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Neuroscientists have long sought a link between the activity of single

neurons and our thoughts, perceptions and ultimately our mental experiences.

As our senses provide the input into the brain, understanding the computa-

tions that transform signals along the sensory pathways has remained central

to this endeavor. Remarkable progress has been made by studying neural cor-

relates of perceptual decisions in motion-processing and oculomotor areas of

the primate brain. In particular, when monkeys indicate their decisions about

the direction of motion with eye movements, neurons in the middle temporal

area (MT) represent the instantaneous motion evidence and neurons in the

lateral intraparietal area (LIP) resemble the integration of motion evidence,

effectively transforming the sensory signal into a decision variable.
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In the main body of this thesis, I describe the results of an effort to

measure the sensorimotor transformation between MT and LIP on single tri-

als. First, I describe a motion-discrimination task that is amenable to reverse

correlation analysis, allowing the experimenter to measure the temporal depen-

dencies of neural responses and choices on the instantaneous motion energy.

I then use a unified statistical framework to analyze simultaneous recordings

from both areas during decision-making. Primarily, I found that MT neurons

exhibited time-varying sensitivity to motion direction, with important conse-

quences for the behavior and neurophysiology in downstream areas. Individual

LIP neurons also carried a signature of an integrated motion signal in their

spike rates, however, it was unlikely that this signal results from direct MT

input. Finally, I show that a biologically plausible simple decoder can perform

as well as the monkey at coarse direction-discrimination task.

In the appendix, I describe the results of pharmacological inactivations

of MT and LIP and statistical models of single trial dynamics in LIP that

were performed in collaboration with fellow graduate students, Leor Katz and

Kenneth Latimer, respectively.
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Chapter 1

Introduction

“Whoever, in the pursuit of science, seeks after immediate practical

utility may rest assured that he seeks in vain” - Hermann von Helmholtz

1.1 Overview

The external world is encoded by our visual system through a hierar-

chy of areas in our cerebral cortex (Lennie 1998). To accomplish even the

simplest tasks, the brain requires circuits that can decode task-relevant infor-

mation from sensory neural populations. I emphasize populations, because it

is now widely accepted that these sensory representations exist at the level

of populations of neurons, at least for primate cortex (Graf, Kohn, Jazayeri

& Movshon 2011). In recent years neuroscientists have gained the ability to

record from many neurons simultaneously (Stevenson & Kording 2011), yet

much of what is known about the perceptual readout of sensory areas to guide

perceptual decisions is extrapolated from recordings of single neurons in the

parietal lobe of macaque monkeys making judgements about the direction of

motion.

When a monkey makes a decision about the direction of motion and
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indicates her choice with an eye-movement, neurons in the middle tempo-

ral area (MT) are thought to represent the instantaneous motion evidence and

neurons in the lateral intraparietal area (LIP) resemble the accumulation of ev-

idence, effectively transforming the MT activity into a decision variable. These

observations have been articulated mathematically in the form of two-stage

computational models, where MT is integrated by LIP, forming a feedforward

process where both signal and noise in MT are propagated downstream to LIP

(Mazurek, Roitman, Ditterich & Shadlen 2003, Gold & Shadlen 2007, Beck,

Ma, Kiani, Hanks, Churchland, Roitman, Shadlen, Latham & Pouget 2008).

In this thesis, I probe the MT-LIP circuit using statistical models of

neural activity and simultaneous recordings from both areas during decision-

making to track the propagation of signal and noise on the scale of single

decisions. This chapter is structured to cover the relevant experimental and

theoretical results that pertain to the MT-LIP circuit as well as the method-

ology that is employed in this thesis. It begins with an overview of the field

of sensory decision-making. I then review the theoretical frameworks that lay

crucial groundwork for the study of perceptual decisions. I cover MT and LIP

physiology as well as the computational modeling approaches to understand-

ing their link to perceptual decisions. Finally, I review statistical methods for

studying neural and behavioral data.
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1.1.1 Signal and noise in sensory neurons during perceptual deci-
sions

25 years ago, Bill Newsome and colleagues performed a set of seminal

experiments by recording from single neurons in MT while monkeys made

perceptual decisions about the direction of motion. In these experiments they

made two key observations that have shaped the field of sensory decision-

making. First, they found that single MT neurons were often as sensitive as the

monkey to motion direction (Britten, Shadlen, Newsome & Movshon 1992).

They concluded the monkey would only have to use a few neurons to solve

this task. Second, they found that for stimuli near perceptual threshold, when

the monkey’s choices were variable, the MT neurons exhibited trial-to-trial

variability that was correlated with animal’s perceptual report. They called

this correlation choice probability (CP) and interpreted it as evidence that MT

neurons sent spikes forward to decision areas. In other words, the signal to

noise ratio (SNR) of MT neurons paralleled the SNR of the monkey and the

noise of MT neurons was correlated with the noise of the monkey, suggesting

that the monkey was “reading out” MT activity.

To understand how the MT neurons could exhibit such widespread

correlation with the perceptual report, the authors used computational ex-

periments to implement a possible scheme to readout MT. The intuition that

motivated the study is that averaging samples from a noisy distribution (spikes

from multiple neurons in this case) improves the SNR if the samples are in-

dependent. However, that improvement in SNR is diminished if the samples
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are positively correlated. The Shadlen, Britten, Newsome & Movshon (1996)

model built a “decision neuron” that could discriminate up and down motion

by receiving excitatory input from a pool of upward selective MT neurons and

inhibitory input from a pool of downward selective MT neurons. By includ-

ing a covariation (noise correlation) between individual MT neurons in their

model, the Shadlen et al. (1996) model explained both the observed choice

probabilities and the perceptual thresholds.

In the subsequent years, the “decision neuron” in the second stage of

Shadlen et al. (1996) was mapped explicitly onto a model of area LIP neurons

(Shadlen & Newsome 2001, Mazurek et al. 2003). LIP was targeted because

it has anatomical projections to oculomotor areas involved in generating the

saccadic eye-movements that the monkey uses to indicate his choice (Barbas

& Mesulam 1981, Lynch, Graybiel & Lobeck 1985), and because it receives

input from MT (Maunsell & Van Essen 1983b, Ungerleider & Desimone 1986),

placing it at an intermediate stage between the purely sensory and purely

motor (Gnadt & Andersen 1988). Indeed, during motion-discrimination, LIP

neurons have average firing rates that resemble an idealized decision process:

they ramp up or down preceding the two choices, where the slope of the ramp is

a function of the motion strength (Shadlen & Newsome 2001). There have been

many iterations of this model and it has had a broad impact on neuroscience

at large (Shadlen & Newsome 2001, Mazurek et al. 2003, Huk & Shadlen 2005,

Gold & Shadlen 2007, Beck et al. 2008, Shadlen & Kiani 2013).

The expert reader will note that there are at least three notable caveats
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to this story: First, recent experiments involving shorter duration stimuli have

constrained the measurements on neural sensitivity (Cohen & Newsome 2009).

In a response-time version of the dots task, where the monkey is allowed to

indicate his choice whenever he has sufficient evidence without waiting for the

whole stimulus to finish, single MT neurons are never more sensitive than the

monkey. Second, theoretical studies have greatly changed our understanding

of the effect of neural correlations on population codes (Ecker, Berens, Tolias

& Bethge 2011, Moreno-Bote, Beck, Kanitscheider, Pitkow, Latham & Pouget

2014). Noise correlations can help or hurt coding depending on their structure

in relation to the signal and simultaneous recordings from oppositely tuned

pairs of neurons have revealed positive noise correlations (Cohen & Newsome

2009) providing empirical evidence of potentially beneficial noise correlations.

Third, the decision-like ramping activity observed in LIP has been seen in

many other brain areas (both cortical and subcortical)(Shadlen & Kim 1999,

Horwitz, Batista & Newsome 2004, Ding & Gold 2013). Despite these caveats,

the basic idea that choice probability indicates a feedforward readout strategy

has largely been maintained until recently.

1.1.2 Choice probability more than a neuron’s causal role

In standard models of sensory decision-making, sensory areas project to

decision areas which in turn project to motor systems (Gold & Shadlen 2007).

In this framework, choice probability results from the feed-forward propaga-

tion of noise in sensory areas and as such, has largely been interpreted as
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purely feed-forward. However, the completely feed-forward interpretation of

choice probability was recently brought into question by a study that com-

pared the time-course of choice probability to the perceptual strategy of the

monkey (Nienborg & Cumming 2009). Nienborg & Cumming (2009) recorded

from disparity selective V2 neurons while monkeys performed coarse depth-

discrimination. Importantly, on a subset of trials, the stimulus disparity was

drawn at random such that the instantaneous disparity was independent over

time and there was no net expected near versus far disparity (ie. no signal).

On these trials, the monkey was still trying to do the task (but was rewarded

randomly). By correlating the instantaneous fluctuations in disparity with

the animal’s choice, the experimenters could measure the subject’s strategy

in the task. The logic here is that if there is a particular time in trial when

the the animal is using the stimulus, then the stimulus should be correlated

with choice at that time but not any other time. This technique, referred

to as either classification image analysis or psychophysical reverse correlation

(discussed below), approximates the strategy of the observer with a linear

template (Murray 2011).

The monkeys had psychophysical kernels that peaked early in the stim-

ulus presentation. This was interpreted as evidence that the monkeys were

using the stimulus at the beginning more than the end to inform their choices.

The prediction here is that if choice probability is reflecting feedforward cor-

relation with choice– that is, the stochastic variability in spiking response is

correlated with animals choice because it is “read out” – then choice probabil-
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ity should also peak early in the stimulus presentation. However, although the

psychophysical kernel decayed throughout the stimulus presentation, choice

probability increased over time. This result suggested that at least some com-

ponent of choice probability, the portion that showed up late, could not be

explained with the feedforward interpretation, because the neural noise was

still correlated with the animal’s choice after the animal had stopped using

the stimulus.

By comparing the time-course of psychophysical weighting to the time-

course of choice probability, Nienborg & Cumming (2009) took the relationship

between sensory neural activity and choice explicitly into the time domain,

which has been a central component of the MT-LIP story, but which has not

been directly characterized (Gold & Shadlen 2007). The basic premise of my

work was to test this idea feed-forward readout in the motion-discrimination

paradigm at two levels of the hierarchy: the sensory representation, and the

putative decision process. Psychophysical reverse correlation provided a means

to directly compare the monkey’s temporal strategy to the encoding of neural

responses in MT and LIP (Neri & Levi 2006).

1.1.3 General approach

So far in this chapter I have described a line of research that integrates

threshold psychophysics and single neuron recordings to probe the mechanisms

of perceptual readout. In this thesis, I bring this approach to the level of small

populations in multiple stages of the cortical hierarchy. I focus on the tem-
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poral strategy of the psychophysical observer and how that is related to the

responses of small populations of neurons in MT and LIP. To make measure-

ments of the strategy, the neural encoding mechanisms and the residual noise

correlation (both with choice and across simultaneously recorded neurons), I

used a systems identification approach which forms a unified framework for

measuring neural and behavioral responses to visual stimuli. In particular, I

developed a motion-discrimination stimulus based on sequential motion pulses

such that we could reverse correlate the stimulus with choice, or with spikes in

MT and LIP. I recorded from multiple neurons simultaneously in both areas

to address whether activity in MT and LIP was correlated across trials, and I

employed a statistical framework both to measure the psychophysical kernel,

and the temporal receptive fields of the neurons.

Many of the analyses in this these utilize a generalized linear model

(GLM), which is a highly flexible, empirically tractable regression model that

has been widely successful in describing early sensory areas and has been

used to understand both MT and LIP responses independently in the past

(Cui, Liu, Khawaja, Pack & Butts 2013, Park, Meister, Huk & Pillow 2014).

Importantly, using a likelihood based approach, we were able to explain away

variance due to the stimulus and ask an important question: does single trial

MT activity influence single trial LIP activity or vice-versa? Additionally,

likelihood-based methods answer that question in units that are immediately

relevant: How much more likely is this result if X is the case than if Y is?

In Chapter 2, I describe a motion-discrimination stimulus and task I
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developed that is amenable to white-noise systems identification techniques.

Monkeys were trained to integrate independent samples (“motion pulses”) of

motion evidence over a second-long window and indicate their choices with an

eye movement. This stimulus allowed us to measure the contribution of each

motion pulse to behavior and to neural activity in MT and LIP.

In chapter 3, I use a generalized linear model (GLM) to describe the

responses of simultaneously recorded MT and LIP neurons to the motion-pulse

stimulus during decision-making. I found that, contrary to the MT-LIP model,

both MT and LIP exhibited time-varying responses to motion. LIP’s stimulus

referenced responses to motion (the signal) could be explained with temporal

integration of MT’s average time-varying signal without appeal to additional

mechanisms. However, the trial-by-trial variability in LIP activity (the noise)

was not coupled to fluctuations in MT activity. Surprisingly, task-modulated

coupling was observable in the feedback direction.

In chapter 4, I analyze the information available in small populations of

simultaneously recorded MT neurons. I show that a simple, neurally plausible,

decoder is as accurate as the monkey and is more accurate than the best single

neuron on each session. I show that for this task, the decoder can be quite

simple over neurons and over time. Additionally, the information about motion

direction was greatest early in motion viewing.
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1.2 The theoretical basis for simple perceptual deci-
sions

1.2.1 Signal Detection Theory

Psychophysicists have long thought of perception and perceptual de-

cisions as statistical inference about environmental stimuli (von Helmholtz &

Southall 1924, Fechner 1860). The basic idea is that a perceptual decision is

an inference about the state of the world given the signals on the sensor array.

The goal of the psychophysicist is to understand the rules of this process math-

ematically. A major step towards this goal was formalized in Signal Detection

Theory (SDT)(Green & Swets 1966). SDT begins with the sensory evidence,

s, as it is available to the observer. s is a noisy internal variable that results

from the noisy response of the sensory transducers to the true state of the

world. The world can two states: the signal is present, or the signal is absent.

The observer’s goal is to decide which state of the world generated the sen-

sory evidence observed (“signal present” or “signal absent”, denoted a and b

respectively from here on). SDT formalizes this general idea probabilistically.

The observer should should choose “a” if the probability of a given s is greater

than the probability of b given s (choose a if p(a|s) > p(b|s)). Using Bayes’

theorem, the previous statement can be rewritten in terms of the probability

of s given a or b. These two distributions are the likelihood of the observed

sensory signal given the two possible states of the world. To make an optimal

choice, the observer then simply has to compare the likelihood ratio to a crite-

rion – which, in a world where a and b are equally likely and have equal value,
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is 1. SDT provides the theoretical groundwork to allow psychophysicists to

understand internal sensory mechanisms while measuring only the behavior.

This approach was extended to understand the sensitivity of single neurons

and compare them to psychophysical sensitivity (Mountcastle, Talbot, Sakata

& Hyvärinen 1969, Parker & Newsome 1998).

1.2.2 Sequential Analysis

Sequential Analysis (SA) extends SDT into the time domain (Wald

1947, Link 1992) If time effectively gives the observer multiple samples from

p(s|a) and p(s|b), then the observer can increase the SNR by combining these

samples. If the samples are independent, than they can be combined by taking

the logarithm and summing them. Thus, the observer gains SNR by summing

log-likelihood ratios over time. A criterion can then be set depending on

the value and prior probability of the two outcomes as well as the desired

accuracy of the observer. The sequential sampling framework has been a pow-

erful tool for understanding psychological processes that take time, including

memory retrieval and the accumulation of evidence for perceptual decisions

(Ratcliff 1978, Gold & Shadlen 2001). SDT and SA play a major role in the

interpretation of behavioral and neural data in this chapter, and ultimately

in the formulation of the MT-LIP model. Many experimental observations

loosely conform to the assumptions laid out in SDT and SA such that during

motion-discrimination, area MT can be thought of as the sensory evidence

and LIP reflects the accumulation of evidence (Gold & Shadlen 2007). In the
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next sections I review basic physiological properties of area MT and its role in

perceptual decision-making.

1.3 Physiology

1.3.1 Area MT

Originally discovered and named over four decades ago in the owl mon-

key (Allman & Kaas 1971), the middle temporal area (MT) has had a major

influence on studies of perception, decision-making and neural coding (Born

& Bradley 2005). Composing less than 1% of the macaque cerebral cortex

(Felleman & Van Essen 1991), MT is remarkably homogenous (Lennie 1998),

with 90% of neurons exhibiting directionally selective responses (Albright

1984). MT receives feedforward input from V1 (Burkhalter & Van Essen

1986, Maunsell & Van Essen 1983b), V2 (Maunsell & Van Essen 1983b), V3

(Maunsell & Van Essen 1983b), superior colliculus (Berman & Wurtz 2010)

and LGN (Sincich, Park, Wohlgemuth & Horton 2004). Of the many inputs

to MT, the input from V2 seems to be strongest (Maunsell & Van Essen

1983b, Markov, Vezoli, Chameau, Falchier, Quilodran, Huissoud, Lamy, Mis-

ery, Giroud, Ullman, Barone, Dehay, Knoblauch & Kennedy 2014), and the

cortical input from V1 is the most well understood (Movshon & Newsome

1996). MT neurons are also sensitive to disparity (Maunsell & Van Essen

1983a), speed (Maunsell & Van Essen 1983b), and motion-through-depth (Czuba,

Huk, Cormack & Kohn 2014, Sanada & DeAngelis 2014). Additionally, there

is evidence that MT neurons solve the aperture problem and respond to ve-
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locity at a range of spatial and temporal frequencies (Movshon, Adelson,

Gizzi & Newsome 1985, Priebe, Cassanello & Lisberger 2003). Additionally,

many of these selectivities are organized across cortical columns (DeAngelis &

Newsome 1999). For the purposes of this dissertation, I focus on the role of

MT in the perception of frontoparallel motion with little concern for how MT

neurons acquire that selectivity.

1.3.1.1 Role in visual perception

Many studies have established area MT’s causal role in the perception

of motion. Early lesion studies showed that inactivation of MT impairs the

ability to pursue moving objects (Newsome, Wurtz, Dürsteler & Mikami 1985)

or perform coarse direction-discrimination (Newsome & Pare 1988). Micros-

timulation of MT biases coarse direction-discrimination (Salzman, Britten &

Newsome 1990, Salzman, Murasugi & Britten 2003). In tasks with more than

two directions, microstimulation biases direction estimates towards the direc-

tion of the column that the stimulating electrode is in (Salzman & Newsome

1994), regardless of whether the direction is indicated with an eye movement

or manually (Nichols & Newsome 2002). Area MT indeed seems to be a bot-

tleneck in many perceptual tasks involving the perception of motion or depth

(Parker & Newsome 1998, Kim, Angelaki & DeAngelis 2015).

Another piece of supporting evidence for MT’s role in the perception

of motion is that neural sensitivity to direction is sufficient to explain psy-

chophysical performance (Newsome, Britten & Movshon 1989, Britten et al.
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1992) and the trial-by-trial variability in spiking in MT is correlated with the

perceptual report (Britten, Newsome, Shadlen, Celebrini & Movshon 1996).

This correlation with choice for stimuli near perceptual threshold has been

observed for coarse discrimination (Britten et al. 1996), fine-discrimination

(Purushothaman & Bradley 2005), and at much higher levels during bi-stable

perceptions (Logothetis & Schall 1989, Dodd, Krug, Cumming & Parker 2001).

Taken together, the causal manipulations and choice probabilities have estab-

lished MT as a central locus for motion processing. One notable exception to

the above studies is Hedges, Gartshteyn, Kohn, Rust, Shadlen, Newsome &

Movshon (2011). In this study, the authors found that when presented with

an apparent motion stimulus where, as the individual elements appear they

drift locally, human observers perceive the global motion and MT tracks the

local motion. However, this study was performed by comparing macaque MT

neurons to human psychophysics and it there is no psychophysical data from

macaques to suggest that they perceive the global motion.

1.3.1.2 Sensitivity to motion

Many studies have focused on how MT gains its velocity selectivity

(See Bradley & Goyal (2008) for a comprehensive review). Neurons in MT

have been studied extensively using bars (Albright 1984, Okamoto, Kawakami,

Saito, Hida, Odajima, Tamanoi & Ohno 1999), gratings (Movshon et al. 1985,

Priebe et al. 2003) and random dots (Britten, Shadlen, Newsome & Movshon

1993, Priebe & Lisberger 2002). MT neurons are tuned for the direction of

14



moving stimuli in a way that is well described by a circular gaussian or von

Mises tuning curve (Albright 1984, Rust, Mante, Simoncelli & Movshon 2006).

MT neurons are often broadly tuned for the speed of motion with a log Normal

function describing the sensitivity (Priebe et al. 2003, Nover, Anderson &

DeAngelis 2005). To be truly speed tuned, the neurons must be selective to

all combinations of spatial and temporal frequencies that produce a certain

speed and many MT neurons have this feature (Priebe et al. 2003).

1.3.1.3 Readout Mechanisms

Area MT has been a fruitful testing bed for electrophysiologists and

theorists. Its comparatively homogenous population of directionally selective

neurons (Lennie 1998) have allowed experimenters to consistently find the

responses they are interested in studying, and have allowed theorists to model

responses with relatively simple analytic forms (Shadlen et al. 1996, Jazayeri &

Movshon 2006). Population readout mechanisms have been studied for many

decades in sensory and motor areas (Georgopoulos, Schwartz & Kettner 1986).

Most of the early studies have relied on simple ad hoc population readout

mechanisms such as vector averaging or winner-take-all. In more recent years,

probabilistic inference has dominated as a framework for studying population

readout (Seung & Sompolinsky 1993, Jazayeri & Movshon 2006).

Many studies have demonstrated causally using microstimulation that

image velocity is read out from MT, yet they often disagree on the particular

algorithm. In the earliest studies, stimulating a column of MT neurons was
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shown to bias a monkey’s perceptual report for coarse discrimination of direc-

tion alternatives in a way that was consistent with a winner-take-all read out

scheme, regardless of whether there were two or eight alternatives (Salzman

et al. 1990, Salzman & Newsome 1994). However, microstimulation affected

smooth pursuit eye-movements in a manner consistent with a vector averaging

readout scheme (Groh, Born & Newsome 1997).

In a continuous motion estimation task, the readout scheme switched

systematically between the two (Nichols & Newsome 2002). This suggests that

the animal has a fairly sophisticated mechanism for reading out MT. Proba-

bly the most compelling evidence that the animal’s readout is sophisticated

comes from microstimulation at different time intervals (Seidemann, Zohary &

Newsome 1998) and for neurons that were selective for task irrelevant features

(DeAngelis & Newsome 2004). By delivering current stimulation at different

times relative to the motion stimulus, the first study showed that the animal

can selectively gate its read out of MT over time. The second showed that

an MT column’s contribution to choice about direction depends strongly on

how well tuned the neurons were for a task-irrelevant feature (disparity) of the

discriminated stimulus.

There are two interrelated questions when it comes to the read out

algorithms employed by the brain. The first, which is closely linked to the

studies described in the previous two paragraphs, is directed at how the animal

does read out the brain area. The second takes a normative approach: Given

the neural responses, how should the animal read out the stimulus? This
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second approach has played a large role in the interpretations of signals that

are present downstream from MT, and which will be discussed at length in

the following sections as I introduce the downstream areas that are thought

to be involved in this process.

1.3.2 Area LIP

The lateral intraparietal area (LIP) has played a major role in studies

of perceptual decision-making as well as a host of other cognitive and senso-

rimotor functions(Rao, DeAngelis & Snyder 2012)(Louie & Glimcher 2012).

Here I focus on the subset of the literature that speaks directly to its role

in decisions. LIP is located on the lateral bank of the intrapariaetal sul-

cus and has neurons that encode the spatial location of upcoming saccades

(Andersen, Essick & Siegel 1985). It projects to brain centers involved in eye

movements: super colliculus (SC) (Lynch et al. 1985, Wurtz, Sommer, Paré

& Ferraina 2001, Andersen, Asanuma, Essick & Siegel 1990), the frontal eye

fields (FEF) (Andersen et al. 1990, Ferraina, Paré & Wurtz 2002) and receives

input from visual areas (including MT) (Lewis & Van Essen 2000, Ungerleider

& Desimone 1986, Blatt, Andersen & Stoner 1990)and has an established role

in oculomotor planning(Lynch 1992, Andersen & Buneo 2002).

The motivation for studying LIP in the context of perceptual decision-

making is two-fold. First, in the original (and current) motion-discrimination

task, the monkeys indicated their choices with saccadic eye movements, thus,

any area involved in the decision process logically had to have access to modify
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saccade motor plans (Shadlen & Newsome 1996). Second, several brain areas

involved in eye-movement planning had previously been identified and shown

to have neurons with persistent activity (Gnadt & Andersen 1988, Barash,

Bracewell, Fogassi, Gnadt & Andersen 1991a, Barash, Bracewell, Fogassi,

Gnadt & Andersen 1991b). That is, activity that continued (persisted) af-

ter a stimulus disappeared as long as that stimulus was used in preparation of

an eye movement to the region of space coded for by the neuron (the response

field; RF) (Gnadt & Andersen 1988). This activity is strongly predictive of

whether the monkey’s eye movement would be in or out of the RF(Graf &

Andersen 2015).

1.3.2.1 Role in decision-making

The first recordings from LIP during motion-discrimination of motion

revealed that the persistent activity resembles ramps that ramp up for choices

into the RF and down for choices out of the RF. This ramping activity builds

up at different rates as a function of the motion strength such that the predic-

tive relationship with choice was dependent on the motion strength (Shadlen

& Newsome 1996). The existing literature on integrators in the oculomotor

system (Fuchs, Kaneko & Scudder 1985), as well as the previously hypothe-

sized decision neurons that sum pools of MT neurons (Shadlen et al. 1996)

invited the authors to interpret these motion-dependent ramps in LIP as re-

sembling the integration of MT. The reasoning here was very directly linked

to the normative approach for LIP was additionally shown to exhibit coher-
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ence dependent ramps in a reaction time version of the task (Roitman &

Shadlen 2002) and to reflect the integration of motion evidence directly (Huk

& Shadlen 2005).

Around the same time, coming from a different decision-theoretic per-

spective Platt & Glimcher (1999) showed that LIP neurons code for the the

prior probability and expected value of a target. Additionally LIP has been

shown to track other decision-theoretic quantities including the subjective

value of a choice (Sugrue, Corrado & Newsome 2004), confidence (Kiani &

Shadlen 2009) and elapsed time (Leon & Shadlen 2003, Janssen & Shadlen

2005, Jazayeri & Shadlen 2015). Despite that fact that integration alone can-

not explain the representation of priors, value or reward; despite the existence

of similar responses in the frontal lobes (Shadlen & Kim 1999), superior col-

liculus (Horwitz et al. 2004) and caudate(Gold & Ding 2013); and despite the

disappointing conclusion that integration itself is not identifiable in the behav-

ior (Ditterich 2006), many computational models of decision-making reference

the MT-LIP link in motion discrimination directly (Mazurek et al. 2003, Law

& Gold 2008, Beck et al. 2008, Wimmer, Compte, Roxin, Peixoto, Renart

& de la Rocha 2015) and LIP has remained central to the study of percep-

tual decision-making, at least in part because of its physical proximity to MT

(Shadlen & Newsome 1996) and this putative link (Gold & Shadlen 2007).
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1.3.3 MT-LIP model

Although even the earliest papers suggested that LIP reflects the in-

tegration of MT (Shadlen & Newsome 1996), the first explicit formulation

of the MT-LIP model comes from (Mazurek et al. 2003). The model begins

with pools of MT neurons (similar to (Shadlen et al. 1996)) that code for the

two directions of motion (Figure 1.1a). Assuming that motion is discrimi-

nated along the horizontal axis, such that the two directions are left and right,

Mazurek et al. (2003) represented MT with two pools of neurons (righward

and leftward preferring neurons) with rates that were flat over time and gen-

erated spikes with a process that created slightly sub-poisson noise (Mazurek

& Shadlen 2002). However, the instantaneous averaged ensemble activity was

taken as output at each stage, such that MT was essentially represented by

two rate functions. The output of the two pools were then compared (differ-

enced) and then integrated by LIP neurons (Figure 1.1a). At this point, it is

important to reflect on the realism of this simulation. Although the parame-

ters of the MT stage were set based on empirical measurements, many features

of MT responses are ignored (such as short-term adaptation (Priebe, Church-

land & Lisberger 2002, Bair & Movshon 2004) and temporal autocorrelation

(Uka & DeAngelis 2003, Osborne, Bialek & Lisberger 2004)). These features

may contribute to certain failures of the model (discussed in the following

paragraphs).

A key feature of the Mazurek et al. (2003) model was the addition

of a decision bound. The bound is an important feature because it allows
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for the description of both speed and accuracy during RT tasks. The bound

also served to limit the monkey’s performance on the fixed duration version

of the discrimination task (Mazurek et al. 2003). The only parameter fit to

the behavior was the height of the bound. The model provided a surprisingly

accurate account of the neural data and behavior. Importantly, and I believe

quite unusually for neuroscience, this bounded integrator model made several

predictions for future experiments. First, it predicted that MT neurons should

be half as sensitive during an RT task, since less spikes are available. Second,

CP should be much larger during the RT task, since all of the spikes are

being used by the monkey. Third, RT should be weakly anti-correlated with

spike rate in MT. The first prediction was false. MT neurons were slightly

less sensitive during RT task, but not by half. The second prediction turned

out to be false as well. CP was not larger during RT version of the dots

task (Cohen & Newsome 2009). However, the third prediction held (Price &

Born 2010), but again, at a different magnitude. The failure of the accumulator

model predictions strongly suggests that this model is incorrect, or at least

incomplete.

The single most compelling piece of evidence for the MT-LIP accu-

mulation model comes from an experiment with time-varying motion texture

pulses superimposed behind the usual motion stimulus(Huk & Shadlen 2005).

LIP neurons had spike rates that showed lasting effects of the direction of a

motion pulse. The change in spike rate that resulted from a motion pulse be-

gan roughly 200ms after the onset of motion and lasted for 800ms, revealing a

21



response to motion that was substantially smoothed over time compared to av-

erage MT responses. Additionally, the experimenters found that LIP neurons

were shift-variant in a way that could be reconciled by bounded accumulation.

In particular, they found that early pulses exerted larger effects on spike rate

than later pulses. Together, these two pieces of evidence provided the best

empirical support for the idea that LIP reflects the accumulation of MT spikes

to bound.

Over the past decade, the basic form of the model has remained the

same. Pools of MT neurons represent motion direction and LIP integrates

the pools until a bound is reached. Some variations of the model involve

attractor networks with neural circuit implementations (Wong, Huk, Shadlen

& Wang 2008), probabilistic population codes (Beck et al. 2008), and spiking

neural networks (Wimmer et al. 2015). In many cases the explicit MT stage

is dropped and LIP spike rates were just qualitatively mapped on to diffusion

models that were fit to behavior (Ditterich 2006, Kiani, Hanks & Shadlen 2008,

Kiani & Shadlen 2009). A version was used to gain insight into perceptual

learning (Law & Gold 2008). More recently, MT-LIP models have been used

to understand the source of choice probabilities in MT (Wimmer et al. 2015).

In every single one of these models, there is either a comparator stage between

MT and LIP (that takes the difference between the two pools of MT neurons)

or there is no stage between MT and LIP and the connection is direct. In

most cases, the comparator stage is implemented by LIP itself in that on pool

delivers excitatory input and the other inhibitory input to each LIP neuron.
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Figure 1.1: Schematic of the MT-LIP model. A Cartoon of the two stage MT-
LIP accumulation to bound model (Inspired by Mazurek et al. (2003)). Blue
box: Area MT represents the instantaneous sensory evidence. Two distribu-
tions represent the probability of spike rate for rightward (blue) and leftward
(red) selective MT pools given the stimulus. The MT response over time rep-
resents samples from these distributions such that the instantaneous LLR can
be measured by subtracting the two traces. Green box: LIP neurons receive
excitatory input from rightward selective MT neurons (blue) and inhibitory
input from leftward selective MT neurons (red) and vice verse. The difference
is accumulated over time until a bound is reached. The choice is determined
by a race to threshold. In this example, where the likelihood that left motion
generated the stimulus was lower than for right, LIP neurons that preferred
right hit the threshold before the leftward selective group. B The flow of visual
information in cortex. MT receives input from V1. LIP receives input from
MT and feeds forward to oculomotor area FEF and SC (not shown). This
cartoon is widely present in the neuroscience literature.

1.3.3.1 Anatomical and functional evidence

There are monosynaptic connections between MT and LIP (Ungerleider

& Desimone 1986, Maunsell & Van Essen 1983b), although it’s unclear whether
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the timescale of computations in LIP could be governed by those (Shadlen

& Newsome 1996). LIP does have feedforward connections to FEF and SC

(Lynch et al. 1985, Andersen et al. 1990), but LIP also receives excitatory feed-

back from FEF, direct projections from SC and is in many ways better thought

of as part of a computational unit in tandem with SC and FEF(Ferraina

et al. 2002). Additionally LIP feeds back to MT (Andersen et al. 1990, Markov

et al. 2014). FEF also feeds back to MT (Stanton, Bruce & Goldberg 1995, An-

derson, Kennedy & Martin 2011). Thus, the anatomical evidence does a poor

job of constraining the relationship between MT and LIP because both MT

and LIP are interconnected with every other area that is hypothesized to be

involved in the process (Wurtz et al. 2001).

Functionally, there is a 100ms latency between the visual responses in

MT (or LIP for that matter) and the onset of ramping activity in LIP (Kiani

et al. 2008). It’s important to note that the motion stimulus is not in the

RF of LIP neurons in this model. Somehow, the brain has to map the visual

information from one area of the visual field to a motor plan to another place

entirely (Shadlen & Kiani 2013). The logic of the task suggests that this comes

from MT and does seem to be reflected in LIP (Huk & Shadlen 2005), but the

latencies and flexible mapping alone are reason to expect that the relationship

is not governed by direct anatomical connections.

Additionally, there is a dearth of simultaneous data from MT and

LIP and no study to date has recorded from both areas during a motion-

discrimination task. Only three studies to date have recorded simultane-
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ously and only two of them have analyzed the simultaneous nature of the

data. All found evidence that suggests feedback from LIP to MT (Herrington

& Assad 2010, Saalmann, Pigarev & Vidyasagar 2007, Siegel, Buschman &

Miller 2015).

1.4 Methodology

One of the key methodological goals of this work was to compare the

monkey’s temporal strategy to the neural responses in MT and LIP. Measure-

ment of the psychophysical strategy and neural encoding rules both fall under

the domain of systems identification. The principles are the same for both

the neural encoding and behavioral strategy. In this section I review existing

statistical approaches to reverse correlation of both psychophysics and neural

responses and show that both can be understood within the framework of a

generalized linear model (GLM) (Figure 1.2).

1.4.1 Psychophysical Reverse Correlation

Psychophysical reverse correlation is a technique for measuring the fea-

tures in a stimulus that are driving behavior. In a typical psychophysical

reverse correlation experiment, a psychophysical observer is tasked with de-

tecting a signal that is embedded in gaussian white noise. On half of the trials,

the signal is present. On the other half, only noise is present. In the absence of

the noise, this task would be unambiguous, but the noise is titrated such that

the observer is only correct 75% of the time. The resulting error trials provide
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an intuition for how the method works: Sometimes the signal is present and

the subject missed it because of the noise and sometimes the signal was absent

and the noise caused the subject to say it was present. Because the noise is

known explicitly, it is possible to learn what features contributed to the errors.

By separating the trials into the two choices and averaging the noise that led

to each choice, the psychophysicist can build an image of the average noise

that led to each choice. The difference between these two images is known

as the classification image or psychophysical kernel (PK), because it can be

used to classify the choice that the observer will make given a noise stimulus

and is directly related to the first-order kernel of Wiener or Volterra expansion

(Murray 2011).

The PK forms a linear predictor for the subjects response: The dot-

product between the noise-sequence on a given trial and the PK is an estimate

of the subject’s internal decision variable. Placing a criterion on this value

produces estimates of the subject’s choices. This model of the psychophysical

observer can also be formed probabilistically, by including a soft threshold and

a noise model. With only two possible stimulus states, choices are described

by a Bernoulli random variable. The probability of a response can be written:

p(y(t)|~s(t), ~w) = ρ(t)y(t)(1− ρ(t))(1−y(t)) (1.1)

where y(t) ∈ {0, 1} is the choice on trial t and ρ(t) is the probability the

subject chooses y(t) = 1, which can be represented by the equation f( ~s(t) · ~w)

where f is a sigmoidal nonlinearity, ~s(t) is the spatiotemporal stimulus on trial
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t and ~w is the subject’s template (the PK). In this formulation, the PK, ~w,

can be estimated using maximum likelihood of the distribution p(y|s, ~w) or by

maximum aposteriori estimation of p(~w|y, s) where y is a vector of choices on

each trial and s is a matrix that depicts the spatiotemporal stimulus on each

trial (Knoblauch & Maloney 2008, Mineault, Barthelme & Pack 2009).

Since its introduction in auditory perception (Ahumada 1971, Ahumada

1975), psychophysical reverse correlation has been most widely used to probe

the neural mechanisms that underly a perceptual categorization without record-

ing from neurons (Neri & Levi 2006). They have been successful in describ-

ing internal mechanisms of (but not limited to) processing contrast (Neri &

Heeger 2002, Shimozaki, Eckstein & Abbey 2005), stereopsis(Neri, Parker &

Blakemore 1999, Neri 2004), orientation(Mareschal, Morgan & Solomon 2008,

Mareschal, Dakin & Bex 2006), contour formation(Gold, Murray, Bennett &

Sekuler 2000).

Typically, when vision scientists use classification images, the subject

is looking for a particular feature in the stimulus and the experimenter is try-

ing to learn the features of sensory neurons that are representing the signal

the observer is searching for (Murray 2011). An example of this type of in-

terpretation is apparent in classification images for simple detection. In these

images, if the subject is trained to detect a a white bar embedded in noise,

the classification image reveals that the subject is indeed looking for a white

bar, but that bar is surrounded by negative lobes. These negative flanks are

interpreted as evidence for the shape of sensory receptive fields, that have cen-
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ter surround properties (Neri & Levi 2006). An alternative interpretation is

that the subject reads out neurons that do not have surrounds with negative

weights. This can only be unpacked by recording from neurons at different

stages in the brain. In fact, if neuroscientists hadn’t already observed center-

surround mechanisms in the retina and LGN, they would not have known if

the center-surround mechanism existed at the encoding or the readout stage

in the PK (Neri & Levi 2006).

Psychophysical reverse correlation studies often seek to understand how

the sensory neurons shape the observer’s template. For example, Neri &

Heeger (2002) looked at contrast detection and found that nonlinear mech-

anisms preceded linear mechanisms of detection. They interpreted this as

evidence that complex cells in V1, which respond strongly to contrast energy

regardless of luminance sign, were priming the readout of simple cells in a way

that is akin to bottom up attention. Since the classification image is approxi-

mating the entire visual system in one linear stage, it is comprised of multiple

linear and nonlinear steps.

More recently, scientists have begun looking at the dynamics of PKs

over time, and interpreting these dynamics as evidence for decision strategies.

The first example of this comes from Kiani et al. (2008), where they measured

the PK over time for motion-discrimination. They found that the motion en-

ergy in the stimulus was most correlated with the animal’s choices early in the

trial and they interpreted this as evidence for bounded accumulation of motion

energy. Of course, this could also result if the sensory neurons had temporal
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dynamics (Priebe et al. 2002). Interpreting PKs as read out has become in-

creasingly popular in recent years (Nienborg & Cumming 2009, Tsetsos, Gao,

McClelland & Usher 2012, Wyart, de Gardelle, Scholl & Summerfield 2012,

Wimmer et al. 2015, Raposo, Kaufman & Churchland 2014, Erlich, Brunton,

Duan, Hanks, Brody & Carandini 2015)

1.4.2 Statistical models of neural activity

To study the representation of motion information in MT and LIP, I

employed statistical models of single neuron and multi-neuron activity. The

models used here follow the same principles as psychophysical reverse corre-

lation. In this section I briefly review the generalized linear models (GLMs)

that are employed in this thesis.

1.4.2.1 Single neuron models

Sensory neurons do not fire the same pattern of action potentials when

repeatedly shown the same sensory stimulus (Tolhurst, Movshon & Dean

1983). This variability, or noise, is the primary motivation for treating neural

responses probabilistically. The “neural coding problem”, as it is often called

ultimately requires a statistical approach to understand the transformations

that generate neural responses to stimuli: Given a certain spatiotemporal stim-

ulus, s(t), at time t, what is the probability of a particular neural response

r(t). At first glance, it seems we could empirically build up p(~r|~s), however, s

occupies a high-dimensional space and thus suffers from the so-called “curse of
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Figure 1.2: Systems Identification for neuron and behavior. A A noisy stim-
ulus is shown to a monkey (C) in the receptive field of a neuron (B) and
spikes are recorded while the monkey makes perceptual judgements about the
stimulus. B Statistical model of neural activity: The receptive field takes a
weighted sum of the stimulus over time. The output of the linear stage is
passed through a point nonlinearity. This enforces that spike rates do not go
negative. The probability of spiking is described by a Poisson distribution
with rate that is the output of the nonlinear stage. Here t indexes into time
bins. C Psychophysical observer model. The observer has a linear template
that performs a weighted sum of the stimulus. This corresponds to the psy-
chophysical kernel in the psychophysical reverse correlation literature. The
output of the linear stage corresponds to the internal decision variable and is
passed through a static, sigmoidal nonlinearity that maps the decision variable
into a probability of a particular choice. The probability of a choice is given
by the Binomial distribution, or since there are only two possible outcomes on
each trial, the Bernoulli distribution. Here t corresponds to each trial.

dimensionality”. As the dimensionality grows, samples in a high-dimensional

space effectively become sparse. Take for example a stimulus that covers only

a 10 x 10 grid of pixels of the computer monitor. It would take 2100 samples

just to have 1 sample in each orthant of the stimulus space. It is immedi-
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ately evident that this approach is intractable and instead statistical tools are

required to reduce the dimensionality of the problem. There are additional

reasons why the naiive approach to measuring p(~r|~s) is hindered.

Although it is theoretically possible to characterize complex nonlinear

responses using a polynomial expansion to white noise input, the amount

of data required scales with the stimulus size and the polynomial order to

a dimensionality well beyond what we can typically collect in a physiology

experiment and the higher order terms are difficult to interpret. The first-order

(linear) kernel can be measured fairly straightforwardly. In fact, it is a similar

procedure to the psychophysical reverse correlation described above. If the

stimulus is white noise, the linear filter can be measured by simply averaging all

stimuli that preceded a spike (Chichilnisky 2001). This measurement, known

as the spike-triggered average (STA) has been widely used to estimate linear

receptive fields in many early visual areas.

ŵ =
1

N

N∑
t=1

r(t)s(t) (1.2)

where N is the number of spikes. The STA is an unbiased estimate of the

linear receptive field if the stimulus is white noise – that is, if the stimulus is

zero mean and circularly symmetric. This assumption can be relaxed slightly

by correcting for the stimulus covariance. This method is called whitened-STA

and is the STA multiplied by the inverse of the stimulus covariance matrix.

Thus the STA can be extended to more complicated stimuli than simple white

noise.
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However, neurons exhibit clear nonlinearities. The simplest observable

nonlinearity is that neurons cannot emit negative spike rates, and as such have

response that cannot be described with a single linear filter. It is possible

to estimate the spiking nonlinearity sequentially by projecting the estimated

linear weights on the stimulus vector s(t) · ŵ to produce an estimated rate

and then quantitizing the spiking response as a function of that generator

signal (Chichilnisky 2001). Of course, the assumption that the neuron depends

only on the recent stimulus history is false, as can be immediately seen from

the presence of refractory periods: Neurons cannot fire an action potential

within a roughly 1ms window after their last action potential. This and other

measurable dependencies led to extensions that fit the neural response within a

probabilistic framework while simultaneously accounting for the multiple input

dependencies and the spiking nonlinearity (Truccolo, Eden, Fellows, Donoghue

& Brown 2005).

1.4.2.2 Generalized linear models

Generalized Linear Models (GLMs) have been a popular tool for under-

standing neural encoding because they are flexible, tractable, and interpretable

(Stevenson & Kording 2011). The GLM can be flexibly extended to include

parameters to capture stimulus dependencies, spike history effects, and cou-

pling between neurons because it is log-concave and thus easy to fit to neural

datasets (Paninski 2004). The parameters themselves often directly map to

features neuroscientists are comfortable with, such as the “receptive field”. In
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its simplest form, the GLM is a linear nonlinear poisson (LNP) model with a

set of linear weights to represent the “receptive field”, and a nonlinearity to

map to spike rate and a poisson process for generating spikes. In this model,

the spike trains are produced as an inhomogeneous poisson process with rate

λ(t) = f(~s(t) · ~w) (1.3)

The linear stage ~s(t) · ~w is the linear projection of the stimulus on the recep-

tive field. When using white noise, the STA described above is an unbiased

estimator of ~w (Paninski 2004). A substantial effort in systems neuroscience

has been focused on estimating ~w for different levels of the visual system.

The nonlinearity, f(.), maps the linear stage into a spike rate, enforcing that

λ(t) does not go negative. If the spike generation process is poisson, then the

likelihood is given by

p(r|s, θ) =
T∏
t=1

p(r(t)|λ(t)) =
T∏
t=1

λ(t)r(t)

r(t)!
e−λ(t) (1.4)

where θ ∈ {b, ~w} gives the baseline firing rate b and the receptive field ~w, such

that λ(t) = f(~s(t) · ~w). The goal here is to estimate θ. This is possible via

maximum likelihood. The logarithm is a monotonic transform of p(r|λ) so we

can maximize the quantity:

arg max
θ

log(p(r|λ, θ)) ∝
T∑
t=1

r(t) log(λ(t)) +
T∑
t=1

λ(t) (1.5)

This basic form makes up the MT and LIP model in chapter 3. The form holds,

even for extensions of λ, which can include the neuron’s own spike history as
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input and can be extended to include spike trains from simultaneously recorded

neurons. The inclusion of parameters for capturing neural interactions plays

a significant role in relating MT and LIP in chapter 3 and will be explored in

the following section.

1.4.3 Statistical methods for measuring functional connectivity

Since the invention of multi-electrode recordings, it has been clear that

neuronal activity is correlated across neurons. Recording technology has pro-

gressively advanced over the decades (Stevenson & Kording 2011). In this

dissertation I record from ensembles (up to 23) of neurons simultaneously us-

ing linear electrode arrays. These arrays have up to 24 electrode leads along

a single shaft. These linear electrode arrays allowed me to record from MT

and LIP, which are both buried deep within sulci (Lewis & Van Essen 2000)

as had never been done before. The advancement in technology available for

recording populations of neurons developed concurrently with methodology

for analyzing simultaneous activity (Stevenson & Kording 2011).

The most straightforward classic analysis of connectivity is the cross-

correlogram. This plots the excess spike rate of one neuron, conditioned on a

spike from another neuron. It has been used primarily to infer connectivity

(Alonso, Usrey, Reid & others 1996), but also to measure coding principles

(Bair, Zohary & Newsome 2001). An extension of the cross-correlogram is

the joint-peri-stimulus-time histogram which plots the joint activity of two

neurons aligned to an experimenter controlled stimulus or task variable (Brody
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1999). This extension can capture lags and dynamic correlations. Both of

these methods are pairwise, are subject to misleading sources of variability,

and require ad hoc shuffling methods to correct for slow-timescale fluctuations

and assess statistical significance. They require fixed task-timing and stimulus

to measure accurately (Stevenson, Rebesco, Miller & Kording 2008, Stevenson

& Kording 2011).

It is also possible to extend the GLM framework to include multiple

neurons within the same probabilistic framework. Here, the response of n

simultaneously recorded neurons can be expressed

p(r1, r2, ..., rn|~s, θ, ...) =
n∏
i=1

T∏
t=1

p(ri(t)|λi(t)) (1.6)

Where the rate for the ith neuron λi is

λi(t) = f
(
~s(t) · ~w +

n∑
i=1

~ki · ri(t− 1)
)

(1.7)

Importantly, the Poisson noise model is independent so equation 1.6 can be ex-

pressed as a product over neuron and time. However, the rate for each neuron

is dependent on the spiking activity of other simultaneously recorded neurons

(eq. 1.7). This formulation has been used to measure correlations in simultane-

ously recorded populations of retinal ganglion cells (Pillow, Shlens, Paninski,

Sher, Litke, Chichilnisky & Simoncelli 2008), in human and monkey motor

cortex (Truccolo, Hochberg & Donoghue 2010) and many sensory and mo-

tor areas (Stevenson, London, Oby, Sachs, Reimer, Englitz, David, Shamma,

Blanche, Mizuseki, Zandvakili, Hatsopoulos, Miller & Kording 2012). Addi-

tionally, it has been shown to be a decent proxy for anatomical connectivity
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in a system where all neurons are observable (Gerhard, Kispersky, Gutierrez,

Marder, Kramer & Eden 2013) and can be used to test for directional depen-

dencies (Kim, Putrino, Ghosh & Brown 2011, Stevenson & Kording 2010).

This measure forms the basis of how I interrogate whether LIP spike trains

depend on MT in chapter 3.

1.4.4 Decoding

There are two sides of the neural coding problem. So far I have dis-

cussed the encoding problem. That is, I have described statistical tools for

describing the probability of a neural response given a stimulus. The other

side is called decoding and describes the opposite relationship: the probability

of a stimulus given a neural response. Decoding was discussed briefly above

in the section on MT readout mechanisms.

In chapter 4, I use a simple, neurally plausible, decoder to read out

of the direction of the motion stimulus from small populations of MT neu-

rons. Population decoding methods have proven useful in understanding the

information available in populations of neurons in motor cortex (Georgopoulos

et al. 1986) and primary visual cortex of anesthetized (Graf et al. 2011) and

alert fixating macaques (Berens, Ecker, Cotton, Ma, Bethge & Tolias 2012),

and behaving macaques (Chen, Geisler & Seidemann 2006), as well as the dy-

namics of decision-making in frontal cortex (Kiani, Cueva, Reppas & Newsome

2014) and oculomotor planning in LIP (Graf & Andersen 2015). Decoding ap-

proaches offer perspective on how the brain might accomplish the task at hand
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given only the neural signals.

1.5 Summary

This thesis approaches the problem of perceptual decision-making by

integrating the advances in psychophysical reverse correlation, statistical mod-

els for neural data, and large-scale recording techniques. The analysis relies

heavily on the use of generalized linear models (GLMs) which are a class of

statistical models that can be easily fit to many types of data. The following

chapters describe a unique application of these techniques at the intersection

between sensation and cognition.
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Chapter 2

Psychophysical reverse correlation

motion-discrimination task

Our goal was to develop a motion-discrimination task that was amenable

to reverse-correlation analysis to probe the subject’s psychophysical strategy

as well as the responses of neurons in MT and LIP. We had four specific re-

quirements for the stimulus: First, the motion evidence should be controlled in

a temporally precise manner. Second, the “noise” should be explicitly known

by the experimenter. Third, it should produce a percept of motion that is sup-

ported by a conventional sigmoidal psychometric function. Fourth, it should

target known selectivities of MT neurons. In this chapter, I introduce the

Gabor-pulse stimulus and compare its spatiotemporal properties to the spa-

tiotemporal properties of the classic random dot motion stimulus (referred to

as either RDM or “the dots” from here on). I show that the Gabor-pulse

stimulus has distinct advantages over classic dot stimuli for reverse correlation

and that it supports conventional psychophysical behavior and drives area MT

lawfully.

This work has been presented in part at the Workshop on Natural

Environments Tasks and Intelligence (NETI) 2014 meeting, but can be treated
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primarily as the extended general methods for the experiments described in

this dissertation.

2.1 Introduction

The dots have been used extensively to probe properties of motion per-

ception (Morgan & Ward 1980, Newsome & Pare 1988) and the responses of

motion sensitive neurons in MT (Britten et al. 1993, Britten et al. 1992, Os-

borne et al. 2004, Bosking & Maunsell 2011, Price & Prescott 2012). However,

we chose not to use the random dots in this study because the mapping between

experimenter controlled motion strength and the stimulus shown is stochas-

tic and the explicit noise is difficult to estimate without pre-filtering with an

MT-like mechanism.

2.1.1 Motion-discrimination tasks

Discrimination tasks are a central component of the study of decision-

making and evidence accumulation (Gold & Shadlen 2007). Motion discrimi-

nation in particular has played a major role in studies of MT and LIP during

decision-making, even when investigating cognitive mechanisms such as re-

ward expectation, confidence or prior expectation (Kiani & Shadlen 2009, Rao

et al. 2012). This is largely because a large body of research has estab-

lished area MT’s causal role in representing the sensory evidence for deci-

sions about motion (Newsome & Pare 1988, Salzman et al. 1990, Nichols

& Newsome 2002, Ditterich, Mazurek & Shadlen 2003). Many iterations of
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Figure 2.1: Motion discrimination task (A) Monkeys maintain fixation through
a 1050ms stimulus and then wait for the fixation point to dim before indicating
their choice about motion with an eye-movement to one of two targets. (B)
Timing of task components. Gray arrows indicate that the onset of each of
the experimenter controlled task components are jittered by a 500ms uniform
distribution.

motion-discrimination tasks have a standard generic form with subtle manipu-

lations to probe different aspects of the decision process. We kept to the basic

discrimination paradigm, by implementing a task where monkeys integrate the

direction of motion in a perifoveal motion stimulus and indicate their choices

with an eye-movement to one of two peripheral targets (Figure 2.1).

We used a fixed-duration (FD) paradigm, where the experimenter con-

trols the duration of the motion stimulus and it is the same duration on every

trial. We chose a FD paradigm because it gives us the same number of samples
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50% 20% 0%A B C

Figure 2.2: Experimenter control of motion strength using dot stimuli (A)
A sample frame of dots at 50% coherence. 50% of the dots are selected at
random to be signal dots. On this frame, 10 of 18 dots were randomly selected
to translate to the left (indicated with arrow vectors). The remaining dots
are replotted at random within the stimulus aperture. (B,C) Same as in A,
but for 20% and 0% coherence, respectively. The 0% coherence level means
no dots are coherently replotted.

of the stimulus on each trial to use in the reverse correlation analysis. Alter-

natives to FD are to vary the duration from trial to trial in what is known as

a variable duration (VD) paradigm or to let the animal dictate the duration

of the stimulus by training them to make an eye-movement whenever they are

ready, which is known as a response time (RT) task. The disadvantages to VD

or RT paradigms for reverse correlation are that many of the trials cannot be

used to estimate the temporal strategy because their duration is too short, and

that they essentially enforce an optimal strategy of early weighting because

the animal either ends the stimulus when it has seen enough (RT) or knows

the stimulus might end early (VD). The optimal strategy in a fixed duration

task is to integrate the entire stimulus – assuming a perfect representation of

the stimulus in sensory areas and no cost for fixation. In general, FD stimuli

are widely used in reverse correlation paradigms as they let the subject use
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what information is most useful to it, and let the experimenter measure that

relationship with psychophysical reverse correlation (Murray 2011).
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Figure 2.3: A look at dot motion in space-time and the spatiotemporal fre-
quency domain A Space-time slice of a single trial of 50% coherent dots pre-
sented with a 60Hz refresh rate. Gray lines connect signal dots across frames.
Notice that motion appears as orientation in the space-time domain. Using
the classic algorithm, dots are replotted every three frames. This demonstrates
that the dots are stroboscopic or apparent motion which enforces a minimum
temporal integration of 3 x frame rate or 50ms in this case. B,C Same as
in a, but for 20% and 0% coherence, respectively. D Single-trial of dot mo-
tion as energy in the frequency domain. The oriented line through the origin
represents the velocity of the signal dots. The parallel lines are due to the
stroboscopic presentation. E,F Same as in a, except for 20% and 0% coherent
dots. The color scale is fixed across all three subplots. 20% coherent dots have
the same oriented structure, but a lower power.
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2.1.2 Motion in random dot stimuli

The focus on random dot stimuli in the decision-making literature is is

in part historical (Born & Bradley 2005), but there are several nice features

of RDM stimuli that allow for a close examination of signal and noise in the

perception of motion. Unlike low contrast stimuli, RDM stimuli have external

noise and the SNR in the stimulus can be manipulated by the experimenter.

The dots themselves can be “signal” dots or “noise” dots, and the experimenter

controls the strength of the stimulus by changing this proportion. The signal

dots represent a coherent translational motion and are replotted in one of two

possible directions over frames. The noise dots are replotted at random on

each frame Figure 2.2. This ratio, termed “coherence”, ranges from 100%

(all dots are replotted in the direction of first target) through 0% coherence

(all dots are randomly replotted) to -100% (where all dots are replotted in

the direction of the second target). In the standard dot algorithm, the signal

dots are replotted every 40ms such that the motion signal is apparent motion

(Newsome & Pare 1988, Britten et al. 1992, Roitman & Shadlen 2002).

As with any sequence of images that generates visual motion, the mo-

tion of RDM stimuli can be visualized either in space-time or in the Fourier

domain (Watson & Ahumada 1983). In space-time, the signal dots are re-

plotted at fixed spatial and temporal intervals consistent with a fixed velocity.

This appears as oriented structure in the xt plane. Figure 2.3a shows an ex-

ample of this, with 50% coherent dots plotted in the xt plane. The signal dots

are connected across frames with gray lines, which were added to illustrate
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the velocity signal but are not there in the stimulus. This orientation in xt

is consistent with the speed of the motion (x = vt where v is the velocity).

Because the signal dots are replotted stroboscopically, each signal dot is offset

by ∆x = v∆t. As the coherence is reduced, the oriented structure in space

time is diminished (Figure 2.3b,c).

Motion also appears as orientation in the frequency domain (Watson &

Ahumada 1983). To visualize the stimulus in the frequency domain, f(ωx, ωt),

we take the 3D Fourier transform:

f(ωx, ωt) =

∫∫∫ ∞
−∞

c(x, y, t) exp(−2πi(ωx+ ωy + ωt))∂x∂y∂t (2.1)

Where c(x, y, t) is the luminance of the stimulus on our monitor at

each pixel, on each frame, ωx and ωt are spatial and temporal frequency at

each point in the frequency plot. The full 3-dimensional space is difficult to

visualize so we consider a stimulus in which coherent motion is along only the

x dimension and then marginalize across the y dimension.

Figure 2.3d shows the same dots from panel a now plotted in the Fourier

domain. The oriented structure is apparent immediately. The oriented line

passing through the origin is the stimulus velocity. This reflects the orientation

that was present in space-time, except now the slope is − 1
v
. The many parallel

lines result from aliasing due to the stroboscopic presentation of the signal

dots. As the coherence is reduced, the Fourier amplitude along the oriented

lines is reduced until all that is left is broadband noise (Figure 2.3e,f). This

reveals two nice properties of RDM. The first is that there is power along all
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combinations of spatial and temporal frequencies that are consistent with the

signal velocity (The signal dots are broadband). The second feature is that

the noise is also broadband and has power at all directions and speeds. In

the 0% coherence stimulus, only white noise is left, spanning all frequencies

equally.
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Figure 2.4: Parameters of the Gabor-pulse based motion stimulus (A) The
stimulus consists of a hexagonal grid of Gabor patches. Each Gabor was scaled
to have a half-width equal to .1 x eccentricity so as to be roughly the size of
V1 neuron receptive fields. The Gabors were also spaced by this value. The
entire grid spanned 1 x eccentricity to roughly equal the size of the average MT
neuron receptive field. The entire grid and each Gabor within it was oriented
by θ such that all motion energy was along the direction of discrimination.
(B,C) Motion strength is controlled by changing the fraction of elements that
drift in a fixed direction.

2.1.3 Precise control of direction information

In the previous sections, I highlighted appealing spatiotemporal and

spectral properties of RDMs. However, there are several limitations to dot
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motion. The main limitations that caused us to search for an alternative is

that the specific spatiotemporal motion energy is hard to control and harder

to measure. The dots are not continuous moving objects in the world. They

are plotted with a refresh rate on a computer monitor. As such, on any two

frames, each dot on the current frame can in theory be any of the dots on

the subsequent frame (Watamaniuk, Grzywacz & Yuille 1993). Thus, the dots

suffer from a “correspondence problem” and the experimenter has little control

over how this noise plays out (Barlow & Tripathy 1997).

One option for measuring the motion that is present in RDM stimuli is

to calculate the n2 possible motion vectors for each frame transition, where n is

the number of dots. This type of analysis has been used to estimate the ideal

observer for dot stimuli and to estimate MT receptive fields (Watamaniuk

et al. 1993, Cook 2004). However, it would fail to measure any motion at

the signal velocity in the classic RDM we have discussed so far. The dots

from (Britten et al. 1992) are replotted with a spatial and temporal offset

that spans several frames. This highlights a larger problem with this analysis,

which is that the number of motion vectors for each frame transition scales

with the number of frames lags as the experimenter considers motions that

could span multiple frames. A second approach to measure motion in the

stimulus is to use a filtering mechanism that mimics early motion detectors

in the visual system (Adelson & Bergen 1985). This approach introduces

substantial temporal integration that can contaminate any estimates of neural

or behavioral integration times and is inappropriate for MT characterization,
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because it is a model of visual processes. Given these limitations, we developed

a stimulus based on Gabor patches, where we could precisely control the local

motion energy.

2.2 Methods

2.2.1 Stimulus Apparatus

All stimuli were presented using the Pychophysics Toolbox with Matlab

(The Mathworks) using a Datapixx I/O box (Vpixx) for precise temporal

registration (Eastman & Huk 2012). Monkeys sat in a primate chair (Crist

Instruments) and faced a 55 inch LCD (LG) display (resolution = 1920 x

1080p, refresh rate = 60Hz, background luminance = 26.49 cd/m2) that was

corrected to have a linear gamma function. Monkeys viewed the stimulus from

a distance of 118cm such that the screen subtended 100 degrees of visual angle.

Eye position was tracked using an Eyelink eye tracker (SR Research), sampled

at 1kHz. Reward was delivered through a computer controlled solenoid.

2.2.2 Subjects

Data were recorded from two adult rhesus macaque monkeys (one male

and one female, referred to as P and N hereafter), aged 14 and 10, weighing

10 and 7.7kg, respectively. All procedures were performed in accordance with

US National Institutes of Health guidelines and Institutional Animal Care and

Use Committee at the University of Texas at Austin.
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2.2.3 Gabor stimulus

The Gabor-pulse stimulus consisted of a hexagonal grid (5-7 degrees

across, scaled by eccentricity) of 19 Gabor patches (.9 cyc/deg, σ = .1 x

eccentricity). Figure 2.4a shows a schematic of the stimulus arrangement and

parameters that govern its appearence. The spatial frequency (.9 cyc/deg)

was selected to roughly match the peak selectivity of MT neurons (Bair &

Movshon 2004). The inter-element spacing and spatial standard deviation of

each Gabor element were scaled by 10% of the eccentricity of the center of

the aperture to match the average RF size of a V1 neuron at that eccentricity

(Van Essen, Newsome & Maunsell 1984). This ensured that all of the Gabors

were non-overlapping. All motion was presented by varying the phase of the

sinewave carrier of each Gabor and all positions and Gaussian-envelopes were

fixed across trials in each experiment. The temporal frequency of the Gabors

was 7Hz (Monkey P) or 5Hz (Monkey N), yielding velocities of 7.78 and 5.55

degrees/second respectively. Subjects were trained to report the net direction

of motion in a field of drifting and flickering Gabor elements with an eye

movement to one of two saccade targets.

Motion strength was manipulated by changing the proportion of “sig-

nal” vs. “noise” elements (Figure 2.4b). To precisely control this, all elements

in the grid were implemented as the sum of two overlapping Gabor functions

with identical orientation and spatial frequency. This can be rewritten (and

appears) as a single Gabor with a contrast modulation, but it allowed us to

precisely control the state of each Gabor as either pulsing (signal) or flickering
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(noise). Mathematically, the entire stimulus can be written

S =
n∑
i=1

Gi (2.2)

where each Gi is the sum of two Gabor filters that only differ in phase (φ, ω)

Gi = g(xi, yi, σ, θ, f, φi) + g(xi, yi, σ, θ, f, ωi) (2.3)

g(x, y, σ, θ, f, φ, t) = exp

(
−x

′2 + y′2

2σ2

)
cos (2πfx′ + φ(t)) (2.4)

where

x′ = x cos θ + y sin θ

and

y′ = −x sin θ + y cos θ

This is equivalent to the superposition of two cosine waves windowed by an

unnormalized gaussian, N, which can be rearranged to show each Gi is a single

gabor with an amplitude that is modulated sinusoidally

Gi(x, y, t) = N(µ, σ2) (cos(2πfx+ φ(t)) + cos(2πx+ ω(t)))

= N(µi, σ
2
i ) cos(2πfx+

φ(t) + ω(t)

2
)︸ ︷︷ ︸

gabor

2 cos(
φ(t)− ω(t)

2
)︸ ︷︷ ︸

amplitude

The Gabors can be in one of two states: flicker(noise) or pulse(signal)

In flicker mode, the carrier phase does not change over frames, but the am-

plitude changes sinusoidally (Figure 2.5a). In pulse mode, the carrier phase

drifts and the amplitude changes sinusoidally (Figure 2.5b).
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Each trial consisted of seven consecutive motion pulses, each lasting 9

or 10 video frames (150 or 166ms). The strength of each pulse, Xi, was drawn

from a Gaussian and rounded to the nearest integer value: Xi ∼ N(µ, ν),

where µ and ν enforce the expected motion strength and were fixed on each

trial (Figure 2.9a). On a subset of sessions, Xi was drawn from a uniform

distribution over fixed pulse strengths (Figure 2.9d). On pulse i, |Xi| Gabors

are randomly assigned to pulse and all change their phase in the same direction

(sign(Xi)) at the specified temporal frequency. The remaining Gabors undergo

a counter-phase flicker at the specified temporal frequency. The initial phase

of each Gabor was assigned randomly to minimize grouping of flicker. The

difficulty on each trial was modulated by manipulating both µ, and σ, which

effectively biases the probability of a rightward pulse at each time.

The monkey was rewarded based on the net motion that was actually

shown on each trial, not based on the stimulus distribution that a pulse se-

quence was drawn from. That is, for motion discriminated on a horizontal

axis, the monkey was rewarded for making a choice to the target on the right

if the sum of the seven pulses shown was greater than zero, and for making a

saccade to the target on the left if the sum was less than zero. On trials that

summed to zero, the monkey was rewarded at random with 50% probability.

2.2.4 Measuring Motion with Motion-Energy Filters

To compute the instantaneous motion energy on each trial, we use two

pairs of spatiotemporal filters (Adelson & Bergen 1985, Kiani et al. 2008).
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Each pair was either selective for the the coherent direction of motion or

the opposite. Motion energy filters are formed as the sum of two space-time

separable filters and are described in detail in Adelson & Bergen (1985). To

match to previous literature on RDM, we used identical filters to Kiani et al.

(2008). The spatial filters we used were even and odd symmetric fourth-order

Cauchy functions:

s1(x, y) = cos4(α) cos(4α) exp

(
− γ2

2σ2
s

)
(2.5)

s2(x, y) = cos4(α) sin(4α) exp

(
− γ2

2σ2
s

)
(2.6)

where α = tan− 1(x/σc). In the y dimension, we windowed the filters with

a gaussian envelope with standard deviation σs. For the temporal filters, we

used

t1(t) = (60t)3 exp(−60t)

[
1

3!
− (60t)2

(3 + 2)!

]
(2.7)

t2(t) = (60t)5 exp(−60t)

[
1

5!
− (60t)2

(5 + 2)!

]
(2.8)

Again, for any direct comparisons to previous literature using RDM, we matched

the filters to those described in Kiani et al. (2008). For comparisons of mea-

sured motion energy to the average change of phase in the stimulus, we tried to

avoid having filters that integrate over 150ms as the ones described above do.

Therefore, in all direct comparisons of the change in phase of the Gabors over

time to motion energy estimates from filtering the stimulus image sequence, we
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used oriented Gabors in quadrature that were matched to the spatiotemporal

frequency of the stimulus. This was not meant to be a model of MT responses

(or V1), but instead a relatively direct comparison of the experimenter con-

trolled stimulus parameters (phase) and the measurable local velocity using

filters tailored for the signal.

Psychophysical Kernel

To measure the contribution of each pulse to the monkey’s choice on

each trial, we used logistic regression, where the probability of the monkey’s

choices across the dataset is given by:

p(Y|X,w) =
exp(Y TXw)

1 + exp(Xw)
(2.9)

Where Y ∈ {0, 1} is a vector of the choice on each trial, X is a matrix of the

seven pulses on each trial, augmented by a column of ones to capture the bias,

and w is the seven pulse weights plus a bias term. This model was fit using

maximum likelihood (Knoblauch & Maloney 2008).

arg max
w

Y TXw− log(1 + exp(Xw)) (2.10)

Error bars were derived from the matrix of partial second derivatives.

2.3 Results

Here I examine the properties of the Gabor-pulse stimulus in relation to

the four criterion for a reverse-correlation motion-discrimination task laid out
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in the introduction. I use the dots as a reference point for each. Gabors are

gaussian-windowed sinusoids and have a property of being local in space-time

and local in the Fourier domain. This is an important contrast to the dots

in that the Gabor has a precise mapping from space-time to a representation

in the frequency domain. Sinewaves in space time are points in the Fourier

domain and Gaussians have the special property of being Gaussians in both

space-time and the frequency domain. Figure 2.6 depicts the components of

the Gabor stimulus in the Fourier domain. A purely drifting Gabor shows

up as two gaussian blobs in the frequency domain. Again, the orientation

represents a velocity, except now the stimulus is narrowband and only a one

spatial and temporal frequency are combined. Figure 2.7 shows a space-time

slice of of the Gabor-pulse stimulus at multiple stimulus strengths and the

corresponding view in the Fourier domain. The oriented structure trades off

as a function of stimulus strength. The advantages to the Gabor pulse stimulus

are clear when trying to control or measure motion energy, which are the first

two requirements of our reverse correlation stimulus.

2.3.1 Precise experimenter control of motion strength

We directly compared the time-varying motion energy in the Gabor

stimulus and RDM using motion energy filters that have been previously used

to measure motion in the dots (Kiani et al. 2008). The output of these fil-

ters for different motion strengths (Figure 2.4b,c) shows that the Gabor-pulse

stimulus has substantially less variance in motion energy as a function of the

53



experimenter controlled motion strength. We quantified this as the ratio of

mean to standard deviation (or SNR) and found that the experimenter has

five times more SNR in controlling the motion energy than would be possible

with the dots. Thus, we establish that the Gabor-pulse stimulus meets the re-

quirements for criterion two: the motion energy can be delivered with precise

experimenter control over the strength.

2.3.2 Temporal precision of motion evidence

We addressed the second criterion, i.e.. that the “noise” is known

explicitly, by comparing the change in phase averaged across Gabors to the

motion energy measured with filters. In principle, Gabors have a parametric

correspondence between their representation in space-time and in the Fourier

domain. We should be able to know the motion energy by simply tracking the

change in phase of each Gabor over frames. Here we compared this theoretical

value of motion energy to what could be measured from the sequence of images

on the monitor. Figure 2.4 e and f shows the spatially averaged change in

phase and the spatially averaged motion energy for three randomly sampled

trials. There is a close correspondence between the phase of the Gabors and the

measured motion energy. Of course, motion energy filters assume a bandwidth

and add some temporal integration which are free parameters to be set by

the experimenter. The phase is a parameter of the stimulus that is known

by the experimenter for each Gabor. This close correspondence between the

average change in phase and the output of the motion energy filters shows that
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the motion energy noise is known from its generating signal (proportionally)

without having to measure it with filters. Thus, the Gabor-pulse stimulus

overcomes the two main shortcomings of the dots. First, the experimenter can

precisely control the motion strength and second, the experimenter knows the

change in phase of each Gabor which is proportional to the motion energy.

2.3.3 Psychophysical performance during motion discrimination

The third requirement of a motion-discrimination reverse correlation

task is that the subject’s percept of motion depends systematically on the sig-

nal strength. Here I briefly analyze psychophysical performance and show that

the Gabor-pulse stimulus supports standard sigmoidal psychometric function

of the net motion strength. There are two ways to calculate psychophysi-

cal performance in this task. The first is in line with classic signal detection

theory, in which the signal strength is based on the experimenter manipulated

expectation of net signal. This is how psychophysical performance is measured

in the dots. The subject is rewarded for selecting a target consistent with the

generating distribution. For example, say the trial was 3% coherent motion to

the right. It is possible with such a low signal strength that a random draw

from the distribution will result in leftward motion by chance (due to the noise

dots). We can either reward for correctly inferring that the generating distri-

bution was biased to the right, or we can reward based on the motion sequence

that was actually shown.

We attempted to keep the animals vigilant across the reverse-correlation
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trials that had zero expected motion (equivalent to zero coherence trials) by

rewarding based on the motion that was empirically realized (shown) on each

trial. Both types of reward support learning the same criterion and both types

of reward support conventional psychometric functions (Figure 2.9).

2.3.4 Reverse correlation reveals the subject’s strategy

The main goal of the stimulus is to measure the subject’s temporal

strategy during motion discrimination. We sought to do this with a low-

dimensional parameterization of the stimulus. In many psychophysical reverse

correlation studies, the number of parameters estimated is linked to either the

number of pixels or number of frames in the stimulus. Here, by parameteriz-

ing the motion across seven distinct pulses, we were able to use the number

of drifting Gabors during each pulse as a proxy for the motion energy in that

epoch and reverse correlate temporal weights across seven pulses. This al-

lows us to reduce the number of parameters that govern our estimate of the

subjects strategy to the number of pulses (seven), which results in a huge

computational advantage over the dots. We estimated the monkey’s tempo-

ral weights with maximum likelihood of a logistic model and found that both

monkeys preferentially weighed the early pulse more than the later ones on

average. Figure 2.10 shows the psychophysical kernels for the two monkeys

estimated using all trials and zero-coherence trials only. We consistently found

that the monkeys tended towards early weighting strategies.

Of course, it is possible that the monkeys are only using one pulse to
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inform their choice, and simply switch which pulse they use on each trial.

This likely not the case and there is evidence, based on the monkeys’ accuracy

that they are using more than one pulse. Across all stimulus strengths, the

average expected performance if the monkey was using only one pulse is 75%

(±2%) correct. Monkeys typically exceeded that, averaging 80% (±1.2%) cor-

rect. The average % correct on the zero-expected motion trials if the monkey

was using only one pulse was 51% (±2.2%) correct . Monkeys averaged 64%

(±2.4%) correct on these trials. This suggests that the monkeys are integrating

across more than one pulse to inform their choices.

2.3.5 The Gabor Pulse stimulus drives area MT

Chapters 3 and 4 focus on the response of MT neurons to this stimulus

in detail. Here I briefly focus on the selected parameters of the stimulus and

their justification with regard to previous studies of MT. I then highlight the

responses of an example MT neuron to reverse-correlation trials only.

The lack of broadband motion energy is a disadvantage of the Gabors

for driving MT neurons when compared to the dots. However, area MT has

also been studied extensively with sinewave gratings and many MT neurons

are selective for a range of spatial frequencies with a peak sensitivity near

.9 cycles/degree (Bair & Movshon 2004). The Gabors all have a spatial fre-

quency of .9 cycles/degree, selected for this very reason. Figure 2.11 shows the

average spike rate of an MT neuron sorted by pulse strength for each of the

seven pulses. This neuron was recorded while the animal viewed the reverse
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correlation condition, where each pulse was drawn independently on each trial.

It is clear from the PSTHs that the pulse has an effect on spike rate that is

independent in time and dependent on the number and direction of pulsing

Gabors. We also established that area MT is required for performance on this

task using reversible inactivations (Appendix A).

2.4 Discussion

This chapter described the properties of the reverse correlation motion-

discrimination paradigm that is used throughout this thesis. I detailed four

requirements of a reverse correlation motion discrimination stimulus and then

showed how the Gabor pulse stimulus meets those requirements. The first

two refer to the experimenter control of signal and noise and the measurement

of motion energy. Using motion energy filters to estimate the instantaneous

motion energy, I showed that the experimenter has substantially more control

of motion energy using Gabor-based stimuli than with dots, and that the

parameters of the stimulus itself (namely, the change in phase of each Gabor)

are roughly proportional to the motion energy.

I then showed that the stimulus supports standard psychophysics and

that it can be used to measure a subject’s temporal strategy. Our monkeys

weighed the early pulses more than late ones. Finally, I showed that area MT

responds to the direction and strength of the motion pulses.
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Figure 2.5: Implementation of signal and noise in the Gabor stimulus (A) To
implement the signal and noise in a manner that supported a coherent percept
of motion, we implemented each Gabor in the grid as the sum of two super-
imposed Gabors with equal spatial frequency and orientation. At any time,
the fraction of Gabors that are selected to be ”noise” undergo counterphase
flicker. This is implemented by having each of the two Gabors drift in opposite
directions at equal Temporal frequencies. (B) The ”signal” Gabors undergo
drift plus flicker. This is implemented by freezing one of the two component
Gabors and letting the other drift. (C) Spatial slice of the pixel intensity of
the stimulus at one Gabor location. For the noise Gabors undergoing coun-
terphase flicker, the phase does not change and the amplitude merely changes
from frame 1 (black) to frame 2 (gray). The red dot represents a single pixel
intensity, which is examined in more detail in E. (D) Same as D except for
the signal Gabors. Both the amplitude and the phase change over frames. (E)
The magnitude of the red pixel in C plotted over time. The pixel reverses
polarity at the temporal frequency of the flicker. (F) Same as E, but for signal
Gabors. The pulsing Gabors flicker at 1/2 the temporal frequency of E such
that motion information is available only when the Gabor element has posi-
tive contrast. (G,H) Phase of each component Gabor for the noise and signal
Gabors respectively.
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Leftward drifting Gabor depicted in the Fourier domain. (middle) Depiction
of the signal Gabors for left motion in the Fourier domain. (right) The noise
Gabors undergo counterphase flicker which has equal and opposite left and
right motion energy.

100%

Time

S
pa

ce

100%

tf

sf

52.6%

Time

S
pa

ce

52.6%

tf

sf

26.3%

Time

S
pa

ce

26.3%

tf

sf
0%

Time

S
pa

ce

0%

tf

sf

Figure 2.7: Gabor pulse stimulus in the Fourier Domain. (Top row) Space
time slice of the Gabor-pulse stimulus at different motion strengths with signal
Gabors drifting to the left. Stimulus strength decreases from from left to right.
The pulsatile delivery of oriented structure is clearly visible in the 100% signal
strength case. (Bottom row) Gabor motion from the corresponding space-
time plots viewed in the Fourier domain. The oriented structure becomes
more symmetric as the motion strength is decreased (from left to right)
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Figure 2.8: (A) Example space-time oriented filters that make up the motion
energy computation. These filters are identical to the ones from (Kiani et al.
2008). (B) Motion Energy of the of the random dot stimulus used by (Britten
et al. 1992). The trial-by-trial variability in motion energy is large given
a particular motion strength (indicated by the separate colors). Error fill
area is standard deviation of motion energy. The black trace is the impulse
response of the motion energy filters from A. (C) Output of motion energy
filters for the Gabor stimulus as a function of fraction of drifting elements.
This is the same plot as B, but for the Gabors. (D) Ratio of the mean output
of motion energy filters to the standard deviation across trials for a given
stimulus strength. “Coherence” refers to the fraction of drifting elements in
both cases. The experimenter has substantially more control over the motion
energy manipulating the fraction of drifting Gabors over the fraction of drifting
dots. (E) Mean change in Gabor phase for three trials averaged across space.
(F) Measured motion energy averaged across space for the same three trials
in E.
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Figure 2.9: (A) Motion strength was manipulated by changing the probabil-
ity of a rightward pulse. The different colors represent the different conditions
with dark blue resulting in a rightward pulse with probability=1, although the
strength of those pulses was uniformly distributed across several levels. The
gray distribution represents the reverse correlation trials where all directions
and strengths are equally likely. (B) Psychometric function for stimulus con-
ditions shown in A. The probability the monkey chooses right as a function
of the probability that an individual pulse was to the right (pulse strength ig-
nored). (C) Psychometric function showing the probability of choosing right
as a function of the net motion that was shown (by averaging the signed
pulse strengths). (D) Alternate implementation of stimulus strength. Pulse
strengths were drawn from Gaussian distributions with different means. This
biased pulses towards rightward or leftward motion. (E) Monkey’s choices as
a function of stimulus conditions shown in D. (F) Proportion right choices as a
function of the net motion strength that was shown for the stimulus conditions
shown in D.
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Figure 2.11: Example MT neuron responses to the motion strength at each
pulse. The plot depicts the PSTH for an example MT neuron aligned motion
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pulse can be seen.
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Chapter 3

Signal and noise in MT and LIP

The middle temporal (MT) and lateral intraparietal (LIP) areas are

thought to play complimentary roles in perceptual decision-making, where MT

represents instantaneous motion evidence and LIP represents evidence accu-

mulation towards a decision threshold. Here we used simultaneous multi-area

recordings to analyze the flow of signal and noise across this putative circuit.

We found that the time-varying representation of motion in MT could explain

the observed time course of motion-dependent responses in LIP. However, to

explain LIP’s choice-dependence, it was necessary to incorporate a large ramp-

ing term that did not depend on motion. Additionally, we found no evidence of

feedforward coupling between MT and LIP, but instead found task-modulated

feedback. These results suggest that although LIP’s motion-driven responses

are sculpted by the dynamics of MT responses, the isolated contribution of

motion integration is a small component of LIP responses, which appear to

feed back to MT more than they integrate MT.
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3.1 Introduction

Area MT plays a critical role in representing the motion information

used for direction-discrimination (Britten et al. 1996, Salzman et al. 1990, Dit-

terich et al. 2003). Neurons in LIP have spike rates that reflect the time

course of decision formation (Roitman & Shadlen 2002, Gold & Shadlen 2007).

These lines of work have been synthesized in the form of two stage com-

putational models, in which MT represents the instantaneous motion evi-

dence and LIP integrates MT’s output, forming a neural correlate of the

decision variable (Shadlen & Newsome 1996, Mazurek et al. 2003, Shadlen &

Newsome 2001, Gold & Shadlen 2007, Beck et al. 2008, Wong et al. 2008, Wim-

mer et al. 2015). In these models, decisions are made when LIP’s representa-

tion hits a bound, which constitutes the requisite amount of evidence in favor

of one direction over the other. Although these models provide parsimonious

accounts of both decision-making behavior and the average neural responses

in LIP, this framework has been built on single-neuron recordings performed

in the two areas at different times and often in different versions of the task.

To more directly investigate the roles of these two areas, we recorded

in both areas simultaneously during performance of a motion discrimination

task. We then used descriptive statistical models of single trial neural activity

to characterize the motion-driven response (signal) and trial-by-trial variabil-

ity (noise) in both areas. This characterization allowed us to test three aspects

of the MT-LIP accumulation-to-bound model. The first relates to the repre-

sentation of signal in MT and the signal transformation between MT and LIP.
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In particular, the motion signals coming from MT are assumed to be flat over

time, and the strongly time-varying representation of the integrated motion

signal in LIP is thought to be a signature of bounded accumulation (Mazurek

et al. 2003). However, MT neurons are known to adapt to motion direction

over fast timescales (Priebe et al. 2002) and have time-varying temporal inte-

gration (Cook 2004, Bair & Movshon 2004). It thus remains an open question

whether these time-varying dynamics occur in MT during decision-making,

and whether they are sufficient to account for LIP’s time-varying responses to

motion (Huk & Shadlen 2005).

The second prediction is that the entirety of LIP’s coherence- and

direction- dependent ramping should be explained based on the integration of

the signals coming from MT. Models of LIP typically attempt to explain LIP

based on the time-integrated differential output coming from MT (Mazurek

et al. 2003), but prior work has not been able to clearly distinguish motion-

driven responses from decision-related ramping (Park et al. 2014). The third

prediction relates to the trial-by-trial variability that cannot be explained by

the stimulus and task: if LIP directly integrates the noisy motion evidence

coming from MT, then fluctuations in MT responses should precede corre-

sponding fluctuations in LIP, with a time course similar to the propagation of

signal between the areas.

Although LIP was originally chosen for study because of anatomical

projections from MT to LIP, the latencies and flexible stimulus-response map-

pings inherent to the dots task are good reasons to believe that the MT-
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LIP relationship is more distant (Shadlen & Newsome 1996). But the nature

and importance of intervening stages has not been investigated or included

in computational models: No direct paired measurements have been made

in this paradigm, so it is unknown whether feed-forward activity is measur-

able at all–or whether LIP instead influences MT in a feedback manner, as

has been observed in other paradigms (Herrington & Assad 2010, Saalmann

et al. 2007, Siegel et al. 2015).

Our recordings revealed that MT neurons responded more strongly to

motion early in the trial, and that this early weighting in MT was sufficient to

explain the early weighting in LIP. We were able to parsimoniously account for

MT responses with a simple model that represented the contrast and direction

components of the stimulus along with a standard linear-nonlinear mapping

between this feedforward visual filtering and spiking output. This accurate

account of MT’s early weighting was in turn sufficient to explain the strongly

time-varying component of stimulus weighting in LIP—implying that a sub-

stantial part of LIP’s early weighting need not result from bounded integration,

but may simply be inherited from the time-varying output of MT. However,

LIP’s responses were not completely described by the mere integration of MT

output, and instead required the addition of a ramping signal that signified the

eventual choice on that trial, but which did not reflect the isolated signature

of the time-varying motion.

We then analyzed the noise correlations within and between MT and

LIP populations by including directional dependencies (i.e., functional connec-
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tivity) between neurons within a generalized linear model (GLM) framework

(Stevenson & Kording 2010). Consistent with observations in other visual and

motor areas (Stevenson et al. 2012), within-area coupling was strongly pre-

dictive of single trial spikes in both MT and LIP. In contrast, feed-forward

coupling was extraordinarily weak, and we did not find strong functional cou-

pling from MT to LIP. Instead, we found that feedback coupling from LIP to

MT was robust and significantly larger, particularly during the period of the

trials in which the monkeys were most strongly weighing the motion stimulus.

Taken together, these results expand our understanding of the func-

tional properties of MT and LIP, as well as the link between them. Specifi-

cally, they reveal that the time-varying weighting of sensory evidence begins

in MT, that LIP’s responses are explained by a modest amount of motion

integration combined with a distinct choice-dependent ramp, and that it is

easier to find feedback instead of feedforward interactions between LIP and

MT. Our characterizations of the flow of signal and noise between these areas

will require expanded conceptions of how MT signals are passed on to LIP, as

well as exploration of the computational role of feedback from LIP to MT.

3.2 Materials and Methods

3.2.1 Stimulus Apparatus

All stimuli were presented using the Pychophysics Toolbox with Matlab

(The Mathworks) using a Datapixx I/O box (Vpixx) for precise temporal reg-

istration. Monkey’s sat in a primate chair (Crist Instruments) and faced a 55
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70



inch LCD (LG) display (resolution = 1920 x 1080p, refresh rate = 60Hz, back-

ground luminance = 26.49 cd/m2) that was corrected to have a linear gamma

function. Monkeys viewed the stimulus from a distance of 118cm such that

the screen subtended 100 degrees of visual angle. Eye position was tracked

using an Eyelink eye tracker (SR Research), sampled at 1kHz. Reward was

delivered through a computer controlled solenoid.

3.2.2 Preparation and Electrophysiology

Data were recorded from two adult rhesus macaque monkeys (one male

and one female, referred to as P and N hereafter), aged 14 and 10, weighing

10 and 7.7kg, respectively. All procedures were performed in accordance with

US National Institutes of Health guidelines and Institutional Animal Care

and Use Committee at The University of Texas at Austin. Both N and P

had standard surgery for implantation of a head-holder (Meister, Hennig &

Huk 2013). Monkey P had a cilux chamber (Crist Instruments) placed over

left V1 (L17,P17) for a posterior approach to MT and a separate chamber over

right LIP (L12,P5). Monkey N had a custom titanium chamber placed dor-

sally over posterior parietal to access both MT and LIP (L9,P2). Extracellular

recordings were accomplished using a combination of single electrodes (glass-

coated tungsten; Alpha Omega) (8 sessions) and multisite linear-electrode ar-

rays (U-probe or V-probe; Plexon; 35 sessions). Both areas were targeted

using cranial landmarks or structural MRI. MT and LIP were identified us-
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ing electrode depths, sulcal anatomy (identified with gray/white boundaries

during recording) and functional mapping. Functionally, MT was identified

based on receptive field size and a preponderance of directionally selective

cells (Albright 1984). LIP was identified by spatially selective visual and

saccadic activity with delay period activity during a memory-guided saccade

task (Gnadt & Andersen 1988)

Electrophysiological recording methods were as follows. In monkey P,

neural signals were amplified, bandpass filtered (0.25-8000 Hz), and digitized

at 40 kHz (12-bit resolution) using a MAP server (Plexon). In monkey N,

amplification and filtering were identical, however signals were digitized at

20kHz (12-bit resolution). In monkey P, initial spike sorting was performed

offline using standard clustering algorithms on each channel separately (Plexon

Offline Sorter). In monkey N, signals were high-pass filtered at 500Hz, down-

sampled to 12kHz and clustered across 5 channels using a mixture of Gaus-

sians (Ecker, Berens, Keliris, Bethge, Logothetis & Tolias 2010). In both

monkeys, sorts were refined using maximum a posteriori estimation under a

model that the multi-electrode voltage was the linear superposition of Gaussian

white noise and the spike trains convolved with their associated multi-channel

waveforms (Pillow et al. 2008, Pillow, Shlens, Chichilnisky & Simoncelli 2013).

Neurons were included if they did not violate a refractory period and if their

spike change during pre and post binary pursuit was less than 15% (Pillow

et al. 2013). We found this criterion reflects a combination of single and

multi-unit clusters.
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Recording stability for each unit was assessed by comparing the spike

rate across the experiment to a fitted line. Units were excluded if the largest

region of stability was less than 100 trials. For the remaining units, the window

of analysis was restricted to the largest region where all units were stable

during the Gabor task (range 127 trials to 774 trials; median 426). For choice

probability and PSTH analyses, units were included if they had an absolute

SNR (d’ for the two directions) greater than .2 (Supplemental Figure 1). This

yielded 112 MT and 115 LIP neurons. All units were included in the analysis

of coupling and we found no systematic dependence on SNR.

3.2.3 Gabor stimulus

The stimulus consisted of a hexagonal grid (5-7 degrees across, scaled

by eccentricity) of 19 Gabor patches (0.9 cyc/deg, σ = 0.1 x eccentricity).

The spatial frequency was selected to roughly match the peak selectivity of

MT neurons (Bair & Movshon 2004). The inter-element spacing and spatial

standard deviation of each Gabor element were scaled by 10% of the eccen-

tricity of the center of the aperture to match the average RF size of a V1

neuron at that eccentricity (Van Essen et al. 1984). This ensured that all of

the Gabors were non-overlapping, and spaced by their standard deviations.

All motion was presented by varying the phase of the sinewave carrier of each

Gabor. All positions and Gaussian-envelopes were fixed across the experiment.

The temporal frequency of the Gabors was 7Hz (Monkey P) or 5Hz (Monkey

N), yielding velocities of 7.778 and 5.55 degrees per second respectively. Sub-
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jects were trained to report the net direction of motion in a field of drifting

and flickering Gabor elements with an eye movement to one of two saccade

targets.

Each trial’s motion stimulus consisted of seven consecutive motion

pulses, each lasting 9 or 10 video frames (150ms or 166ms), with no inter-

ruptions or gaps between the pulses. The strength of each pulse, (Xi), was set

by a draw from a Gaussian rounded to the nearest integer value: Xi ∼ N(µ, ν),

where µ and ν were fixed on each trial. On pulse i, |Xi|, Gabors were ran-

domly assigned to pulse and all would drift their carrier cosine-wave in the

same direction (sign(Xi)) at their specified temporal frequency. The remain-

ing Gabors underwent a counter-phase flicker. The initial phase of each Gabor

was assigned randomly to minimize grouping of flicker. The difficulty on each

trial was modulated by manipulating both µ, and σ. The monkey was re-

warded based on the empirical stimulus, not the stimulus distribution. That

is, for motion discriminated on a horizontal axis, the monkey was rewarded for

making a choice to the target on the right if the sum of the seven pulses was

greater than zero, and for making a saccade to the target on the left if the sum

was less than zero. On trials that summed to exactly zero, the monkey was

rewarded at random with probability 0.5. 10% of trials consisted of a fixed,

frozen seed. Across all stimulus strength, the average expected performance if

the monkey was using only one pulse is 75% (±2%) correct. Monkeys typically

exceeded that average with 80% (±1.2%) correct. The average % correct on

the zero-expected motion trials if the monkey was using only one pulse was
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51% (±2.2%) correct . Monkeys averaged 64% (±2.4%) correct on these trials.

Thus, it is unlikely that monkeys based their choices on single pulses. (For a

detailed description of the stimulus and task, see chapter 2)

3.2.4 MT and LIP mapping

After hand-mapping the retinotopic location and direction selectivity

of MT using drifting dot stimuli, MT maps were refined and quantified using

a pair of protocols. For 59 of the MT neurons, we used a dynamic flow field to

measure the direction preference and spatial RF (Mineault, Khawaja, Butts &

Pack 2012, ?). Spatial velocity fields were estimated using the spike-triggered

average velocity at all spatial locations:

RFxy =
1

N

T∑
i=1

y(i)(Vx(i), Vy(i))

where Vx(i) and Vy(i) are the horizontal and vertical velocities at each location,

i, that the dots in hyperflow were sampled from and y is a vector of spikes.

This allowed us to measure the direction preference at each spatial location in

the RF.

For 122 MT neurons, we measured the tuning function by presenting

drifting 100% coherence dots in 12 evenly spaced directions and calculating the

average spike rate in each direction. Tuning was estimated by least-squares

fitting of a von Mises function to the spike rate:

f(θ) = rmin + (rmax − rmin) exp (−β(1− cos(θ − θpref ))
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where rmin and rmax are the minimum and maximum firing rate, respectively, β

is the bandwidth, θ is the stimulus direction and θpref is the preferred direction

of the neuron. 28 MT neurons were mapped using both methods.

LIP was mapped using a memory-guided saccade task (Gnadt & Andersen

1988). LIP response fields were estimated by counting spikes between target

onset and saccade and using linear regression between the spatial location of

the target and the spike rate on each trial.

Behavior

To measure the contribution of each pulse to the monkey’s choice on

each trial, we used logistic regression, where the probability of the monkey’s

choice across the dataset is given by:

p(Y|X,w) =
exp(Y TXw)

1 + exp(Xw)

Where Y ∈ {0, 1} is a vector of the choice on each trial, X is a matrix of

the seven pulses on each trial, augmented by a column of ones to capture the

bias, and w is the seven pulse weights plus a bias term. This model was fit

using maximum likelihood. Fit results are plotted in Figure 3.1, error bars

were derived from the matrix of partial second derivatives. The psychometric

function in Figure 3.1 uses the same likelihood, but has a single stimulus weight

for the sum of the pulses on each trial.
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Neural Analysis

To measure the relationship between the time-varying pulse strength

and the spike rate, we measured the cross-correlation between pulses and the

spike rate. The pulse-triggered average (PTA) effectively measures the excess

spike rate that would result from a pulse at a particular time of particular

strength. To compute the PTA we binned the pulse stimulus and spike counts

at 10ms resolutions. Let x(t) denote the stimulus at the tth bin and y(t) the

spike rate. All trials are concatenated such that the stimulus vector, ~x, is size

T × 1 and is zero everywhere except at the time of pulse onsets. For a pulse

at time t, x(t) is the number of Gabors pulsing with x(t) > 0 for pulses in the

preferred direction and x(t) < 0 for the anti-preferred direction. To compute

a PTA over n lags from each pulse onset, we built a design matrix, X, of size

T × n, where X(i, j) is the stimulus ~x at the ith bin, at j lags (x(i+ j)). The

PTA can then be estimated with ordinary least squares (OLS)

PTA = (XTX)−1(XTy) (3.1)

where y is the vector of spike counts divided by the bin size. To compute the

PTA separately for each of the seven pulses we built a design matrix for each

pulse and concatenated them X = [X1,X2, . . . ,X7] and used the same OLS

estimation procedure. To visualize the PTAs, responses were smoothed with

a 25ms gaussian kernel.

We noted that two sources of slow, non-directional autocorrelation in

the spike trains could substantially bias the estimates of the PTA. The first
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is the motion onset response. Both MT and LIP exhibited large fluctuations

in spike rate that resulted from the onset of the stimulus. The second was

the large premotor buildup in LIP, which had progressively larger biases on

pulses later in motion viewing. To correct for these components we subtracted

off the average spike rate aligned to motion onset from the binned spike rates

in MT and then estimated the PTA using the residual rates. To correct for

premotor/choice dependent components of the LIP firing rate, we subtracted

off the average rate for each choice depending on what choice the animal made

that rial. Figure 3.2g,h,k shows the uncorrected PTA for example neurons and

population average. Figure 3.3d,e shows the PTA computed separately for each

pulse corrected for motion onset. Figure 3.4d,e shows the PTA corrected for

choice. In all cases, we used the same analysis to compare model and data.

PSTHs were smoothed with a Gaussian filter (25ms). Trial motion

strengths were z-scored and binned into three quantiles.

Encoding Model

We modeled single trial spike trains as with a Poisson point process in

the form of GLM (Truccolo et al. 2005, Pillow, Paninski, Uzzell, Simoncelli

& Chichilnisky 2005). We discretized time in bins of duration ∆ =10ms.

The log-likelihood of the response, r, of a single neuron is (up to an additive

constant)

L(r|λ) =
∑
t

r(t) log(∆λ(t))−∆λ(t)
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where the conditional intensity (instantaneous spike rate), λ at time t is given

by

λ(t) = exp(k · x(t) + h · r(t− 1) + c · s(t) + µ)

where k are weights on the stimulus covariates, x, h is the post-spike weights

that integrate the neuron’s own spiking history, r(t−1), c are coupling weights

on simultaneously recorded spikes s, and µ is a constant offset to capture the

neuron’s baseline firing rate. k comprises of a set of ni weights for each of the

m stimulus covariates and k ·x is shorthand for
∑m

i=1

∑ni

j=1 ki,jfj(xi(t−τ : t)),

where fj are nonlinearly scaled cosine functions (Pillow et al. 2008).

To avoid overfitting, weights were fit with maximum a posteriori es-

timation of θ, where θ = {k,h, c} and penalized with a regularizing term

α(‖k‖2 + ‖h‖2 + ‖c‖2). α was fit by cross-validation on the training set.

To fit the dependence of LIP responses on MT’s transformation of the

stimulus, we simulated MT rates using the average filters for contrast and

direction from our population. We simulated the MT response and a hy-

pothetical anti-neuron response by convolving the stimulus with recovered

filters and exponentiating their output. For the anti-neuron simulation, we

flipped the sign of the direction filter, but kept the contrast filter identical

(Figure 3.3a). We used these simulated rates in place of the contrast and direc-

tion of the stimulus to recover LIP’s “MT-preferred” and “MT-antipreferred”

kernels (Figure 3.4a).
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To compare the effects of different parameterizations of the stimulus, we

fixed specific ki to zero and retrained the model. We used the same procedure

to compare inter and intra-areal coupling.

Model Evaluation

To evaluate the GLM we used 5-fold cross-validation. The test-likelihood

was computed by subtracting the log-likelihood of a homogeneous Poisson pro-

cess from log-likelihood of the model

LL = (L(r|λ)− L(r|λ̄))/
∑
t

r(t)

with units of bits per spike. Goodness-of-fit was computed on test data by

stitching across cross-validation folds to generate the PSTH. For coupling mod-

els, the model spike rate was estimated using spike input from the data.
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3.3 Results

Behavior and physiology in a reverse correlation motion discrimina-
tion task

MT and LIP responses have vastly different temporal dynamics, which

are thought to support their distinct roles in decision making (Gold & Shadlen

2007). To characterize the response properties of both areas, as well as the

stimulus-driven psychophysical performance of the monkeys, we developed a

motion-discrimination task amenable to reverse correlation analysis. Similar

to an often-used moving-dot direction-discrimination task, monkeys viewed a

field of dynamic (flickering and drifting) elements (Gabor patches), and indi-

cated their choice about the net direction of motion with an eye movement

to one of two choice targets (Figure 3.1a). The strength of motion was con-

trolled by manipulating the proportion of elements drifting in one direction

vs. the other (Figure 3.1b). The time-course of the stimulus was determined

by the motion contained in seven discrete 150 ms epochs (“motion pulses”)

(Figure 3.1c; “direction” trace). Decisions exhibited a conventional sigmoidal

dependence on the net motion strength (i.e., the integral of the motion pulses;

Figure 3.1d), and early pulses were weighted more strongly by the monkey

than late pulses (Figure 3.1e). Similar overall performance and early tempo-

ral weighting has been observed in the classic moving-dot paradigm (Kiani

et al. 2008, de Lafuente, Jazayeri & Shadlen 2015).

We recorded from 157 MT and 200 LIP neurons across 43 sessions. The

example session shown in Figure 3.2 schematizes the general paired-recording
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approach and illustrates the conventional response dynamics of MT and LIP

neurons. Keeping with standard practice, we placed the motion stimulus in

the receptive fields (RF) of MT neurons, and one of the choice targets in the

response fields of LIP neurons (Figure 3.2a,b). MT neurons showed strong

and directionally-selective responses during the motion epoch (Figure 3.2a,e),

while LIP neurons had spike rates that ramped up or down depending on the

choice (Figure 3.2f). In MT, small but significant correlations with choices

that could not be explained by the stimulus (choice probabilities, CP) were

0.53 on average, as calculated by counting spikes between motion onset and

go-signal on repetitions of identical trials (i.e, “frozen noise”). In LIP, the

correlation with choice was much larger, with CP of 0.72 on average (using the

same trial-types and counting window). Additionally we calculated a pulse-

triggered average (PTA) that captures the change in spike rate that resulted

from a pulse in the preferred direction of the cell. MT neurons exhibited

PTAs that were brief and resembled a smoothed version of the 150ms pulse

(Figure 3.2g,k). LIP neurons resembled long temporal integration of each pulse

with a substantial delay. Figure 3.2(h,k) shows the PTA for example neurons

and the population of MT and LIP cells in our sample.

Given that both the psychophysical behavior and physiological responses

in MT and LIP were reconcilable with prior literature, we were then able to use

our framework to precisely characterize the time course of motion integration

in MT and LIP.
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Motion responses in MT decrease over time

To understand how MT responds to visual motion signals during decision-

making, we fit an encoding model of single-trial spike trains (Figure 3.3a).

The encoding model describes the probability of a spike train as a Poisson

generalized linear model (GLM) (Truccolo et al. 2005, Pillow et al. 2008, Park

et al. 2014), which is defined by three stages: (1) a linear stage that filters

each stimulus component; (2) an exponential nonlinearity that converts the

summed filter outputs into a spike rate; and (3) conditionally Poisson spiking.

In its simplest form, the GLM is a linear-nonlinear-Poisson (LNP) model with

causal stimulus filters.

To describe MT responses, the “stimulus-to-MT” model contains two

time-varying stimulus inputs: The first is the time-varying pulse strength; the

second is the spatially averaged contrast (Figure 3.3a). This simple causal

model reproduced the average stimulus-dependent responses for MT (Fig-

ure 3.3b,c), capturing 78% of the variance.

To describe the temporal dependence of MT responses on the motion

pulses, we calculated a pulse-triggered average (PTA) separately for each of

the seven pulses (Figure 3.3d). The PTA depicts the contribution to spike

rate from motion in each of the seven epochs (see online methods). In MT,

although all seven of the pulses exerted strong and fairly transient effects on

spike rate, early pulses affected MT considerably more than later pulses, with

the last pulse reaching only 54% of the magnitude (l2-norm) of the first pulse.
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We asked whether this dynamic sensory weighting in MT was captured

by the “stimulus-to-MT” model, which contains static linear filters and a sin-

gle output nonlinearity. The stimulus-to-MT model reproduced the temporal

dependence of motion integration in MT (Figure 3.3e). The recovered filters

demonstrate a potential mechanism for these early strong responses. At the

onset of motion, the contrast of the stimulus jumps from uniform gray (0%

Michelson contrast) to 25% contrast, and thus generates a strong onset tran-

sient independent of the directional content of the stimulus (similar effects

would be expected using moving dots, which contain both a luminance and

contrast transient (Britten et al. 1993)). This time-varying non-directional

drive creates a gain term on the sensitivity to direction across time, as the

exponential nonlinearity that follows these two filters effectively multiplies the

contrast and direction responses together, (i.e., exp(a) · exp(b) = exp(a + b)).

The precise form of the spiking output nonlinearity does not matter as long as

it is well approximated by an exponential. As a result, this form of contrast

gain scales the response, such that early motion pulses exert larger effects than

late pulses (Figure 3.3e).

In summary, we observed time-varying motion responses in MT that

were parsimoniously explained with causal temporal filtering and a standard

static nonlinearity. Next we explored the consequences of this time-varying

MT representation for the time-varying responses to motion often observed in

LIP.
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Signal transformations from MT to LIP

LIP neurons exhibited ramping average spike rates that depended on

the choice and net direction (Figure 3.4b). Additionally, they exhibited time-

varying motion responses with a strong decay in response across the seven

pulses (Figure 3.4d). Specifically, the last pulse reached only 38% of the

strength of the first pulse in LIP, an even stronger fall-off than observed in

MT. This decrease in LIP responses to motion has been observed previously

(Huk & Shadlen 2005), and in conjunction with the motion-dependent ramps,

has been interpreted as evidence for LIP reflecting the bounded accumulation

of MT activity (Wong et al. 2008). We extended our modeling framework to

understand the signal transformations from MT to LIP, using the output of

the “stimulus-to-MT” model as the temporal input to a GLM fit to LIP spike

trains (Figure 3.4a).

To implement realistic MT input, we used the model fits from our MT

population. We filtered the motion stimulus with the population average con-

trast and direction filter, and then exponentiated the sum to generate an MT

spike rate on each trial. This simulation generates a single spike rate for each

trial that represents the average expected response from the population of MT

neurons we recorded from. Importantly, it captures the time-varying dynamics

in motion responses that we observed in the data. We also simulated a hy-

pothetical “anti-neuron” response, with opposite direction preference (Britten

et al. 1992), implemented simply by flipping the sign of the direction filter

while leaving the contrast filter the same. Thus, two simulated MT rates were
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fed into the GLM as temporal signals.

We first compared the MT-to-LIP model to a “stimulus-to-LIP” model,

which used the same parameterization as the stimulus-to-MT model but was

fit to LIP (i.e., it took the motion stimulus as input, as opposed to MT’s

response to the stimulus). The MT-to-LIP model’s inclusion of realistic MT

input provided a better account of LIP (p ¡ 0.001; sign test). We used this MT-

to-LIP model to recover temporal kernels for the MT-to-LIP transformation,

estimating how much temporal integration LIP reflected when operating upon

realistic MT outputs. These MT-LIP integration filters had time constants

(τ = 174± 7ms) significantly shorter than the stimulus referenced filters from

the stimulus-to-LIP model (τ = 250 ± 9ms; t-test p < 0.001), reflecting the

fact that the MT stage itself performs some degree of temporal integration.

This motion-based GLM did not provide complete fits to the aver-

age responses in LIP (Figure 3.4e,f). Specifically, no model based solely on

integrated motion signals (modeled either as the stimulus or as the MT out-

put) could capture the relatively steep slopes of the ramps for low coherence.

To better account for the full constellation of motion- and choice- dependent

ramps evident in averaged LIP activity, we had to include a variable in ad-

dition to the visual motion drive, conceived of as a “choice” term for choices

(saccades) to the preferred target and anti-preferred target (Park et al. 2014).

A schematic of the “MT-to-LIP” model with choice terms included is depicted

in Figure 3.4a. The independent time-varying nature of our stimulus allowed

us to separate choice dependence and motion dependence in LIP spike rates.
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Figure 3.4d demonstrates that LIP spike rates are not solely proportional to

an MT integrator. Similar failures of integrator models of LIP are present in

(Mazurek et al. 2003) (Figure 5 and 7).

The MT-to-LIP model (with choice terms included) explained 73% of

the variance of the PSTH on average, and it reproduced the strong early

weighting in LIP (Figure 3.4e). (In contrast, the stimulus-to-LIP model failed

to reproduce the early weighting, regardless of whether a choice term was in-

cluded). Thus, MT’s time-varying weighting was a necessary component to

reproduce LIP’s early weighting without invoking nonlinear weighting mecha-

nisms.

The need for added choice terms in the MT-to-LIP model draws atten-

tion to the relatively small effect of motion in LIP. Even without correcting

for strong choice-correlated premotor buildup in LIP that biases the estimates

of the PTA (online methods), LIP responses are only minimally driven by the

motion (Figure 3.2k). Given the fact that the pulse-driven component of the

LIP response was small in both absolute and relative terms, we entertained

the hypothesis that LIP might not be directly involved in integrating MT

responses, and that instead the pulse responses we did observe were distant

results of a decision process implemented elsewhere. To further investigate the

relationship between MT and LIP, we turned to our simultaneous recordings

from both areas to ask whether trial-by-trial fluctuations in MT activity were

correlated with fluctuations in LIP.
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Figure 3.5: Coupling Example Sessions. a Schematic of fully-coupled MT-LIP
model. The stimulus covariates and spike trains from simultaneously recorded
neurons are the input to a GLM, where each covariate has its own temporal
filter (temporal filters not shown). The number of filters per model scales with
the number of simultaneously recorded neurons. b Example session coupling
filters from the fully-coupled MT-LIP model. The insets along the left column
and top row show the choice sorted PSTH. The other insets show the spike rate
gain change for the neuron at each row (Target) that results from a spike by the
neuron specified by the column (Trigger). This session illustrates the strong
fine-timescale coupling that is common in area MT. All coupling insets are
scaled to have the same y-axis. c Same as in b for the example session shown
in Figure 3.2. This example session highlights strong intra-areal coupling in
LIP

Trial-by-trial variability in MT and LIP is inconsistent with simple
feedforward integration

Having described the activity of MT and LIP as a function of the visual

stimulus (for MT) and the neural representation of the stimulus (for LIP), we
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Figure 3.6: Recovered coupling filters across all simultaneously recorded neu-
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tiplicative gain change in firing rate for an MT neuron in the 300ms following
another MT neuron’s spike (at time 0) b Same as in a except for LIP-LIP
coupling. Similar to MT coupling, the strength of coupling was largest in the
shortest lags. c,d Coupling filters for feedforward (LIP triggered on MT spikes)
and feedback (MT triggered on LIP) e,f,g,h Net effect of coupling. Histogram
of the sum of the coupling filters of each category before exponentiating. This
measures whether the net effect of coupling is excitatory or inhibitory. MT-
MT (blue) and LIP-LIP (green) coupling are largely excitatory and inter-areal
coupling in the feedforward (yellow) or feedback (purple) direction were near
zero on average.

then characterized how the responses of neurons in these areas depend on the

trial-by-trial variability in the spiking responses of other neurons. The GLM

can be extended to capture such dependencies by incorporating coupling terms,
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ond 500ms of motion. Feedback (but not feedforward) coupling was modulated
by the epoch analyzed.

which take spikes as input, and which characterize the temporal kernels that

relate these spikes to the output of each neuron (Figure 3.5a). Figure 3.5b,c

shows coupling analyses in the fully-coupled MT-LIP model applied to two

example sessions in which we recorded from multiple units in MT and LIP

simultaneously. The figure shows choice-sorted PSTHs and coupling within

and between simultaneously-recorded MT and LIP neurons. Each subplot in

the figure is the coupling filter that impacts the change in spike rate for the

neuron shown on each row (left side), given a spike from the neuron depicted

at the top of the columns (top). These coupling filters are similar in spirit to

the positive lags of cross-correlations, except that they can be fit directionally

and only measure variance that is not already explained by the stimulus and

autocorrelation of individual neurons. Additionally, they also allow us to com-

pare how much they explain spiking activity relative to other factors, such as
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the stimulus (Okatan, Wilson & Brown 2005, Stevenson et al. 2008).

We successfully recorded from both areas with the requisite task geom-

etry on 18 of the sessions, yielding 100 MT, 67 LIP neurons, supporting 333

MT-LIP pairs. Coupling terms capture both directions of possible interaction

(1474 for within-MT, 1482 for within-LIP, and 666 for between MT and LIP).

We validated the incorporation of these coupling terms within each area first,

by adding intra-area coupling filters to the basic stimulus GLM fit. On av-

erage, the GLM with added intra-area coupling had 74% more bits per spike

than the uncoupled model in MT and 139% more in LIP. These contributions

were surprisingly strong. In fact, a “coupling only” model, which had no stim-

ulus or task terms was often a better description of single trial responses than

the stimulus. Over half of our MT cells (59%) and almost three-quarters of

our LIP cells (69%), were better predicted by local connectivity alone than

by the stimulus and task variables (Supplemental Figure 2). This effect was

significant across the population for MT (sign test, p = .0199) and LIP (sign

test, p < 2.0× 10−8), and on average coupling contained 55% more bits/spike

in MT and 120% more bits/spike in LIP. We then similarly analyzed the func-

tional connectivity between MT and LIP. Across the population, the fit quality

of the GLM with added inter-areal coupling was not significantly better than

the uncoupled model in either the feedforward (p=0.6; sign test) or feedback

(p=.98; sign test) direction.

To quantify the relative strengths of coupling within and across MT

and LIP, we plotted the individual coupling filters and summarized their net
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magnitudes (Figure 6). As was evident in the example sessions, MT-MT and

LIP-LIP coupling kernels were large, and had shapes indicating that responses

were driven most strongly by neighboring spikes within 10-20ms (Supplemen-

tal Figure 3), in a mostly excitatory manner (Figure 3.6e,f). The MT-LIP

kernels were difficult to discern, and in contrast to the MT-MT and LIP-LIP

coupling, did not improve the model’s ability to predict responses, and they

were negligible relative to the effects of the stimulus (Supplemental Figure 2).

Although the statistical relationship between MT and LIP was minimal, we

were able to systematically measure coupling filters that were small, but out-

side the distribution expected if the neurons were independent. A recent study

identified small, but measurable, inter-areal correlations that were task modu-

lated during decision-making (Tauste Campo, Martinez-Garcia, Nácher, Luna,

Romo & Deco 2015). This study did not speak to the predictive power of this

coupling, but we wondered whether the coupling we observed was similarly

modulated by the behavior.

We tested for task-modulated inter-areal correlations by estimating cou-

pling filters within distinct epochs of the trial. Because the monkey’s choice

depended more strongly on the first 2 or 3 pulses of motion than on the latter

4 (Figure 3.1e), we examined the MT-to-LIP and LIP-to-MT coupling terms

in more detail, zooming in on just the spikes that occurred either early (first

500ms) or late (last 500ms) of the motion viewing period (Figure 7a). This

revealed strong LIP-to-MT (feedback) coupling early during motion viewing,

despite little if any MT-to-LIP (feedforward) relations at this time. Later in
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motion viewing, there was little coupling in either direction (Figure 7b). Thus,

the inter-areal coupling appears to be strongly time-dependent: during early

phases of motion viewing– when the animal’s behavior is most affected by the

visual motion– components of the LIP response not explained by the stimuli

and task (“noise”) propagate back to MT; during later motion viewing– when

the animal’s behavior is less affected by motion– the areas are closer to inde-

pendent (Supplemental Figure 4). And at no time in the trial, regardless of

whether the animal appears to be using the stimulus or not, did we find im-

pacts of MT on LIP in a manner consistent with LIP integrating MT’s signal

and noise in a relatively direct and feedforward manner.

Discussion

We characterized the stimulus dependence and functional connectiv-

ity of neurons in MT and LIP, two areas in the macaque brain that are

thought to play important roles during sensory decision-making. Using a

reverse-correlation psychophysical paradigm, paired multi-neuron recordings

in both areas, and generalized linear model analysis, we performed a func-

tional dissection of how neural activity in this circuit depended on stimuli,

task performance, and activity in other neurons. Our characterizations re-

vealed several surprising components of how both signal and noise propagate

between MT and LIP.

First, we observed attenuating responses to motion not just in LIP, but

also in MT. MT’s response attenuation to motion could be explained with
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feedforward mechanisms, in which constant response to directional motion is

modulated by a decaying gain response to the visual contrast. Second, we

found that LIP’s time-varying motion response could be parsimoniously ex-

plained with a temporal integration filter that operates upon the time-varying

MT input, combined with a distinct ramping term related to the impend-

ing choice. Third, a coupling analysis revealed that the trial-scale variability

present in these areas was difficult to reconcile with LIP integrating MT di-

rectly. In fact, coupling was larger in the feedback direction, an effect that was

most prevalent during the time period in which the animal’s behavior most

strongly depended on the visual motion.

We interpret these results as follows. MT’s representation of visual

motion likely limits task performance (Newsome & Pare 1988), and its time-

varying responses likely contribute to the time-varying nature of both LIP

responses and psychophysical performance. Although our GLM analysis con-

sidered the impact of the stimulus on MT directly, we note that of course

the direction and contrast components of MT responses reflect a cascade of

computations that start in the retina and pass through several stages of ear-

lier thalamic and cortical processing, although the decaying responses may be

mediated by circuit mechanisms within MT (Priebe et al. 2002). Although

the small visual-motion driven component of LIP’s response can be parsimo-

niously explained in terms of temporal integration of the MT output, it appears

unlikely that direct feedforward integration is an accurate description of the

functional link between MT and LIP. The required addition of a choice-related
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ramping signal suggests that LIP may be receiving a substantial premotor or

decision formation signal in addition to the integrated sensory signals that

have received primary focus.

In some ways, our functional connectivity results may simply recapitu-

late anatomical connections, which are dense within areas and sparse between

areas (Markov et al. 2014). It is possible that by subsampling small pop-

ulations of MT and LIP neurons, we were not able to resolve feedforward

connectivity that indeed exists anatomically (Ungerleider & Desimone 1986).

However, the fact that we detected feedback but no feedforward coupling sug-

gests that individual spikes in MT do not have a large influence on LIP spiking

probability in addition to what the average motion signal is carrying. As such,

we prefer the interpretation that LIP’s temporally-integrated representation

of MT’s motion representation, despite involving only simple computations to

transform it from MT input, is more likely to reflect substantial intervening

processing that washes out the contributions of individual MT neurons.

The notion of intervening processing between MT and LIP is actually

not a new one (Shadlen & Newsome 1996). In fact, comparisons across sep-

arate studies of the two areas during the classical moving dots task reveals a

very significant latency difference (in response to the visual motion stimulus)

between the areas, on order of 100 ms. Given that the latency of MT responses

to visual motion are approximately 100 ms, a simple consideration of timing

suggests that the distance from the retina to MT is similar to the distance

between MT and LIP. The flexible mapping between visual motion (which
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drives MT neurons) and saccadic choice targets (used to drive LIP neurons)

is also consistent with a remote link between the two areas. In the standard

direction-discrimination paradigm, the visual stimulus is placed within the

RF of MT neurons, and the choice targets are placed elsewhere, in the RF

of LIP neurons. The relation between the motion stimulus and the saccadic

choice targets is not fixed or necessary, and animals can associate saccades

to arbitrary locations in response to particular directions. This flexible map-

ping requires a routing stage to intervene between the two areas, and thus

the lack of measurable noise correlations is different than investigations that

typically focus on measuring inter-areal co-fluctuations between neurons with

overlapping receptive fields (Shadlen & Kiani 2013).

Although our analyses did not need to explicitly model “top down”

factors like attention or decision formation, it is certainly possible that they

also play a role. The time-varying response we observed in MT could reflect

gain changes driven by attention (Cook 2004, Ghose & Bearl 2010), and the

time-varying response we observed in LIP could reflect bounded accumulation.

But it is certainly interesting that simple known mechanisms explain much of

the time-varying response dynamics in both areas. It has previously been as-

sumed that the time course of MT’s motion representation could be assumed

to be flat, because a comparator step (i.e., which compares motion signals

for one direction over another) would effectively “subtract off” any temporal

dynamics (Mazurek et al. 2003, Ditterich et al. 2003, Wong et al. 2008, Law

& Gold 2008, Wimmer et al. 2015). This in fact would only work for addi-
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tive effects, and would not compensate for the (multiplicative) gain effect on

direction representation we characterized in MT.

Our analysis of LIP opens some large questions for future consideration.

There appears to be a substantial component of LIP responses that are not

well-explained as the temporal integration of MT, and instead appear to be

more directly related to the impending choice (Park et al. 2014). Furthermore,

our analysis has not explained how or where the significant temporal integra-

tion reflected in LIP is performed. Finally, the propagation of noise in LIP

to subsequent MT responses was a surprise and its functional interpretation

will require new experiments. In summary, these straightforward techniques

(simultaneous recordings of multiple neurons in multiple areas, coupled gen-

eralized linear models, and an integrated reverse-correlation framework) have

provided the basis for a considerably more detailed understanding of the de-

cision making circuit. This integrated set of approaches is applicable both to

other parts of this circuit, and can also be applied to other neural circuits and

their relations to cognitive and perceptual processes.
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Chapter 4

Decoding motion direction from populations

of MT neurons

Motion discrimination is a classic model system for probing computa-

tions and circuits underlying perceptual decisions. Despite a long history of

studying the sensitivity of single neurons, little is known about how direction

can be read out from the activity of neural populations. We recorded from

ensembles of MT neurons while monkeys performed a motion-discrimination

task. We compared the performance of a simple, neurally plausible, decoder

to the psychophysical performance and to the sensitivity of single neurons.

We found that the population was more accurate than the best single neurons

and performed at least as well as the monkey at our task. We also found that

the joint response patterns of neurons was not needed to compute the optimal

weight pattern. MT populations were most sensitive to the stimulus immedi-

ately following motion onset, which corresponded to psychophysical weights of

the monkeys. Finally, we compared choice probability of individual neurons

to the performance of the population for decoding choice. The population de-

coded choice better than the best single neurons, however, choice probability,

which assumes a hypothetical ”anti-neuron” was often higher than the accu-

racy of the population decoder. These results provide empirical groundwork
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for extending single neuron studies of perception to the population level.

4.1 Introduction

A large body of work has focused on the sensitivity of single neurons in

MT to the direction of motion, and their relationship to the organism’s choice

(Britten et al. 1992, Britten et al. 1996, Parker & Newsome 1998, Cohen &

Newsome 2009, Price & Born 2010). To make a decision about the direction of

motion, an organism likely integrates over large populations of correlated MT

neurons (Shadlen et al. 1996), where the particular structure of interneuronal

correlations can impair or improve decoding performance (Averbeck, Latham

& Pouget 2006, Ecker et al. 2011, Moreno-Bote et al. 2014). It remains un-

known, how much information is available in a population of MT neurons and

how complicated the decoder needs to be to perform well at the tasks used to

study motion-perception.

Here we study the activity of up to 21 MT neurons, recorded simulta-

neously while macaques discriminated the net direction of motion in a noise

stimulus. We apply a simple, neurally plausible, decoder to read out of the

direction or the choice of the animal on single trials. Population decoding

methods have proven useful in understanding the information available in pop-

ulations of neurons in motor cortex (Georgopoulos et al. 1986), primary visual

cortex (Graf et al. 2011, Berens et al. 2012, Chen et al. 2006), as well as the dy-

namics of decision-making in frontal cortex (Kiani et al. 2014) and oculomotor

planning in the parietal lobe (Graf & Andersen 2015).
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We found that the population carried more information about direction

than the best single neuron and was sufficient to explain the monkey’s behav-

ior even though the single neurons were not. The decoder did not need to

know the full joint statistics of the population to perform as well as a decoder

that treated the neurons as independent. The sensitivity of the population was

greatest at the beginning and the optimal temporal weighting strategy prefer-

entially weighs spikes immediately following motion onset, yet a fixed temporal

decoder reached 95% of the performance of a more sophisticated temporal de-

coder. Finally, we examined the amount of information about choice in the

population. We found that the population contained more information about

the choice than the single neurons, yet this was dependent on whether we were

able to record from neurons with oppositely tuned neurons. Taken together,

these results suggest that a simple population code is all that is required to

perform coarse direction-discrimination tasks using MT neurons.

4.2 Materials and Methods

4.2.1 Electrophysiological recordings

Recordings were performed in one male (monkey P) and one female

(monkey N) rhesus monkey (macaca mulatta) using linear electrode arrays

(Plexon Uprobe/Vprobe). All procedures were performed in accordance with

US National Institutes of Health guidelines and Institutional Animal Care

and Use Committee at the University of Texas at Austin. Monkey P had a

cilux chamber (Crist Instruments) placed at stereotaxic coordinates L17P17
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for an approach through left V1. Monkey N had a custom titanium chamber

positioned dorsally at L9P2 for an approach. MT was identified physiologically

by depth, sulcal anatomy (using gray/white boundaries), and functionally by a

preponderance of directionally selective neurons. We performed 20 recordings,

but focus on 10 sessions where we recorded at least 7 neurons simultaneously

(median: 10 neurons).

4.2.2 Spike Sorting

In monkey P, spike sorting was performed by hand refinement of a

standard clustering algorithm (Plexon Offline Sorter v3). Single unit isolation

quality was established using SNR (Kelly, Smith, Samonds, Kohn, Bonds,

Movshon & Lee 2007). In monkey N, spike sorting was performed by fitting

a mixture of Gaussians model to clipped waveforms in a reduced dimensional

space (Tolias, Ecker, Siapas, Hoenselaar, Keliris & Logothetis 2007). In both

monkeys, sorting was refined by maximum aposteriori estimation of a model

where the multi-electrode voltage was the linear superposition of Gaussian

white noise and the spike waveforms (Pillow et al. 2008, Pillow et al. 2013).

We included all units that had no refractory period violations and spike rates

that did not change by more than 10% after refinement algorithms. We found

this was largely single units, but also likely included some multiunit clusters.
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4.2.3 Stimulus Apparatus and Task

Stimuli were presented using Psychophysics Toolbox. The display LCD

had a resolution of 1920 x 1080 pixels and a refresh rate of 60Hz and was cor-

rected to have a linear gamma function. Monkeys viewed the stimulus from

a distance of 118cm such that the screen subtended 100 degrees of visual angle.

Monkeys were trained to discriminate the net direction of motion in

a field of flickering and drifting Gabor patches. On each trial, the motion

strength varied across seven 150ms long epochs (pulses). The strength and

direction of each pulse was varied by changing the proportion of Gabors that

were drifting. The stimulus is described in detail in Chapter 2.

4.2.4 Preferred direction and tuning functions

MT was mapped using two separate protocols. We used a dynamic flow

field to measure the direction preference and spatial RF (Mineault et al. 2012,

Cui et al. 2013). Alternatively, we measured the tuning function of an MT cell,

by presenting drifting 100% coherence dots in 12 evenly spaced directions and

calculating the average spike rate in each direction. The preferred direction

was estimated by least-squares fitting of a von-mises function to the spike rate:

f(θ) = rmin + (rmax − rmin) exp (−β(1− cos(θ − θpref ))) (4.1)

where rmin and rmax are the minimum and maximum firing rate, respectively, β

is the bandwidth, θ is the stimulus direction and θpref is the preferred direction
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of the neuron. In figures 2 and 5, the θ is plotted relative to the direction of

the discrimination stimulus.

4.2.5 Population Decoder

We evaluated the population level representation of motion-direction

using regularized logistic regression (Bishop 2006). The probability that the

direction, y, on any trial yi was right given the decoding weights, w, and neural

response, r, is

p(y = right|w, r) =
1

(1 + exp(rw))
(4.2)

We estimated the weights using L2 regularization via the glmnet toolbox

(Friedman, Hastie & Tibshirani 2010):

ŵ(t) = arg max
w(t)

yT (r(t)w(t))− ln(1 + exp (r(t)w(t))) + λ||w(t)||2 (4.3)

where r(t) is a matrix of spike counts on each trial at time bin t augmented

by a column of ones to capture a bias term, w(t) is a vector of weights (one

for each neuron and one for the bias), y is a vector of the direction on each

trial (1 or right, 0 for left). λ was chosen using 10-fold cross validation. The

classification accuracy was evaluated on the test-set.

In some cases we made modifications to the decoder: To compare the

fixed decoder to an instantaneous decoder, we took the average spike rate dur-

ing the motion stimulus to train wfixed. To evaluate the population level repre-

sentation of choice, we re-trained weights to maximize the quantity p(c—w,r),

where c is a vector of the monkey’s choices on each trial. The correlation-blind
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(CB) decoder was estimated by shuffling the trial identity for each neuron

within each condition for the training set. The CB decoder was evaluated on

data that was not shuffled.

4.2.6 Choice Probability

Choice probability (CP) is a measure of the predictive relationship be-

tween the neural responses and the monkey’s choice independent of the stimu-

lus (Celebrini & Newsome 1994, Britten et al. 1996). CP is defined as the area

under a receiver operating characteristic (ROC) curve from the pair of response

distributions for each choice (Britten et al. 1996). CP is often computed on

zero coherence trials, which have no expected motion, but have fluctuations in

the instantaneous motion strength. Here, unless otherwise specified, we com-

pute CP and population level choice decoders on trials that have zero expected

motion, but do contain instantaneous fluctuations that vary from trial to trial.

4.2.7 Neurometric Performance

We evaluated the performance of single neurons at different stimulus

strengths by evaluating the accuracy of a linear classifier trained to discrim-

inate the net direction of the stimulus using only the spikes from the neu-

ron. The percent correct of a linear classifier for a 1D decision variable is

PC = Φ(d
′

2
), where Φ is the cumulative normal distribution (Duda et al,

2000) and d’ is the difference of the means of the response distributions for
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the two directions divided by the square-root of the sum of the two variances:

d′ =
µ(A)− µ(B)√
ν(A) + ν(B)

, (4.4)

We diverged from classic estimation protocols for neurometric functions that

typically use the area under the ROC curve to quantify percent correct (Britten

et al. 1992, Uka & DeAngelis 2004) because in this task, which only has one

stimulus presentation per trial, the area under the ROC requires the assump-

tion of a hypothetical “anti-neuron” to be interpreted as the percent correct

(see Discussion). Note: this interpretation is not required for 2AFC tasks

which display both the “signal absent” and “signal present” versions of the

stimulus on each trial (Green & Swets 1966). Both our discrimination task

and the classic “dots” task fit display only one stimulus presentation on each

trial, thus the assumption of an “anti-neuron” is required to interpret the area

under the ROC curve in terms of accuracy of an ideal observer. We compare

this assumption directly in the domain of choice probability in figures 8 and

9.

4.2.8 Psychophysical and neuronal threshold

To quantify psychophysical and neuronal thresholds, we fit a cumulative

Weibull function to the accuracy of the monkey or neuron.

p(correct) = 1− .5 exp (−(
s

α
)β), (4.5)

where s denotes the net motion strength, α is the threshold on motion strength

(at the 82% level), and β is the slope of the function. We used the fitted values
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of α for comparisons of neuronal, population and psychophysical threshold.

4.2.9 Psychophysical Kernel

To measure the contribution of each pulse to the monkey’s choice on

each trial, we used logistic regression, where the probability of the monkey’s

choice across the dataset is given by:

p(Y|X,w) =
exp(Y TXw)

1 + exp(Xw)
(4.6)

Where Y ∈ {0, 1} is a vector of the choice on each trial, X is a matrix of the

seven pulses on each trial, augmented by a column of ones to capture the bias,

and w is the seven pulse weights plus a bias term. This model was fit using

maximum likelihood. Fit results are plotted in Figure 4.1, and error bars were

derived from the matrix of partial second derivatives.

4.3 Results

We measured the activity of up to 21 simultaneously recorded MT neu-

rons while monkeys performed a motion-discrimination task (Figure 4.1a). On

each trial, the monkey indicated his or her choice about the net direction of

motion with an eye movement to one of two targets. The single units in our

population have responses during motion that are strongly dependent on the

net motion strength during the motion stimulus (Figure 4.1b). The sensitivity

of neurons with responses like these have been studied extensively in single

unit or cell pair recordings during a similar motion-discrimination paradigm
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Figure 4.1: Motion-discrimination task and average single neuron responses.
(a) After obtaining fixation, the monkey holds steady fixation while viewing
a 1.05 second long motion stimulus and then waits for a go signal before
indicating his or her choice about the net direction of motion with an eye
movement to one of the two saccade targets. (b) The average response of
single MT neurons depends on the net direction and motion strength of the
stimulus.

(Britten et al, 1992; Britten et al, 1996; Zohary et al, 1994; Bair et al, 2001,

Cohen and Newsome, 2008).

Here, we used a population decoding approach (Georgopoulos et al.

1986, Berens et al. 2012) to study the representation of motion and choice

in joint activity patterns of simultaneously recorded units. We used logistic

regression in 50ms time bins to decode direction or choice because it is easily fit

to data (Friedman et al. 2010), it is biophysically plausible (Schwartz, Pillow,
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Figure 4.2: Example simultaneously recorded neuron tuning functions and re-
sponses during motion-discrimination. (a) Firing rate as a function of direction
for 16 simultaneously recorded MT neurons. Points indicate the measured fir-
ing rate and lines are fits from a von-mises function (see methods) (b) Average
choice sorted PSTHs for the same neurons as in (a)

Rust & Simoncelli 2006, Berens et al. 2012), and it has been recently used in

a similar paradigm to measure single-trial activity (Kiani et al. 2014). This

decoder is similar to previously proposed pooling mechanisms for decoding

motion direction from MT (Shadlen et al. 1996, Cohen & Newsome 2009),

where the sign of the weights indicates a neuron’s membership in a different

pool and the magnitude of the weigh indicates each neuron’s contribution to

its respective pool.

4.3.1 Population decoder is better than best single neuron

A large proportion of MT neurons are directionally selective when

recording with single electrodes (Albright 1984), and we found a similar pre-

ponderance of directionally selective cells in our array recordings. Figure 4.2a

shows the responses of 16 simultaneously recorded neurons to different di-
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rections of motion. These same cells were responsive in a direction-selective

manner during the motion-discrimination task (Figure 4.2b).

Previous comparisons of the performance of single neurons to the be-

havior of a monkey on a similar motion-discrimination task found that, given

2 seconds of viewing duration, single neurons can out perform the monkey.

However, when viewing duration is dictated by the monkey in a response time

paradigm, the monkey’s performance is significantly better than the single

neurons (Britten et al. 1992, Cohen & Newsome 2009). This is likely be-

cause the monkey does not use all of the stimulus to form decisions (Huk &

Shadlen 2005, Uka & DeAngelis 2003, Kiani et al. 2008).

We compared single neurons in our sample to the performance of the

monkey and to the performance of the population decoder. To relate to pre-

vious work, we compared neurometric and psychometric performance. Fig-

ure 4.3a-d shows four example sessions psychometric function (black) com-

pared to the population decoder (red) and the best single neuron from that

session (gray).

Since our recordings sample MT neurons in the vicinity of the probe, we

do not only sample neurons that are perfectly targeted by the stimulus (Figure

5a shows neuron sensitivity as a function of relative preferred direction). Thus,

we compared neurometric and psychometric performance in two ways: First,

we compared the ratio of the total accuracy of each single unit to the monkey

and the total accuracy of the decoder to the monkey (Figure 4.4c). The geo-

metric mean of the distribution of single neuron ratios was significantly lower
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Figure 4.3: Example population neurometric functions and psychometric func-
tions (a,b,c,d) Example sessions psychometric function (black) and respective
neurometric functions for the population decoder (red) and the best single neu-
ron (gray)

than 1 (0.76; p=1.3956e-71, t-test) meaning that the monkey performed better

than the average unit. This is not surprising, as we recorded from many neu-

rons that were not optimally targeted by the direction of the discrimination

stimulus. We further analyzed a subset of “elite” neurons that were suffi-
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ciently well-targeted by the discrimination stimulus (n=67) to perform better

than 85% correct at strong motion strengths. We then calculated the ratio

of the threshold for the neurometric and psychometric functions. Here ratios

greater than 1 indicate that the neuron performed worse than the monkey (see

methods). Even with this subset of neurons, the geometric mean of the distri-

bution was significantly larger than 1 (2.1325, p= 1.5259e-12). This number

is similar to previously reported neurometric-psychometric ratios (Cohen &

Newsome 2009). We also compared the performance of the population de-

coder to the monkey. The geometric mean of the distribution of the decoder

ratio for the 10 sessions with 7 or more neurons was not significantly different

than the monkey’s performance (1.08; p=.3277 t-test), meaning the monkey
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did not do better than the population decoder and the decoder did not do bet-

ter than the monkey on average (5 sessions were greater than 1 and 5 sessions

were less than 1). 3 single neurons outperformed the monkey (6% of the elite

group), thus we further compared the population decoder to the single units

that were recorded on the same day to see if the population performed better

than the best single neuron.

On each session, the population decoder performed better than the

average of the single units for that day (Figure 4.5a). This result is trivial. In

theory, the population decoder should have a lower bound at the performance

of the best single neuron, since the weights of all other neurons could just be

set to zero to achieve this result. We found that this was mostly true and

the population performed as well as if not better than the best single neuron

(Figure 4.5b). In general, the population decoder was significantly better

than the respective best single unit (p=2.3526e-04, t-test). The performance

of the population decoder depended strongly on the best single unit, but also

depended on the size of population (linear model: bestNeuron: .94, p=8.402e-

11; number of neurons: .0065, p= 0.00012157). These results confirm that MT

populations are sufficiently sensitive to explain the monkey’s performance and

that (with small numbers) pooling from more neurons improves performance.

This improvement was often relatively small over the best single neuron, which

could be explained by noise correlations between neurons or because of the low

sensitivity of other neurons in our sample. Thus, we asked the decoder needs

to know the correlation structure by comparing a decoder that assumes the
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Figure 4.5: Population decoder performs better than single units (a) Accuracy
of the population decoder plotted against the mean accuracy of the units from
each session. (b) Accuracy of the population decoder plotted against the
accuracy of the best single neuron from each session.

neurons have independent noise to one that was trained on the real patterns

of activity.

4.3.2 Knowledge of the correlation structure is not required to de-
code direction

Noise correlations are widespread in cortex (Cohen & Kohn 2011) and

these correlations between neurons can improve or limit sensory encoding de-

pending on their structure (Averbeck et al. 2006, Ecker et al. 2011, Moreno-

Bote et al. 2014). Previous studies have reported contradictory results de-

coding from ensembles of V1 neurons. Recordings from anesthetized monkey

using random subsets of 20 neurons found that correlation blind decoders per-

formed worse that a decoder that was sensitive to the true joint distribution of

spiking activity (Graf et al. 2011). Contrary to this, another study recording

from V1, but in awake-fixating monkeys, found that it was not necessary to

know the full neural response distribution an a characterization of the individ-
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ual stimulus-response properties of neurons was sufficient (Berens et al. 2012).

A possible difference in these two studies is the magnitude of pairwise correla-

tions that were present in the data. The second study had noise correlations

that were an order of magnitude smaller than is often reported from V1 (Ecker

et al. 2010, Cohen & Kohn 2011). We analyzed 800 cell pairs from our dataset

and found that noise correlations were largely positive (Figure 5c). The mean

noise correlation was significantly larger than zero (.10; p=3.3758e-39, t-test).

We recorded from many neurons with different tuning functions (Figure 5a pre-

ferred direction on x-axis), thus noise correlations structure in high-dimensions

could carry additional information about the stimulus direction.

We compared single neuron sensitivity to the decoding weights we mea-

sured, and then compared a correlation-blind decoder to our population de-

coder. Figure 5a shows the single neuron sensitivity as a function of offset in

preferred direction from the stimulus axis. Unsurprisingly, neurons that were

well targeted by the stimulus (tunings near 0 or 180) had d-prime values that

were significantly different than 0 (after adjusting for direction: mean=.54;

p=4.8271e-11, t-test) and neurons that were orthogonal to the task did not

(mean=-0.05; p=0.5111, t-test). We found that this relationship was well

described by a cosine function (r2=.57). We found a similar pattern in the

decoding weights for each neuron (Figure 5b), but with less of a dependence on

cosine of the angle between the stimulus direction and the preferred direction of

the single neuron (r2 = .33). To compare the performance of a correlation-blind

decoder to the full decoder, we used logistic regression, trained on shuffled data
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Figure 4.6: Correlation-Blind decoder performs as well as full population de-
coder(a) Points are the sensitivity of single neurons (d’) plotted as a function
of the angle between their preferred direction and the stimulus direction. Black
line is a cosine fit which explains 46% of the variance. (b) Individual neuron
weights, as trained by the population decoder and cosine fit (same as in (a))(c)
Pairwise noise correlation measured on repeat trials for 800 MT pairs.(d) Com-
parison of the accuracy of a correlation-blind decoder to decoder trained on
the full response distribution. Colormap is the same as in Figure 4(e) Cor-
relation between individual neuron weights for the correlation-blind decoder
and the full decoder.(f) Ratio of the performance of the full decoder over the
performance of the correlation-blind decoder.

(see methods) and tested on the real data. The correlation-blind decoders per-

formance was strongly correlated with performance of the full decoder (Figure

5d; ρ=.992, p=1.5424e-20). The recovered weights for the correlation-blind

decoder were also strongly correlated with the full decoder weights (Figure 5e;
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ρ=0.9359, p=4.1339e-77). We compared the performance of the correlation-

blind decoder to the full decoder (Figure 5f). The correlation-blind decoder

achieved 98% if the accuracy of the full decoder on average. This amounts to a

difference in accuracy of less than 1% (-0.008; p=0.006, t-test). Thus, despite

positive pairwise noise-correlations, the read-out mechanism need not know

the correlation structure to reach the full decoder performance on this task.

We next asked how direction could be decoded over time and how complicated

the temporal structure of the weights needs to be.

4.3.3 Population is most sensitive during the transient phase

We evaluated the temporal information available in the population by

decoding from the instantaneous spike rate in a 50ms sliding window. For

each time bin we trained new weights and evaluated the performance of those

weights on test data (see materials and methods). We found that weights

were flat before motion onset, and began to diverge 60ms after motion onset

(Figure 6a,b). Once they diverged from 0, they had a systematic structure

that depended on preferred direction of the neuron (Figure 6b,c). This struc-

ture was maintained across the entire motion epoch (Figure 6b) and was very

similar to the cosine dependence in the weights that were trained on the entire

motion epoch (Figure 5b, 6c). We compared the performance of the instan-

taneous decoder to a decoder with fixed temporal weights (Figure 6d). Both

decoders had a similar shape over time, although the instantaneous decoder

had a marked advantage outside of the motion epoch in that it could fit the
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Figure 4.7: Comparison of instantaneous decoder to fixed temporal weights(a)
average absolute value of the instantaneous decoding weights over time (nor-
malized to a maximum of 1)(b) Average instantaneous decoding weights sorted
by preferred direction of the neuron (relative to the stimulus) and plotted for
each time bin.(c) There is a close correspondence between the shape of the
marginal instantaneous weights (yellow) and the fixed weights (purple). The
marginal of the instantaneous weights was calculated by averaging over the
motion epoch (from 0.1 to 1.1 seconds)(d) The accuracy of net-direction de-
coding of the instantaneous decoder plotted over time (yellow) and compared
to the accuracy of a fixed decoder (purple) averaged across all sessions(e) the
ratio of the fixed decoder to the instantaneous decoder. Mean of the distribu-
tion is .96

monkey’s bias (Figure 6d).

We compared the performance of the two decoders by averaging their

accuracy during the motion epoch (Figure 5e). In general, the fixed de-

coder did slightly worse than the instantaneous decoder (p=8.0544e-38, t-test),

achieving 96% of the performance of the instantaneous decoder, which amounts

to 2% correct worse on average. We noticed that although this difference was

sustained throughout the motion epoch, both decoders did seemed to perform

slightly better during the transient phase of the spiking response (Figure 6d).

This is not due to the stimulus, which is equally informative about the net
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Figure 4.8: Peak decoding performance happens early in the motion epoch (a)
Fraction of sessions that reach their peak decoding performance at the time bin
on the x-axis. The mean peak performance is at 285ms. (b) Comparison of the
average decoding accuracy during the transient (100-300ms) and the sustained
period that follows (300-1000ms). (c) Average psychophysical weighting of the
monkeys.

direction over time. Across our sessions, the peak performance was reached,

on average, 285ms after motion onset, and 80% of sessions reached peak per-

formance within the first 400ms (Figure 7a). We averaged performance during

the early transient phase (100-300ms) and compared it to the performance

during the sustained period (300-1000ms). Figure 7b shows the comparison of

the transient phase to the sustained phase. The population was clearly more

sensitive early in motion viewing.

4.3.4 Decoding choice: Listening to a single neuron vs. listening
to a population

In neuroscience, choice probability (CP) is a popular metric for mea-

suring how predictive a single neuron’s activity is of the choice on each trial.

Introduced by (Britten et al. 1996), the primary appeal of CP over a decod-
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ing framework, like we’ve used in the rest of this paper, is that is quantifies

the relationship between neuron activity and choice independent of the over-

all probability of the choice, by integrating over all possible criterion levels

(Green & Swets 1966). In practice, CP is computed by taking the area under

the receiver-operating-characteristic (ROC) curve for the distribution of spike

counts for each choice outcome (Britten et al. 1996, Green & Swets 1966).

This value can be interpreted as the percent correct one could predict the

organism’s choice given spikes from the neuron under study and spikes from

a hypothetical “anti-neuron” with identical response properties except that it

has the opposite preferred direction. In our datasets, we often recorded from

neurons with opposite direction preferences (ie. real neuron anti-neuron pairs).

Figure 4.9a illustrates the classic signal detection theory approach to

measuring sensitivity. If there are two states of the world, “right” and “left”,

then there are two distributions that describe the probability of a response

given each of the two states. If the observer is presented with one stimu-

lus draw (randomly selected from either distribution) on each trial, then over

trials he must learn how to place his criterion so as to maximize accuracy.

It can be shown that if the two states are equally likely a priori, then the

optimal criterion should be set where the two distributions cross (i.e. where

the likelihood-ratio is 1). The setting of the criterion directly affects the pro-

portion of correct identifications of the stimulus (Hits) and the proportion of

false alarms, which can be visualized with an ROC curve (Figure 4.9B). The

criterion shown in A is illustrated on the ROC curve as the open circle. The
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performance of the subject is also directly related to these two quantities

p(Correct) =
1

2

∫ ∞
c

p(r|right)dr +
1

2

∫ c

−∞
p(r|left)dr (4.7)

assuming left and right are equally likely, where c if the criterion. This quantity

is equal to the cyan shaded area in figure 4.9B. The quantity on the left of

the equation is just the probability of a hit and the quantity on the right is

1 - p(FA). By carving up the area in figure 4.9B, it is easy to see that the

quantity in the cyan are is equal to the percent correct of an observer given a

fixed criterion.

If the observer is given two observations on each trial, one from each

state of the world, (which is referred to as a two-alternative force choice task

(2AFC)), then no learning of the criterion is required. This is because the

subject simply needs to compare the two samples to each other. For example,

if the monkey in our study has only two MT neurons, one that prefers right

motion and one with equal and opposite tuning that prefers left, then his

response should align with whichever neuron fired more. The ROC curve give

us insight into how this works. The first sample effectively sets the criterion

for the second sample. If the second sample is larger, then it is likely that it

came from the “right” distribution. Thus, to measure the percent correct in

a 2AFC task, one must integrate over all possible criterion which corresponds

to the gray shaded area under the ROC curve.

The area under the ROC curve maps onto the percent correct the mon-

key would achieve with a neuron anti-neuron pair. It has a square-root of 2
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improvement over the performance with a single neuron. That improvement

most directly results from he information gained by being able to set the crite-

rion on each trial according to one of the samples. This is equivalent to gaining

two independent samples of each trial. Needless to say, choice probability does

not equal the percent correct the monkey would achieve if decoded one neuron.

This theoretical relationship is plotted as the red line in figure 4.9d. Our data

closely corresponded to this theoretical relationship (as they should). Thus, to

fairly compare the information in our population to the information in a sin-

gle neuron, rather than assume a hypothetical “anti-population”, we compared

the performance of single neurons directly.

Just as with the stimulus decoding above, we compared the population

decoder to single neurons. The population had more information about the

subject’s choice than the best single neuron (Figure 4.10b. The population did

not perform better than the best single neuron anti-neuron pair (Figure 4.10d.

4.4 Discussion

Here we analyzed the performance of a simple population decoder that

used single MT neurons to perform a coarse direction-discrimination task.

We found that the population decoder is sufficient to explain the monkey’s

behavior even though the single neurons are not. The full joint statistics of

neural responses were not helpful for decoding over a much simpler, correlation-

blind decoder. This differed from the results of (Pillow et al. 2008, Graf et al.

2011), which both found that the joint statistics carried information about
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the stimulus. In the light of those studies, our result is somewhat surprising.

The only other study that similarly found no improvement with correlations

(Berens et al. 2012) had an order of magnitude lower noise correlations that

we observed in our MT population. We believe this is largely due to the task

complexity. Our study decoded only two conditions, whereas the others had

multiple stimulus orientations (Graf et al. 2011, Berens et al. 2012) or decoded

the full stimulus in pixel space (Pillow et al. 2008).

We also found that the population of MT neurons is most sensitive

early in the motion epoch, immediately following stimulus onset. This may

result from individual neuron signal to noise (Churchland, Yu, Cunningham,

Sugrue, Cohen, Corrado, Newsome, Clark, Hosseini, Scott, Bradley, Smith,

Kohn, Movshon, Armstrong, Moore, Chang, Snyder, Lisberger, Priebe, Finn,

Ferster, Ryu, Santhanam, Sahani & Shenoy 2010). It is possible that this

property makes startegies that integrate the beginning of the stimulus (such

as accumulation to bound) more advantage than ones that weigh later parts

of the stimulus. The monkeys both used the beginning of the motion stimulus

to inform their choices as well. It is possible that they are sensitive to the

sensitivity of their neurons and are weighing them over time in proportion to

the their reliability, much like a cue-combination task (Ernst & Banks 2002).

The relationship is purely correlative here and could go in either direction:

simple sensory adaptation (Priebe et al. 2002) causes early weights or because

the monkey is “paying attention” (Treue & Maunsell 1996) early makes the

population more sensitive. Future work could focus on biasing the monkey’s

125



strategy to be late by manipulating aspects of the stimulus statistics.

Finally, we showed that the population has more info about choice

than single neurons, but CP over-estimates the info available in a single neu-

ron. Recordings from many neurons in neighboring columns with opposite

direction-selectivity can constrain this relationship with empirical measure-

ments. Overall, it is still likely that the tasks are too simple. Taken together,

these results reenforce the idea that population decoding methods are a pow-

erful tool to generalize beyond results from single neurons.
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Figure 4.9: What does the hypothetical ”anti-neuron” add? (a) hypothetical
response distributions for the two choices. If the two distributions intersect
at only one point (ie. the log-likelihood ratio is monotonic), and the proba-
bility of each response is equal, the optimal readout criterion is placed at the
intersection. (b) Receiver Operating Characteristic curve (black) for the distri-
butions in (a) plots the probability of falsely reporting right vs the probability
of correctly reporting ’right’ at all criterion levels. Black circle indicates the
point corresponding to the ML decision rule. Choice probability (area under
the black curve) measures accuracy based on the response of a neuron/anti-
neuron pair. As expected, CP is greater than the readout probability (area
under cyan curve), which is the accuracy of the ML decoder based on the re-
sponse of a single neuron. (c) Measured CP of single neurons as a function of
their offset in preferred direction from the stimulus direction.(d) the theoreti-
cal relationship between percent correct of the single neuron ML decoder and
Choice probability (red) and measured empirically on single neurons (black
point)
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Figure 4.10: Single neuron and population information about choice(a) Popu-
lation accuracy about choice compared the the mean of the single units from
each corresponding session.(b) The population had more information about
the monkey’s choice than the most informative single neuron. (c) Comparison
of the population decoder to the average choice probability from each session.
The populations exceeded the average CP(d) Comparison of the population
decoder to the maximum choice probability from each session. The popula-
tion only performed as well as the best single neuron by this metric. Thus,
the hypothetical anti-neuron often had more information than the neurons in
our recorded populations.
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Chapter 5

Discussion

A large body of work has suggested that the lateral intraparietal area

(LIP) is involved in the accumulation of sensory evidence that is represented

in the middle temporal area (MT) to subserve decisions about motion. In

this thesis, I have described my efforts to probe this circuit using descriptive

statistical models, large-scale recording techniques, and causal manipulations.

There are two main parts to the central body of work described here.

In the first part (chapter 3), I use a unified statistical framework to measure

the signal transformations from the stimulus to MT, from MT to LIP, and to

measure how trial-by-trial variability is shared across neurons. I found that the

representation of signal in MT contained non-trivial temporal dynamics, where

the responses to motion were stronger early in the stimulus than later. LIP

neurons contained a signature of motion integration, which was multiplexed

on top of choice-dependent ramps, and could be explained with temporally

integrated average MT responses. Thus, the simple signal transformation be-

tween MT and LIP that has been proposed in the past (integration) was not

sufficient to explain the strong ramping activity in LIP. Additionally, trial-by-

trial variability was not shared between the two areas and LIP activity did not
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depend on MT. In the second part (chapter 4), I use a decoding approach to

measure the information available in small populations of MT neurons.

5.0.1 A unified framework for studying neural and behavioral re-
sponses

A hallmark of this thesis is the use of a unified statistical encoding

framework for understanding the computations at multiple levels in the cor-

tical hierarchy. The model in question, a Generalized Linear Model (GLM),

was able to describe the response properties of single MT and LIP neurons,

as well as small neural ensembles. Additionally, a GLM was used to under-

stand the psychophysical weighting of the subjects. The GLM is flexible and

tractable, yet in my opinion, its key strength is interpretability. The stimulus

filters in chapter 3 can be thought of as the temporal receptive field of each

neuron. The coupling filters reflect the shared input and local connectivity

in groups of neurons. Importantly, the GLM allowed for the direct compar-

ison of different hypotheses about the connectivity within and between MT

and LIP. In particular, I showed that local cortical activity was more predic-

tive than the stimulus for both MT and LIP. This strongly contrasted with

inter-areal functional connectivity, which contained no additional explanatory

information about single trial activity in either area.

5.0.2 Signal transformations and interareal correlations

The lack of measurable feedforward coupling from MT to LIP was some-

what disappointing. At first glance, the lack of trial-by-trial correlation be-
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tween MT and LIP seems at odds with the logic of the task and the presence of

an integrated motion signal in LIP, which strongly suggest that activity that

is present in MT does appear later in LIP. However, in may ways the lack of

correlations is not all that surprising.

What could cause this lack of inter-areal correlation? It is possible that

this result simply recapitulates what is known from the anatomy: that connec-

tions between areas are sparse (Markov et al. 2014). Additionally, inter-areal

correlations follow specific laminar dependent patterns with ascending (feed-

forward) pathways projecting from superficial layers to layer IV and descending

(feedback) projecting from deep layers (V, VI) to superficial and deep layers

(Felleman & Van Essen 1991). Here, although we were recording with linear

electrode arrays, MT and LIP are deep within sulci and thus we do not know

the layer we are recording from. It is therefore possible that we simply have

missed the anatomical connections that are known to exist. If this is all we

have learned here, then there is still an interesting consequence, which is that

we don’t really understand how sparse inputs can shape responses across an

entire network of neurons. It remains unknown how direct projections could

be so weakly correlated. I believe it is likely that this dilution of inter-areal

correlation occurs through the processing of many intermediate stages. There

is a lot of reason a priori to believe that the relationship between MT and LIP

is indirect: The monkey must flexibly map motion signals from one region of

the visual field to targets that are in entirely separate retinotopic locations. It

seems highly unlikely that the anatomical connections that exist between MT
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and LIP can support this type of flexible mapping across each experimental

session (Shadlen & Newsome 1996).

The decoding results from chapter 4 hint at one reason why MT and

LIP might appear so closely related in their average responses, yet so distant

in their trial-by-trial activity: If LIP is reflecting the decision rather than the

integration of MT, then it will be robust to any small fluctuations in MT

activity. In chapter 4, I found that a very simple decoder performed as well

as more sophisticated ones. This is not entirely surprising, given that single

neurons in MT are so sensitive, but it makes a very simple point with regard to

decision-making paradigms. It suggests that a neural decision variable could

easily be robust to fluctuations in activity across MT neurons. That is, the

probability that a stimulus is moving to the right, might saturate (at 1 or 0)

with very little time and few neurons, and thus activity in the decision stage

no longer can depend on fluctuations in MT (because it is saturated at 1).

5.0.3 MT-LIP accumulation model

More broadly speaking, the work in this thesis suggests the burgeoning

field of cognitive neuroscience has been using a model to understand higher cog-

nition that fails to describe the data at every stage. The model fails to describe

MT sensitivity and choice probability (Cohen & Newsome 2009). Simple inte-

gration of MT over estimates coherence dependence and underestimates choice

dependence (Mazurek et al. 2003) (and Chapter 3). Trial-by-trial variability

in LIP activity does not readily depend on spiking activity in MT (chapter 3).
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LIP is not causally linked to the choice behavior (Appendix A) and single trial

dynamics are not well described by bounded accumulation (Appendix B).

Extensions of this model that describe realistic time-varying respon-

siveness to direction in MT (chapter 3) and sensitivity to direction (chap-

ter 4) may reconcile the failure of the accumulator model to capture choice-

probability and sensitivity in MT during short duration stimuli, however, the

lack of a causal role in LIP cannot be reconciled so easily. Of course, choice-

dependent ramps are present in many different areas of the brain (Shadlen &

Newsome 1996, Shadlen & Kim 1999, Horwitz et al. 2004, Ding & Gold 2011).

However, many brain areas have substantial proportions of directionally selec-

tive neurons (besides MT) (Lennie 1998) yet inactivating MT has profound

effects on performance (Newsome & Pare 1988)(Appendix A).

5.0.4 Future directions

It seems quite likely that the neural representation of a decision vari-

able exists at the level of populations of neurons. Neurons throughout the

parietal and frontal lobes show mixed selectivity to decision relevant and ir-

relevant signals (Meister et al. 2013, Fusi, Miller & Rigotti 2016). These types

of responses, which seem complex at the single neuron level, can results from

simple, flexible computations at the population level (Barak, Sussillo, Romo,

Tsodyks & Abbott 2013, Fusi et al. 2016). It remains unknown how the sen-

sory representation, in MT for example, is read out by higher brain areas.

Future experiments may be able to take advantage of recent advances in ge-
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netic tools to trace the MT projection neurons in vivo and more directly test

these hypotheses (Belmonte, Callaway, Churchland, Caddick, Feng, Homanics,

Lee, Leopold, Miller, Mitchell, Mitalipov, Moutri, Movshon, Okano, Reynolds,

Ringach, Sejnowski, Silva, Strick, Wu & Zhang 2015).
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Appendix A

Dissociated functional significance of

decision-related activity across the primate

dorsal stream

Here I describe an experiment that was performed in collaboration with

a fellow graduate student, Leor Katz. This work has been submitted for

publication, Katz LN, Yates JLY, Pillow JW, Huk AC. For a more detailed

description of the experiment and results, I highly recommend reading Leor’s

dissertation.

A.1 Summary

During decision-making, neurons in multiple brain regions exhibit re-

sponses that are correlated with decisions (Britten et al. 1996, Shadlen &

Newsome 2001, Gu, DeAngelis & Angelaki 2007, Ding & Gold 2013, Liu,

Gu, DeAngelis & Angelaki 2013, Hanks, Kopec, Brunton, Duan, Erlich &

Brody 2015). However, whether or not various forms of decision-related ac-

tivity are causally related to decision-making remains uncertain (Nienborg &

Cumming 2010, Cohen & Kohn 2011, Pitkow, Liu, Angelaki, DeAngelis &

Pouget 2015). Here we test the functional significance of decision-related ac-
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tivity by recording and reversibly inactivating the lateral intraparietal (LIP)

and middle temporal (MT) areas of rhesus macaques performing a motion di-

rection discrimination task. Neurons in area LIP exhibited firing rate patterns

that directly resemble the evidence accumulation process posited to govern de-

cision making (Shadlen & Newsome 2001, Brunton, Botvinick & Brody 2013),

with strong correlations between their response fluctuations and the animal’s

choices.

Neurons in area MT, in contrast, exhibited weak correlations between

their response fluctuations and animal choices, and had firing rate patterns

consistent with their sensory role in motion encoding (Britten et al. 1996).

The behavioral impact of electrophysiological inactivation of each area was in-

versely related to their degree of decision-related activity: while inactivation of

neurons in MT profoundly impaired psychophysical performance, inactivation

in LIP exerted no measurable impact on decision-making performance, de-

spite having inactivated the very clusters that exhibit strong decision-related

activity.

Although LIP inactivation did not impair psychophysical behavior, it

did influence spatial selection and oculomotor metrics in a free-choice control

task. The unaltered performance in the decision-making task was stable over

trials and sessions, ruling out several forms of compensation, and was robust to

changes in stimulus type and task geometry. Thus, decision-related signals in

LIP may not be necessary for computing perceptual decisions. If they are, then

downstream “read out” mechanisms must be more flexible and/or different
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than traditionally assumed. More broadly, our findings reveal a dissociation

between decision correlation and causation, showing that even strong neuron-

decision correlations may reflect secondary or epiphenomenal signals, which

do not necessarily constitute a computational crux for task performance.

A.2 Methods

A.2.1 Monkey preparation

We performed electrophysiological recordings and reversible inactiva-

tions in the middle temporal (MT) and the lateral intraparietal (LIP) cortices

of two rhesus macaques (subject N and subject P), aged 10 and 14 years,

weighing 7.7 and 10 kg, respectively. Subject N had a single custom-machined

titanium chamber that enabled access to both MT and LIP on the right hemi-

sphere, guided by MRI. Subject P had a cilux chamber (Crist Instruments)

over the right LIP and another over the left MT. Standard surgical procedures

were applied (Meister et al. 2013). All experimental protocols were approved

by The University of Texas Institutional Animal Care and Use Committee and

in accordance with National Institute of Health standards for care and use of

laboratory animals.

The subject sat comfortably while head-posted in a primate chair (Crist

Instruments), facing a linearized 55 inch LCD (LG) monitor (resolution = 1920

x 1080p, refresh rate = 60Hz, background luminance = 26.49 cd/m2) at a dis-

tance of 118cm, in a dark room. Eye position was recorded using an Eyelink

eye tracker (SR Research), sampled at 1 kHz. A solenoid-operated reward

138



system was used to deliver liquid reward to the monkey. Stimuli were gener-

ated by using the Psychophysics Toolbox (Brainard 1997) in MATLAB (The

MathWorks), and task events and neural responses were recorded (Plexon)

using a Datapixx I/O box (Vpixx) for precise temporal registration. All of

these systems were integrated using the PLDAPS system developed in our

lab (Eastman & Huk 2012).

A.2.2 General procedure and experimental design

Recording sessions in either MT or LIP began by lowering an electrode

to the known location of the area based on previous mapping and record-

ing sessions. Anatomical identification (MR guided in monkey N; previously

established in monkey P (Meister et al. 2013)) was followed by functional

identification (mapping receptive/response fields (RF) of MT and LIP neu-

rons, detailed below). Inactivations of either area began by lowering both a

cannula and multichannel electrode to the region of interest, collaterally, at

least 1mm apart. The electrode was used to (i) confirm that the cannula is

within the target cortex, (ii) to record electrophysiological responses to rel-

evant task events pre-infusion, and (iii) to confirm the electrophysiological

silencing of neurons during and after the infusion. Thus, while it is not feasi-

ble to precisely measure the inactivated proportion of an area, we do confirm

the silencing of a large swath (>1mm radius), on every session (detailed in

Inactivation Protocol, below).

MT inactivation was predicted to disrupt motion perception within a
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specific region of contralateral space, consistent with MT retinotopic organiza-

tion (Newsome & Pare 1988, Chowdhury & DeAngelis 2008). The behavioral

consequence of MT inactivation was measured by comparing psychophysical

performance in the direction-discrimination task, before and after muscimol in-

fusion, within the same experimental session, with the motion stimulus placed

inside the inactivated region of space. LIP inactivation was predicted to dis-

rupt spatial selection to contralateral space more generally (Wardak, Olivier

& Duhamel 2004, Balan & Gottlieb 2009, Wilke, Kagan & Andersen 2012, Er-

lich et al. 2015), noting that LIP RF are large and that the topographic or-

ganization is less precise than in earlier visual areas (Patel, Shulman, Baker,

Akbudak, Snyder, Snyder & Corbetta 2010). The behavioral consequence of

LIP inactivation was measured by comparing the proportion of contralateral

choices in a double-target memory-guided ”free-choice” task, before and after

muscimol infusion, within the same session. To measure the impact of LIP

inactivation in the direction-discrimination task, we compared psychophysical

performance between a pair of sessions, baseline and treatment, in which the

treatment session was a muscimol, saline, or sham treatment. The paired ses-

sions took place at the same time of day and after a similar number of tasks

and trials, either 1 day apart (n = 28) or 2-3 days apart (n = 6), to minimize

the impact of within-session fatigue or motivation on behavior. Behavioral

data for the muscimol treatment sessions were collected 15 - 30 minutes after

infusion end, and typically completed within 150 minutes.
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A.2.3 Direction discrimination task

The principal task employed in all session types was a motion direction

discrimination task. Subjects were required to discriminate the net direction

of a motion stimulus and communicate their decision with an eye movement

to one of two targets. The sequence of task events is presented in Fig. 1a.

The timing of each event was randomly jittered from trial to trial (Fig. A.1

B). A trial began with the appearance of a fixation point. Once the monkey

acquired fixation and held for 400 - 1200ms (uniform distribution), two targets

appeared and remained visible until the end of the trial. 200 - 1000ms after

target onset, the motion stimulus was presented at an eccentricity of 5 - 7◦

for 1050ms. The fixation point was extinguished 200 - 1000ms after motion

offset, and the subject was required to shift its gaze towards one of the two

targets within 600ms (saccade end points within 3◦ of the target location were

accepted).

We used a reverse-correlation motion stimulus inspired by the classic

moving dots stimulus (Newsome & Pare 1988) in which motion was in either

one direction or the opposite, with varying motion strength. The motion stim-

ulus consisted of 19 non-overlapping Gabor elements arranged in a hexagonal

grid (5-7◦ across, scaled by eccentricity). The individual elements were set to

approximate the RF size of a V1 neuron and in total, the grid approximated

the RF size of an MT neuron. Motion was presented by varying the phase

of the sine-wave carrier of the Gabors. Each Gabor underwent a sinusoidal

contrast modulation with independent random phase to prevent pop-out ef-
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fects of individual drifting elements. Gabor spatial frequency (0.9 cycles/◦ ,

sigma = 0.1 x eccentricity) and temporal frequency (7Hz for monkey N, 5Hz for

money P, yielding velocities of 7.77 and 5.55 ◦ /s, respectively) were selected

to match the approximate sensitivity of MT neurons.

Each trial consisted of seven consecutive motion pulses lasting 150ms

each (9 video frames), producing a pulse sequence of 1050ms in duration. On

any given pulse Xi, a number of Gabors would drift their carrier sine-waves in

unison to produce motion (signal Gabors), and the remaining would counter-

phase flicker (noise Gabors). Signal Gabors on pulse Xi were assigned at

random within the grid and all signal Gabors drifted in the same direction.

Motion strength was defined as the proportion of signal Gabors out

of the total, the value of which was drawn from a Gaussian distribution,

Xi ∼ N(µk, σ) and rounded to the nearest integer, where µk was set to

one of five values: -50%, -12%, 0%, 12%, and 50% (negative sign indicates

motion in the opposite direction), and σ was set to 15%. Thus, while each

pulse within a sequence could take on any value (or sign) from distribution

N(µk, σ), the expectation of a sequence would be µk. Motion strength was

then z scored over all sessions, for each monkey separately.

On the motion strength axis, we use positive values to indicate motion

towards the hemifield contralateral to the LIP under study, and negative val-

ues to indicate motion towards the hemifield ipsilateral to the LIP understudy.

We use the term ”Proportion choices” to refer to the proportion of choices to-

wards the contralateral target. For consistency, we maintain this convention
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throughout the paper, such that even on MT inactivations sessions, psycho-

metric performance is evaluated in relation to the LIP under study.

The monkey was rewarded for selecting the target consistent with the

sign of the pulse sequence sum, independent of the distribution k from which

they were drawn. On trials that summed to exactly zero, the monkey was

rewarded at random. 10% of trials consisted of a frozen random seed, gen-

erating identical pulse sequences. In addition to the direction discrimination

task described here, we performed a subset of experiments (n = 2) using the

classical moving dots stimulus (Newsome & Pare 1988) (Fig. A.7).

A.2.4 Free choice task

A free choice task was used to measure spatial bias to one target over

another and confirm a behavioral consequence of LIP inactivation (Wilke et al.

2012, Erlich et al. 2015). The sequence of events within the free-choice task is

illustrated in Fig. A.6 A and B. Trials began with the appearance of a central

fixation point. At a random time after acquiring fixation (500 - 900ms), two

targets were simultaneously flashed for a brief 200ms. Subjects were required

to maintain fixation until the fixation point disappeared (600 to 3,000ms after

target flash), and then saccade to either of the remembered locations of the

two targets. On every trial, target position was determined independently

from one another and at random, drawn from a 2D Gaussian with a mean of

either [-12, 0] (left target) or [12, 0] (right), and a standard deviation of 2 - 4◦

for x and 3 - 5◦ for y position. Means and standard deviations were sometimes
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adjusted online to better position the distributions within the LIP RF (when

recorded) or LIP inactivated field (when inactivated).

A trial was successfully completed when the monkey’s saccade entered

a circular window (unobservable to the monkey) around either target and held

for 300-500ms (window radius scaled by 0.35◦ x eccentricity, minimum: 3).

Successfully completed free-choices were rewarded on 70% of trials irrespective

of the target chosen for monkey N, and 100% of trials for monkey P. Monkey

N also performed memory-guided saccades to single targets (30% of trials,

randomly interleaved) that appeared randomly in space (uniform distribution),

and were rewarded 100% of the time. The adjustments in subject N’s task were

performed to prevent a spatial bias and decrease feedback reliability that may

otherwise influence the subject. Overall performance and inactivation effects

were similar between monkeys despite subtle differences in task parameters.

A.2.5 Behavioral analysis

All analyses were performed in Matlab (The Mathworks). Responses

in the direction discrimination task were analyzed with a maximum likelihood

fit of a two parameter logistic function (Wichmann & Hill 2001) assuming

a Bernoulli distribution of binary choices, in which the probability of a con-

tralateral choice is P and ipsilateral choice is 1 - P, where P is given by:

P =
1

1 + e−β(x−α)
(A.1)
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where x is the motion strength value (z-scored over all sessions for each monkey

separately; positive values indicate rightward motion), α is the logistic func-

tion shift parameter (reflecting the midpoint of the function, i.e., bias, in units

of motion strength), and β is the slope (i.e., sensitivity, in units of log-odds per

motion strength). Error estimates on the parameters were estimated from the

hessian numerically. A four-parameter model including sub-perfect response

rates for the top and bottom asymptotes (Erlich et al. 2015) was also con-

sidered, but did not confer any advantage over the two-parameter model nor

change analysis results, and so we focus on the simpler 2-parameter fit (data

not shown). The first 10 - 30 trials of every session were excluded from analy-

sis because motion strength was maximal to ”warm up” the animal. Median

session length for all baseline and treatment sessions was 409 trials. Sessions

were excluded from analysis if the animal either completed less than 250 trials

or performed poorly (lapse rate > 10%). For inactivation sessions, all sessions

were included regardless of performance. A single inactivation session in mon-

key P was aborted due to a leak in the infusion system, and was not included

in the analysis.

Animal strategy in the direction discrimination task (Figure A.5) was

measured by computing psychophysical weights via logistic regression, where

the probability of the binary choice Y 0,1 on every trial is given by

P (Y |w,X) = eY Xw / (1 + eXw)

where X is a matrix of the seven pulse values on each trial, augmented
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by a column of ones to capture the bias term, and w is a vector of the monkey’s

weights. w was estimated via maximum likelihood estimation using Matlab’s

glmfit function.

In the free-choice task, spatial bias was computed as the proportion

of choices to the target contralateral to the LIP under study. Saccade onset

and offset were detected in every task by identifying the time at which eye

velocity exceeded 30 ◦/sec (onset) and returned below 50 ◦/sec (offset). We

only analyzed saccades on trials where the task was completed successfully (i.e.

no broken fixations and no saccades outside of the target windows). Saccades

were analyzed for reaction time, amplitude, duration, and error amplitude (i.e.

distance of saccadic end point from saccadic target). Saccadic reaction times

less than 100ms from the go signal were excluded to ensure that only task

relevant saccades are analyzed.

A.2.6 Neuronal recordings

Recordings were performed in areas MT and LIP with either single-

channel glass coated tungsten electrodes (Alpha Omega) or multi-electrode

arrays (Plexon U or V Probe). Neuronal signals were amplified, bandpass

filtered, digitized, and saved (Plexon MAP server). Neural waveforms passing

a manually-set threshold were isolated for online mapping of their receptive

fields (both MT and LIP) and directional tuning (MT).

MT RF locations were hand mapped using drifting dot stimuli in a

circular aperture. Once the retinotopic location was identified, direction pref-
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erence and selectivity were measured using drifting dot stimuli at 100% coher-

ence in 12 directions. LIP RF locations were mapped with a memory-guided

delayed saccade task (Gnadt & Andersen 1988).

In monkey P, offline spike sorting was performed by hand refinement

of a standard clustering algorithm (Plexon Offline Sorter v3). Single unit

isolation quality was established using SNR (Kelly et al. 2007). In monkey

N, spike sorting was performed by fitting a mixture of Gaussians model to

clipped waveforms in a reduced dimensional space (Tolias et al. 2007). In both

monkeys, sorting was refined by maximum a posteriori estimation of a model,

where the multi-electrode voltage was the linear superposition of Gaussian

white noise and the spike waveforms (Pillow et al. 2008, Pillow et al. 2013).

A.2.7 Neuronal Analysis

Peri-stimulus time histograms (PSTHs) were computed by aligning

spike times to events (motion onset or saccade time), binned at 10ms res-

olution, and smoothed with a Gaussian kernel with standard deviation of

25ms. Trial motion strengths were binned into three groups (low, medium,

high), where ”low” was strengths between 0 and 0.25, ”medium” was between

0.25 and 1, and ”high” was anything greater than 1. We averaged spike rates

separately for the three motion strengths for each choice. The buildup rate

analysis (Fig. A.2, inset) was performed according to Lafuente et al. (de La-

fuente et al. 2015)
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A.2.8 Choice Probability

Choice probability (CP) is a metric used to measure the predictive

relationship between neural responses and choice, independent of stimulus

strength. It is defined as the area under the receiver operating characteristic

curve (ROC) for a pair of spiking response distributions sorted by choice (Celebrini

& Newsome 1994, Britten et al. 1996). We quantified CP using trials that had

zero expected motion and were repeated with identical random seeds (i.e. had

no stimulus variation, “frozen noise”). Sometimes more than one random seed

was repeated in a session, in which case we calculated the spiking response

distributions for each seed separately, subtracted the mean, and then com-

bined them, similar to an analysis known as Grand Choice Probability (Britten

et al. 1996). Neurons with>25 “frozen” repeats were included (90/94 MT cells,

96/113 LIP cells), and significance testing against the null (i.e. CP=0.5) was

performed using a Student t test. To compare to previous literature, in MT,

we counted spikes over a window from motion onset to 200ms after motion

offset (before the go signal). In LIP, we counted spikes over a 400ms window

counting backwards from the 100ms before the saccade.

A.2.9 Infusion Protocol

Infusions were performed by lowering an infusion cannula into grid lo-

cations that had previously yielded the largest number of selective cells during

the recording phase of the study. The cannula (31-32 gauge) was lowered

alongside a multi-electrode array, at least 1mm away (Fig. A.3 B). The two
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were lowered to target cortical areas where functional identification took place

(mapping). Infusion was then performed, and electrophysiological silencing

was confirmed on the recording electrodes, typically within 15 minutes of in-

fusion start.

Infusions were performed with a syringe pump (Harvard Apparatus)

through a single and direct line to the cannula (constant rate of 0.1-0.4µl/min,

15-30 minutes), in agreement with infusion parameters proposed by Noudoost

and Moore (Noudoost & Moore 2011). We delivered 6.66-8µg/µl muscimol (in

phosphate buffered saline) at volumes of 5-12 µl (mean 7.4µl), netting a total

mass of 40-80µg (mean 56.4µg). This protocol was chosen to match the very

high end of ranges used previously in order to maximize the probability of

neural inactivation. Infusions were typically made at multiple depths within a

single cannula track. On 5 of the 21 main LIP inactivation sessions, more than

one cannulae were lowered. Cannluae were left in situ for at least 15 minutes

after infusion end. Saline infusions followed the same protocol and included

both a cannula and multi-electrode array. Sham infusions included only a

multi-electrode array but followed similar timings, including the operation of

the syringe pump with no syringe attached.

A.2.10 Spatial and temporal extent of Inactivation

Previous analyses of the spatial extent of muscimol inactivation have

estimated the functional silencing to cover a spherical radius of roughly 2-

3mm (Martin 1991, Arikan, Blake, Erinjeri, Woolsey, Giraud & Highstein
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2002, Liu, Yttri & Snyder 2010, Yttri, Liu & Snyder 2013). The study most

comparable to ours, Liu et al. (Liu et al. 2010), co-infused muscimol and

Manganese (Mn) into LIP of awake macaques and imaged the spread. They

also estimated a cortical silencing of approximately 2-3mm in radius, in line

with the linear dependence of volume distribution (mm3) on infusion volume

(µl) (Heiss, Walbridge, Asthagiri & Lonser 2010).

In our experiments, lowering both a multi-electrode array and infusion

cannula collaterally (Fig. A.3 B) enables direct confirmation of neural silenc-

ing at known distances from the cannula tip. This places a lower bound on

the spatial extent of functional inactivation. Although our standard protocol

placed the multi-electrode array 1mm away from the cannula tip, we sometimes

lowered a second array, 2 or 3mm away. On these sessions too, we observed

silencing on most recording channels. Taken together, we conservatively esti-

mate neural inactivation in LIP to span a radius of at least 2.5mm, silencing

large swaths of LIP while primarily targeting its ventral portion (Lewis &

Van Essen 2000, Liu et al. 2010).

On a few occasions, residual firing persisted despite near-complete si-

lencing of electrophysiological activity (example shown in Fig. A.3 B, voltage

traces, channels 5 and 6). We tested the selectivity of residual firing with

the appropriate mapping task (motion for MT, memory guided saccades for

LIP) and found that these spikes did not respond selectively, indicating that

these residual spikes likely emanate from afferent fibers terminating within the

inactivated area (Chapman, Zahs & Stryker 1991)
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Previous LIP inactivation studies found no evidence to support within-

session compensation that manifests behaviorally (Wardak et al. 2004, Balan

& Gottlieb 2009, Liu et al. 2010, Yttri et al. 2013, Kubanek, Li & Snyder 2015),

but see Wilke et al. (Wilke et al. 2012) In fact, studies that report the temporal

effect of LIP inactivation find an increase in the lesion’s impact over time,

not a decrease (Wardak et al. 2004, Kubanek et al. 2015). Regardless, we

measured the time course of psychophysical performance within a session,

and also measured for compensation on longer time scales, across sessions, to

explore the possibility of increasing behavioral robustness to inactivation that

might develop over time.

A.3 Results

We investigated the functional significance of decision-related activity

by recording and inactivating neural activity in two well-studied cortical areas,

MT and LIP, while rhesus monkeys performed a challenging direction discrim-

ination task. On each trial, the monkey maintained stable visual fixation while

discriminating the net direction of motion, and then made a saccade to one of

two choice targets to communicate their choice A.1. For electrophysiological

recordings in MT, we placed the motion stimulus in the receptive field of the

neurons and aligned it to the preferred direction of one or more MT neurons

on the multi-electrode array. For LIP, we placed one of the two targets in the

response field of the neurons, and the other target on the contralateral side of

the visual field.
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Figure A.1: A. Monkeys were trained to discriminate the direction of visual
motion and communicate their decision with a saccadic eye movement to one
of two choice targets. For MT recordings, motion was placed in the MT
receptive field (RF) (green patch). For LIP recordings, one of the saccade
targets was placed in the LIP RF (blue patch). B. Sequence of task events.
Gray arrows indicate temporal jitter. C. Psychophysical performance in the
task. The proportion of choices (y-axis) made to the target contralateral to
the LIP under study, as a function of motion strength (x-axis), where positive
motion strength values represent motion towards the target contralateral to
the LIP under study.
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A.3.1 MT and LIP present canonical electrophysiological responses
during direction discrimination

We recorded 157 MT neurons and 200 LIP neurons with either sin-

gle electrodes or multi-electrode linear arrays. MT neurons that were well-

targeted by the stimulus (n = 94) had average firing rates that depended on

its motion strength and direction (Fig. A.2, A). As expected in this area, re-

sponses increased sharply with motion onset and maintained a robust firing

rate throughout motion viewing (Britten et al. 1993). The average responses of

well-targeted LIP neurons (n = 113) were also consistent with classical obser-

vations (Shadlen & Newsome 2001, Huk & Shadlen 2005), exhibiting ramp-like

increases or decreases in firing rate whose slopes were proportional to motion

strength, the primary physiological characteristic that has implicated LIP in

reflecting the accumulation of evidence over time (Fig. A.2, B).

We further quantified the decision-related activity of MT and LIP using

choice probability (Britten et al. 1996) (CP), a measure of correlation between

neural activity and choice behavior, independent of stimulus-driven responses.

MT neurons were weakly but reliably correlated with the animal’s choice on a

trial-by-trial basis (mean CP = 0.54, p = 1e-5; Fig. A.2, C). LIP neurons were

more strongly correlated with choices (mean CP = 0.70, p = 1e-21; Fig. A.2,

D). Thus, the stimulus-dependent responses and choice probability in MT were

consistent with its well-established role in representing the motion stimulus,

and the response patterns in LIP resembled the temporal accumulation of

motion signals. Together, these properties have given rise to a model where
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LIP neurons either integrate, or reflect the integration of, motion evidence from

area MT in favor of a decision (Mazurek et al. 2003, Gold & Shadlen 2007).
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Figure A.2: A. Average response of 94 MT neurons as a function of motion
strength (low, medium, high, represented by shade) and direction (in and
out of cell’s preferred direction, solid and dashed lines, respectively), aligned
to motion onset. B. Average response of 113 LIP neurons as a function of
motion strength (same as in A) and direction (in and out of cell’s RF, solid
and dashed lines, respectively), aligned to motion onset. Inset graph shows
LIP buildup rate as a function of motion strength (z-scored) during putative
integration, for choices in and out of cell’s RF, solid and dashed linear fits,
respectively. C. Choice probability for 90 MT neurons computed during the
motion epoch. Triangle indicates mean, 0.54. D. Choice probability for 96
LIP neurons computed during the motion epoch. Triangle indicates mean,
0.70. Only neurons with >25 repeats of identical stimuli were included in the
choice probability analysis.
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A.3.2 Inactivation in area MT, but not LIP, influences psychophys-
ical behavior

Having confirmed the neurophysiological properties of areas MT and

LIP and their differential degrees of correlations with choices, we tested their

respective causal contributions by performing reversible inactivations in each

area and evaluating the impacts on psychophysical performance (hypothe-

sized outcomes shown in Fig. A.3, A). We infused muscimol, a GABA-A

agonist which hyperpolarizes cell bodies but not fibers of passage (Hess &

Murata 1974) into either MT or LIP, at least 1mm away from a multi-electrode

array Fig. A.3, B). The injection cannula was targeted to locations that had

yielded the largest number of canonical MT or LIP units during recording ses-

sions. The multi-electrode array was used to confirm standard physiological

properties prior to infusion and post-infusion neural silencing, performed on

every inactivation session. Silencing was typically observed across all recording

channels of the array (Fig. A.3, B) and estimated to span a spherical volume

of 2.5mm radius (see Methods).
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Figure A.3: A. Potential consequences of inactivation that would be cap-
tured by changes in logistic model fits to the dependence of choices on motion
strength and direction. Left, decreased psychophysical sensitivity would be
indicated by a decrease in slope. Right, increased psychophysical bias would
be captured by a shifted midpoint. Positive values in the x-axis, z-scored
motion strength, refer to motion towards the target contralateral to the LIP
under study. Appropriately, the y-axis refers to the proportion of contralateral
target choices. This convention is maintained throughout. B. Schematic of
the inactivation protocol. Left, A multi-electrode array was lowered alongside
the cannula to identify target cortex, verify neural selectivity prior to infusion,
and confirm neural silencing after. Right, continuous voltage traces from an
example inactivation session.
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Inactivations in area MT exerted large effects on psychophysical per-

formance. The motion stimulus was placed within a region of visual space

retinotopically matched to the inactivated population of MT neurons (Fig. A.4,

A). MT inactivations (n = 6) had a large and consistent impact on direc-

tion discrimination sensitivity (68.5% reduction from baseline, t(5) = -9.7,

p ¡ 0.002, paired t test). When the motion stimulus was moved outside the in-

activated region and into the non-inactivated hemifield within the same session

(n = 3), psychophysical performance was restored to pre-infusion levels, indi-

cating spatial specificity consistent with the retinotopic organization of MT,

and confirming that the effects were not due to general changes in arousal

or vigilance. These severe and specific impairments in direction discrimina-

tion performance were consistent with prior causal perturbations (Newsome &

Pare 1988, Chowdhury & DeAngelis 2008).

In contrast, inactivations in area LIP (n = 21) did not exert com-

pelling or substantial effects on psychophysical performance (Fig. A.4, B). In

these experiments, we placed one choice target in the inactivated region of

visual space, in line with previous electrophysiological investigations of LIP

that place a choice target (as opposed to the visual motion stimulus) in the

RF of the neurons to elicit the area’s canonical decision-related responses. Al-

though we performed large inactivations in locations where LIP electrophys-

iology had mirrored the accumulation of evidence and demonstrated strong

decision-related activity, we did not detect significant changes in either the

animal’s sensitivity or bias, as indicated by statistically-indistinguishable dif-
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ferences in the slope (3.7% reduction from baseline, t(20) = -1.4, p = 0.16,

paired t test) or midpoint (-0.4% shift, t(20) = -0.08, p = 0.93, paired t test)

of the psychometric functions. Saline and sham control experiments showed

similar patterns to the main baseline vs. muscimol treatment comparison, con-

sidering either the effect size on average, or on individual session pairs. Thus,

while the impact of MT inactivation on sensitivity was substantial, an effect

of LIP inactivation was not clearly identifiable using our techniques and task

(Fig. A.4, C).
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Figure A.4: Psychophysical data for averaged pairs of baseline and musci-
mol treatment sessions in MT (A), and LIP (B). Insets illustrate the brain
region inactivated (top) and the corresponding experimental geometry (bot-
tom), along with the estimated inactivated field (gray cloud). Error bars on
points show ±1 SEM across all sessions. C. The distribution of psychometric
function parameters, slope (left) and shift (right), reflecting sensitivity and
bias, respectively, for baseline (x-axis) and treatment (y-axis) session pairs
for MT inactivations (green symbols) and LIP inactivations (blue symbols),
as well as LIP saline and sham experiments (gray open and filled symbols,
respectively), for monkey N (diamonds) and monkey P (squares). Error bars
show 95% confidence intervals for individual sessions.
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We also assessed whether inactivation affected the timing or strategy of

evidence integration (Kiani et al. 2008, Raposo et al. 2014, Erlich et al. 2015).

For example, if LIP supports the temporal integration of motion evidence, in-

activation could alter the strategy to reflect “leakier” integration that might

still support the same overall performance. Contrary to this possibility, psy-

chophysical weighting of the motion stimulus (estimated via reverse correla-

tion) was unaffected by inactivation (Fig. A.5). Although the two monkeys

exhibited slightly different baseline weighting strategies, inactivation did not

lead to a greater reliance on late information, nor did it clearly exert other

idiosyncratic effects on the psychophysical weighting. Inactivations in area

MT reduced the weighting of motion approximately evenly over time.
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A.3.3 Inactivation in LIP disrupts behavior in a control task

Although inactivation in LIP had no measurable effect on direction

discrimination, it did exert measurable effects on a “free-choice” control task,

which was performed on every inactivation session (Fig. A.6). Inactivation

of LIP biased choices away from the contralateral hemifield (8.88% reduction

from baseline on average, t(33) = 3.4, p = 0.001, paired t test), (Fig. A.7),

consistent with previous reports in monkeys (Wardak et al. 2004, Balan &

Gottlieb 2009, Wilke et al. 2012), rodents (Erlich et al. 2015), and parietal

lesions in humans (Kerkhoff 2001). Thus, our standard electrophysiological

confirmation of LIP inactivation was complemented by a behavioral conse-

quence in this free-choice control task. In addition to exerting a spatial bias,

LIP inactivation caused an increase in endpoint error of saccades made to the

hemifield contralateral to the inactivation (0.36◦ on average, t(33) = 4.4,p <

0.0001, Fig. A.7).
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Figure A.6: Design of the free-choice control task. A. The “free-choice” task.
Following a 200ms long presentation of two targets at random locations in
space, monkeys were required to hold fixation for another 600-3,000ms, and
then to move their eyes to the remembered location of either target. B. Task
timing. Events in the task were presented in sequence and were jittered in
time (gray arrows).
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ample baseline/inactivation pair: saccade landing points (black dots) have
been aligned to target position (red dot) for contralateral (left) and ipsilateral
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B. The effect of LIP inactivation on choice bias and saccade accuracy in the
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ferences in proportion contralateral choices (top) and saccade error (bottom),
where positive numbers indicate an increase in metric following inactivation.
Dark bars indicate sessions that took place on the same days as the main direc-
tion discrimination experiment (“Main experiment inactivations”, n=21); dark
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No systematic change was detected in other free-choice oculomotor met-

rics (reaction time, peak velocity, or duration), and no change in any oculo-

motor metric was detected during the direction discrimination task. Despite

observing a muscimol-induced effect in the free-choice task, effect magnitude

in the free-choice task was not predictive of effect magnitude in the direction

discrimination task, nor was there a dose-response relationship between mus-

cimol mass and behavioral performance, suggesting that our large muscimol

administrations were likely operating within a “ceiling” regime.

A.3.4 Compensation over time or between hemispheres is unlikely

Because muscimol inactivations require comparisons across relatively

long time scales, it remains logically possible that LIP normally plays a critical

role in decision-making, but that other areas are processing information in

parallel (de Lafuente et al. 2015) and are able to quickly compensate when it

is artificially inactivated. Although other techniques with faster time scales

will allow for more direct tests of this possibility, we did not observe changes

indicative of compensation either within a session or over sessions (data not

shown).

To test for reliance or compensation involving the LIP in the non-

inactivated hemisphere, we performed experiments with both choice targets

placed within the contralateral hemifield, and again did not observe clear

changes in behavioral performance (Fig. A.7, A). We also found no disrup-

tion of choice behavior using a moving-dot stimulus identical to that used
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Figure A.8: A. Psychophysical data for pairs of baseline and muscimol treat-
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format as A, for data collected when the motion stimulus was a random dot
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in the classical studies of LIP function during decision making (Newsome &

Pare 1988, Shadlen & Newsome 2001) (Fig. A.8, B)
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A.4 Discussion

Our results reveal a dissociation between decision-related activity in

LIP and the causal role of such signals in decision-making. Instead, decision-

related signals in LIP may be a result of feedback signal flow (Crowe, Goodwin,

Blackman, Sakellaridi, Sponheim, MacDonald & Chafee 2013), or perhaps an

emergent phenomenon driven by extensive training (Sarma, Masse, Wang &

Freedman 2016). Although one prior study observed subtle effects of LIP mi-

crostimulation in a reaction time direction discrimination taskHanks:2006jt,

such electrical perturbations can produce orthodromic (and antidromic) ac-

tivation of connected areas, and their observed effects are reconcilable with

multiple alternatives to evidence accumulation (Hanks et al. 2015).

Alternatively, it remains possible that LIP does contribute to decision-

making, but does so in a nonessential manner in conjunction with associated

brain regions. Indeed, a growing body of work has observed decision-related

activity in other brain areas (Ding & Gold 2013, Gu et al. 2007, Liu et al.

2013, Hanks et al. 2015), consistent with the prospect of LIP playing a minor

and/or nonessential role in decision-making. In fact, our results mirror findings

made in rodent posterior parietal cortex, where despite electrophysiological

correlates of evidence accumulation, inactivation did not yield clear evidence

of a critical role (Erlich et al. 2015). Taken together, decision-related activity

is likely represented broadly across the brain, and may be “read out” by a

flexible process to support behavior (Pitkow et al. 2015, Siegel et al. 2015).

Our results call for a broader consideration of both decision-making circuitry
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and the mechanisms for reading out decision-related activity— regardless of

whether decisions are instantiated, or merely reflected, in a particular brain

area.
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Appendix B

Single-trial Spike Trains in Parietal Cortex

Reveal Discrete Steps During Decision-making

Neurons in the macaque lateral intraparietal (LIP) area exhibit firing

rates that appear to ramp upwards or downwards during decision-making.

These ramps are commonly assumed to reflect the gradual accumulation of

evidence towards a decision threshold. However, the ramping in trial-averaged

responses could instead arise from instantaneous jumps at different times on

different trials. We examine single-trial responses in LIP using statistical meth-

ods for fitting and comparing latent dynamical spike train models. We com-

pare models with latent spike rates governed by either continuous diffusion-to-

bound dynamics or discrete “stepping” dynamics. Roughly three-quarters of

the choice-selective neurons recorded in LIP are better described by the step-

ping model. Moreover, the inferred steps carry more information about the

animal’s choice than spike counts. This work has been published in Science

Latimer, Yates, Meister, Huk & Pillow (2015) 1 I was involved in experimental

design, development of the generative models for LIP spike trains, and writing

1Latimer, K. W., Yates, J. L., Meister, M. L. R., Huk, A. C. & Pillow, J. W. (2015),
‘NEURONAL MODELING. Single-trial spike trains in parietal cortex reveal discrete steps
during decision-making.’, Science 349(6244), 184?187.
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of the paper. The statistical inference methods are described in Latimer, Huk

& Pillow (2015).

B.1 Introduction

Neurons in the macaque lateral intraparietal (LIP) area exhibit firing

rates that appear to ramp upwards or downwards during decision-making.

These ramps are commonly assumed to reflect the gradual accumulation of

evidence towards a decision threshold. However, the ramping in trial-averaged

responses could instead arise from instantaneous jumps at different times

on different trials. We examined single-trial responses in LIP using statis-

tical methods for fitting and comparing latent dynamical spike train models.

We compared models with latent spike rates governed by either continuous

diffusion-to-bound dynamics or discrete “stepping” dynamics. Roughly three-

quarters of the choice-selective neurons we recorded were better described by

the stepping model. Moreover, the inferred steps carried more information

about the animal’s choice than spike counts. (Brunton et al. 2013) Ramp-

ing responses have been observed in a variety of brain areas during decision-

making, and have been widely interpreted as the neural implementation of

evidence accumulation for forming decisions (Mazurek et al. 2003, Gold &

Shadlen 2007, Kiani et al. 2008, Kiani & Shadlen 2009, Shadlen & Kiani 2013).

However, ramping can only be observed by averaging together responses from

many trials (and often, many neurons), which obscures the dynamics gov-

erning responses on single trials. In particular, a discrete “stepping” pro-
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cess (Miller & Katz 2010, Durstewitz & Deco 2008), in which the spike rate

jumps stochastically from one rate to another at some time during each trial,

can also create the appearance of ramping (Goldman 2015, Churchland, Kiani,

Chaudhuri, Wang, Pouget & Shadlen 2011). Although decision-making at

the behavioral level is well-described as an accumulation process (Ratcliff &

Rouder 1998, Brunton et al. 2013), whether the brain computes decisions via

a direct neural correlate (ramping) or a discrete implementation (stepping)

remains a central, unresolved question in systems neuroscience.

We used advanced statistical methods to identify the single-trial dy-

namics governing spike trains in the lateral intraparietal (LIP) area of macaques

performing a well-studied motion-discrimination task (Figure B.1) (Meister

et al. 2013, Kiani et al. 2008). We formulated two spike train models with

stochastic latent dynamics governing the spike rate: one defined by continu-

ous ramping dynamics, and the other by discrete stepping dynamics (see sup-

plementary methods for mathematical details). In the ramping model, also

known as “diffusion-to-bound”, the spike rate evolves according to a Gaussian

random walk with linear drift (Figure B.1B). The slope of drift depends on the

strength of sensory evidence, and each trial’s trajectory continues until hitting

an absorbing upper bound. Alternatively, in the stepping model, the latent

spike rate jumps instantaneously from an initial “undecided” state to one of

two discrete decision states during the trial (Figure B.1C). The probability of

stepping up or stepping down and the timing of the step are determined by

the strength of sensory evidence. For both models, we assumed spiking follows
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Figure B.1: A Schematic of moving-dot direction-discrimination task. The
monkey views and discriminates the net direction of a motion stimulus of
variable motion strength and duration, and indicates its choice by making a
saccade to one of two choice targets 500 ms after motion offset. One choice
target is in the response field of the neuron under study (RF; shaded patch on
left); the other is outside it. B Ramping (diffusion-to-bound) model. Spike
rate trajectories (solid traces) were sampled from a diffusion-to-bound process
for each of three motion coherences (strong positive, zero, and strong nega-
tive). The model parameters include an initial spike rate, a slope for each
coherence, noise variance, and an upper bound. We do not include a lower
bound, consistent with the competing integrator (race) model of LIP (Shadlen
& Kiani 2013). Spike trains (below) obey an inhomogeneous Poisson process
for each spike rate trajectory. (C) Discrete stepping model. Spike rate trajec-
tories (above) begin at an initial rate and jump “up” or “down” at a random
time during each trial, and spike trains (below) are once again Poisson given
the latent rate. The step times take a negative binomial distribution, which
resembles the time-to-bound distribution under a diffusion model. Parameters
include the spike rates for the three discrete states and two parameters govern-
ing the distribution over step timing and direction for each motion coherence.
Both models were fit using the spike trains and coherences for each neuron,
without access to the animal’s choices.

an inhomogeneous Poisson process given the time-varying spike rate.

Both latent variable models are “doubly stochastic” in the sense that

the probability of an observed spike train given the sensory stimulus depends

on both the noisy trajectory of the latent spike rate and the Poisson variability
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Figure B.2: Model-based analysis of spike responses from an example LIP
neuron. (A) Spike rasters sorted by the monkey’s choice in or out of the RF
of the neuron under study (black=“in-RF”, gray=“out-RF”), and their asso-
ciated averages (PSTHs, below). Left: Conventional stimulus-aligned rasters
with each trial aligned to the time of motion onset exhibit commonly-observed
ramping in the PSTH. Blue and red triangles indicate the inferred time of an
“up” or “down” step on each trial under the fitted stepping model. Yellow
triangles indicate that no step was found during the trial, and are placed at
the end of the trial segment we analyzed (200 ms after motion offset). Right:
The same spike trains aligned to the inferred step time for each trial. Note
that estimated step direction of the neuron does not always match the animal’s
decision on each trial. (B) The distribution of inferred step times shown in A
(histogram), and the distribution over step times under the fitted parameters
(black trace). (C) The probability of an “up” step, for each coherence level.
Error bars indicate 95% credible intervals.

in the spiking process. Fitting such latent variable models requires integrat-

ing over all latent trajectories consistent with the observed spike trains, which

is not analytically tractable. We therefore developed sampling-based Markov

Chain Monte Carlo (MCMC) methods, which provide samples from the pos-

terior distribution over model parameters and allow us to perform Bayesian

model comparison.
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B.2 Results

We focused on a population of 40 neurons with highly choice-selective

responses that exhibited ramping in their average responses (Meister et al.

2013), typically increasing during trials in which the monkey eventually chose

the target inside the response field (RF) of the neuron, and decreasing when

the monkey chose the target outside the RF. We fit each neuron with both

ramping and stepping models, using the spike train data from 200 ms after

motion onset (Churchland, Kiani & Shadlen 2008) until 200 ms after motion

offset (300 ms before the monkey received the go signal). Figure B.2 shows the

raster of spike trains from an example LIP neuron plotted in two different ways:

first, aligned to the time of motion stimulus onset (left); and second, aligned

to the step time inferred under the stepping model (right). The traditional

raster and peri-stimulus time histogram (PSTH) at left show that the average

response ramps upward or downward depending on choice, as expected. The

step-aligned raster at right, however, shows that these data are also consistent

with discrete step-like transitions with variable timing across trials. Addi-

tional panels show the distribution of step times inferred under the model

(Figure B.2B), and the dependence of step direction (“up” or “down”) on the

motion signal (Figure B.2C). Discrete steps in the instantaneous spike rate

could thus plausibly underlie the gradual ramping activity seen in stimulus-

aligned and averaged LIP spike responses.

We applied the same analysis to the full set of LIP neurons and ob-

served similar structure in step-aligned rasters. Figure B.3A shows population-
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Figure B.3: A Population average PSTH sorted by motion coherence com-
puted from spike trains: (left) aligned to motion onset and sorted by motion
strength; (middle) aligned to step times inferred under the stepping model
and sorted by motion strength; (right) aligned to step times and sorted by
both motion strength and inferred step direction. Simulated results from the
stepping model (dashed lines) provide a close match to the real data under all
types of alignment and conditioning. B Quantitative model comparison using
divergence information criterion (DIC) reveals a superior fit of the stepping
model over the ramping model for the majority of cells (31 out of 40). A
DIC difference greater than ±10 (gray region) is commonly regarded as pro-
viding “strong” support for one model over the other. We found substantially
more cells with strong evidence for stepping over ramping (25 cells vs. 6 cells;
median DIC difference = 22.1, sign test p < 0.001).

averaged PSTHs computed from stimulus-aligned (left) and step-aligned re-

sponses, sorted by motion strength (middle), or motion strength and step

direction (right). The middle and right plots show that spike rate is effectively

constant when spike trains are aligned to the inferred step time on each trial.

The gradient of step heights in the middle plot results from differential proba-

bilities of stepping “up” or “down” as a function of motion strength over trials.

The right plot confirms that the firing rate, once conditioned on stepping “up”

or “down”, is independent of motion strength. Furthermore, simulated spike

responses, based on the fitted stepping models, resemble the real data under

both kinds of alignment (dashed traces).
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Although these analyses provide a visually compelling illustration of

the plausibility of stepping dynamics in LIP, they do not by themselves defini-

tively rule out the ramping model. Using our latent variable models, we can

formally address this issue using statistical model comparison. Both models

give a probability distribution over spike trains, and the model that better rep-

resents the data should place more probability mass over the observed spike

trains. We compared the model fits using the deviance information criterion

(DIC) (Spiegelhalter, Best, Carlin & van der Linde 2002) which integrates over

the entire posterior distribution of model parameters given the data, thereby

taking into account the uncertainty in the model fit as well as the number of

parameters in each model.

The stepping model provided a superior account of LIP responses for

78% (31/40) of the cells compared to the ramping model (Figure B.3B). The

stepping model therefore not only accounts for the ramp-like activity observed

in averaged LIP responses, but its qualitative ability to reveal step times is

bolstered by quantitative superiority in accounting for the statistical structure

of spike trains for a majority of LIP neurons. The superiority was supported

not just by DIC but also by other model comparison metrics, such as Bayes

factor.

We subsequently examined how well the two models account for the

time-varying mean and the variance of neural responses. Figure 4A shows the

comparison for the mean responses (top row) and variance (bottom row) for

the data (left column), stepping model (middle column), and ramping model
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(right column). Although the models were fit to predict the spike responses

on each trial, as opposed to these summary statistics, both models did an

acceptable job of accounting for the mean response (fraction of variance in

the PSTHs explained: stepping R2 = 0.94, 95% credible interval:[0.90, 0.94],

ramping R2 = 0.78 95% CI: [0.71, 0.79]). This is consistent with the long-

standing difficulty in distinguishing between these two mechanisms. However,

the stepping model provided a more accurate fit to the variance of neural re-

sponses (stepping R2 = 0.40, 95% CI:[0.09, 0.45], ramping R2 = −0.49, 95%

CI: [−0.86,−0.27]). In particular, the stepping model captured the decreas-

ing variance observed in trials with strong negative motion much better than

the ramping model. (A similar result held for estimates of variance of the

underlying spike rate).

Finally, the stepping model provides a platform for neural decoding,

as the posterior distribution over steps can be used for reading out decisions

from the spikes on a single trial. We first quantified decoding performance

using choice probability (CP), a popular metric for quantifying the relationship

between choice and a pair of spike counts. Aligned to motion onset, CP grows

roughly linearly with time (Figure B.4B, left). However, the CP relative to

the inferred step times (Figure B.4B, right) was consistent with an abrupt

emergence of choice-related activity. We then compared classical CP with a

model-based CP measure, which assumed that the direction of the neuron’s

step predicted the animal’s choice. We reiterate that the model was fit to

the spike trains without access to the animal’s choices. The model-based CP
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Figure B.4: Stepping model better explains variance of responses and can
be used to decode choices. A Comparison of model fits to average population
activity, sorted by stimulus strength. Spike rates and variances were calculated
with a 25 ms sliding window. B Population average choice probability aligned
to stimulus onset (left), and average CP aligned to estimated step times (right).
Grey region indicates one standard error of the mean. CPs were calculated
with a sliding 25 ms window. Conventional alignment suggests a ramp in choice
selectivity, while the model-based alignment indicates a rapid transition. C
Conventional choice probability based on spike counts using responses 200-
700 ms after motion onset versus model-based choice probability using the
probability of stepping to the up state by the end of the same period. Model-
based CP is greater than conventional CP in the population (Wilcoxon signed
rank test, p < 0.05). Stepping models were fit using 10 fold cross validation.
Error bars show the standard error of CPs, as computed on each training data
set. Black points indicate cells with significant differences between model-
based and conventional CP (Student’s t-test, p < 0.05), and grey indicates
not significant.

was on average greater than classical CP, indicating that the states estimated

under the stepping model were more informative about the animal’s choice

than raw spike counts (Figure B.4C).
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B.3 Discussion

In conclusion, we have developed tractable, principled methods for fit-

ting and comparing statistical models of single-neuron spike trains in which

spike rates are governed by a latent stochastic process. We have applied these

methods to determine the dynamics underlying neural activity in area LIP.

Although neurons in this area have been largely assumed to exhibit ramping

dynamics, reflecting the temporal accumulation of evidence posited by mod-

els of decision-making, statistical model comparison supports an alternative

hypothesis: LIP responses were better described by randomly timed, discrete

steps between underlying states. (In a supplementary analysis, we examined

data from a response-time version of the dots task and found results consis-

tent with the trend in the fixed duration version; this initial comparison will be

strengthened by extending the models to account for overlapping decision and

motor events, and application to larger datasets (Roitman & Shadlen 2002))

In addition to accounting better for the dynamics of the mean firing rates, only

the stepping model accounts accurately for the variance of neural responses.

Finally, the estimation of single-trial step times provides a novel view of choice-

related activity, revealing that choice-correlated fluctuations in response are

also dominated by discrete step-like dynamics.

Although these results challenge the canonical perspective of LIP dy-

namics during decision-making, the approach facilitates new avenues of in-

vestigation. Our analyses suggest that accumulation may be implemented

by stochastic steps, but simultaneous recordings of multiple neurons will be
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required to test whether population activity ramps or discretely transitions

between states on single trials (Miller & Katz 2010); population-level ramping

could still be implemented via step times that vary across neurons, even on the

same trial. Fortunately, the statistical techniques reported here are scalable

to simultaneously-recorded samples of multiple neurons, and newer record-

ing techniques are starting to yield these multi-neuron datasets (Stevenson &

Kording 2011, Bollimunta, Totten & Ditterich 2012, Kiani et al. 2014, Kauf-

man, Churchland, Ryu & Shenoy 2015). It is also possible that single neu-

rons with ramping dynamics implement evidence integration elsewhere in the

brain, and that LIP neurons are post-decisional or pre-motor indicators of the

binary result of this computation. More generally, we believe these techniques

will have broad applicability for identifying and interpreting the latent factors

governing multi-neuron spike responses, allowing for principled tests of the

dynamics governing cognitive computations in many brain areas.
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