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Chapter 1

Introduction

Electric power systems provide an essential source for the operation of

the economy and for human well-being. Modern society is increasingly de-

pendent on reliable, secure and cost-efficient electricity supply. However the

electric grids, especially in U.S., are remarkably complex with some transmis-

sion lines spanning hundreds of miles. Terrorists could destroy key elements of

the electricity generation and delivery system, causing blackouts that are un-

precedented in this country in duration and extent [141]. In this dissertation,

we try to develop models and tools to simulate the effects of deliberate attacks,

find the worst possible scenarios, and develop techniques to mitigate the black-

outs. At the same time, recent years have seen many large electricity blackouts

across the globe due to natural disasters. The costs of such blackouts could be

billions and the social warfare could be significantly damaged because of such

events. Therefore, we conduct a survey on the existing state-of-art research

of power system resilience to natural disaters, and try to develop models to

simulate the impacts of natural disasters, and thus help decision makers be

better prepared to such events. More specifically, we divide this dissertation

into three parts, namely Cascading Outage Analysis, Integrated Interdiction

Model, and Power Grid Resilience under Natural Disasters.
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Many large blackouts are caused by a consecutive series of various out-

ages following an initial disturbance. The understanding and simulation of

such cascading outages are the foundation to provide reasonable assessment

of power grid disturbances caused by deliberate attacks or natural disasters.

Therefore, we build an enhanced cascading outage analysis tool to facilitate

this function. In part two, we incorporate this cascading outage analysis tool

to a worst-cast interdiction framework, in order to find out the worst-case

attack scenario on a power grid. In part three, we survey the research on nat-

ural disasters and provide a framework for forecasting natural disasters related

power outages.

The contributions in this work are:

• The enhancement of a Cascading Outage Analysis (COA) model and

research on mitigation of cascading outages;

• Incorporation of the COA model into an interdiction framework and the

development of an algorithm to solve the problem;

• Survey of state-of-art in power system resilience research on natural dis-

asters and models to forecast hurricane-related outage.

This dissertation is based on the author’s contribution in the papers

[215], [214], [217], [216], [210], [218] and [219].
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1.1 Background on Cascading Outage Analysis

Many large blackouts are caused by a consecutive series of various out-

ages following an initial disturbance. Once enough critical components of a

power system fail, the outages including transmission line, generator, and load

trips can sequentially spread and lead to large blackouts [209]. Nevertheless,

it is very difficult to identify critical components that represent weaknesses in

the power system and to analyze cascading outages due to the lack of detailed

blackout data and complicated electrical-physical interactions.

According to [209], [204], and [67], some major blackouts in North

America due to cascading outages are shown in Table 1.1.
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Table 1.1: Examples of Cascading Blackouts in North America [209], [204],
and [67]
Date Location Customers

Af-
fected/MW
Lost

Collapse
Time

Nature of Collapse

Nov. 9,
1965

Northeast 30 million 13 minutes Successive tripping
of lines

July 13,
1977

New York
City

1 million 1 hour Successive tripping
of lines and gener-
ators

Dec. 22,
1982

West Coast 12,350 MW Few Min-
utes

Successive line trip-
ping, protection co-
ordination scheme
failure

Dec. 15,
1994

Western
U.S.

9,336 MW N/A Transient instabil-
ity, successive trip-
ping of lines, volt-
age collapse

July 2,
1996

Western
U.S.

2 million 36 seconds Successive tripping
of lines, genera-
tors and voltage
collapse

Aug. 10,
1996

Western
U.S.

7.5 million >1 minute Voltage collapse

Aug. 14,
2003

Northeastern
and Mid-
western
U.S. and
Ontario,
Canada

55 million Few Min-
utes

Successive tripping
of lines, genera-
tors and voltage
collapse

Sep. 8,
2011

Southwestern
U.S.

7 million Few Min-
utes

Successive tripping
of lines and island-
ing
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1.2 Background on Interdiction Models

Secure electric power system operation is critical to society. It is noted

in [141] that some blackouts would not immediately kill many people or make

for spectacular television footage of bloody destruction. But if it were carried

out in a carefully planned way, by people who knew what they were doing,

it could deny large regions of the country access to bulk system power for

weeks or even months. An event of this magnitude and duration could lead to

turmoil, widespread public fear, and an image of helplessness that would play

directly into the hands of the terrorists. If such large extended outages were to

occur during times of extreme weather, they could also result in hundreds or

even thousands of deaths due to heat stress or extended exposure to extreme

cold. Therefore, it is important to think about what can be done to make

them less vulnerable to attack, how power can be rapidly restored if an attack

occurs, and how important services can be sustained while the power is out.

Deliberate attacks do not occur frequently, but when they do, they can

be disastrous [164]. Trying to quantitatively evaluate the probability of such

low-probability-high-consequence potential terrorist attacks is very challeng-

ing, resource demanding, and subject to inaccuracies. At the same time, the

outcome of an attack depends strongly on the current system operation con-

ditions during an attack, as well as the resources that terrorists have, both of

which are also highly uncertain. Bienstock et al. [33] developed a model that

includes a range of scenarios for the disruption. Chen et al. [50] use a prob-

abilistic approach to N − k analysis for naturally occurring events. However,
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given the uncertainties, the assumption made in the following work is that

the system operators, or defenders, should consider a “worst case” analysis in

order to correctly utilize a defense budget. Therefore, while the studies of [33]

and [50] are valuable, we aim to identify the worst-case attacks on a certain

system that an intelligent adversary might carry out.

Salmeron et al. [166] developed a bi-level optimization model that max-

imizes the medium-term “disruption” to the loads with given terrorist re-

sources. A heuristic algorithm was also proposed to solve the problem to a

near-optimal solution. In [6], a new algorithm called “Global Benders Decom-

position” is proposed to guarantee the convergence of the bi-level optimization

problem in [168]. Arroyo et al. [22] use a genetic algorithm to solve the in-

terdiction problem. Romero et al. [164] proposed a three-level mixed-integer

model, and used Tabu Search with an embedded greedy algorithm to seek an

optimum defense strategy. The power flow subproblem of these four models is

an “interdicted” DC optimal power flow model. Donde et al. [62] developed

a nonlinear optimization problem to detect the fewest possible transmission

line outages resulting in a system failure of specified severity. An AC optimal

power flow model is used in that paper. Carrion et al. [164] uses a stochastic

programming formulation to reinforce and expand a power system with the

objective of reducing the impact of deliberate attack. Smith et al. [186] also

studied different models and algorithms to solve network interdiction games.

While the optimal power flow (OPF) problem used in the interdiction

models, either AC or DC, represents the economical operation (medium-term)

7



of the power system by the Independent System Operators (ISOs), and maxi-

mizes the amount of load that can be served, it is a steady state optimization

framework that does not consider short-term cascading outage effects. The

phrase “medium-term” indicates a time window of minutes to hours or days,

and the phrase “short-term” means a time window of seconds to minutes.

To our knowledge, no literature combined the short-term cascading

effects and medium-term impacts of an interdiction.The primary contributions

in this work are: incorporation of a novel COA model into the interdiction

framework; and the development of an algorithm to solve the problem.

We note that it would never be possible to accurately identify terrorists’

motivation, at least not before an attack [168]. Consequently the modeling of

the attackers’ objective function is problematic. In this dissertation, combined

penalty costs associated with the amount of load shedding from a cascade and

medium-term operation are used to represent the consequence of a potential

terrorist attack.
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1.3 Background on Natural Disasters Impact on Power
Systems

Recent years have seen many blackouts due to natural disasters such as

the 2005 Hurricane Katrina blackouts, 2011 Japan Earthquake blackouts, and

2012 Hurricane Sandy blackouts. Between 2003 and 2012, roughly 679 power

outages, each affecting at least 50,000 customers, occurred due to weather

events in U.S. [64]. Hines et al [89] describes 933 events causing outages

from the years 1984 to 2006, and the data is presented in Table 1.21. The

study of natural disaster impacts on power grid can be traced back to 1930s,

when the 1938 New England Hurricane struck the Boston Area [79]. In the

last decades, there has been considerable progress in advancing methods for

analyzing natural disaster related issues in power systems. At the same time,

due to the complexity of the issue and its interdisciplinary nature, research

activities are conducted sparsely across different domains. We summarize the

natural disaster characteristics based on multiple sources such as [77], [89] in

Table 1.3.

1.4 Layout of this dissertation

This dissertation is organized in three main parts:

• Part I: Cascading Outage Analysis, where cascading outage analysis

models will be discussed in detail; mitigation techniques, examples and

1The totals are greater than 100% because some events fall into multiple initiating-event
categories.
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Table 1.2: Large Blackouts Causes in the United States [89]

Cause % of events Mean size Mean size

in MW in customers

Earthquake 0.8 1,408 375,900

Tornado 2.8 367 115,439

Hurricane/tropical storm 4.2 1,309 782,695

Ice storm 5.0 1,152 343,448

Lightning 11.3 270 70,944

Wind/rain 14.8 793 185,199

Other cold weather 5.5 542 150,255

Fire 5.2 431 111,244

Intentional attack 1.6 340 24,572

Supply shortage 5.3 341 138,957

Other external cause 4.8 710 246,071

Equipment failure 29.7 379 57,140

Operator error 10.1 489 105,322

Voltage reduction 7.7 153 212,900

Volunteer reduction 5.9 190 134,543

models are also discussed.

• Part II: Integrated Interdiction Model, where an analysis of power grid

interdiction is presented.

• Part III: Power Grid Resilience under Natural Disasters, where a survey

of current research on power grid resilience is conducted, and a tool to

analyze power system security under hurricane threats is presented.

Conclusion is provided in the last part of the dissertation.
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Table 1.3: Illustration of disaster characteristics based on multiple sources

Type Impact Region Predictability Span/area Affecting
time

Hurricane,
tropical
storm

Coastal regions 24-72 hours,
moderate to
good

Large (radius
up to 1,000
miles)

Hours to
days

Tornado Inland plains 0-2 hours,
bad to mod-
erate

Small (radius
up to 5 miles)

Minutes to
hours

Blizzard,
Ice Storm

High latitude
regions

24-72 hours,
moderate to
good

large, up to
1,000 miles

Hours to
days

Earthquake Regions on
fault lines

Seconds to
minutes, bad

Small to large Minutes to
days (after-
shock)

Tsunami Coastal regions Minutes
to hours,
moderate

Small to large Minutes to
hours

Drought,
Wild Fire

Inland regions Days, good Medium to
large

Days to
months
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Part II

Cascading Outage Analysis
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Chapter 2

Cascading Outage Analysis Model

Chapter 2 is based on author’s contribution in [215], [216], [218]. The

co-author Dr. Ross Baldick in these papers provided guidance, suggestions

and review of the research work. Cascading outage is the main mechanism of

large blackouts, and the duration of the sequence of cascading events can be

very short. In the 2003 North-Eastern America Blackout [204], 14 high voltage

transmission lines were tripped out within 5 minutes. In order to evaluate the

short term impacts of a particular attack, the amount of short-term load shed

should be calculated. Many efforts have been put into research to identify

the cause of these events and the methods to mitigate them. Eppstein et

al [62] has developed a Random Chemistry algorithm to identify the multiple

contingencies that initiate cascading failure. Hazra et al [83] proposes pattern

recognition and fuzzy estimation to calculate the cascading sequences of an

event. Jie Chen et al [49] introduces a hidden failure model with an embedded

DC model to study the cascading dynamics and mitigation. These methods are

either very computationally expensive, or did not very accurately represent the

system behaviour after the initial disturbances. Thus motivated, we propose

an outage checker based algorithm to simulate the potential cascading outage

of the system. Some of our previous work on developing sequential outage

13



checker based COA analysis is presented in [91] and [215]. In this chapter,

we provide an improved COA model, more detailed and accurate preventive

equipment modeling, and case studies using the IEEE test systems.
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2.1 Work flow of the COA

In previous models [91], [215], the cascading outage analysis is per-

formed with sequential application of the checkers. This sequence is applied

based on assumptions about the timing of various system protective actions

subject to different criteria. For example, we assume the transient stability

protection will detect rotor angle instability and trip generators before Under

Frequency Load Shedding (UFLS) activates. The frequency relay will deploy

UFLS before the over current relays trip the overloaded components, and over

current relays will act before the under voltage relays trip out the loads or

generators that experience voltage instability. However, in practice, the time

of potential relay actions for the frequency relays, over current relays, and

voltage relays could overlap. Once an element is tripped out (i.e., the line

tripped out by the fastest relay), the system topology is changed accordingly,

which will induce a sudden change of the power flow. The elements that were

not tripped out will experience different loading, and could then be tripped

by subsequent protective action. Therefore, in this report, simultaneous ap-

plication of protection is modeled by the checkers and more detailed models

of each protection scheme are implemented to provide a better representation

of the sequence of the cascade. The approach is also reported in [217].

The analysis starts from a specification of the initial disturbances. Then

the transient stability or rotor angle stability is checked by the Transient Sta-

bility Checker (TSC). If the generator rotor angle is larger than a certain

threshold, say, 100 degrees, the generator will be automatically tripped and
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the analysis goes to the next cascading stage involving analysis with the TSC.

If the system reaches a transiently stable state, the COA activates the three

other checkers (frequency outage checker or FOC, overload outage checker or

OOC, voltage outage checker or VOC) simultaneously. Each checker is imple-

mented with a relay function to return a potential trip time. Then the COA

determines the first element to trip (if any). If the topology changes, the COA

will come to the next cascading stage and start the transient stability checker

again. The workflow diagram is shown in Figure 2.1.
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Figure 2.1: Work flow of the COA

2.2 Design of the Transient Stability Checker (TSC)

Transient stability, or rotor angle stability is the ability of the power

system to remain in synchronism when subjected to large transient distur-

bances [93]. According to [126], the power system dynamic behavior can be

represented as a set of differential equations (2.1) and a set of algebraic equa-

tions (2.2).
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ẋ = f(x, y) (2.1)

0 = g(x, y) (2.2)

The solution of these two set of equations defines the electromechanical

state of the power system at any instant in time. A disturbance in the network

usually requires a change to both the network configuration and boundary

conditions. These are modeled by changing the coefficients in the functions

appearing on the right-hand side of equations (2.1) and (2.2).

In the context of transient stability under disturbances, these distur-

bances may include faults on transmission elements, loss of load, loss of gen-

eration, etc. Notice that the faults on the transmission elements, which are

typically short-circuit to the facilities, if cleared and re-closed successfully,

should not result in physical destruction of the assets. This is very different

from the physical attack aimed at damaging the facilities, since permanent

damage could contribute to long-term impacts on the system. A short-circuit

type of attack could easily be initiated by applying conductive material (e.g.

piece of metal, etc) to the transmission elements (e.g. overhead transmission

lines, etc). Transient stability analysis has been performed in power system

analysis by many methods. [231] and [58] use time-domain simulation to cal-

culate the exact system response in time by implicitly numerically integrating

the differential equations (1) and solve the algebraic equations (2) at each time

step. The timedomain simulation is the most accurate method, but is slow
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in computation and does not provide any measurement of degree of system

stability. Transient energy function (TEF) and potential energy boundary

surface (PEBS) [71], [43], [52] methods avoid making numerical integration by

constructing energy functions and comparing the system energy (when fault

is cleared) to a critical energy value estimated by the energy fuctions to de-

termine wherther or not the system will remain stable. These methods are

fast in computation compared to the time simulation, and also able to provide

useful information regarding the degree of stability or instability. However,

they are only applicable to power system stability models having energy func-

tions, and are not as accurate as numerical integration. Hybrid methods [129]

combines the numerical integration and the energy functions method. As indi-

cated in [217] we use time-domain simulation to perform the transient stability

assessment because of its high accuracy. The time-domain simulation allows

taking into account the full system dynamic model and consists in checking

that inter-machine rotor angle deviations lie within a specific range of values.

We choose to use time-domain simulation in this work.

Different models have been used to represent different dynamic char-

acteristics of the generator. In our simulation, a “GENROU” model is se-

lected to represent the round rotor generator. It is noticeable in [158] that

the GENROU model provides a very good approximation of the behavior of

synchronous generator. More than 2/3 of the machines in the 2006 North

American Eastern Interconnect case (MMWG) are represented by GENROU

models. Additionally, standard “IEEE T1” exciter model is used to repre-
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sent a brushless alternating current (AC) exciter with a rotating rectifier, and

“IEEE G1” governor model is used to represent the governor response model.

The transient stability checker uses the PowerWorld transient stability

solver to numerically calculate the system response after a fault. If the rotor

angle deviation of a generator is bigger than a certain threshold, say, 100

degrees, the generator will automatically be tripped. To illustrate this scheme

more clearly, a simulation example is shown in Figure 2.2 and Figure 2.3.

The simulation is performed using IEEE RTS-96 one area test case [4].

The first scenario is a three phase fault applied on the transmission line from

Bus 13 to Bus 11, circuit 1, at 1.0 second, and the relays cleared the fault

at 1.1 second. Three generator rotor angles (Gen 13 unit 1, Gen 13 unit 2,

Gen 23 unit 1) are plotted. As can be seen from the Figure 2.2, the system

experienced some fluctuations, but finally remained stable.

Second scenario is performed under the same setting, but with a fault

clearing time changed from 1.1 seconds to 1.3 seconds. As can be seen from the

Figure 2.3, the generator angle deviations increase dramatically, and generator

unit 1 at bus 13 is tripped out due to angle deviation larger than 100 degrees

at roughly 1.324 seconds.

The implementation of transient stability enables the Cascading Outage

Analysis (COA) model to include transient stability assessment (or rotor angle

stability problem), and hence provides a more accurate representation of the

system behavior.
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Figure 2.2: Generator angle for scenario one, stable swing

Figure 2.3: Generator angle for scenario two, unstable swing

2.3 Frequency Outage Checker (FOC)

Since the numerical integration method used in the transient stability

checker is relatively computationally expensive, we limit the simulation time
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window to be 4 seconds, which is typically more than enough time to address

the rotor angle deviation. However, if a mismatch of the generation and load

happens, a subsequent frequency excursion will occur, typically after the rotor

angle transient dies out. The frequency excursion may then trigger the over-

or under-frequency protection. To represent this possibility, the frequency

outage checker (FOC) is designed to model the protection behavior against

system over or under-frequency events. In the frequency outage checker, a

system frequency response (SFR) model [19] is used as a frequency response

model. In the model, nonlinearities and all but the largest time constants

in the equations of the generating units of the power system are neglected,

with the added assumption that the generation dynamics are dominated by

reheat steam turbine generators.1 Topologically, the model replaces separate

machines by a single large machine that is connected to the individual gen-

erator buses through ideal phase shifters. Consequently, the model produces

an average frequency response shape of a system. In this report, frequency

outages are specified in accord with the frequency outage standard from ER-

COT [63]. According to this standard, when the system frequency violates a

pre-determined threshold for a certain amount of time, the under frequency

relays will operate to deploy under frequency load shedding. The equations

(2.3) and (2.4) show the frequency response model that is used to calculate

the frequency response.

1With increasing capacities of gas turbine and combined cycle gas turbines, this assump-
tion is not literally true in, e.g. ERCOT. However, the resulting second order model for
frequency may still be a reasonably accurate representation.
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f(t) =
RPstep

(DR+Km)2π
[1 + αe−ςωntsin(ωrt+ φ)] + 60 (2.3)

f(t) = K (2.4)

where,

ω2
n =

DR +Km

2HRTR

ς = (
2HR + (DR +KmFH)TR

2(DR+Km)
ωn)

α =

√

1− 2TRςωn + T 2
Rω

2
n

1− ς2

ωr = ωn

√

1− ς2

φ = tan−1(
ωrTR

1− ςωnTR

)− tan−1(

√
1− ς2

−ς )

In the above equations, R is governor droop, ∆ω is incremental speed

in per unit, FH is fraction of total power generated by the HP turbine, TR is

reheat time constant in seconds, H is inertia constant in seconds, D is damping

factor, Km is mechanical power gain factor, Pstep is disturbance magnitude in

per unit and K is pre-defined threshold frequency.
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Figure 2.4 shows how to obtain the under frequency time duration from

the frequency functions. The time when the frequency first drops under the

frequency threshold, t1, and the time when the frequency first rises up to the

threshold again, t2, are determined to calculate the time duration (t2 − t1).

To determine the intersection of two functions (2.3) and (2.4), one could solve

equation (2.5) by methods described in [233].

RPstep

(DR +Km)2π
[1 + αe−ςωntsin(ωrt + φ)] + 60 = K (2.5)

If there are two solutions to (2.5), they are the values of t1 and t2. As a result,

time duration for a specific threshold frequency can be obtained as (t2− t1). If

there is no solution, the time-delay is not calculated, thus the frequency relay

will not be triggered. If there is one solution, the frequency of the intersect is

compared with the UFLS settings. When intersect frequency is lower than the

UFLS threshold, the UFLS may still be deployed but the frequency may not

restore to the pre-disturbance level. When the intersect frequency equal to the

UFLS threshold, no UFLS scheme will be deployed. An example frequency

curve is shown in Figure 2.4.

As seen in Figure 2.4, the lowest point of frequency value should be the

first local minimizer of the frequency curve. This is due to the fact that the

curve is a damped sine wave and the following local minimizers will be closer

to 60 Hz. In an optimization problem like calculating minimum frequency

fmin, the first order condition to find the local minimizer can be applied. If

the derivative of the function at one point is zero, then this point is a local
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Figure 2.4: An example frequency drop curve

minimizer, maximizer, or inflection point. In this problem, finding a point

t which satisfies the equation ∇f(t) = 0 in the first cycle of the curve is

necessary to obtain the time of minimum frequency.

After calculating the time duration in the FOC, it determines whether

the calculated time duration (CTD) of frequency violation exceeds the set

time duration (STD) of the protective relay. If STD is greater than CTD, the

frequency checker selects the next generator according to a user defined order

and compares two time duration values. If a frequency violation is detected in

the calculation step, the FOC will return the time at which under frequency

load shedding will be deployed. The time will later be used in cascading

comparison algorithm.
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2.4 Overload Outage Checker (OOC)

Line overloading for violating thermal limits is an important and com-

mon measure to identify the mechanism of cascading outages and to assess

vulnerability to cascading outages [216]. In a cascading outage scenario perti-

nent to line overloading, a line outage can cause increased flows on other lines,

potentially leading to overloading of the other lines. As a result, when a line

violates the thermal limit, the overloaded lines may be tripped.

A normal inverse time-overcurrent model described in Siemens SIPRO-

TEC 5 Current Relay [185] is implemented. The time when the over current

relay trips the element is determined by (2.6).

T =
0.14

( I
Ith

)0.02 − 1
· Tp[s] (2.6)

Where Ith is the current threshold value of the relay. Tp is the setting

value of the relay. The normal inverse current relay characteristic is shown in

Figure 2.5. Note that in some cases a sag of a transmission line may result in

a short circuit to other objects, e.g. a tree. This phenomenon was observed

in 2003 North America blackout [204]. We are not modeling this issue in the

COA.
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Figure 2.5: Normal Inverse Current Relay Characteristic [185]

2.5 Voltage Outage Checker (VOC)

Another typical character of cascading outages includes under (or over)

voltage problem. When the system is highly stressed, the voltage profiles of

power systems may decline. Similar to the line outage checker, when a voltage

profile for a bus violates a pre-defined chosen threshold to maintain system

stability, the voltage outage checker (VOC) may activate. If a bus voltage

stays below the lower limit during the VOC process although the power flow

calculation converges, load shedding action may be taken to maintain bus

voltages within limits [216].

A standard Inverse time characteristic model described in ABB RXEDK
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Figure 2.6: Inverse Voltage Relay Characteristic [11]

2H Time over/undervoltage relay [11] is implemented in voltage relay model-

ing. The time that under or over voltage relay trips the element is determined

in (2.7) and (2.8).

Overvoltage : T =
k

U
U1
− 1

[s] (2.7)

Undervoltage : T =
k

1− U
U1

[s] (2.8)

Where k is the inverse time constant, U1 is the over/under voltage relay

pick-up value, U is the user defined relay operating value. The inverse voltage

relay characteristic curve is shown in Figure 2.6.
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2.6 Implementation and case study of COA

Both the previous COA model discussed in [215] and the proposed

improved COA model is implemented on a 2.5GHz dual core laptop with 4GB

RAM. The simulations have been performed using IEEE 118 bus test case [2]

and IEEE 300 bus test case [3]. Average simulation time is 3 seconds for

previous COA model, and 3.5 seconds for the improved model. The increase

of the computational time is due to the fact that three checkers (FOC, OOC,

VOC) have to run every time the system passes through TSC stage to obtain

potential tripping time, while in the previous model, the simulation stops or

proceeds to the next cascading stage after one checker is activated. In our

simulation, transmission line and transformer MVA limits are set relatively

tight in order to illustrate the cascading scenarios.

The cascading outage analysis (COA) tool has been built on the Win-

dows based Visual Basic Applications (VBA) [132] in order to support vari-

ous distributed computing environments and interaction with other programs

such as PowerWorld simulator [158] and MS Excel [131]. The implementation

framework is shown in Figure 2.7. The high level control work flow, along

with the relay models and frequency calculation algorithm are implemented

using VBA. The AC power flow calculation and the numerical integration of

the transient stability checker are based on the PowerWorld simulator results.

A report including the post COA powerflow, transient rotor angle data, and

the potential cascading outage data is given in multiple excel worksheets. A

Graphical User Interface (GUI) is also designed to enable customized user in-

29



Figure 2.7: Implementation framework of the COA

put, settings, and to show a real-time simulation log. The design of the GUI

is shown in Figure 2.8.

2.6.1 IEEE 118 Bus System

To illustrate operation of the COA and the difference between the pre-

vious COA model and the improved model, a particular initiating event is
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Figure 2.8: Graphical User Interface of the COA

chosen. In this IEEE 118 Bus System simulation, the initial disturbances are

tripping transmission line 35-37-1, transformer 38-37-1 and transmission line

45-49-1. The cascading outage sequence simulated by the COA model de-

scribed in [215] is shown in table 2.1. The cascading sequence simulated by

the improved COA model is shown in table 2.2.

As can be seen from the results, when compared with previous work

[215], the improved COA model proposed in this report indicated a different

cascading path. However, the cascading events seen from the improved model

are also shown in table 2.1 at analogous stages. The improved model provides

a better representation of time sequence of the cascade, and avoids tripping

out many elements that should not be tripped due to practical relay time

setting. For example, at the first stage, as revealed from table 2.2, three lines

are overloaded, but in fact only one line 45-46-1 will be tripped out because
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Table 2.1: Cascading Sequence of IEEE 118 Bus Case using model in [215]

fromNum toNum ID Category Stage

15 33 1 Line Overload 1

45 46 1 Line Overload 1

68 81 1 Line Overload 1

15 19 1 Line Overload 2

18 19 1 Line Overload 2

19 34 1 Line Overload 2

34 43 1 Line Overload 2

37 40 1 Line Overload 2

39 40 1 Line Overload 2

40 42 1 Line Overload 2

41 42 1 Line Overload 2

42 49 1 Line Overload 2

42 49 2 Line Overload 2

65 68 1 Line Overload 3

23 24 1 Line Overload 4

26 25 1 Line Overload 4

47 49 1 Line Overload 4

49 69 1 Line Overload 4

Blackout

of the shortest time delay (0.446s).

Table 2.2: Cascading Sequence of IEEE 118 Bus Case using improved model

fromNum toNum ID Category Stage Time

45 46 1 Line Overload 1 0.446482

15 33 1 Line Overload 2 0.856211

19 34 1 Line Overload 3 1.118852

Blackout
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2.6.2 IEEE 300 Bus Test Case

Another simulation is performed on IEEE 300 Bus Test System. The

initial disturbances are tripping transmission line 7002-2-1, and 3-1-1. The

cascading outage sequence simulated by COA model proposed in [215] is shown

in table 2.3. The cascading sequence simulated by the improved COA model

is shown in table 2.4.

The improved model indicates similar cascading path at analogous

stages, but the new model reveals the sequence of each protective device op-

eration. At the time of 4.6386s, the system will be blacked out after 9 stages

of cascading outage.
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Table 2.3: Cascading Sequence of IEEE 300 Bus Test Case using model in [215]

fromNum toNum ID Category Stage

3 2 1 Line Overload 1

7 6 1 Line Overload 1

8 11 1 Line Overload 2

16 15 1 Line Overload 3

15 37 1 Line Overload 4

37 41 1 Line Overload 4

2 N/A 1 Load UnderVoltage 5

6 N/A 1 Load UnderVoltage 5

8 N/A 1 Load UnderVoltage 5

14 N/A 1 Load UnderVoltage 5

15 N/A 1 Load UnderVoltage 5

17 N/A 1 Load UnderVoltage 5

89 N/A 1 Load UnderVoltage 5

90 N/A 1 Load UnderVoltage 5

9031 N/A 1 Load UnderVoltage 5

9031 N/A 1 Load UnderVoltage 5

9032 N/A 1 Load UnderVoltage 5

9033 N/A 1 Load UnderVoltage 5

9035 N/A 1 Load UnderVoltage 5

9036 N/A 1 Load UnderVoltage 5

9037 N/A 1 Load UnderVoltage 5

9038 N/A 1 Load UnderVoltage 5

9040 N/A 1 Load UnderVoltage 5

9041 N/A 1 Load UnderVoltage 5

9042 N/A 1 Load UnderVoltage 5

Blackout
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Table 2.4: Cascading Sequence of IEEE 300 Bus Test Case using improved
model

fromNum toNum ID Category Stage Time(s)

7 6 1 Line Overload 1 0.5624

3 2 1 Line Overload 2 0.8844

8 11 1 Line Overload 3 1.2327

16 15 1 Line Overload 4 1.7786

15 37 1 Line Overload 5 2.1786

6 N/A 1 Load UnderVoltage 6 2.7604

2 N/A 1 Load UnderVoltage 7 3.3922

15 89 1 Line Overload 8 4.0316

15 90 1 Line Overload 9 4.6386

Blackout

2.7 Summary and future work

In this chapter, a cascading outage analysis model (COA) is proposed

and tested through the implementation and simulations discussed above. The

model provides a way to evaluate the short term impacts of an attack, e.g. the

amount of short-term load shed. The COA model applies four outage check-

ers, namely Transient Stability Checker, Frequency Outage Checker, Overload

Outage Checker, and Voltage Outage Checker to simulate the system behav-

ior after an initial disturbance, i.e. an attack. The proposed COA model is

compared with the previous model, and has shown advantages including more

accurate relay model representations and better cascading sequence calcula-

tion.

The cascading outage analysis has several limitations. Potential im-
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provements include:

• The cascading outage analysis model does not consider breaker failures

and back-up protection schemes such as zone-2 and zone-3 protection.

The future work may include these models to reflect the real-world sce-

narios.

• The cascading outage analysis model uses a set of pre-determined param-

eters and settings for protection devices. In the industry applications,

different coordinations and settings among various protection scehems

may lead to different system behavior. Software such as CAPE could

assist the optimization and design of the protection schemes [1].

• There are some control schemes in the power systems, including con-

trolled islanding schemes and automatic tap changers, etc that are not

modeled in the cascading outage analysis tool. These sophisticated mod-

els could be incorporated and studied to make the simulation results

more reflective of reality.

Given the ability to simulate the potential cascades, a natural next

step is to develop proper methods and mechanisms to mitigate and prevent

cascading outages. In the next chapter, these issues are studied.
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Chapter 3

Mitigation and Prevention of Cascading

Outages

This Chapter is based on the Author’s contribution in [210] and [219].

Co-authors in [210] have contributed to the editing and review of the paper.

Dr. Jianhui Wang and Dr. Ross Baldick in [219] provided guidance and sugges-

tions on the algorithms described in the paper. Techniques are used to prevent

or mitigate potential cascading outages, including Special Protection Systems

(SPS), Remedial Action Systems (RAS), and intentional islanding schemes. In

this chapter, we review the current practice to mitigate the cascading outages,

and propose a framework to design wide-area protection systems.

3.1 Mitigation and Prevention of Cascading Outages:

Methodologies and Practical Applications

3.1.1 Background and Mitigation Techniques

Due to the complexity of the cascading outages, the methodologies and

practical applications to mitigate such events are limited and subject to uncer-

tainties. Measures for mitigating and/or preventing cascading outages depend

on the type of event [209]. The process of determining preventive measures [99]

is shown in Figure 3.1. As can be seen from the figure, control actions to imme-
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diately respond to the unforeseen events play a vital role to prevent cascades.

Due to the infrequent deployment of such control actions, they are commonly

implemented in devices or schemes called “Special Protection Schemes” or “Re-

medial Action Schemes”. The North Electric Reliability Corporation (NERC)

glossary defines a RAS as: An automatic protection system designed to de-

tect abnormal or predetermined system conditions, and take corrective actions

other than and/or in addition to the isolation of faulted components to main-

tain system reliability [5]. Considerable effort over the last several decades has

been devoted to the research, various implementation and operational issues

of SPS or RAS1 [210], [147], [18], [199], [96], [106], [200], [157], [127]. The de-

velopment and practical applications of SPS are given in [194], [211], [198], [6].

Most of the design and investment decisions are made to implement a single

SPS scheme (e.g., line switching, generation trip) to tackle one particular line

overload or other instability phenomena. However, for some severe n− k con-

tingencies, multiple instability phenomena could be present, and single SPS

device implementations may not be able to relieve the system stress. Accord-

ing to [210], all recommendations learned by recent blackouts point towards

the need for increased coordination between operators in terms of protection

settings, real-time information exchanges, system studies and planning in an

emergency state, and information sharing about system conditions of neigh-

boring TSOs. However, current SPSs are primarily identified and developed

1For brevity, we use SPS to stand for both the Special Protection Schemes and Remedial
Action Systems.
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Figure 3.1: Preventive measures/islanding for different types of cascading
events [210]

based on ad-hoc procedures [84].

3.1.2 Cases of successful and unsuccessful mitigation of cascading
outages and lessons learned

This section presents examples of successful and unsuccessful mitigation

of cascading outages, and summarizes lessons learnt after investigation of these

events.

Cases of unsuccessful mitigation

In 2012, the largest case of unsuccessful mitigation occurred in India [44]

with the loss of nearly 700 million customers. With the initial cause still

under investigation, a severely weakened system coupled with large unsched-

uled interchanges led to highly loaded tie lines. Load encroachment (apparent
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impedance entering the protective zone) tripped these tie-lines after inade-

quate operator relief actions. The resulting power swings split-up the system

where lines continued to trip from under-frequency/over-voltage actions which

eventually caused total collapse of all three grids.

On the afternoon of September 8, 2011, an 11-minute system distur-

bance occurred in the Pacific Southwest, leading to cascading outages and

leaving approximately 2.7 million customers without power [67]. According to

the investigation report [67], the outages affected parts of Arizona, Southern

California, and Baja California, Mexico. All of the San Diego area lost power,

with nearly one-and-a-half million customers losing power, some for up to 12

hours. The disturbance occurred near rush hour, on a business day, snarling

traffic for hours. Schools and businesses closed, some flights and public trans-

portation were disrupted, water and sewage pumping stations lost power, and

beaches were closed due to sewage spills. Millions went without air condition-

ing on a hot day. The sequence of the events are summarized below:

The loss of a single 500 kilovolt (kV) transmission line, namely Arizona

Public Services (APS) Hassayampa-N. Gila 500 kV line (H-NG), which is a

segment of the Southwest Power Link (SWPL), a major transmission corri-

dor that transports power from generators in Arizona to the San Diego area,

initiated the event. Power flows significantly increased through lower voltage

systems to the north of the SWPL, while there was lower than peak genera-

tion levels in San Diego and Mexico. As a consequence, some sizeable voltage

deviations and equipment overloads occured throughout the system. Signifi-
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cant overloading occurred on three of the Imperial Irrigation District (IID)’s

230/92 kV transformers located at the Coachella Valley (CV) and Ramon

substations, as well as on Western Electricity Coordinating Council (WECC)

Path 44, located south of the San Onofre Nuclear Generating Station (SONGS)

in Southern California. The flow redistributions, voltage deviations, and re-

sulting overloads had a ripple effect, as transformers, transmission lines, and

generating units tripped offline, initiating automatic load shedding throughout

the region in a relatively short time span. Just seconds before the blackout,

Path 44 carried all flows into the San Diego area as well as parts of Arizona

and Mexico. Eventually, the excessive loading on Path 44 initiated an intertie

separation scheme at SONGS (RAS), designed to separate SDG&E from SCE.

The SONGS separation scheme separated SDG&E from Path 44, led to the loss

of the SONGS nuclear units, and eventually resulted in the complete blackout

of San Diego and Comisiôn Federal de Electricidads (CFE) Baja California

Control Area. During the 11 minutes of the event, the WECC Reliability Co-

ordinator (WECC RC) issued no directives and only limited mitigating actions

were taken by the Transmission Operators (TOPs) of the affected areas.

Cases of successful mitigation

In 2008 [140], an exceptionally rare event on the UK network resulted in fre-

quency being outside the statutory limit for 9 minutes. Two large genera-

tors tripped within 2 minutes, which already exceeded the maximum credible
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loss, followed by two further units. This loss and further tripping of embed-

ded generation in the distribution system caused frequency to drop to 48.795

Hz. This frequency drop was stopped by load shedding schemes and National

Grid (TSO) was then able to restore system frequency and instructed affected

DNOs to restore the dropped load within a range of 20-40 minutes. Only

1.5% of demand was shed instead of the expected 6.5% due to relay design

accuracy. Successful coordination between the TSO and the DNOs meant that

fewer customers were disconnected and system collapse avoided. In 2006, a

major disturbance in Europe [202] highlighted the importance of coordination

between operators. A planned outage by E.ON Netz (TSO), not properly eval-

uated for N-1 security, initiated the event. Also, the fact that one tie-line had

different protection settings on each end connecting two TSOs was not consid-

ered in their evaluation. This line trip then initiated cascades throughout the

UCTE system due to over-current distance protection and out of synchronism

relays which caused the UCTE system to split into three areas. A blackout

was narrowly avoided due to the actions of TSOs in their individual control

areas. In both under-frequency areas, sufficient generation and load shedding

allowed the restoration of normal frequency within 20 minutes. In the over-

frequency area, where frequency increased further as wind farms that tripped

in the disturbance came back on line, restoration took longer due to a lack of

coordination between TSOs and DNOs.
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3.1.3 Lessons Learned

While events are usually unique, there share many common factors

such as a lack of coordination in key areas. A number of events highlighted

the lack of coordination and information between TSOs operating in an inter-

connected region. All recommendations point towards increased coordination

between operators in terms of protection settings, real time exchanges, system

studies and planning and role in an emergency state, and system conditions of

neighbouring TSOs. Also, a recommendation from [67] looked at the WECC

Reliability Coordinator for coordinating actions in emergency situations as

they have a bigger picture of events. Not only are there lessons to be learnt

from coordination between operators, but the WECC 2011 event highlighted

the need for RAS and SPS to be properly coordinated for protection within

the TSO’s own regions, but also across interconnected regions. When acting in

an emergency state, operators need to be trained to deal with these situations

and understand and act in an urgent manner.
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3.2 Integrated wide-area protection design framework

Measures for mitigating cascading outages are discussed in [210], but

investment and implementation of new wide-area protection schemes were not

considered. Other frameworks are also discussed in [10, 13], but did not include

a systematic approach to optimize the investment decisions regarding multiple

protection actions. Based on these frameworks, we propose a two-step invest-

ment framework for design of wide-area protection systems to mitigate the

cascading outages:

1. Identify the severe multiple contingencies that could potentially

cause cascading outages, and the corresponding arming conditions when such

contingencies may occur. Review existing budget constraints, available tech-

nologies (e.g., generation reduction, line switching, etc) to deploy and their

associated deployment costs.

2. Construct an optimization program to find the optimal investment decision

for various SPSs.

The initiating events for step one that are considered in this chapter

are severe instantaneous multiple contingencies from extreme situations such

as natural disasters or deliberate attacks. We do not consider probabilistic

models of the initiating events due to the complexity of the existing frame-

work. However probability models could be incorporated into this framework

in the future. The investment decisions should be made upon clear understand-
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ing of the budget constraints and availability of the technologies. Figure 3.2

shows the most common SPS techniques currently deployed in WECC [210].

We use the three most commonly used technologies as available investment

candidates (i.e., Generation Trip, Transmission Switching and Load Shed).

The investment cost2 for setting up the SPSs includes the deployment of spe-

cific measuring units to detect certain initiating events, a protected and secure

communication channel, as well as the techniques used to conduct certain op-

erations (e.g. controlled circuit breakers, specified generator controls, etc).

The SPS arming configuration is important, and the system operator should

carefully set the SPSs to be automatically armed when certain system operat-

ing points are met and the probability of multiple contingency occurrence is

high. The cyber security of this system should also be studied carefully, and

may induce additional costs as compared to other protection schemes. Since

the focus of this paper is to present the basic investment framework, we do

not discuss cyber security issues at this stage.

In Step two, the optimization programming model is formed to identify

the investment strategy of the wide area protection systems. The purpose of

using this programming model is to find the optimal locations and techniques

where SPSs are implemented, so that the potential cascading outages could

be mitigated, and at the same time budget constraints are satisfied. In this

dissertation we assume the SPSs will be deployed simultaneously when the

2As the SPSs will be operated automatically, the operating cost of the SPSs is minimal
and not considered in this paper.

45



Figure 3.2: Percentage of SPS techniques deployed in WECC [210]

severe contingency happens.

If the cascading outage can not be avoided given a certain severe con-

tingency and budget, many papers have discussed islanding strategies. [165],

[32], [113], [213], [174]. Finally, if there is significant risk of having a black-

out after a particular initiating event, black start schemes may be designed to

ensure a fast and secure pick up of the load.
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3.3 Future Direction in Mitigation of Cascading Out-
ages

Both technical and cooperative advances are enabling new ideas to im-

prove power system reliability. Driving demand for these new ideas are changes

in generation characteristics, limitations in infrastructure installations, along

with modern society’s continuously increasing dependence on electric power.

An important technical advance is the ability to measure the power system

network state with precise time-stamps, and communicate these synchrophasor

measurements at a high rate. Advances in communication infrastructure allow

streaming measurements both between distributed control devices and between

these devices and the control center. In North America, the American Recov-

ery and Reinvestment Act (ARRA) [55], has participated with the installment

and interconnection of hundreds of phasor measurement units (PMU) across

the power system. Measurements are communicated within each utility and

between the utilities and their regional coordinating center. This is bring-

ing new monitoring capability which increases the situational awareness at

each entity. PMUs provide a set of initial measurements that aid in detecting

and mitigating voltage collapse [156]. Their advantages include a high pro-

cessing rate and immunity from the convergence problems of nonlinear state

estimation. For transient stability related outages, adding time-synchronized

measurements of the generator rotor angle [236] will enable new protection

and automated control [173]. The result is that generators stay synchro-

nized during severe contingencies. Coordination between utilities provides
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the opportunity for future mitigation measures. In Europe, the ENTSO-E has

proposed new recommendations [61]. Recommendations include harmonisa-

tion among UFLSs; developing a standard for the blocking of On Load Tap

Changers (OLTC) and for Under-Voltage Load Shedding (UVLS) in the CE

Synchronous Area; and ensuring high performance of line protections with

respect to their original function (fault clearing) while implementing System

Protection Schemes to protect the system against loss of stability.

3.4 Part Summary and Conclusion

In this part, we developed an improved framework of Cascading Out-

age Analysis model with four checkers, namely Transient Stability Checker,

Frequency Outage Checker, Overload Outage Checker and Voltage Outage

Checker. We implemented the algorithm and tested on IEEE test cases. We

also discussed mitigation and prevention of cascading outages. In the next

part, we incorporate the developed Cascading Outage Analysis model in an

interdiction framework that considers both short- and medium-term impacts.
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Part III

Integrated Interdiction Model
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Chapter 4

Intergrated Model and Solution Algorithm

4.1 Introduction and I-DC-OPF Model

This part summarizes work on analyzing interdiction of electric power

grids. The content of this chapter is based on author’s contribution in [217].

The co-author Dr. Ross Baldick has contributed research ideas on the algo-

rithms described in the paper and editing. An improved interdiction model to

identify maximal electric grid attacks that incorporates both short-term (sec-

onds to minutes) and medium-term (minutes to days) impacts of the possible

attack has been proposed. The medium-term impacts are examined by an

interdicted DC optimal power flow model (I-DC-OPF) building on previously

reported work. The short-term impacts are addressed by a cascading outage

analysis model (COA), as described in the part II, that uses a set of system-

atically applied checkers to perform the simulation of the cascading outage

events and assess the short-term impacts of a blackout subsequent to specified

terrorist attacks. An integer programming heuristic is applied that can uti-

lize standard optimization software (e.g. CPLEX) to solve master problems

generated by the heuristic. The proposed model has been verified using the

IEEE 300 Bus Test System and IEEE RTS 96 Test System. Discussions of the

results and future research plans are also presented in this dissertation.
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As in [166] and [168], we also simulate the medium-term operation of

a grid using a set of linearized DC optimal power flow models (DC-OPF).

While the grid repair, restoration and the unit-commitment issues that arise

as service is restored to different parts of the grid are important, we do not

consider those long-term problems in this report. Some of these issues have

been discussed in [34] and will be considered in the future work (see chapter

6). The objective function for I-DC-OPF includes terms for generation costs

and for penalty costs associated with shed power or energy. The penalties

approximate both the direct and indirect costs of the corresponding unserved

demand.

We use the subproblem of the “interdicted power flow model” (IPF)

as stated in [166] as the interdicted DC-OPF formulation. The formulation is

shown below:

Formulation : I −DC − OPF (L,G, I; d, δ)

z(δ) = min
PG,PL,S,θ

∑

g

hgP
G
g +

∑

i

∑

c

qicSic (4.1)

s.t.

PL
l = Bl(θo(l) − θd(l))(1− δLl )(1− δIo(l))(1− δId(l)), ∀l ∈ L, (4.2)

∑

g∈Gi

PG
g −

∑

l∈L|o(l)=i

PL
l +

∑

l∈L|d(l)=i

PL
l =

∑

c

(dic − Sic), ∀i ∈ I, (4.3)
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−P̄L
l (1− δLl )(1− δIo(l))(1− δId(l)) ≤ PL

l , ∀l ∈ L, (4.4)

PL
l ≤ P̄L

l (1− δLl )(1− δIo(l))(1− δId(l)), ∀l ∈ L (4.5)

0 ≤ PG
g ≤ P̄G

g (1− δGg ), ∀g ∈ G, (4.6)

dicδ
I
i ≤ Sic ≤ dic, ∀i ∈ I, c ∈ C, (4.7)

θi0 = 0. (4.8)

The objective function in (4.1) is the generation costs plus load-shedding

costs in $/h. Constraint (4.2) is linearized admittance constraints that approx-

imate active power flows on lines. Constraint (4.3) maintains power-balance

at the buses. Constraints (4.4), (4.5) and (4.6) set maximum power flows for

lines and maximum generating-unit outputs, respectively. Our current im-

plementation does not include contingency constraints, but these constraints

could be included.1 Constraint (4.7) ensures that load-shedding does not ex-

ceed demand. Constraint (4.8) sets the phase angle on the reference bus to

0.

1Under normal circumstances, power systems are operated to be secure with respect to
single contingencies. In the event of a terrorist attack, however, insecure operation might
be tolerated in order to serve as much load as possible.
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4.2 Integrated interdiction model

This section introduces the integrated interdiction model that consid-

ers both short and medium term implications of an attack. The “interdictor”

in our model, a group of terrorists, will make a coordinated set of resource-

constrained interdictions (attacks) on the power grid. Before detailed discus-

sion about the model, we state assumptions about the types of interdictions,

similar to [166] and [168]:

• Line interdiction: All lines running physically in parallel at the point of

an attack are opened. (Typically, these lines are mounted on the same

towers, and an attack on one is an attack on all.)

• Transformer interdiction: The line representing the transformer is opened.

• Generator interdiction: The generator is disconnected from the grid.

• Bus interdiction: All lines and generators connected to the bus are dis-

connected.

• Substation interdiction: All buses at the substation are disconnected;

this triggers the corresponding bus-interdiction effects just described.

We propose a new bi-level model:

max
δ∈∆

(z(δ) + ρy(δ)), (4.9)

s.t.
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Mδ ≤ M̄. (4.10)

where z(δ) corresponds to the medium-term total cost of I-DC-OPF

as discussed in previous section; ρy(δ) corresponds to the total short-term

load shedding cost subsequent to an interdiction specified by δ, where y(δ)

is the amount of load shedding evaluated by the Cascading Outage Analysis

(COA) model that was discussed in Chapter 2, and ρ is the load shedding

penalty cost. All decision variables in the vector δ are binary, M̄ is the total

terrorist resource (i.e. the number of terrorists), and entries in row vector M

denote the number of resources required to interdict each of the system com-

ponents. Constraint (4.10) limits the total resources that terrorists use for the

interdiction plan to not exceed the resource limit M̄ . With this new bi-level

optimization model, both the medium-term and short-term “pain” after an

attack is addressed. In the actual implementation, several logical constraints

are added to speed convergence and to avoid re-evaluating interdictions con-

sidered in earlier iterations. These logical constraints are discussed in section

4.3.3.

The choice of the load shedding penalty costs ρ in (4.9) and qic in

(4.1) is crucial to the model2 because they are directly used to evaluate the

consequence of an attack δ. A higher medium-term load shedding penalty

2Our I-DC-OPF model is driven by generation and load shedding costs. However, load
shedding penalty costs qic are typically much higher than generation costs hg, so the load
shedding penalty, if any, will offset the generation cost.
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would lead to a choice of attack strategy to cause more medium-term shedding,

while a higher COA penalty would lead to a very different attack strategy

that causes more short-term load shed. On the one hand, more medium-term

load shedding will lead to a longer-lasting system “pain,” and the element

replacement/repair costs might be higher than short-term cascading outage

because most cascades are triggered by sequential system protection actions

that do not directly damage the facilities. On the other hand, however, the

short-term cascade, especially the total blackout, will be very noticeable and

widespread, which could cause intense attention from the public, or even panic

in society.

Note this interdiction model is a normative model based on assumptions

on the terrorists’ motivation, capability and resources. However due to the

rarity of the terrorist attacks and uniqueness of each attack, it may be hard

to produce the quantified inputs of this interdiction model. Therefore, other

descriptive models based on intelligence and historical data may also help the

ultimate decision on the defense schemes.

4.3 The heuristic algorithm to solve the integrated model

4.3.1 General Framework

Benders Decomposition (BD) [73], and Global Benders Decomposition

(GLBD) [168] could potentially be used to solve the bi-level optimization prob-

lem in (4.9) because they could guarantee convergence of the optimum, if

solved successfully. However they generally require construction of convexified
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“cuts,” which in our case is very difficult due to the non-linear, non-convex

nature of the cascading outage. Therefore, Benders Decomposition cannot be

directly used in our new formulation (4.9), and we use a heuristic algorithm

similar to that in [166] to solve the bi-level optimization problem described

above, whose framework is schematically shown in Figure 4.1.

Heuristic algorithms, such as proposed in [166], do not guarantee con-

vergence within a limited number of iterations, but could be solved relatively

easily, and provide “reasonable” or “near optimal” solution. Theoretically, the

heuristic will find the global optimum on or before the time when all feasible

solutions are evaluated. In fact, a general observation to the interdiction prob-

lem is that the more assets an attack interdicts, the more cost the system will

suffer. Therefore, the “worst case” attack strategy would most likely involve

as much resource as the terrorists have.

4.3.2 Subproblem: I-DC-OPF and COA for a given interdiction
plan

The initialization of the algorithm sets pre-attack coefficients and pre-

attack interdiction binary variables to be 0. At the n-th iteration, given an

interdiction plan δn that maximizes the master problem, we re-calculate the

I-DC-OPF model and COA model to obtain the new power flow patterns and

total cost z(δn) and y(δn), in which case we expect some load shedding cost

from I-DC-OPF and/or COA. The process continues by finding alternative sets

of valuable assets to interdict that have not been identified at earlier iterations,
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Figure 4.1: Proposed heuristic algorithm

and by evaluating load shedding of these interdiction plans.

4.3.3 Master Problem: Optimize a new interdiction strategy

The master problem uses the power flows from I-DC-OPF and COA

at the initial iteration to calculate estimated coefficients, V OPF and V COA,

and also calculates a set of the combined values of elements V Total used by

the integer program MP (V Total, δ
1, δ2, ..., δn) to solve for a newly optimized

attack plan δn+1 and the subsequent total costΦ(V , δn+1). The results of each
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iteration will be compared with the previous solutions and the “worst case”

plan will be updated. The coefficients for I-DC-OPF and COA are based on

the power flow values from I-DC-OPF and COA respectively. The calculation

for the values of each grid component in vector V OPF , for example, is shown

below:

VOPF,g = ϕGenPg, ∀g (4.11)

VOPF,l = ϕLine(|Pl|+
∑

l′∈LPar

l

|Pl′|), ∀l (4.12)

VOPF,i = ϕBus(P In
i + POut

i ), ∀i (4.13)

VOPF,s = ϕSub
∑

l|l∈Ls

|Pl|, ∀s (4.14)

The meaning of V OPF and V COA is to provide the “attractiveness”,

or the potential “benefit” of attacking each element, thus enabling the master

problem to determine the worst case attack strategy. As shown in (4.11)-

(4.14), calculation of the vectors V OPF and V COA is performed in a similar

fashion to [166], where the ϕ multipliers are constant coefficients reflecting

the relative value of interdicting each element, e.g., ϕGen = 2, ϕBus = 5,

ϕLine = 1, ϕSub = 5. After calculating V OPF and V COA, V Total is calculated

by V Total = V OPF ×̟OPF +V COA×̟COA. The values ̟OPF and ̟COA are
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the weights multiplied by the estimated vectors V OPF and V COA to send the

Master Problem the “incentives” to attack each component. Different values

of these weights will lead to different converging trajectory. For example, a

larger ̟OPF will potentially make V OPF ×̟OPF larger than V COA×̟COA,

thus create a higher incentive for the MP to attack heavily post-OPF loaded

components. However, since the heuristic algorithm will ultimately choose the

“worst case” by the combined cost of I-DC-OPF and COA, the effect of ̟OPF

and ̟COA is primarily to affect the trajectory but not the best solution found

to (9). In our case, we choose: ̟OPF = ̟COA = 0.5.

The combined and weighted power-flow pattern is then used to assign

relative values to all the interdictable components of the power grid. These

values are used to maximize the estimated value of the assets to be interdicted,

while ensuring that the terrorist resources required for the interdiction plan

are not exceeding the limit M̄ . Similar to section II.D in [166], we add five

inequality constraints as logical constraints to speed the solution process. The

meaning of these constrains are: do not interdict a bus i and a generator

connecting to the same bus at same time; do not interdict a line and its

terminal bus at the same time; do not interdict a line and its parallel line at

the same time; do not interdict a bus i and a substation that contains bus i at

the same time; and, do not interdict a line and the substation it is connected

to at the same time. Another logical constraint as described in section II.C

in [168] is also utilized to make sure the result of every iteration different from

the previous results. Hence the master problem formulation becomes:
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MP (V Total, δ
1, δ2, ..., δn):

max
δ
Line,δGen,δSub,δBus

∑

g∈G

Vgδ
Gen
g +

∑

l∈L

Vlδ
Line
l

+
∑

i∈I

Viδ
Bus
i +

∑

s∈S

Vsδ
Sub
s ,

s.t.

∑

g∈G∗

MGen
g δGen

g +
∑

l∈L∗

MLine
l δLinel

+
∑

i∈I∗

MBus
i δBus

i +
∑

s∈S

MSub
s δSubs ≤ M̄,

∑

k∈K|δn̂
k
=1

δn̂k +
∑

k∈K|δn̂
k
=0

(1− δn̂k ) ≤ |K| − 1, ∀n̂ = 1, ..., n

δGen
g + δBus

i ≤ 1, ∀g ∈ G∗
i , i ∈ I∗

δLinel + δBus
i ≤ 1, ∀l ∈ Li

⋂

L∗, i ∈ I∗

δLinel + δLinel′ ≤ 1, ∀l′ ∈ LPar
l

⋂

L∗, l ∈ L∗

δLinel + δSubi ≤ 1.∀l ∈ Ls

⋂

L∗, s ∈ S∗
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After obtaining this new attack plan δn+1 that solvesMP (V Total, δ
1, δ2, ..., δn),

the algorithm then goes back to the subproblem to check if it is the worst case

so far by comparing the combined cost of the load shedding due to δn+1 with

the cost of the previous worst case plan δ∗. The algorithm will iterate until

the master problem is infeasible, or the total number of iteration reaches the

pre-determined threshold N .

A more detailed, step by step description of this algorithm is shown as

follows:

Input Data:

· Problem statement data (grid data, interdiction resource)

· N Total number of iterations

Initialization:

· Set n = 1 (iteration counter) and vector δn to be zero.

· Φ∗ ← Φ0 Best interdiction plan initialized.

Solve Master problem:

· Calculate the vector of estimated values for I-DC-OPF model V OPF .

· Calculate the vector of estimated values for COA model: V COA.
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· Calculate the combined vector of DC-OPF and COA model: V Total =

V OPF ×̟OPF + V COA ×̟COA.

· Solve MP (V Total, δ
1, δ2, ..., δn) for new interdiction plan δn+1.

· If MP (V Total, δ
1, δ2, ..., δn) is infeasible, STOP.

· Otherwise, assign n← n+ 1, go to Subproblem.

Solve Subproblem:

· Solve I-DC-OPF for total operation cost and potential load shedding

cost z(δn).

· Solve COA model for potential load shedding cost y(δn).

· Calculate the total disturbance cost Φ(δn) = z(δn) + ρy(δn).

· If Φ(δn) > Φ(δ∗) then Φ(δ∗)← Φ(δn).

· If n ≥ N then STOP.
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Chapter 5

Implementation, Results and Future Work

5.1 Implementation and Simulation Results

In order to implement the models and algorithms, a graphical user

interface is designed with the algorithm written in Visual Basic for Appli-

cation [132], PowerWorld Scripts [158], Excel Scripts [131], and Cplex [92].

Within the code, the graphical user interface (GUI) is designed using the Vi-

sual Basic for Application; the PowerWorld simulator is used in the I-DC-OPF

calculation, Transient Stability calculation, and the AC Power Flow calcula-

tion; Cplex is used to solve the integrated integer optimization problem; the

frequency checker algorithm, along with the high-level control algorithm is

implemented in Visual Basic for Applications.

With the GUI, the user will assign the attack resources, modify different

control settings with respect to the cascading outage analysis, and run the

interdiction model. The simulation result contains the post I-DC-OPF and

COA power flow patterns, the load shed for OPF and COA modules, and the

attack plan for each interdiction plan.
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5.1.1 IEEE Reliability Test System RTS-96 and Integrated Tool
Simulation

We have applied the proposed model and algorithm to 1996 IEEE Re-

liability Test System (RTS-96) [4]. Average simulation time for one iteration

is 8 to 10 seconds on a 2.5GHZ laptop computer with 4GB RAM, excluding

the initialization time that opens the solver connection and PowerWorld flow

case. We restrict the number of iterations to T = 500 for all problems to

limit the computation time. For a fixed interdiction resource M̄ as described

in MP (V Total, δ
1, δ2, ..., δn) to solve for a newly optimized attack plan δn+1,

the total simulation time is at most 1 hour, during which about 70 % of

the time is used to solve the master problem, 20% of the time is to perform

the cascading outage analysis and the I-DC-OPF calculations, and the rest

of the time is due to running interfaces among the tools. Within Cascading

Outage Analysis calculations, the time used for transient stability analysis is

about 50%, and the time used for other three checkers is about 50%. Since

we limited the number of iterations and computational time in this specific

experiment, the proposed heuristic may miss relevant solutions.

While the computational time seems to be high for such a small system,

the major increase of the computational burden for larger systems occurs in

solving a larger integer master program. The cascading outage analysis model

will run slower for large systems, but the computation time increases relatively

slowly (a COA without transient stability checker can run the size of ERCOT

system within 5 seconds). Solving the DC-OPF and running the interfaces are
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also not contributing significantly further to the computational efforts. At the

same time, this “worst case” analysis is expected to be performed off-line so

that the computational burden would not be a major concern.

We applied the algorithm to RTS-96 test system for three scenarios. We

set the load shedding penalty cost for medium-term impacts to $1000/MWh

and set the short-term penalty to $1000/MW in scenario 1. We also simulated

two additional scenarios, each of which has one of the penalty costs dominating

the other.

5.1.2 Interdiction Results

Figure 5.1 displays the results from the algorithm for the amount of

load shed due to OPF, COA, and the total cost of the attack, respectively, in

scenario 1, with the interdiction resource M̄ varying from 0 to 22. Unlike in

Salmeron et al. [166], it is quite noticeable that the amount of I-DC-OPF load

shed is not monotonically non-decreasing. This is due to the effect of the jump

in COA load shedding from resource M̄ = 8 to M̄ = 10. At M̄ = 8 the system

will experience a comparably small cascading event, shedding 419MW of load,

roughly 14.7 % of the total load. Thereafter, if we increase the interdiction re-

source to M̄ = 10, the attack could possibly create a total cascading blackout,

meaning a total of 2850MW of load is shed, but only 765MW of load shedding

in I-DC-OPF. In this case, although the attack has a lower medium-term cost

compared with the previous attack, the total system cost is higher given our

choice of penalty coefficients. It can also be observed that the load shedding of
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Figure 5.1: Simulation Results on RTS-96 Test Case, scenario 1

the cascading outage is monotonically non-decreasing. At the same time, once

the resource is enough to trigger a total system blackout, more resources will

not increase the COA load shedding. Therefore, the consequence of having

more attack resources will be a higher medium-term load shedding only. In

general, the total cost of the attack is monotonically non-decreasing.

Figure 5.2 and Figure 5.3 display the simulation results of scenario 2

and 3. Scenario 2 has medium-term penalty cost of $1000/MWh and short-

term penalty of $0/MW. The results of scenario 2 are almost identical to the

66



results in [166], which also only considers I-DC-OPF interdiction. Note that

the OPF load shed is non-decreasing when interdiction resource increases be-

cause no short-term impacts are contributing to the total impact evaluation.

High I-DC-OPF load shed with low cascading outage impact is primarily due

to relaxed emergency transmission loading in short-term operation compared

to sustained loading constraints in medium-term OPF. The results of sce-

nario 3 have medium-term penalty cost of $0/MWh and short-term penalty

of $1000/MW. It is demonstrated that although high cascading load shed is

achieved, lower I-DC-OPF cost may occur due to the ability to reschedule

power dispatch in I-DC-OPF.

5.1.3 Discussion

As mentioned in the Introduction, it is difficult to accurately under-

stand the objective of the terrorists. As can be seen from our results and

compared with the scenarios that only consider medium-term effects, such as

the results from [166], the terrorists generally need a relatively large amount

of resource to conduct an attack that results in large (e.g., larger than 80 %)

medium-term load disturbance, while the resources needed to achieve a large

short-term cascading events (e.g., cascading blackout) is much smaller. At the

same time, the short-term cascades might be more socially visible, meaning

a sudden large blackout would cause heavy media coverage. Therefore, each

operator should conduct the study based on its own forecast, or understanding

of the potential threats.
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Figure 5.2: Simulation Results on RTS-96 Test Case, scenario 2

5.2 Summary and Future Work

In this chapter, the completed work is summarized and the directions

of some future work are proposed. There are several limitations to our current

work, including that we do not consider the restoration of power grids; do

not consider cyber security threats to power system; the slow speed and poor

convergence capability; and the lack of study on comparison of interdiction

models and natural disaster analysis models. They are all important directions

that we would like to further investigate in our future work.
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Figure 5.3: Simulation Results on RTS-96 Test Case, scenario 3

5.2.1 Incorporate restoration and cyber security attack models

As indicated in [141], “perhaps the most serious vulnerability to the

various sensing, communication, and control subsystems that has developed

in recent years, and which is now being rapidly rectified, has been lack of

attention to connections from system control centers to the outside world. If

these connections are not treated with great care, and if proper cyber security

protection is not provided, they can in principle become a route for attackers

from the outside world to create disruption, take control, and cause damage.”
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Recent studies and simulations [175], [54] have revealed that multiple types

of attacks could be conducted to the power system through SCADA systems.

Most of the cyber-related attacks are aimed at disrupting the service of one or

more system components, either by physically destroying the physical facility,

or by shutting down the facility without physical harm. We are not trying

to study the detailed mechanisms of each attack, but rather our aim is to

study how to allocate the limited defense budget to strengthen the protection

against the critical components, which once attacked, could result in “worst

case” consequences.

Based on studies on the level of difficulties and consequences of the

attacks [175], we categorize the methods of attacks into four categories:

• Bomb or pure physical attack: the electric power facility (line, trans-

former, generator, bus, substation) is attacked and destroyed by attack-

ers physically carrying weapons to the scene. Such attacks involve explo-

sives and bomb attacks, etc and has been the default assumed method

of attack in the work developed so far.

• Hybrid attack: the electric power facility is attacked by attackers that

have to be physically near the scene, with the attackers gaining control of

the facility and stopping service without destroying it. Such attack tech-

niques include spoofing the PMU units that control a relay and opening

an associated circuit breaker. [183]

• Cyber attack, non-destructive: the electric power facility is attacked by

70



remote attackers that stop the service of the facility without destroying

the asset. Such techniques include man-in-the-middle attacks, password

spoofing attacks, etc.

• Cyber attack, destructive: the electric power facility is attacked by re-

mote attackers that stop the service of the facility and destroy the asset.

Such techniques include gaining control and feeding false control com-

mand to over speed the generators as described in [175], etc.

The key difference among the attacks are not only the ways they are

conducted, but also the resources they need in order to be conducted, and the

resulting restoration time/cost. For example, Figure 5.4 shows some example

attack resource and repair times.1

Because of the large variation in the repair time among different attack

techniques described above, we need to incorporate the repair and restoration

cost to the model in order to get a better estimation of the attack consequence.

The interdiction model including repair and restoration has been investigated

in [166], [168]. In [166], a time-phased version of I-DC-OPF is created by

using interdiction constructs to couple instances of DC-OPF, one for each

system state that represents a stage or time period of system repair. Define

j = 1, 2, ..., J as the stages of the restoration, DURj as the time duration of

stage j (i.e. hours). For example, we may have up to 7 stages of the restoration

1The specific numbers are for example purposes only. We have performed what we think
are reasonable numbers but we do not currently have any specific empirical data.
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Name of 

attack

Target of attack Repair time Resource 

needed

Reference

scenario

Line attack 

(bomb)

Line Lab connecting 

bus a and b

Tb
l,

e.g. 48 hours

Mb
l,

e.g. 2

A bomb is carried to a transmission tower 

and explodes.

Line attack 

(hybrid)

Line Lab connecting 

bus a and b

Th
l,

e.g. 8 hours

Mh
l,

e.g. 2

The PMU controlling the relay of a breaker 

has its GPS spoofed (the action happens with 

terrorists close to the PMU) and PMU is 

controlled to open the breaker.

Line attack 

(cyber)

Line Lab connecting 

bus a and b

Tc
l,

e.g. 6 hours

Mc
l,

e.g. 1

The breaker is remotely controlled to open.

Gen attack 

(bomb)

Generator Gab

connecting bus a 

and b

Tb
g,

e.g. 168 

hours

Mb
g,

e.g. 8

A bomb is carried to a generator and 

explodes.

Gen attack 

(cyber, non-

destructive

Generator Gab

connecting bus a 

and b

Tcn
g,

e.g. 12 hours

Mcn
g,

e.g. 3

The generator is remotely controlled to be 

open.

Gen attack 

(cyber, 

destructive)

Generator Gab

connecting bus a 

and b

Tcd
g,

e.g. 168 

hours

Mcd
g,

e.g. 6

The generator is remotely controlled to over 

speed and breaks down.

Bus attack 

(bomb)

Bus Ba Tb
bus,

e.g. 96 hours

Mb
bus,

e.g. 6

A bomb is carried to a bus bar and explodes.

Substation 

attack (bomb)

Substation Sa Tb
sub,

e.g. 168

hours

Mb
sub,

e.g. 8

A bomb is carried to a substation and 

explodes.

Substation 

attack (cyber)

Substation Sa Tc
sub,

e.g. 24 hours

Mc
sub,

e.g. 8

The substation is remotely controlled to be 

shut down.

Figure 5.4: Description of modes of attack

based on repair time assumptions in Figure 5.4 (i.e. j = 1, 2, ...7). From hour 6

to hour 8, the damage of Line attack (cyber) is repaired, but all other damage

having repair time longer than 6 hours is not repaired (i.e. DUR2 = 2). The

model described in [166] can be expressed as:

max
δ∈∆

J
∑

j=1

DURjzj(δ), (5.1)

s.t.
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Mδ ≤ M̄. (5.2)

Each instance DURjzj(δ) is an I-DC-OPF model with topology at

stage j. The topology is determined by the restoration process depending on

how many components are online and functional. During a particular stage of

restoration process (e.g. from hour 96 to hour 168 shown in Figure 5.4), the

topology is assumed to remain the same.

Based on the model described above, we propose an expanded interdic-

tion model considering the short term cascading effects and the sequencing of

restoration:

max
δ∈∆

(

J
∑

j=1

DURjzj(δ)) + ρy(δ), (5.3)

s.t.

Mδ ≤ M̄. (5.4)

Expanding model (4.1),
∑J

j=1DURjzj(δ)g corresponds to the total

cost of multiple I-DC-OPF considering the restoration; ρy(δ) corresponds to

the total short-term load shedding cost subsequent to an interdiction specified

by δ, where y(δ) is the amount of load shedding evaluated by the Cascad-

ing Outage Analysis (COA) model that was discussed in Chapter 2, and ρ is
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the load shedding penalty cost. All decision variables in the vector δ are bi-

nary. Different from model (2.1), the decision variables include multiple attack

modes to each facility. Logically, only one attack mode should be applied to

one facility in a specific attack. The parameter M̄ is the total terrorist resource

(i.e. the number of terrorists), and entries in vector M denote the number of

resources required to interdict each of the system components for each attack

mode. Constraint (7.2) limits the total resources that terrorists use for the

interdiction plan to not exceed the resource limit M̄ . The solution methods

are also similar to the heuristic algorithm discussed in chapter 5. This model

can be viewed as an extention of the integrated interdiction model (5.1) with

consideration of the cyber attacks and restoration.

Preliminary experiments have been done on IEEE RTS 96 system [4].

Using the parameters provided in Figure 5.4, with total resource M = 26, the

heuristic algorithm finds an attack scenario. The load shed over time is shown

in Figure 5.5,2 and the deployment of the attack resources is shown in Figure

5.6.

Future work includes more simulations, comparison with the scenarios

without cyber attacks, and more rigorous study of the mechanisms of the cyber

attacks.

2Note: durations of the repair stages shown in horizontal axis are not uniform.
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Figure 5.5: Load shed with time on RTS-96 Test Case, M=26

5.2.2 Improve the solution speed by new optimization methods

The limitations of this extension is that the computational burden be-

comes much higher than the models described in (2.1) and [166]. This is due

to a large increase of decision variables for multiple attack modes, and the

calculation of COA when compared to [166]. Therefore, we try to expedite

the heuristic algorithm. At the same time, the heuristic algorithm does not

guarantee the convergence of the problem. In [168], a “Global Benders De-

composition” algorithm has been used to solve the limitations discussed above.

The decomposition relies on a sequence of upper-bounding (i.e., optimistic

for the maximization problem) piecewise-linear functions for the interdictor’s
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Gen Cyber-

destructive
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Line hybrid

15%

Line Cyber

8%

Figure 5.6: The attack resource deployment on RTS-96 Test Case, M=26.

objective. The maximum of the pointwise minima of those functions must

converge to the optimal solution of IPF since only a finite number of interdic-

tion plans exist; however, practical use of the decomposition rests on verifiably

close-to-optimal solutions being found quickly.

In [168], for each interdiction plan δ, the interdictor’s objective z(δ) is

bounded by a cut:

z(δ) ≤ z(δ̂) +
∑

k∈K

αk(δ̂)(δk − δ̂k), ∀δ, δ̂ ∈ ∆ (5.5)

The cut is generated following an assumption:
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• Assumption: Ignoring the short-term load-shedding due to interdiction-

caused cascading failures, (a) the interdiction of a set of components,

each carrying p MW of power, leads to the shedding of at most p MW of

demand, and (b) the restoration of an interdicted component does not

increase load-shedding.

Although the assumption does not hold strictly, [168] has demonstrated

the efficiency and effectiveness of the method to solve interdiction problems.

The major difference of the interdiction model described in [166] compared

to the model in (7.1) is that we have short-term impacts, namely COA load

shedding costs added to the objective. Inspired by the cut (7.5), we propose

a new cut to tackle the inclusion of the short term COA cost:

z(δ) + ρy(δ) ≤ z(δ̂) +
∑

k∈K

αk(δ̂)(δk − δ̂k) + ρ
∑

l∈L

Pl, ∀δ, δ̂ ∈ ∆ (5.6)

In (7.6), we assume the upper bound of a potential cascading effect

is the total system blackout, and has a cost of ρ
∑

l∈L Pl. Future work will

focus on employing this cut structure to develop the extended Global Benders

Decomposition method, in order to expedite the solution process. Note the

assumption made in the proposed cut is likely to be conservative, because

given limited resource, an attack may not achieve a total system blackout or

load shedding that is close to the total system load. Therefore, the distance

between the actual “worst case” attack load shedding and the bound calculated
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by the right hand side of (7.6) may be large, which may create challenges for

the proper choice of convergence criteria.

In order to solve this challenge, we will also explore ways to establish

less conservative bounds. An example solution could involve a pre-screening

method (e.g. Random Chemistry method [62]) to identify whether the given

attack resource is sufficient to cause a total system blackout. If the attack

resource is sufficient to cause a system blackout, the upper bound described

in (7.6) may be appropriate. If the attack resource is not sufficient to case a

system blackout, a less conservative upper bound assumption may be applied

(e.g. multiples of the largest power flow on components).

5.2.3 Summary

In this chapter, the completed work and contribution is summarized.

The directions of some future work are proposed. We propose an extended

framework that considers the restoration of power grids and the cyber se-

curity threats to power system. We will apply an extended Global Benders

Decomposition cut structure and the subsequent screening methods to expe-

dite the solution process of the interdiction problem. We will also conduct

analysis on comparison of interdiction models and natural disaster models.
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Part IV

Power Grid Resilience under
Natural Disasters
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Chapter 6

Survey on Research of Power Grid Resilience

6.1 Introduction

This chapter is based on the author’s contribution in [218]. Dr. Chen

Chen, Dr. Jianhui Wang and Dr. Ross Baldick in [218] contributed to the

collection and discussion on the literature of the natural disasters research.

Secure and reliable electric power grid operation is important to social wellbe-

ing. Recent years have seen many blackouts due to natural disasters such as

the 2005 Hurricane Katrina blackouts, 2011 Japan Earthquake blackouts, and

2012 Hurricane Sandy blackouts. Between 2003 and 2012, roughly 679 power

outages, each affecting at least 50,000 customers, occurred due to weather

events in U.S. [64]. Hines et al [89] describes 933 events causing outages from

the years 1984 to 2006, and the data is presented in Table I1. The study of

natural disaster impacts on power grid can be traced back to 1930s, when

the 1938 New England Hurricane struck the Boston Area [79]. In the last

decades, there has been considerable progress in advancing methods for an-

alyzing natural disaster related issues in power systems. At the same time,

due to the complexity of the issue and its interdisciplinary nature, research

1The totals are greater than 100% because some events fall into multiple initiating-event
categories.
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Table 6.1: Large Blackouts Causes in the United States [89]

Cause % of events Mean size Mean size

in MW in customers

Earthquake 0.8 1,408 375,900

Tornado 2.8 367 115,439

Hurricane/tropical storm 4.2 1,309 782,695

Ice storm 5.0 1,152 343,448

Lightning 11.3 270 70,944

Wind/rain 14.8 793 185,199

Other cold weather 5.5 542 150,255

Fire 5.2 431 111,244

Intentional attack 1.6 340 24,572

Supply shortage 5.3 341 138,957

Other external cause 4.8 710 246,071

Equipment failure 29.7 379 57,140

Operator error 10.1 489 105,322

Voltage reduction 7.7 153 212,900

Volunteer reduction 5.9 190 134,543

activities are conducted sparsely across different domains. We summarize the

natural disaster characteristics based on multiple sources such as [77], [89] in

Table II. The research on the issue of natural disasters on power systems can

therefore be viewed in different aspects. To define the scope of this chapter, we

first summarize the timeline of the response in the electric grid under natural

disasters in Figure 6.1.

Paralleling the issues illustrated in Figure 6.1, we review the forecast

models that are used to estimate the power outages as well as the asset dam-
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Table 6.2: Illustration of disaster characteristics based on multiple sources

Type Impact Re-
gion

Predictability Span/area Affecting
time

Hurricane,
tropical
storm

Coastal re-
gions

24-72
hours,
moderate
to good

Large (ra-
dius up
to 1,000
miles)

Hours to
days

Tornado Inland
plains

0-2 hours,
bad to
moderate

Small (ra-
dius up to 5
miles)

Minutes to
hours

Blizzard,
Ice Storm

High lat-
itude
regions

24-72
hours,
moderate
to good

large, up to
1,000 miles

Hours to
days

Earthquake Regions on
fault lines

Seconds to
minutes,
bad

Small to
large

Minutes to
days (after-
shock)

Tsunami Coastal re-
gions

Minutes
to hours,
moderate

Small to
large

Minutes to
hours

Drought,
Wild Fire

Inland
regions

Days, good Medium to
large

Days to
months

ages; the corrective actions and emergency response, hardening and pre-storm

preparation models; the restoration models that organize activities happening

during or after the occurrence of the natural disasters. The scope of the work

does not consider meteorological or geographical analysis of the natural disas-

ters. While some traditional planning, operation and, restoration issues have

appeared in the literature, we try to select and discuss the models and meth-

ods that could be applicable and relevant to natural disaster scenarios. The
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Figure 6.1: Timeline of the response in electric grid under natural disasters

references we review are mainly academic, especially in forecast models, and

restoration techniques. On current hardening practices some of the references

are from industry. The models, methodologies, and frameworks we review

could be applied with no geographical restrictions. However, some examples

shown in this chapter are mostly US concentrated.

The remainder of this chapter is divided as follows. Section 6.2 re-

views the forecast models. Section 6.3 describes the experiences and practices
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for corrective actions, storm hardening programs, and pre-storm preparation

activities. Section 6.4 discusses the models used to advance restoration pro-

cesses. Section 6.5 provides challenges and suggestions for future work in the

area of natural disaster impacts on power systems.

6.2 Forecast Models

6.2.1 Statistical Models

A range of models have been proposed in the literature to model power

system damage, outage duration and restoration after natural disasters [138],

[120], [80], [78], [77]. Most of the proposed methods, however, rely on damage

assessments made after the occurrence of the extreme events [66], [148]. In this

section we discuss some of the frequently used datasets, models and validation

methods.2

6.2.1.1 Data and parameters

Many factors influence the susceptibility of electric power systems in a

given geographic area to outages during natural disasters. Data required for

statistical models can be divided into two categories, namely power system

data and environmental data. The power system data usually includes the

2Most of the existing models emphasize finding the explanatory factors in power outages.
While these factors and models could be used in both long-term hardening suggestions and
short-term forecasting before the natural disasters, the on-line applications of short-term
forecasting are challenging due to the difficulties to obtain update and validate real-time
data. At the same time, different models stated in this chapter may suit some purposes
better than the others. One example of the on-line prediction framework can be found
in [181].
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location and number of the customers, topology of the system, availability

of the protection devices, etc.. The Transmission Availability Data System

(TADS) managed by North American Electric Reliability Corporation (NERC)

as well as its outage reports have collected outage data in a common format

for U.S. transmission systems [144]. Other reports [37], [59] also provide some

aggregated data for natural disasters.

Environmental data may vary with the disaster scenarios. Examples of

such parameters as well as the possible source are listed below:

• Land and geometric characteristics of the area such as land use and land

cover data, soil moisture levels, elevation characterisrics, land slopes,

compound topographic index [136], [208].

• Disaster variables such as hurricane duration and intensity, approaching

angle, landfall position, translation velocity, etc [142].

• Climatic characteristics, such as standardized precipitation index (SPI),

annual and monthly precipitation [143].

6.2.1.2 Data fitting models

Generalized Linear Models (GLM): GLM has been used in [77], [78] to

estimate the storm damage to power systems and the effects of tree trimming

programs on power systems resiliency under hurricanes. For example, [78]

used a negative binomial GLM to model power system failures, represented by
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equations (6.1) and (6.2):

fY (y|α, λ) ∼
Γ(yi + α)

Γ(yi + 1)Γ(α−1)
×

(

α−1

α−1 + λi

)α−1 (

λi

α−1 + λi

)

, (6.1)

log(λi) = β0 +
∑

i

βixi, (6.2)

where the vector xi represents the explanatory variables, the vector β is the

regression parameters to be estimated, and α is the overdispersion param-

eter of the negative binomial distribution that is observed in power system

performance data.

Generalized Additive Models (GAM): The structure of a GAM differs

from the structure of a GLM only in how the parameters of the conditional

distribution are related to the covariates. For example, the link function shown

in equation (6.2) can be changed to equation (6.3) to represent a non-linear

smoothing function.

log(λi) = β0 +
∑

i

s(xi) (6.3)

Accelerated Failure Time (AFT) models: AFT models have been used

by [138], [120] to estimate the power outage durations. The model relates the

survival time to the explanatory variables through a linear relationship, as

shown in equation (6.4):

ln(Ti) = XT
t β + σi (6.4)

where Ti is the survival time random variable, Xi is the vector of covariates,

β is the vector of parameters, and σi is the vector errors that is assumed to
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be independently distributed. AFT is most typically fit using the method of

maximum likelihood.

Tree Based Data Mining models (Classification And Regression Trees

(CART) and Bayesian Additive Regression Trees (BART model)) [138]: CART

are built by binary splitting of the data space into terminal nodes. In building

regression trees the best splits s are chosen such that the sum of squared

errors (or least absolute deviation) within each node t is minimized. A BART

model comprises a set of small trees with each tree constrained by a prior to

restrict each tree’s contribution to the final model, making each individual tree

a “weak learner”. Fit and inference in BART are achieved through a Markov

chain Monte Carlo algorithm.

Some other methods including Fuzzy Inference System (FIS) [122], Mul-

tivariate Adaptive Regression Splines method (MARS) and Cox Proportional

Hazard models (COX PH) have also been used in the statistical forecast of

the natural disaster impacts on power systems.

6.2.1.3 Measurement of fitting goodness and example

A typical way to measure the fitting goodness of a certain model is

to compare the prediction results with the observed data. The mean absolute

error (MAE), mean absolute deviation (MAD), mean squared error (MSE), and

root mean squared error (RMSE) are often used as metrics to this comparison.

An example of the model implementation can be found in [78], where
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Table 6.3: Comparison of Holdout Mean Absolute Errors (MAEs)

Model MAE

BART 11.5

CART 11.7

GLM 21.4

GAM 13.6

BART/CART 10.3

BART/CART/GAM 10.4

BART/CART/GAM/GLM 12.0

Prediction by the Mean 20.0

model validation has been performed across four basic models, namely BART,

CART, GLM, and GAM, as well as a combination of the methods to assess

the pre-storm estimation of number of damaged poles in a distribution system.

The variables used in the example include the parameters in Chapter 6.2.1.1).

The pole replacement data consisted of the number of poles that were replaced

in 456 grid cells (12,000 feet by 8,000 feet) due to damage in parts of Missis-

sippi during Hurricane Katrina. There were 8,698 total pole replacements in

this data set with 2,308 of these being poles owned by a telephone company

but used by the power company and 6,390 being poles owned by the power

company. The Comparison of Holdout Mean Absolute Errors (MAEs) based

on detailed pole-level damage data on the basis of 150 random pre-selected

samples (or “holdout” samples) is provided in Table 6.3.
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6.2.2 Simulation Based Models

While most of the forecast models for power outages use statistical anal-

ysis, the accuracy of the estimates of the statistical approaches are critically

dependent on (1) the appropriateness of the model used and (2) the sufficiency

of the underlying data [138]. If an inappropriate or inappropriately developed

model is used or if the data are insufficient to support the model development

effort, the predictive accuracy of the statistical approach will be poor. At the

same time, climate changes and other variances in natural occurrence could

deviate the prediction results further from the future reality. Therefore, there

is a value to understand the physical mechanisms of the damage, build simu-

lation models that replicate the disaster occurrence and system response, and

determine the proper preparation and hardening procedures.

One of the major causes of the equipment failures in natural disas-

ters is due to the impacts of wind on transmission and distribution structures.

There is a wide literature discussing the models and design of transmission and

distribution structures subject to wind loading [171], [130], [81], [190], [68].

When designing transmission towers with conventional geometries and con-

ductor arrangements the engineer has some design codes and guides avail-

able [139], [94], [205].

A simulation based approach to estimate the power outages or natu-

ral disaster related asset damages has been in [214] and an illustration of the

approach is shown in Fig. 6.2. The core of the framework is the simulator

that consists of (1) hurricane models, which associates the weather forecast
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parameters with the estimation of local environment for each power system

components; (2) a set of generated initial disturbance following the hurricane

models3; (3) a system outage simulator (Cascading Outage Analyzer) that

evaluates the system condition following the initial disturbances. The output

of the simulator could be system conditions such as power outages and dam-

aged assets, as well as a series of hardening suggestions that help utilities to

identify critical assets.

Numerous hurricane, transmission failure and outage models have been

used in the previous research demonstrated in Fig. 6.2. [37], [214]. The sim-

ulation tool has the inputs of available weather forecast information, such as

the landing positions, approaching angle, translation velocity, central pres-

sure difference, maximum wind speed, and gust factor, to feed in to sample

a failure rate-wind speed curve that generates the failed transmission line in-

formation as initial disturbances. This sampling processes can be replicated

in a Monte-Carlo simulation framework. The initial disturbances, i.e. a set of

failed transmission lines, are used in a developed Cascading Outage Analyzer,

to produce the outage data under such a forecasted scenario. The hardening

decisions are made to upgrade the most frequently observed outage paths.

We have developed a model based on this framework for hurricane

impact simulation. The details of the model is discussed in Chapter 7.

3Many transmission and distribution failure models are developed by the statistical mod-
els or observations in Section 6.2.1
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Figure 6.2: Example simulation framework for hurricane outage forecast

6.3 Corrective Actions, Hardening and Resiliency Ac-

tivities

We define the corrective actions and emergency response as actions

that are deployed during and right after natural disasters. When the natural

disaster happens, due to the severity and uncertainty of the event, few cor-

rective actions and emergency response actions are currently being deployed

by utilities. Several papers discuss traditional measures to prevent large scale

blackouts due to “multiple contingencies,” which could potentially be used to

help immediate natural disaster relief. Such activities may include deployment
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of Special Protection Schemes [210], [209] and Islanding Schemes [65], [213].

According to U.S. Department of Energy [206], hardening refers to

physically changing the infrastructure to make it less susceptible to damage

from extreme wind, flooding, or flying debris. Resiliency refers to the ability

of an energy facility to recover quickly from damage to any of its components

or to any of the external systems on which it depends. A summary of the

existing practices to harden and increase resiliency of electric transmission

and distribution system is shown in table 6.4.

Among the activities, elevating Substations, upgrading and under-grounding

existing lines, and vegetation management are commonly used in current util-

ity programs. We show some of the examples reported by the utilities in the

following section.

Example 1: To prevent future flooding, as part of Southwest Louisiana

Electric Membership Corporation’s hardening plan, three substations that

were flooded by Hurricanes Rita and Ike were elevated above the storm surge

plus five feet, for a total of 13 feet above sea level. The cost of elevating the

three substations was estimated at $5.2 million [206].

Example 2: To upgrade and harden the T&D lines against high wind,

the public utility council of Texas (PUCT) has recommended that all new and

replacement transmission structures installed within ten miles of the Texas

coastline be designed to meet the current NESC (National Electric Safety

Code) wind loading standards, assuming a maximum wind speed of 140 mph.
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Table 6.4: Power Grid Hardening and Resiliency Activities [206]

Hardening Activities

Flood Protection Elevating Substations/control rooms/pump stations

Relocating/constructing new lines and facilities

Wind Protection Upgrading damaged poles and structures

Strengthening poles with guy wires

Burying power lines underground

Modernization Deploying sensors and control technology

Installing asset databases/tools

Resiliency Activities

General Readiness Conducting preparedness planning and training

Complying with inspection protocols

Managing vegetation

Participating in mutual assistance groups

Purchasing/leasing mobile transformers and substations

Procuring spare T&D equipment

Storm-Specific Facilitating employee evacuation and reentry

Readiness Securing emergency fuel contracts

Supplying logistics to staging areas

For 2009, Tampa Electric budgeted $10.7 million to replace 584 structures with

steel or concrete poles, and 99 sets of insulators with polymer replacements

[70]. Strengthening poles and towers by installing guy wires and upgrading

crossarm materials is another common hardening method. Guying for extreme

winds can cost $1,500 - $3,100 per pole [206].

According to [159], The estimated cost for constructing underground

transmission lines ranges from 4 to 14 times more expensive than overhead

lines of the same voltage and same distance. For example, a new 138 kV
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overhead line costs approximately $390,000 per mile as opposed to $2 million

per mile for underground (without the terminals) [159].

Tree trimming is also the primary way that trees near distribution lines

are managed [103]. In 2006, NERC introduced the Transmission Vegetation

Management Program (Standard FAC-003-1) [145]. There are a number of pa-

pers discussing the vegetation maintenance scheduling models and techniques

of overhead lines [103], [12], [228], [98], [95]. While these models do not di-

rectly consider natural disaster scenarios, they may be helpful for utilities to

determine optimal strategy to allocate hardening resources.

Preparation of sufficient emergency generation units and black start

units also plays a critical role in case of natural disasters. Generation plan-

ning does not normally consider the benefit of providing blackstart power and

reduction of restoration time in natural disasters. However, optimal allocation

of blackstart units and restoration procedure has been studied in [119] [193].

Such planning activities could significantly reduce the system restoration time,

thus enhance the system resiliency.

6.4 Power System Restoration Techniques

After a power outage happens due to the damage from a natural dis-

aster, the most important task for system operators is to restore the power

system as quickly as possible to restore critical loads and minimize the eco-

nomic loss to customers. In this section, we will first review the conventional

power system restoration strategies and discuss new challenges for restoration
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from natural disasters. Then we will discuss two strategies to tackle these chal-

lenges, i.e., distributed generation and microgrids integration, and distribution

automation with decentralized restoration.

6.4.1 Conventional Restoration Strategies

Power system restoration methods have been studied extensively in

the literature [14] [115]. In general, the restoration process can be divided

into three temporal stages: preparation, system restoration, and load restora-

tion [69] [15]. In the first stage, the system status is assessed, initial cranking

sources are identified and critical loads are located. During the second stage,

the overall goal is reintegration of the bulk power network by designing an

optimal generator start-up strategy utilizing black start (BS) and non-black

start (NBS) units. Mathematical programming provides a powerful tool to

tackle this problem, e.g. [119] [193]. In the third stage, the primary objective

of restoration is to restore critical loads and minimize the unserved load, and

the scheduling of load pickup will be based on the capabilities of available

generators. This stage takes place after a part of the transmission system has

been restored and electrical parameters such as frequency and voltage profile

have been stabilized. Several approaches and analytical tools have been devel-

oped for load restoration strategies such as: expert systems [118] [48], fuzzy

logic [114] [109], heuristic approaches [135] [201], and mathematical program-

ming [97] [153] [152]. With emerging smart grid technologies, phasor measure-

ment units (PMUs) based wide area monitoring system (WAMS) can enhance
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the information transmission as well as the system stability monitoring in the

load restoration process [121].

However, power outages due to natural disasters have their unique fea-

tures, which are different from those in typical outages, as shown in Table 6.5.

These features are highly related to the characteristics of the natural disasters.

For example, a storm may topple trees at several locations that snap utility

poles to cause multiple faults causing a wide spreading outage, and these lo-

cations are dependent on the path of the storm, while in a typical outage,

usually only one random fault causes the outage. Some severe disasters can

even damage the transmission network, substations and generators, so that

conventional restoration methods may not work effectively. In addition, natu-

ral disasters may also destroy other infrastructures which are interdependent

with power grids (e.g., transportation, communications, water) so that the

restoration will face even more difficulties. In comparison, a typical power

outage usually does not have such issues. In this sense, conventional power

system restoration strategies, which are designed for typical outages, may have

more challenges for the recovery from outages as a result of natural disasters.

To cope with these challenges, new techniques, such as distributed

generation, microgrids, distribution automation, and decentralized restora-

tion strategies, may provide promising solutions to enhance the resilience of

the grids, which will be in the following section. A few existing works have

been done, e.g., using microgrids for system restoration after natural disasters,

which will also be described.
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Table 6.5: Differences between typical outages and natural disaster related
outages

Typical Outages Outages due to Natural Disasters

• Single fault due to one component
failure

• Multiple faults due to catastrophic
damage

• No stocastic feature involved in gen-
eral analysis

• Uncertainty and stochasticity with
the process of natural disasters

• No spatiotemporal correlation for the
fault; fault happens randomly

• Spatiotemporal correlation for the
faults due to natural disasters

• Most power generation units are
working and stay connected

• Power generation units may be out of
service

• Transmission and distribution net-
work remain intact

• Transmission and distribution net-
work are damaged and incomplete

• Only involve power grids infrastruc-
ture

• Have interdependence with other in-
frastructures

• Quickly repair and restore • Difficult to repair and restore, e.g.,
debris after the disaster

6.4.2 DGs and Microgrids for Load Restoration

Generation availability is fundamental for all stages of power system

restoration: stabilizing the system, establishing the transmission path, and

picking up load [119]. As shown in Table 6.5, the lack of power availabil-

ity during outages due to natural disasters casts huge challenges for conven-

tional restoration strategies, which are based on the condition that most power

sources are working and stay connected. To cope with generation unavailabil-

ity during and after the natural disaster, distributed generation units (DGs)

can be utilized to enhance the grid resilience by improving generation availabil-

ity (e.g., fuel cells, microturbines, wind turbines, photovoltaic panels) [155].

Furthermore, microgrids can be employed to efficiently manage these DGs as
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well as other resources to improve the restoration for natural disasters. A mi-

crogrid is a small-scale power system typically on the medium- or low- voltage

distribution feeder that includes distributed load and generation together with

storage (e.g., flywheels, batteries) and protection devices, which are synchro-

nized through an embedded management and control system [123] [220] [221].

Fig. 6.3 is a typical architecture of the microgrid that comprises different kinds

of components [123].

Figure 6.3: Microgrid architecture comprising microsources, storage devices,
loads and control devices [123]

A key fundamental difference of microgrids with respect to conven-
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tional grids is that microgrids add active network components (i.e., DGs) at

the distribution level, which provide more operational flexibility and reduce

conventional power grid vulnerabilities caused by centralized generation and

control architecture and long distances between power sources and loads [104].

This feature is even more important for the power system restoration after

natural disasters. In addition, the observed uneven damage distribution of the

natural disaster on distribution systems increase the resilience when applying

microgrids for load restoration, as the chances of all microgrids being damaged

are very low [104]. In this sense, microgrids will enhance the power system

restoration after the disastrous event. The value of microgrids to achieve grid

resilience has been recognized, and they are being adopted by some state gov-

ernments and industries, and their technical, regulatory, and financial barriers

for implementations are being studied, e.g., [9] [8].

Three specific uses of microgrids in power restoration are discribed in

the following sections:

6.4.2.1 Microgrids aiding the conventional load restoration

In this scenario, the microgrids can serve as extra resource to enhance

the conventional load restoration. This is especially useful for the area where

no other suitable restoration path or source are available. In [112], the authors

proposed graph-theoretic distribution system restoration strategy to embed

the emerging microgrids that enhance the self-healing capability and allow the

distribution system to recover faster in the event of an outage. The proposed
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method applies the spanning tree search algorithm to maximize the restored

load and minimizes the number of switching operations without violations of

operational constraints. The microgrids in the distribution system are modeled

as virtual feeders. The authors in [133] presents a mathematical model to

utilize microgrids to alleviate the outage in the absence of suitable restoration

path/source.

6.4.2.2 Microgrids providing resources for bulk system restoration

In this scenario, the microgrids operate in the grid-connected mode, and

can provide ancillary services such as blackstart to the bulk system restora-

tion. For example, the authors in [42] developed a stochastic mixed integer

linear program to assess the impact of coordinating microgrids as a blackstart

resource to the regional grid or Regional Transmission Organization (RTO)

after a natural disaster.

6.4.2.3 Microgrids in island mode for load restoration

In this scenario, the microgrids act in island mode in the event of disas-

ters and serve critical loads like data center, hospital communities, and cam-

puses by utilizing local generation and storage facilities. This operation mode

requires special control for the frequency and voltage since no support is from

the main grids. The power electronics inverters in this case act as voltage

source inverter (VSI) to control the frequency and voltage [123]. In [134], the

authors described the sequence of actions for a microgrid central controller
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(MGCC) to perform service restoration, which is briefly described as the fol-

lowing steps: 1) sectionalize the microgrid around each microsource (MS) with

BS capability; 2) build the low voltage (LV) network utilizing storage device; 3)

synchronize small islands energized by MS; 4) connect the controllable loads to

the LV network; 5) connect noncontrollable MS or MS without BS capability;

6) connect other loads; 7) change the control mode of MS inverters; 8) syn-

chronize the microgrid with the medium voltage network. In [163], the authors

further proposed a new distribution system architecture that allows the coordi-

nation among multiple microgrids for load restoration, and the corresponding

sequence of actions are defined. Reference [74] the role of electric vehicles

(EVs) as grid-supporting units to take advantage of their storage capacity and

charging flexibility in the microgrids restoration. In [47], the authors pro-

posed a microgrids formation scheme by utilizing the distributed generation

to restore the critical loads after the natural disaster. Reference [222] pro-

posed a self-healing strategy after natural disasters by sectionlization of the

distribution system into microgrids. Other regional experiences such as shown

in [170], [187] and [234] can also be utilized.

These three functions for power system restoration can be integrated

in the microgrid energy management system (EMS). In [46], the authors in-

troduce the hierarchical control of the Illinois Institute of Technology (IIT)

microgrid, in which primary control is based on droop characteristics of dis-

tributed energy resources for the sharing the microgrid load; secondary control

performs corrective action to mitigate frequency and voltage errors introduced
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by droop control; tertiary control manages the flow between the microgrid and

the utility grid and provides normal operation as well as emergency restoration

services.

6.4.3 Advanced Distribution Automation Techniques and Decen-
tralized Restoration Strategies

Current power distribution systems are mostly operated under radial

topology and limited number of line switches. However, to improve the relia-

bility of distribution system, network topology with a large number remotely

controlled automatic switches will be implemented [87]. With the Smart Grid

Investment Grant (SGIG) by the U.S. Department of Energy (DOE) under the

American Recovery and Reinvestment Act of 2009, several utilities have in-

stalled a large number of remotely controlled switches to enhance the topology

flexibility of the distribution system, so called distribution automation [207].

These distribution automation pilot projects largely increase the reliability

(e.g., System Average Interruption Frequency Index (SAIFI) and System Av-

erage Interruption Duration Index (SAIDI) of the distribution system [207],

by reducing the number of customers affected and the restoration time. Dur-

ing the restoration after the natural disaster, distribution automation can be

extremely helpful since several distribution lines may be destroyed due to

the disaster. Reconfiguration of the topology of the network with remotely

controlled switches provides opportunities to restore the outaged loads more

quickly. This flexibility can also enhance the integration of distributed gen-

eration and storage, i.e., microgrids, into the distribution system for restora-
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tion. The authors in [155] proposed a method for integration of large scale

of distributed generation into power system restoration by utilizing the fully

implementation of remotely controlled switches.

Generally, the approaches to study service restoration in the distribu-

tion system can be roughly grouped into two categories: centralized methods

and distributed methods [111]. The centralized methods normally depend on

a powerful central facility to handle large amount of data with high com-

munication capability requirement. This dependency is not suitable for next

generation resilient distribution system in two aspects. Firstly, large amount

of remotely controlled devices installed in the system would be an extensive

burden on computation and communication will exert on the central controller.

Secondly, the centralized strategy is prone to a single-point-of-failure of the

central controller, especially in the scenario of the natural disaster. In this

sense, decentralized power system restoration strategies, or the construction

of multiple back-up control centers are needed to achieve grid resilience.

Several decentralized methods have been proposed for the power sys-

tem restoration in the literature, e.g., [188] [146] [226] [162] [235], and they are

based on multi-agent coordination schemes. In [188], a multi-agent system for

load restoration is proposed, where description of the types of agents and their

behaviors to exchange information and determine a feasible restoration path

is specified. The authors in [226] proposed a distributed information discov-

ery process for load restoration applying the average consensus algorithm, in

which agents only communicate with their direct neighbors. In [146], the au-
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thors proposed a distributed algorithm for service restoration with distributed

energy storage support following fault detection, location and isolation, as well

as load restoration. The authors in [162] presented a conceptual multi-agent

system design for autonomous bulk power system restoration. A dynamic

team forming mechanism was proposed for agent coordination purposes. The

authors in [235] proposed a cooperative two-layer multi-agent system to locate

and isolate faults and decide and implement the switch operations to restore

the out-of-service loads. Besides these research work, the decentralized meth-

ods have already been implemented in some distribution automation products,

e.g., [172] [76]. With the decentralized methods, these remotely controlled au-

tomatic switch devices of distribution automation can achieve more resilient

power system restoration scheme to mitigate the impact of natural disasters

on customers.

6.5 Conclusion and Future Research Directions

This chapter reviewed the state-of-the-art of the impacts of natural dis-

asters on power systems, and how the advanced smart grid technologies can

be utilized to enhance the grid resilience. Due to the complexity of the issue,

it involves interdisciplinary techniques such as statistics, meteorology, power

engineering, optimization, communication and control, as well as policies and

regulations. Based on the review, we observe several challenges and opportu-

nities in future research, and this chapter lists three important directions in

the next section.
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6.5.1 Interdependence among Different Infrastructures

As discussed in Table 6.5, during a natural disaster, the resilience of the

power system does not solely depend on the infrastructure of the power grids,

but is also related to other infrastructures such as communication network,

natural gas pipelines, transportation network, etc. For example, distributed

generation such as internal combustion engine generator or microturbines will

not work if the fuel or natural gas availability (also called lifeline infrastruc-

tures [104]) are destroyed by the natural disaster. To achieve a resilient power

system, these lifeline infrastructures should be considered in the overall plan-

ning and operation before and after the natural disaster.

To do so, the impacts of lifeline infrastructures on the power system

regarding the natural disaster need to be analyzed first. Several papers in the

literature have already analyzed the interdependence between the power grids

and natural gas infrastructure in the normal operation [178] [116]; however,

the extension of these interdependence analyses from a resilience perspective

has not been well studied. The co-simulation framework for the interdepen-

dent infrastructure is useful to evaluate the correlation between them. For

example, based on the assessment, the optimization problem for planning of

the infrastructure considering these dependencies can be formulated, in which

the uncertainty of the infrastructure subject to the natural disaster can be

integrated using stochastic or robust optimization techniques. At the opera-

tion level, optimal strategies utilizing the flexibility of the infrastructure (e.g.,

reconfiguration of network topology, demand response, distributed energy stor-
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age) can be designed using optimization techniques.

6.5.2 Operation and Control for Power System Restoration with
DGs, Microgrids, and Distribution Automation

Integrating microgrids and distribution automation provide potential to

improve the restoration process of the power system; however, challenges exist

on the operation and control of the distributed generation and the remotely

controlled switch devices to achieve the restoration goal while maintaining the

frequency and voltage profile of the distribution system, especially in the island

mode of the microgrids. During the disaster, the distributed generation and

the remotely controlled switches may also be fully or partially damaged, so

operation and control under this stringent condition need to be considered.

Advances in distributed optimization techniques [100] can be utilized

to design the decentralized restoration scheme which is suitable for the natural

disaster scenario. The impact of the device failure can be analyzed based on

this decentralized framework which serves as the tertiary control level. The

coordination between this scheme and primary and secondary control scheme

need to be investigated accordingly.

6.5.3 Natural Disaster Impact Forecast, Hardening and Resilience
Optimization

There lacks a clear link from the modeling of damages/outages to the

future prediction and hardening guidance. The statistical methods described

in section 6.2.1 heavily relies on the information that is localized (meaning
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heavily associated with the local geographies and power system structure)

and subject to a specific event. Such case-dependent variance and uncertainty

prevent the use of the model for future predictions. At the same time, the sta-

tistical methods do not look into the mechanisms of the development process

of the blackouts/damages. Simulation based models may be able to provide

more insights into causes of outages. But they are substantially more com-

plex when detailed power system transmission and distribution information, as

well as the other factors (e.g. vegetation information, accurate wind forecast,

etc) are required. Such requirements may be hard to obtain, and subject to

uncertainties.

When designing the hardening and resilience programs, utilities typi-

cally do not use systematic and rigorous optimization techniques. A common

way of deploying the investment is to upgrade the previously damaged facil-

ities, or choose certain techniques based on experience. Therefore, the iden-

tification and allocation of the budget may not be the most efficient. More

research on how to optimize the hardening program investments could poten-

tially save a large amount of money, as well as increase the resilience of the

program. Some optimization methods and applications in the conventional

power system research, such as [103], [12], [228], [98], [95] may be a helpful

starting point.

Future research on forecast models is needed in two direction: 1) Es-

tablish models that links the forecast and the hardening investment guidance.

For example, [37] provided some insights on the cost-benefit analysis of the in-
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frastructure upgrades based on increasing NESC standard requirements. Such

analysis may also be used in other types of hardening techniques, guided by

the more accurate statistical and simulation models. 2) Enhancing the accu-

racy of the forecast by developing new statistical and simulation based models.

This may require more data analytical models to be incorporated, as well as

more open source data to be provided by the utilities. As discribed in section

6.2.2, we developed a tool to analyze power system security under hurricane

threats based on the framework proposed in Figure 6.2. In the next chapter,

this tool will be discussed in detail.
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Chapter 7

Tool to Analyze Power System Security under

Hurricane Threats

7.1 Introduction

This chapter is based on author’s contribution in [214]. This chapter

presents the efforts that aim to create a tool to analyze the power system

security and safety under severe weather conditions such as hurricanes. The

tool will be constructed in two parts, Cascading Outage Analyzer, and the

Hurricane Model Generator. Further discussions on the potential applications

to natural disaster relief and preparation are also provided. The schemes

described in the chapter could be adopted by the utilities to reduce the costs

of natural disasters, and increase the efficiency of the grid operation. While we

try to represent what is happening in a hurricane event as accurate as possible,

there are still a lot of assumptions and approximations in terms of modeling.

Some of these assumptions and approximations are conservative to assess the

consequence, while others are not. For example, considering the whole south

and Houston zone lines under same wind condition certainly creates more

severe results than reality, because the wind speed will not be maximum at

each location at the same time; on the other hand, not considering the effects

of storm surge and the subsequent substation/generator damage makes the
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results optimistic. Those issues should be acknowledged before applying the

results.

7.2 General Framework

The tool to identify and analyze the hurricane threats to the power

systems has a general framework as shown in Figure 6.2, which is repeated

in Figure 7.1. The objective is to use the published and available weather

forecast information, such as the landing positions, approaching angle, trans-

lation velocity, central pressure difference, maximum wind speed, and gust

factor, to feed in to a hurricane model that generates the failed transmission

line information as initial disturbance. The initial disturbance, i.e. a set of

failed transmission lines, are used in developed Cascading Outage Analyzer, to

produce the potential system conditions under such forecasted scenario, and

the subsequent hardening suggestions.

7.3 Hurricane Model

As discussed in the general framework, it is vital to translate the avail-

able weather forecast information, to the actual projections of what trans-

mission lines might experience outage during the event. Numerous stud-

ies [37], [224], [101], [124], [110] have been done to explain the relationship

between high intensive wind (HIW) and the failure of transmission structure.

The National Electric Safety Code [139] has set an “extreme wind loading”

design criteria to the structures higher than 18 meters (60 ft.) above ground
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Figure 7.1: The general framework for hurricane outage forecast tool

or water. As most transmission line structures exceed this height, the extreme

wind loading criteria is currently required for new construction in extreme

wind regions. The report from Quanta Technologies [37] has identified the

damage data from utilities and failure rate modeling produced the failure rate

curve for existing structures, shown in Figure 7.2. The failure rate y as a

function of gust speed x is:

y = 2 ∗ 10−7e0.0834x (7.1)
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Figure 7.2: Failure rate of existing transmission lines

These data are based on existing transmission structures under NESC

Grade B requirements and are equivalent to a wind loading standard of 105

mph. If the structures are replaced or rebuilt to the current NESC extreme

wind loading criteria, they would need to meet a wind load requirement of up

to 130 mph. The failure rate curve based on 130 mph design for transmission

structure is shown in Figure 7.3. The failure rate y as a function of gust speed

x is:

y = 2 ∗ 10−8e0.0834x (7.2)

Note that the unit of the failure rate in the figures is not identified

in [37] and the authors of this study were not available to clarify. We assume

that the failure rate is intended to be probability of failure per structure per

hurricane event. At the same time, the focus of this chapter is not to accurately
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Figure 7.3: Failure rate of hardened transmission lines

estimate the failure rates of transmission structure under hurricanes, and we

suggest every entity that is trying to use the tool needs to identify the failure

rates of its transmission structures under certain wind speed. In modeling the

transmission failure, several assumptions are stated as below:

• For a transmission line with multiple transmission structures, i.e., trans-

mission towers, the failure of one of the transmission structure will lead

to a trip of the transmission line.

• The failures of the transmission structures by wind are assumed to be

independent. Notice once a transmission tower has failed, it is likely

that the conductor attached to the transmission tower drags the towers

next to the failed tower and induce subsequent failures. This will affect

the calculation of the restoration, but will not affect the assessment of
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probability of one transmission line failure, because once the initial fail-

ure occurs, the whole transmission line is assumed out of service. For a

transmission line with n transmission structures, and failure rate of each

transmission structure y1, y2, ...yn, the failure rate of the transmission

line will be yline = sumi=n
i=1yi.

• The failure of the transmission structures is assumed to be a Poisson

process, according to the exponential failure law. [31] The mean value of

the time to failure, Tf , is E{Tf} = 1
y
. The probability density function

(PDF) of the time to failure is given in equation 7.3, and the cumulative

density function (CDF) of the time to failure is given in equation 7.4.

fTf = yline ∗ e−ylinet, t ≥ 0, (7.3)

FTf(t) = 1− e−ylinet, t ≥ 0. (7.4)

• The hurricane event is divided into several time frames, e.g., fifty 5-

minute time windows. For one time window, e.g., 5 minutes, the gust

speed is assumed to be constant; therefore, the failure rate of the trans-

mission line within the time window is constant. Once a transmission

line is failed, it will not be restored within the hurricane event.

After the assumptions are made, for each simulated hurricane scenario,

a sample of the transmission line failures is created by the steps 1 to 5 described

below:
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• Step 1: Acquire the weather forecast (e.g., sustained wind speed) and

calculated gust wind speed at each location for an observation time win-

dow, e.g. the first 5 minutes of the hurricane.

• Step 2: Use equation 2 or 3 to find the failure rate of each transmis-

sion structure, and calculate each transmission lines failure rate, under

assumption b.

• Step 3: Use the calculated failure rate, and equation 4, to apply the

reverse CDF sampling to find a sample of the failure time of each trans-

mission line.

• Step 4: Compare whether or not the sampled failure time is within

the time of the studied period. If the sample time is longer, then the

transmission line is not failed in the period, vice versa. Repeat the step

for all transmission lines.

• Step 5: Repeat step 1 to 4 for all the time windows in the hurricane

event.

It is noticeable that the set of transmission failures is generated based

on the random numbers and the probability of failure, so a Monte-Carlo simu-

lation is needed to generate enough sample, or “synthetic hurricanes to reflect

the average expected situation of the level of hurricanes.
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7.4 Cascading Outage Analysis model

The hurricane model creates a set of transmission line failures. In

order to address the short-term consequence following a set of transmission line

failures, sequential outage checkers to identify potential cascading process that

might lead to large blackouts are proposed. In this cascading outage model,

the line failures within a short time window, i.e., 5 minutes, are assumed as a

set of simultaneously applied initial disturbance. The detailed implementation

of the cascading outage analysis models has been discussed in Part I.

7.5 Storm hardening model

Some reports, such as [37], have discussed the storm hardening pro-

grams. Most of these programs are pointing to harden the components that

are either closer to the coast, or close to the path of potential hurricanes. The

rationale behind these programs is that the more those components are ex-

posed to the wind, the more likely they will fail, thus more valuable to harden.

However, as studied from the Cascading Outage Analysis model, and the his-

torical events, such as [189], it is noticeable that the components occur in the

cascading path are more valuable to harden, because not hardening those com-

ponents would potentially lead to a large cascading outage, while the failure

of lines close to the coast might only end up as localized blackout. The storm

hardening model in this project is based on the Monte-Carlo simulation results

of the hurricane models and Cascading Outage Analysis model. The Monte-

Carlo simulation is used to generate a large number of synthetic hurricanes.
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Each synthetic hurricane will contain all the information of the needed weather

forecast, as shown in Fig. 1. After simulating the hurricanes through the Cas-

cading Outage Analysis model, some components might repeatedly appear in

the potential sequence of cascades, meaning it is more likely these components

will fail in a hurricane initiated cascade. Therefore, these components will be

identified as the targets for storm hardening model.

7.6 Implementation and results

7.6.1 Implementation and test case

In order to implement the models and algorithms, a new graphical user

interface is designed with the algorithm written in Visual Basic for Applica-

tion, PowerWorld Scripts, Excel Scripts. Within the code, the graphical user

interface (GUI) is designed using the Visual Basic for Application; the Power-

World simulator is used in Transient Stability calculation, and the AC Power

Flow calculation; the frequency checker algorithm, along with the high-level

Monte-Carlo algorithm is implemented by the Visual Basic for Applications.

In our system an ERCOT 2008 summer planning case is used. Within the

model, the total load is approximately 71 GW. The one-line diagram for this

model is shown in Figure 7.4.

In the implementation, several assumptions are made, which could be

enhanced as discussed in the future research:

• These lines are assumed to be exposed at same level of the wind during

a hurricane.
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Figure 7.4: Network of ERCOT 2008 case

• The transmission lines, although different in lengths and number of

transmission structures, are assumed to have 50 transmission towers in

average.

• In order to calculate the failure rates, the time of the hurricane event is
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assumed to be 3 days.

7.6.2 Generation of one sample hurricane

In order to illustrate the hurricane model and the Cascading Outage

Model, one sample hurricane is simulated. All transmission lines that are

within, or have connecting bus in the south zone and Houston zone are selected,

which represents 2278 transmission lines in total. One sample of hurricane

is generated. We note that the average time to failure for sustained wind

speed less than 80 mph is multiple years, therefore the probability of the

transmission line failure in 5 minutes of 80 mph wind is negligible. In this

sample of hurricane, the wind speed climbs from 90 mph in the beginning, to

125 mph in an hour, and comes down to 110 mph till 90 minutes, the end

of the observation time. This hurricane is rated Category 3 according to the

Saffir-Simpson Hurricane Scale. A sample of corresponding transmission line

failures is created for this hurricane. In Figure 7.5, the sustained wind speed

and the corresponding number of transmission line failures are shown.A total

of 184 lines are out in the period of the hurricane.

Applying these transmission line failures to the Cascading Outage Anal-

ysis model, a cascade that involves three stages of outage, including load under

voltage and line overload is detected, and the system experiences a total system

blackout.
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Figure 7.5: One sample of a category 3 hurricane

7.6.3 Monte-Carlo simulation

The Monte-Carlo simulation is used as discussed in the previous sec-

tions. Different levels of sample hurricanes are generated. The maximum wind

speeds range from 70 mph to 120 mph. For each wind speed profile, 200 sam-

ples are generated. The Figure 7.6 shows the number of total transmission

line outages for hurricanes with different top sustained wind speed. The ideal

failure rate described in equation 7.1 is also plotted in this figure. As can be

seen from the figure, the number of transmission line failures generally follows

the trend of the failure rates, which is an exponentially increasing function of

wind speed.

The number of total system blackouts, and the load shedding for the

cases that do not black out are shown in the Fig. 10. Notice that when the

hurricanes have a top wind speed of 110 mph, the probability of having a
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Figure 7.6: Number of transmission line failures in each level of hurricane

total system blackout in our simulation is 0.21, but when the top wind speed

is increased to 120 mph, the probability of blackout increases to 0.82. This

dramatic increase of probability of having a blackout is due to the exponential

increase of number of transmission line failures.

7.7 Future work

As discussed in previous sections, the development of this tool involves

numerous approximations and assumptions. Therefore, the author believes

that there are a number of future enhancements that could be done in the

future. Some of them are listed below:
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Figure 7.7: the load shedding in different level of hurricanes

• The transmission lines are assumed to be exposed at same level of the

wind during a hurricane. Future research will try to differentiate the

exposure of wind to the transmission lines based on the geographical

information, and the wind profile.

• The transmission lines, although different in lengths and number of

transmission structures, are assumed to have 50 transmission towers in

average. Future research will try to differentiate the number of trans-

mission structures based on geographical information.

• In order to calculate the failure rates, the time of the hurricane event is

assumed to be 3 days. Additional flexibility will be introduced for the
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researcher to customize the selection.

• The translation velocity of the hurricanes, together with the wind profile

change will be more accurately modeled in the hurricane models.

• The current authorities do have pre-cautious plans for the coming hurri-

canes, especially big ones, such as reducing the load, or evacuation. Our

future research will also investigate these actions.

• The distribution system is not being modeled in the Cascading Outage

Analyzer, but they play a significant role in blackouts of the system

under hurricanes. Therefore the modeling of the distribution system will

be explored.

• Facing a natural disaster, e.g. hurricane, precautions such as warning

and evacuation may change the people’s behaviors. Therefore, the elec-

tricity load shape may be very different. Future research may study this

phenomenon and consider a more realistic load profile during the natural

disasters.

• In this tool, the repair and restoration of the power system are not con-

sidered. However, decisions and implementations on repair and restora-

tion play a vital role in natural disaster relief. At the same time, such

decisions and implementations involve numerous human factors and in-

frastructure interdependency factors. Future studies on these issues may

be very important.
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Part V

Conclusions
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In this dissertation, we discussed three main topics, namely cascading

outage analysis, integrated interdiction model, and power system resilience

under natural disasters.

In the cascading outage analysis part, an improved cascading outage

analysis model is proposed. Four outage checkers, namely the transient sta-

bility checker, the frequency outage checker, the line outage checker and the

voltage outage checker are implemented based on protective relay functions.

The outage checkers are operated according to a newly proposed algorithm to

determine the status of the resulting operating state or equilibrium. A case

study of the improved cascading outage model using the IEEE 118-bus sys-

tem and the IEEE 300-bus system is presented. Mitigation and prevention of

cascading outage has also been discussed.

In the integrated interdiction model part, we propose an improved in-

terdiction model to identify maximal electric grid attacks. The contribution

of the model is that it incorporates both short-term (seconds to minutes) and

medium-term (minutes to days) impacts of the possible attack. The medium-

term impacts are examined by an interdicted DC optimal power flow model

(I-DC-OPF). The short-term impacts are addressed by a cascading outage

analysis model (COA) that uses a set of systematically applied checkers to

perform the simulation of the cascading outage events and assess the short-

term impacts of a blackout subsequent to specified terrorist attacks. An integer

programming heuristic is applied that can utilize standard optimization soft-

ware (e.g. CPLEX) to solve master problems generated by the heuristic. The
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proposed model has been verified using the IEEE 300 Bus Test System and

IEEE RTS 96 Test System. Discussions of the results and future research plans

are also presented.

In the power system resilience under natural disaster part, we consoli-

date and review the progress of the research field towards methods and tools of

forecasting natural disaster related power system disturbances, hardening and

pre-storm operations, and restoration models. A tool to analyze power system

security under hurricane threats is proposed. It uses the published and avail-

able weather forecast information, such as the landing positions, approaching

angle, translation velocity, central pressure difference, maximum wind speed,

and gust factor, to feed in to a hurricane model that generates the failed

transmission line information as initial disturbance. The initial disturbance,

i.e. a set of failed transmission lines, are used in developed Cascading Outage

Analyzer, to produce the potential system conditions under such forecasted

scenario, and the subsequent hardening suggestions. Challenges and future

research opportunities are also presented in this part.
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