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Digital image analysis techniques were developed to autonomously characterize 

dendritic solidification microstructures and estimate melt pool profiles and solidification 

rates in remelted nickel alloy 718 ingots. Automated macrophotography was used to image 

dendritic microstructures in etched ingot cross-sections and create large image montages. 

Two analysis techniques, particle identification and two-point correlation function 

analysis, were developed to measure primary dendrite arm orientation and secondary 

dendrite arm spacing from these digital image montages. 

Particle identification techniques identified individual primary dendrite arms from 

the montage images. Primary dendrite arm orientations were measured from the geometry 

and location of the identified particles. A peak-counting technique was then implemented 

to measure secondary dendrite arm spacing after primary dendrite arms were identified. 

Two-point correlation functions were used to measure average primary dendrite 

arm orientations and secondary dendrite arm spacings from controlled image areas. Fourier 

analysis was then used to measure the primary dendrite arm orientation from the two-point 

correlation function. A peak-counting technique was used to measure secondary dendrite 

arm spacing after primary dendrite arm orientation was measured. 
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The results produced using both analysis techniques were used to estimate melt 

pool profiles and solidification rates in a remelted alloy 718 ingot. Melt pool profile and 

solidification rate histories were calculated from primary dendrite arm orientations and 

secondary dendrite arm spacings, respectively. The techniques developed in this 

dissertation provide new technology and data needed by industry to validate computational 

process models of remelting processes such as electro-slag remelting (ESR) and vacuum-

arc remelting (VAR). 
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1. INTRODUCTION 

1.1. BACKGROUND AND HISTORY 

The need for high-temperature alloys began in earnest with the development of the 

gas-turbine engine near the turn of the 19th century. Operating conditions in gas turbines 

are unforgiving; components such as turbine blades, turbine disks, compressor disks, and 

power transmission shafts are required to operate at elevated temperatures and high 

pressures in corrosive and oxidizing environments [1, 2]. Turbine blades and disks 

experience the highest temperatures and harshest conditions, and the early gas-turbines 

relied on austenitic and martensitic steel alloys for these applications [3 – 5]. These first 

steel alloys, Stayblade and Rex 78 for example, typically contained high chromium and/or 

nickel alloying additions to provide resistance to oxidation and creep deformation [5, 6]. 

The nominal compositions of Stayblade and Rex 78 are provided in Table 1.1. Gas-turbine 

technologies rapidly progressed during the 1920’s and 1930’s, when turbine power and 

efficiency were increased by raising turbine inlet temperatures. The largest increase in 

turbine inlet temperatures occurred in the mid 1930’s as development began on gas-turbine 

engines as a means for aircraft propulsion. Aviation applications demanded smaller, 

lighter, and higher performing gas turbines than those used for land based applications. 

Consequently, operating temperatures and pressures were significantly increased in these 

new gas-turbine engines to meet performance and efficiency requirements for aircraft. The 

increases in turbine inlet temperature and pressure drove the development of numerous 

new steel alloys with improved elevated-temperature performance. However, temperatures 

experienced by turbine blades and disks in the new gas-turbine engines quickly surpassed 

the capabilities of even these new steel alloys [6]. Scientists in Britain and Germany 

struggled to advance gas-turbine engine technologies because of shortcomings in the steel 

alloys available. 
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In Britain, Sir Frank Whittle lead the development of numerous gas-turbine engines 

between 1936 and 1948 that would power the Gloster E.28/39 and the Gloster Meteor, 

Britain’s first gas-turbine powered aircraft [6]. The first Whittle engines built in 1936 used 

Stayblade, an austenitic stainless steel produced by Firth-Vickers, for turbine blades and 

disks [6]. In 1939, Whittle switched to Rex 78, another Firth-Vickers stainless steel alloy 

developed specifically for turbine blade applications, because turbine components 

manufactured from Stayblade began to fail as engine operating temperatures increased [6]. 

Rex 78 was used for turbine blades and disks until 1941 and was flown on the first British 

jet-engine aircraft [6]. After 1941, Rex 78 turbine components were replaced by Nimonic 

80, a newly developed nickel-based alloy [2, 6]. Nickel alloys provided greater resistance 

to creep than any steel alloy available, which greatly improved reliability and reduced 

engine failures. The development of new high-temperature materials was essential to the 

success of Britain’s gas-turbine engine program. 

 

Table 1.1: The nominal compositions of steel alloys used in the first gas-turbine engines 

are provided in weight percent [5]. 

 Element (wt. %) 

Alloy C Mn Si Cr Ni Mo Ti Cu Fe 

Stayblade 0.22 0.6 1.0 20.0 8.5 - 1.2 - Bal. 

Rex 78 0.01 0.8 0.7 14.0 18.0 4.0 0.6 4.0 Bal. 

 

In Germany, gas-turbine engines were developed concurrently by Junkers, 

Bayerische Motoren Werke AG (BMW), and Heinkel-Hirth. The Junkers Jumo 004 and 

BMW 003 engines both reached, or more descriptively were forced, into production near 
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the end of World War II and were used to power the Messerschmitt ME 262 and the 

Heinkel He 162, respectively [6]. These were the first aircraft powered by gas-turbine 

engines to be used in service. When their engines worked properly, they had performance 

superior to any aircraft powered by a rotary engine available at that time. However, both 

the ME 262 and HE 162 were plagued by reliability problems from their gas-turbine 

engines during service. These gas-turbine engines suffered from a comically-short service 

life, atrocious reliability, and frequent mechanical failures [6] because turbine components 

made from stainless steel alloys would fail quickly during service at normal operating 

temperatures. These failures were similar to those encountered by Whittle in engines that 

used Stayblade. Whittle was eventually able to overcome these issues by using high-nickel 

steel alloys and nickel-based alloys, but the Germans did not have access to enough nickel 

to develop more creep resistant alloys [6]. Consequently, Germany was unable to 

manufacture the high-temperature materials necessary to produce reliable gas-turbine 

engines. This is one minor factor of many that contributed to the final outcome of World 

War II. 

After World War II, it was clear that jet aircraft were here to stay, and more capable 

high-temperature materials were required to withstand their extreme operating conditions. 

New high-temperature materials were needed to provide a greater resistance to oxidation 

and creep. Numerous alloy systems were studied, but the nickel-based alloys developed 

were the most successful among these and remain so today. 

The first nickel-based alloys used for gas-turbine engines were developed in the 

United States and Britain in the early 1940’s [5, 6]. Hastelloy B is a nickel-molybdenum 

alloy developed by Haynes International in the United States; the alloy composition is 

provided in Table 1.2 [2]. The high molybdenum content provides exceptional resistance 

to oxidation and solid-solution strengthening against creep at elevated temperatures. 
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Hastelloy B was primarily used for static components, such as exhaust channels and 

combustor chambers [2]. At nearly the same time as Hastelloy B was introduced, the 

International Nickel Company (INCO) developed a new nickel-chrome alloy, Nimonic 80, 

which provided sufficient creep strength at elevated temperatures to be used in turbine 

blade and disk applications. The nominal composition of Nimonic 80A is provided in  

Table 1.2 [2]. Before the production of Nimonic 80, it was well understood that nickel-

chrome alloys possessed excellent resistance to oxidation at elevated temperature but little 

resistance to creep. Creep strength was improved in Nimonic 80 by the addition of 

aluminum and titanium because these alloying elements promote the formation of γ′ (Ni3Al 

or Ni3[Al,Ti]), an intermetallic precipitate that provides significant precipitation 

strengthening against creep. Nimonic 80 was used by Whittle to replace steel alloy 

components in his engines during the early 1940’s. 

 

Table 1.2: The nominal composition of the first nickel-based alloys used for gas-turbine 

engines are provided in weight percent [2]. 

 Element (wt. %) 

Alloy Cr Ni Co Mo Ti Al Fe C V Cu 

Hastelloy B < 1.0 63.0 < 2.5 28.0 - - 5.0 < 0.05 0.03 - 

Nimonic 80A 19.5 73.0 1.0 - 2.25 1.4 1.5 0.05 - < 0.10 

 

1.2. NICKEL-BASED SUPERALLOYS 

Superalloys are essential for the operation of any modern jet aircraft. They alone 

exhibit the creep strength, resistance to oxidation and corrosion, and ductility necessary to 

survive operation within the hottest sections of a modern gas-turbine engine. Today’s 
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superalloys are nearly all derived from the precipitation hardening nickel-chromium alloy 

system. Most, like Nimonic 80 in the 1940’s, use chromium to achieve a high resistance to 

oxidation and aluminum and titanium to form γʹ precipitates for creep strengthening [1, 2, 

5, 6]. Many additional elements are added to these alloys for specific reasons, and a list of 

these elements and their effects on material behavior is provided in Table 1.3 [1, 2]. 

Processing of these alloys has been developed to produce a highly engineered 

microstructure that achieves great resistance to creep. The γ - γʹ microstructure consists of 

coherent intermetallic γʹ precipitates (Ni3Al or Ni3[Al,Ti]) with an ordered L12 crystal 

structure distributed throughout the face-centered-cubic γ lattice of Ni [1, 2]. The γʹ 

precipitates typically exhibit a spheroidal or cuboidal morphology and have lattice 

parameter mismatches of less than 1% with γ. The lattice parameter of γ is 0.3517 nm, and 

γ′ is 0.3570 nm [1]. A high volume fraction of γʹ, typically near 70 percent, is desired for 

modern alloys [1]. The microstructure created by heat treating contains small γʹ precipitates 

(tens to hundreds of nm) separated by thin channels of γ. Heat treatments vary significantly 

depending on the specific alloy, but generally follow this procedure: solution treating 

between 1000 and 1100 °C for 2 to 10 hours and aging between 600 and 900 °C for 4 to 

20 hours [2]. 
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Table 1.3: The common alloying additions used in nickel-based superalloys and their 

effects are listed [1, 2]. 

Aluminum: provides precipitation strengthening; promotes the formation of γ′ 

Titanium: provides precipitation strengthening; promotes the formation of γ′ 

Niobium: provides precipitation strengthening; promotes the formation of γ″ 

Chromium: improves resistance to corrosion; decreases solvus temperature of γ′ 

Molybdenum: provides solid-solution strengthening 

Tantalum: improves resistance to creep; mechanisms unclear 

Tungsten: provides solid-solution strengthening 

Cobalt: increases solvus temperature of γ′ 

Iron: cheaper than nickel, used as a filler material when permitted 

 

The γ - γʹ superalloys provide a high tensile yield strength and resistance to creep 

by impeding dislocation motion and are used at temperatures from 760 °C and up to 

1100 °C [1]. A brief discussion of the two primary strengthening mechanisms in the γ - γʹ 

alloys is useful here. A detailed examination of both room-temperature and elevated-

temperature strengthening mechanisms in γ - γʹ nickel-based superalloys is presented by 

Roger Reed [1]. A single (a/2) <110> {111} dislocation in pure γ nickel is shown in    

Figure 1.1. If this dislocation were to enter a γ′ precipitate it would create an anti-phase 

boundary. Therefore, dislocations from γ nickel must enter the γ′ phase as pairs. The first 

dislocation creates an anti-phase boundary, and the second dislocation eliminates that anti-

phase boundary to restore the ordered structure of the γ′ phase. This dislocation pair, shown 

in Figure 1.1, is referred to as a super dislocation. The ordered structure in the γ′ phase that 

creates super dislocations provides the most potent strengthening mechanism in γ - γʹ 

alloys. At elevated temperatures, γ - γʹ alloys maintain a high tensile yield strength and 

often exhibit an anomalous increase in tensile yield strength as temperature increase up to 
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800 °C. As temperature increases, cross-slip is activated along the {001} plane in super 

dislocation segments within the γ′ phase. This type of cross-slip causes the Kear-Wilsdorf 

lock [7] that effectively pins dislocations, which cannot move in the normal {111} slip 

plane without creating an anti-phase boundary. These strengthening mechanisms combined 

produce high tensile strengths and exceptional resistance to creep at elevated temperatures. 

 

 

 

Figure 1.1: This schematic demonstrates the effect of (a/2) <110> {111} dislocations in γ 

and γ′ nickel. This figure was reproduced with permission from Dr. Eric Taleff. 
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The γ - γʹ superalloys exhibit remarkable properties but still suffer from some 

problems present since their initial development. First, the γ - γʹ superalloys are expensive 

to produce. Both the raw material and processing costs are high because many modern 

superalloys use rare-earth metals to improve performance and require extensive material 

processing to produce suitable microstructures [8]. Casting, forging, and heat treatment 

processes are often time consuming and must be closely monitored to ensure 

microstructural defects are not formed. Any defect within a component could result in 

catastrophic failure during service and cannot be tolerated. The γ - γʹ superalloys also 

exhibit poor notch sensitivity and weldability, which can make repairs and joining 

processes costly or ineffective. Additionally, it is difficult to manufacture large components 

from γ - γʹ superalloys because they are sensitive to aging heat treatments and segregation 

during casting [1, 2, 5]. 

In the 1950’s, the problems associated with the γ – γʹ superalloys began to hinder 

the efforts of both General Electric and Pratt and Whitney to develop larger and more 

complex gas-turbine engines with improved serviceability [9 – 11]. A new alloy with 

elevated-temperature capabilities similar to that of the γ – γʹ superalloys and a more 

favorable manufacturability was needed. This led directly to the development of nickel 

alloy 718 and a new class of nickel-based superalloys, the γ - γ″ alloys. 

 

1.3. NICKEL ALLOY 718 

Nickel alloy 718, the subject of this dissertation, was developed in 1959 by Herbert 

Eiselstein at the Huntington Alloy Properties Division of the International Nickel Company 

(INCO) specifically for use in gas-turbine engines [12]. Alloy 718 demonstrates good creep 

strength, ductility, corrosion and oxidation resistance, microstructural stability, and fatigue 
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life up to 650 °C [1, 2, 8, 13 – 17]. The adequate high-temperature capability, relatively 

low cost, good manufacturability, and good weldability [18] compared to other nickel-

based superalloys has made alloy 718 one of the most widely used and versatile superalloys 

of the last half century. Alloy 718 is used as wrought bar, sheet, castings, and forgings for 

both rotating (disks, shafts, and blades) and static (supports and casings) components in 

gas-turbine engines [9 – 11]. In 2001, alloy 718 accounted for 56 percent of the forged 

metal used by General Electric Aircraft Engines (GEAE), by weight [9, 11]. Over 40 

percent of all the nickel-based material purchased by Pratt and Whitney in the mid 1990’s 

was alloy 718. Over 4 million pounds were purchased in 1995 alone [10]. 

Alloy 718 derives its strength from coherent γʺ (Ni3Nb) intermetallic precipitates 

distributed throughout the γ lattice, as opposed to most other nickel-based superalloys that 

are strengthened by γʹ precipitates (Ni3Al or Ni3[Al,Ti]) [1, 2, 8, 13, 19, 20]. Formation of 

the γʺ phase is promoted by niobium in alloy 718; the nominal composition of alloy 718 is 

provided in Table 1.4 [2]. The γʺ phase is a body-centered tetragonal phase with an ordered 

D022 crystal structure that forms as disk-like precipitates [1]. The γʺ precipitate has lattice 

parameters of a = 0.362 nm and c = 0.740 nm [1]. The width of the γ″ precipitate is similar 

to that of γ′, and the height is approximately double. Significant strength is achieved 

because of coherency strains introduced by the γ″ phase [1, 2]. The strengthening 

mechanisms present in the γ – γ′ microstructure previously discussed also provide similar 

strengthening benefits in alloy 718 [1, 2]. The γʹ phase can be precipitated simultaneously 

with the γ″ phase in alloy 718, but with a much smaller volume fraction. The γʹ phase does 

not contribute significantly to creep strengthening in alloy 718 [2]. 
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Table 1.4: The nominal composition of alloy 718 in weight percent is provided [2]. 

Element Ni Cr Fe Nb Mo Ti Al 

Wt. % 50 – 55 17 – 21 Bal. 4.75 – 5.5 2.8 – 3.3 0.6 – 1.15 0.2 – 0.8 

 

Element Co C Mn Si P S B Cu 

Wt. % < 1 < 0.08 < 0.35 < 0.35 < 0.015 < 0.015 < 0.006 < 0.3 

 

Alloy 718 does not exhibit the same high-temperature capability of the γ - γʹ 

superalloys and can only be used at temperatures up to 650 °C [1, 2, 8]. At temperatures 

above 650 °C the γ″ phase will rapidly coarsen, reducing high-temperature performance. 

Consequently, alloy 718 cannot be used in the hottest sections of a gas-turbine engine; γ - 

γʹ superalloys are required for those components. Alloy 718 is ideal for use in the high-

pressure compressor and low-pressure turbine stages, commonly called the “cold zones.” 

Temperatures in the cold zones are high enough to require the use of nickel-based 

superalloys but low enough not to require a γ - γʹ superalloy; temperatures in the cold zones 

vary from 300 to 650 °C. Alloy 718 is preferred for components used in the cold zones 

because it possesses satisfactory mechanical properties and good manufacturability that 

make it easier and cheaper to produce than most γ - γʹ superalloys. Alloy 718 also 

demonstrates exceptional weldability compared to any other nickel-based superalloy. 

Literature demonstrates that the aging kinetics of the γ″ phase are sluggish compared to the 

γ′ phase, which improves manufacturability and weldability [9, 18]. Alloy 718 is also less 

sensitive to heat treatments. Large components, components with complex geometries, and 

welded assemblies not possible using γ – γʹ superalloys are produced in alloy 718 [15, 17]. 

Repairs by welding are also possible with alloy 718. 



 11 

1.4. ALLOY 718 PRODUCTION 

Like many segregation sensitive alloys, alloy 718 ingot production begins with 

double- or triple-melting during liquid metal processing (LMP) [21]. Following LMP, 

ingots are typically homogenized and hot forged to reduce chemical segregation and 

microstructural variation [21 – 24]. Alloy 718 is typically homogenized at 980 °C. 

Artificial aging at 720 °C for 8 hours and 620 °C for 10 hours then produces the desired, 

final microstructure in most wrought product [2, 22, 25]. LMP is important because the 

microstructure of the ingot determines the microstructure that can be developed in the 

wrought product, which then determines its mechanical properties [26 – 30]. Segregation 

defects and undesirable microstructural features, such as cavities, formed during LMP 

often cannot be remediated by homogenization heat treatments or hot forging [31]. 

Chemical segregation can cause non-uniform precipitation of γʺ during artificial aging, 

which creates regions with poor mechanical strength [31 – 33]. For critical applications, 

such as gas-turbine engine blades and shafts, these weak regions can result in catastrophic 

failures [1, 2], which cannot be tolerated. Consequently, inferior ingots must be again 

remelted, which is costly and time consuming. 

Typical LMP of alloy 718 ingots includes vacuum-induction melting (VIM) 

followed by electro-slag remelting (ESR) and/or vacuum-arc remelting (VAR) [34 – 38]. 

Initial melting processes, like VIM, produce ingots with undesirable microstructural 

features that are used as feedstock for secondary remelting processes. Remelting reduces 

impurity content by removing undesirable oxides and volatile gases and refines the 

microstructure of the ingot [34]. Optimization of remelting can reduce manufacturing cost 

and improve material quality. This dissertation will primarily focus on data acquired from 

material produced by VAR, the process shown schematically in Figure 1.2. Material 
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produced by ESR, a process similar to VAR, was also investigated in this dissertation, and 

data acquired from ESR product will be presented. 

 

 

Figure 1.2: This schematic demonstrates the vacuum arc remelting (VAR) process. 

Regions of interest, such as the melt pool profile, are noted. 

 

VAR uses a direct current to melt an electrode, typically an ingot produced by VIM 

or ESR, which then re-solidifies into a water-cooled crucible. As molten metal from the 

electrode falls into the crucible, a molten pool of metal, cleverly termed the melt pool, is 

formed. Solidification begins on the chilled stool at the bottom of the crucible. The size 

and geometry of the ingot, the electrode current, and the melt rate all influence the shape 

of the melt pool, the melt pool profile, and its solidification rate. VAR is performed under 

a vacuum to remove unwanted volatile elements and oxides [34]. ESR differs from VAR 
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by using a slag on top of the melt pool to remove undesirable elements instead of a vacuum. 

VAR produces exceptionally clean ingots, though it is susceptible to the formation of 

solidification defects such as freckle channels and white spots. These defects reduce tensile 

strength and low-cycle fatigue life in alloy 718 and can form when the melt pool is too 

shallow or too deep [17, 20, 38, 39]. Refinement and control of microstructure during VAR 

is essential to the production of a uniform defect-free ingot [34]. Detailed descriptions of 

VAR, the microstructures it produces, and the formation of common defects, such as 

freckle channels and white spots, can be found in the relevant literature [17, 20, 26 – 28, 

31, 34, 36 – 49]. 

 

1.5. PROJECT MOTIVATION 

Industry is very interested in optimizing alloy 718 ingot production because 

advances in ingot production technologies have the potential to reduce manufacturing cost 

and improve material quality [34, 39, 50]. Commercial computational process models are 

commonly used to improve and optimize remelting processes by simulating solidification 

[35, 51]. Manufacturers use these models in an attempt to control the microstructure 

produced in solidified ingots [50, 52 – 56]. To this end, manufacturers are interested in 

controlling two aspects of VAR: melt pool profile and solidification rate [50, 57]. The melt 

pool profile is defined as the shape of the solidification interface between the melt pool and 

the solidified material. Melt pool profile and solidification rate both influence the 

microstructure of the solidified ingot and the likelihood of defects forming during VAR 

[41, 44, 52, 57]. Computational process models such as the BAR, SIMCAST, and MESO 

codes predict melt pool behavior and solidification rate in order to simulate solidification 

behavior during remelting processes, including VAR [52 – 56]. However, limited 
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experimental data exists to validate the results of these simulations. Consequently, 

manufacturers seek new methods to acquire experimental data for the validation of process 

models. Currently, measuring melt pool profile and solidification rate during VAR is not 

feasible. Therefore, experimental measurements must be performed on the solidified ingot 

after VAR is completed. 

This dissertation develops the new instrumentation and techniques necessary to 

acquire images of and quantitatively analyze the cast microstructure of slabs extracted from 

alloy 718 ingots produced by VAR and ESR. The dendritic microstructures of the solidified 

ingots are imaged with optical macrophotography, and the optical data is quantitatively 

analyzed. The data produced is used to calculate melt pool profiles and solidification rates. 

These techniques and data were provided to several industrial partners to help them 

improve and validate process models. A review of the current techniques used in industry 

and academia to measure melt pool profile and solidification rate follows. 

 

1.6. MEASUREMENT OF MELT POOL PROFILE 

Melt pool profile is currently measured by intentionally marking the melt pool at 

distinct locations within an ingot and then locating the markers within that ingot after 

solidification. Marking is accomplished by introducing features, called pool markers, 

during remelting to decorate the melt pool profile at distinct locations. Melt pool profiles 

are measured from markers identified in sections excised from solidified ingots produced 

by the remelting process. The following melt pool markers are cited in the literature: metal 

ball pool markers, tree ring pool markers, and radioactive isotope pool markers [52, 58 – 

61].  
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Metal ball pool markers, usually nickel or another high melting point metal, are 

used to decorate the melt pool profile during remelting [50, 52]. These markers can be 

visually observed in sections cut from the solidified ingot. Pool marking is conducted by 

dropping the metal balls into a melt at specific times and locations. Once in the melt pool, 

it is generally accepted that the metal balls sink through the molten metal and settle along 

the solidification interface. As the melt continues, the mushy zone solidifies around the 

metal balls, freezing them in place; once remelting is complete, ingots are cut open in order 

to reveal the metal ball pool markers. This technique is simple to implement but has some 

limitations. The melt pool profile can only be marked at a few distinct locations within an 

ingot. Because of this, melt pool profiles cannot be continuously measured throughout an 

ingot. Additionally, it is not known with confidence whether or not the metal ball pool 

markers actually settle along the melt pool profile. 

Tree ring pool markers, much like metal ball pool markers, are used to decorate the 

melt pool profile during remelting with features that can be visually observed in sections 

cut from the solidified ingot [58 – 60]. Tree ring pool markers are small clusters of equiaxed 

grains located within larger regions of columnar grains. Tree ring formation is caused by 

disturbances to the melt pool profile, as shown in Figure 1.3 [26, 27, 60]. These features 

resemble tree rings when longitudinal cross-sections of an ingot are etched to reveal grain 

boundaries, hence their name. Pool marking is conducted by locally disturbing the melt 

pool profile during remelting with electromagnetic stirrers placed outside of the melt 

chamber or by manipulating the electric current of the melt. It has been shown that local 

disturbances to the melt pool profile promote the formation of equiaxed grains over 

columnar grains [26, 27, 60]. After remelting is completed, ingots are cut open and etched 

to reveal grain boundaries; the melt pool profile is measured by visually locating each pool 

marker [62]. This technique allows manufacturers to mark the melt pool more often than 
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with metal ball pool markers, but it still does not allow for continuous measurement of the 

melt pool profile. 

A less common marking technique uses radioactive isotope markers to decorate the 

melt pool profile [61]. Radioactive isotope markers are added to the melt during remelting 

at distinct locations. The melt pool profile is then measured by locating the position of each 

marker within sections cut from the solidified ingot. However, the use of radioactive 

isotopes in LMP is often prohibited and/or difficult to implement. Because of this, there 

are very few instances where radioactive isotope pool markers are used. Like the other 

marker techniques, melt pool profile cannot be continuously measured throughout the ingot 

by radioactive isotope marking. 

 

 

Figure 1.3: This schematic depicts the process of tree ring formation during VAR or ESR. 
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1.7. MEASUREMENT OF SOLIDIFICATION RATE 

Solidification rate is calculated indirectly from measurements of secondary 

dendrite arm spacing in solidified ingots after remelting is completed [63]. An example of 

a typical dendrite that forms during solidification is depicted by the drawing in Figure 1.4. 

Secondary dendrite arm spacing is observed to be related to local solidification time by the 

following relationship [63], 

 

𝜆 = 5.5(𝑀𝑡𝑓)
1

3⁄
 (1) 

 

where, λ is secondary dendrite arm spacing, M is a material dependent parameter, and tf is 

local solidification time. According to this relationship, the cube root of local solidification 

time is proportional to secondary dendrite arm spacing and can be calculated if the 

appropriate material dependent parameter, M, is known. For alloy 718, the material 

dependent parameter, M, was calculated to be 2.74 µm3 per second based on the data 

presented by Rappaz and Boettinger [64, 65]. The solidification parameters used to 

determine M are described in the literature [65] and could not be experimentally determined 

from solidification experiments using the equipment available for this study. Secondary 

dendrite arm spacing can be measured after remelting is completed from ingot cross-

sections etched to reveal dendrites [62]. The dendritic microstructure is imaged at a 

resolution sufficient to resolve secondary dendrite arms. Secondary dendrite arm spacing 

is typically manually measured from these images. This technique is time consuming and 

often only used to provide measurements at a few locations within the ingot. 
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Figure 1.4: This schematic presents the basic features of a dendrite in a two-dimensional 

representation. 
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2. HYPOTHESIS AND RESEARCH GOALS 

2.1. HYPOTHESIS 

I hypothesize that solidification history, including melt pool profiles and local 

solidification rates, of remelted alloy 718 ingots can be reconstructed through 

characterization of solidification microstructures in ingot cross-sections. Melt pool profiles 

will be indicated by primary dendrite arm orientations. Local solidification rates will be 

calculated from secondary dendrite arm spacings. This hypothesis is based on an 

understanding of dendritic solidification. It uses solidification theory to describe the 

relationships between melt pool profile and primary dendrite arm orientation and between 

local solidification rate and secondary dendrite arm spacing. Kurz and Fisher provide an 

excellent review of solidification [63]. The aspects of solidification theory that pertain to 

this dissertation will be discussed in the following. 

Highly alloyed systems, such as alloy 718, typically exhibit two types of dendritic 

solidification interfaces. Directional solidification occurs when heat flows from the melt to 

columnar dendrites. These dendrites grow opposite to the direction of heat flow, as shown 

in Figure 2.1 (a). During remelting processes, such as VAR, directional solidification 

occurs along the outer region of an ingot, near the crucible walls. Conditions along the 

sides of the ingot permit heat to flow from the molten liquid into the cooled crucible walls 

via the columnar dendrites. The second type of solidification, equiaxed solidification, 

occurs when the melt is undercooled. Heat must flow from dendrites into the undercooled 

melt. Newly formed dendrites grow radially in random directions, as shown in               

Figure 2.1 (b), until impeded by another dendrite or some other obstacle. There is no 

preferred growth direction, in contrast to directional solidification. During VAR, equiaxed 

solidification often occurs in the center of an ingot, where undercooling is likely. 
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Figure 2.1: This schematic depicts (a) directional and (b) equiaxed dendritic 

solidification. Q̇ indicates heat flow during solidification. 

 

Melt pool profiles can be estimated from primary dendrite arm orientation in 

regions of directional solidification because primary dendrite arms grow opposite the 

direction of heat flow, which is typically orthogonal to the melt pool. In some cases, 

however, the orientation of a primary dendrite arm may not be orthogonal to the melt pool. 

For instance, if the melt pool profile is altered during the growth of a primary dendrite, the 

orientation of that primary dendrite cannot easily change because it is determined during 

the initial stages of growth. Additionally, small local perturbations to the melt pool profile 

may influence primary dendrite arm orientations. These issues are not expected to hinder 

melt pool profile estimations but will affect the uncertainty of this analysis technique. It is 

important to note that melt pool profiles cannot be estimated from primary dendrite arm 

orientations in regions of equiaxed solidification. 

Local solidification rates can be calculated from secondary dendrite arm spacing in 

regions of directional and equiaxed solidification. Increasing solidification time increases 
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secondary dendrite arm thickness and spacing. Solidification rate can be calculated from 

secondary dendrite arm spacing using Equation 1. 

 

2.2. RESEARCH GOALS 

The first goal of this dissertation is to characterize solidification microstructures in 

cross-sectional slabs extracted from remelted alloy 718 ingot materials. The second goal is 

to use this microstructural data to produce new analyses of melt pool profiles and local 

solidification rates. These analyses will allow continuous measurement of melt pool 

profiles and local solidification rates throughout remelted alloy 718 ingots and provide 

manufacturers with new knowledge of solidification behavior during remelting processes. 

The steps necessary to successfully complete these goals are: 

1) Develop new, automated instrumentation to acquire images of solidification 

microstructures from ingot slabs with large, somewhat uneven surfaces.  

2) Assemble macrophotography equipment capable of resolving individual secondary 

dendrite arms. Build a fully automated linear XY stage to move the 

macrophotography equipment and image entire ingot slab surfaces. Incorporate 

auto-focus to account for surface roughness. 

3) Develop a custom software program to link the control computer, linear XY stage, 

and macrophotography equipment. 

4) Develop new procedures to perform automated image acquisition of large slab 

surfaces. Images must be acquired in such a manner that they can be stitched 

together to create a single montage image of the entire slab surface. 

5) Acquire images of the VAR and ESR alloy 718 ingot slabs provided for this study. 
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6) Quantitatively characterize solidification microstructures using automated digital 

image analysis techniques. Use open source software when available. 

7) Identify primary dendrite arm orientations and secondary dendrite arm spacings 

throughout ingot slabs. 

8) Calculate melt pool profiles from primary dendrite arm orientations and local 

solidification rates from secondary dendrite arm spacing measurements. 
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3. MATERIALS 

3.1. VACUUM-ARC REMELTED MATERIAL 

A laboratory-scale vacuum-arc remelted (VAR) alloy 718 ingot, shown in        

Figure 3.1 before sectioning, was produced by Los Alamos National Laboratory for this 

study [66]. The ingot measured 212 mm in diameter and 406 mm in height. Two slabs were 

extracted from this ingot for characterization and microstructural analysis according to the 

diagram presented in Figure 3.2. 

A single slab, approximately 28 mm thick, was sectioned 2.54 mm off center from 

the ingot along the casting direction; the slab was sectioned off center to preserve the 

centerline of the ingot within the slab for easy exposure after grinding. This slab was further 

sectioned in half, perpendicular to the casting direction, to facilitate handling. Each slab 

was precision ground to a 35 RA (μin) finish and a flatness tolerance of ± 0.1 in   

(0.254 mm) to reveal the ingot centerline and was then chemically etched to reveal the 

solidification microstructure. A segregation etch, Canada’s etch (8 parts H2O, 2 parts 

H2SO4, 2 parts HF, and 1 part HNO3; etch at or above 70 °C) [62], was used to reveal 

solidification microstructures. Each slab was cleaned using soapy water and a stiff nylon 

brush prior to characterization. The ingot was sectioned, precision ground, and chemically 

etched by ATI Precision Finishing. The two prepared slabs, shown in Figure 3.3, were 

subsequently used to develop the techniques necessary to characterize solidification 

microstructures and measure melt pool profiles and local solidification rates in alloy 718 

ingots. The noticeable “V-shape” and shrinkage cavity located at the top of the ingot were 

created at the end of the melt when the electrode current was stopped. 
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Figure 3.1: The vacuum-arc remelted (VAR) ingot produced by Los Alamos National 

Laboratories is presented. The dimensions of the ingot and electrode used to manufacture 

this ingot are provided. 

 

 

Figure 3.2: This schematic illustrates the locations within the VAR ingot from which the 

slabs were extracted. 
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Figure 3.3: The surfaces of the slabs extracted from the VAR ingot are presented after 

precision grinding, chemical etching, and cleaning. 
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3.2. ELECTRO-SLAG REMELTED MATERIAL 

Slabs from three industrial-scale electro-slag remelted (ESR) alloy 718 ingots were 

provided for characterization from three different suppliers: Allegheny Technologies 

Incorporated (ATI), Carpenter Technology Corporation (CarTech), and Special Metals 

Corporation (SMC) [50]. The ingot slabs supplied by ATI and CarTech were extracted 

from round ingots, each with a diameter of 430 mm. The slabs provided by SMC were 

extracted from a rectangular ingot with a width of 305 mm and a length of 1350 mm. The 

slabs characterized for each ingot are presented in Figure 3.4, Figure 3.5, and Figure 3.6. 

Each slab was prepared in a manner similar to that of the VAR ingot previously described. 

These ESR slabs were characterized using the same techniques applied to the VAR ingot. 

The data produced from the ESR slabs were supplied to each industrial partner for 

validation of computational process models of electro-slag remelting. Not all of the 

microstructural data and analysis from the ESR ingots could be included in this dissertation 

because these are the proprietary property of the industrial partners. 
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Figure 3.4: The slabs removed from the ESR ingot produced by ATI are presented. This 

figure is after that from [50]. 
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Figure 3.5: The slabs removed from the ESR ingot produced by CarTech are presented. 

This figure is after that from [50]. 
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Figure 3.6: The slabs removed from the ESR ingot produced by SMC are presented. This 

figure is after that from [50]. 
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4. IMAGING EQUIPMENT 

4.1. DESIGN AND CONSTRUCTION OF IMAGING INSTRUMENTATION 

Custom imaging instrumentation was used to image microstructures from the alloy 

718 ingot slabs provided for this study. The design and selection of the imaging 

instrumentation was completed by two undergraduate students, Ms. Katie Adams and Mr. 

Mykal Madrid, under the supervision of Dr. Trevor Watt. I completed the construction of 

the imaging instrumentation with the help of Ms. Adams and Mr. Madrid. Mr. Madrid also 

assisted me with the acquisition of images from the alloy 718 slabs. 

The imaging system used in this study was designed to: (1) provide a resolution 

sufficient to distinguish individual dendrites (tens to hundreds of μm), (2) acquire images 

from surface areas larger than 40,000 mm2, and (3) operate autonomously. 

Macrophotography was chosen to acquire images because it provides ample resolution to 

identify dendrites and a reasonable imaging size. A CanonTM EOS 60D digital single-lens 

reflex camera equipped with a SigmaTM 105mm F2.8 EX DG OS HSM macro lens was 

used to acquire images. This macrophotography equipment provided 1:1 image 

magnification (the object being imaged is the same size as that seen by the optical sensor), 

autofocusing, and an image size of 22.3 by 14.9 mm at a 1:1 magnification. A maximum 

resolution of 4.3 μm per pixel was achieved with this equipment at a 1:1 magnification. 

Two Paul C. Bluff AlienBeesTM B400 strobe units were used to provide uniform 

illumination across the entire surface of each slab during imaging. A HoyaTM circular 

polarizing filter was used to reduce glare from the specimen for improved image quality. 

A custom built linear XY stage mounted to an optical breadboard, shown in     

Figure 4.1, was fabricated to hold the macrophotography equipment and raster it across the 

imaging area. The macrophotography equipment was attached to an adjustable mount that 

permitted motion along the z-axis; position on the z- axis was manually adjusted. This 
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mount was attached to a screw-driven linear actuator secured to a moving gantry beam. 

The screw-driven linear actuator allowed motion along the y-axis. The moving gantry beam 

was attached to a ball-screw driven linear actuator on one end and supported by a journal 

bearing riding on a stainless steel rod at the opposing end. The ball-screw actuator allowed 

motion along the x-axis, and the journal bearing supported the weight of the beam and 

allowed free motion along the x-axis. Motion of the XY stage in the x-y plane was 

controlled by two stepper motors, one for each direction. The strobe units were mounted 

to the XY stage. The alloy 718 slab specimens were supported within the imaging stage by 

three swivel leveling mounts. 

 

 

Figure 4.1: The imaging instrumentation used to acquire images of the alloy 718 ingot 

slabs is shown. 
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4.2. AUTOMATED CONTROL SYSTEM 

Each component of the imaging instrumentation was controlled through a custom 

LabviewTM software program I developed. This program used a single control computer to 

define the imaging area, control the macrophotography equipment, and control the motion 

of the XY stage. The macrophotography equipment was controlled using a National 

InstrumentsTM DAQ (data acquisition) board operated by the control program. This DAQ 

board was used to trigger autofocusing and camera shutter operation. The strobe units were 

activated directly from the camera. The stepper motors were controlled using a different 

National InstrumentsTM DAQ board operated by the control program. The stepper motors 

were controlled by sending commands to move either a desired number of individual steps 

or to move to a specific location within the XY stage. 

 

4.3. IMAGE ACQUISITION 

Two non-automated procedures were necessary prior to automated imaging: 

(1) alignment of the alloy 718 slab specimen to be imaged within the XY stage and (2) 

positioning of the macrophotography equipment on the z-axis. The slabs were manually 

positioned within the center of the imaging stage on three swivel leveling mounts, and the 

slab edges were aligned parallel to the x-axis and y-axis of the XY stage. The heights of 

the swivel mounts were adjusted independently until the surface of the slab was level with 

respect to the optical breadboard. This ensured the camera lens was perpendicular to the 

slab surface. Because macrophotography was always completed at approximately a 1:1 

magnification, the image was focused by adjusting the distance between the lens and slab 

surface. After the slab was centered and leveled, the position of the macrophotography 

equipment in the z-axis was adjusted until a focused image was acquired at a 1:1 

magnification. 
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Prior to automated imaging, the macrophotography equipment was positioned 

above the upper left corner of the slab in the x-y reference plane. Imaging was then 

completed in sequential steps along the snake-like pattern presented in Figure 4.2. An 

approximately 20 percent linear overlap between adjacent images was maintained to 

support subsequent digital stitching together of images into a montage for analysis. Image 

data in the raw CR2 native CanonTM image format was transferred from the camera to the 

control computer through a USB connection after each acquisition event. The control 

program recorded the position within the XY stage where each macrophotograph was 

acquired. The automated imaging procedure is presented as a flowchart in Figure 4.3 and 

described in the following: 

1) Immediately prior to acquiring an image, the position of the macrophotography 

equipment within the XY stage and time of acquisition are recorded in a text file 

generated by the control program. 

2) With the macrophotography equipment in position, the control program triggers the 

phase detection auto focus functionality of the camera. The focusing point is 

determined by the camera software. Phase detection auto focusing was necessary 

to account for small height variations across the imaging surface. 

3) After focusing, the control program triggers the camera to lock the mirror in the up 

position. A 1.5 second hold time is programmed into the imaging procedure to 

allow for any vibrations created by the mirror locking motion to dissipate before a 

macrophotograph is taken. 

4) The shutter is triggered by the control program, and a macrophotograph is acquired. 

The two strobe units are triggered by the camera and arranged to provide uniform 

lighting across the image surface. An exposure time of 1/250 seconds was used 
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because it is the fastest possible speed at which the camera can be synced with the 

strobe units. 

5) Image data in the raw CR2 format is transferred from the camera to the computer 

through a USB connection. CanonTM imaging software on the control computer 

automatically records each image. 

6) The control program sends commands to each stepper motor to move the 

macrophotography equipment to the next position. The distance moved between 

photographs was pre-determined and hard-coded into the control program so that 

an approximately 20 percent linear overlap between adjacent images occurred in 

both the X and Y directions. The number of images taken is predetermined by the 

user based upon the size of the specimen. 

 

 

Figure 4.2: Individual macrophotographs were taken across the imaging surface using the 

snake-like pattern presented. 
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Figure 4.3: The image acquisition process is presented as a flowchart. 

 

The macrophotography settings used to acquire images during this study were 

chosen to provide a balance of image clarity/sharpness and depth of focus. The 

macrophotography settings used are: 

1) Camera: CanonTM EOS 60D 

2) Lens: 105mm macro lens with a circular polarizer 

3) F-stop: 8 

4) Exposure time: 1/250 seconds 

5) ISO number: 100 

6) Strobes: Paul C. Bluff AlienBeesTM B400 Flash Unit 

Strobe power: 3/8 

 

After imaging, the magnification at each corner of the imaging area is acquired by 

photographing a machinist’s ruler with markings every 100th of an inch. The values 

measured provide measurements of pixels per mm at each corner of the scan area. These 

values are later averaged together to produce a conversion value in pixels per mm for the 

entire scan area. The variation in magnification across the scan area for a single scan was 

typically less than 2 pixels per mm. For the top slab from the VAR ingot, the minimum and 
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maximum magnifications were 228.1 and 229.4 pixels per mm, respectively. For the 

bottom slab from the VAR ingot, the minimum and maximum magnifications were 223.4 

and 225.2 pixels per mm, respectively. Similar behavior was observed for the ESR ingot 

material. 

Note: A more detailed description of the image acquisition procedure is provided 

in Appendix A. 
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5. DATA ANALYSIS 

5.1. DIGITAL IMAGE STITCHING 

Individual macrophotographs acquired from each alloy 718 slab were digitally 

stitched together to create one montage image of each slab. Analysis of microstructure was 

then performed on these montage images. Digital image stitching was completed with 

superb help from Dr. Eric Taleff. The digital image stitching procedure is described in the 

following. 

Images acquired from each slab were initially saved in the raw CR2 native CanonTM 

image format. Images saved in this file format do not suffer from any image compression 

losses but are large and are not recognized by many image viewing software programs. 

These raw images were converted to 8-bit grayscale TIFF (Tagged Image File Format) 

images, a smaller and more widely accepted image format. Compression was not used 

during this conversion. The TIFF files were manipulated as follows prior to stitching. First, 

a CLAHE (contrast limited adaptive histogram equalization) algorithm [67] was applied to 

the image to stretch its local contrast across the 8-bit file depth to improve feature 

recognition during stitching. Second, the image was reduced in size by 50 percent using 

bilinear scaling. This reduced the image resolution from approximately 4.3 μm per pixel to 

approximately 8.6 μm per pixel. The reduced image resolution is still sufficient for feature 

analysis and provides a manageable image size. These operations were accomplished using 

a Python script that calls the OpenCV [68] image function libraries to apply the CLAHE 

algorithm and reduce image size. Note that these steps were accomplished using the 

lossless PNG format, to avoid a bug in the Debian Linux TIFF libraries, and the final 

images were then converted back to uncompressed TIFF using the ImageMagick libraries 

[69]. (The OpenCV libraries did not have an option for producing uncompressed TIFF 

images.) 
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Montage images were created by stitching together the TIFF images acquired from 

each slab. Images were stitched using their locations from the XY stage, recorded during 

image acquisition. A “Scan” text file was generated to accompany the image files for each 

slab or each series of consecutively acquired images. The Scan file contains, on its first 

line, the average scaling of the images in pixels per mm. This measure is the average of 

measurements from separate photographs of a ruler lying flat upon the plate at the four 

corners of the scanned area. The remainder of the Scan file contains a list of image 

numbers, which correspond to the numbers of the named image files, and the position of 

the upper left corner of each image in native counts for the stepper motors and in units of 

millimeters. Date and time stamps are also included for each image listed in the Scan file. 

An example from the first few lines of a Scan file is shown in Table 5.1. 

 

Table 5.1: Scan file example. 

Conversion 227.3493251 pixels/mm    

Image X Y X (mm) Y (mm) Time 

001 -22500 -12000 -34.965 -29.2608 7/27/2015 21:43:10 

002 -29900 -12000 -46.4646 -29.2608 7/27/2015 21:43:25 

003 -37300 -12000 -57.9642 -29.2608 7/27/2015 21:43:39 

004 -44700 -12000 -69.4638 -29.2608 7/27/2015 21:43:54 

005 -52100 -12000 -80.9634 -29.2608 7/27/2015 21:44:09 

 

Images were digitally stitched together using the grid/collection stitching plugin 

contained within the Fiji distribution of ImageJ, an open source image viewing and 

manipulating software package [70]. The algorithm used sequentially stitched images 

together based on their relative locations using a text file containing the image names and 

their corresponding spatial positions. This information was combined into a “Tile 



 39 

Configuration” text file using the data from the Scan text file previously described. An 

example of the first several lines of a Tile Configuration file is shown in Table 5.2. Note 

that ImageJ was not able to stitch together files that would exceed a combined 1 GB in total 

size. For slab images that exceeded this practical software limit, the files were split into 

groups, each below this size limit, and then stitched separately. This workaround was 

applied on a case-by-case basis, but was only necessary for the large slabs from the 

industrial ingots. Because of an evident bug in the ImageJ program, the montage image 

would often be missing the first image file listed in the Tile Configuration file. A 

workaround to this bug was to copy this first file into two additional files and repeat these 

files at the position of the first file. ImageJ was then called in “headless” mode to stitch the 

individual images together, based on the Tile Configuration file used. The stitching 

algorithm applied translations, rotations, and affine scaling adjustments to each image to 

complete the stitching procedure. 

 

Table 5.2: Tile configuration file example. 

# Define the number of dimensions 

dim  = 2   

# Define the image coordinates 

IMG_1001.tiff; ; (0, 0) 

IMG_1002.tiff; ; (0, 0) 

IMG_0001.tiff; ; (0, 0) 

IMG_0002.tiff; ; (0, 1307) 

IMG_1003.tiff; ; (0, 2614) 
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5.2. DIGITAL IMAGE PROCESSING 

After stitching, montage images were manually rotated and cropped to match to the 

overall ingot geometry. The rotation angle was determined by manually measuring the 

angle of the slab within each image. Images were rotated using a bilinear rotation algorithm 

in MatlabTM [71]. The angle of reorientation was recorded and used to calculate the correct 

placement of montage images relative to each other for subsequent analyses. Cropping was 

necessary after reorientation to remove regions along the sides of each image that did not 

contain any microstructural data; these featureless regions had the potential to negatively 

influence subsequent analyses. Cropping was manually performed using the Fiji 

distribution of ImageJ [70]. Scaling adjustments were performed after rotating and 

cropping. A consistent image resolution was necessary to compare data acquired from 

different montage images and combine them into a single, representative data set for the 

entire ingot. Each montage image was scaled to a resolution of 9 μm per pixel, a resolution 

sufficient for feature detection by the software used in this dissertation. This resolution was 

chosen because the resolution of each montage image is approximately 8.7 ± 0.2 μm per 

pixel and an image resolution of 9 μm per pixel is a convenient round number close to that 

value. The scaling factor used to adjust the resolution of each montage image was 

calculated from the conversion factor in pixels per mm contained in the Scan text file. A 

bilinear resizing algorithm was implemented in MatlabTM to scale each montage image 

[71]. The montage images of the two slabs sectioned from the VAR ingot are presented in   

Figure 5.1 and Figure 5.2 after reorientation, cropping, and scaling. Note that the montage 

images cannot be shown in this document at their full resolution. However, the slabs are 

presented together in Figure 5.3 with a small region enlarged to demonstrate the full image 

resolution. 
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Figure 5.1: The montage image created from the top slab of the VAR ingot is presented. 
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Figure 5.2: The montage image created from the bottom slab of the VAR ingot is 

presented. 
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Figure 5.3: The montage images from the VAR ingot are presented. A small region has 

been enlarged to more closely demonstrate the true resolution of the montage images. 

Note that primary and secondary dendrite arms are clearly visible. 
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Primary and secondary dendrite arms were quantitatively analyzed in montage 

images using automated digital image analysis techniques. Automated analysis techniques 

were used because there were too many features to manually identify. Computerized image 

analysis software is not sophisticated enough to identify primary and secondary dendrite 

arms directly from grayscale montage images. Therefore, the grayscale images were 

processed into a binary image format prior to analysis. The binary conversion is necessary 

to transform the image data into a form that the computerized image analysis techniques 

are capable of handling.  

A CLAHE algorithm was applied to each montage image prior to the binary 

conversion to stretch the local contrast across the 8-bit file depth and produce an image 

with uniform luminosity. Each image was then converted to a binary image by a threshold 

operation applied in MatlabTM using a threshold value of 127 on an 8-bit scale [71]. Pixels 

with an intensity value below this threshold were converted to a value of 0 (black) and 

those above were converted to a value of 1 (white). With respect to the material 

microstructures, etching removed material within inter-dendritic regions, which created 

depressions that were processed into black pixels. The higher regions along dendrite arms 

appear lighter and were generally processed into white pixels. An example image of 

microstructure before and after binary processing is presented in Figure 5.4. This image 

was selected from the VAR ingot in the upper left corner of the bottom slab, assuming the 

casting direction is up. 
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Figure 5.4: An example microstructure, from the VAR ingot in the upper left corner of 

the bottom slab, assuming the casting direction is up, is presented (a) before and (b) after 

binary processing. 

 

5.3. MICROSTRUCTURAL ANALYSIS TECHNIQUES 

Microstructures in the processed images were analyzed using two different 

techniques: (1) the particle identification technique and (2) the two-point correlation 

function technique. A brief introduction to each technique is presented in the following. 

The particle identification algorithms and procedures used in this dissertation to 

characterize alloy 718 slabs were ingeniously developed by Dr. Trevor Watt [66]. This 

particle identification technique relies on the accurate identification of primary dendrite 

arms as individual particles to measure primary dendrite arm orientation and secondary 

dendrite arm spacing. Primary dendrite arms were identified as individual particles using 

software contained within the Fiji distribution of ImageJ and MatlabTM [70, 71]. Primary 

dendrite arm orientations were measured from the geometry and positon of each particle, 
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i.e. primary dendrite. Secondary dendrite arm spacing was measured from the change in 

image intensity along lines running parallel and directly adjacent to identified primary 

dendrite arms. The distance between peaks in image intensity is interpreted as the 

secondary dendrite arm spacing. There are two notable limitations to using the particle 

identification technique. First, some particles likely to represent primary dendrites are 

missed by the identification algorithm. It cannot easily identify overlapping dendrites or 

those obscured by artifacts from metallographic preparation. This leaves good data on the 

table without contributing to the analysis. Second, there is no clear methodology by which 

measurement uncertainty can be ascertained from individually identified particles. Despite 

these limitations, it was determined that a sufficient number of particles were correctly 

identified to analyze melt pool profiles and local solidification times throughout the alloy 

718 slabs. The number of particles identified using this technique was deemed sufficient 

because the results produced qualitatively agreed with those observed from visual 

inspection of the prepared ingot cross-sections. 

The second analysis technique used the two-point correlation function. The two-

point correlation function algorithm used in this dissertation is based on that developed by 

Jung-Kuei Chang [72]. The two-point correlation function is useful for detecting 

microstructural trends and quantizing spatial relationships between microstructural 

features [73 – 75]. In this application, the two-point correlation function is used to 

determine the orientation and spacing of primary and secondary dendrite arms. This 

technique generates statistical arrays from regions of interest in an image which are used 

to detect trends in the data. One method of analyzing these arrays is to visualize them as 8-

bit grayscale images and then interpret those images using digital image analysis 

techniques, such as Hough transforms and Fourier analysis. In contrast to the particle 

identification technique, this technique does not identify individual dendrites. Additionally, 
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every feature within an analysis region contributes to the two-point correlation function; 

no data are wasted, as are the missed particles in the particle identification technique.  

These two analysis techniques complement each other. The two-point correlation 

function uses nearly all data from a region, even when particle identification is 

unsuccessful, to calculate average primary dendrite arm orientation and secondary dendrite 

arm spacing. The particle identification technique is useful for locating specific dendrites, 

especially outliers. Combined, these techniques provide a methodology to characterize 

average dendritic spatial relationships and to locate specific dendrites of interest. 

Nonetheless, it must be noted that the robustness of the data produced by these analysis 

techniques depends on the clarity of the microstructural image analyzed. Proper material 

preparation prior to imaging and analysis is critical to produce useful data. 

 

5.4. PARTICLE IDENTIFICATION 

The particle identification technique used in this dissertation to analyze binary 

montage images is described in the following. Additional discussion of the particle 

identification technique used is provided in Appendix B. 

The particle identification algorithm contained within the Fiji distribution of 

ImageJ was used to identify particles from binary montage images [70]. This algorithm 

locates and identifies discrete areas of continuous white pixels and labels those areas as 

individual particles; it ignores regions of continuous black pixels. However, software 

identification of features, i.e. particles, from the as-converted binary image was poor 

because microstructural features often appear connected after the initial threshold 

operation. The binary image was further processed using morphological operations that 

grow and shrink regions of like-colored pixels to improve feature identification. Erosion 
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operations shrink regions of continuous white pixels, while dilation operations grow 

regions of continuous white pixels. These morphological operations improve feature 

identification by separating individual dendritic features from each other. Determining the 

processing steps necessary to improve feature recognition is somewhat of an art-form. For 

the material analyzed in this dissertation, experiments determined that two erosion 

operations were sufficient for the particle identification algorithm to operate effectively. 

The two erosion operations separate the individual primary dendrite arms connected by 

white pixels after the thresholding procedure, but do not shrink the primary dendrite arms 

enough to hinder their identification. It will be demonstrated later that this processing 

allows the particle identification algorithm used to detect many, but not all, primary 

dendrite arms. An individual image taken from the VAR ingot in the upper left corner of 

the bottom slab, assuming the casting direction is up, is presented in Figure 5.5 to 

demonstrate each image processing step. Figure 5.5 presents (a) the original grayscale 

image, (b) that image after CLAHE processing, (c) after binary conversion, and (d) after 

two erosion steps. 
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Figure 5.5: An image from the VAR ingot in the upper left corner of the bottom slab, 

assuming the casting direction is up, is presented to demonstrate each image processing 

step. (a) The original grayscale image, (b) that image after CLAHE processing, (c) after 

binary conversion, and (d) after two erosion steps are provided. 

After particle identification was completed, each particle was fit with a bounding 

box and an ellipse to measure its shape and orientation. These particles were then filtered 

using a custom MatlabTM program to remove particles not likely to represent primary 

dendrite arms [71]. Filtering was necessary because accurate identification of primary 

dendrite arms is critical to the measurement of both primary dendrite arm orientation and 

secondary dendrite arm spacing. Particles not likely to represent a primary dendrite arm, 
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which is long and slender, were removed from the data set by taking into account the size 

and shape of the particle. A particle may be filtered out for the following reasons: 

1) Particles with an exceptionally small area may be removed. During this study, this 

filtering procedure was not deemed necessary, so a limit value of 0 pixels2 was 

chosen. 

2) Particles with low aspect ratios may be removed. The aspect ratio is calculated by 

dividing the length of the major axis of the ellipse fitted to the particle by the length 

of the minor axis of that ellipse. Particles with an aspect ratio below 5 were 

removed. 

3) A particle may be removed if it was deemed too short or too long to represent a 

primary dendrite arm. This removed small image artifacts leftover from 

morphological processing and large artifacts present near the sides of the image. 

Particles shorter than 22 pixels and longer than 5000 pixels were removed. 

4) A particle may be removed if the standard deviation of relative image intensity is 

large across that particle. This removes particles that do not correlate with the 

original image data. This is calculated by measuring the image intensity along the 

diagonal of the bounding box fit to that particle. If the standard deviation of this 

image intensity is large relative to the mean image intensity of the line, that particle 

may be removed. Particles with a relative standard (standard deviation/mean 

intensity) deviation above 0.5 were removed. 

 

An individual image was taken from the VAR ingot in the upper left corner of the 

bottom slab to demonstrate the particle filtering process. Figure 5.6 presents (a) the original 

image, (b) the processed image, (c) all particles identified, (d) particles remaining after 

filtering, and (e) the particles after filtering overlaid on the original image. 
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Figure 5.6: An image from the VAR ingot in the upper left corner of the bottom slab, 

assuming the casting direction is up, is presented to illustrate the particle identification 

and particle filtering processes. Presented are (a) the grayscale image, (b) the processed 

image, (c) all particles identified, (d) the particles remaining after filtering, and (e) the 

filtered particles overlaid on the original grayscale image. 
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Two additional filtering steps were used to either modify or remove a particle 

previously identified as a primary dendrite arm. These considered the particle’s relative 

orientation with respect to other particles within its immediate vicinity. These two final 

filters are now presented. 

The first filter corrected for secondary dendrite arms misidentified as primary 

dendrite arms. Because secondary dendrite arms are expected to grow perpendicularly to 

primary dendrite arms, if a secondary dendrite arm was identified during particle 

identification, it can be rotated ± 90 degrees to create a “virtual” primary dendrite arm. A 

particle was determined to be a secondary dendrite arm if it was oriented 70 to 110 degrees 

from the average primary dendrite arm orientation in its region. This filter was applied in 

rectangular regions, 1000 pixels wide that spanned the height of the ingot along the casting 

direction. Particles that qualified for reorientation were rotated -90 degrees on the left side 

of the ingot and +90 degrees on the right side of the ingot. During this study, the filter was 

simultaneously run from both the left and the right sides of the ingot toward the center.   

The second filter removed particles that were oriented at least two standard 

deviations from the mean particle orientation for a given region. For this filter, a circular 

region with a radius of 500 pixels was used. If a particle orientation inside this region was 

more than two standard deviations from the mean particle orientation within that region, it 

was removed. This filter reduced noise by removing particles that are poorly aligned with 

the other particles in its immediate vicinity. Because this filter uses the standard deviation 

across a given region to determine if a particle should be removed, it tends to filter out 

more objects from areas that have a well-defined particle orientation compared to areas 

that have a random distribution of orientations. This reduces noise in regions where 

primary dendrite arms are clearly identified without significantly affecting regions without 

a clear primary dendrite arm orientation. 
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An image from the VAR ingot in the upper left corner of the bottom slab is 

presented in Figure 5.7 to demonstrate the effects of the advanced particle filtering process. 

Figure 5.7 presents (a) the particles after initial filtering overlaid on the original image,    

(b) the particles after advanced filtering overlaid on the original image, (c) the particles 

before, and (d) after advanced filtering. Note the good agreement between the original 

image data and the particles after advanced filtering. 

 

 

Figure 5.7: The particles identified from an image taken from the VAR ingot are overlaid 

on the original image data (a) before and (b) after advanced filtering. The particles are 

shown alone (c) before and (d) after advanced filtering. 
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After primary dendrite arms were identified and filtered to reduce noise, secondary 

dendrite arm spacing was measured. Secondary dendrite arm spacing was measured from 

the change in image intensity along lines running parallel and directly adjacent to the 

identified primary dendrite arms. The distance between peaks in image intensity is 

interpreted as the secondary dendrite arm spacing. Figure 5.8 presents a single primary 

dendrite arm to illustrate how the lines for analysis of secondary dendrite arms were 

created. Figure 5.9 provides a measurement of image intensity along the secondary dendrite 

arm analysis lines in Figure 5.8. Secondary dendrite arms spacing was calculated in the 

following manner: 

1) A single primary dendrite arm (PDA) is chosen for analysis. 

2) The 8-bit grayscale TIFF image data from the alloy 718 slab where that primary 

dendrite arm is located is loaded into memory. 

3) The PDA is defined as the line connecting the two points at the extreme ends of the 

particle bounding box. To measure secondary dendrite arm spacing (SDAS), 

additional lines are defined parallel to the PDA line, one on either side. These are 

termed the SDAS lines and are offset by 8 pixels from the PDA line. 

4) The image intensity profile along the length of each SDAS line is measured. Each 

peak in the image intensity profile ideally represents a secondary dendrite. In this 

approach, the peaks are determined by using a local-maximum filter on the intensity 

profile. A window of a specified size is moved over the profile, and if the central 

pixel has the largest intensity within that window, it is set as a local maximum. This 

is subject to the additional constraints that it must not have a pixel intensity of zero 

and that it must not be neighboring another maximum. 

5) SDAS is calculated by measuring the distance between peaks. The spatial position 

of the SDAS measurement is assigned to the geometric center of the PDA line. 
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a. If only one peak is identified, no SDAS value is recorded 

b. If only two peaks are identified, the SDAS value is assigned the distance 

between the two peaks. The error associated with that measurement is 

calculated from the uncertainty of locating the center of each peak. 

c. If more than two peaks are identified, the SDAS value is calculated as the 

mean of the distances between peaks. The error associated with that 

measurement is defined by the standard deviation of the distances between 

peaks. 

6) The SDAS values are stored for the specific SDAS analysis line offset, initially 8 

pixels. 

7)  Steps 3 through 6 are performed again for line offsets of 10, 12, 14, and 16 pixels. 

8) The SDAS values for each offset line are compared, and the offset line with the 

smallest error in SDAS is retained. The rest are discarded. 

9) The SDAS values are filtered to remove poor results. SDAS measurements with a 

relative standard deviation greater than or equal to 5 are discarded. 

 

Two filters were applied to the automated secondary dendrite arm spacing 

measurements. The first filter removed secondary dendrite arm spacing measurements that 

were two standard deviations away from the mean secondary dendrite arm spacing value 

in the same region. During this study a circular region with a radius of 500 pixels was used 

for this filter. The second filter was used to remove secondary dendrite arm spacing 

measurements that were excessively large and not removed by the first filter. 

Occasional regions produce large values for secondary dendrite arm spacing that 

were neither physically meaningful nor removed by the first filter. To remedy this problem, 

secondary dendrite arm spacing measurements greater than 270 µm were removed. To put 
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this in perspective, the average secondary dendrite arm spacing in the VAR ingot was 

manually measured as approximately 100 µm with a standard deviation of approximately 

40 µm. 

It is important to note that the automated secondary dendrite arm spacing 

measurement technique is prone to an error that increases the spacing measurement. This 

technique is expected to measure larger values for secondary dendrite arm spacing because 

it is susceptible to missing some secondary arms, which leads to an increase in the spacing 

measurement. 

 

 

Figure 5.8: An individual dendrite arm is highlighted in (a) and presented in (b) with the 

lines for secondary dendrite arm spacing analysis. 
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Figure 5.9: The image intensity profiles along the lines used for secondary dendrite arm 

spacing analysis shown in Figure 5.8 are provided. 

 

5.5. TWO-POINT CORRELATION FUNCTION 

Correlation functions are used to describe the spatial relationships between features 

of interest in an image. They are often used in astronomy to determine the spacing of 

galaxies, for example [76]. For this dissertation, a two-point correlation function was used 

to measure the orientation and spacing of primary and secondary dendrite arms. The two-

point correlation function is described in the following. 
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The two-point correlation function Pij(r,θ) used in this dissertation is defined in 

cylindrical coordinates (r, θ) as the probability that a line with length r, orientation θ, and 

endpoints in phase i and phase j exists. This probability, Pij(r,θ), is orientation dependent. 

The orientation-averaged probability function 〈𝑃𝑖𝑗(𝑟)〉 is calculated in two dimensions as 

[72, 73, 77], 

 

〈𝑃𝑖𝑗(𝑟)〉 = ∫ 𝑃𝑖𝑗(𝑟, 𝜃) sin 𝜃𝑑𝜃
𝜋

2⁄

0
.   (2) 

 

〈𝑃𝑖𝑗(𝑟)〉 is defined as the average probability that any line with length r and endpoints in 

phase i and phase j exists. For this study, only two phases exists in the microstructure. 

Dendrite arms are defined as phase 1 and inter-dendritic regions are defined as phase 2. 

The two-point correlation function is then defined by four probabilities: 〈𝑃11(𝑟)〉, 〈𝑃12(𝑟)〉, 

〈𝑃21(𝑟)〉, and 〈𝑃22(𝑟)〉. Only one of these probabilities is independent according to the 

following relationships [72, 73, 77]: 

 

〈𝑃11(𝑟)〉 + 〈𝑃12(𝑟)〉 + 〈𝑃21(𝑟)〉 + 〈𝑃22(𝑟)〉 = 1 (3) 

〈𝑃12(𝑟)〉 = 〈𝑃21(𝑟)〉     (4) 

〈𝑃11(𝑟)〉 + 〈𝑃12(𝑟)〉 = 𝑓1    (5) 

〈𝑃22(𝑟)〉 + 〈𝑃21(𝑟)〉 = 1 − 𝑓1    (6) 

 

Here f1 is the volume fraction of phase 1 present in the microstructure.  
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5.6. IMPLEMENTATION OF THE TWO-POINT CORRELATION FUNCTION 

Two-point correlation function analysis was performed on the as-converted binary 

montage images. No morphological processing was necessary prior to analysis, but the 

images were sometimes converted from the TIFF image format to the PGM image format 

using ImageJ. In the PGM format, dendrite arms were still represented by a pixel value of 

1 (white), and inter-dendritic regions were represented by a pixel value of 0 (black). 

Two-point correlation function analysis of microstructure was implemented in 

MathematicaTM using the process illustrated by Figure 5.10 to Figure 5.12 [78]. This 

implementation uses a moving window (transportable analysis window) to compute the 

two-point correlation function from a selected region of interest (analysis region) in the 

montage image. The analysis region is sequentially moved across the montage until the 

entire slab has been analyzed, as shown in Figure 5.10. The size of the analysis region was 

chosen based on the following criteria: (1) it must contain enough microstructural features 

to produce meaningful results, (2) primary dendrite arm orientation should be uniform in 

the region, (3) processing time to complete two-point correlation function analysis must be 

reasonable, and (4) it must be a square with dimensions equal to a power of two, i.e. images 

2n by 2n large, where n is a positive integer, for compatibility with Fourier analysis. Using 

these constraints, an analysis region of 512 by 512 pixels was determined to be the best 

among those investigated for images with a resolution of approximately 9 μm per pixel. 

The process used to select this size for the analysis region is described later. 

The calculation of the two-point correlation function within an individual analysis 

region is illustrated by Figure 5.11 and Figure 5.12. This calculation uses a transportable 

analysis window, a measurement frame describing the motion of the transportable analysis 

window, and the user-defined variable rmax. The transportable analysis window is used to 

calculate the two-point correlation function at individual steps in the analysis region. The 
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measurement frame defines the motion of the transportable analysis window. The variable 

rmax, determined by the user, defines the size of the transportable analysis window and the 

measurement frame. The measurement frame was positioned in the center of the analysis 

region a distance of rmax from the edges, as shown in Figure 5.11. The transportable analysis 

window is a square window with a width of 2rmax. The center of the transportable analysis 

window is termed the “base point”. 

Figure 5.12 illustrates the calculation of the two-point correlation function from a 

two-phase microstructure; pixel values of 1 and 0 represent the two different phases. The 

transportable analysis window, the measurement frame, and the location of the first base 

point are noted in Figure 5.12 (a). Figure 5.12 (b) to (f) illustrate the calculation of the two-

point correlation function in the transportable analysis window at individual locations in 

the measurement frame; note that only the 〈𝑃11(𝑟)〉 calculation is presented. At each 

location in the measurement frame, the two-point correlation function, Pij, is calculated by 

comparing the pixel value at the center of the transportable window, the base point, to all 

other pixel values in the transportable window. Positions in the transportable window are 

then assigned integer values of 1 or 0 depending on the correlation between their pixel 

value and that of the base point to create the Pij array. Summing the individual Pij arrays 

from each location in the measurement frame calculates the 〈𝑃𝑖𝑗〉 array, the two-point 

correlation function for the entire analysis region. The 〈𝑃11(𝑟)〉 array was calculated at 

each location in the measurement frame using the following rules: 

1) If the base point pixel value equals 1: 

a. Each position within the transportable array that has a pixel value of 1 is 

assigned a numerical value of 1. Each remaining position is assigned a 

numerical value of 0. This process is demonstrated by Figure 5.12 (b). 

2) If the base point pixel value equals 0: 
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a. All positions in the transportable array are assigned a numerical value of 0. 

This process is demonstrated by Figure 5.12 (c) 

3) The Pij arrays calculated at each location in the measurement frame are summed to 

create 〈𝑃11(𝑟)〉. This process is demonstrated in Figure 5.12 (f). 

 

The 〈𝑃12(𝑟)〉, 〈𝑃21(𝑟)〉, and 〈𝑃22(𝑟)〉 arrays are similarly calculated using 

analogous rules. The probability in percentage is found by dividing each value in the array 

by the maximum value in the array. This presents the probability of one point in the array 

being the same as the base point. These probability arrays can be visualized as 8-bit 

grayscale images; bright and dark regions represent high and low probabilities, 

respectively. These images were analyzed using digital image analysis techniques, such as 

Hough transforms and Fourier analysis, to determine the spatial relationships between 

microstructural features. 
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Figure 5.10: The sequential motion of the analysis region used for two-point correlation 

function calculations across a montage image is illustrated. The motion of the 

transportable analysis window within the analysis region is also illustrated. 
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Figure 5.11: The calculation of the two-point correlation function within an individual 

analysis region is illustrated. The transportable analysis window is sequentially moved 

across the analysis region, as constrained by the measurement frame. 

 

 



 64 

 

Figure 5.12: The calculation of Pij arrays at individual positions within an analysis region 

are presented. A simulated two-phase microstructure, transportable analysis window, and 

measurement frame are presented in (a). Pij arrays are calculated at different positions 

within the analysis region in (b) thru (f). 

 

5.7. TWO-POINT CORRELATION FUNCTION TUNING 

The two-point correlation function technique is primarily controlled by adjusting 

the sizes of the analysis region and the transportable analysis window. These parameters 

must be tuned to the size of the microstructural features analyzed to provide the desired 

amount of data averaging and retention of fine feature detail. Tuning in this study was 
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accomplished using a single image taken from the VAR ingot in the upper left corner of 

the bottom slab. This image, presented in Figure 5.13, was chosen because both primary 

and secondary dendrite arms are visible in it. Square analysis regions 256, 512, and 1024 

pixels wide were selected from the center of this image for tuning. These sizes were chosen 

because each contains enough microstructural features to produce meaningful results, and 

primary dendrite arm orientations are consistent in each region. The size of the analysis 

regions were limited to squares with dimensions equal to a power of two because of Fourier 

analysis considerations. The two-point correlation function was applied to each of these 

analysis regions using transportable analysis windows from 64 to 512 pixels wide. The 

analysis region and transportable analysis window sizes studied are summarized in       

Table 5.3. Each analysis region and the two-point correlation function data produced are 

presented in the following case descriptions. 

 

Table 5.3: The analysis region and transportable analysis window sizes used for tuning 

are listed. 

Analysis region 

size (pixels) 

Transportable analysis window 

size (pixels) 

256 64 

 128 

512 64 

 128 

 256 

1024 128 

 256 

 512 
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Figure 5.13: This image was used to tune the two-point correlation function operating 

parameters: analysis region size and transportable analysis region size. This image was 

taken from the upper left corner of the bottom slab from the VAR ingot. Analysis regions 

were taken from the center of this image to tune the two-point correlation function. 

 

5.7.1. Case One: The 256 pixel analysis region 

The 256 pixel analysis region is presented in Figure 5.14. This region contains 

approximately 5 primary dendrite arms, and there is a single primary dendrite arm 

orientation, which can be easily identified. Many secondary dendrite arms are visible 

within this region, and their orientations and spacings can be identified. At least one 

horizontal scratch from metallographic preparation is visible within the analysis region. 

Two 8-bit grayscale images are presented in Figure 5.15 to visualize the two-point 

correlation function outputs from the 256 pixel analysis region using the (a) 64 and (b) 128 
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pixel transportable analysis window sizes. Bright streaks are visible in both Figure 5.15 (a) 

and (b) along the primary and secondary dendrite arm orientations; the two highest 

intensity streaks run through the center of the data. These two streaks describe the average 

primary and secondary dendrite arm orientations in the analysis region. Additional streaks 

are along the secondary dendrite arm orientation and appear periodic in Figure 5.15 (b), 

repeating along the primary dendrite arm orientation. This periodicity can be measured and 

used to calculate secondary dendrite arm spacing. A horizontal streak is also visible in both 

Figure 5.15 (a) and (b) and is most likely produced by scratches evident in the analysis 

region. 

The 128 pixel transportable window provides greater detail, i.e. more secondary 

dendrite arm streaks are discernable, than the 64 pixel transportable window for this 

analysis region. Conversely, the 64 pixel transportable window produces heavier averaging 

of the data. 

 

 

 

Figure 5.14: The 256 pixel wide analysis region selected from Figure 5.13 is provided 

after processing into a binary image format. 
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Figure 5.15: Outputs from two-point correlation function analysis on the 256 pixel 

analysis region are presented. Transportable analysis window sizes of (a) 64 and (b) 128 

pixels were used. 

 

5.7.2. Case Two: The 512 pixel analysis region 

Figure 5.16 presents the 512 pixel analysis region. More than 5 primary dendrite 

arms are visible in this region. Their orientations are consistent throughout the analysis 

region. An abundance of secondary dendrite arms and two horizontal scratches are also 

present. Three 8-bit grayscale images are presented in Figure 5.17 to visualize the two-

point correlation function outputs from the 512 pixel analysis region using the (a) 64, 

(b) 128, and (c) 256 pixel transportable analysis window sizes. Similar to the previous case, 

bright streaks are visible along the primary and secondary dendrite arm orientations in all 

of the two-point correlation function outputs. The two highest intensity streaks, again, pass 

through the center of the data. As demonstrated in Figure 5.17, the periodic streaks along 

the secondary dendrite arm orientation become less numerous and less defined as the 
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transportable window size decreases. But the two highest intensity streaks that pass through 

the center of the data, which represent the primary and secondary dendrite arms, are not 

strongly affected by the transportable window size. For this analysis region size, the 128 

and 256 pixel transportable window sizes provide a useful balance between data averaging 

and the retention of fine feature details. 

 

 

 

Figure 5.16: The 512 pixel wide analysis region selected from Figure 5.13 is provided 

after processing into a binary image format. 
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Figure 5.17: Outputs from two-point correlation function analysis on the 512 pixel 

analysis region are presented. Transportable analysis window sizes of (a) 64, (b) 128, and 

(c) 256 pixels were used. 
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5.7.3. Case Three: The 1024 pixel analysis region 

The 1024 pixel analysis region is provided in Figure 5.18. Numerous primary 

dendrite arms and hundreds of secondary dendrite arms are visible in this analysis region. 

Individual primary dendrite arm orientations differ slightly across the region. Three 8-bit 

grayscale images are presented in Figure 5.19 to visualize the two-point correlation 

function outputs from the 1024 pixel analysis region using the (a) 128, (b) 256, and (c) 512 

pixel transportable analysis window sizes. As for the two previous cases, two principle 

streaks, representing the primary and secondary dendrite arms, which run through the 

center of the data are produced using any transportable analysis window size. The smaller 

periodic streaks, which represent the secondary dendrite arm spacing, weaken as the 

transportable analysis window size is decreased. For this analysis region, the 256 and 512 

pixel window sizes provide a suitable balance between data averaging and the retention of 

fine feature details. 
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Figure 5.18: The 1024 pixel wide analysis region selected from Figure 5.13 is provided 

after processing into a binary image format. 
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Figure 5.19: Outputs from two-point correlation function analysis on the 1024 pixel 

analysis region are presented. Transportable analysis window sizes of (a) 128, (b) 256, 

and (c) 512 pixels were used. 
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5.7.4. Computational Processing Time Considerations 

Computational processing time was also considered during tuning of the two-point 

correlation function. Processing times for an individual two-point correlation function 

calculation of less than 300 seconds were considered reasonable for this study. Processing 

times for different analysis regions and transportable analysis window sizes are presented 

in Table 5.4. Computational times are based on a DellTM Precision T3600 with an 8-core 

IntelTM XeonTM E5-1620 @ 3.60 GHz processor and 32.0 GB of DDR3 RAM running 

WindowsTM 7 Enterprise. 

 

Table 5.4: Computational times to complete two-point correlation function analysis are 

presented for different analysis region and transportable analysis window sizes. 

Analysis region 

size (pixels) 

Transportable analysis 

window size (pixels) 

Processing time 

(seconds) 

256 64 0.60 

 128 0.88 

512 64 2.91 

 128 5.78 

 256 5.33 

1024 128 32.4 

 256 38.6 

 512 159.0 

 

5.7.5. Tuning summary 

The best balance of data averaging, retention of fine feature detail, and 

computational processing time was achieved using the case with a 512 pixel analysis region 

and a 256 pixel transportable analysis window size. The 512 pixel analysis region 

contained a sufficient number of dendrites to analyze and provided a consistent primary 

dendrite arm orientation. As demonstrated by Table 5.4, this analysis case could be 
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calculated in a matter of seconds. The 512 pixel wide analysis region, paired with the 256 

pixel transportable analysis window, was used to complete two-point correlation function 

analysis of the montage images from the VAR ingot. 

The other cases were not used because of the following reasons. The 256 pixel 

analysis region was too small; not enough dendritic features were present within the region 

to reliably produce useful results. Additionally, the small size of the two-point correlation 

function output made further analysis difficult. The 1024 pixel analysis was considered too 

large because the orientation of primary dendrite arms varied across the region, and 

computational processing times were substantially greater than for any other case. 
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6. TWO-POINT CORRELATION FUNCTION OUTPUT ANALYSIS 

6.1. ANALYSIS TECHNIQUES 

Primary and secondary dendrite arm orientations and secondary dendrite arm 

spacing were measured from two-point correlation function outputs using digital image 

analysis techniques. Digital image analysis techniques are often used to detect lines, 

shapes, and patterns from images. In this dissertation, two-point correlation function 

outputs were analyzed as 8-bit grayscale images using Hough transforms, Radon 

transforms, and Fourier analysis. Each technique was implemented to measure primary 

dendrite arm orientation and secondary dendrite arm spacing. Determining secondary 

dendrite arm orientation, when possible, was also found to be useful. Of the three digital 

image analysis techniques used, Fourier analysis produced the most useful and consistent 

results. It was used to analyze the montage images acquired from the VAR ingot. The three 

digital image analysis techniques studied are now presented. 

 

6.2. HOUGH TRANSFORM 

The Hough transform was initially developed to detect lines in images [79, 80], but 

has since been modified to detect generalized shapes [81]. For this application, the Hough 

transform was used to detect the streaks, i.e. lines, in the two-point correlation function 

output. These lines typically describe the primary and secondary dendrite arm orientations. 

The Hough transform uses the parametric representation of a line to transform 

image data described from the traditional two-dimensional coordinates (x, y) to the Hough 

space representation (ρ, θ) using the following relationship [80], 

 

𝜌 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃.  (7) 
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The relationship between (ρ, θ) and (x, y) is illustrated in Figure 6.1. The image data is 

transformed into Hough space using a binning technique. Bins are created for each (ρ, θ) 

combination possible in the image; the size of the bins determines the resolution of the 

image in Hough space. For each (x, y) location within the image, the corresponding (ρ, θ) 

values are calculated for θ between -90 and 90 degrees. The appropriate (ρ, θ) bins are then 

updated according to the pixel value at that (x, y) location. The transformed image data can 

then be viewed and analyzed as a grayscale image. The following points are useful to 

consider when analyzing an image in Hough space. First, a point in (x, y) space produces a 

sinusoidal curve in Hough space. Second, if points are aligned to form a line in (x, y) space, 

their corresponding sinusoids overlap in Hough space. Third, overlapping sinusoids in 

Hough space create points of high intensity. These points of high intensity in Hough space 

represent lines in traditional space. 

An image taken from the VAR ingot in the center of the bottom slab, shown in 

Figure 6.2 (a), was analyzed with the two-point correlation function. The two-point 

correlation function output from this image is presented in Figure 6.2 (b). The Hough 

transform was applied to this two-point correlation function output and is presented in 

Figure 6.2 (c) as a grayscale image. The Hough transform was applied in MatlabTM using 

bin sizes of one pixel for ρ and one degree for θ [71]. 

The Hough transform is dominated by two sinusoidal bands and two bright regions 

at -45 and 45 degrees from the overlap between these bands. Note that the θ location of 

these bright regions does not correspond with the angle of the dendrite arm directions 

visible in the two-point correlation function output. The sinusoidal bands in the Hough 

transform were not created by the dominant streaks in the two-point correlation function, 

but rather the background noise in the two-point correlation function output. This problem 

is common for images without well-defined lines and relatively low contrast, such as the 
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two-point correlation function output. Consequently, primary dendrite arm orientation 

could not be ascertained from the two-point correlation function output using the Hough 

transform. 

Additionally, image artifacts, shown in Figure 6.2 (c), were created by the Hough 

transformation. These artifacts, which appear strongest at -45 and 45 degrees, arise from 

the binning process and are difficult to remove without discarding data. Furthermore, it is 

unclear how secondary dendrite arm spacing could be measured directly from Hough 

space. Secondary dendrite arm spacing could be measured from the change in image 

intensity along the primary dendrite arm orientation in the two-point correlation function 

output. But this would require an accurate measurement of primary dendrite arm 

orientation, currently unattainable using the Hough transform. 

Several processes were studied to improve the detection of the primary dendrite 

arm orientation from two-point correlation function outputs using the Hough transform. 

First, multiple bin size combinations were used for ρ and θ, the parameters used to calculate 

the Hough transform. Bin sizes for ρ varied from 1 to 5 pixels in 1 pixel increments, and 

bin sizes for θ varied from 0.2 to 2 degrees in 0.1 degree increments. No combination of ρ 

and θ bin sizes used produced an accurate measurement of the primary dendrite arm 

orientation or eliminated the image artifacts created by the Hough transformation. Second, 

a CLAHE algorithm was applied to the two-point correlation function output prior to 

Hough analysis. This procedure did not improve the detection of dendritic arm orientations 

because it did not accentuate the dominant streaks that represent dendrite arm orientations 

or increase the contrast of the two-point correlation function output. Third, a threshold 

procedure was applied to the CLAHE processed two-point correlation function output to 

remove background noise and isolate the bright streaks that represent the dendritic arm 

orientations in the two-point correlation function output. The threshold process converted 
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all pixel values below 0.5 to 0, i.e. black. The threshold procedure slightly improved the 

detection of dendritic arm orientations, but produced inconsistent results across different 

images, generated large measurement uncertainty, and was difficult to automate. Fourth, a 

weighted calculation was used to emphasize data acquired from bright pixels over data 

from darker pixels in the two-point correlation function output. Several different weighting 

algorithms were tested, but none reliably improved detection of the primary dendrite arm 

orientation. 

 

 

 

Figure 6.1: The relationship between (ρ, θ) and (x, y) used to calculate the Hough 

transform is presented. 
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Figure 6.2: The Hough transformation process is illustrated by (a) an image taken from 

the VAR ingot in the center of the bottom slab, (b) the two-point correlation function 

output of that image, and (c) the Hough transform of the two-point correlation function 

output. The two-point correlation function was calculated from a 512 by 512 pixel 

analysis region using a transportable analysis window of 256 pixels. The Hough 

transform used bin sizes of one pixel for ρ and one degree for θ. 
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6.3. RADON TRANSFORM 

The Radon transform [82] was studied as an alternative to the Hough transform 

because it is not as significantly affected by image artifacts. The Radon transform, similar 

to the Hough transform, uses the parametric notion of a line to transform image data, albeit 

in a different manner than the Hough transform. For a two-dimensional image, the Radon 

transform calculates image projections along planes rotated about the center of the image 

using a set of line integrals; this is illustrated in Figure 6.3 (a). The line integrals are 

calculated using the following relationships, 

 

𝑅𝜃(𝑥′) = ∫ 𝑓(𝑥′ cos 𝜃 − 𝑦′ sin 𝜃,   𝑥′ sin 𝜃 + 𝑦′ cos 𝜃)𝑑𝑦′∞

−∞
 (8) 

𝑥′ = 𝑥 cos 𝜃 + 𝑦 sin 𝜃      (9) 

𝑦′ = −𝑥 sin 𝜃 + 𝑦 cos 𝜃.      (10) 

 

The relationship between the (x, y) coordinate frame and the (x′, y′) coordinate 

frame used in the Radon transform is presented in Figure 6.3 (b). After the Radon transform 

is completed for each pixel in the image analyzed, the transforms are then summed. 

Regions of high intensity in the Radon transform represent lines from the original image. 

The Radon transform was implemented in MatlabTM [71] to analyze the two-point 

correlation function output previously analyzed using the Hough transform. The two-point 

correlation function output, the image it was acquired from, and the Radon transform of 

the two-point correlation function output are presented in Figure 6.4. Similar to the Hough 

transform image, the Radon transform image is dominated by two sinusoidal bands and 

two bright regions created at 45 and 135 degrees. Once again, these bright regions do not 

correspond with the angle of the dendrite arm directions visible in the two-point correlation 

function output. It is concluded that the Radon transform, similar to the Hough transform, 
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is dominated by background noise in the two-point correlation function output and not the 

streaks representative of dendrite orientations. 

Primary dendrite arm orientation could not be ascertained from the two-point 

correlation function output using the Radon transform. No clear methodology exists for 

determining secondary dendrite arm spacing using the Radon transform. Because the 

results produced by the Radon transform were similar to those produced using the Hough 

transform, the ineffective procedures studied to improve the Hough transform were not 

attempted to improve the Radon transform results. 

 

 

 

Figure 6.3: The Radon transform of a two-dimensional image is calculated using (a) the 

projections of that image along planes rotated about the center of the image, and (b) the 

(x′, y′) coordinate frame. 
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Figure 6.4: The Radon transformation is illustrated by (a) an image taken from the VAR 

ingot in the center of the bottom slab, (b) the two-point correlation function output of that 

image, and (c) the Radon transform of the two-point correlation function output. The 

two-point correlation function was calculated from a 512 by 512 pixel analysis region 

using a transportable analysis window of 256 pixels. 
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6.4. FOURIER ANALYSIS 

This dissertation presents the successful implementation of Fourier analysis to 

measure primary dendrite arm orientation and secondary dendrite arm spacing from two-

point correlation function outputs. Analysis was completed using a two-dimensional (x, y) 

Fast Fourier Transform (FFT) algorithm implemented in MatlabTM [71]. The development 

of the Fourier analysis used in this dissertation is now presented. 

The two-dimensional FFT of an N by N image can be computed using the following 

relationships, 

 

𝐹(𝑢, 𝑣) =
1

𝑁
 ∑  ∑ 𝑓(𝑥, 𝑦) 𝑒 [

−2𝜋𝑗(𝑢𝑥+𝑣𝑦)

𝑁
]𝑁−1

𝑦=0
𝑁−1
𝑥=0  (11) 

𝐹(𝑢, 𝑣) = 𝑅(𝑢, 𝑣) + 𝑗𝐼(𝑢, 𝑣) = |𝐹(𝑢, 𝑣)| 𝑒 [𝑗𝜙(𝑢,𝑣)] (12) 

|𝐹(𝑢, 𝑣)| = √𝑅(𝑢, 𝑣)2 + 𝐼(𝑢, 𝑣)2   (13) 

𝜙(𝑢, 𝑣) = tan−1 [𝐼(𝑢, 𝑣)
𝑅(𝑢, 𝑣)⁄ ].   (14) 

 

Here, 𝑓(𝑥, 𝑦) is the image data, 𝐹(𝑢, 𝑣) is the Fourier transform, j is the imaginary unit, 

𝑅(𝑢, 𝑣) is the real component of the Fourier transform, 𝐼(𝑢, 𝑣) is the imaginary component 

of the Fourier transform, |𝐹(𝑢, 𝑣)| is the complex magnitude of the Fourier transform, and 

𝜙(𝑢, 𝑣) is the phase of the Fourier transform. Note that the FFT algorithms are most 

effective at analyzing square images with dimensions equal to a power of two, i.e. images 

2n by 2n large, where n is a positive integer. 

The two-dimensional FFT can be visualized as an image using the square of 

|𝐹(𝑢, 𝑣)|; this is called the power spectrum. The power spectrum is then scaled using a 

logarithm to base 10 to stretch its range, which improves image contrast. This visualization 

technique is demonstrated using the images presented in Figure 6.5. The original image 

data, which consists of parallel lines oriented 114 degrees from the horizontal, is shown in 
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Figure 6.5 (a) along with the complex magnitude calculated from the two-dimensional FFT 

of this image on (b) linear and (c) logarithmic scales. Note that a Blackman function was 

used to window the image in Figure 6.5 (a) prior to Fourier analysis. Little information is 

visible in the power spectrum presented on a linear scale compared to the one presented on 

a base-10 logarithmic scale. During the FFT calculation, image data is rotated by                  

90 degrees. Thus, the power spectrum must be rotated by 90 degrees, as shown in                

Figure 6.5 (d), to align the FFT data with the orientation of the original image data. This 

power spectrum can now be analyzed. 

Power spectra can be analyzed using individual vectors that originate at the center 

of the image. The direction of a vector represents the orientation of a feature in the original 

image. The magnitude of a vector represents the periodicity of that orientation in the 

original image; a large magnitude correlates to a high periodicity. Vectors that end on a 

position with a high pixel intensity represent a dominant feature in the original image. 

Thus, the directionality of features in the original image can be determined by locating 

positions of high intensity in the power spectrum. This is demonstrated in Figure 6.5, where 

the orientation of the lines in the original image (a) are determined from the highest 

intensity points in the rotated power spectrum (d). 
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Figure 6.5: A two-dimensional FFT was applied to (a) a binary image consisting of 

parallel lines oriented 114 degrees from the horizontal. The power spectrum calculated 

from the FFT of this binary image is presented in (b) on a linear scale, (c) on a base-10 

logarithmic scale, and (d) rotated 90 degrees on a base-10 logarithmic scale. Note that a 

Blackman function was used to window the binary image prior to Fourier analysis. 
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6.5. FOURIER ANALYSIS IMPLEMENTATION 

Fourier analysis was used to measure primary dendrite arm orientation and 

secondary dendrite arm spacing from the VAR alloy 718 slabs. Power spectra calculated 

from the FFT of two-point correlation function outputs were analyzed using angular filters 

to determine primary dendrite arm orientations. Secondary dendrite arm spacings were 

measured directly from two-point correlation function outputs after primary dendrite arm 

orientations were determined. Secondary dendrite arm spacing was measured from the 

periodicity of streaks along the primary dendrite arm orientation in the two-point 

correlation function output. This FFT analysis procedure is now described. 

A single image taken from the VAR ingot in the upper left corner of the bottom 

slab, presented in Figure 6.6, is used to demonstrate the Fourier analysis techniques of this 

dissertation. This is accomplished using a 512 by 512 pixel wide analysis region selected 

from the center of this image. Figure 6.7 presents this analysis region as (a) an 8-bit 

grayscale and (b) a binary image created after CLAHE processing of the grayscale image. 

Prior to Fourier analysis, two-point correlation function analysis was completed on this 

region using a 256 pixel transportable analysis window. The 512 pixel analysis region and 

256 pixel transportable window were previously shown to provide the best analysis of this 

microstructure. A two-dimensional FFT implemented in MatlabTM analyzed the two-point 

correlation function output [71]. Figure 6.8 presents (a) the two-point correlation function 

output and (b) the power spectrum calculated from the FFT.  

Note that two primary directions, most likely the primary and secondary dendrite 

arm orientations, are evident in Figure 6.8 (b), but these directions are obscured by a cross-

shaped artifact. This artifact is created because the FFT assumes the image being analyzed 

repeats infinitely in space. Windowing functions can be used to smooth image edges and 

eliminate this artifact. During this study, a Hann function [83] was used to window the 



 88 

two-point correlation function outputs. The windowed two-point correlation function 

output and the resulting power spectrum are presented in Figure 6.9. Note that no artifacts 

are present in the power spectrum calculated from the FFT of the windowed two-point 

correlation function output. The dominant directions noted in Figure 6.9 (b) correspond 

with the primary and secondary dendrite arm orientations visible in Figure 6.7 (a), the 

original image data. Even the orientation of scratches visible in the original image are 

detected using the FFT. This effectively demonstrates that the orientation of features, 

especially primary and secondary dendritic arms, can be measured from FFT data.  

Primary and secondary dendrite arm orientations were measured from the FFT data. 

This was accomplished using a set of angular filters to measure the complex magnitudes 

of the FFT data along discrete orientations. The angular filter is equal in size to the FFT 

data and constructed from a zero valued background and a non-zero valued Gaussian 

distribution positioned near its center. The Gaussian distribution is symmetric along the x-

axis and the y-axis. The filter values within the Gaussian distribution have a peak value of 

1 and decline toward zero as described by the following, 

 

𝐺(𝑥, 𝑦) =  (1
2𝜋𝜎𝑥𝜎𝑦

⁄ ) 𝑒(−𝑓(𝑥,𝑦)) (15) 

𝑓(𝑥, 𝑦) =
(𝑥−𝜇𝑥)2

2𝜎𝑥
2

+  
(𝑦−𝜇𝑦)

2

2𝜎𝑦
2

.   (16) 

 

Here G(x, y) is the Gaussian distribution, σx is the standard deviation along the x-axis, σy is 

the standard deviation along the y-axis, μx is the mean along the x-axis, and μy is the mean 

along the y-axis. For this study, μx and μy were set to 0, σx was set to 2.5, and σy was set to 

0.25. One angular filter, oriented at 0 degrees, is presented in Figure 6.10 (a); the Gaussian 

distribution is shown in white. The angular filter was designed to concentrate analysis 
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toward the center of the FFT data where feature orientations are most strongly represented. 

Angular filters were created with orientations of 0 to 179 degrees at 1 degree increments 

by rotating the horizontally oriented angular filter shown in Figure 6.10 (a).  

Directional intensities were calculated by multiplying each angular filter with the 

complex magnitudes calculated from the FFT data, as demonstrated by Figure 6.10 (b). 

The resulting multiplication product is presented in Figure 6.10 (c). The total intensity of 

that direction is calculated by summing the intensity of all points in the multiplication 

product. This summed intensity describes the strength of a given direction in the two-point 

correlation function data. Implementation of the angular filter is summarized in the 

following: 

1) Construct the angular filter. 

2) Multiply the angular filter with the magnitudes calculated from the FFT; this is 

demonstrated in Figure 6.10 (b). 

3) Sum the intensity values of the multiplication product; demonstrated in              

Figure 6.10 (c). 

4) Rotate the angular filter counter-clockwise by 1 degree. 

5) Repeat steps 1 thru 4 until the angular filter has been rotated 179 degrees. 

 

After the angular filters were applied, a summed intensity value was calculated for 

each orientation of the filter. These summed intensity values describe the strength of each 

direction in the two-point correlation function data. This directionality data set can be 

viewed by plotting the summed intensity values against each direction, as shown in 

Figure 6.11. Peaks in the directionality data describe the prominent orientations of the 

microstructural features within the image analyzed and were located.  
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First the minimum summed intensity value from the directionality data was 

removed to eliminate background noise. Second, local maximums were identified in the 

directionality data using MatlabTM [71], and these were labeled as peaks. For the algorithm 

implemented, peaks required a prominence with a minimum summed intensity of 10 to be 

measured, and no two peaks could be located within 10 degrees of each other. For this 

study, only large peaks were considered likely to describe the primary or secondary 

dendrite arm orientations. Therefore, a low-pass filter was used to discard any 

directionality data set that did not contain a local maximum with a summed intensity of at 

least 400. This limit was determined through experimentation. For directionality data sets 

that contained two large peaks separated by approximately 90 degrees, these likely 

represented the primary and secondary dendrite arm orientations. If only one large peak 

was identified, that peak likely represented either the primary or secondary dendrite arm 

orientation. 

After the dominant peaks were identified, the peak most likely to represent the 

primary dendrite arm orientation was determined. If the peak associated with the primary 

dendrite arm orientation was identified, then that orientation was calculated. This was 

accomplished using the location within the ingot from which this data was acquired. 

Primary dendrite arms on the left side of the ingot are most likely oriented between 15 and 

90 degrees. Those on the right side of the ingot are most likely oriented between 90 and 

165 degrees. If a second peak was identified, it was then taken as the secondary dendrite 

arm orientation. If only one peak was identified, and if it represented the secondary dendrite 

arm orientation, the primary dendrite arm orientation was calculated as 90 degrees away. 

Directionality calculated from two-point correlation function and Fourier analysis 

of the microstructure shown in Figure 6.7 is presented in Figure 6.11. Note that two large 

peaks are identified at 43 and 132 degrees. This is the ideal scenario because each peak 
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represents either the primary or the secondary dendrite arm orientation. Using the 

knowledge that this data was acquired from the left side of the VAR ingot, the primary and 

secondary dendrite arm orientations are determined to be 43 and 132 degrees, respectively. 

After peak finding, Gaussian distributions were fit to the primary and secondary 

dendrite arm peaks if they exist. These fits provided a consistent method to measure peak 

location and uncertainty. This method was used because multiple small peaks often existed 

on top of the large identified peaks from small differences in dendrite arm orientations 

visible in the microstructural data. Since only one measure of dendrite orientation was 

reported, this fit provided a useful averaging for these small peaks. The peak location was 

then reported as the mean of the Gaussian distribution, and the standard deviation provided 

a measure of uncertainty. The Gaussian distributions to the peaks from Figure 6.11 are 

presented in Figure 6.12. 

Fourier analysis was also applied directly to binary microstructural images. 

However, peak directions were not as pronounced or tight as those obtained from Fourier 

analysis of the two-point correlation function output. Filtering techniques could potentially 

improve results from Fourier analysis of microstructure, but none were investigated in this 

dissertation. Additionally, no clear methodology exists for measuring secondary dendrite 

arm spacing from Fourier analysis of microstructure. For these reasons, Fourier analysis 

directly of microstructural images was not pursued further. 

The primary dendrite arm orientation identified using two-point correlation 

function and Fourier analysis was used to prepare the two-point correlation function output 

for secondary dendrite arm spacing analysis. The two-point correlation function output was 

rotated using a bilinear rotation algorithm until the primary dendrite arm orientation was 

horizontal. It was then cropped to a 128 pixel square. This was performed on the two-point 

correlation function output presented in Figure 6.8 (a), and the results are provided in 
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Figure 6.13. Secondary dendrite arm spacing was then measured from this image using two 

techniques. The first technique measured secondary dendrite arm spacing directly from the 

two-point correlation function output. The second technique measured secondary dendrite 

arm spacing using a one-dimensional FFT. The first technique is now described. 

For the first technique, pixel intensity values were summed along the secondary 

dendrite arm orientation, i.e. along columns, in the rotated two-point correlation function 

output. The column sums produced a one-dimensional data vector of summed pixel 

intensity as a function of position. Peaks were then identified in this vector, and the distance 

between them was measured; a minimum of 4 peaks was stipulated to define a valid 

measurement. The summed secondary dendrite arm data from Figure 6.13 and the peaks 

identified are presented in Figure 6.14. The mean and standard deviation of the spacing 

between peaks were calculated. The mean is reported as the secondary dendrite arm 

spacing, and the standard deviation is reported as its uncertainty. 

The second technique measured secondary dendrite arm spacing using a one-

dimensional FFT. This technique measured wavenumber from the periodicity of the two-

point correlation function output along the primary dendrite arm orientation. Like the first 

technique, pixel intensity values were summed along the secondary dendrite arm 

orientation. To impose the symmetry necessary for FFT analysis, the summed data set was 

then split in half at its center point, creating left-half and right-half data sets. Next, the 

right-half data set was flipped about the center point and added to the left-half data set. A 

result from this procedure is provided in Figure 6.15. This process was necessary to remove 

the large peak at the center of the summed data shown in Figure 6.14 because it created 

artifacts in the one-dimensional FFT. Next the large peak at the end of the halved data set, 

shown in Figure 6.15, was removed. This result was then returned to a power of 2 in length 

by mirroring data as shown in Figure 6.16. Finally, a one-dimensional FFT was 
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implemented in MatlabTM [71] to analyze this data, and the results are provided in        

Figure 6.17. 

For the VAR ingot, secondary dendrite arm spacing was measured by identifying 

peaks in the FFT data located near a wavenumber of 10 cycles per mm. This wavenumber 

corresponds to a secondary dendrite arm spacing of 100 μm, the average secondary dendrite 

arm spacing calculated for the VAR ingot from manual measurements. This measurement 

technique is primarily limited by resolution. Because the data set used to calculate the 

secondary dendrite arm spacing is not very long, the resolution of the wavenumber is poor. 

The limited resolution only provides measurements in increments of approximately 2 

cycles per mm, which corresponds to approximately 25 μm. This poor resolution also 

forces the wavenumber of interest, 10 cycles per mm for this material, toward the left end 

of the FFT data set, as shown in Figure 6.17. This locates the peaks of interest close to 

other peaks created from the gradual slope of the data that do not describe the secondary 

dendrite arm spacing. A larger data set would greatly improve the resolution and utility of 

this technique. 

The subsequent chapter presents and discusses two-point correlation function and 

Fourier analysis of four different microstructures from the VAR ingot. These case studies 

are used to demonstrate the ability of the techniques developed to analyze different 

microstructures. 
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Figure 6.6: This image is used to demonstrate the Fourier analysis techniques. It was 

selected from the VAR ingot in the upper left corner of the bottom slab. 

 

 

Figure 6.7: The analysis region selected from the center of Figure 6.6 is presented as (a) 

grayscale and (b) binary images. The primary and secondary dendrite arm orientations 

are noted. 
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Figure 6.8: (a) The two-point correlation function output from analysis of Figure 6.7 (b) 

is presented. (b) The power spectrum calculated from the two-dimensional FFT of the 

two-point correlation function output is presented on a logarithmic scale for intensity. 

Dendritic arm orientations and image artifacts are noted. 

 

 

Figure 6.9: (a) The windowed two-point correlation function output from analysis of 

Figure 6.7 (b) is presented. (b) The power spectrum calculated from the two-dimensional 

FFT of the windowed two-point correlation function output is presented on a logarithmic 

scale for intensity. Dendritic arm orientations and scratch orientations are noted. 
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Figure 6.10: This figure illustrates (a) the shape of the angular filter, (b) implementation 

of the angular filter, and (c) the product produced by application of the angular filter at 

60° to the FFT data. 
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Figure 6.11: Directionality determined from Fourier analysis of the analysis region shown 

in Figure 6.7 is presented. The primary and secondary dendrite arm orientations are 

noted. 
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Figure 6.12: The Gaussian fits to the peaks that represent the (a) primary dendrite arm 

orientation and (b) secondary dendrite arm orientation are presented. 
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Figure 6.13: The rotated and cropped two-point correlation function output is presented. 

 

 

Figure 6.14: Intensity values calculated from Figure 6.13 by summing pixel intensities 

along the secondary dendrite arm orientation are provided. The peaks identified and their 

prominences and widths are noted. 
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Figure 6.15: The sum of the pixel intensity halves presented in Figure 6.14 are provided. 

This was calculated by: (1) splitting the summed data in half at its center point, (2) then 

data in the right half was flipped about the center point and added to the left half. The 

large peak highlighted at the end of the data set was removed later in the analysis. 
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Figure 6.16: The data used to calculate secondary dendrite arm spacing using a one-

dimension FFT is provided. This data was created after the large peak at the end of the 

halved data was removed. This data set was then returned to a power of 2 in length by 

mirroring data as shown. 
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Figure 6.17: Results from the one-dimensional FFT of the secondary dendrite arm 

spacing data are provided. Intensity is plotted as a function of wavenumber. The peak 

likely to represent the secondary dendrite arm spacing of this region is noted. Note that 

this peak appears toward the left end of the data set. 
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7. FOURIER ANALYSIS CASE STUDIES 

7.1. OVERVIEW 

Two-point correlation function and Fourier analyses were performed on four 

different images acquired from the VAR ingot to demonstrate how these analysis 

techniques apply to different types of microstructures. Each image selected has a resolution 

of approximately 9.0 μm per pixel. Microstructural differences between these images 

include: (1) primary dendrite arm orientation, (2) secondary dendrite arm spacing, (3) 

secondary dendrite arm visibility, (3) the presence of scratches, (4) artifacts from 

metallographic preparation of the alloy 718 ingot slabs that appear as blob-like features, 

referred to herein as “blob-like artifacts,” and (5) equiaxed or directional solidification 

characteristics. 

Two-point correlation function analysis was performed on regions selected from 

the center of each image analyzed. The analysis regions measured 512 pixels (4.6 mm) 

square. The two-point correlation function analysis used a 256 pixel (2.3 mm) transportable 

analysis window. These parameters were previously determined to provide the best two-

point correlation analysis of the VAR ingot. Fourier analysis was then performed on the 

two-point correlation function data produced from each image. 

 

7.2. CASE ONE 

The first microstructure, shown in Figure 7.1, was selected from the VAR ingot in 

the left side of the bottom slab. This microstructure demonstrates: (1) directional 

solidification, (2) well-defined primary dendrite arm orientations, (3) poor secondary 

dendrite arm distinction, and (4) blob-like artifacts. The analysis region selected from this 

image is presented in Figure 7.2. Two primary dendrite arm orientations are evident and 
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noted. Some secondary dendrite arms are visible in this region, but secondary dendrite arm 

spacing is expected to be difficult to measure. Blob-like artifacts are visible in the analysis 

region and noted in Figure 7.2. The two-point correlation function output from this region 

is provided in Figure 7.3 (a). Only a single streak direction is well-defined in the two-point 

correlation function output; it is suspected that this corresponds to the average primary 

dendrite arm orientation. This is expected because primary arms are clearly visible within 

the analysis region, and secondary dendrite arms are not. The windowed two-point 

correlation function data is provided in Figure 7.3 (b). 

The power spectrum from the FFT of the windowed two-point correlation function 

data is presented in Figure 7.4. Like the two-point correlation function output, only one 

streak orientation, most likely the average primary dendrite arm orientation, is strongly 

represented in the FFT data. Directionality was then analyzed using angular filters, and the 

results are provided in Figure 7.5. A single large peak is identified at approximately 50 

degrees. Because this data was acquired from the left side of the ingot, it is readily 

determined that this peak represents the primary dendrite arm orientation. Primary dendrite 

arms on the left side of the ingot are typically oriented between 15 and 90 degrees. A small 

peak was also identified at 145 degrees, approximately 90 degrees away from the primary 

peak. This small peak might be from secondary dendrite arms. However, this peak was too 

small to analyze. A Gaussian distribution was fit to the primary peak and is presented in 

Figure 7.6. The primary dendrite arm orientation was calculated to be 47.6 degrees with a 

95 percent confidence interval of ± 1.5 degrees. The standard deviation was calculated as 

18.5 degrees. This measure of primary dendrite arm orientation is consistent with the 

orientations visually identified in Figure 7.2. The asymmetry of the peak shown in       

Figure 7.5 and Figure 7.6 is qualitatively consistent with the range of primary dendrite arm 

orientations observed in Figure 7.2. The small peak at approximately 30 degrees may be 
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from the artifacts identified in Figure 7.2, and did not interfere significantly with this 

analysis. 

The rotated two-point correlation function data used for secondary dendrite arm 

analysis is presented in Figure 7.7. Pixel intensity was summed along the secondary 

dendrite arm orientation and is presented in Figure 7.8. Because fewer than four peaks were 

identified in this data set, secondary dendrite arm spacing was deemed unmeasurable. 

 

 

Figure 7.1: Microstructure from the VAR ingot in the left side of the bottom slab is 

presented as a grayscale image. 
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Figure 7.2: The analysis region is presented. The two primary dendrite arm orientations 

are noted. 

 

 

Figure 7.3: The two-point correlation function output from the analysis region is 

presented (a) before and (b) after windowing. A Hann windowing function was used. 
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Figure 7.4: The power spectrum calculated from the FFT is presented on a base-10 

logarithmic scale as (a) grayscale and (b) color images. Note that the FFT data is rotated 

90 degrees with respect to the two-point correlation function output and original image 

data. 

 

 

Figure 7.5: Directionality calculated from Fourier analysis is presented. The primary 

dendrite arm orientation is noted. 
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Figure 7.6: The Gaussian distribution fit to the primary dendrite arm peak is presented. 

 

 

Figure 7.7: The rotated two-point correlation function data used for secondary dendrite 

arm analysis is presented. Rotation used the primary dendrite arm orientation identified 

from Fourier analysis. 
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Figure 7.8: The image intensity summed along the secondary dendrite arm orientation is 

presented. 

 

7.3. CASE TWO 

The microstructure from the VAR ingot in the bottom left of the bottom slab is 

presented in Figure 7.9. This microstructure demonstrates: (1) directional solidification, 

(2) multiple primary dendrite arm orientations, (3) poor secondary dendrite arm distinction, 

and (4) small horizontal scratches. The analysis region selected from this image is 

presented in Figure 7.10, and the two visible primary dendrite arm orientations are noted. 

Secondary dendrite arms are visible intermittently throughout this region. Detection of the 

average primary dendrite arm orientation is expected, and measurement of secondary 

dendrite arm spacing may be possible. 

The two-point correlation function output from this region is provided in           

Figure 7.11. A single streak direction is well-defined in the two-point correlation function 
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output, but this streak is more diffuse than the one identified in Case One. It is suspected 

that the 10 degree difference in primary dendrite arm orientations for this analysis region 

causes the diffuse nature of the streak. 

The power spectrum from the FFT of the windowed two-point correlation function 

data is presented in Figure 7.12. Like the two-point correlation function output, only one 

streak orientation is identified, and it is slightly diffuse. Directionality was analyzed using 

angular filters, and the results are presented in Figure 7.13. One dominant peak is identified 

at 71 degrees. It was determined to represent the average primary dendrite arm orientation 

because this data was acquired from the left side of the ingot. The location of this peak is 

similar to the primary dendrite arm orientation of 73 degrees noted in Figure 7.10. A small 

peak was also identified at 60 degrees, which approximately corresponds with the other 

primary dendrite arm orientation noted in Figure 7.10. No peaks were identified that could 

reasonably represent the secondary dendrite arm orientation. The Gaussian distribution fit 

to the primary peak is presented in Figure 7.14. The primary dendrite arm orientation was 

calculated to be 72.7 degrees with a 95 percent confidence interval of ± 0.5 degrees. The 

standard deviation was calculated as 13.6 degrees. This result from the Gaussian fit 

indicated that the preponderance of primary dendrite arms are near the 73 degree 

orientation labeled in Figure 7.10 as “Primary arm orientation 2.” 

The rotated two-point correlation function data used for secondary dendrite arm 

analysis is presented in Figure 7.15. Pixel intensity was summed along the secondary 

dendrite arm orientation and is presented in Figure 7.16. Enough peaks were identified to 

proceed with secondary dendrite arm analysis. Measuring the distance between peaks 

produced an average spacing of 102 μm and a standard deviation of 35 μm. Secondary 

dendrite arm spacing was also calculated from the data presented in Figure 7.17 using FFT 

analysis. This data was halved, summed, and mirrored as previously described. The results 
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are provided in Figure 7.18. Note that a peak is identified near a wavenumber of 10 cycles 

per mm, but it is obscured by other peaks at lower wavenumbers. Secondary dendrite arm 

spacing was calculated as 109 μm, but the resolution of this data only provides a 

measurement in increments of approximately 25 μm. 

 

 

Figure 7.9: Microstructure from the VAR ingot in the bottom left of the bottom slab is 

presented as a grayscale image. 
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Figure 7.10: The analysis region is presented. The two primary dendrite arm orientations 

are noted. 

 

 

Figure 7.11: The two-point correlation function output from the analysis region is 

presented (a) before and (b) after windowing. A Hann windowing function was used. 
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Figure 7.12: The power spectrum calculated from the FFT is presented on a base-10 

logarithmic scale as (a) grayscale and (b) color images. Note that the FFT data is rotated 

90 degrees with respect to the two-point correlation function output and original image 

data. 

 

 

Figure 7.13: Directionality calculated from Fourier analysis is presented. The primary 

dendrite arm orientation is noted. 
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Figure 7.14: The Gaussian distribution fit to the primary dendrite arm peak is presented. 

 

 

Figure 7.15: The rotated two-point correlation function data used for secondary dendrite 

arm analysis is presented. Rotation was completed using the primary dendrite arm 

orientation identified from Fourier analysis. 



 115 

 

Figure 7.16: The image intensity summed along the secondary dendrite arm orientation is 

presented. 

 

 

Figure 7.17: The data used to calculate secondary dendrite arm spacing with a one-

dimensional FFT is provided. 
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Figure 7.18: Results from the one-dimensional FFT of the secondary dendrite arm 

spacing data are provided. Intensity is plotted as a function of wavenumber. 

 

7.4. CASE THREE 

Microstructure from the VAR ingot in the bottom right of the bottom slab is 

presented in Figure 7.19. This microstructure demonstrates: (1) directional solidification, 

(2) distinct primary and secondary dendrite arms, (3) visible secondary dendrite arm 

spacing, and (4) a consistent primary dendrite arm orientation. The analysis region selected 

from this image is presented in Figure 7.20. In this analysis region, both primary and 

secondary dendrite arms are clearly evident. The primary dendrite arm orientation is 

consistent and nearly vertical. The secondary dendrite arm orientation is also consistent but 

nearly horizontal. This microstructure is ideal for measurement because both primary and 

secondary dendrite arms are visible, their orientations are consistent, and no scratches or 

blob-like artifacts are obvious. 
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The two-point correlation function output from this region is provided in           

Figure 7.21. Two distinct streak orientations are produced in the two-point correlation 

function output. Numerous small streaks are also visible and most likely describe the 

secondary dendrite arms. The power spectrum calculated from the FFT of the windowed 

data is presented in Figure 7.22. Two streak orientations are evident in the FFT result, with 

one slightly more diffuse than the other. Directionality was analyzed using angular filters, 

and the results are provided in Figure 7.23. The largest peak is identified at 11 degrees. 

This peak was determined to represent the secondary dendrite arm orientation because this 

data was acquired from the right side of the ingot. Another distinct peak was identified 

approximately 90 degrees from the dominant peak, at 106 degrees. This peak represents 

the primary dendrite arm orientation. As expected, peaks representing both the primary and 

secondary dendrite arm orientations were identified because these features are clearly 

visible in Figure 7.20. 

Gaussian distributions fit to the peaks representing the primary and secondary 

dendrite arm orientations are presented in Figure 7.24 and Figure 7.25, respectively. The 

primary dendrite arm orientation was calculated as 106.4 degrees with a 95 percent 

confidence interval of ± 0.8 degrees and a standard deviation of 8.3 degrees. This correlates 

with the primary dendrite arm orientation observed in Figure 7.20. The secondary dendrite 

arm orientation was calculated as 11.6 degrees with a 95 percent confidence interval of      

± 0.2 degrees and a standard deviation of 14.5 degrees. 

The rotated two-point correlation function data used for secondary dendrite arm 

analysis is provided in Figure 7.26. Pixel intensity was summed along the secondary 

dendrite arm orientation and is presented in Figure 7.27. Enough peaks were identified to 

proceed with secondary dendrite arm analysis. Measuring the distance between peaks 

produced an average spacing of 79 μm and a standard deviation of 17 μm. FFT analysis 
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was used to calculate secondary dendrite arm spacing from the data presented in           

Figure 7.28. This data was halved, summed, and mirrored as described previously. The 

results are provided in Figure 7.29. As in Case Two, multiple peaks are located at low 

wavenumbers. Secondary dendrite arm spacing was calculated as 83 μm, but the resolution 

of this data only provides a measurement in increments of approximately 25 μm. 

 

 

Figure 7.19: Microstructure from the VAR ingot in the bottom right of the bottom slab is 

presented as a grayscale image. 
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Figure 7.20: The analysis region is presented. The primary dendrite arm orientation is 

noted. 

 

 

Figure 7.21: The two-point correlation function output from the analysis region is 

presented (a) before and (b) after windowing. A Hann windowing function was used. 
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Figure 7.22: The power spectrum calculated from the FFT is presented on a base-10 

logarithmic scale as (a) grayscale and (b) color images. Note that the FFT data is rotated 

90 degrees with respect to the two-point correlation function output and original image 

data. 

 

 

Figure 7.23: Directionality calculated from Fourier analysis is presented. The primary 

and secondary dendrite arm orientations are noted. 
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Figure 7.24: The Gaussian distribution fit to the primary dendrite arm peak is presented. 

 

 

Figure 7.25: The Gaussian distribution fit to the secondary dendrite arm peak is 

presented. 
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Figure 7.26: The rotated two-point correlation function data used for secondary dendrite 

arm analysis is presented. Rotation was completed using the primary dendrite arm 

orientation identified from Fourier analysis. 

 

 

Figure 7.27: The image intensity summed along the secondary dendrite arm orientation is 

presented. 
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Figure 7.28: The data used to calculate secondary dendrite arm spacing using a one-

dimension FFT is provided. 
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Figure 7.29: Results from the one-dimensional FFT of the secondary dendrite arm 

spacing data are provided. Intensity is plotted as a function of wavenumber. 

 

7.5. CASE FOUR 

The microstructure from the VAR ingot in the middle of the top slab is presented 

in Figure 7.30. This microstructure demonstrates: (1) equiaxed solidification, (2) no 

distinct primary dendrite arm orientation, and (3) visible primary and secondary dendrite 

arms. The analysis region selected from this image is presented in Figure 7.31. In this 

analysis region, both primary and secondary dendrite arms are observed, and primary 

dendrite arms are randomly orientated. 

The two-point correlation function output from this region is provided in           

Figure 7.32. The power spectrum from the FFT of the windowed two-point correlation 

function data is presented in Figure 7.33. No distinct streak orientations are present in either 

the two-point correlation function output or the FFT data. Directionality was analyzed 
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using angular filters, and the results are presented in Figure 7.34. There were no peaks with 

a maximum intensity value of at least 400 units detected. Because of this, neither primary 

dendrite arm orientation nor secondary dendrite arm spacing were deemed measurable. 

 

 

Figure 7.30: Microstructure from the VAR ingot in the middle of the top slab is presented 

as a grayscale image. 
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Figure 7.31: The analysis region is presented. 

 

 

Figure 7.32: The two-point correlation function output from the analysis region is 

presented (a) before and (b) after windowing. A Hann windowing function was used. 
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Figure 7.33: The power spectrum calculated from the FFT is presented on a base-10 

logarithmic scale as (a) grayscale and (b) color images. Note that the FFT data is rotated 

90 degrees with respect to the two-point correlation function output and original image 

data. 

 

 

Figure 7.34: Directionality calculated from Fourier analysis is presented. 
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8. RESULTS FROM THE VAR INGOT 

8.1. PARTICLE IDENTIFICATION 

The particle identification technique was used to measure primary dendrite arm 

orientation and secondary dendrite arm spacing throughout the VAR ingot. Melt pool 

profiles were then estimated from primary dendrite arm orientations. 

The 55,640 individual primary dendrite arms identified in the VAR ingot are 

presented in Figure 8.1; the color of each primary dendrite arm describes its orientation 

within the ingot. Primary dendrite arm density is high along the left, right, and bottom of 

the ingot. In these regions, directional solidification occurred, and the primary dendrites 

exhibit consistent orientations, as demonstrated in Figure 8.1. Primary dendrite arm 

orientations are consistent for a constant radial position across a wide range of heights. On 

the left side of the ingot, primary dendrite arms are oriented at approximately 25 degrees. 

This orientation increases to approximately 50 degrees at one-third of the diameter into the 

ingot. On the right side of the ingot, the average primary dendrite arm orientation decreases 

from approximately 156 degrees at the right surface to approximately 125 degrees at one-

third of the diameter into the ingot. Along the bottom of the ingot, primary dendrite arms 

have a consistent orientation near 90 degrees. Because this ingot is small, the bottom region 

constitutes a large portion of the ingot. 

At the center of the ingot, primary dendrite arms are randomly oriented. This is 

expected, because equiaxed solidification occurs in the center of the ingot. Furthermore, 

primary dendrite arms are sparsely identified at the center compared to the sides of the 

ingot. It is suspected that the geometry of the primary dendrite arms evident in the equiaxed 

region interferes with the particle identification methodology. For example, equiaxed 

solidification is expected to produce many primary dendrite arms that pass through the 

sectioning plane, instead of lying within that plane, preventing them from being identified. 
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Melt pool profiles were estimated from primary dendrite arm orientations.       

Figure 8.2 presents a montage image of the VAR ingot, the identified primary dendrite 

arms, and the melt pool profile estimates. These melt pool profiles are overlaid on the 

identified primary dendrite arms in Figure 8.3. Melt pool profiles were estimated using the 

streamline function in MatlabTM [71]. Profiles were started on the left and right surfaces of 

the ingot at several locations along the ingot height and were calculated toward the center 

of the ingot. As shown in Figure 8.2, the profile estimates were stopped 60 mm into the 

ingot, before they reached the equiaxed region. The profiles were halted before the 

equiaxed region because melt pool profiles cannot be acquired from the randomly oriented 

primary dendrite arms in the equiaxed region. Figure 8.3 includes manual approximations 

of melt pool profiles spanning the ingot diameter for comparison with the calculated 

estimates. Manual melt pool profiles were drawn by hand based on visual observations of 

the primary dendrite arm orientations from the particles identified. 
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Figure 8.1: Primary dendrite arms identified from the VAR ingot using particle 

identification are presented. The color of each dendrite corresponds to its orientation 

within the ingot. 
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Figure 8.2: (a) The montage image of the VAR ingot is presented with (b) the primary 

dendrite arms identified and (c) the melt pool profiles calculated from primary dendrite 

arm orientations. These were calculated using particle identification. 
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Figure 8.3: Automated melt pool profile estimates (solid lines) are combined with manual 

melt pool lines (dashed lines) drawn through the equiaxed region and overlaid on the 

primary dendrite arms identified from the VAR ingot. These profiles were calculated 

using particle identification. 
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Secondary dendrite arm spacing measurements are shown in Figure 8.4 using a 

Voronoi diagram. A Voronoi diagram represents data in space by forming a polygonal cell 

around each individual data point. The size and shape of a polygonal cell is chosen such 

that each position within that cell is located closer to the data point used to create that cell 

than any other data point. Figure 8.4 demonstrates that secondary dendrite arm spacing was 

successfully measured throughout the VAR ingot. No obvious trends in these 

measurements are observed. Instead, secondary dendrite arm spacing measurements vary 

throughout the ingot, and the majority of these measurements range from 100 to 180 μm. 

Average secondary dendrite arm spacings were calculated from the left side of the 

VAR ingot using the automated technique and compared to manual measurements. Manual 

measurements were used to determine the accuracy of the automated measurement 

technique. Figure 8.5 presents the secondary dendrite arm spacing measurements from the 

left side of the VAR ingot and the average secondary dendrite arm spacings calculated at 

select locations along the ingot height. Secondary dendrite arm spacings were measured 

from the highlighted region in Figure 8.5 (a) manually and by using the automated 

technique. In Figure 8.5 (b), solid lines represent average secondary dendrite arm spacing 

measurements, and dashed lines represent the standard deviations of those measurements. 

Figure 8.5 (b) establishes that the automated secondary dendrite arm spacing measurements 

are consistently larger than manual measurements, and uncertainty in both the automated 

and manual measurements is large. The manual measurements typically fall within the 

uncertainty of the automated measurements. The average secondary dendrite arm spacing 

calculated from automated measurement is approximately 134 μm with a standard 

deviation of 42 μm. The average secondary dendrite arm spacing calculated from manual 

measurement is approximately 100 μm with a standard deviation of 23 μm. The automated 

technique is expected to produce a slightly larger secondary dendrite arm spacing 
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measurement because it is susceptible to missing some secondary arms, leading to an error 

that increases the spacing measurement. 
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Figure 8.4: Secondary dendrite arm spacings measured from the VAR ingot are presented 

using a Voronoi diagram. These spacings were calculated using particle identification. 
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Figure 8.5: (a) Secondary dendrite arm spacing measurements from the left side of the 

VAR ingot are presented. (b) Average secondary dendrite arm spacings calculated from 

the highlighted region in (a) using automated and manual measurement techniques are 

presented. The automated spacings were calculated using particle identification. 
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8.2. TWO-POINT CORRELATION FUNCTION AND FOURIER ANALYSES 

The VAR ingot was also analyzed using the two-point correlation function and 

Fourier analyses. Over 3,000 individual analysis regions were evaluated. Figure 8.6 

presents the primary dendrite arm orientations calculated from each analysis region in the 

VAR ingot. These orientations are presented as lines located at the center of each analysis 

region. The color of each line describes its orientation within the ingot. White regions in 

Figure 8.6 represent analysis regions where no primary dendrite arm orientation was 

detected. Figure 8.6 demonstrates that primary dendrite arm orientations were successfully 

calculated throughout most of the VAR ingot; only the center of the top slab exhibited a 

large region were primary dendrite arm orientations could not be measured. Consistent 

primary dendrite arm orientations were measured along the left, right, and bottom of the 

ingot. On the left side of the ingot, the primary dendrite arm orientation does not 

significantly vary along most of the ingot height. Variation is slight along the ingot radius 

until near the center of the ingot. Similar behavior is observed on the right side of the ingot. 

Along the bottom of the ingot, primary dendrite arms are oriented near 90 degrees. Regions 

with random primary dendrite arm orientations are only observed within a narrow strip 

located in the center of the ingot.  

Melt pool profiles in the VAR ingot were estimated from primary dendrite arm 

orientations calculated from each analysis region. Melt pools were estimated by rotating 

the primary dendrite arm orientations 90 degrees. Figure 8.7 presents these melt pool 

profile estimates, the primary dendrite arm orientations, and a montage image of the VAR 

ingot. The melt pool profile estimates break down in the center of the ingot where primary 

dendrite arms are randomly oriented, as illustrated by Figure 8.7. 

It is important to note that not all of the information collected during the analysis 

of the VAR ingot was used to produce melt pool profile estimates. For example, only one 
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primary dendrite arm orientation is presented for each analysis region in Figure 8.6, yet in 

some instances, multiple orientations were detected. These secondary orientations were 

recorded but not used during analysis. For future analyses, this information may be useful 

for describing fine details in the melt pool profile or useful for qualifying the confidence 

of the melt pool profile estimates. The uncertainties associated with the primary dendrite 

arm orientations calculated from each analysis region were also estimated, but are not 

reported in this dissertation. The inclusion of these uncertainties during analysis of melt 

pool profiles may be useful, but is beyond the scope of this dissertation. 
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Figure 8.6: Primary dendrite arm orientations calculated from the VAR ingot for each 

analysis region are presented. These orientations calculated using two-point correlation 

function analysis. 
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Figure 8.7: (a) The montage image of the VAR ingot is presented with (b) the primary 

dendrite arm orientations calculated from each analysis region and (c) the melt pool 

profiles calculated from these orientations. These were calculated using two-point 

correlation function analysis. 

 

After primary dendrite arm orientations were calculated for each analysis region in 

the VAR ingot, secondary dendrite arm spacing was measured using two techniques. The 

first technique calculated secondary dendrite arm spacing by measuring peaks in image 

intensity along the primary dendrite arm orientation in the two-point correlation function 

output. The second technique used a one-dimensional FFT to analyze the two-point 

correlation function output along the primary dendrite arm orientation. Secondary dendrite 

arm spacing measurements calculated using both of these techniques are presented in 

Figure 8.8 and Figure 8.9. Data presented in Figure 8.8 was calculated using the peak-

counting technique. Data in Figure 8.9 was calculated using the FFT technique. In both of 

these figures, secondary dendrite arm spacing measurements from each analysis region are 
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described by colored squares; the color of the square represents the value of the secondary 

dendrite arm spacing. White regions represent analysis regions where secondary dendrite 

arm spacing was unmeasurable using these techniques.  

A trend is evident in the secondary dendrite arm spacing data acquired from the 

peak-counting technique; measurements are smaller along the sides of the ingot compared 

to its center. This trend is not observed in the data acquired from the FFT technique. It is 

suspected that the FFT technique does not demonstrate the resolution necessary to observe 

this trend. 
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Figure 8.8: Secondary dendrite arm spacing measured from each analysis region in the 

VAR ingot is presented. Measurements were completed using the peak-counting 

technique for the two-point correlation function analysis. The color of each analysis 

region represents the value of the secondary dendrite arm spacing. 
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Figure 8.9: Secondary dendrite arm spacing measured from each analysis region in the 

VAR ingot is presented. Measurements were completed using the FFT technique for the 

two-point correlation function analysis. The color of each analysis region represents the 

value of the secondary dendrite arm spacing. 
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9. RESULTS FROM THE ESR INGOTS 

9.1. PARTICLE IDENTIFICATION 

All of the industrial ESR ingots provided for this dissertation were analyzed using 

the particle identification methodology. Unfortunately, not all of the results produced from 

these ingots can be presented in this dissertation. However, two examples are provided to 

demonstrate how some of the data produced was used by industry to develop computational 

process models for remelting. Figure 9.1 and Figure 9.2 demonstrate the comparison 

between measured primary dendrite arm orientations and those predicted through 

simulations of remelting. These figures were originally published in “Industrial-Scale 

Validation of a Transient Computational Model for Electro-Slag Remelting” from the 

Liquid Metal Processing and Casting Conference 2017 [50] and are reproduced in this 

dissertation with permission. 

Figure 9.1 and Figure 9.2 present the primary dendrite arm orientations measured 

from the ingots supplied by the Carpenter Technology Corporation and the Special Metals 

Corporation, respectively [50]. These measurements were acquired from the three-quarter 

radius or thickness position in both ingots. For both figures, the average primary dendrite 

arm orientation was calculated using a moving median, shown in blue, and the primary 

dendrite arm orientations predicted through simulation are shown in red. The moving 

median was used to reduce the influence of outliers in the primary dendrite arm orientation 

data. The moving median calculates the median value of the primary dendrite arm 

orientation using data from approximately the three-quarter radius position with a small 

window along the ingot length. The window is moved along the ingot length, and a median 

value is calculated at each position along that path. The predicted primary dendrite arm 

orientations were acquired using MeltFlow-ESRTM; a commercially available two-
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dimensional and transient model for ESR. The predictions for primary dendrite arm 

orientation were taken at a 0.95 liquid fraction. 

These figures demonstrate a good agreement between prediction and measurement 

in both ingots; similar trends are observed in the predicted and measured primary dendrite 

arm orientations along the normalized ingot length. However, the predicted values for 

primary dendrite arm orientation are consistently larger than measurement in both ingots. 

Changes to the primary dendrite arm orientation appear at locations where steady-state 

changes to the melt rate occurred. 

 

Figure 9.1: Primary dendrite arm orientations from the Carpenter Technology 

Corporation ingot are presented. These measurements were acquired from the 0.75 radius 

position using particle identification. Predicted primary dendrite arm orientations are 

shown for comparison. This figure was originally published in “Industrial-Scale 

Validation of a Transient Computational Model for Electro-Slag Remelting” from the 

Liquid Metal Processing and Casting Conference 2017 [50] and is reproduced in this 

dissertation with permission. 
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Figure 9.2: Primary dendrite arm orientations from the Special Metals Corporation ingot 

are presented. These measurements were acquired from the 0.75 thickness position using 

particle identification. Predicted primary dendrite arm orientations are shown for 

comparison. This figure was originally published in “Industrial-Scale Validation of a 

Transient Computational Model for Electro-Slag Remelting” from the Liquid Metal 

Processing and Casting Conference 2017 [50] and is reproduced in this dissertation with 

permission. 

 

Secondary dendrite arm spacing measurements were also used by industry to verify 

simulation predictions. Table 9.1 presents average secondary dendrite arm spacing 

measurements from the ingot supplied by the Carpenter Technology Corporation at three 

different melt rates. This data was originally published in “Industrial-Scale Validation of a 

Transient Computational Model for Electro-Slag Remelting” from the Liquid Metal 

Processing and Casting Conference 2017 [50]. Measurements were acquired from both 
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manual and automated techniques along the ingot centerline. Predictions of secondary 

dendrite arm spacing along the ingot centerline are also presented in Table 9.1 at the 

different melt rates. Predictions were from MeltFlow-ESRTM. 

For each melt rate, manual measurements for secondary dendrite arm spacing were 

larger than those acquired using the automated analysis. The reasons for this disparity are 

not clear. The predicted measurements typically fell within the uncertainty of the 

automated and manual measurements. Though, both measurement techniques exhibit a 

large uncertainty. The simulations predicted a slight decrease in secondary dendrite arm 

spacing with decreasing melt rate. The opposite was generally observed for the manual and 

automated measurements. 

 

Table 9.1: The secondary dendrite arm spacing measurements from the ingot supplied by 

the Carpenter Technology Corporation are provided. Data was acquired manually, from 

automated particle identification, and from simulations. Measurements were acquired 

from the centerline of the ingot. This table is after that previously published in 

“Industrial-Scale Validation of a Transient Computational Model for Electro-Slag 

Remelting” from the Liquid Metal Processing and Casting Conference 2017 [50]. 

Melt Rate 

(lbs/hr) 

Manual 

Measurements (μm) 

Automated 

Measurements (μm) Simulation (μm) 

Average St. Dev. Average St. Dev. Predicted 

850 123 30 104 18 146 

725 135 32 128 22 140 

600 157 34 128 22 139 
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10.   DISCUSSION 

10.1. PARTICLE IDENTIFICATION 

Figure 10.1 presents the primary dendrite arms determined using particle 

identification, the associated melt pool profile estimates, and the electrode current during 

remelting for the VAR ingot as a function of ingot height. Figure 10.1 (a) demonstrates 

that primary dendrite arms were successfully identified throughout the VAR ingot, even 

from the equiaxed microstructural region. Fewer primary dendrite arms were identified in 

the equiaxed region compared to the sides of the ingot, where directional solidification 

occured. Primary dendrite arms in the equiaxed region are randomly oriented and often 

pass through the sectioning plane, instead of lying in that plane, preventing them from 

being identified. Along the sides of the ingot, a large fraction of primary dendrite arms lie 

approximately within the sectioning plane, making them readily identifiable. The primary 

dendrite arm orientations measured qualitatively agree with the expected heat flow during 

solidification. Few outliers are identified in the regions where directional solidification 

occurred. This suggests that the techniques developed to remove erroneously identified 

primary dendrite arms were successful. Furthermore, a sufficient number of primary 

dendrite arms were accurately identified throughout the VAR ingot to produce a 

meaningful analysis of the melt pool profile, despite this technique not utilizing all of the 

microstructural data available. 

It is useful to compare the primary dendrite arm orientations and the melt pool 

profiles to the electrode current during remelting because the electrode current influences 

the melt pool profile. The melt pool profile is expected to change with the electrode current, 

particularly for a large change in current held over a significant time. Figure 10.1 (b) and 

(c) present the melt pool profile estimates and the electrode current during remelting for 

the VAR ingot, respectively. Figure 10.1 (c) illustrates that the electrode current was 
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approximately steady at 3,000 amps during this melt. Some abrupt spikes in the electrode 

current are observed, but no large step changes occurred. Because the electrode current was 

approximately steady throughout the melt, no significant change in melt pool profile is 

expected along the ingot height past the bottom region near the cooled stool upon which 

solidification began. Figure 10.1 (b) demonstrates that the estimated melt pool profiles 

qualitatively appear similar throughout the top portion of the ingot and noticeably change 

only near the bottom the ingot. This is expected because the bottom of the ingot experiences 

transient conditions associated with the start of the melt on the water-cooled stool. 

The slope and depth of the melt pool were quantified in the left side of the VAR 

ingot. Figure 10.2 presents the primary dendrite arms identified, the estimated melt pool 

profiles, and the slope and depth of each melt pool profile as a function of ingot height on 

the left side of the VAR ingot. The slope and depth of each melt pool estimate were 

calculated from the highlighted region in Figure 10.2 (a). Analysis was limited to this 

region because it is mostly unaffected by the surface of the ingot and the equiaxed center 

of the ingot, where melt pool profile estimates are rather difficult. Slopes and depths were 

calculated using the end points of each melt pool profile estimate contained within the 

highlighted region of Figure 10.2 (a). Slopes were calculated by measuring the angle of a 

straight line drawn between the first and last points of each melt pool estimate contained 

within the highlighted region in Figure 10.2 (a). Depths were calculated from the difference 

in height between the first and last points of each melt pool estimate contained within the 

highlighted region in Figure 10.2 (a) 

Figure 10.2 (b) and (c) demonstrate that the characteristics of the melt pool profile 

change slightly along the ingot height. The slope of the melt pool is steepest near the top 

and bottom of the ingot and shallowest in the center. The depth of the melt pool behaves 

similarly. The cause of these changes in the slope and depth of the melt pool along the 
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ingot height is unclear. That said, it is unlikely that these changes are related to changes in 

the electrode current during melting. They may have been created from transient conditions 

at the top and bottom of the ingot. Because this ingot is quite small, transient conditions 

affect a large portion of the ingot. These results reflect one method of measuring the slope 

and the depth of the melt pool profile estimates; different measures may produce slightly 

different results. 

 

 

Figure 10.1: (a) The primary dendrite arms identified from the VAR ingot used to 

calculate (b) expected melt pool profiles from primary dendrite arm orientations are 

shown. These were calculated using particle identification. (c) The electrode current 

during melting is presented as a function of ingot height. 
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Figure 10.2: (a) Data from the left side of the VAR ingot is presented with (b) the slope 

of the melt pool and (c) the depth of the melt pool. These were calculated using particle 

identification. The highlighted region in (a) was used to calculate the slope and depth of 

the melt pool. 

 

Secondary dendrite arm spacing measurements and local solidification times 

calculated from those measurements are provided in Figure 10.3. Local solidification times 

were calculated for the twelve 20 by 20 mm regions shown in Figure 10.3 (b). As 

mentioned previously, secondary dendrite arm spacing measurements varied significantly 

across the ingot. No obvious trends are apparent in the secondary dendrite arm spacing 
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data, as demonstrated by Figure 10.3 (a). Two plausible explanations for the lack of trends 

in secondary dendrite arm spacing values were identified. First, secondary dendrite arm 

spacing may indeed vary indiscriminately throughout the ingot. Second, the automated 

measurement technique may lack the sensitivity and robustness necessary to reveal any 

trends in this data. For example, if an identified particle is not precisely aligned with its 

primary dendrite arm, the secondary dendrite arm spacing measurement will be adversely 

affected. This often leads to a slightly larger secondary dendrite arm spacing measurement 

because some secondary arms are missed. These effects may lead to measurement 

uncertainties larger than the changes in secondary dendrite arm spacing between locations 

within the ingot, thus masking possible trends. 

Solidification times, presented in Figure 10.3 (b), were calculated from secondary 

dendrite arm spacing measurements using Equation 1. Calculated solidification times are 

longest on the left side of the ingot and decrease toward the right side of the ingot. There 

is no clear explanation for this result, which is likely non-physical. It is probably an artifact 

of the large uncertainty associated with the automated secondary dendrite arm spacing 

measurements. It will be shown that the two-point correlation technique provides superior 

predictions. 
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Figure 10.3: (a) Secondary dendrite arm spacing measurements from the VAR ingot are 

presented as a Voronoi diagram, and (b) calculated solidification times from select 

regions within the VAR ingot are presented. These were calculated using particle 

identification. 

 

10.2. TWO-POINT CORRELATION FUNCTION AND FOURIER ANALYSES 

Primary dendrite arm orientations calculated from the two-point correlation 

technique, the associated melt pool profile estimates, and the electrode current during 

remelting are presented in Figure 10.4. Figure 10.4 (a) demonstrates that primary dendrite 

arm orientations were successfully measured throughout most of the VAR ingot. Similar 

to the particle identification method, three regions, each with a consistent primary dendrite 
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arm orientation, are identified along the left, right, and bottom of the ingot, where 

directional solidification occurred. The primary dendrite arm orientations in these regions 

are aligned with the expected heat flow during solidification. The regions of consistent 

primary dendrite arm orientations penetrate significantly into the ingot, almost reaching its 

center. Figure 10.4 (a) demonstrates that this analysis technique can detect primary dendrite 

arm orientations from directionally solidified microstructures, even those with weakly 

defined orientations near the center of the ingot. This analysis technique, however, was 

limited in the middle of the top slab, where primary dendrite arm orientations were not 

measured. Analysis failed in this equiaxed microstructural region because no preferred 

primary dendrite arm orientation exists. 

The melt pool profile estimates are presented in Figure 10.4 (b). The melt pool 

profile estimates appear reasonable and exhibit a definitive change in shape from the top 

to the bottom of the ingot. Figure 10.4 (b) illustrates that the melt pool is “V-shaped” near 

the top of the ingot and flattens toward the bottom of the ingot into a “U-shape.” It is not 

expected that this profile change was caused by fluctuations in the electrode current, but 

rather it is a consequence of the short height of the ingot. The transient region at the bottom 

of the ingot, associated with the start of the melt, alters the melt pool profile along the ingot 

height. Though the shape of the melt pool profile changes along the ingot height, the slope 

of the melt pool along the sides of the ingot does not. The slope of the melt pool was 

quantitatively analyzed in the left side of the VAR ingot to measure any change along the 

ingot height. Figure 10.5 presents the melt pool profile estimates and the measured melt 

pool profile slopes along the left side of the VAR ingot. The melt pool profile slopes were 

measured from the highlighted regions in Figure 10.5 (b). The means and standard 

deviations of these measurements are provided in Figure 10.5 (c) and (d). These figures 

illustrate that the slope of the melt pool profile remains effectively constant along the ingot 
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height, even toward the bottom of the ingot, near the water-cooled stool. This result 

suggests that the variation in the slope of the melt pool profile with height determined using 

the particle identification technique, as shown in Figure 10.2 (b), is a result of measurement 

uncertainty. 

 

 

Figure 10.4: (a) The primary dendrite arm orientations used to calculate (b) expected melt 

pool profiles are presented. These were calculated from the two-point correlation 

technique. (c) The electrode current during melting is presented as a function of ingot 

height. 
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Figure 10.5: (a) Primary dendrite arm orientations from the two-point correlation 

technique, (b) melt pool profile estimates, and (c and d) the slope of the melt pool from 

the left side of the VAR ingot are presented. The melt pool slopes were calculated from 

the highlighted regions in (b). 

 

Secondary dendrite arm spacing measurements acquired from the VAR ingot using 

the peak-counting technique for the two-point correlation function are presented in     

Figure 10.6. Secondary dendrite arm spacing measurements are presented in                   

Figure 10.6 (a) using colored squares. The color of each square represents the value of the 

secondary dendrite arm spacing. Figure 10.6 (b) presents the means and standard deviations 
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of the secondary dendrite arm spacings calculated from the highlighted regions in        

Figure 10.6 (a). 

A trend in the secondary dendrite arm spacing data is evident in Figure 10.6 (a). 

Spacing values are smaller along the sides of the ingot and larger in the center. Spacings 

are also symmetric about the vertical ingot centerline. This is supported by the 

measurements provided in Figure 10.6 (b). Because the VAR ingot cools more slowly at 

its center compared to its sides, secondary dendrite arm spacings are expected to be larger 

in the center. That said, because this secondary dendrite arm spacing measurement 

technique relies on an accurate measure of primary dendrite arm orientation, results may 

be misleading if that orientation is not accurately established. The uncertainty potentially 

introduced by this effect could not be quantified for this investigation. Solidification times 

were calculated from the secondary dendrite arm spacing data presented in Figure 10.6 (b). 

These calculated solidification times are provided in Table 10.1. 

 

 



 158 

 

Figure 10.6: (a) Secondary dendrite arm spacings from the VAR ingot measured using 

the peak counting technique for the two-point correlation function are presented. (b) The 

means and standard deviations of secondary dendrite arm spacings measured from the 

highlighted regions in (a) are presented. 
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Table 10.1: Solidification times and secondary dendrite arm spacing measurements 

calculated from two-point correlation function analysis of the VAR ingot are presented. 

The position of each measurement is provided in distance from the top and left sides of 

the ingot. 

Position (mm) 
Secondary Dendrite Arm 

Spacing (μm) 
Solidification Time (s) 

Radial from 

left of ingot 

Height from 

top of ingot 
Mean St. Dev. Mean 

40 120 101 16 306 

 170 107 18 360 

 230 114 21 437 

 285 109 23 384 

 330 103 24 325 

80 120 133 24 700 

 170 137 20 757 

 230 147 20 931 

 285 133 22 695 

 330 99 14 286 

120 120 139 20 801 

 170 132 22 676 

 230 143 20 855 

 285 138 20 769 

 330 108 18 368 

160 120 107 19 363 

 170 114 20 439 

 230 117 23 476 

 285 112 27 414 

 330 98 15 272 

 

10.3. ANALYSIS TECHNIQUE COMPARISON 

Both the particle identification and the two-point correlation techniques 

demonstrated an ability to accurately measure primary dendrite arm orientations from the 

VAR ingot in regions of directional solidification. The particle detection technique was 
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able to identify some orientations in the equiaxed region where two-point correlation 

function analysis failed. The data averaging provided by the two-point correlation function 

produces measurements of mean primary dendrite arm orientation that are more easily 

interpreted and appear more consistent throughout the ingot than results of particle 

identification. Compare Figure 10.1 (a) and Figure 10.4 (a), for example. 

Melt pool profiles were estimated throughout the VAR ingot from the primary 

dendrite arm orientation data acquired using both analysis techniques. The profile estimates 

differ slightly between the techniques. A change in shape of the melt pool with vertical 

position in the ingot is evident from the two-point correlation technique but is difficult to 

discern using the particle identification technique, as demonstrated by Figure 10.1 (b) and 

Figure 10.4 (b). Little change to the shape of the melt pool is detected from the particle 

identification technique, while the two-point correlation function technique demonstrates 

a clear change in melt pool profile from a “V-shape” to a “U-shape.” The slopes of the melt 

pool profiles measured from the left side of the VAR ingot are similar for both techniques. 

Figure 10.2 and Figure 10.5 present an average slope of approximately 55 degrees. Much 

more local variation in the slope is evident from the particle identification technique than 

the two-point correlation technique. 

Secondary dendrite arm spacing was successfully measured throughout the VAR 

ingot using both techniques. Spacing values acquired from the particle identification 

technique varied indiscriminatingly across the ingot, and no obvious trends in the data were 

observed. In contrast, the spacing data acquired from the two-point correlation function 

technique demonstrates an obvious trend. Figure 10.6 illustrates that secondary dendrite 

arm spacing is smaller at the sides of the ingot compared to the center. Both techniques 

present measurements with large uncertainties. 

 



 161 

11.   CONCLUSIONS 

Solidification history was successfully reconstructed using microstructural data 

acquired from a laboratory-scale vacuum-arc remelted (VAR) alloy 718 ingot. Three 

industrial-scale electro-slag remelted (ESR) alloy 718 ingots were also successfully 

characterized. Melt pool profiles were estimated from primary dendrite arm orientations, 

and local solidification times were calculated from secondary dendrite arm spacings. 

Solidification microstructures were imaged from alloy 718 cross-sectional slabs 

using automated macrophotography. New instrumentation was designed, constructed, and 

implemented to accomplish this. Montage images of each slab were then created using 

digital image stitching. These montage images exhibit a resolution of 9 μm per pixel, which 

is sufficient to resolve individual secondary dendrite arms within slab microstructures. 

Microstructures were analyzed from the montage images using two techniques: 

particle identification and two-point correlation function analysis. The particle 

identification technique accurately identified primary dendrite arms as individual particles, 

enabling the measurement of primary dendrite arm orientations and secondary dendrite arm 

spacings. Primary dendrite arm orientation was measured from the geometry and positon 

of each particle, i.e. primary dendrite. Secondary dendrite arm spacing was measured from 

the change in image intensity along lines running parallel and directly adjacent to identified 

primary dendrite arms. Some particles that likely represent primary dendrites are missed 

by the identification algorithm, but a sufficient number are detected to estimate melt pool 

profiles. 

A two-point correlation function algorithm was used to detect the orientations of 

primary dendrite arms and the spacing between secondary dendrite arms in the montage 

images. This technique generated statistically meaningful arrays representing 



 162 

microstructure. Fourier analysis was then used to analyze these arrays and measure primary 

dendrite arm orientation and secondary dendrite arm spacing. However, applying a peak-

counting technique to the original two-point correlation array was used to produce a more 

accurate measure of secondary dendrite arm spacing, once primary dendrite arm orientation 

was determined. Melt pool profiles were estimated from the measured primary dendrite 

arm orientations, and local solidification rates were calculated from the secondary dendrite 

arm spacings. 

Melt pool profiles were estimated from the primary dendrite arm orientation data 

acquired using both analysis techniques. The profile estimates from the VAR ingot using 

both techniques were reasonable, but differed slightly. Little change to the shape of the 

melt pool with height was detected from the particle identification technique, while the 

two-point correlation function technique demonstrated a clear change in melt pool profile 

from a “V-shape” to a “U-shape” along the ingot height from top to bottom. Much more 

local variation in the melt pool profile was suggested by the particle identification 

technique than the two-point correlation technique. 

Secondary dendrite arm spacings, and thus local solidification times, were 

successfully measured using both techniques. Spacing values acquired from the particle 

identification technique varied randomly across the VAR ingot, and no obvious trends in 

the data were observed. The random variation and lack of any clear trends are the result of 

measurement uncertainty associated with this technique. Spacing data acquired from the 

two-point correlation function technique demonstrated that secondary dendrite arm spacing 

is smaller at the sides of the ingot compared to the center, as expected. 

 This dissertation produced the following contributions to science and technology: 

1) The techniques developed are the first to enable autonomous characterization of 

microstructural features continuously throughout an entire industrial-scale ingot. 
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Melt pool profiles and solidification rates can now be continuously measured 

throughout an ingot using specifically prepared cross-sectional slabs. 

2) The techniques developed provide a new means to improve understanding of 

remelting processes and the solidification microstructures remelting produces. 

3)  The techniques developed in this dissertation provide data directly to industry for 

validation of new computational models of remelting. 
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12.   FUTURE WORK 

In this study, individual macrophotographs of the alloy 718 slab microstructures 

were acquired at a resolution of approximately 4.5 μm per pixel, but could not be stitched 

at this resolution to create montage images because of software limitations. Creating 

montage images at the full 4.5 μm per pixel resolution may improve subsequent analyses. 

A higher resolution may remove image artifacts created by stitching and may improve fine 

feature detection during analysis. Microsoft Image Composite Editor (MS ICE) is a 

software program potentially capable of creating new montage images. The use of this 

software package for image stitching in the future is recommended. 

Several improvements to the two-point correlation function and Fourier analyses 

can be made. Primary dendritic arm orientations detected using Fourier analysis of two-

point correlation function outputs might be measured more accurately if fitting techniques 

are improved. It is recommended that the use of other fitting routines be explored. 

Analysis of the data produced by the two-point correlation function might be 

improved by including uncertainties calculated for primary dendrite arm orientations. For 

example, only one primary dendrite arm orientation is presented for each analysis region, 

yet in some instances, multiple orientations were detected. It is recommended to use this 

information in more detailed analyses of the melt pool profile. 

Particle identification and two-point correlation function analysis can be used in 

tandem to potentially improve microstructural characterization. For example, it may be 

useful to inspect regions from the two-point correlation function analysis where no primary 

dendrite arm information was identified using particle identification. This might reduce the 

number of regions where no useful data is acquired. 
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Chemical segregation throughout slabs can be characterized using X-ray 

fluorescence (XRF) analysis. This chemical segregation information might then be 

correlated with microstructures identified using the particle or two-point correlation 

analysis techniques. If regions of poor chemical homogeneity are associated with specific 

microstructures, they might be identified from microstructure alone. 

The techniques developed in this dissertation could be adapted to analyze other cast 

materials, as long as the material exhibits dendritic solidification. 
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APPENDIX A: IMAGING INSTRUMENTATION 

IMAGING INSTRUMENTATION 

Macrophotography was performed with a custom built linear XY stage and a 

CanonTM EOS 60D camera equipped with a Sigma 105mm F2.8 EX DG OS HSM macro 

lens. Custom software was used to control the linear motion of the XY stage and control 

camera functions. A list of the optical imaging equipment is as follows: 

1) Vibration isolated mounting table. 

2) An XY stage mounted on an optical breadboard. 

3) Camera and camera mounting/adjustment equipment. 

4) Computer and hardware used for image acquisition and XY stage control. 

 

The procedure used to prepare the imaging instrumentation is described in the 

following: 

1) The XY stage is mounted to an optical breadboard which is positioned on the 

vibration isolated mounting table. 

 

2) The camera is mounted to the XY stage with a ball-head mount and a macro 

focusing rail. The ball mount allows the camera to be adjusted so that the lens is 

level relative to the surface of the optical table. Leveling was manually completed 

with a leveling fixture. The fixture consists of an aluminum tube machined flat at 

both ends and an aluminum plate machined to have two flat faces and fit to end of 

the tube. In order to level the lens with the specimen, the tube and cap assembly is 

placed on the surface of the optical table and the ball-head mount and camera height 

are adjusted so that the lens is flush with the flat surface of the aluminum plate. The 

camera is then secured in place. This ensures the lens remains level with the optical 
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table. After leveling, the height of the camera can be adjusted with the macro 

focusing rail to finely focus on a specimen at a set magnification. 

 

3) Two stepper motors control the motion of the XY stage, one for each direction. 

Each motor is controlled with a stepper motor controller which is sent commands 

by a custom software package. 

 

4) The custom software package controls the camera functions. This includes 

triggering, auto focusing, mirror-locking, and shutter movement. The custom 

software package records the location of the XY stage along with the date and time 

stamp immediately prior to capturing an image. Images are transferred to a 

computer and saved with the CanonTM Image acquisition software in the RAW 

("*".CR2) format. 

 

5) The camera is controlled through two inputs. One cable connects the mini-USB on 

the camera to the computer and one cable connects the remote shutter input on the 

camera to the custom software package. These cables are used to send signals to 

the camera and to transfer the image back to the computer to be stored. 

 

After the imaging instrumentation was initially setup, automated imaging was 

performed. The autonomous image acquisition process used is described in the following:  

1) Immediately prior to acquiring an image, the position of the XY stage (X, Y) and 

the date and time stamp are recorded in individual text files generated by the custom 

software package. The X and Y position is read from each stepper motor’s 

controller. The position is given in number of steps (because the stage uses stepper 
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motors) away from a pre-defined home position. This home position corresponds 

to a XY stage position of (0, 0) and is defined by the user before imaging. The 

homing procedure and the home position was identical for each scan and will be 

described later. The position in steps is converted to position in millimeters with a 

conversion factor. The conversion factor was determined by measuring how far the 

stage traveled for a predetermined number of steps in the X and Y directions using 

a machinist’s ruler with markings every 100th of an inch. After imaging is 

completed, this data is combined into one text file title, “scan_#.txt”, and is used to 

stitch the images together. 

 

2) Once in position, the custom software is used to trigger the phase detection auto 

focus functionality of the camera. The focusing point is determined by the camera 

software. Phase detection auto focusing was necessary to account for small height 

variations across the imaging surface. Focusing is triggered through the remote 

shutter input on the camera. 

 

3) After focusing, the custom software triggers the camera to lock the mirror in the up 

position. Mirror lock is triggered through the remote shutter input on the camera. 

 

4) A 1.5 second hold time is programmed into the imaging procedure to allow for any 

vibrations created by the mirror locking motion to dissipate before the shutter on 

the camera is triggered with the custom software and a macrophotograph is taken. 

Lighting was supplied by two flash units mounted 60 cm away from the center of 

the specimen and 29 cm high on either side of the specimen. An exposure time of 

1/250 seconds was used because it is the fastest possible speed at which the camera 
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can be synced with the strobes. Shutter movement is triggered through the remote 

shutter input on the camera. 

 

5) The CanonTM imaging software records each image and saves it to a computer in 

the RAW format ("*".CR2). The camera is connected to the computer through the 

micro-USB input.   

 

6) The custom software program sends commands to each stepper motor controller to 

move the camera to the next imaging location. The distance moved between 

pictures was pre-determined and hard-coded into the custom software so that an 

approximately 20% linear overlap between adjacent images occurred in both the X 

and Y directions. The number of images taken is predetermined by the user based 

upon the size of the specimen. 

 

Photography settings used during this study: 

 Camera: CanonTM EOS 60D 

 Lens: 105mm macro lens with a circular polarizer 

 F-stop: 8 

 Exposure time: 1/250 seconds 

 ISO number: 100 

 Strobes: Paul C. Bluff AlienBeesTM B400 Flash Unit 

 Strobe power: 3/8 
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The procedure used to prepare the alloy 718 slabs studied in this dissertation for 

imaging and the actual imaging procedure are described in the following: 

1) Before imaging, specimens were cleaned with Seventh Generation™ Natural Dish 

Liquid and water. During cleaning, specimens were scrubbed with a stiff nylon 

brush, rinsed clean of any soap, and blown dry with clean dry air. After cleaning, 

specimens were moved to the optical imaging stage. Specimens were supported on 

the optical breadboard by three vibration isolating feet. Specimens were leveled 

with respect to the optical breadboard by adjusting the height of these feet. A small 

level was used to accomplish this. Note: The imaged surfaces were typically not 

completely flat, so the specimens were leveled as well as they could be. 

 

2) The camera is mounted to the stage with a quick release latch. Before imaging the 

camera and lens are either leveled or verified to be level with respect to the optical 

breadboard before continuing. The Sigma 105 macro lens is set to 1:1 magnification 

and the camera is moved toward the center of the specimen with the XY stage for 

focusing. This was performed away from the edges of the specimen because they 

were typically less flat than the rest of the specimen. The specimen is brought into 

focus by adjusting the height of the camera with the macro focusing rail. The live 

view mode of the camera is used to determine when the specimen is in focus. 

 

3) The home position (0, 0) for the camera with respect to the XY stage is defined by 

the user. Homing is completed by manually jogging the camera to the Northwest 

corner of the optical stage. Once there, two homing switches (one for the X 

direction and one for the Y direction) stop the movement of the motor. This position 
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is then defined as the home position in the custom software program. This homing 

procedure and location was used for all imaging. 

 

4) The area to be scanned is determined by the user and programmed into the custom 

software program. During scanning, the image number, position of the camera 

(X, Y), and the date and time are recorded into individual text files and then 

combined into one text file. This information, combined with the home position, 

allows the user to easily locate and identify where an image is located in the 

specimen. 

 

After imaging, the magnification at each corner of the scan area is acquired. This is 

completed by photographing a machinist’s ruler with markings every 100th of an inch at 

each corner of the scan area. The values measured provide measurements of pixels/mm at 

each corner of the scan area. These are later averaged together to produce a conversion 

value in pixels/mm for the entire scan area. 
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APPENDIX B: PARTICLE IDENTIFICATION 

PARTICLE IDENTIFICATION OVERVIEW 

The digital montage images of the alloy 718 slabs imaged in this study were each 

rotated, cropped, and scaled prior to analysis. These operations were completed with the 

FIJI distribution of ImageJ and MatlabTM R2015a [70, 71]. Rotation and cropping ensure 

that the stitched images are properly aligned with respect to each other and remove the 

excess area around the edges of each image, which would confuse the analysis software. 

Files were all scaled to a consistent magnification of 110 pixels/mm, a magnification 

sufficient for software feature detection in this application, so that they could be combined 

into a single, representative image of the entire ingot. 

A contrast limited adaptive histogram equalization (CLAHE) process was applied 

to each stitched image. This creates a uniform histogram with intensity ranging from 0 to 

255 over the entire 8-bit grayscale image. This step improves conversion to a binary image 

format by equalizing unevenly lighted areas. The CLAHE processed image was then 

converted to a binary image, wherein the valleys created during etching, which represent 

inter-dendritic regions, are processed into black pixels and the higher areas, which 

represent dendrite arms, are lighter and processed into white. In this study, images were 

thresholded at a value of 127, on an 8-bit scale, so that pixels below this intensity value 

were converted to black and those above were converted to white. The binary conversion 

is necessary to transform the image data into a form that the FIJI particle detection software 

is capable of handling. This software locates and identifies areas of continuous white pixels 

and labels those areas as individual particles, thus the term particle detection, and ignores 

regions of continuous black pixels. Because software detection of features, i.e. particles, 

from the as-converted binary image is poor, the binary image is further processed using 

morphological operations that grow and shrink regions of like-colored pixels prior to 
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particle detection. Experiments determined that two erosion operations sufficiently 

separated the pixel regions that represent dendrites for software detection to operate 

adequately. Erosion operations shrink regions of continuous white colored pixels. The 

image adjustment operations used during this study are presented in the order that they 

were performed. Each operation was conducted with a DellTM Precision T3600 with an 8-

core IntelTM XeonTM E5-1620 @ 3.60 GHz processor and 32.0 GB of DDR3 RAM running 

WindowsTM 7 Enterprise. 

Note that the following sections provide a detailed description of each step of the 

analysis process. A brief “How to do the analysis” section will be provided at the end of 

this appendix for quicker referencing once the details have been presented. 

 

IMAGE ROTATION AND CROPPING 

Stitched images are often slightly askew as a result of non-perfect alignment 

between the specimen and camera/XY stage during imaging. Consequently, the stitched 

images require rotating. The images are then cropped to contain only the plate after being 

rotated. The rotation angle is determined by manually measuring the skewness of the plate 

in reference to the straightest edge (always an edge from cutting the ingot up into plates) 

on the plate. Rotations are applied in MatlabTM R2015a and cropping was manually 

performed with the FIJI distribution of ImageJ [70, 71]. The rotation method is bilinear. 

Software: Fiji packaged version of ImageJ with plugins (fiji.sc) 

MATLABTM R2015a 

MATLABTM scripts: Batch_rotate.m 
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SCALING 

Stitched images are all scaled to a magnification of 110 pixels/mm prior to 

processing and particle analysis. This ensures that features from plate to plate are at the 

identical scale and that plates can be easily stitched together to form a whole ingot image 

file. A magnification of 110 pixels/mm was chosen because stitched images are initially at 

a magnification of ~114 pixels/mm and 110 pixels/mm is a convenient round number close 

to that value. The magnification factor was calculated from the conversion factor in 

pixels/mm from the “scan_#.txt” file. The resizing method is bilinear. 

Software: MATLABTM R2015a 

MATLABTM scripts: batch_resize.m 

 

THRESHOLD AND MORPHOLOGICAL PROCESSING 

The stitched images are converted to binary images. This creates an image of white 

colored particles, which represent primary and secondary dendrite arms, on a black 

background. After converting to black and white, a series of morphological operations are 

applied to the image. This attempts to separate the secondary dendrite arms from the 

primary dendrites. The threshold procedure converts stitched, corrected, and scaled 8-bit 

grayscale *.tiff images to black and white *.tiff images. Two processes were performed on 

each slab. Erosions remove pixels from the edges of regions of continuous white pixels. 

Software: MATLABTM R2015a 

MATLABTM scripts: thresh_erode2.m 
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PARTICLE IDENTIFICATION 

Once morphological operations are complete, the “Analyze Particles” feature 

contained in the FIJI distribution of ImageJ [70] is used to identify individual particles. 

This feature locates and identifies areas of continuous white pixels and labels all of these 

objects as individual particles. Once a particle is identified, FIJI fits a bounding box and an 

ellipse to the particle. These fits are used to calculate the following information about each 

particle identified: 

1) Area 

2) Min gray level 

3) Max gray level 

4) Center of mass of the bounding box (X) 

5) Center of mass of the bounding box (Y) 

6) Brightness-weighted center of mass (X) 

7) Brightness-weighted center of mass (Y) 

8) Perimeter 

9) Bounding box, upper left corner (X) 

10) Bounding box, upper left corner (Y) 

11) Bounding box width 

12) Bounding box height 

13) Fitted ellipse major axis length 

14) Fitted ellipse minor axis length 

15) Fitted ellipse major axis orientation 

16) Circularity 

17) Skewness 

18) Kurtosis 
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19) Aspect ratio 

20) Roundness 

21) Solidity 

 

This process identifies all regions of continuous white particles, whether they are 

primary dendrite arms, secondary dendrite arms, or simply objects within the equiaxed 

region. Various filtering techniques, described in the “Particle Analysis and Filtering” 

section, are used to remove particles not likely to represent primary dendrite arms. 

Software: Fiji packaged version of ImageJ with plugins  (fiji.sc) 

MATLABTM R2015a 

MATLABTM scripts: find_ROI_fiji_batch.m (calls fiji_roi.m) Note that this script 

uses the MIJI command. This command is used to call the FIJI 

distribution of ImageJ through MATLABTM. 

 

PARTICLE ANALYSIS AND FILTERING 

After each particle is identified, it is analyzed to see whether or not it is likely to 

represent a primary dendrite. Particles not likely to be a primary dendrite are filtered out 

by taking into account the size and shape of the particle. A particle may be filtered out for 

the following reasons: 

1) Particles with an exceptionally small area can be removed. During this study, this 

filtering procedure was not deemed necessary, so a limit value of 0 pixels2 was 

chosen. 
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2) Particles with low aspect ratios are removed. The aspect ratio is calculated by 

dividing the length of the major axis of the ellipse fitted to the particle by the length 

of the minor axis of the ellipse fitted to the particle.  

3) A particle is removed if it is deemed too short or too long to represent a dendrite. 

This removes small image artifacts leftover from morphological processing and 

large artifact particles near the edges of the plate.   

4) A particle is filtered if the standard deviation of relative image intensity is large 

across the particle. This is calculated by drawing a line on top of the particle using 

the bounding box fitted to that particle. Then the image intensity is measured along 

that line. If the standard deviation of the image intensity is large relative to the mean 

image intensity of the line, that particle is removed. This removes particles that do 

not correlate with the original image data. 

 

In summary, the filtering options are: 

1) Small area 

2) Low aspect ratio 

3) Short particle length 

4) Excessively long particle length 

5) Relative Standard Deviation of image intensity 

 

The settings used in this study are: 

1) Small area – 0 (pixels2) 

2) Low aspect ratio – 5 (minimum object aspect ratio) 

3) Short particle length – 22 (minimum object length in pixels) 

4) Excessively long particle length – 5000 (maximum length of PDA to use in pixels) 
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5) RSD – 0.5 (remove lines above this relative-STD threshold) 

 

Software: MATLABTM R2015a 

MATLABTM scripts: matlab_batch_pda.m (calls Ingot_pda.m and tile_data.m) 

 

The matlab_batch_pda.m script generates an ingot_*.mat file that contains all of 

the particle information along with some image information. The file data contains the 

following: 

Area: [n x 1 single] % Area of each particle 

Min: [n x 1 single] % Min gray level 

Max: [n x 1 single] % Max gray level 

X: [n x 1 single] % Center of mass of the bounding box (X) 

Y: [n x 1 single] % Center of mass of the bounding box (Y) 

XM: [n x 1 single] % Brightness-weighted center of mass of the bounding box 

(X) 

YM: [n x 1 single] % Brightness-weighted center of mass of the bounding box 

(Y) 

Perim: [n x 1 single] % Perimeter of the bounding box  

BX: [n x 1 single] % X position of the lower left corner of the bounding box 

BY: [n x 1 single] % Y position of the upper left corner of the bounding box 

Width: [n x 1 single] % Width of the bounding box  

Height: [n x 1 single] % Height of the bounding box  

Major: [n x 1 single] % Major axis length of the ellipse 

Minor: [n x 1 single] % Minor axis length of the ellipse 

Angle: [n x 1 single] % Orientation of the major axis of the ellipse 
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Circ: [n x 1 single] % Circularity of the ellipse 

Skew: [n x 1 single] % Skewness of the ellipse 

Kurt: [n x 1 single] % Kurtosis of the ellipse 

AR: [n x 1 single] % Aspect ratio of the ellipse 

Round: [n x 1 single] % Roundness of the ellipse 

Solid: [n x 1 single] % Solidity of the ellipse 

ROI: [n x 1 double] % Region of interest number 

origin: [X Y]  % Origin of the first plate loaded by MATLABTM 

size: [X Y]  % Size of the image 

ref_range: [n x n double] % Size of individual plate images 

ref_img: {1 x n cell} % Individual plate image names 

Length: [n x 1 single] % Primary dendrite arm length 

PDA: [n x 1 single] % Primary dendrite arm location 

PDA_colors: [1 0 0] % Default color to use when plotting 

PDA_err: [n x 1 single] % RSD error for each PDA 

scale: 0.0091  % scaling factor 

scale_units: 'mm' % units 

SDAS: [n x 1 single] % Secondary arm spacing for each PDA 

SDAS1: [n x 1 single] % Port side SDAS only for each PDA 

SDAS2: [n x 1 single] % Starboard side SDAS for each PDA 

SDAS_err: [n x 1 single] % Standard deviation for each SDAS 

SDAS1_err: [n x 1 single] % Standard deviation for each SDAS (port) 

SDAS2_err: [n x 1 single] % Standard deviation for each SDAS (starboard) 

SDAS_xy: [n x 2 single] % (X,Y) positions for each SDAS measurement. 
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SDAS1_xy: [n x 2 single] % (X,Y) positions for each SDAS measurement 

(port) 

SDAS2_xy: [n x 2 single]  % (X,Y) positions for each SDAS measurement 

(starboard) 

SDAS1_offval: [n x 1 single] % offset value (port) 

SDAS2_offval: [n x 1 single] % offset value (starboard) 

 

This completes the procedure of identifying particles contained in individual 

stitched images. The following processing steps are used to combine the individual plate 

data sets into one large data set representing the whole ingot (optional), and further filtering 

to remove/correct for improper primary dendrite arm identification. 

 

FILTERING 

Two filters were used to either modify or remove a particle previously identified as 

primary dendrite arm based upon its relative orientation with the particles near it. 

The first filter used corrects for secondary dendrite arms (SDAs) being 

misidentified as primary dendrite arms (PDAs). Because SDAs are expected to grow 

perpendicularly to PDAs, if a SDA is identified during particle detection it can be rotated 

by ±90 degrees to create a “virtual” PDA. A particle is determined to be a SDA if it is 

oriented between 70 to 110 degrees of the average primary dendrite arm orientation 

(PDAO) in a given area. This filter calculates the average PDAO for a rectangular region 

1000 pixels wide (X direction) that spans the entire height of the ingot (Y direction). Any 

particle oriented within ±70 to ±110 degrees from the average PDAO calculated for the 

rectangular filtering region is rotated -90 degrees if it is located on the left side of the ingot 
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and +90 degrees if it is located on the right side of the ingot. This procedure essentially 

creates the “virtual” PDA from the identified SDA. The filter then moves the rectangular 

region of interest across the width of the ingot and repeats the procedure. During this study, 

the filter was simultaneously run from both the left and the right side of the ingot and 

stopped at the center of the ingot.   

The second filter removes particles that are misoriented by at least two standard 

deviations from the mean particle orientation for a given region. During this study a circular 

area with a radius of 500 pixels was used. If a particle orientation inside the radius is more 

than two standard deviations from the mean particle orientation within the radius, it is 

removed. This filter helps reduce noise by removing particles that are poorly aligned with 

the other particles in its immediate vicinity. Because this filter uses the standard deviation 

of a given region to determine if a particle should be removed, it tends to filter out more 

objects from areas that have a well-defined particle orientation (mid-radius region) 

compared to areas that have a random distribution of orientations (the equiaxed region). 

This reduces noise in regions where primary dendrite arms are clearly identified without 

significantly affecting regions without a clear PDAO. 

Software: MATLABTM R2015a 

MATLABTM Scripts: Ingot_sweep_filter.m 

Ingot_filter.m (Use the ‘pdao’ filter option) 

 

AUTOMATED SECONDARY DENDRITE ARM SPACING MEASUREMENT 

Once the primary dendrite arms have been identified and filtered to reduce noise, 

secondary dendrite arm spacings (SDAS) can be calculated. Secondary dendrite arms 

spacing is calculated in the following manner: 
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1) A single PDA is chosen for analysis 

2) The 8-bit grayscale TIFF image data for the plate that PDA is located in is loaded 

into memory. 

3) A line is drawn diagonally through the bounding box fitted to that PDA. This line 

represents the PDA core.  Lines are drawn on either side and parallel to the PDA 

line. These are offset by 8 pixels from the PDA line in the direction perpendicular 

to the PDA line. These two lines are the port and starboard SDAS lines. 

4) The image intensity profile along the length of each SDAS line is measured. Peaks 

in the image intensity profile represent a secondary dendrite. In this approach, the 

peaks are determined by using a local-maximum filter on the intensity profile: A 

window of a specified size is moved over the profile, and if the central pixel has 

the largest intensity within that window it is set as a local maximum. This is subject 

to the additional constraints that it must not have a value of zero, and that it must 

not be neighboring another maximum. 

5) SDAS is calculated by determining the distance between peaks. The SDAS value 

is assigned to the geometric center of the primary dendrite arm. 

a. If only one peak is identified, no SDAS value is recorded 

b. If only two peaks are found, the SDAS value is the distance between the 

peaks. The error associated with that measurement is calculated from the 

uncertainty of locating the center of each peak. 

c. If more than two peaks are found, the SDAS value is the mean of the 

calculated distances between peaks. The error associated with that 

measurement is the standard deviation of the calculated distances between 

peaks. 

6) The values are stored for that particular line offset, initially 8 pixels. 
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7)  Steps 3 through 6 are performed again for line offsets of 10, 12, 14, and 16 pixels. 

8) The SDAS values for each offset line are compared and the offset line with the 

smallest error in SDAS is retained, the rest are discarded. 

9) The SDAS values are filtered to remove poor results. SDAS measurements with a 

large relative standard deviation value (>= 5) were discarded. 

 

Software: MATLABTM R2015a 

MATLABTM Scripts: Ingot_sdas.m (calls SDAS_calc.m, tile_data.m, and 

Ingot_sdas_Doff.m) 

 

Two filters were applied to the automated SDAS measurements. The first filter is 

the same one used to filter primary dendrite arms based upon their orientation. For filtering 

SDAS measurements, it removes SDAS measurements that are two standard deviations 

away from the mean SDAS value for a given region. During this study a circular area with 

a radius of 500 pixels was used. 

The second filter was used to remove SDAS measurements that were excessively 

large and not removed by the outlier filter. Occasionally groups of large SDAS 

measurements were found to clump together in small regions throughout the ingot. Often 

no more than a dozen small clumps were observed throughout the entire ingot. However, 

because they were clumped together the outlier filter was incapable of removing these 

values. This is because the outlier filter only examines a single circular region with a radius 

of 500 pixels at any given time. Because of this, a low-pass filter was implemented to 

remove these erroneous measurements. During this study SDAS measurements greater 

than 270 µm were removed. 
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HOW TO DO THE ANALYSIS 

This section gives a brief outline on how to go from stitched images to processed 

images and how to produced data sets of identified primary dendrite arms that have been 

fully filtered. Lines denoted with % are comments. All other lines are either MatlabTM 

commands or calls to the MatlabTM scripts provided. 

Software: Fiji packaged version of ImageJ with plugins  (fiji.sc) 

MATLABTM R2015a 

Commands and Scripts: 

% Convert CLAHE images into binary -> save as proc_*.tif files 

thresh_erode2; 

 

% Particle analysis -> save as MAT files 

% Make sure fiji_roi.m is in the path 

find_ROI_fiji_batch; 

 

% Run Ingot_pda on each MAT file and save as Ingot_*.mat 

% Make sure tile_data.m and Ingot_pda.m are in the path 

matlab_batch_pda; 

 

% Set correct origin values for each Ingot_*.mat file 

matlab_origins; 

 

% Stitch all Ingot_*.mat files into a single Ingot file 

% Don't do this if you just want to analyze one ingot at a time 

Ingot_stitch; 

Ingot = BigIngot; 

 

% Apply conversion from pixels to mm 

Ingot.scale = 9.09e-3; % this value is only for 110 px/mm 

 

% Apply some book-keeping information 

Ingot.scale_units = 'mm'; % unit length per pixel 

Ingot.Angle = -Ingot.Angle; 
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% Save the PDA data set 

save('Ingot0_baseline','Ingot'); 

Ingot_plot(Ingot,'pdarms'); 

 

% Apply the filters to the PDA data set 

thresh = 1.0; 

Ingot_sweep_filter; % Correct for SDA’S being identified as PDA’s 

Ingot_filter; % Remove outliers, make sure to use the pdao option 

save('Ingot1_filter','Ingot'); 

 

% Measure SDAS 

Ingot_sdas; 

% Remove outliers and apply the low-pass filter. Use the sdas option 

Ingot_filter; 
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