network

flow problem in order to restore service to unfaulted sections of the system.

An equipment placement problem is different from the system reconfiguration

problem, as the latter is concerned with finding an optimal power path for a

given SPS topology and equipment placement configuration.

An algorithm based on particle swarm optimization (PSO) is proposed

in [12] to obtain an optimal equipment arrangement in a given SPS topology

which will confer the highest level of system reliability, i.e., the smallest overall

service interruption rate. The proposed algorithm simulates several candidate

solutions, each candidate solution representing a particular equipment config-

uration. Next, the algorithm updates each candidate configuration, according

to the candidate best and the global best solutions. The algorithm eventually
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converges to the global optimized solution, representing the optimal equipment

configuration.

Figure 6.5: Optimal equipment placement within the breaker-and-a-half topology (BAAH).

The algorithm is implemented for BAAH topology and the results confirm

that the proposed algorithm is able to improve the service reliability indices

for the shipboard power system. On implementing the algorithm, the overall

interruption rate for BAAH topology decreases to 0.221326453 as compared

to 0.22253151 as recorded for the base case. Therefore, the overall system

interruption rate decreases by 0.54%. Note that the improvement in the system

reliability indices due to optimal equipment placement are not very significant,

implying that the base case SPS in BAAH topology was close to optimal to

begin with. Although the reliability gains are relatively small compared to

those that are achieved through the choice of overall topology, but changes in

equipment placement are easier and less costly design choices to implement
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than changes in system topology. Placement choices also do not affect the

number of required distribution system components, as can be the case with

choices of system topology.

Table 6.1: Equipment Configuration Reliability Index Comparison

Topology Equipment
System

µ
(interruptions

per year)

MTTR
(hours)

Total Downtime
(hours per year)

Base
Case

Propulsion 0.111011 3.162065 0.351022

Energy Storage 0.055756 3.152356 0.175763

Radar 0.000003 1.794887 0.000005

Pulsed Loads 0.055756 3.152356 0.175763

Zonal Load
Centers

0.000009 2.030457 0.000018

Modified

Propulsion 0.110516 3.162060 0.349458

Energy Storage 0.055756 3.171849 0.176850

Radar 0.000016 1.980351 0.000032

Pulsed Loads 0.055265 3.152356 0.174216

Zonal Load
Centers

0.000020 2.026110 0.000041

6.3 Proposed Approach to designing Distribution Sys-
tems for Improved Reliability

The objective of this work is to design distribution system topologies for

improved service reliability and continuity. In this study, the reliability based

designs for both ship’s primary and zonal distribution systems are proposed.

The previous work evaluated reliability gains obtained from the topological

designs of the shipboard primary distribution systems. The topologies ex-

plored in the prior work, however, have been planar connecting equipment
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loads and generation units at only one level of the ship. In this work, we pro-

pose to explore the reliability gains obtained from the three-dimensional ship-

board designs. The service reliability of a ship’s primary distribution system

is quantified using expected frequency and duration of service interruptions

to equipment loads caused by the component failure. Ship’s planar topologies

are extended into three-dimensional (3D) structures by distributing equipment

loads to different planar SPS designs and connecting those using vertical tie-

buses. Note that a 3D topology can be unfolded into multiple planar nets by

simply disconnecting vertical tie-buses. The reliability analysis framework uses

fault-tree approach and Markov modeling technique to compare the reliability

of the SPS topologies.

As for the ship’s zonal distribution system, a new approach to design

distribution system topology aiming to achieve a desired network reliabil-

ity/availability measure while using a minimum number of conductors is pro-

posed. The service reliability for ZED systems is quantified in terms of network

availability, which is defined as the steady-state probability of a network being

in operational state. For a high level of service availability, the ship’s ZED

system is designed in a grid topology. A ZED topology using a lower number

of conductors can be designed which can provide a desired level of network

availability. The proposed approach is successful in designing reliable system

topologies using a lesser number of conductors.

6.3.1 Three-dimensional Shipboard Power System Design

The objective of this work is to investigate the reliability gains obtained

by designing a three-dimensional shipboard distribution system. In an electric

ship, while the equipment loads served are distributed throughout all lev-
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els of the ship, shipboard distribution system topologies investigated to date

have themselves been planar. We propose looking into the gains in reliability

that can be achieved through designing three-dimensional distribution sys-

tems, consisting of two or more planar topologies across different decks of the

ship arranged in various configurations. The calculation of the system reliabil-

ity indices for each equipment load is accomplished using a two-part process.

First, the fault-tree analysis is used to identify a complete list of interruption

scenarios for a given equipment load. Next, reliability indices are derived for

the equipment load using Markov models.

6.3.1.1 Designing Three-dimensional Topologies

Several three-dimensional (3D) topologies based on notional ring bus and

breaker-and-a-half topologies are designed and compared against the respective

planar configurations. The 3D topologies are designed by connecting equip-

ment loads across both upper and lower planes of the shipboard distribution

system. The upper and lower planes are designed in several notional topolo-

gies and connected using four vertical tie-buses, two each on the port side and

starboard side of the ship. A 3D topology adds structural robustness to the

ship’s primary distribution system. Since equipment loads are distributed in

multiple decks of the ship, in an event of damage to one of the ship’s decks,

equipment loads in non-damaged decks may remain operational. 3D topologies

also result in a slight improvement in the service reliability when compared

with the respective planar configurations.
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6.3.1.2 Reliability Concepts

Reliability analysis is, in general, the evaluation of how often systems or

pieces of equipment are expected to fail, and how long such a failure is expected

to persist before being repaired and returning to service. In the context of

distribution systems, reliability is split into two related concepts: component

reliability and system reliability.

Component reliability analysis assesses the expected frequency and du-

ration of physical failures of distribution system components, such as circuit

breakers, buses, and power converters. Component reliability is quantified

through two indices: failure rate (λ) and mean time to repair (MTTR). In this

study, component failures are grouped into three types: passive failures, ac-

tive failures, and stuck breakers. Passive failures cause the failed component

to act as an open circuit, preventing power from flowing through the com-

ponent. Active failures disable the failed component and cause all adjacent

circuit breakers to trip and isolate the fault. A stuck breaker fails to isolate a

fault.

System reliability analysis assesses the expected frequency and duration of

service interruptions, caused by component failures, to equipment loads served

by the distribution system. Here, a service interruption to an equipment load

is defined as the load being electrically isolated from all generation units.

A shipboard distribution system serves five equipment systems: propulsion,

energy storage, radar, pulsed loads (e.g., weapons systems), and zonal load

centers (encompassing lighting, refrigeration, etc.). The reliability of each

equipment system is evaluated separately.
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6.3.1.3 Reliability Calculation Method

The analysis consists of two phases: the enumeration of failure scenarios

through fault-tree analysis and the calculation of reliability indices through

Markov modeling. Interruption scenarios are enumerated using an approach

known as fault-tree analysis. In fault-tree analysis, a logical flowchart is con-

structed using system topology and causal relationships within the system.

This flowchart ultimately connects a system interruption to the sets of com-

ponent failures that constitute interruption scenarios. Fault trees are con-

structed from the top down, beginning with a system interruption block. The

immediate cause or causes of the system interruption are identified and blocks

representing these causes are connected to the system interruption block using

logic gates. Each cause is then examined in the same manner, building further

branches of proximate causes until each branch terminates with a component

failure.

Once the interruption scenarios of a given system have been identified,

reliability indices are calculated for each scenario. All component failures are

assumed to be independent and uniformly distributed in time. Further, all

second-order interruption scenarios considered are minimal sets of component

failures. In other words, for a second-order interruption to be considered in

this analysis, neither of the component failures in the interruption scenario

can themselves be first-order interruption scenarios. The consequence of this

restriction is that second-order interruption scenarios are considered repaired

as soon as one component failure is repaired.

Scenario reliability indices are calculated through Markov modeling. In a

Markov model, the system is assigned a set of states that it can potentially be

found in, along with a set of rates of flow between states. A flowrate represents
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the rate of change of the probability of the system being found in a given state.

Flows out of a state lower the probability of being found in that state, while

flows into the state raise this probability. Finally, in a Markov model, the

probability of transitioning to a given state is solely dependent on the current

state of the system. Thus, Markov models are said to be ”memoryless”.

6.3.2 Resilient Distribution Circuit Design

A distribution circuit design problem can be modeled to satisfy several

different requirements such as ability to efficiently serve the load demand,

minimize the circuit losses, adaptability to change in supply and demand,

service continuity during outage etc. Clearly, the design problem satisfying all

these constraints is complex. Therefore, the distribution circuit design problem

is broken down into several smaller optimization problems by prioritizing the

requirements. To date, the network design problem is approached from the

perspective of minimizing the circuit losses and satisfying the load demand

[15]. The reliability of the circuit operation and continuity of the service is

ensured by installing the protection system on the top of the earlier designed

distribution circuit.

The objective of this study is to design a distribution circuit with the

continued ability of the circuit to perform its function in the face of damage

and outages. As the service reliability is directly related to the distribution

circuit topology, the reliable circuit design problem is approached from the

aspect of topology computation. Mathematically, a distribution circuit can

be represented by a network/graph. A network/graph is a collection of nodes

and links (in electrical system loads and distribution lines) and a network

topology is defined as the way in which a collection of nodes are connected
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together using links [134]. For an electric distribution circuit, currently three

kinds of network topologies are deployed by utilities: radial, loop and grid. The

reliability of the network comes from the collective reliability of the network

topology and thereby the manner in which nodes are connected. For example,

in a radial topology there is only one path from the source to each load, thus

failure of any one edge can lead to discontinuity of the service. However, in

a grid topology there are multiple paths between the source node and the

demand node, therefore grid topology offers increased reliability in terms of

overall service continuity. Note that a path in a network/graph is a sequence

of links/edges which connect a sequence of vertices. In the context of this

study the path is defined as sequence of distribution lines connecting source

to load.

In the context of network topology design, design economy is also a very

important criterion. We can infinitely maximize the circuit reliability by in-

creasing the number of conductors between nodes and thus by creating several

alternate routes. However, after certain number of alternate paths, adding

another path may only marginally increase the reliability while significantly

increasing the cost. Furthermore, in the case of electric ship design, the space

constraint calls for a reliable network topology design requiring a lesser number

of conductors. Thus, a topology design problem need to address two conflicting

criteria, maximize the reliability with minimum the design economy. In this

work an algorithm is developed to find an optimal distribution topology which

minimizes the number of conductors (or design economy) while satisfying a

required reliability measure of the electric service. In the proposed algorithm,

the service reliability is quantified using network availability. Network avail-

ability is defined as the steady-state probability of obtaining the system in its
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operational state. Here, a network is said to be operational if the power supply

is available to each load supplied by the network.

6.3.2.1 Network Availability

The network availability is defined for a probabilistic network/graph. A

probabilistic graph G = (V,E) is a set V of n nodes which represent the de-

mand and supply nodes, together with a collection E of m links representing

distribution lines, each associated with an index quantifying their probability

of operation (ai). The availability quantifies the ability of a network to carry

out the desired network operation. The network availability is computed by

enumerating the minpaths of the network. A minpath is a set of nodes and

links that results in an operational network, but the removal of any one link

will cause the network to fail.

6.3.2.2 Optimal Topology Design Problem

The algorithm aims to find an optimal network topology for a DC distribu-

tion circuit supplying for the zonal loads in an electric ship power system. The

problem formulation begins with a typical grid topology for the distribution

circuit, with a load connected at every node and each load is equally critical

for a successful network operation. Clearly, the design economy is relatively

higher for the complete grid network because of the multiple paths. The num-

ber of edges in the optimal circuit topology will be a subset of the edges in the

original grid topology. The algorithm aims to find a minimal set of edges that

ensures the desired network availability. The detailed problem formulation is

presented in Chapter 8.
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6.3.2.3 Proposed Algorithm - Successive Minpath Generation

For the context of the network design problem presented in this chapter,

a network is said to be operational, if it contains at least one path from the

source node to each node. The network availability is simply the probability

of finding the network in its operational state, which means the probability of

finding all nodes connected to the source node in a given network. Clearly, a

minpath for a graph satisfying above reliability definition is a spanning tree.

Figure 6.6: Flowchart for the proposed optimal topology design algorithm

The proposed algorithm begins with a minpath, thereby ensuring connec-

tivity and successively adds minpaths to the network thus improving upon the

availability while synthesizing an optimal network topology. The method is
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primarily, divided into three stages; initial topology design, calculating and

checking for the availability constraint, and successive edge selection and ad-

dition. The flowchart for the algorithm is shown in Fig. 6.6. The details

regarding the problem formulation and methodology are discussed in Chap-

ter 8. To test the algorithm the service availability resulting from different

ZED topologies namely radial, loop, and grid are compared. Next, an optimal

network topology that can ensure a desired probability of network operation

while using a minimum number of conductors/links connecting load/nodes is

designed.
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Chapter 7

Three-dimensional Shipboard Power System

Design

In an electric naval vessel, the mission success and personnel wellbeing

depends heavily upon the proper functioning of the ship’s power distribution

system. A failure of the distribution system can disconnect important equip-

ment loads such as radar or weapons from the power supply, potentially posing

serious threats to the crew. Therefore, it is necessary to ensure that shipboard

electrical distribution systems are designed to be as robust as possible with

the highest level of service reliability [122].

In order to ensure the highest possible level of continuity of service in

equipment loads, work to date has sought to improve the reliability of ship-

board electrical distribution systems through the choice of distribution sys-

tem topology. Reliability of a network is measured as the expected frequency

and duration of service interruptions experienced by equipment loads resulting

from failures of distribution system components. Previous work has been per-

formed to establish metrics for calculating peacetime quality of service (QOS)

in shipboard power distribution systems (SPS) [122–124]. Prior research has

also investigated the reliability gains obtained through the choice of circuit

topology [125, 127, 128]. The evaluation of system reliability from the per-

spective of the overall distribution network topology, that is, the relationship

between the reliability of a distribution circuit and the high-level topology of
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its connections has also been explored. It has been concluded that an SPS

topology based on the breaker-and-a-half scheme results in greater reliabil-

ity than equivalent distribution topologies based on the ring bus and double

breaker, double bus designs [12, 125]. The topologies investigated in the prior

work were, however, planar in design.

The objective of this work is to investigate the reliability gains obtained

by designing a three-dimensional shipboard distribution system. In an electric

ship, while the equipment loads served are distributed throughout all lev-

els of the ship, shipboard distribution system topologies investigated to date

have themselves been planar. We propose looking into the gains in reliability

that can be achieved through designing three-dimensional distribution sys-

tems, consisting of two or more planar topologies across different decks of the

ship arranged in various configurations. The calculation of the system reliabil-

ity indices for each equipment load is accomplished using a two-part process.

First, the fault-tree analysis is used to identify a complete list of interruption

scenarios for a given equipment load. Next, reliability indices are derived for

the equipment load using Markov models.

In this chapter, several three-dimensional (3D) topologies based on no-

tional ring bus and breaker-and-a-half topologies are designed and compared

against the respective planar configurations [13]. A primary distribution sys-

tem topology for example BAAH topology can be extended into a 3D struc-

ture by distributing the ship’s equipment loads to different planes of the ship

where each plane is designed in the BAAH topology and connecting the dif-

ferent planes using vertical tie-buses. Several 3D topologies based on ship’s

planar topologies such as ring bus and BAAH, are simulated, and the reliabil-

ity comparisons are made against the respective planar topologies. Compared
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to planar topologies, 3D topologies slightly decrease the overall service inter-

ruption rates for each notional topology, thus improving the service reliability.

Additionally, a 3D topology provides a more robust structure for the SPS.

Since equipment loads are distributed in different decks of the ship, during an

attack if one of the ship’s decks are destroyed, loads located in another deck

may remain functional.

7.1 Reliability Calculation

The reliability analysis is used to evaluate the expected frequency and

duration of system or equipment failure. In the context of distribution systems,

reliability analysis is split into two related concepts: component reliability and

system reliability.

The expected frequency and duration of failures of individual distribution

system components such as circuit breakers, buses, and power converters are

characterized using component reliability analysis. In this study, three types

of component failures are identified: passive failures, active failures, and stuck

breakers. Passive failures cause the failed component to act as an open circuit,

preventing power from flowing through the component. Passive failures only

affect the failed component. An example of a passive failure is a circuit breaker

false trip. Active failures, also referred to as short-circuit faults or overcurrents,

not only disable the failed component, but also cause all adjacent overcurrent

protective devices (i.e., circuit breakers) to trip and isolate the fault. Faults

propagate through buses, stopping only at each successfully-opened circuit

breaker. Examples of active failures include a bus short circuit or insulation

breakdown in a circuit breaker or cables. A stuck breaker occurs when a

circuit breaker is called upon to isolate a fault but fails to operate. When this
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occurs, the fault propagates through the stuck breaker and must be contained

by upstream breakers.

The system reliability analysis characterizes the expected frequency and

duration of service interruptions to the equipment loads. Here, a service inter-

ruption to an equipment load is defined as the load being electrically isolated

from all generation units. A shipboard distribution system serves five equip-

ment loads: propulsion, energy storage, radar, pulsed loads, and zonal load

centers. The system reliability indices are calculated individually for each

equipment load.

7.1.1 Component Reliability Indices

Component reliability is quantified using two indices: failure rate (λ) and

mean time to repair (MTTR). The failure rate is defined as the expected

number of failures a given component will experience over the course of one

year. The MTTR is defined as the expected length of time, in hours, that the

component failure will persist before it is repaired. The inverse of MTTR is

called the repair rate, denoted λ.

With the exception of stuck breakers, which by definition must occur si-

multaneously with an adjacent active failure, component failures are assumed

independent of one another. Failure and repair rates are assumed to be con-

stant, making component failures and repairs Poisson processes. In other

words, the waiting times to a failure or a repair are given by exponential prob-

ability distributions. Each type of component has one set of reliability indices

for each type of applicable component failure. The values for the component

failure reliability indices used in this analysis are shown in Table 7.1. The

values are either taken from manufacturer data or from independent testing
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Table 7.1: Component Failure Reliability Indices

Component Failure λ (failures per
year)

MTTR (hours)

Circuit Breaker - Passive 0.01 4

Circuit Breaker - Active 0.01 4

Bus - Active 0.01 8

Converter - Passive 0.006 1

Converter - Active 0.006 1

Circuit Breaker - Stuck 5% 1

[135–137]. Note that, the stuck breaker failures are modeled differently than

other failures.

7.1.2 System Reliability Indices

System reliability is quantified through three indices: the service interrup-

tion rate (µ), the system mean time to repair (MTTR), and total expected

downtime. The service interruption rate is defined as the expected number of

service interruptions that the equipment system may experience due to com-

ponent failures over the course of a year. The system MTTR is defined as

the expected number of hours that a service interruption will persist before

service is restored through repairs to failed components. The total expected

downtime is defined as the expected number of interruption in hours per year

for a given equipment load.

The system reliability indices for each equipment load are calculated using

a two-part process. First, fault-tree analysis is used to identify a complete list

of interruption scenarios for a given equipment load [125]. An interruption sce-

nario is a minimal set of one or more concurrent component failures that cause
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the load in question to become disconnected from all generators. The number

of individual component failures involved in an interruption scenario is called

the scenario’s order. Interruption scenarios up to second-order are considered,

as third- and higher-order failures are exceptionally rare and therefore do not

greatly affect reliability indices [127, 128]. Next, Markov models are used for

deriving reliability indices for the equipment loads [126]. In a Markov model,

the system is assigned a set of states that it can potentially be found in, along

with a set of rates of flow between states. A flow rate represents the rate of

change of the probability of the system being found in a given state. Flows

out of a state lower the probability of being found in that state, while flows

into the state raise this probability. The load’s reliability indices are derived

through such a model from the component reliability indices (failure rate λ

and MTTR) shown in Table 7.1. Each interruption scenario is simulated in

a Markov model, with each state of the model representing a combination of

working and failed components. Flow rates between these states are defined

by the applicable component failure rates and repair rates λ and π, as de-

scribed in Table 7.1. There are three types of Markov models used to model

an equipment system’s various interruption scenarios: those representing first-

order scenarios, second-order scenarios that do not involve a stuck breaker,

and second-order scenarios that do involve a stuck breaker.

7.1.2.1 First-Order Interruption Scenarios

In the case of a first-order interruption scenario, there are only two states:

component functioning (state 1) and component failed (state 2). The system

will be interrupted in state 2. At time t = 0, we assume the component begins

in a functioning state. In other words, p1(t = 0) = 1 and p2(t = 0) = 0,
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where p1 and p2 are the probabilities of the system being in states 1 and 2,

respectively, as functions of time. As time progresses, these probabilities will

change, governed by the differential equation.

ṗi(t) =
∑
j 6=i

flowrate(j → i)× pj(t)−
∑
i 6=j

flowrate(j → i)× pi(t) (7.1)
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Figure 7.1: Markov model of a first-order interruption scenario.

In this two-state Markov model, the flowrate from state 1 to state 2 is

the component failure rate λ, while the flowrate from state 2 to state 1 is

the component repair rate π, as shown in Figure 7.1. Thus, the system of

differential equations governing the behavior of this model can be expressed

as: [
ṗ1(t)
ṗ2(t)

]
=

[
−λ π
λ −π

] [
p1(t)
p2(t)

]
(7.2)

As component failure rates tend to be very small, on the order of years

between failures, the long-term behavior of the model must be considered. As

t approaches infinity, the state probabilities will tend to steady-state values,

P1 and P2. These values can be obtained by setting the differential terms

in (7.1) to 0. Additionally, states 1 and 2 are mutually exclusive, therefore

P1 + P2 = 1.

Solving for P1 and P2, we obtain.
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[
P1(t)
P2(t)

]
=


π

λ+ π
λ

λ+ π

 (7.3)

The total scenario interruption rate µscenario is given by the component

failure rate (i.e., the flowrate from state 1 to state 2) times the probability of

being in state 1, divided by the probability of not being in state 2 (in other

words, the conditional rate of transition from a working state to a failed state,

given that the system is not already in a failed state). Thus, the total scenario

interruption rate is given by

µscenario =
λ× P1

1− P2

= λ (7.4)

The total scenario repair rate µscenario is similarly given by

µscenario
π × P2

1− P1

= π (7.5)

The total scenario MTTRscenario is thus given by MTTRscenario = π−1.

7.1.2.2 Second-Order Interruption Scenarios

In a second-order interruption scenario, there are four states: both compo-

nents functioning (state 1), component 1 failed and component 2 functioning

(state 2), component 1 functioning and component 2 failed (state 3), and

both components failed (state 4). As interruption scenarios are assumed to

be minimal sets of component failures, the system will be interrupted only in

state 4. The Markov model for a second-order interruption scenario is visually

represented in Figure 7.2.
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Figure 7.2: Markov model of a second-order interruption scenario.

From (7.1), the system of differential equations governing the behavior of

this system is
ṗ1(t)
ṗ2(t)
ṗ3(t)
ṗ4(t)

 =


−(λ1 + λ2) π1 π2 0

λ1 −(λ2 + π1) 0 π2
λ2 0 −(λ1 + π2) π1
0 λ2 λ1 −(π1 + π2)



p1(t)
p2(t)
p3(t)
p4(t)


(7.6)

Following the same procedure used above, steady-state probabilities P1, P2,

P3, and P4 are calculated. Therefore, for a second-order interruption scenario

involving two component failures, neither of which is a stuck breaker failure,

with failure rates λ1 and λ2 and repair rates π1 and π2, the corresponding

reliability indices µscenario and MTTRscenario are given as follows:

µscenario ≈ P3 × λ1 + P2 × λ2 (7.7)
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MTTRscenario = (π1 + π2)
−1

where P2 and P3 are the steady-state probabilities of the system represented

by the Markov model being in the states in which component 1 is functioning

while component 2 is failed and vice versa, respectively.

7.1.2.3 Second-Order Interruption Scenarios Involving Stuck Break

Since stuck breaker failures occur simultaneously with an active failure

on an adjacent component, they are modeled as a strict 5% probability of

occurrence [9]. Thus, for a second-order interruption in which one component

failure is a stuck breaker and the other component failure has failure rate λ,

the corresponding reliability indices µscenario and MTTRscenario are calculated

as follows:

µscenario ≈ 0.05× λ (7.8)

MTTRscenario = 1

7.1.2.4 System Reliability Indices using Markov Model

Once the reliability indices for each interruption scenario of a given system

interruption have been derived, the overall system reliability indices can be

calculated. For a system with n associated interruption scenarios, the system

can be represented by a Markov model with n + 1 states, as shown in Figure

7.3. State 1 represents the functioning system, while states 2 through n + 1

each represent one of the system’s interruption scenarios. The flowrate from

state 1 to state j is the scenario interruption rate of the interruption scenario

associated with state j, while the reverse flowrate is that interruption scenario’s

repair rate.
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Figure 7.3: Markov model of a second-order interruption scenario.

Equipment reliability indices are derived from the collection of associated

scenario indices calculated using (7.1)-(7.8). For an equipment system with n

associated interruption scenarios, µsystem and MTTRsystem are calculated as

follows:

µsystem =
n∑
i=1

µscenarioi (7.9)

MTTRscenario =

∑n
i=1 Pi∑n

i=1 πscenarioi × Pi
(7.10)

where, µscenarioi and πscenarioi are the interruption and repair rates of the sys-

tem’s ith interruption scenario, respectively, and Pi is the steady-state proba-
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bility of the system being in its ith interruption scenario.

In order to facilitate simple comparisons between different topologies, a

single overall interruption rate is calculated as a weighted sum of each load’s

interruption rate. The weights are used to reflect the relative severity of an

interruption to each load [7]. The overall interruption rate is calculated as

follows:

µoverall = 1.5× (µradar + µpulsed) + µpropulsion + 0.5× (µstorage + µzones) (7.11)

7.2 Planar Shipboard Power System Topologies

Three planar distribution system topologies for notional shipboard power

system are studied in this work. The first topology is based on the ring bus

arrangement, which is employed in most current electric naval vessels. Two

different topologies are based on the breaker-and-a-half (BAAH) arrangement,

BAAHv1, and BAAHv2. In BAAHv1, redundant connections for some equip-

ment loads are sacrificed in order to reduce the number of circuit breakers

used. Version two retains the same level of redundancy as in the ring bus

topology [125].

In each topology, there are a total of thirteen generators and loads, col-

lectively called objects. In all topologies except BAAHv1, eight objects have

a single point of connection to the larger distribution system (the generators,

energy storage unit, propulsion motors, and pulsed load), while five are con-

nected at two points each (the radar and the zonal load centers). In BAAH

v1, all objects are singly connected. Note that, the points on the distribution

system to which objects are connected are referred to as slots.
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7.2.1 Ring Bus

In a shipboard distribution system designed using the ring bus topology,

the ring of busbar runs around the perimeter of the ship. The incoming and

outgoing lines are connected to the buses running along the port and starboard

sides of the ship, with two cross-hull buses connected at the bow and stern

to complete the ring. The example of a ring bus-based SPS analyzed in this

study is shown in Figure 7.4. In the ring bus topology (see Figure 7.4), the

slots are split into two types. Singly connected objects can be connected to

the eight slots located between each pair of bus circuit breakers along the port

and starboard sides of the ship. The objects with two-point connections are

connected across the port and starboard busbars

7.2.2 Breaker-and-a-Half

The BAAH topology consists of two parallel lengths of busbar connected

by several conducting lines, called bays. Each bay is attached to two lines,

either incoming or outgoing and is protected by three circuit breakers. One,

called the common breaker, separates the two attached lines from each other.

The other two, called the outside breakers, separate each line from its adjacent

bus.

In a shipboard distribution system based on BAAH topology, loads and

generators are connected to cross-hull lines, which are themselves connected

to the buses running along the port and starboard sides of the ship. A BAAH

topology requires 1.5 times as many circuit breakers as a ring bus topology

with the same number of incoming and outgoing lines. As space and cost

are often of great concern when designing a naval vessel, two versions of a

BAAH-based DC distribution system are analyzed in this study. Note that, in
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Figure 7.4: A shipboard distribution system with ring bus topology.

the simulated BAAH topology, both BAAHv1 and BAAHv2, a pair of circuit

breakers are used to sectionalize the busses into two halves.

Version one, shown in Figure 7.5 contains roughly the same number of

circuit breakers as the ring bus configuration in Figure 7.4. This is achieved

by eliminating some of the redundant connections used in the distribution

system shown in Figure 7.4 (specifically, those of the radar and zonal load

centers). In version one, there are seven bays, each with two connection slots,

for a total of fourteen slots. Version two, shown in Figure 7.6, is connected with

the same amount of redundancy as the system in Figure 7.4, but uses a greater

number of circuit breakers. Therefore, in Version two there are nine bays, for
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Figure 7.5: A shipboard distribution system with breaker-and-a-half topology (version
one) - BAAHv1.

a total of eighteen slots and all slots are occupied in each configuration.

7.3 Three-Dimensional Shipboard Power System Topolo-
gies

The three-dimensional (3D) topologies are simulated based on the above

three planar topologies. The objective is to distribute the equipment loads

across the multiple decks of the ship by designing the shipboard power system

topology in a three-dimensional architecture. The 3D distribution systems

designed for the three planar topologies discussed in Section 7.2 are detailed

in this section.
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Figure 7.6: A shipboard distribution system with breaker-and-a-half topology (version
two) - BAAHv2.

The 3D distribution systems are designed by arranging two or more planar

topologies in parallel to one another. Two example three-dimensional topolo-

gies simulated by connecting the lower and the upper decks using four vertical

buses, each protected by a bus-tie breaker, are shown in Figure 7.7 and Figure

7.8. Note that, in Figure 7.7, both planes are housed below decks while in

Figure 7.8, the upper plane is housed within the ship’s superstructure, and

the lower plane is housed below the deck.

For each planar topology, two 3D arrangements for the shipboard distri-

bution system are developed, 3D topology 1 and 3D topology 2. The 3D

topology 1 is based on Figure 7.7 with both planes housed below the deck and

both planes are of approximately same size. The 3D topology 2 is based on

Figure 7.8 with the upper plane relatively smaller than the lower plane and

housed within ship’s superstructure. A few sample 3D topologies for ring bus
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Figure 7.7: Designed three-dimensional SPS topology - 3D topology 1.

and BAAH distribution systems are presented in the following sections.

Note that in order to obtain practical 3D shipboard power system architec-

tures, a few constraints regarding the location of the equipment loads within

ship’s structure are observed. While designing 3D topologies, it is assumed

that ship’s main generators can be housed only in the lower deck of the ship.

Ship’s main generators are typically of the capacity in hundreds of MW, there-

fore, housing them in the upper deck may result in stability issues. Similarly

because of smaller capacity, auxiliary generators are placed in the upper deck.

Additionally, to facilitate the navigation, the radar system is always placed in

the upper deck of the ship.
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Figure 7.8: Designed three-dimensional SPS topology 2 - 3D topology 2.

7.3.1 Three-Dimensional Ring Bus Topologies

The 3D distribution systems designed for shipboard power system based on

ring bus topology are shown in Figure 7.4. Note that both upper (dark gray)

and lower decks (light gray) of the ship are designed in a ring bus arrangement,

where the busbar runs around the ship structure in both upper and lower

planes. In 3D topology 1 (see Figure 7.9), the upper plane is connected to

radar, energy storage unit, and one of the zonal load centers. The rest of the

loads are connected to the lower level. In 3D topology 2 (see Figure 7.10),

the equipment loads are distributed across both planes of the ship with radar,

pulsed load, and one of the zonal load centers supplied by the upper plane,

while rest of the loads are powered by the lower plane. The two planes of both

3D topologies are connected using four DC circuit breakers, two connected on

the port side while the other two on the starboard side. Note that compared
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to the planar topology, a 3D ring bus topology requires four additional DC

circuit breakers.

7.3.2 Three-Dimensional Breaker-and-a-Half Topologies

The 3D distribution systems designed in BAAHv2 topology for the ship-

board power system are shown in Figure 7.6. Same as the 3D ring bus topology,

here both upper and lower planes are designed in BAAHv2 arrangement. In

3D topology 1, both planes are of approximately same size. In 3D topology

2, the upper plane is housed in the ship’s superstructure, and thus is smaller

in size as compared to the lower plane. The upper plane is only supplying for

radar while the rest of the equipment loads are powered by the lower plane.

Both decks are connected using four DC circuit breakers, two connected on

the port side and two on the starboard side. Both 3D BAAHv2 topologies also

require four additional DC circuit breakers that are used to connect ship’s up-

per and lower planes (see Figure 7.11 and Figure 7.12). Same as BAAHv2, two

3D topologies based on Figure 7.4 are simulated for BAAHv1 configuration.

7.4 Results and Discussions

This section compares the equipment reliability indices of the simulated

three-dimensional topologies against respective planar shipboard power sys-

tems. The three-dimensional topologies are simulated by connecting the lower

and the upper levels of SPS using four vertical buses, each protected by a

bus-tie breaker. Note that in 3D topology 1, both upper and lower levels are

housed below ship’s decks and, therefore, are of approximately same size. In

3D topology 2, the upper level is housed within ship’s superstructure and,

therefore, is smaller in size. The lower level is however below ship’s deck and,
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Figure 7.9: Three-dimensional ring bus topology by connecting upper and lower decks of
the ship.
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Figure 7.10: Three-dimensional ring bus topology by connecting upper and lower decks of
the ship.
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Figure 7.11: Three-dimensional BAAHv2 topology by connecting upper and lower decks of
the ship.
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Figure 7.12: Three-dimensional BAAHv2 topology by connecting upper and lower decks of
the ship.
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therefore, is supplying for most of the equipment loads.

7.4.1 Reliability Indices

The results of the reliability analysis for each simulated 3D distribution

systems corresponding to each planar topology is presented in this section. The

detailed results comparing reliability indices for each equipment load for the

planar and 3D topologies designed for ring bus SPS are shown in Table 7.2.

The reliability indices compared are interruptions per year (µ), mean-time-

to-repair in hours (MTTR), and total downtime in hours per years. Here,

system total downtime is the total expected time the system will spend in an

interrupted state per year, the product of the service interruption rate and

MTTR.

For ring bus topology, as compared to planar topology, for both 3D topolo-

gies, the MTTR improves for each equipment load. The number of interrup-

tions per year, however, slightly increases for zonal loads and radar. The total

downtime also slightly increases for radar and zonal loads. The rest of the

equipment loads, i.e. propulsion, energy storage, and pulsed load, however,

record a decrease in number of interruptions per year and total downtime. The

overall interruption rate also decreases from 0.270778421 for a planar topology

to 0.248217682 for both 3D topologies.

The overall interruption rates are compared for planar and 3D topolo-

gies deployed in ring bus, BAAHv1, and BAAHv2 in Table 7.3 and Figure

7.13. Compared to respective planar topologies, the overall interruption rate

decreases for each 3D topology. For BAAHv1, the overall interruption rate

decreases from 0.387396438 for a planar topology to 0.387145662 for 3D topol-

ogy 1 and 0.248217682 for 3D topology 2. A similar reliability improvement is
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Table 7.2: System Reliability Indices - Ring Bus Topology

Equipment Topological
Arrangement

µ (interruptions
per year)

MTTR (hours) Total Downtime
(hours per year)

Propulsion

Planar 0.108413 3.21388 0.348428

3D Topology 1 0.109605 3.18973 0.349611

3D Topology 2 0.109605 3.18973 0.349611

Energy
Storage

Planar 0.068502 3.59850 0.246504

3D Topology 1 0.055402 3.16603 0.175404

3D Topology 2 0.055402 3.16603 0.175404

Radar

Planar 0.012905 3.32509 0.042909

3D Topology 1 0.013403 3.23853 0.043405

3D Topology 2 0.013403 3.23853 0.043405

Pulsed
Load

Planar 0.068202 3.60993 0.246204

3D Topology 1 0.055402 3.16603 0.175404

3D Topology 2 0.055402 3.16603 0.175404

Zonal Load
Centers

Planar 0.012909 3.32474 0.042919

3D Topology 1 0.015409 2.94757 0.045420

3D Topology 2 0.015409 2.94757 0.045420

Table 7.3: Overall Interruption Rates

System Topology
Topological Arrangement

Planar 3D Topology 1 3D Topology 2

Ring Bus 0.270778421 0.248217682 0.248217682

BAAHv1 0.387396438 0.387145662 0.387146803

BAAHv2 0.22253151 0.221779707 0.222280985

recorded for BAAHv2. The overall interruption rate for the BAAHv2 planar

topology is 0.22253151 while the interruption rate comes out to be 0.221779707

and 0.222280985 for 3D topology 1 and 3D topology 2, respectively.
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Figure 7.13: Comparing overall interruption rates.

7.4.2 Component Count Comparison

For the consideration of space and cost concerns, the numbers of circuit

breakers and power electronic converters required for each topology are com-

pared in Table 7.4. Note that each 3D topology requires four additional DC

circuit breakers compared to the corresponding planar topologies. The addi-

tional breakers are used to connect the upper and lower planes of the shipboard

power system.

7.5 Conclusion

This chapter evaluates the reliability gains obtained by designing ship-

board distribution system in a three-dimensional arrangement. The three-

dimensional structures are designed based on three notional distribution topolo-

gies ring bus, BAAHv1, and BAAHv2. The system reliability indices of planar

SPS are compared to those designed in 3D architectures. Compared to planar

topologies, 3D topologies decrease the overall service interruption rates for each
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Table 7.4: System Topology Component Count Comparison

System
Topology

Equipment
Arrangement

Number of Components Required

AC
Breaker

DC
Breaker

AC/DC
Conv.

DC/DC
Conv.

Drive
Inverter

Ring Bus
Planar 4 36 4 4 2

3D topologies 4 40 4 4 2

BAAH v1
Planar 4 34 4 3 2

3D topologies 4 38 4 3 2

BAAH v2
Planar 4 45 4 4 2

3D topologies 4 49 4 4 2

notional topology. Depending upon the topology and equipment placement,

for 3D topologies the equipment reliability indices, however, improves for a

few equipment loads while remains unchanged or becomes worse for others.

The absolute gain or loss in equipment reliability, however, is not signif-

icant when compared to the planar topology. This is because the alternate

paths obtained using the 3D architecture while decreases the second- and

higher-order interruption scenarios, the first-order interruption scenarios re-

main unchanged. Since, first-order interruption scenarios will have a higher

contribution towards the system interruption rate, the reliability gains ob-

tained using 3D architectures are small. A 3D topology, however, may be

preferred given that it results in a structurally robust architecture where the

most critical loads may potentially function even when one of the decks are

destroyed during the attack.
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Chapter 8

Resilient Distribution Circuit Topology Design

In recent years, with the increased dependence on electric power systems,

the requirement for a resilient and fault-tolerant distribution circuit is increas-

ing. For example, ensuring a higher level of service continuity is important for

shipboard distribution circuits in all-electric ships, microgrids with variable

energy sources, and secondary distribution networks in metropolitan cities.

Additionally, in an all-electric ship, the limited space, weight, and number

of onboard spare parts necessitates the use of a minimal amount of equip-

ment while ensuring the highest level of network availability. This work is

motivated by the service availability requirements and design constraints for

an all-electric ship zonal distribution circuit (ZED). The availability is the

steady-state probability that a component or a system is operational. Math-

ematically, network availability is defined as the probability of finding the

circuit operational at time t, given that it was operational and good as new

at time zero.

Generally, the distribution circuit design problem is approached from the

perspective of minimizing circuit losses and satisfying load demand [15, 138–

144]. However, in recent years, in order to provide improved service continuity

[145], several work have sought to develop circuit architectures with improved

service reliability. For example, [146–151] aim to achieve a higher service reli-
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ability in a microgrid while optimizing a defined economic criteria. A method

to calculate and improve the availability of microgrids during natural disaster

is presented in [152]. The paper targets to improve network availability by

the use of distributed generation and energy storage systems. The effects of

renewable energy resources on the availability of microgrids are evaluated in

[153]. The paper [153] also presents a method of improving network availabil-

ity by deploying energy storage units. A qualitative method to evaluate the

availability of microgrids for different microgrid architectures in proposed in

[154]. The paper calculates the occupance probability of the minimum cut set

and compares the effect of topological structure on network availability. Fur-

thermore, the analysis also models the impact of local generation and energy

storage units on availability. Additionally, [155] develops a method to include

energy storage unit for increasing the availability of PV generation. The pa-

per develops a Markov-chain-based energy storage model for evaluating PV

generation availability. Authors conclude that the developed energy storage

model may assist in planning grid integrated PV generation, both large and

small-scale. Furthermore, several research articles have also focused on design-

ing communication infrastructure in the smart grids, including communication

protocols, routing algorithm, and security. [156–160].

For a given distribution circuit, a higher level of network availability can be

ensured either by deploying components with low failure rates or by providing

redundancies for the power supply by modifying the circuit topology. A circuit

topology is characterized by the node interconnections within a circuit. In

literature, several work have characterized the vulnerability of the electric

transmission system due to circuit’s structural topology [161–165]. A close

correlation between the topological structure of the network and its resilience
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to survive a failure has been reported. Although the relation between the

circuit topology and its resiliency or service availability has been investigated,

none have explored the problem of designing a circuit topology while aiming

to improve its availability. Thus, the availability-based methods for designing

distribution circuits have not been investigated.

In this chapter, we aim to design a resilient circuit topology ensuring the

highest level of network availability while using a minimum number of conduc-

tors. The objective is to ensure the availability of electrical service to each load

in a given all-electric ship ZED system. Additional service requirements such

as system losses, equipment reliability, and other operational requirements can

be satisfied on the designed circuit topology. First, a mathematical framework

for the design of a resilient circuit topology, subject to network availability con-

straint, is developed. Next, to efficiently solve the topology design problem, a

novel graph-theory based algorithm, termed successive minpath generation, is

proposed. The proposed algorithm reduces the search space for the resilient

circuit topology to polynomial time, thus providing a significant computational

advantage. Additionally, by prioritizing network availability as the objective,

this work presents a new approach to designing distribution circuits.

The algorithm is successfully applied to design distribution circuit topolo-

gies for ZEDs supplied by both single as well as multiple power sources. For

the single-power source case, the circuit topology with network availability

more than 0.99 is obtained by using 3 fewer and 12 fewer conductors for a 15-

node and a 30-node ZED, respectively, as compared to the corresponding grid

topologies. As for the ZED supplied by two power sources, network availability

more than 0.99 is obtained by using 6 fewer conductors than the corresponding

grid topology. By designing the circuit topology, this work prioritizes network

256



availability as the design objective and thus presents a new approach to the

distribution circuit design problem. The results confirm the success of the

proposed algorithm in designing distribution circuit topologies.

8.1 Scope of the Work

This work presents a method for designing resilient distribution circuit

topologies. System resiliency is defined as the ability to maintain an accept-

able level of service during faults. System resiliency can be quantified using

several parameters such as system reliability, recoverability, stability, etc. The

objective of this work is to design circuit topologies that can continue to sup-

ply power even in the case of multiple faults. Therefore, for the context of

this paper, network resiliency is quantified in terms of service availability. The

method is specifically applied to design circuit topologies for ship’s zonal dis-

tribution systems. The proposed approach can be successfully extended to

design utility distribution circuits as well.

The proposed method aims to design a distribution circuit topology with

improved service availability using a minimum number of feeders/conductors.

Here, service availability is defined as the steady state probability that a given

network is operational. In the context of the distribution circuit design prob-

lem, the selected distribution circuit is assumed to be operational if there is a

path from the source to each load node. The availability as defined in this work

is not contingent upon the reliability of the protection equipment. Instead the

availability solely depends upon the circuit topology and the availability of

the feeders. Additionally, it is assumed that as soon as the fault occurs in

the feeder, the faulty feeder is isolated and the rest of the circuit is operating

normally.
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The proposed algorithm is based on the availability index measuring the

steady-state probability of observing the system in an operational state. Gen-

erally, the reliability of the power distribution system is quantified by measur-

ing the frequency and duration of service interruptions. For example, ASUI

(average service unavailability index) defined as the average annual outage

time, is commonly used by distribution providers to measure service reliability.

The proposed approach, however, can be extended to design distribution cir-

cuits for other reliability parameters as well. In fact, the algorithm is applied

to design distribution circuits while aiming to decrease service interruption

rates and mean time to repair.

It should be note that, while designing distribution systems, several other

requirements including feeder voltage class, cable type, capacity, impedance,

etc. need to be satisfied. The circuit design problem satisfying all these ob-

jectives is complex. Therefore, by prioritizing the requirements, the design

problem is broken down into several smaller optimization problems. Gener-

ally, the design begins with the selection of a distribution circuit topology

(radial, loop or grid). Next, an optimal distribution circuit is designed, to

satisfy different service requirements such as ability to efficiently serve the

load demand, minimize the circuit losses, maximize operational economy, etc.

At the end, to ensure circuit reliability and service continuity, a protection

system is designed for the distribution circuit. Note that in the traditional

distribution circuit design approach, a reliable service operation is achieved

using the protection system. This work, however, aims to prioritize improved

service availability as the distribution circuit design objective. Once a resilient

topology is designed, the additional service requirements such as system losses,

equipment reliability, and other operational requirements can be satisfied on
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the designed circuit topology.

8.2 Network Availability - Definitions

A network availability problem is modeled on a probabilistic graph where

each edge has an associated probability of failure/operation. Basic graph the-

ory definitions and relevant network availability parameters are defined in this

section.

8.2.1 Probabilistic Graph and Network Topology

A graph or a network is a collection of nodes and edges. A distribution

circuit is mathematically represented using a probabilistic graph. A proba-

bilistic graph G = (V,E) is a set V of n nodes representing load and source

nodes together with a set E of m edges representing distribution lines, where

each edge is associated with an availability index (ae). The index (ae) quanti-

fies the availability of edge e, which is equal to the probability that edge e is

operational at time t, given that it was operational at time zero.

Using reliability theory, the availability of edge e depends upon its failure

rate, λe, and repair rate, µe, and is given by (8.1).

ae = 1−

(
λe

λe + µe

(1−exp−(λe+µe)t)
)

(8.1)

Assuming t to be large, the steady-state availability of edge e simplifies to

(8.2).

ae =
µe

λe + µe
(8.2)

A network topology is defined as the way in which the nodes are connected

using edges. For an electrical distribution system, nodes and edges correspond
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to loads and distribution lines, respectively. Currently, three types of network

topologies are deployed for distribution circuits: radial, loop, and grid.

8.2.2 Network Availability

As mentioned before, the availability is the steady-state probability that

a component or a system is operational. Here, network availability (A(G)) is

defined as the probability that the network is in operating state at time t, given

that the network was operating and good as new to begin with. The network

operating state is characterized based on the desired network operation. For

an electric distribution circuit, the desired network operation is defined as

the case when electric service is available to each load served by the circuit.

Therefore, in the context of this work, a network is said to be operational if

there is a path from the source node to each load node. A network fails if

any one of the load nodes are disconnected from the source node and thus has

no electric service. An example of the operational and failed networks for a

distribution circuit designed in a grid topology is shown in Figure 8.1. Note

that while an operational network connects each load to the source, in failed

networks, one or more loads are disconnected.

Here, network availability (A(G)) is computed using minpaths [166]. The

implemented availability calculation algorithm does not use any approximation

and calculates the actual network availability for a given graph. A minpath

is a set of nodes and edges that characterize an operational network, but the

removal of any one edge results in a loss of service; such a case is defined as

network failure. A minpath would be defined differently depending upon the

definition of the operational network. For example, the minpath for the grid

topology (G) shown in Figure 8.1 is characterized by a minimal subgraph of
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Figure 8.1: Defining operational and failed networks for a distribution circuit. A network
is identified as operational if and only if there is a path from the supply node to each load

node. The network fails if any one of the load nodes are disconnected from the supply
node.

G connecting all nodes of G.

8.3 Resilient Network Topology Design

The problem formulation begins with a typical grid topology (G = (V,E))

for the distribution circuit where a load is connected at every node and each

load is equally critical for a successful network operation (Figure 8.1). Because

of the multiple paths, the design economy is relatively higher for the grid

topology. Therefore, the aim is to find a minimal subset of edges in G = (V,E)

such that the resulting network topology meets the network availability target.
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8.3.1 Problem Formulation

We begin with a probabilistic graph G = (V,E) with a set V of n nodes

and a set E of m edges designed in a grid topology. Every edge e ∈ E has

an associated availability index, ae, which gives the probability of that edge

being operational at time t, given that the edge was operational at time zero.

An example graph for the distribution circuit laid out in the grid topology is

given in Figure 8.1.

First, for every subset F ⊆ E, an incidence vector χF = (χFe )(e∈E) is in-

duced by setting:

χFe =

{
1, if e ∈ F
0, otherwise

(8.3)

Likewise, a subgraph GF = (V, F ) of the graph G = (V,E) is induced by

the corresponding incidence vector χF . In this way any subgraph for the graph

G can be characterized.

Now, for each edge e ∈ E in the graph G = (V,E), we associate a variable

xe ∈ IR. For any subset of edges F ⊆ E, we define:

x(F ) =
∑
e∈E

xe

Based on the above definitions, the problem of finding a resilient circuit

topology with network availability greater than or equal to p is formulated as

follows:

min
∀F∈P(E)

x(F ) (8.4)

subject to

1. A
(
GF
)
≥ p for a given p where 0 < p < 1

2. 0 ≤ xe ≤ 1 ∀ e ∈ E
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3. xe is integral ∀ e ∈ E

The optimization problem defined in (8.4) is a non-linear integer program.

Note that P (E) is the powerset of E. Also, based on above formulation, x(F )

is equal to the total number of edges in the subgraph GF .

8.3.2 Complexity of the Topology Design Problem

To date, the algorithms developed to calculate network availability are

exponential in the number of edges [166], requiring computation time that

grows exponentially with the number of edges. Thus, using a closed form

expression for A(G) and solving the optimization problem given in (8.4) is

impractical.

A practical approach to calculating the network availability is using min-

paths P1, P2, ..., Ph of the graph G = (V,E). The required network topology

can be designed by selecting a subset of minpaths satisfying the availability

constraint in (8.4). Although seemingly simple, the method of enumerating

all minpaths and selecting a subset of minpaths is exponential in the num-

ber of nodes. The number of minpaths in a network can be exponential in

the number of nodes. Furthermore, enumerating all subsets of minpaths will

introduce another exponential term, thereby making the algorithm computa-

tionally intractable. Hence, an efficient algorithm is required for the circuit

topology design problem.

8.3.3 Theoretical Discussion

Prior to discussing the proposed algorithm, a few additional observations

and results related to the network design problem defined in (8.4) are discussed.
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Definition 1: Connected Graph - A graph G = (V,E) is connected when

there is a path between every pair of nodes. Thus, in a connected graph each

node is reachable from every other node.

Definition 2: Spanning Tree - A spanning tree T = (V,Esub) of a graph

G = (V,E) is a selection of edges of G forming a tree, T , that spans every

vertex.

Definition 3: Edge Contraction - In a graph G = (V,E) with n vertices

and m edges, the contraction of an edge e ∈ E with endpoints (u, v), where

u ∈ V and v ∈ V is defined as the operation of deleting the edge e and merging

vertices u and v. The resulting graph G.e = (V c, Ec) has n − 1 vertices and

m− 1 edges.

Definition 4: Edge Deletion - In a graph G = (V,E) with n vertices

and m edges, the deletion of an edge e ∈ E with endpoints (u, v), where

u ∈ V and v ∈ V , is defined as the operation of deleting the edge e while

vertices u and v are retained. The resulting graph G − e = (V,Ed) has n

vertices and m− 1 edges.

Observation 1: A graph G = (V,E) with A (G) ≥ p, where 0 < p < 1, is

a connected graph.

The availability of a graph is defined as the probability of finding a path

from the source to each load node. In a disconnected graph there is no path

between one or more nodes, implying that one or more nodes are not reach-

able from the source. Thus the availability of a disconnected graph is zero.

Therefore, by contradiction, a graph G with availability greater than zero will

be a connected graph.

Observation 2: Corresponding to the availability problem defined in
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(8.4), the minpath for a graph G = (V,E) with n vertices, is a spanning tree

with (n− 1) edges.

By the definition of network availability, the minpath for G is a subgraph

connecting all vertices using the minimum number of edges. Also, the minimal

connected graph for a set of n vertices is a spanning tree with (n − 1) edges.

Thus, by definition, the minpath is a spanning tree.

Proposition 1: Let GS = (V, S) be a subgraph of G = (V,E), such that

S ⊂ E. Define GSe = (V, S ∪ e) where e ∈ (E ∩ S). Then, A(GSe) > A(GS).

Note that the above proposition implies that on adding an edge, the network

availability of any graph G = (V,E) will increase.

Proof: In a graph G = (V,E), for an edge e ∈ E with availability equal

to ae, (8.5) holds for 0 < ae < 1 [166].

A(G.e) > A(G− e) (8.5)

Next, the availability of the graph GSe = (V, S ∪ e) can be expressed as a

function of two graphs obtained by contracting and deleting an edge e ∈ E

(see (8.6)). Then the above proposition can be proved using (8.5) as follows:

A(GSe) = aeA(GSe .e) + (1− ae)A(GSe − e) (8.6)

> aeA(GSe − e) + (1− ae)A(GSe − e)

> aeA(GS) + (1− ae)A(GS)

> A(GS)

Based on the above observations, we propose an efficient graph theory

based algorithm for the circuit topology design problem. The algorithm be-

gins by generating a minpath (in this case a spanning tree) for the network,
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thus ensuring that the network is connected so that network availability is

greater than zero. Note that the minpath achieves non zero network avail-

ability using a minimum number of edges. Next, the edges are selected and

successively added to the network, thereby increasing the number of minpaths

and improving network availability. The process terminates when the avail-

ability constraint is satisfied. The proposed algorithm successfully reduces the

search space of the topology design problem defined in (8.4) from double expo-

nential to polynomial time, thereby making the design problem tractable. The

proposed algorithm and its complexity are discussed in detail in the following

section.

8.4 Proposed Algorithm : Successive Minpath Genera-
tion

In the context of the network design problem presented in this chapter,

a network is said to be operational if it contains at least one path from the

source node to each load node. Network availability is simply the probability

of finding the network in its operational state at time t, given that it was

operational at time zero. The proposed algorithm begins with a minpath,

thereby ensuring connectivity, and successively adds minpaths to the network,

thus improving upon the network availability. The method consists of three

stages: designing initial topology, evaluating network availability constraint,

and selecting and adding an edge. The proposed topology design algorithm is

given by Algorithm 1. The three steps of the proposed algorithm are discussed

in detail in the following section.
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8.4.1 Initial Topology Design

The algorithm begins by identifying a maximum available spanning tree

T = (V,Esub) of the graph G = (V,E), as shown in Figure 8.2. The prob-

lem of finding a maximum available tree is similar to that of finding a maxi-

mum cost spanning tree [134]. A standard min-cost spanning tree algorithm

is adapted to generate a maximum available spanning tree T = (V,Esub) for

graph G = (V,E), and the steps are presented in Algorithm 2.

Note that the network represented by the spanning tree contains only one

minpath for the successful operation. Therefore, the network availability for

the tree T = (V,Esub) spanning the graph G = (V,E) is given as:

A(T ) =
∏
∀e∈Esub

ae (8.7)

Prim’s algorithm [134] is originally applied to find either a minimum cost

tree or a maximum capacity spanning tree; both quantities are represented

by additive functions. The same algorithm can be applied to the availability

Algorithm 1 Obtain the required circuit topology satisfying a given network
availability constraint, A(GF ) ≥ p

Require: A non-empty connected weighted graph G = (V,E) with vertices V and
edges E. The weights are component availability indices for edges (ae).
Obtain maximum available spanning tree (T = (V,Esub)) using Algorithm 2.
Define GF = (V, F ) where, F = Esub.
Calculate A(GF ).
while A(GF ) < p. do

Define {rem-edge} = {e|e ∈ E \ F}.
Select an edge and obtain the updated network topology, GF

′
= (V, F ′) (Use

Algorithm 3).
Redefine GF = GF

′
and Calculate A(GF ).

end while
return The graph GF = (V, F ). The graph GF represents the required circuit
topology.
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From power 
source Maximum available 

spanning tree

Figure 8.2: Initial topology design- spanning tree.

function shown in (8.7) by simply taking the logarithm of the function and

converting it to an additive function. The algorithm starts with a vertex

and, among all possible connected vertices, selects an edge with maximum

availability index (ae). It then moves forward from the other end of the selected

edge and repeats until a tree connecting all vertices of the graph is found. The

complexity of Prim’s algorithm is O(|V |2); therefore a maximum available

spanning tree is found in polynomial time.

8.4.2 Availability Calculation

The principle of a minpath-based availability calculation algorithm is dis-

cussed here. Let P1, P2, ..., Ph be minpaths of G = (V,E). Let Ei be the event

that all edges in minpath Pi are operational and Pr[Ei] denotes the probability

of such an event. The network availability is then simply the probability that

one or more events Ei occur. Note that Ei are not disjoint events. Thus, the
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availability of graph G is given by:

A(G) =
h∑
j=1

(−1)(j+1)
∑

I⊆1,2,...,h,|I|=j

Pr[EI ] (8.8)

where, EI is the event that all paths Pi with i ∈ I are operational. This is

referred to as standard inclusion-exclusion expansion [166].

To make the availability computation further tractable, the standard inclusion-

exclusion approach to the availability calculation discussed in (8.8) is modi-

fied. The method of disjoint products [166] is used, which makes event Ei (the

event that all edges in minpath Pi are operational) disjoint. This modification

makes the network availability calculation recursive and thus computationally

efficient.

Algorithm 2 Obtain maximum available spanning tree

Require: A non-empty connected weighted graph G = (V,E) with vertices V and
edges E. The weights are availability indices for edges (ae).
{conn-node} = {x}, where x is an arbitrary selected node (starting point) from
the set of node V .
{rem-node} = {V \ x}.
{conn-edge} = {}.
while {conn-node} 6= V . do

Choose the edge {u, v} with the maximum weight
s.t. u ∈ {conn-node} and v ∈ {rem-node}.
Add v to {conn-node}.
Delete v from {rem-node}.
Add {u, v} to {conn-edge}.

end while
Define Esub = {conn-edge}.
return The tree T = (V,Esub). Note that, T is the maximum available spanning
tree that can be extracted from the given circuit topology.
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8.4.3 Edge Selection and Addition

Once the network is connected, the next step is to meet the availabil-

ity constraint. The edge selection algorithm selects the edge amongst the

remaining edges which maximizes network availability. For this purpose, all

remaining edges are added separately to the current network topology and

the availability of the modified topology is computed. The additional edge

resulting in maximum network availability for the modified network topology

is selected and added. The edge selection algorithm is shown in Algorithm

3. Since the edge resulting in the maximum network availability is selected,

at each iteration the algorithm results in the maximum improvement in the

network availability.

To understand the complexity of edge selection and addition algorithm, let

us consider a (n× n) grid graph G = (V,E), where (n× n = |V |). The total

number of edges in the given grid graph will be: |E| = n× (n− 1) + (n− 1)× n

= 2n2 − 2n. Also, the spanning tree T = (V,Esub) for the graph G = (V,E)

contains |Esub| = n2 − 1 edges.

Algorithm 3 Edge selection and addition algorithm

Require: A weighted graph G = (V,E) with vertices V and edges E. The weights
are availability indices for edges (ae).

Require: A subgraph GF = (V, F ) of G = (V,E) s.t. F ⊆ E.
{opt-edge} = {e|e ∈ F}.
{rem-edge} = {e|e ∈ E \ F}.
for all s(i) ∈ {rem-edge}. do

Define F i = F ∪ {s(i)} and obtain GF
i

= (V, F i).

Calculate A(GF
i

).
end for
Select sopt with maximum value of A(GF

i

)∀s(i) ∈ {rem-edge}.
Define F ′ = F ∪ {sopt} to obtain new topology GF

′
= (V, F ′).

return Updated network topology GF
′

= (V, F ′) after edge addition.
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Note that in the worst case, the edge selection and addition step has to

look for |E| − |Esub| = n2 − 2n+ 1 edges. Therefore, in big-O notation the

complexity of searching the possible edge space is O(n2) or O(|V |). The pro-

posed algorithm reduces the double exponential search space for the resilient

topology to a polynomial search space in the number of nodes.

8.5 Results and Discussion

This section demonstrates the proposed algorithm for its application in

designing the circuit topology with improved network availability. The analysis

begins with the simulation of a sample network, representing a zonal electric

distribution (ZED) circuit for an electric ship supplied by a single power source.

The network contains 15 nodes with a load connected at each node. For

the system under evaluation, the network availability (A(G)) resulting from

different circuit topologies, i.e. radial, loop, and grid, are first compared.

Next, using the proposed algorithm, resilient circuit topologies are designed

while satisfying a given network availability (A(G)) constraint. This case study

confirms that the proposed algorithm is efficient in designing optimal circuit

topologies with the required network availability.

Furthermore, for a detailed evaluation of the stage-by-stage development

of the proposed algorithm, a 30-node distribution circuit supplied by a single

power source is simulated. The analysis demonstrates that the proposed algo-

rithm improves the network availability by increasing the number of alternate

paths in the topology. Also, as the value of A(G) parameter is increased, the

proposed algorithm increases the number of loops in the optimal topology,

which increases the number of alternate paths.

Because a secondary distribution circuit is generally connected at multiple
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Number of Conductors = 16 

A(G) = 0.9982
Number of Conductors = 22 

Figure 8.3: Distribution circuit topologies, a) Radial b) Loop and c) Grid.

points to the primary circuit, the proposed algorithm is extended to the dis-

tribution circuit supplied by multiple power sources. First, the modifications

made in the proposed algorithm to include multiple power sources are dis-

cussed. Then the algorithm is applied to design the resilient circuit topology

for a 15-node ZED supplied by two power sources. The results show that the

proposed algorithm is efficient in designing resilient topologies for the distri-

bution circuits supplied by both single and multiple power sources.

8.5.1 Comparison of Existing Circuit Topologies

For the selected 15-node distribution circuit, the loads are connected in a

radial, a loop, and a grid topology as shown in Figure 8.3. Let, the probability

of finding an edge operational is 0.98. The network availability of the three

topologies are calculated and compared in Table 8.1.

As shown in Table 8.1, the network availability of the radial topology is the

lowest among the three selected topologies. The radial topology is calculated
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Table 8.1: Comparison of different distribution circuit topologies

Circuit Topology Network Availability (A(G)) Number of
conductors

Radial 0.7536 14

Loop 0.9794 16

Grid 0.9982 22

to be available with a probability of 0.75 using 14 conductors. By adding only

two conductors, however a loop topology is obtained with network availability

of about 0.98. Note that a significant improvement in network availability is

obtained using only two additional conductors. In contrast to a radial topology

with only a single operational path, the loop topology results in multiple op-

erational paths and therefore significantly improves network availability. Due

to several alternate paths, the grid topology results in the maximum number

of operational networks and, therefore, maximum network availability (more

that 0.99). However, the grid topology is obtained by adding 6 additional

conductors in the loop topology, thus significantly increasing the design cost.

It is possible that a few of the additional conductors in the grid topology

contribute significantly less towards the improved network availability. There-

fore, using the proposed algorithm, we aim to find a circuit topology that uses

fewer conductors than in a grid topology, while satisfying the required network

availability constraint.

8.5.2 Designed Resilient Circuit Topology

In this section, the resilient circuit topologies are designed to meet a given

network availability measure (A(G)). The objective is to satisfy a network

availability measure using a minimum number of conductors. We consider

three cases for resilient circuit topology design with a required network avail-
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ability greater than 0.98, 0.99 and 0.995. Note that each service wire (conduc-

tor) has ae = 0.98.

Figure 8.4(a) shows the circuit topology designed to satisfy network avail-

ability A(G) > 0.98. Note that the circuit topology for a service availability

greater than 0.98 is obtained using only 16 conductors, which is the same as

the number of conductors used in the loop topology (Figure 8.3). Since the

service availability offered by the loop topology is lower than the designed

topology (see Table 8.2), the proposed algorithm is efficient in designing a low

cost topology with maximum availability.

Next, Figure 8.4(b) and Figure 8.4(c) show the designed resilient network

topologies with network availability greater than 0.99 and 0.995. Note that

network availability greater than 0.99 and 0.995 is obtained using only 17 and

19 conductors, respectively. Clearly by intelligently selecting the conductors,

the proposed algorithm is able to design a low cost circuit topology with net-

work availability comparable to the grid topology. Also, based on the designed

circuit topologies, the additional conductors in the grid topology (with 22 con-

ductors) shown in Figure 8.3 contribute significantly less towards improving

network availability.

Using the proposed algorithm, a detailed case study is conducted to un-

derstand a stage-by-stage development of the circuit topology. A 30-node

distribution circuit is simulated and the required network availability index

(A(G)) is increased from 0.6 to 0.99. The resilient circuit topologies generated

for several network availability indices are shown in Figure 8.5. The designed

circuit topologies are compared for the availability and number of conductors

in Table 8.2. Note that the complete grid topology for the 30-node system

requires 49 conductors and results in a service availability of 0.9982. However,
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From power 
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A(G) = 0.9953
Number of Conductors = 19 Figure 8.4: Resilient distribution circuit topology with, a) A(G) > 0.98 b) A(G) > 0.99 c)

A(G) > 0.995.

Table 8.2: Comparison of different distribution circuit topologies

Circuit
Topol-

ogy

Network
Availability

(A(G))

Number
of con-
ductors

Number
of loops

A 0.5566 29 0

B 0.8285 31 2

C 0.9374 32 4

D 0.9712 33 10

E 0.9843 35 30

F 0.9902 37 116

using the proposed algorithm, a circuit topology with a network availability

greater than 0.99 is obtained using only 37 conductors, which implies a sig-

nificant saving in design cost. By comparing the topologies designed for a

15-node system to a 30-node system, it is evident that the saving in design

cost increases significantly with the increase in the size of the distribution

circuit.

From Table 8.2, it can be observed that the number of loops in the de-
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Figure 8.5: Resilient distribution circuit topologies designed for the 30-node system.

signed circuit topology increases significantly with the increase in the network

availability index. This observation illustrates the working principle of the

proposed algorithm. In order to maximize the number of alternate paths,

the algorithm aims to maximize the number of loops in the designed circuit

topologies. At every iteration, the algorithm intelligently selects the edge that

results in the number of alternate paths or maximum number of loops. By

maximizing the number of operation paths, the proposed algorithm leads to a

maximum improvement in network availability while using a minimum number

of conductors.
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8.5.3 Designed Resilient Circuit Topology with Multiple Sources

Generally, secondary distribution circuits in metropolitan cities or in all-

electric ships are connected at multiple points to the primary distribution cir-

cuit; thus, they are effectively supplied by multiple power sources. This section

presents an extension of the proposed topology design algorithm for distribu-

tion circuits supplied by multiple power sources. The objective is to design a

resilient circuit topology for a distribution circuit simultaneously supplied by

more than one power source using the minimum number of conductors.

From power source 

From power source 

Pseudo source 
node

ae = 1

ae = 1

Figure 8.6: A distribution circuit supplied by multiple power sources and the pseudo
source node added to solve the resilient circuit design problem.

The proposed modification is illustrated using a 15-node circuit laid out

in a grid topology and connected at two different points to the primary dis-

tribution circuit, as shown in Figure 8.6. To include multiple sources into

the topology design problem, a pseudo source node is added and connected

to each source node supplying for the distribution circuit, as shown in Figure

8.6. Since power sources are assumed 100% available, the edges connecting
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the pseudo source node and the source nodes in G have availability equal to

ae = 1. Next, the proposed topology design algorithm (Algorithm 1) is imple-

mented on the modified distribution circuit with the pseudo source node. The

important point to note is that the proposed modification enables us to apply

the same algorithm proposed for circuits supplied by a single power source

(Algorithm 1) to the one supplied by multiple power sources.

The proposed modification is implemented and tested to design resilient

circuit topologies with network availability greater than 0.99 for the 15-node

system shown in Figure 8.6, supplied by two power sources. As expected, as

the number of power sources supplying for the circuit is increased, the num-

ber of conductors in the designed topology decreased. Network availability

was observed to also depend upon the location of power sources. The circuit

topologies designed for the distribution circuits supplied by two power sources

are shown in Figure 8.7. Both designed circuits are using 16 conductors and

provide a network availability greater than 0.99. The network availability of

the circuit show in Figure 8.7(b) is greater than that of Figure 8.7(a) only be-

cause of the difference in the location of the power sources. Also, for the same

distribution circuit supplied by only one power source, the designed topology

resulted in a network availability of about 0.97. As expected, a significant im-

provement in network availability is observed by adding an additional power

source.

8.6 Conclusion

This chapter develops a novel mathematical formulation and an efficient

graph-theory based algorithm for the design of a resilient distribution circuit

topology while satisfying a given network availability requirement. The pro-
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From power sourceFrom power source

From power source From power source
A(G) = 0.9903 A(G) = 0.9911

Figure 8.7: Resilient distribution circuit topologies for the distribution circuits supplied by
two power sources.

posed algorithm, termed successive minpath generation, is tested and validated

using distribution circuits supplied by single as well as multiple power sources.

The results confirm that the proposed algorithm is significantly efficient in de-

signing resilient circuit topologies. Furthermore, it is also demonstrated that

the algorithm maximizes the number of operational paths at each iteration,

therefore resulting in the maximum possible improvement in network availabil-

ity at a particular iteration. By optimizing the distribution circuit topology,

the proposed approach presents a new perspective on the general distribution

circuit design problem. The designed circuit topology can be further opti-

mized for additional service requirements (capacity, voltage regulation, etc.),

thus prioritizing service continuity as the distribution circuit design objective.
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Chapter 9

Conclusion

The modern power distribution grid is gradually evolving from a central-

ized, unidirectional, and deterministic system to a distributed, bidirectional,

stochastic, and dynamic system. The objective of this dissertation is to fa-

cilitate this shift in the power distribution system architecture. Notably, to

mitigate the undesirable impacts of new technologies and to realize the im-

proved power quality and reliability standards, the study presents methods to

control and design power distribution systems. The dissertation is divided into

two parts: first concerning the evaluation and mitigation of the impacts of in-

tegrating new technologies, and second regarding reliability based approaches

for distribution circuit design. The first goal is realized using existing utility

distribution systems and the second objective is achieved using a shipboard

power system.

For the existing distribution circuits, the impacts and solutions of integrat-

ing distributed technologies including electric vehicles (EVs) and photovoltaic

systems (PVs) into the distribution circuit are evaluated. The task includes

designing circuit and equipment models, identifying simulation criteria, eval-

uating grid impacts of the new technologies, and developing control strategies

to mitigate the impacts and facilitate the integration. Furthermore, the util-

ity of distributed energy storage (ES) systems in providing distribution circuit

applications is also investigated. For new distribution circuits, methods for
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designing distribution circuits with improved service reliability are proposed.

The objectives are explored using a shipboard power distribution system (SPS)

for an all-electric ship. Note that in an electric naval vessel, the proper func-

tioning of equipment loads, such as radar, weapons, and propulsion motors is

of paramount importance and therefore, it is necessary to ensure that the SPS

is designed to be as resilient as possible. The reliability of the distribution

circuit are evaluated from the topological perspective.

First, EV integration analysis is conducted for an actual 13.8-kV distribu-

tion feeder primarily supplying for residential loads. To evaluate EV charging

impacts, three different models for EV loads are developed namely: a time-

domain model, an average-value model (AVM) model, and a constant-power

model; each model suitable for a different integration study. Notably, the EV

charger AVM representing the average dynamics corresponding to the time-

domain model, is proposed to obtain a relatively faster model for the voltage

quality study. The proposed AVM is successfully able to approximate the

EV charger’s switching dynamics while significantly decreasing the simulation

time. Next, EV impact analysis framework is proposed to evaluate the grid

impacts of EV integration both at local and at global circuit level. The anal-

ysis identifies several factors concerning EV integration such as the effects

of location, size, clustering, and percentage penetration on the distribution

circuit. Various methods to mitigate EV load impacts including infrastruc-

tural change, indirectly controlled charging using TOU pricing, and direct EV

charging control using smart charging algorithms are evaluated next. It is

concluded that the additional voltage drops due to EV load charging are ef-

ficiently mitigated by upgrading the distribution circuit using an additional

transformer; however, the method requires infrastructural changes and hence
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is expensive. Implementing a TOU pricing schedule efficiently shifts the EV

load charging to off-peak load hours. Furthermore, to optimally mitigate EV

charging concerns while avoiding inconveniencing customers, the off-peak rates

should begin between 11 pm and 12 am. The controlled charging algorithm

designed to mitigate voltage quality issues due to EV charging significantly

decreases the substation load demand as well. The proposed method opti-

mally shifts the EV load demand to off-peak load hours thus simultaneously

benefiting utility companies as well.

Next, the impacts and solutions of integrating large percentages of dis-

tributed PV systems into the distribution circuit are evaluated. First, a math-

ematical formulation for the hosting capacity problem is developed. To solve

the formulated problem, an hourly stochastic analysis approach is proposed.

The method is illustrated by calculating the hosting capacity of an actual

12.47-kV feeder for overvoltage concerns. The results obtained using the pro-

posed method are compared against those obtained using a fixed minimum

load condition. The method to quantify the percentage accuracy of the host-

ing capacity results is also presented. It is observed that the voltage quality

impact of PV system varies with the loading condition. Additionally, for the

same customer penetration level, the PV system impact varies with the PV

deployment scenario, depending on the relative PV locations and sizes. PV

deployment scenarios with larger PVs at farthest load nodes result in higher

impacts on the voltage quality. Also, primary buses farther away from the

substation are most likely to observe overvoltages. Methods to mitigate feeder

overvoltage concerns due to PV generation using smart inverters are inves-

tigated as well. It is observed that smart inverter based active and reactive

power control is efficient in mitigating PV related voltage regulation concerns.
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Although, the results are demonstrated using overvoltage condition, the pro-

posed framework can be applied to determine the hosting capacity for other

impact criteria such as voltage deviation, voltage imbalance, etc. In sum, by

developing a mathematical formulation, an hourly stochastic analysis frame-

work, and an approach to quantify the percentage accuracy of the results, a

comprehensive understanding of the PV hosting capacity problem is presented

in this work.

Many of the challenges for utility distribution system due to the integration

of new technologies can be solved using energy storage systems. A framework

to evaluate the benefits of integrating the distributed energy storage systems

is presented. The applications of ES deployment are investigated for the fol-

lowing three cases, 1) to meet substation N-1 contingency requirement, 2) to

increase feeder’s PV hosting capacity, and 3) to mitigate voltage variability

concerns due to PV generation variability. It is concluded that ES can success-

fully provide multiple grid and customer benefits. The ES size and optimal

deployment locations, however, depends upon the application scenario.

The objectives for new distribution circuits are explored using the primary

and zonal distribution circuits of an all-electric shipboard power system. The

study demonstrates that the reliability of a distribution system is fundamen-

tally linked to the high-level topology of its connections. For primary distri-

bution circuit, reliability gains obtained using 3D power system topologies are

evaluated. The reliability of 3D topologies are compared against respective

planar structures. A 3D topology is observed to add structural robustness to

the ship’s primary distribution system. Since equipment loads are distributed

in multiple decks of the ship, in an event of damage to one of the ship’s decks,

equipment loads in non-damaged decks may remain operational. 3D topologies
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also result in a slight improvement in the service reliability when compared

with the respective planar configurations.

Another contribution of this work is a proposed framework for designing

a reliable distribution circuit topology for the ship’s zonal electric distribution

(ZED) system. The service reliability for ZED systems is quantified in terms of

network availability, which is defined as the steady-state probability of a net-

work being in operational state. The objective is to design a resilient circuit

topology ensuring the highest level of network availability while using a mini-

mum number of conductors. We proposes a mathematical formulation and an

efficient graph theory based algorithm to solve the topology design problem

for the ship’s ZED system. The reliability constraint topology design is a com-

binatorial optimization problem with a double exponential search space in the

number of edges/conductors. The proposed algorithm reduces the search space

to linear in the number of edges and thus provides a significant computational

advantage. The proposed algorithm, termed as successive minpath generation,

is evaluated using 15 and 30 node ZED systems. The findings confirm that

the algorithm is significantly efficient in designing optimal circuit topologies

while minimizing the number of conductors (or design economy). Compared

to grid topology, the proposed approach results in ZED systems with network

availability more than 0.99 by using 3 fewer and 12 fewer conductors for a 15-

node and a 30-node ZED, respectively. Additionally, the proposed algorithm

maximizes the number of operational paths at each iteration, therefore result-

ing in a maximum possible improvement in service reliability at a particular

iteration.
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