
Copyright

by

Allison Sullivan

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211340518?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Thesis committee for Allison Sullivan
certifies that this is the approved version of the following thesis:

AUnit - A Testing Framework for Alloy

APPROVED BY

SUPERVISING COMMITTEE:

Sarfraz Khurshid, Supervisor

Dewayne Perry

AUnit - A Testing Framework for Alloy

by

Allison Sullivan, B.S.

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2014

Dedicated to my loving parents, Brian and Lori Sullivan, and my supportive

best friend Traci Overstreet.

Acknowledgments

I wish to thank my supervisor Sarfraz Khurshid for his continued sup-

port and encouragement throughout the drafting of this thesis. I would also

like to thank Dr. Dewayne Perry for taking the time to read and evaluate this

work.

My colleague Razieh Zaeem and Prof. Darko Marinov (UIUC) provided

valuable input and detailed feedback on this work. This thesis is in part based

on a paper entitled ”Towards a Test Automation Framework for Alloy” co-

authored by myself, Razieh Nokhbeh Zaeem, Sarfraz Khurshid and Darko

Marinov currently under submission for peer-review.

I am thankful for the continued support provided by the Cockrell Foun-

dation through their bestowment of the Virginia & Ernest Cockrell, Jr. Fel-

lowship. In addition, this work was funded in part by the National Science

Foundation (NSF Grant Nos. CCF-0845628 and CNS-0958231).

v

AUnit - A Testing Framework for Alloy

Allison Sullivan, M.S.E

The University of Texas at Austin, 2014

Supervisor: Sarfraz Khurshid

Writing declarative models of software designs and analyzing them to

detect defects is an effective methodology for developing more dependable soft-

ware systems. However, writing such models correctly can be challenging for

practitioners who may not be proficient in declarative programming, and their

models themselves may be buggy. We introduce the foundations of a novel

test automation framework, AUnit, which we envision for testing declarative

models written in Alloy – a first-order, relational language that is supported

by its SAT-based analyzer. We take inspiration from the success of the family

of xUnit frameworks that are used widely in practice for test automation, al-

beit for imperative or object-oriented programs. The key novelty of our work

is to define a basis for unit testing for Alloy, specifically, to define the con-

cepts of test case and test coverage as well as coverage criteria for declarative

models. We reduce the problems of declarative test execution and coverage

computation to partial evaluation without requiring SAT solving. Our vision

is to blend how developers write unit tests in commonly used programming

vi

languages with how Alloy users formulate their models in Alloy, thereby facili-

tating the development and testing of Alloy models for both new Alloy users as

well as experts. We illustrate our ideas using a small but complex Alloy model.

While we focus on Alloy, our ideas generalize to other declarative languages

(such as Z, B, ASM).

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Figures x

Chapter 1. Introduction 1

Chapter 2. Example 5

Chapter 3. Background: Alloy 9

Chapter 4. AUnit: Declarative Tests 12

4.1 Foundations . 13

4.1.1 Representations of Models 13

4.1.2 Terminology . 14

4.2 Declarative Test Cases . 15

Chapter 5. AUnit: Test Coverage 19

5.1 Coverage computation . 20

5.1.1 Coverage: test case . 20

5.1.2 Coverage: test suite . 23

5.2 Coverage Criteria . 23

5.2.1 R0: Signatures . 23

5.2.2 R1: Relations . 24

5.2.3 R2: Expressions . 25

5.2.4 R3: Formulas . 27

5.2.5 Infeasible Criteria . 31

5.3 Coverage Metrics . 32

viii

5.4 Relationship Between Coverage Metrics 33

5.5 Comparing Code Coverage for Java and Alloy 35

Chapter 6. Case Studies 38

6.1 Scenario 1: Discovering a Bug in an Alloy Model 38

6.2 Scenario 2: Discovering a Bug in an Alloy Test Case 45

6.3 Scenario 3: Adding a Test to Improve Coverage 49

Chapter 7. Conclusion and Future Work 53

Appendices 56

Appendix A. Alloy Model Appendix 57

A.1 Farmers Alloy Model . 57

A.2 BinaryTree Alloy Model . 59

A.3 FullTree Alloy Model . 60

A.4 Subsumption Relationship Model 60

Bibliography 63

Vita 66

ix

List of Figures

2.1 Alloy model of singly-linked, acyclic lists. 6

2.2 Three Alloy instances (α, β, and γ) shown graphically and tex-
tually. 7

2.3 Three invalid valuations (µ, ν, and η). 8

4.1 The Alloy Grammar of a Command, Scope, and Typescope . . 15

5.1 Coverage for Extended Test Suite 34

5.2 Coverage criteria subsumption relation. 34

6.1 Extension to Framers Model 40

6.2 Valuation of farmers model targeting solving the puzzle 41

6.3 Valuation for farmers - farmer leaves everything 42

6.4 Valuation for farmers - farmer on both sides 42

6.5 Valuation for farmers - taking fox first 43

6.6 Valuation for farmers - taking two items 43

6.7 New crossRiver predicate for the farmers model 45

6.8 Valid Valuation for BinaryTree Model 47

6.9 Invalid Valuation for BinaryTree Model 47

6.10 Valuations for FullTree Model 50

6.11 Coverage for Initial Test Suite 51

6.12 Coverage for Extended Test Suite 52

A.1 Farmers Alloy Model . 58

A.2 Binary Tree Alloy Model . 59

A.3 FullTree Alloy Model . 61

A.4 Coverage Metric Subsumption Alloy Model 62

x

Chapter 1

Introduction

Building software designs is a key part of software development for crit-

ical systems. Design flaws that go undetected into later stages of development

can be very costly to fix. Analyzing software designs provides an effective

methodology to get higher quality designs that can lead to more dependable

software systems. While the last two decades have seen much progress in

analyzable design languages [9] – à la model checking [6, 8] – the task of writ-

ing correct designs that accurately capture the key elements of the software

system under development remains challenging, often requiring much manual

effort on part of the practitioners. Moreover, what makes this task particu-

larly demanding is that design languages do not always bear similarities in

syntax and semantics to commonly used programming languages, and thus

pose a substantial learning burden on the practitioners. Furthermore, what

makes this task even harder is that tools that support writing designs often

are not as advanced as those that are commonly used for writing imperative

(or object-oriented) programs, and thus practitioners may employ ad-hoc and

ineffective techniques in their effort to validate designs.

Our thesis is that it is feasible to facilitate automated testing of de-

1

signs in the spirit of well-known and effective testing techniques that are widely

used for imperative programs. Our focus is on writing software designs in the

Alloy modeling language [9], which is among the first fully analyzable design

languages. Alloy is a first-order declarative language based on relations. The

Alloy analyzer utilizes off-the-shelf SAT technology [7] to analyze Alloy mod-

els. Given (1) an Alloy model, (2) a command in the model to execute, and

(3) a scope, i.e., a bound on the universe of discourse, the analyzer builds a

constraint-solving problem and uses its SAT-based backend to solve the prob-

lem.

This thesis introduces some central ideas that lay the foundation of

AUnit, a novel test automation framework that we envision for testing declar-

ative models written in Alloy. Our work takes inspiration from the success of

the family of xUnit frameworks [3] that are used widely in practice for auto-

mated testing, albeit largely in the context of non-declarative programs. Our

primary design goals are:

• To facilitate writing Alloy models correctly for users who are adept at

commonly used programming languages but maybe new to Alloy;

• To enable more effective testing of Alloy models by providing a frame-

work that allows adapting testing techniques that are effective in practice

in the context of imperative programs.

The key novelty of our work is to define declarative test cases (à la unit

tests for imperative code) and model coverage (à la code coverage for imper-

2

ative code) for given test suites for Alloy models. Our key insight is that to

gain confidence in the correctness of an Alloy model, it is crucial to observe

some valid as well as some invalid valuations for the model. Valid valua-

tions allow observing constraint satisfaction, which helps determine whether

the model is under -constrained. In contrast, invalid valuations allow observ-

ing constraint violation, which helps determine whether the model is over -

constrained. Indeed, in our personal experience of writing Alloy models over

the years, we often found that bugs in our models were under-constrained or

over-constrained formulas. Moreover, we routinely found ourselves validating

our models by evaluating them for some given candidate valuations as well as

asking Alloy to enumerate all solutions for some (very small) scope and then

manually checking if the solutions were indeed all expected (i.e., no invalid

valuation was generated), and if all expected solutions were generated (i.e., no

valid valuation was missed).

We define a test case to be a pair 〈σ, ρ〉 where σ is a (partial) assignment

of values to the relations in the model and ρ is an Alloy command that defines

the constraint-solving problem. A test passes if σ is a (partial) solution with

respect to the command ρ, and fails otherwise. Our definition of model

coverage blends the spirit of logic-based coverage (e.g., clause coverage or

predicate coverage) for imperative programs [4] with the relational nature of

Alloy models where each expression is a relation, i.e., a set of tuples. A

key novelty of our work is to introduce a number of model coverage criteria

based on the specific structure of Alloy models as well as the specific nature of

3

Alloy formulas. To illustrate on a simple example, one of our criteria defines

requirements for quantified formulas, which include requiring a universally

quantified formula to be true (1) vacuously and (2) with respect to a non-

empty universe.

We reduce the problems of declarative test execution and coverage com-

putation to partial evaluation where Alloy formulas and expressions are evalu-

ated for each given assignment to determine test pass/fail results and coverage

requirements that are met.

We make the following contributions:

• Unit testing for Alloy. We introduce the idea of testing Alloy models

in the spirit of unit testing of imperative code where given tests are

executed to report test pass/fail and code coverage results.

• Declarative test cases. We formalize the definition of test cases for

Alloy models and define the semantics of passing and failing of tests;

• Model coverage. We introduce eight criteria for computing model

coverage and present a subsumption relation among the coverage criteria;

and

• Case Studies. We demonstrate the utility of AUnit by showing how it

supports some common testing scenarios in the context of writing Alloy

models.

4

Chapter 2

Example

Figure 2.1 presents a small Alloy model of singly-linked, acyclic lists;

specifically, the model allows multiple lists, which may share nodes, but each

list individually must be acyclic. The keyword module names the model, which

can be imported in other models.

The signature declaration sig Node introduces Node as a set of atoms

and link as a binary relation that has the type Node × Node. The body of a

signature can either be empty or introduce one or more fields, i.e. link. These

fields serve to introduce relations between atoms. In general, a relation does

not always have to be between the same types of atoms. Constraints can be

placed on the possible values of any field. The relation link has a multiplicity

constraint set. Therefore, a link relates one Node atom to any number of Node

atoms.

In Alloy, a fact is always assumed to hold; therefore, facts do not need

to be explicitly invoked. The fact (fact) PartialFunction uses universal quan-

tification (all) to specify that each node is related to at most one node (lone)

under the link relation, i.e., link is a partial function. In addition to universal

quantification, Alloy supports existential quantification (‘some’) and also pro-

5

module list

sig Node { link: set Node }

fact PartialFunction { all n: Node | lone n.link }

pred NoDirectedCycles() { all n: Node | n !in n.^link }

run NoDirectedCycles // the scope is implicitly set to 3

Figure 2.1: Alloy model of singly-linked, acyclic lists.

vides short cuts to specializations of these quantifiers through the keywords

(‘no’), (‘one’), and (‘lone’).

A predicate is a named formula, which must be invoked elsewhere in

order to constrain the model. A predicate can be defined with zero or more ar-

guments. The predicate (pred) NoDirectedCycles uses universal quantification

to define acyclicity. The quantified formula includes a subset exclusion (!in)

formula which will hold if the left hand argument is not a valid subset of the

right hand argument. The operator ‘^’ is transitive closure. Conceptually, the

expression n.^link represents the set of all nodes reachable from n following

one or more traversals along link. Thus, NoDirectedCycles specifies that the

set of nodes reachable from any node does not include that node itself.

The command run NoDirectedCycles instructs the analyzer to find an

instance, i.e., a valuation of Node and link such that the fact formula and the

predicate formula are true for the default scope of 3, i.e., at most 3 atoms in

the set Node. Figure 2.2 illustrates three of the instances that are generated

for this command by the analyzer. Figure 2.3 illustrates three valuations that

6

(α) (β) (γ)

[empty]

Node={}

link={}

Node={Node0, Node1}

link={Node1->Node0}

Node={Node0, Node1, Node2}

link={Node0->Node2,

Node1->Node2}

Figure 2.2: Three Alloy instances (α, β, and γ) shown graphically and textu-
ally.

are not instances and will not be generated for this command by the analyzer.

Above outlines a subset of the functionality Alloy provides. In the next

chapter, we outline some additional information about Alloy. In addition, our

case studies chapter introduces three more Alloy models, which use additional

portions of the Alloy language. These models as well as a discussion of their

key Alloy concepts can be found in Appendix A. For a full reference of the

Alloy language see [1].

7

(µ) (ν) (η)

Node={Node0}

link={}

Node={Node0, Node1}

link={Node0->Node1,

Node0->Node0,

Node1->Node0,

Node1->node1}

Node={Node0, Node1}

link={Node1->Node0,

Node1->Node1}

Figure 2.3: Three invalid valuations (µ, ν, and η).

8

Chapter 3

Background: Alloy

An Alloy model consists of five kinds of paragraphs :

• Signature (sig). A sig declaration introduces a set of atoms as well as

0 or more relations.

• Fact (fact). A fact is a formula that must always evaluate to true for

any solution generated by the Alloy Analyzer.

• Predicate (pred). A pred is a named (and optionally parameterized)

formula, which can be invoked elsewhere. Alloy does not allow recursive

predicates and all predicate invocations are inlined before solving.

• Assertion (assert). An assert is a named formula, which is intended to

be checked for validity.

• Command (run or check):

– A run command invokes a predicate and directs the analyzer to

find an instance. Thus, the constraint-solving problem for a run

command is to find a solution to the conjunction of all fact formulas

and the predicate formula invoked.

9

– A check command invokes an assertion and directs the analyzer

to find a counterexample to the assertion. Thus, the constraint-

solving problem for a check command is to find a solution to the

conjunction of all fact formulas and the negation of the assertion

formula invoked.

Each command (implicitly or explicitly) specifies a scope, and the in-

stances and counterexamples generated are within that scope. Moreover,

each command may optionally specify an expected outcome in terms of

constraint satisfiability using the “expect k” clause where k = 0 states

the analyzer is expected to find no instance or counterexample and k ≥ 1

states the analyzer is expected to find at least one instance or counterex-

ample (but k does not specify the number of solutions).

Given an Alloy model and user instructions about the commands, the

analyzer executes one or all commands in the model using Alloy’s SAT-based

backend and reports the constraint-solving results. If an instance or a coun-

terexample is found, the user can inspect it in a variety of different textual

and graphical formats. The user may choose to iterate through the solutions,

say to enhance her/his confidence in the correctness of the model. The ana-

lyzer adds symmetry-breaking predicates to remove isomorphic solutions and

reduce the total number of solutions [15].

Over the years, a number of extensions have been developed for Alloy.

Of note are two concepts: partial instances [16] and minimal instance [14].

10

The initial support for partial instances came from introduction of KodKod as

the SAT-based backend for the Alloy development tool, the Alloy Analyzer.

A partial instance is provided by a user as a partial solution typically in the

form of placing bounds on the sets within the model. Then, when a command

is executed, KodKod will try to build the partial instance into a solution

for the constraint solving problem [16]. Recently, an extension to the Alloy

language was proposed, which is intended to ease the ability of specifying

partial instances [13]. Through the introduction of partial instance paragraphs

denoted by the keyword inst, a user can outline a partial instance using the

existing Alloy grammar.

Another is the introduction of generating minimal instances through

Aluminum, a modified version of Alloy. A minimal instance is one in which

every tuple is necessary to satisfy the associated commands constraint solving

problem [14]. Every instance generated by Aluminum is minimal, removing

even one tuple invalidates the instance as a solution. In contrast, the Alloy

Analyzer generates an instance per equivalence class defined by isomorphism

breaking predicates, which can be generated automatically [15] or written

manually [10, 11], and the presentation order of instances is non-deterministic.

Therefore, a an instance generated by the Alloy Analyzer may or may not be

a minimal instance.

11

Chapter 4

AUnit: Declarative Tests

A common complaint with analyzable design languages is the difficulty

in producing correct specifications. Since most design languages differ in na-

ture from popular object oriented languages (i.e., Java), programmers often

encounter significant learning curves. Alloy, an expressive declarative lan-

guage, is no exception. In particular when drafting an Alloy model, if a user

does not explicitly forbid a behavior, then unintended features can creep into

the instances or the lack thereof as a result of executing commands over the

model.

Therefore, one would like to be able to have a formal methodology to

check if the model behaves as expected. Currently, there is no formal basis for

how a developer should check for bugs or when found, how to debug a model

is missing. To fill this need, we have created a testing framework called AUnit

that provides the following:

• A formal definition of a declarative test case.

• A formal definition of a test suite and what it means to execute a test

suite over a given Alloy model.

12

• An illustration of concepts by stepping through examples.

4.1 Foundations

4.1.1 Representations of Models

We represent an Alloy model as a quintuple 〈S, F, P,A,C〉, where S is

the set of all signature declarations, F is the set of all facts, P is the set of all

predicates, A is the set of all assertions, and C is the set of all commands in

m.

Letm = 〈S, F, P,A,C〉 be an Alloy model. Assume S is non-empty. Let

Ξ be the set of all expressions other than variable declarations or uses in m. Let

Φ be the set of all formulas inm. For a command ρ ∈ C, let Ξρ ⊆ Ξ and Φρ ⊆ Φ

be the expressions and formulas respectively in the constraint-solving problem

for ρ. To illustrate, for the List model: Ξ = {Node, link, ^link, n.link,

n.^link}; Ξ"run NoDirectedCycles" = Ξ; Φ = {"all n: Node | lone n.link",

"all n: Node | n !in n.^link", "lone n.link", "n !in n.^link"}; and

Φ"run NoDirectedCycles" = Φ.

Let ΞF , ΞP , and ΞA (each⊆ Ξ) respectively be the sets of all expressions

that appear in any fact, predicate, or assertion. Let ΦF , ΦP , and ΦA

(each ⊆ Φ) respectively be the sets of all formulas that appear in any fact,

predicate, or assertion.

13

4.1.2 Terminology

Before defining what constitutes an AUnit test case, we will first define

two supporting concepts: valuation (including partial valuations) and com-

mand.

1. Valuation: A valuation is an assignment of values for the sets and re-

lations declared in S for any given m. The valuation can either be valid

or invalid for m, meaning that the assignments are not required to adhere

to the constraints of the model. Specifically, a valuation is not necessarily

an Alloy instance or counterexample. While the valuation will be explored

as a potential solution to a constraint solving problem, the valuation exists

independent from any command. On the other hand, an Alloy instance or

counterexample is generated by executing a command. Therefore, an instance

or counterexample is always tied to the command it is generated for.

2. Partial Valuation: A partial valuation is an assignment of values for

some but not all the sets and relations declared in S for any given m. In a

way, a partial valuation is actually a representation of (potentially) multiple

valuations. There are a number of different ways to form partial valuations.

A partial valuation can fully specify a subset of the sets and relations while

leaving at least one partially specified. On the opposite end of the spectrum,

a partial valuation can be written with no restrictions placed on any element

in S or with some (or all) elements in S partially declared.

14

command::= [name ":"] ["run"|"check"] [name|block] scope

scope::= "for" number ["expect" [0|1]]

scope::= "for" number "but" typescope,+ ["expect" [0|1]]

scope::= "for" typescope,+ ["expect" [0|1]]

scope::= ["expect" [0|1]]

typescope::= ["exactly"] number [name|"int"|"seq"]

Figure 4.1: The Alloy Grammar of a Command, Scope, and Typescope

3. Command: In Alloy, a command is any run or check call that follows

the syntax outlined in Figure 4.1. A run invokes a predicate while a check

invokes an assertion. Alternatively, both run and check can be called with

a body consisting of Alloy formulas instead of or in conjunction with an

existing pred or assert. All Alloy commands have a scope. The default

scope, 3, is applied to any command that does not explicitly state a scope.

Executing the same pred or assert paragraph with a different scope may lead

to a different outcome. In addition, a command may optionally express an

expected outcome, satisfiable or unsatisfiable, using the expect keyword.

4.2 Declarative Test Cases

Definition 1. A test case for m is a pair 〈σ, ρ〉 where σ is either an assignment

of values to all sets and relations declared in S or a partial valuation (i.e.an

assignment of values for some sets and relations declared in S but not all),

and ρ is either the empty command (i.e., ρ = ε) or an Alloy command that

15

invokes a predicate in P or an assertion in A.

Thus, a test case may specify just an assignment without stating any

specific Alloy command. Moreover, a test case may have commands other

than those that already exist in the model, i.e., belong to set C. As a direct

result, a test case does not have to depend on the existence of any given pred

or assert. Furthermore, the valuation need not be complete, meaning that a

test case is not required to be a full description of a single potential instance.

In relation to our List example, consider the following valuation: {Node0} ⊆

Node ⊆ {Node0, Node1}. By using the subset relation instead of the equality

relation (‘=’), we are able to express a partial assignments of values. In this

case, the set Node is bounded in the sense that it must have at least one Node,

but no more than two Node atoms. Furthermore, as we can see, this test case

expresses no constraints on the link relation.

Definition 2. A test case t = 〈σ, ρ〉 passes if:

Case 1: σ is a complete valuation

• ρ 6= ε and σ is a solution to the constraint-solving problem for the

command ρ; or

• ρ = ε and σ is a solution to the constraint-solving problem for the

command "run {} for s" where s is the scope required for σ .

Case 2: σ is a partial valuation

16

• ρ 6= ε and there exists a solution σ′ for command ρ such that σ′ is a

full assignment, which is compatible with the given partial assign-

ment σ; or

• ρ = ε and there exists a solution σ′ for command "run {} for s"

where s is the scope required for σ′ such that σ′ is a full assignment,

which is compatible with the given partial assignment σ .

and otherwise, t fails.

To illustrate, let us consider a few possible test cases for our List model

and their resulting behavior. Let σ0 be any instance in Figure 2.2; then, the

test case 〈σ0, "run NoDirectedCycles"〉 passes. On the other hand, let σ1 be

the valuation in Figure 2.3(a); then, the test case 〈σ1, "run NoDirectedCycles"〉

fails since σ1 is not an instance of the "run NoDirectedCycles" command.

However the test case 〈σ1, "run {!NoDirectedCycles}"〉 passes. The empty

command, i.e. run {}, will accept any valuation that does not violate the

PartialFunction fact or the signature declarations in m. Therefore, the test

case 〈σ2, ε〉 would also pass. However, if we let σ3 be the valuation in Fig-

ure 2.3(b), then the test case 〈σ3, ε〉 fails. Since Node0 and Node1 both have

two links, the PartialFunction fact does not hold; therefore, σ3 is not an

instance of the empty command.

All of the above reference complete valuations. To consider the behavior

of a test case using a partial valuation let σ4 be “{Node0} ⊆ Node ⊆ {Node0,

Node1},” our partial valuation discussed earlier. Consider the test case: 〈σ4,

17

"run NoDirectedCycles"〉. The preceeding test case will pass because one

enumeration of σ4 is Figure 2.2(c) which does not contain a cycle and thus is

not an instance of NoDirectedCycles. If we instead have a partial valuation

σ5 such that “{Node0} ⊆ Node ⊆ {Node0, Node1}” and {Node0->Node0} ⊆ link

⊆ {Node1->Node1}” then the test case 〈σ5, "run NoDirectedCycles"〉 fails.

Definition 3. A test suite is a collection of one or more test cases.

When a test suite executes, the suite can either be successful or unsuc-

cessful. A test suite is successful if and only if all test cases pass. Otherwise,

even if only one test case fails or produces an error, the test suite is said to

have run unsuccessfully.

18

Chapter 5

AUnit: Test Coverage

For imperative languages, developers use coverage tools such as Emma [2]

for Java based programs to evaluate their current test suite. Developers can

leverage coverage information to guide how they draft additional test cases or

highlight test cases that are good candidates to remove from the suite.

In Alloy, now that we have a notion of a test we can gain similar

advantages. A prerequisite for calculating coverage is that the Alloy model

under consideration must contain an AUnit test suite. Our coverage framework

serves as a good introduction to the notion of how to cover an Alloy model

based on an AUnit test suite by providing the following:

• A formalization for how to calculate coverage.

• An outline of a series of requirements for covering different Alloy con-

structs with examples.

• An overview of eight different coverage metrics and the relationship be-

tween them.

• A comparison between coverage for declarative languages to coverage for

imperative languages by focusing on Alloy and Java.

19

In any language, code coverage can be calculated at various levels of

granularity. For instance, in Alloy, we could consider calculating the coverage

of every single expression or towards the opposite end of the spectrum, we could

consider calculating the coverage of every paragraph. To start, we have focused

on building a coverage infrastructure primarily around two different levels:

expressions and formulas. The two levels will manifest into eight different

coverage metrics.

There are two possible outcomes for a test case: passing and failing. In

both cases, we are able to obtain coverage information. A test case’s valuation

has values assigned to some if not all of the sets and relations in the Alloy

model. As a result, these valuations are the tangible aspect that enables us to

measure coverage. Therefore, all test cases are within the scope of our coverage

framework.

5.1 Coverage computation

Let T be a test suite.

5.1.1 Coverage: test case

Let t = 〈σ, ρ〉 ∈ T be a test case.

Definition 4. Assume ρ 6= ε. The coverage obtained for t is a pair of maps

〈πt, ωt〉 where:

• πt maps each Alloy expression in Ξρ to the set(s) of tuples it evaluates

20

to for assignment σ; and

• ωt maps each Alloy formula in Φρ to the boolean value(s) it evaluates to

for assignment σ.

To illustrate, let σ be the instance shown in Figure 2.2(b) and ρ =
"run NoDirectedCycles". Then π〈σ,ρ〉 is:

Node={Node0, Node1},

link={Node1->Node0},

^link={Node1->Node0},

n.link={{}, {Node0}},

n.^link={{}, {Node0}}

To clarify, the expression n.link is mapped to {{}, {Node0}} since Node0.link={}

and Node1.link={Node0}.
Moreover, ω〈σ,ρ〉 is:

"all n: Node | lone n.link"=true,

"all n: Node | n !in n.^link"=true,

"lone n.link"=true

"n !in n.^link"=true

To clarify, the formula "lone n.link" is mapped to true since "lone Node0.link"

= true and "lone Node1.link" = true.

Additionally, let us consider the test case where σ is instance shown in
Figure 2.2(c) and ρ = "run {!NoDirectedCycles"}. Then π〈σ,ρ〉 is:

Node={Node0, Node1},

link={Node1->Node0, Node1->Node1},

^link={Node1->Node0, Node1->Node1},

n.link={{}, {Node0, Node1}},

n.^link={{}, {Node0, Node1}}

21

Once again, the expression n.link is mapped to {{}, {Node0, Node1}} since

Node0.link={} and Node1.link={Node0, Node1}. Similarly, expression n.^link

is also captured as set of sets. Expressions which deal with variables (i.e. n)

need to account for all possible inputs. In this case, n is populated with all

the set Node.

Furthermore, ω〈σ,ρ〉 is:

"all n: Node | lone n.link"=true, false

"all n: Node | n !in n.^link"=true, false

"lone n.link"=true, false

"n !in n.^link"=true, false

In the previous example, all formulas simply evaluated to true; however, that is

not the case here. For this test case, all four formulas evaluate to both true and

false. Consider the formula "lone n.link", the formula is mapped to true,

false since "lone Node0.link" = true but "lone Node1.link" = false.

Definition 5. Assume ρ = ε. Let command c ∈ C. Let the coverage obtained

for test 〈σ, c〉 be 〈πtc , ωtc〉. Then, the coverage obtained for t is a pair of maps

〈πt = ∪c∈Cπtc , ωt = ∪c∈Cωtc〉.

The above definition holds whether σ is a complete or partial valua-

tion. However, it should be noted that when a test case involves a partial

valuation, we will need to calculate coverage for each enumerated instance. In

other words, πt and ωt represents a mapping for potentially multiple differ-

ent instances instead of just the static information gained from one complete

valuation.

22

5.1.2 Coverage: test suite

Often times, we are not solely concerned about the coverage provided

by a single test case but the coverage provided by a test suite as a whole.

Definition 6. The coverage obtained for test suite T is a pair of maps 〈πT =

∪t∈Tπt, ωT = ∪t∈Tωt〉.

5.2 Coverage Criteria

The basis of our model coverage criteria are four sets of coverage re-

quirements – three (R0, R1, and R2) based on Alloy expressions and one (R3)

based on Alloy formulas. To illustrate all four requirements, we will construct

a test suite using the 6 valuations found in both Figure 2.2 and Figure 2.3.

5.2.1 R0: Signatures

R0 – For each signature declaration in S, there are three requirements on the

basic set s in the signature declaration:

1. |s| = 0;

2. |s| = 1; and

3. |s| ≥ 2.

The R0 requirements meet w.r.t. the only signature, Node, are as fol-

lows:

23

Test Case set Node Coverage
〈α, ε〉 Node={} |s| = 0
〈β, ε〉 Node={Node0} |s| = 1
〈γ, ε〉 Node={Node0, Node1, Node2} |s| ≥ 2
〈µ, ε〉 Node={Node} |s| = 1
〈ν, ε〉 Node={Node0, Node1} |s| ≥ 2
〈η, ε〉 Node={Node0, Node1} |s| ≥ 2

For the list example, R0 has a total of 3 requirements seeing as there

is only one set Node. Looking at the above test cases, in order to create a test

suite that provides full coverage in relation to R0, the suite needs to include

〈α, ε〉. Therefore, one possible test suite to cover R0 would be {〈α, ε〉, 〈γ, ε〉,

〈µ, ε〉}.

5.2.2 R1: Relations

R1 – For each signature declaration in S, for each relation r (i.e., non-basic

set) declared in S, there are three requirements on r:

1. |r| = 0;

2. |r| = 1; and

3. |r| ≥ 2.

To see if a test suite can be created that will satisfy all R1 requirements

for List, we will consider the values of each test case’s link relation:

Test Case Relation Coverage
〈α, ε〉 link={} |r| = 0
〈β, ε〉 link={} |r| = 0
〈γ, ε〉 link={Node0->Node2, Node1->Node2} |r| ≥ 2

24

〈µ, ε〉 link={Node->Node} |r| = 1
〈ν, ε〉 link={Node0->Node0, Node0->Node1, Node1->Node0, |r| ≥ 2

Node1->Node1}
〈η, ε〉 link={Node1->Node0, Node1->Node1} |r| ≥ 2

For the List example, R1 has a total of 3 requirements, since List

only has one relation: link. Requirement #2 is only satisfied by test case

〈µ, ε〉;therefore, we need this test case within our suite. To satisfy all require-

ments, one possible test suite is {〈α, ε〉, 〈µ, ε〉, 〈ν, ε〉}. In addition, our previous

test suite for R0 would also handle all three requirements.

5.2.3 R2: Expressions

R2 – For each expression e ∈ ΞF ∪ ΞP ∪ ΞA, there are three requirements on

e:

1. |e| = 0;

2. |e| = 1; and

3. |e| ≥ 2.

For the list example, R2 has a total of 15 requirements – three each for

the five expressions Node, link, ^link, n.link, and n.^link. Note the 3 require-

ments on link in R2 are the same as R1; however, if the relation link was not

an expression in the fact PartialFunction or the predicate NoDirectedCycles,

this overlap in R1 and R2 would not exist. In addition, we can see that ^link

is an expression in addition to n.^link. Nested expressions as well as nested

formulas will be considered separately.

25

1. Test Case: 〈α, ε〉

Expression Coverage
Node={} |e| = 0
link={} |e| = 0
^link={} |e| = 0
n.link={} |e| = 0
n.^link={} |e| = 0

2. Test Case: 〈β, ε〉

Expression Coverage
Node={Node0} |e| = 1
link={} |e| = 0
^link={} |e| = 0
n.link={} |e| = 0
n.^link={} |e| = 0

3. Test Case: 〈γ, ε〉

Expression Coverage
Node={Node0, Node1, Node2} |e| ≥ 2
link={Node0->Node2, Node1->Node2} |e| ≥ 2
^link={Node0->Node2, Node1->Node2} |e| ≥ 2
n.link={{Node2}, {Node2}, {}} |e| = 0, |e| = 1
n.^link={{Node2}, {Node2}, {}} |e| = 0, |e| = 1

4. Test Case: 〈µ, ε〉

Expression Coverage
Node={Node0} |e| = 1
link={Node0->Node0} |e| = 1
^link={Node0->Node0} |e| = 1
n.link={Node0} |e| = 1
n.^link={Node0} |e| = 1

26

5. Test Case: 〈ν, ε〉

Expression Coverage
Node={Node0, Node1} |e| ≥ 2
link={Node0->Node0, Node0->Node1, Node1->Node0, |e| ≥ 2

Node1->Node1}
^link={Node0->Node0, Node0->Node1, Node1->Node0, |e| ≥ 2

Node1->Node1}
n.link={{Node0, Node1}, {Node0, Node1}} |e| ≥ 2
n.^link={{Node0, Node1}, {Node0, Node1}} |e| ≥ 2

6. Test Case: 〈η, ε〉

Expression Coverage
Node={Node0, Node1} |e| ≥ 2
link={Node1->Node0, Node1->Node1} |e| ≥ 2
^link={Node1->Node0, Node1->Node1} |e| ≥ 2
n.link={{}, {Node0, Node1}} |e| = 0, |e| ≥ 2
n.^link={{}, {Node0, Node1}} |e| = 0, |e| ≥ 2

Given the above test cases and their associated coverage, we can con-

struct a number of different test suites which can satisfy R2 in total. To meet

R2, we need a test suite that covers all expressions and not just one. Therefore,

one minimal test suite is {〈α, ε〉, 〈µ, ε〉, 〈η, ε〉}.

5.2.4 R3: Formulas

R3 – For each formula f ∈ ΦF ∪ ΦP ∪ ΦA, there are two requirements on f :

1. f is true; and

2. f is false.

27

Moreover, if f is a quantified formula, say “Q x : d | b” with quantifier Q,

variable x, domain d, and body b, there are six additional requirements

on f :

1. |d| = 0;

2. |d| = 1 and b is true;

3. |d| = 1 and b is false;

4. |d| ≥ 2 and b is true for each atom in d;

5. |d| ≥ 2 and b is false for each atom in d; and

6. |d| ≥ 2, b is true for at least one atom in d, and b is false for at least

one atom in d.

While requirement #1 for quantified formulas (i.e., #d = 0) seems to

be redundant in the presence of requirement #1 for R2, R3 may be applied

independently of R2, and hence we have six requirements for quantified for-

mulas.

For the List example, R3 has a total of 20 requirements – two each

for the four formulas "all n: Node | lone n.link", "all n: Node | n !in

n.^link", "lone n.link", "n !in n.^link", and additionally six each for the

two quantified formulas. To draft a test suite to meet R3 for all formulas,

we first need to see how each test case’s valuation impacts the result of the

formulas. The quantified formulas will list at least two values: the over true

or false value and the additional requirement meet.

28

1. Test Case: 〈α, ε〉

Formula Coverage
all n : Node | lone n.link b = true, |d| = 0
all n : Node | n !in n.^link b = true, |d| = 0
lone n.link f = true
n !in n.^link f = true

2. Test Case: 〈β, ε〉

Formula Coverage
all n : Node | lone n.link b = true, |d| = 1
all n : Node | n !in n.^link b = true, |d| = 1
lone n.link f = true
n !in n.^link f = true

3. Test Case: 〈γ, ε〉

Formula Coverage
all n : Node | lone n.link b = true, |d| ≥ 2
all n : Node | n !in n.^link b = true, |d| ≥ 2
lone n.link f = true
n !in n.^link f = true

4. Test Case: 〈µ, ε〉

Formula Coverage
all n : Node | lone n.link b = true, |d| = 1
all n : Node | n !in n.^link b = false, |d| = 1
lone n.link f = true
n !in n.^link f = false

5. Test Case: 〈ν, ε〉

Formula Coverage

29

all n : Node | lone n.link b = false, |d| ≥ 2
all n : Node | n !in n.^link b = false, |d| ≥ 2
lone n.link f = false
n !in n.^link f = false

6. Test Case: 〈η, ε〉

Formula Coverage
all n : Node | lone n.link b = true, false, |d| ≥ 2
all n : Node | n !in n.^link b = true, false, |d| ≥ 2
lone n.link true, f = false
n !in n.^link true, f = false

When we try to construct a test suite to meet all 20 requirements, we

run into an issue. For the formula “all n : Node | lone n.link” and the

criteria “|d| = 1 and b is true”, no current test case covers this situation. As it

turns out, this ends up being an infeasible requirement. In order for “|d| = 1

and b is true” to hold for the given formula, we would need an Alloy valuation

with the following: Node={Node0} and link={Node0->Node0, Node0->Node0}.

However, Alloy does not allow multiple edges that are identical. Therefore,

there is no way to have two of the exact same link relation count as two links

instead of one. As a result, it is impossible to satisfy the desired requirement.

Yet, we can still draft a test suite that covers all requirements except the

additional requirement #3 for formula #1. The following test suite covers all

feasible requirements of R3: {〈α, ε〉, 〈β, ε〉, 〈γ, ε〉}, 〈µ, ε〉}, 〈ν, ε〉}, 〈η, ε〉}. For

the first time, our test suite involves all 6 of our test cases.

30

5.2.5 Infeasible Criteria

When trying to make a test suite which satisfied R3 for our List model,

we discovered that there was a criteria which could not be meet by any test

case. This was a result of a universal quantification formula and the lone

multiplicity constraint being invoked is such a way that it was impossible to

satisfy all formula requirements.

Infeasible criteria can come up in a number of ways outside of all

being arranged with lone. For instance, had the formula been “all n : Node

| set n.link” then we would have run into another infeasible situation. The

multiplicity set refers to “any number,” which includes zero. Therefore, there

is no way to violate “set n.link”. As a result, we would run into a number

of infeasible criteria from “set n.link” never evaluating to false to “all n

: Node | set n.link” also not evaluating to false, which includes all the

additional requirements in which ‘b’ has to be false for any domain element.

However, had the formula been “all n : Node | one n.link” there would

be no infeasible requirements.

Infeasible requirements are not restricted to formulas they can occur

in relation to all Alloy coverage constructs: signatures, relations, expressions

or formulas. Ideally, since no test case can ever meet an infeasible require-

ment, there is no need to count the criterion towards coverage calculations.

Counting the requirement essentially make the failure to satisfy the criteria

reflect negatively even though there is no way to meet the requirement. Un-

fortunately, there are a number of different ways infeasible requirements can

31

come about. Prior to actively exploring and calculating coverage, it may not

be known which requirements are infeasible. When it comes to tool support

for coverage, bridging the gap from knowing infeasible requirements exist to

knowing which requirements are infeasible will be needed.

5.3 Coverage Metrics

Based on the four requirements outlined above, we derive the following

eight coverage metrics:

Coverage Metric 1. Signature coverage (SC): R0

Coverage Metric 2. Relation coverage (RC): R0 ∪R1

Coverage Metric 3. Expression coverage (EC): R0 ∪R1 ∪R2

Coverage Metric 4. Fact coverage (FaC): R3 restricted to formulas ΦF .

Coverage Metric 5. Predicate coverage (PC): R3 restricted to formulas ΦP .

Coverage Metric 6. Assert coverage (AC): R3 restricted to formulas ΦA.

Coverage Metric 7. Formula coverage (FC): R3

Coverage Metric 8. Model coverage (MC): EC ∪ FC

The question now arises, is it possible to generate a test suite such that

each metric is fully covered? We will attempt to generate such a test suite using

the test cases outlined when going over coverage requirements for our running

32

example. Earlier, we detailed how each test case serves to meet the require-

ments (R0, R1, R2, R3). Since every coverage metric is based on one or more

of these requirements, we can re-use this work to derive a quality test suite. To

start, we can consider our test suite we generated for R0, which will provide full

signature coverage: 〈α, ε〉 〈γ, ε〉 〈µ, ε〉

When we look into relation coverage, we are now focused on satisfying

R1. Fortunately, our current test suite also meets all the requirements for R1

and thus provides full relation coverage. However, our current test suite is

missing two feasible requirements for R3. Therefore we can add 〈ν, ε〉 to our

test suite and now have full expression coverage. Next, we have a series of

coverage metrics based on formulas. As it turns out, to fully cover all formulas

(FC), our test suite needs to contain all 6 test cases. As mentioned earlier,

there is one infeasible criteria for fact coverage from List’s PartialFunction

which transfers over into the formula coverage. We end up with the following

test suite:

〈α, ε〉 〈β, ε〉 〈γ, ε〉
〈µ, ε〉 〈ν, ε〉 〈η, ε〉

Which will provide the coverage outlined in Figure 5.1.

5.4 Relationship Between Coverage Metrics

Three of our coverage metrics are strictly based on expressions: SC,

RC, and EC. On the other hand, four are strictly based on formulas: AC,

33

Coverage Metric # Req. Covered # of Feasible Req. Coverage
Signature Coverage 3 3 100%
Relation Coverage 3 3 100%
Expression Coverage 15 15 100%
Fact Coverage 9 10-1 100%
Predicate Coverage 10 10 100%
Formula Coverage 19 20-1 100%

Figure 5.1: Coverage for Extended Test Suite

Figure 5.2: Coverage criteria subsumption relation.

FaC, FC, and PC. From their definitions, we can see how these metrics relate

to one another. The coverage metrics based on two different Alloy components

come together for model coverage, MC, which encompasses both EC and FC.

Therefore, our eight coverage criteria satisfy the following subsumption partial-

order ‘�’:

• SC � RC � EC �MC

34

• FC �MC,

• FaC � FC,

• PC � FC, and

• AC � FC

Figure 5.2 illustrates the subsumption relation, which was generated using the

Alloy analyzer; Appendix A.4 gives the corresponding Alloy model.

Earlier when outlining R3, we mentioned how the first requirement,

|d| = 0 at first appears redundant given that d is an expression and R2 contains

the criteria |e| = 0. However, we noted that R3 can be applied independently

from R2. This is further supported by our subsumption relationship in which

there is no connection between EC, which is over R2, and FC, which is over

R3. Therefore, a test suite which completely satisfies R3 is not guaranteed to

satisfy R2 and vice versa. As a result, the seemingly “redundant” criteria is

actually required.

5.5 Comparing Code Coverage for Java and Alloy

Now that we have created our coverage framework for Alloy, we can

compare and contrast our process with the well-known process of calculating

coverage for imperative languages. Specifically, we will focus on comparing

and contrasting the coverage process for Java, an imperative language, with

Alloy, a declarative language.

35

Below we list several of the key similarities between covering code in a

Java setting and covering code in an Alloy setting:

• Coverage is still an overall viewpoint provided by a test suite. The

coverage of test cases gets summed up according to the rules of the

coverage metric.

• In Java, it can be tricky to measure the coverage of a loop. As a result,

people have developed commonly used guidelines for handling loops, in

particular large and infinite loops. Our methodology for handling the

coverage of quantifier formulas in Alloy is similar in nature to techniques

used for covering loops i.e., skipping a loop, iterating over its body ex-

actly once, and iterating over its body more than once.

• In Java, the coverage metrics fit together in the sense that some met-

rics subsume the other (i.e. path coverage subsumes branch coverage).

For our Alloy metrics, that same relationship between different coverage

metrics applies, showing that similar to Java code coverage metrics our

Alloy model coverage metrics grow into more robust versions.

Below lists several of the key differences between covering code in a

Java setting and covering code in an Alloy setting:

• There are a range of different common code coverage metrics for imper-

ative code. One is statement coverage, which considers whether or not

the entire statement of a program has been covered. Alloy specifications

36

are very rich and each line can be extremely expressive. As a result,

each line of an Alloy model is further broken down into formulas and/or

expressions for our coverage metrics.

• In Alloy, for a single test case in which a partial valuation is involved

there might exist multiple instances each of which provides coverage in-

formation. In an imperative language such as Java, a test case leads to

one defined execution path, assuming the program under test is sequen-

tial.

37

Chapter 6

Case Studies

In this section, we will explore a number of common usage scenarios

for both our testing framework as well as our coverage framework. Below, two

testing scenarios and one coverage scenario are explored.

6.1 Scenario 1: Discovering a Bug in an Alloy Model

When a test case fails, one reason can be that there is a flaw in the

Alloy model under test. To depict the methodology of debugging an Alloy

model, we will consider the farmers model shown in Figure A.1. The model

captures a common logic problem in which a person object (the farmer) has to

get all 3 remaining types of objects (fox, chicken, and grain) to the other side

of the river without one object eating another. When the farmer is present on

any given side of the river, no eating occurs.

The farmers model is one of the models distributed in the Alloy An-

alyzer. For this scenario, we take a faulty version of the model, which was

part of the Alloy distribution originally, but was later discovered (not by us)

to have a bug, which was subsequently fixed and is a part of the current Alloy

distribution. We use the faulty version and the fixed version to illustrate how

38

writing tests could help in testing this model.

To start, we need to draft a test suite. Our first step is to determine

which valuations we wish to consider. Figure 6.2 is a valuation intended to

capture a solution to the farmers logic problem. The next four valuations

are all invalid. Each valuation makes a faulty move that different portions

of the model should be able to prevent. To organize our test suite, we will

extend the farmers model to contain a series of pred and assert paragraphs

that range from solving the logic problem to ensure violations do not occur.

These paragraphs will feed into the commands of our test suite. With these

valuations and paragraphs in place, we can now draft the following test suite:

Test1: 〈Figure 6.2, “run solvePuzzle for 8 State”〉
Test2: 〈Figure 6.3, “check cantAbandonAll”〉
Test3: 〈Figure 6.4, “check noQuantumObjects”〉
Test4: 〈Figure 6.5, “check farmerCantTakeFoxFirst”〉
Test5: 〈Figure 6.6, “check farmerTakesAtMostOne”〉

When we execute the test suite, we discover that both Test2 and Test4

fail. To find the bug or bugs that produced these failures, we first investi-

gate the failing test cases starting with Test2. Inspecting Test2’s associated

assertion, cantAbandonAll, we can see the body contains one line invoking the

negation of the crossRiver predicate. To invoke the crossRiver predicate,

four arguments have to be provided. All arguments are sets of objects with

the following meanings:

• from: set of objects on the ‘near’ side of the river before the farmer

crosses.

39

pred solvePuzzle{

ord/last.far = Object

}

assert cantAbandonAll{

!crossRiver[Object, Fox+Chicken+Grain, none, Farmer]

}

assert noQuantumObjects {

no s : State | some x : Object | x in s.near and x in s.far

}

assert farmerTakesAtMostOne{

no s: State, s’: ord/next[s] {

{#{s.near - s’.near - Farmer} = 2 and no s.near.eats}

}

}

assert farmerCantTakeFoxFirst{

!crossRiver[Object, Grain+Chicken, none, Farmer+Fox]

}

Figure 6.1: Extension to Framers Model

• from’: set of objects on the ‘near’ side of the river after the farmer

crosses.

• to: set of objects on the ‘far’ side of the river before the farmer crosses.

• to’: set of objects on the ‘far’ side of the river after the farmer crosses.

Where the ‘near’ side of the river is the side the farmer starts on for the state

and ‘far’ is the opposite side.

40

(State0) (State1) (State2)

(State3) (State4) (State5)

(State6) (State7)

order={State0->State1,

State1->State2,

State2->State3,

State3->State4,

State4->State5,

State5->State6,

State6->State7}

Figure 6.2: Valuation of farmers model targeting solving the puzzle

41

(State0) (State1) (State2)

order={State0->State1,

State1->State2}

Figure 6.3: Valuation for farmers - farmer leaves everything

(State0) (State1) (State2)

order={State0->State1,

State1->State2}

Figure 6.4: Valuation for farmers - farmer on both sides

From the cantAbandonAll assertion, the invocation of crossRiver speci-

fies that at first, all the objects are on the near side of the river (from:{Object},

42

(State0) (State1) (State2)

9
order={State0->State1,

State1->State2}

Figure 6.5: Valuation for farmers - taking fox first

(State0) (State1)

order={State0->State1}

Figure 6.6: Valuation for farmers - taking two items

to:{none}). Then, the farmer crosses alone leaving the fox, chicken and grain

behind (from’:{fox+chicken+grain}, to’:{farmer}). According to the rules of

the logic problem, the fox should eat the chicken and the chicken should eat

43

the grain. In other words, it is impossible for all 3 objects to be left on the

same side. Therefore, the only valid from’: set is {fox} if the farmer crosses

alone at the start. Since Test2 forces the from’ set to also contain the chicken

and grain, the call to crossRiver should not hold. Therefore, since the asser-

tion calls for the negation of crossRiver, the assertion should hold. Yet, the

invocation of crossRiver ends up being valid, resulting in the cantAbandonAll

assertion falsely being satisfiable. When we inspect our valuations, we have

correctly captured the appropriate behavior (i.e. State2 in Figure 6.3 only the

fox and farmer remain uneaten. We can hypothesize the error resides in the

crossRiver predicate.

To support this idea, we turn to the behavior the second failing test

case, Test4, which invokes the assertion cantTakeFoxFirst. Similar to Test2,

the body of the assertion invokes the crossRiver predicate and taking the

negation of crossRiver. Looking at the set arguments passed, initially all of

the objects are on the near side of the river. After the farmer crosses, he takes

just the fox with him, leaving the grain and chicken together. According to

our eating rules, the chicken will eat the grain, resulting in the specified from’

argument, {fox+chicken}, preventing crossRiver from holding. However, the

call to crossRiver ends up being true, resulting in the cantTakeFoxFirst

assertion incorrectly being satisfiable.

The common thread between the two failing test cases appears to be

calling the crossRiver predicate in such a way that the behavior of the farmer

should result in a failure. Specifically, both times, the from’ set ends up

44

pred crossRiver [from, from’, to, to’: set Object] {

(from’ = from - Farmer - from’.eats and to’ = to + Farmer) or

(one x : from - Farmer | {

from’ = from - Farmer - x - from’.eats

to’ = to + Farmer + x

})

}

Figure 6.7: New crossRiver predicate for the farmers model

violating the eating rule, but the farmers model fails to catch this erroneous

behavior. Applying this insight, we can draft a new crossRiver predicate, out-

lined in Figure 6.7, in which we modify when the eating behavior is accounted

for.

Utilizing the new crossRiver predicate, we can re-execute our test suite

to determine if we have properly identified and resolved the bug. Now, all of

the five test cases pass.

6.2 Scenario 2: Discovering a Bug in an Alloy Test Case

When a test case fails, a developer can infer that there might be a bug

in one of two places: the Alloy model under test or the test case itself. Our

first scenario highlighted how our framework can alert developers to bugs in

the Alloy model. For this scenario, we will investigate how our framework can

help the developer discover the bug lies within the test case.

There are three distinct ways that a developer can accidently introduce

a bug into a test case:

45

• Specifying a valuation incorrectly

• Selecting the wrong command

To illustrate the process of debugging a test case, we will consider the

BinaryTree model outlined in Figure A.2. Similar to the List model, the

model allows any number of binary trees all of which adhere to an acyclic-

ity constraint. In order to uncover a bug in a test case, we first need to

draft a test suite for BinaryTree. To do so, we have three valid valuations,

seen in Figure 6.8, and three invalid valuations, seen in Figure 6.9. For

the three valuations in Figure 6.8, we intend for all to be instances of the

acyclic predicate. Therefore, we can create the following three test cases:

Test1: 〈Figure 6.8(a), “run acyclic”〉
Test2: 〈Figure 6.8(b), “run acyclic”〉
Test3: 〈Figure 6.8(c), “run acyclic”〉

In addition, we have our three valuations from Figure 6.9. However,

we created these valuations with the intention that they would not be valid.

Therefore, we can create the follow three test cases in which we leave the com-

mand empty, since we did not intend for them to satisfy the acyclic constraint:

Test4: 〈Figure 6.9(d), ε〉
Test5: 〈Figure 6.9(e), ε〉
Test6: 〈Figure 6.9(f), ε〉

When we execute our test suite, we discover Test6 fails. To figure out

where the bug may lie, we first follow the same initial steps as scenario 1 and

look to the paragraphs the failing test cases invokes in its command. However,

46

Node={Node0}

left={}

right{}

Node={Node0, Node1}

right={Node1->Node0}

left={}

Node={Node0, Node1,

Node2}

left={Node2->Node1}

right={Node2->Node0}

(a) (b) (c)

Figure 6.8: Valid Valuation for BinaryTree Model

Node={Node0, Node1}

left=(Node0->Node1

Node1->Node1}

right=(Node0->Node1

Node1->Node1}

Node={Node0, Node1}

left={Node0->Node1}

right={Node0->Node1}

Node={Node0, Node1}

left={Nodeq->Node1

Node1->Node0}

right={Node1->Node1}

(d) (e) (f)

Figure 6.9: Invalid Valuation for BinaryTree Model

in this case, the command was left empty. Therefore, an empty predicate

is invoked. There are two ways in which a valuation can fail to satisfy the

47

empty command: the wrong scope was applied (i.e. the scope is less than

needed for the valuations sets and relations) or the valuation fails to adhere

to the constraints laid out in the facts of the model. The scope needed for

the valuation depicted in Figure 6.9(f) is “for 2 Node or greater. Therefore,

simply running an empty predicate with the default scope will be ok. As a

result, we can conclude the failure is related to the only fact in BinaryTree.

The fact requires any Nodes left relation and right relation to adhere to the

lone multiplicity. In the failing test case, the Node1s left relation is two,

violating the fact. Consequently, the test case fails.

The BinaryTree model is correct. We do want the two relations, left

and right, to be restricted to either no mapping or one map. Therefore,

the fault lies within our test case and leaving the command empty. When

drafting the second set of test cases, all three commands could have been “run

{!acyclic}” instead of the commands being left empty. However, this would

still result in Test4 and Test5 passing while Test6 still fails. Since the fact is

always applied, we need to structure our command to account for this behavior.

The two commands, run and check, have different default expectations. A run

command is expected to be satisfiable whereas a check command is expected to

be unsatisfiable. Therefore we could rewrite our test case to be the following:

〈Figure 6.9(f), “check {}”〉. When we execute this newly modified test suite,

the test suite passes. To be closer to our original intent, it could be considered

good practice to restructure Test4 and Test5 to have the “run {!acyclic}

command.

48

6.3 Scenario 3: Adding a Test to Improve Coverage

In an imperative language, a developer may execute a branch coverage

tool only to discover the associated test suite repeatedly takes the same choice

at a branch, leaving a section of code completely uncovered. Similarly, an

Alloy developer may execute a formula coverage tool only to reveal a particular

formula f repeatedly produces the same evaluation value or even worse, fails

to reach f. In order to improve coverage, the developer in either situation only

has one thing to do: add new test case(s).

In the second scenario, we look at fixing errors in a test suite for a

binary tree. Building off of the binary tree example, we can create a FullTree

model, a binary tree in which all nodes except for the leaves have both a left

and right child, captured in Figure A.3.

Since the FullTree model is implemented by building off of the BinaryTree

model, we can incorporate our existing BinaryTree test suite as a good start-

ing point. Therefore, we use the same cases six test updated to reflect the

corrections from scenario 2 and the new predicates of FullTree:

Test1: 〈Figure 6.8(a), “run FullTreeOk”〉
Test2: 〈Figure 6.8(b), “run acyclic”〉
Test3: 〈Figure 6.8(c), “run FullTreeOk”〉
Test4: 〈Figure 6.9(d), “run {!acyclic}”
Test5: 〈Figure 6.9(e), “run {!acyclic}”
Test6: 〈Figure 6.9(f), “check {}”〉

Then, we can execute the test suite over our FullTree model in order

to see where, if anywhere, we need to improve coverage. As we can see in

49

[empty]

Node={}

left={}

right={}

Node={Node0}

left={Node0->Node0}

right={}

Node={Node0, Node1}

left={Node1->Node0}

right={Node0->Node0}

(a) (b) (c)

Node={Node0, Node1}

left={Node0->Node1

Node0-> Node2

Node1->Node0

Node1->Node2

Node2->Node0

Node2->Node1}

right={}

Node={Node0, Node1}

left={Node2->Node0

Node2->Node1}

right={Node2->Node0

Node2->Node1}

(d) (e)

Figure 6.10: Valuations for FullTree Model

50

Coverage Metric # Req. Covered # of Feasible Req. Coverage
Signature Coverage 2 3 66.6%
Relation Coverage 3 3 100%
Expression Coverage 31 42 73.81%
Fact Coverage 6 14 42.86%
Predicate Coverage 20 26 76.90%
Formula Coverage 26 42 61.90%

Figure 6.11: Coverage for Initial Test Suite

Figure 6.11, there are gaps in coverage. In particular, only relation coverage is

completely covered. At the opposite end of the spectrum, fact coverage is sig-

nificantly worse than all other coverage metrics. However, with the exclusion

of relation coverage, all coverage metrics have serious room for improvement.

When we look into a full diagnostic, we can see what requirements for

the various metrics are not covered. A glaring absence is the coverage provided

by a valuation where all sets and relations are equivalent to the empty set.

Additionally, the only fact of FullTree never once evaluated to false. Since a

quantified formula is present in the fact, this impact is greatly felt. Therefore,

another good point for improving coverage is to draft valuations that cover

these false values for all the formulas in the fact. Based on these points of

weakness and the other gaps in coverage, we draft a series of five new test

cases using the valuations in Figure 6.10:

51

Coverage Metric # Req. Covered # of Feasible Req. Coverage
Signature Coverage 3 3 100%
Relation Coverage 3 3 100%
Expression Coverage 42 42 100%
Fact Coverage 13 14-1 100%
Predicate Coverage 26 26 100%
Formula Coverage 41 42-1 100%

Figure 6.12: Coverage for Extended Test Suite

Test7: 〈Figure 6.10(a), “run FullTreeOk”〉
Test8: 〈Figure 6.10(b), ε〉
Test9: 〈Figure 6.10(c), ε〉
Test10: 〈Figure 6.10(d), “check {}”
Test11: 〈Figure 6.10(e), “check {}”

When we apply all of this together, we can execute our new test suite

and determine if we need to continue to add test cases to improve coverage.

This time, all of the coverage metrics are at 100 percent. Of note, both fact

coverage and formula coverage involved an infeasible requirement, which is why

the number of requirements is listed in the form “X-1.” The formula “all n

: Node| lone n.left && lone n.right” has yet to satisfy the criteria “|d| =

1, b is false”. Similar to the problem with the universal formula in List’s

fact PartialFunction, this requirement ends up being infeasible. Therefore,

we have covered all the feasible requirements and this we have reached full

coverage.

52

Chapter 7

Conclusion and Future Work

We introduced some central ideas to lay the foundation of AUnit, our

test automation framework for Alloy envisioned in the spirit of the xUnit

frameworks for imperative programs. Our goal was to ease the burden of

developers by providing an intuitive methodology for testing models. One of

our key contribution is to define the concepts of declarative test case, thus

laying the groundwork for exploring a range of testing techniques within the

scope of Alloy. Through the use of complete and partial valuations, our test

case format enables a user to explore a wide range of behaviors with their

test suite. While complete valuations based test cases can be executed by

simply invoking the evaluator, partial valuation based test cases require the

additional use of a SAT solver. However, allowing for both leads to a robust

testing framework.

To expand on our testing infrastructure, we have developed the notion

of test coverage as well as a family of coverage criteria for Alloy models. The

coverage criteria is centered around two core Alloy constructs: expressions

and formulas. Both have multiple criteria that need to be met by some set of

test cases in order for a given expression or formula to be considered covered.

53

We present eight different coverage metrics with model coverage subsuming

everything. In addition, our model coverage metrics provide a novel basis for

scenario exploration [14]. In order to calculate coverage, we focus on mapping

the behavior of a test cases valuation to the criteria the valuation covers. At

times, we may run into infeasible criteria. Altogether, our definitions of declar-

ative tests and test coverage serve to meet our design goals in the following

ways:

• From experience, switching from an imperative viewpoint to a declarative

viewpoint can be difficult. With the introduction of valuations into the

test case format, a user has a concrete viewpoint of if the model behaves

as expected. When a failure arises, the tester now has a narrowed starting

point to help isolate where the bug is within the model. This is especially

important considering just one symbol can lead to a faulty model, i.e.

using ’^’ instead of ’*’.

• With a coverage framework included, testers can draft comprehensive

test suites that enable testers to feel more confident with their model as

the suite gets closer to full coverage. With the wide array of coverage

metrics, we are able to get a good sense of what aspects of the model

are being tested. Through targeting the gaps in coverage, we can focus

on drafting test cases which will test new areas of the model instead of

repeating behavior.

Currently, we are working to implement AUnit as an extension that

54

integrates into the standard Alloy tool-set and supports both writing tests

and reporting coverage. The goal is to model the style of reporting similar

to JUnit for a test suite. For coverage, the information will be reported by

coloring (partially) covered expressions and formulas (in the spirit of code

coverage tools for imperative programs [2]) for the model displayed on the

left hand side of the tool. An interesting situation occurs for processing the

coverage of test cases that involve a partial valuation. The solution ends

up being relatively straightforward. As a user enumerates instances, those

instances will update the coverage calculations.

Our work opens the possibility of adapting for Alloy several well-known

testing techniques that have shown to be effective in the context of impera-

tive programs. For example, our coverage criteria could provide a basis for

introducing directed test generation [5] for Alloy. More broadly, techniques for

regression testing [17] can now be considered for Alloy. Moreover, while the

basic inspiration of AUnit is to facilitate testing of Alloy models, we believe

the analogies between declarative programming and imperative programming,

which lie at the heart of AUnit, also provide the basis of a more comprehensive

framework for development and maintenance of Alloy models.

55

Appendices

56

Appendix A

Alloy Model Appendix

A.1 Farmers Alloy Model

The Farmers model introduces a number of new Alloy syntax. First,

Farmers applies new constraints to the signatures within the model. In the

model, Chicken, Fox, Grain and Farmers extend Object, meaning all four are

disjoint subsets of Object. Alloy supports abstract signatures. Similar to

abstract classes, these signatures have no elements except those belonging to

extending signatures. In addition, we can see that the signature declarations

for Farmer, Fox, Chicken, and Grain are all restricted by the multiplicity

one. Alloy supports three different multiplicity constraint values for signature

declarations: exactly one (one), less than or equal to one (lone), and greater

than or equal to one (lone). These multiplicity constraints plus an addition

one, any number (set), can in turn be applied to a wide range of Alloy features.

Fact eating contains a cross product (‘->’) and a union set operator

(‘+’). In addition, other set operators used in this model as well as some of the

other examples includes: intersection (‘&’), difference (‘-’), and equality (‘=’).

It is important to note that in Alloy, the ‘=’ symbol represents equality and

not assignment.

57

module Farmers

open util/ordering[State] as ord

abstract sig Object { eats: set Object }

one sig Farmer, Fox, Chicken, Grain extends Object {}

fact eating { eats = Fox->Chicken + Chicken->Grain }

sig State {

near: set Object,

far: set Object

}

fact initialState {

let s0 = ord/first | s0.near = Object && no s0.far

}

pred crossRiver [from, from’, to, to’: set Object] {

(from’ = from - Farmer && to’ = to - to.eats + Farmer) ||

(some item: from - Farmer {

from’ = from - Farmer - item

to’ = to - to.eats + Farmer + item

})

}

fact stateTransition {

all s: State, s’: ord/next[s] {

Farmer in s.near =>

crossRiver[s.near, s’.near, s.far, s’.far] else

crossRiver[s.far, s’.far, s.near, s’.near]

}

}

Figure A.1: Farmers Alloy Model

58

module BinaryTree

sig Node{

left: set Node,

right: set Node

}

fact{ all n : Node| lone n.left && lone n.right }

pred acyclic{

all n : Node{

n !in n.^(left + right)

lone n.~(left + right)

no n.left & n.right

}

}

Figure A.2: Binary Tree Alloy Model

The crossRiver predicate introduces both the conjunction logical op-

erator (‘&&’) while stateTransition contains implication (‘=>’). Additional

logical operators supported by Alloy include: disjunction (‘||’), bi-implication

(‘<=>’), negation (‘!’)

A.2 BinaryTree Alloy Model

The BinaryTree model primarily introduces one new Alloy feature:

transpose (~). Transpose in the context of Alloy refers to creating a new re-

lation by flipping the order of atoms in the relation. For our BinaryTree, we

apply the transpose to the left and right children of a node, meaning we have

created a relation that relates a child node to its parent node. The rest of

59

the Alloy language presented has been used in either the List or the Farmers

models.

A.3 FullTree Alloy Model

The FullTree model builds on top of the BinaryTree model. However, it

does introduce and new Alloy feature in the makeFull predicate: set cardinality

(‘#’).

A.4 Subsumption Relationship Model

The model in Figure A.4 is the Alloy model which was used to generate

the subsumption relationship graph.

60

module FullTree

sig Node{

left: set Node,

right: set Node

}

fact{ all n : Node| lone n.left && lone n.right }

pred acyclic{

all n : Node{

n !in n.^(left + right)

lone n.~(left + right)

no n.left & n.right

}

}

pred makeFull{

all n : Node | #{n.*left} = #{n.*right}

}

pred FullTreeOk{

acyclic[]

makeFull[]

}

Figure A.3: FullTree Alloy Model

61

module subsumption

abstract sig Criteria { subsumes: set Criteria }

one sig SC, RC, EC, FaC, PC, AC, FC, MC extends Criteria {}

fact {

MC.subsumes = EC + FC

EC.subsumes = RC

RC.subsumes = SC

FC.subsumes = FaC + PC + AC

no (SC + FaC + PC + AC).subsumes

}

pred subsumption() {}

run subsumption

Figure A.4: Coverage Metric Subsumption Alloy Model

62

Bibliography

[1] Alloy a language and tool for relational models. http://alloy.mit.

edu/alloy/.

[2] EclEmma code coverage tool. http://www.eclemma.org.

[3] JUnit test automation framework. http://junit.org/.

[4] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cam-

bridge University Press, 2008.

[5] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S. Pasare-

anu, Koushik Sen, Nikolai Tillmann, and Willem Visser. Symbolic exe-

cution for software testing in practice: Preliminary assessment. In ICSE,

2011.

[6] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Check-

ing. The MIT Press, 1999.

[7] Niklas Een and Niklas Sorensson. An extensible SAT-solver. In SAT,

2003.

[8] Gerard Holzmann. The SPIN Model Checker: Primer and Reference

Manual. Addison-Wesley Professional, 2003.

63

[9] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis.

The MIT Press, 2012.

[10] Sarfraz Khurshid. Generating Structurally Complex Tests from Declara-

tive Constraints. PhD thesis, MIT EECS, December 2003.

[11] Sarfraz Khurshid, Darko Marinov, Ilya Shlyakhter, and Daniel Jackson.

A case for efficient solution enumeration. In Proc. Sixth International

Conference on Theory and Applications of Satisfiability Testing (SAT),

Santa Margherita Ligure, Italy, May 2003.

[12] Darko Marinov and Sarfraz Khurshid. Testera: A novel framework for

automated testing of java programs. In Proceedings of the 16th IEEE

International Conference on Automated Software Engineering, ASE ’01,

2001.

[13] Vajih Montaghami and Derek Rayside. Extending Alloy with partial

instances. In ABZ, 2012.

[14] Timothy Nelson, Salman Saghafi, Daniel J. Dougherty, Kathi Fisler, and

Shriram Krishnamurthi. Aluminum: Principled scenario exploration

through minimality. In ICSE, 2013.

[15] Ilya Shlyakhter. Declarative Symbolic Pure Logic Model Checking. PhD

thesis, MIT, 2005.

[16] Emina Torlak and Greg Dennis. Kodkod for alloy users. In First Alloy

Workshop, 2006.

64

[17] Shin Yoo and Mark Harman. Regression testing minimization, selection

and prioritization: A survey. STVR, 22(2), 2012.

65

Vita

Allison Kathleen Sullivan was born in Houston, Texas. She received

her Bachelors of Science degree in Software Engineering for The University

of Texas at Dallas. She graduated with both Summa Cum Laude and Erik

Johnson School of Engineering departmental honors. In 2012, she applied to

The University of Texas at Austin graduate program and was admitted. She

started her graduate studies in Software Engineering in September 2012.

Email address: allisonksullivan@gmail.com

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

66

