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Biopolymer networks display a wide range of interesting mechanical

properties that are essential for living organisms. For example, a highly non-

linear elastic response to strain gives biopolymer networks the ability to com-

ply with small stresses but to resist large ones. These macroscopic mechan-

ical properties have their origin in the properties of the individual filaments

and their connectedness, like cross-linking geometry and pore size distribu-

tion. While the macroscopic properties of biopolymer networks have been

extensively studied, there has been a lack of experimental techniques that can

simultaneously determine mechanical and architectural properties of networks

in situ with single filament resolution. This work introduces Thermal Noise

Imaging (TNI) as a novel quantitative method to address these issues. TNI is

a three-dimensional scanning probe technique that utilizes the confined ther-

mal motion of an optically trapped particle as a three-dimensional, noninvasive

scanner for soft, biological material. Using a photonic force microscope (PFM)
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custom built for this research, the position of the probe can be detected with

nanometer precision and megahertz bandwidth. Two sets of single molecule

experiments are described that demonstrate the microscope’s exceptional pre-

cision and stability. Micrometer scale thermal noise images inside a collagen

network are shown and quantitative information about cross-linking geometry

is extracted from the data. Further, by imaging microtubules grafted to a sup-

port it is shown that the acquired data yield information about the transversal

fluctuations of the imaged fibers and about fiber elasticity. These results pave

the way for an investigation of force distributions inside biopolymer networks

on the single filament level.
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Chapter 1

An introduction to networks of biopolymers

Networks made from biopolymers are materials with unique properties

that play a major role in nature. Intracellular networks give cells mechanical

stability, form tracks for molecular motor based transport, and generate force

through polymerization [61, 62]. Fibers cross-linked by molecular motors form

active gels whose mechanical properties depend on the state of the motor

proteins [85].

Intracellular networks are mechanically coupled to extracellular net-

works (also called the “extracellular matrix”), allowing the transduction of

mechanical signals between the extracellular space and the inside of each cell.

By such mechanosensing, cells react to the stiffness of the substrate they grow

on [27, 62]: For example, fibroblasts grown on collagen gels feature an irregu-

lar morphology and are highly motile compared to fibroblasts grown on solid

substrates [97]. Brain and breast cancer cells can invade tissue depending on

its mechanical properties rather than on chemical cues [68]. The mechanical

properties of the extracellular matrix also facilitate cell-cell communication

[108]: Contractile stresses exerted on the extracellular network by one cell can

be sensed by other cells in its vicinity if the network is compliant enough,
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impacting their relative motility and facilitating the formation of cell-cell con-

tacts.

It is therefore clear that the mechanical properties of biopolymer net-

works are important for diverse biological functions. A detailed understanding

of the design principles of the networks is necessary to enable the creation of

novel biomimetic materials, for example for the control of three-dimensional

cell cultures. In the following the structure of intracellular and extracellular

biopolymer networks is reviewed in more detail, and the essentials of their

mechanics are discussed.

1.1 The cytoskeleton

The intracellular biopolymer network of a cell is called the cell’s cy-

toskeleton (figure 1.1). Ordered by decreasing stiffness it consists of micro-

tubules, actin filaments, and intermediate filaments [44, 67, 88, 95, 135]. The

structures formed by each of these components are very diverse. Microtubules

are hollow tubes which can be tens of microns in length, and have a high

bending stiffness. Actin forms thin filaments with a helical structure which

are usually cross-linked to a network best known for facilitating cell motility.

Intermediate filaments form a variety of structures, from strong cytoplasmic

cables that hold epithelial cell sheets together, to lining the inside of the nu-

clear envelope [1].
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Figure 1.1: Fluorescently labeled cytoskeleton of a bovine pulmonary artery
endothelial cell. Microtubules are shown in green, actin filaments in red, and
nuclei in blue. This image was released by the NIH in the public domain, and
can be found in the ImageJ Software Package [118].

1.1.1 Microtubules

Microtubules are made up of 9− 16 protofilaments that align to form a

hollow cylinder with an inner diameter of∼15 nm and an outer diameter of∼25

nm, and can be several tens of micrometers long [95]. The protofilaments are

made up of head-to-tail polymerized αβ-tubulin dimers, each 8 nm in length

(figure 1.2). This gives microtubules an asymmetric structure: One end has

β- and the other end α-tubulin exposed. Additional dimers can attach to both

ends of the microtubule; however the attachment rate is much faster on the

β-tubulin end. Thus, the microtubule grows almost exclusively from this end,

and one typically refers to it as the “plus end” of the microtubule. The other

slowly polymerizing end with exposed α-tubulin is called the “minus end”.

3



During interphase, the minus ends of microtubules are typically attached to

Figure 1.2: Polymerization of microtubules from αβ-tubulin dimers. αβ-tubu-
lin dimers polymerize head-to-tail to form protofilaments, which then assemble
into hollow cylinders. Reprinted with permission from [95].

the microtubule organizing center (MTOC) and their plus ends grow outwards

towards the periphery of the cell (figure 1.1).

Microtubules feature an interesting dynamic instability [41]: On the

time scale of seconds to minutes they switch back and forth between a state

of elongation and a state of shrinkage. The rate of switching from growing

to shrinking is called the “catastrophe” rate, while the rate of switching from

shrinking to growing is the “rescue” rate. This instability can be understood on

a molecular level (figure 1.3): For a microtubule to elongate, the β-tubulin of

the attaching dimer has to be bound to guanosine triphosphate (GTP, purple

β-tubulin in figure 1.3). Once the dimer has attached to the microtubule, its

GTP hydrolyzes to guanosine diphosphate (GDP, green β-tubulin in figure

1.3) at a certain rate. Therefore, if the rate of attachment of new dimers is

larger than the hydrolyzation rate, there is a cap of GTP bound dimers at the

4



microtubule’s end. GTP and GDP bound dimers attach to the protofilaments

in slightly different orientations: While GTP bound dimers attach in a straight

line, GDP bound dimers exposed at the microtubule’s tip curl outwardly, which

leads to catastrophe and shrinking. Therefore, as long as a GTP cap is present,

the microtubule grows. If the GTP cap hydrolyzes to GDP, the protofilaments

curl outwardly and the microtubule undergoes catastrophe. The catastrophe

rate thus depends on the concentration of GTP bound αβ-tubulin dimers

in solution, since this concentration determines whether GTP bound dimers

bind to the microtubule quickly enough to sustain the GTP cap. The dynamic

instability results in a cell’s ability to rapidly reorganize its cytoskeleton [1],

which is exploited by many biological functions [24].

Growing Shrinking

Figure 1.3: Dynamic instability of microtubules. Microtubules consist of α-
(white) and β-tubulin dimers, where the β-tubulin can be either bound to GTP
(purple), or after the GTP has been hydrolyzed, GDP (green). If the GTP
in the microtubule’s GTP cap hydrolyzes to GDP the microtubule undergoes
catastrophe. Reprinted with permission from [41].

The dynamic instability can be suppressed by the drug taxol [3]. Taxol
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binds to the microtubule’s inside, and counteracts the conformational change

induced in the αβ-tubulin dimer by the hydrolysis of GTP. Taxol stabilized

microtubules do not undergo catastrophe and only stop growing in the absence

of GTP bound αβ-tubulin dimers.

Microtubules fulfill a diverse set of biological functions: Due to their

stiffness (see chapter 5) they provide mechanical strength against compression

or stretching of a cell [1]. During mitosis, microtubules of the mitotic spindle

apparatus separate identical daughter chromosomes into two separate cells.

The unidirectional molecular motors kinesin and dynein transport cargos by

walking along microtubules, towards the microtubule’s plus ended and mi-

nus ended directions respectively. During active cell migration, microtubules

interact with the actin network (see section 1.1.2) to maintain the cell’s polar-

ization, i.e. to maintain the cell’s protruding front and retracting rear [153].

Together with actin filaments, microtubules couple to the extracellular matrix

(see section 1.2) and enable the transduction of mechanical signals between

the inside of the cell and its outside [4, 61].

1.1.2 Actin filaments

Actin exists in two forms inside of eukaryotic cells, either as a monomer

called G-actin, or as a polymer microfilament referred to as F-actin, which is

mostly localized at the cortex of cells (figure 1.1, red filaments). F-actin has

a diameter of approximately 8 nm [1] and individual filaments typically have

a length of several micrometers [31]. While it has been known for many years
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that F-actin is a helical aggregate of G-actin [94], and models exist that ex-

plain this aggregation [1], the precise molecular mechanism by which G-actin

polymerizes to F-actin had not been elucidated until recently: Cryo-EM data

resolving the F-actin structure with a resolution of better than 5Å was re-

ported by Murakami et al. in 2010, supporting the polymerization mechanism

shown in figure 1.4 [89]. Adenosine triphosphate (ATP) bound G-actin (G-
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Figure 1.4: Polymerization of F-actin. See page 7 for a detailed description.
Reprinted with permission from [89].

ATP-actin) nucleates, forming F-ATP-actin (white). This F-ATP-actin forms

a nucleation site for further G-ATP-actin monomers. After an ATP bound

G-actin monomer has been integrated into the filament, the bound ATP hy-

drolyzes to ADP, and the released phosphate group (Pi) is trapped in the F-

actin lattice (F-ADP+Pi-actin, grey). After some time, the phosphate group is
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released from the filament, leaving F-ADP-actin subunits behind (dark grey).

Thus, elongation mainly takes place at the F-ATP-actin end of the filament,

which is therefore designated the plus end. The other end of the filament is

called the minus end.

A host of at least 162 distinct proteins binds to actin filaments (actin

binding proteins, ABPs) and can regulate the formation of networks. Several

ABPs have been identified to cross-link actin, and link actin to microtubules

and intermediate filaments. Others aid in actin attachment to membranes, in

polymerization, depolymerization, branching, and so on [29].

Actin networks fulfill several important functions. The cortical actin

network contributes to a cell’s ability to withstand deformation [1]. Through

focal adhesion complexes actin filaments are linked to the extracellular matrix,

allowing the cell to control its movement by remodeling of its actin network

[16], and sense the mechanical properties of its environment [27, 62]. Further,

actin filaments serve as tracks for transport by motors of the myosin family.

Actin filaments cross-linked to a network by myosin motors form active gels

under the presence of ATP. The motors actively slide filaments against each

other, thereby adjusting the mechanical properties of the network. This is the

underlying mechanism for muscle contraction [58]. Such active networks have

recently been found to violate the fluctuation-dissipation theorem of equilib-

rium statistical mechanics and are thus a convenient model system for networks

far from equilibrium [85].
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1.1.3 Intermediate filaments

While all eucaryotic cells contain microtubules and actin, intermedi-

ate filaments exist only in some animals (including all vertebrates). Not all

metazoan cell types contain intermediate filaments though. They are however

prevalent in all cells that must withstand large stresses [1]. Intermediate fila-

ments are formed from a variety of related proteins, the most common being

the family of keratins [1]. They have a diameter of approximately 10 nm, in

between that of actin filaments and microtubules. Networks formed from in-

termediate filaments fulfill a diverse set of functions, such as contributing to

the mechanical stability of sheets of epithelial cells, and lining the inside of

the nuclear envelope of certain cell types.

1.2 Collagen and the extracellular matrix

Networks in a cell’s extracellular space (the extracellular matrix, ECM)

are made up of polysaccharides and the fibrous proteins collagen, elastin,

laminin, and fibronectin. Collagen is the most abundant protein in animal

tissues [25]. It provides the main biomechanical scaffold for cell attachment

(figure 1.5), and by its mechanics influences the growth and fate of cells [4, 62].

Elastin forms networks responsible for tissue extensibility and elastic recoil.

It is in part responsible for the elastic properties of animal skin and arterial

blood vessels, is mechanically resilient and can sustain billions of cycles of

elastic extension and contraction [69]. Laminin and fibronectin are associated

with basement membranes [136].
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10 μm

Figure 1.5: Connective tissue of the cornea of a rat. A scanning electron
microscopy image of corneal fibroblasts attached to their extracellular matrix
is shown. The visible fibers are made up of collagen. Reprinted with permission
from [93].

In this work we will focus on collagen [66], whose structure is discussed

in the following. A single collagen molecule is made up of a triple helix of

polypeptide chains (α-chains), with a length of 300 nm and a diameter of

1.5 nm (figure 1.6). Over 20 genetically different forms of collagen exist, and

most is known about collagen type I which is predominantly found in tendons

and skin. Collagen type I molecules, on which we will focus in this work,

self-assemble into cross-striated fibrils, with a repeat periodicity of D = 67 nm

(see figure 1.6). Their N- and C-telopeptides are important for this assembly:

Molecules typically align end to end, giving a collagen fibril an N and a C end

(unidirectional fibril). Fibrils with two N ends can also form under certain

conditions (bidirectional fibrils); in this case the alignment direction of the

molecules switches somewhere along the fibril. Molecules without telopeptides
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collagen molecule
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C-Telopeptides

!bril 

formation

crosslinking

300 nm
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D = 67 nm

Figure 1.6: Synthesis of collagen fibrils. Collagen molecules spontaneously
self-assemble into cross-striated fibrils, which in vivo are stabilized by covalent
cross-linking. Reprinted from [66].

do not form filaments. Partial loss of the telopeptides impacts fibril diameter

uniformity and loss of unidirectional packing of the molecules in the fibril. In

vivo, the molecules within the fibrils are typically cross-linked biochemically

[35]. During polymerization fibrils rapidly reach a maximum diameter, and

then only grow at their ends [65, 66]. Fibrils that have reached their maximum

diameter will be referred to as “mature”. Several fibrils bundled together form

higher order structures called “collagen fibers” [42].

For in vitro experiments, collagen molecules are typically extracted

from tissue into cold dilute acidic solutions. In order to start polymerization

in vitro, the solution is neutralized, and its temperature raised in between

room temperature and 39 ◦C. The order in which the temperature is raised
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and the solution is neutralized has an impact on the structure of early fibrils

[55]: If the solution is neutralized after raising the temperature, early aggre-

gates are banded with a periodicity of D = 67 nm. However, if neutralization

occurs in the cold, early aggregates do not show any bands. Either pathway

results in cross-striated mature fibrils. Whether this difference in fibril assem-

bly has any impact on the mechanics of the mature fibrils is not known to the

author’s knowledge. Fibrils polymerized from acidic solutions are typically

unidirectional [66].

The ensemble of polymerized collagen fibrils and subsequently formed

fibers form a network. Junctions in this network may be given by two filaments

that are in contact but free to slide against each other, or by a collagen fiber

that branches into individual fibrils [12].

The mean diameter of mature collagen type I fibrils depends on tem-

perature, ionic strength and pH during polymerization, and can be adjusted

between approximately 50 nm and 200 nm [154]. A change in the concentra-

tion of collagen molecules in solution during fibril assembly has little impact

on the resulting mean fibril diameter. Rather, with increasing concentration of

collagen, more fibrils are polymerized and the pore size of the formed network

decreases, from ∼3µm at a concentration of 1.2 mg/ml, to ∼1.3µm at 2.4

mg/ml [84].

Collagen type V fibrils are much thinner (mean diameter 25 nm at a

polymerization temperature of 37 ◦C) than fibrils made up of collagen type I,

and non-striated in appearance. Fibrils can be formed from a mixture of type
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I and type V collagen molecules, and their diameter can be tuned by adjusting

the relative concentrations of the two collagen types during polymerization

[11].

1.3 Mechanical properties

Above we have seen that the mechanical properties of biopolymer net-

works are important for many different biological functions. This has generated

interest in understanding their mechanics in detail, and in this section we will

review some of what is known.

Biopolymer networks in nature are heterogenous on several different

length scales, which makes their study in vivo very challenging. A way to

resolve this problem is to isolate functional modules from living cells, and

reconstitute them in vitro [8], or to build in vitro model systems from scratch

[85]. The mechanics of the networks can then be probed.

1.3.1 Strain hardening

An important mechanical property of a biopolymer network is its elas-

ticity, which can be studied by rheology. The networks are sheared by a strain

γ applied either as a static or as an oscillatory deformation. From the static

experiment the shear modulus G, and from the oscillatory experiment the

storage modulus G′ is extracted. The relationship between applied strain γ

and shear or storage modulus is shown in figure 1.7 for a variety of biopolymer

networks and, as a control, of a polyacrylamide network. Evidently, polyacry-
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Figure 1.7: Shear moduli (G) for fibrin and neurofilaments, and storage moduli
(G′) for F-actin, fibrin, collagen, vimentin and polyacrylamide as a function
of applied strain γ. Reprinted with permission from [132].

lamide networks behave like Hookean springs: Over the explored strain regime

their storage modulus is a constant. The moduli of all other networks increase

nonlinearly with increasing strain, a feature commonly referred to as “strain

hardening”. For example, strain hardening of the collagen network underly-

ing the epithelial layer of skin allows compliance with small stresses to enable

the unconstrained motion of joints, but resists large deformations so that skin

does not easily tear apart. Strain hardening has its origin in the properties

of the individual filaments of the network, and in their fashion and degree of

connectedness.

1.3.2 The persistence length

The stiffness of an individual filament in a solution can be described

by its persistence length lp [115, 157]. It defines the distance over which the
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Figure 1.8: Geometry for the decay of tangent-tangent correlations along a
fluctuating filament.

tangent-tangent correlation along a fluctuating filament decays away (figure

1.8), i.e.

〈~u(s)~u(s+ L)〉 = e
− L

lp , (1.1)

where ~u(s) is the tangent vector at position s of the filament’s contour, and L

is the distance along the contour between two such vectors. The persistence

length is related to the flexural rigidity κ of the filament by [96]

lp =
κ

kBT
, (1.2)

thus describing the combined effect of thermal and mechanical forces on the

filament’s fluctuations.

Filaments can be grouped into three different classes based on the ratio

of their persistence to their contour length [67]. If the filament’s persistence

length is much larger than its contour length (lp � lc) then the filament is

called “stiff” and can often be modeled as a stiff rod. Collagen type I fibrils

(section 1.2) are an example of this regime [158]. Filaments that have compara-

ble persistence and contour lengths (lp ≈ lc) are referred to as “semi-flexible”.

Many biopolymers fall into this regime, with actin filaments (section 1.1.2) be-

ing a prominent example [67]. Finally, if the persistence length is much smaller

15



than the contour length (lp � lc) the filament is called “flexible”. DNA can

to a certain extent be treated as flexible [128].

We will now take a closer look at the mechanics of semi-flexible poly-

mers.

1.3.3 Lateral fluctuations and end-to-end distance distribution
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Figure 1.9: End-to-end distance distribution of a fluctuating actin filament
with contour length lc = 13.4µm and persistence length lp = 16.1µm. This
figure copyright 2002 by The American Physical Society. Reprinted with per-
mission from [73].

A semi-flexible polymer in aqueous solution responds to thermal forces,

which strive to bend the filament transversally, in competition with elastic

forces, which attempt to straighten the filament. Therefore the filament’s

end-to-end distance r, defined as the length of the straight line connecting

the filament’s end points, is distributed around a most probable end-to-end

distance r0, which is shorter than its full contour length. The distribution
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of r can be computed for a given ratio of lc/lp [151], and agrees well with

experimental results on actin filaments (figure 1.9 and ref. [73]). Boltzmann

statistics can be used to convert this distribution to an energy landscape with

an energy minimum located at r0. Thus, for small extensions (or compressions)

from this distance, there are restoring entropic forces and the filament acts as

an entropic spring. For large extensions, when the transversal fluctuations are

smoothed out and r ≈ lc, the bonds between the subunits of the filament begin

to stretch, and the much stronger enthalpic response of the filament dominates.

Thus semi-flexible filaments in a solution behave inherently non-linear: The

response to small strains is entropic, and the filament easily complies. For large

strains, the response becomes enthalpic, and stretching the filament becomes

much harder.

It is important to emphasize that there is a relation between the fil-

ament’s transversal fluctuations and its tension: The larger the tension that

acts on the filament, the larger its end-to-end distance, and the smaller its

transversal fluctuations. The magnitude of the transversal fluctuations thus

can be used as a probe for the forces acting on the filament. A measure-

ment of the transversal fluctuations of a semi-flexible biofilament constitutes

a measurement of its tension.

1.3.4 Force distribution in networks of semi-flexible biopolymers

We will now consider a network of semi-flexible filaments, cross-linked

in a random fashion, and attempt to motivate how the macroscopic properties
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of the network can arise from the properties of the single filaments. Assume

that the network is at equilibrium, meaning that the position of junctions in

the network are stationary1. The straight line distance between two adjacent

junctions confines the filament between them to a fixed end-to-end distance r,

which may be shorter or longer than the most probable end-to-end distance

r0 of this filament (see section 1.3.3). Thus, the entire network can be approx-

imated as a network of pre-stretched (and pre-compressed) entropic springs

[132], and each filament applies an entropic force on the junctions it is con-

nected to. This force is contractive if r > r0, or expansive if r < r0. The

forces on each junction are balanced, i.e. their sum is zero; otherwise the junc-

tion would not be at rest. In other words, there is a distribution of expansive

and contractive forces acting on the filaments, and therefore on the junctions

inside a network of semi-flexible filaments. Depending on the stiffness of the

filaments, bending elasticity may also contribute to the force distribution in the

network. In addition to the distance between junctions and bending elasticity,

the forces are also expected to be influenced by local network architecture, like

the cross-linking angle between filaments, and the stiffness of these cross-links,

i.e. how easily they deform under an applied load.

The force distribution governs the macroscopic response of the net-

work: An externally applied macroscopic load propagates along filaments and

junctions through the network, smoothes out (or increases) the transversal

1There are, of course, thermal forces acting on each junction, resulting in small random
extensions from its equilibrium position.
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fluctuations of the individual filaments, or, more abstractly, stretches (or com-

presses) the entropic springs in the network, and deforms junctions. For large

macroscopic strains, the enthalphic elasticity of each filament begins to domi-

nate.

A recent theoretical model predicting the stress-strain relation of semi-

flexible biopolymer networks [132] takes their force distributions into account,

and agrees well with the observed strain hardening behavior (section 1.3.1).

Other models have focused on networks of stiff polymers and have found that

details of the network architecture influence macroscopic properties [54, 152].

In order to validate these models, local network architecture such as a single

junction must be imaged, and simultaneously the forces acting on the individ-

ual filaments connected to the junction must be measured. The architecture

of junctions in a network is below the resolution limit of traditional light mi-

croscopy. Thus, gaining a detailed understanding of local network architecture

requires three-dimensional super resolution imaging, such as 3D STORM [156],

3D STED [49], or electron microscopy. However, STORM and STED require

integration times on the order of seconds for each acquired image frame, and

cannot resolve the transversal fluctuations of a biopolymer filament. Thus,

they cannot exploit the link between transversal fluctuations and tension as

discussed above, and cannot measure the forces acting on individual filaments.

Electron microscopy cannot be used to image biological material under physio-

logical conditions, and the involved sample preparation procedures can shrink

biopolymer networks to 70% of their original size [32], thus obviously altering
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their structure. A novel approach to imaging biopolymer networks is therefore

necessary.

1.4 Research objectives and dissertation outline

It is the goal of this research to implement and build upon a recently

introduced three-dimensional scanning probe technique called thermal noise

imaging [137]. It will be demonstrated that thermal noise imaging can image

the local network architecture of a biopolymer network under physiological

conditions with super resolution, and that this technique can simultaneously

measure the transversal fluctuations of the involved filaments, which are di-

rectly related to their tension (see section 1.3.3) and thus to the local force

distribution in the network.

Thermal noise imaging relies on the high bandwidth and high precision

tracking of a small colloidal particle using a photonic force microscope which

was constructed for this research. Chapter 2 discusses various theoretical as-

pects necessary to understand photonic force microscopy and characterizes the

microscope used in this work. It also introduces thermal noise imaging as a

quantitative scanning probe technique. Chapters 3 and 4 detail initial ex-

periments that demonstrate the stability of the microscope. The exceptional

position detection precision and bandwidth are used to follow the formation of

individual molecular bonds between two surfaces (chapter 3) and to study the

transport of cargos by endogenous motor-cargo complexes along microtubules

(chapter 4). Chapters 5 and 6 then describe thermal noise imaging experi-
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ments. First, we will discuss thermal noise imaging of grafted microtubules,

and then elucidate the extraction of transversal fluctuations from the acquired

images (chapter 5). This paves the way for the imaging of the local network

architecture of collagen gels (chapter 6). Finally, this work concludes with an

outlook on possible future experiments (chapter 7).
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Chapter 2

The photonic force microscope

All experiments described in this dissertation utilized a custom built

photonic force microscope (PFM). A PFM consists of an optical trap (section

2.1) which confines the Brownian motion (section 2.2) of a dielectric nano-

particle to a small volume, coupled to a three-dimensional position detector,

which can measure the position of the trapped particle relative to the center of

the optical trap. The detector used in this work (section 2.3) has a bandwidth

of ∼1 MHz and can detect the particle’s position with nanometer spatial reso-

lution. The diffusing particle acts as a soft three-dimensional scanning probe,

which can be used to investigate diverse phenomena, such as the elasticity of

the molecular motors kinesin [64] and myosin [120], the local viscosity in a

solution close to a boundary [100], and lipid rafts in the membranes of living

cells [101]. Similar to imaging two-dimensional topologies with an atomic force

microscope (AFM), the three-dimensionally diffusing probe can also be used

to create three-dimensional images of scanned structures. Since the probe

is driven by thermal motion, this imaging technique is called thermal noise

imaging (section 2.4).
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2.1 Optical tweezers

Stable confinement of dielectric nano-particles in the focus of a laser

beam was first demonstrated by Ashkin et al. in 1986 [6]. Ashkin and coworkers

showed that this single beam optical trap (optical tweezers) could confine

particles ranging in diameter from ∼10 µm down to ∼25 nm, covering the

regime of geometrical optics (particle radius a � λ, which is the wavelength of

the trapping laser), the Mie regime (a ≈ λ) and the Rayleigh regime (a � λ).

In order to form a stable trap the refractive index of the particle n1 must be

sufficiently larger than the refractive index of the surrounding medium n2.

For the geometrical optics regime one can consider the refraction of

each individual light ray of the trapping beam as it passes through the trapped

particle [5, 6]. Upon refraction, momentum is transferred from the ray to the

particle, leading to a force on the particle. This force can be decomposed into

two components [5]: The gradient force, acting perpendicularly to the light

ray, and the typically much weaker scattering force, acting along the ray. For

each of these forces one sums over all light rays in the beam, yielding the total

gradient and scattering force respectively. For any arbitrary displacement of

the particle from the focus of the beam, the gradient force drives the particle

back into the direction of the focus. The scattering force, on the other hand,

pushes the particle into the propagation direction of the beam, causing the

equilibrium position of the particle to be not exactly at the focus, but slightly

behind it.

In the Rayleigh regime, since a � λ, the particle may be treated as
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a point object with an induced dipole moment (see for example [51]). The

induced dipole moment of such a particle with refractive index n1, in a medium

with refractive index n2, in an electric field E(r, t) is given by

p(r, t) = 4πn2
2ε0a

3

(
m2 − 1

m2 + 2

)
E(r, t), (2.1)

where m = n1

n2
, m > 1, ε0 is the vacuum permittivity, and r = (x, y, z) is

the position vector of the particle. The resulting force on the dipole can

again be decomposed into a scattering force and a gradient force. Scattering

of the incoming trapping beam on the dipole leads to a momentum transfer

which pushes the particle along the propagation direction of the beam. This

scattering force can be shown to equal

Fscat(r) =
n2

c

8

3
π (ka)4 a2

(
m2 − 1

m2 + 2

)2

|E(r, t)|2ez (2.2)

where c is the speed of light in vacuum, k = 2π
λ

is the wavenumber of the

trapping beam and ez is the unit vector in z direction which coincides with

the optical axis of the system. The gradient force, which pushes the dipole

towards the focus of the beam, follows immediately from the fact that an

electric dipole in an inhomogeneous electric field feels an average force given

by [23, 51]

Fgrad(r) = 〈Fgrad(r, t)〉T = 〈[p(r, t) · ∇]E(r, t)〉T (2.3)

= πn2
2ε0a

3

(
m2 − 1

m2 + 2

)
∇|E(r)|2 (2.4)

=
2πn2a

3

c

(
m2 − 1

m2 + 2

)
∇I(r) (2.5)
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where it was used that the intensity I is related to the electric field E by [23]

I(r) =
1

2
ncε0|E(r)|2 (2.6)

Finally, for the Mie regime (a ≈ λ), calculating the scattering and

gradient force is challenging, but can be achieved by use of the Maxwell stress

tensor [40, 60, 111, 112, 114].

In general, if the gradient force is smaller than the scattering force, the

particle cannot be stably trapped. High numerical aperture (NA) lenses by

definition yield many light rays that intersect the focus at steep angles, and

contribute a large gradient force but only a small scattering force to the full

optical force on the particle. In contrast, low NA lenses intersect the focus

at a shallow angle, and contribute large components to the scattering force.

Therefore, to create a stable single beam optical trap, a lens with as high a

NA as possible must be used.

For the Rayleigh and Mie regime, the scattering as well as the gradient

force can only be computed if the intensity distribution at the focus of the

beam is known. Richards and Wolf showed in a seminal paper [109] that this

distribution equals an Airy pattern for lenses with very small numerical aper-

tures (NA → 0), but deforms drastically if the numerical aperture increases

(see figure 2.1). As pointed out above, to minimize the scattering force, a high

NA lens is necessary for stable confinement of a particle with optical tweez-

ers. For such a lens the central intensity maximum stretches in direction of

polarization of the incoming beam compared to the original Airy pattern.
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Figure 2.1: Schematic of the intensity distribution perpendicular to the optical
axis at the focus of an aplanatic lens, for two different angular semi apertures
(α = 0 and α = 60◦), and thus different NAs. The direction of polarization
of the incoming beam is along the x-axis (φ = 0). Axes have arbitrary units.
Reprinted with permission from [109].
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In this study, particles with radius a ≤ λ were used; these particles fall

into the Mie regime. Rohrbach and Stelzer’s derivation for the Mie regime

[112, 114] shows that the gradient force increases linearly with small displace-

ments of the trapped particle from its equilibrium position, implying a three-

dimensional harmonic trapping potential

Etrap(r) =
1

2
(kxx

2 + kyy
2 + kzz

2). (2.7)

Of the three spring constants (kx, ky, kz) defining this potential, the spring

constant along the optical axis (z-axis) is the weakest. The lateral spring con-

stants are larger, but not, as one might naively assume, equal. The rotational

symmetry along the optical axis is broken by the direction of polarization of

the incoming laser beam, and the lateral spring constant along this direction

is weaker than the one perpendicular to the direction of polarization. We may

get some intuition for this effect by inspecting, for simplicity and as a crude

approximation, equation 2.5 which was derived for the Rayleigh regime instead

of analyzing the much more complicated theory for the Mie regime. Assuming

that the central intensity maximum of the focal region of the laser beam can

be approximated by a Gaussian distribution with half width σα along each of

the three axes (α = x, y, z) of the system, we have for the components of the

gradient force along these axes:

Fgrad,α ∝ ∂

∂α
e−α2/2σ2

α = − 1

σ2
α

αe−α2/2σ2
α (2.8)

≈ − 1

σ2
α

α (2.9)
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where approximation 2.9 is valid for small displacements α from the focus. The

spring constant of the confining potential is therefore inversely proportional to

σ2
α:

kα ∝ 1

σ2
α

(2.10)

Thus, since for a high NA lens the central intensity maximum is stretched in

the polarization direction of the incoming beam, the lateral spring constant

along this direction is weaker than the one perpendicular to it.

It is very challenging to compute the precise spring constants for a

given photonic force microscope from first principles. However, in practice

the spring constants can be extracted from the spatial probability density of

the trapped particle (see section 2.2.5), and thus their ab initio calculation is

unnecessary.

2.2 Confined Brownian Motion

Consider now a particle in an aqueous medium of viscosity η confined

in a harmonic potential as given by equation 2.7. This particle collides with

on the order of 1021 individual fluid molecules per second [18], which results

on long time scales in a random walk of the particle within the optical trap

(confined Brownian Motion). On very short time scales (∆t � 10−7s) each

collision with a cluster of fluid molecules gives the particle a “kick”, resulting

in ballistic motion of the particle, until it collides with other fluid molecules.

It is then slowed down again, and its new subsequent direction of motion and

velocity are randomized [57]. These “kicks” are what make up the thermal
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force Fth acting on the particle. In this work, particle positions were sampled

at 100 kHz (∆t = 10−5s), more than two orders of magnitude greater than the

ballistic regime of motion. Therefore, we need not concern ourselves with this

regime here, and may assume that subsequent particle displacements ∆r =

r(t+∆t)−r(t) are to a first approximation independent, and that there is no

correlation in the magnitude and direction of Fth(t) and Fth(t+∆t). Further,

we may assume that Fth(t) is a white noise Gaussian process, sufficiently

defined by its moments [10, 141, 146]:

〈Fth(t)〉Fth
= 0, (2.11)

〈Fth(t1)Fth(t2)〉Fth
= gδ(t1 − t2) (2.12)

where g is a measure for the strength of the fluctuating thermal force. It can

be shown that g = 2γ0kBT by the fluctuation-dissipation theorem; γ0 = 6πηa

is the viscous drag on the particle, and T is the temperature. The correlation

2.12 is related to the power spectral density of the thermal force [72, 146],

which in this case is constant, as expected for white noise:

PSDFth
(f) = 2g (2.13)

For sufficiently long time scales, we may then write down the equation

of motion for a particle confined in a harmonic potential. We will consider the

one dimensional case along the x-axis; identical equations exist for the y and

z direction:

mẍ = −γ0ẋ− kx+ Fth(t) (2.14)
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This equation is called the Langevin equation [107]. m is the mass of the

particle, and k is the spring constant of the confining potential. The left hand

side of equation 2.14 is the inertial force on the particle; the terms on the right

hand side are the frictional force, potential force, and the fluctuating thermal

force respectively. For now, as a first approximation, we have ignored the

inertia of the surrounding fluid in this equation. The full hydrodynamic theory

is discussed in section 2.2.3. Since we are considering time scales at which the

inertial energy of the particle has long been dissipated by friction (the system

is over-damped), we may approximate the left hand side of equation 2.14 as

zero, thus

γ0ẋ+ kx− Fth(t) = 0. (2.15)

Obviously, this equation cannot be integrated and solved analytically due to

the randomly fluctuating thermal force term. However, as shown below, we can

compute several statistical quantities, such as the mean squared displacement

of the particle from the center of the trap, the power spectral density of the

motion of the confined particle, and the probability distribution of particle

positions.

2.2.1 Mean squared displacement

The mean squared displacement (MSD) of a diffusing particle is a useful

statistical quantity: It describes how the variance of the particle’s displacement

evolves with time. Starting with the Langevin equation (equation 2.14) an

expression for the MSD of a free particle (k = 0) can be derived (see for
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example [107]). One finds for the one dimensional case

〈x2〉free(t) = 2Dt, (2.16)

where D = kBT/γ0 is called the diffusion constant. Thus, the MSD of a freely

diffusing particle increases linearly with time.

Consider now a trapped particle confined in a harmonic potential. It is

intuitively clear, that in this case the MSD cannot grow unbounded for large

t. The particle is confined by the trap and displacements far away from its

center are statistically negligible. One therefore expects the MSD in this case

to plateau above a characteristic time τ .

The MSD for such a confined particle is given by [141] as

〈x2〉confined(t) =
kBT

k

(
1− e

−2 k
γ0

t
)
, (2.17)

which for short time scales simplifies to equation 2.16, and has a plateau at

kBT
k

for times much larger than

τ =
γ0
k
. (2.18)

τ is called the position autocorrelation time of the trap. Particle position

measurements separated by a time ∆t > τ are uncorrelated.

2.2.2 Power spectral density of particle motion

Another useful statistical quantity of the random walk of a confined

particle is the power spectral density (PSD) of its position time trace. Starting
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with equation 2.15, an expression for the (one-sided) PSD can be derived

[10, 146]:

P (fi) =
D

π2(f 2
c + f 2

i )
(2.19)

where fc = k/(2πγ0) is the corner frequency, and fi = i/Tmsr, (i = 0, 1, 2, ...)

makes up the frequency space axis, with Tmsr being the time for which the

signal x(t) has been recorded. Note that the corner frequency depends linearly

on the spring constant of the confining potential k; the stronger the optical

trap, the larger is fc. The corner frequency is a measure for the time scale

at which the motion of the particle is dominated by the trapping potential,

rather than the fluctuating thermal force. Thus, in strong traps with large

corner frequencies, the particle will feel the influence of the trapping potential

on shorter time scales than in weak traps, as is intuitively clear.

2.2.3 Full hydrodynamic theory

There are several effects not taken into account by the Langevin equa-

tion (equation 2.15). First, due to the approximation we made, the inertia of

the particle has been neglected. Second, we have not taken into account the

inertia of the fluid: whenever the particle moves, it will (by its drag) also move

the fluid that surrounds it. This means that the friction between the particle

and the fluid depends on the particle’s past motion, since this past motion

determines the fluid’s present motion. This effect is called the hydrodynamic

memory effect. A generalized Langevin equation can be formulated, which

takes these two effects into account [10, 19].
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From this generalized Langevin equation one can find the hydrodynam-

ically correct form of the power spectral density of the motion of the confined

particle [10]:

Phydro(f) =
D/π2[1 + (f/fν)

1/2]

(fc − f 3/2/f
1/2
ν − f 2/fm)2 + (f + f 3/2/f

1/2
ν )2

, (2.20)

where fm = γ0/(2πm
∗), with m∗ = m+ 2πρa3/3. ρ is the mass density of the

fluid. fν = ν/(πa2), with ν = η/ρ being the kinematic friction coefficient of

the fluid.

The frequency constants fm, fc and fν give the time scales on which

the inertia of the particle, the confinement of the trap, and the inertia of the

surrounding displaced fluid dominate the particle’s motion, respectively. For

example, for a 500 nm diameter polystyrene particle in water held in an optical

trap with stiffness k = 64µN/m, on very fast time scales, the particle is mostly

influenced by inertial effects (fm = 2.65MHz). On slow time scales of fc =

1/(2πτ) = 1kHz, the confinement of the optical trap dominates the particle’s

motion. In the intermediate regime the particle’s motion is dominated by the

inertia of the surrounding fluid and the hydrodynamic memory effect (fν =

680kHz) [80].

2.2.4 Distribution of particle positions

The probability density of the positions visited by the trapped particle

is likely the most important statistical quantity for this dissertation. From

equilibrium statistical mechanics it is clear that such a probability density

33



exists for a particle confined in a harmonic potential, and that it must follow

Boltzmann statistics [39]:

p(r) =

√
kxkykz

(2πkBT )3/2
e

−E(r)
kBT , (2.21)

where the energy landscape is given by the harmonic confinement of the par-

ticle, E(r) = 1
2
(kxx

2 + kyy
2 + kzz

2). Equation 2.21 is a three-dimensional

Gaussian distribution. The positions of a particle confined by optical tweezers

are thus Gaussian distributed.

This probability density is only valid at equilibrium though, and it is

not immediately clear for how long one has to observe the particle so that

its position probability has reached equilibrium. The temporal evolution of

the probability density of a harmonically confined particle is given by the

Smoluchowski equation, which is discussed below. We will see that for long

enough time scales the probability density indeed approaches the Boltzmann

distribution (equation 2.21).

2.2.4.1 The Smoluchowski equation

The time evolution of the spatial probability density of a particle dif-

fusing in a (one-dimensional) harmonic potential is given by the following

Smoluchowski equation [121]:

∂p(x, t|x0, t0)

∂t
= D

(
∂2

∂x2
+

k

kBT

∂

∂x
x

)
p(x, t|x0, t0). (2.22)

Assuming that the particle’s position was known to be x0 at t = t0, i.e.

p(x, t0|x0, t0) = δ(x− x0), (2.23)

34



then equation 2.22 is solved by

p(x, t|x0, t0) =
1√

2πkBTS(t, t0)/k
exp

[
−
(
x− x0e

−2(t−t0)/τ̃
)2

2kBTS(t, t0)/k

]
(2.24)

S(t, t0) = 1− e−4(t−t0)/τ̃ (2.25)

τ̃ = 2kBT/(kD) = 2τ, (2.26)

where τ is the autocorrelation time of the position fluctuations in the given

optical trap, as defined in section 2.2.1.

Figure 2.2 shows the time evolution of the probability density for a

200 nm diameter particle that at t0 = 0 was localized at x0 = 100 nm in a

harmonic potential with spring constant k = 1 pN/µm. The viscosity was

that of water at room temperature, η = 8.9 · 10−4 Pa s. At fractions of the

autocorrelation time (red curve) the particle has not yet felt the effects of

the confining potential, and its probability density can be approximated as

Gaussian, spreading around the particle’s initial position. However, as sev-

eral autocorrelation times pass, the density approaches Boltzmann statistics

(black curve). Observation times in the present work were always many or-

ders of magnitude larger than the autocorrelation time. Therefore, we may

use equilibrium statistical mechanics in the following.

2.2.4.2 The voxel occupancy

In this work a PFM is used to track the positions of a nano-particle

confined in a harmonic potential. As will be shown, one can generate vi-

sual representations of the particle’s surrounding by interpreting the measured
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Figure 2.2: Time evolution of the probability density for a 200 nm diameter
particle that at t0 = 0 was localized at x0 = 100 nm in a harmonic potential
with spring constant k = 1 pN/µm. The viscosity was that of water at room
temperature, η = 8.9 · 10−4 Pa s. τ is the autocorrelation time of position
fluctuations of the trapped particle.

probability density of particle positions (see section 2.4).

However, due to finite observation times, this probability density can

only be measured approximately. This approximation is done by subdividing

the volume accessible to the particle (“trapping volume”) into voxels, typically

of size 10 nm x 10 nm x 10 nm, unless noted otherwise. One then counts how

often the particle visited each voxel during the observation time Tmsr; the

resulting three-dimensional matrix of counts is called the voxel occupancy.

The theoretical expectation value for the voxel occupancy follows from
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the Boltzmann distribution (equation 2.21). The probability to find the par-

ticle in the voxel (x, x + ε), (y, y + ε), (z, z + ε), where ε is the side length of

the voxel, can be approximated by

P = p(x, y, z)ε3. (2.27)

The theoretical occupancy of a voxel located at (x, y, z) is then

n(x, y, z) = Nε3p(x, y, z) (2.28)

= Nε3
√

kxkykz

(2πkBT )3/2
exp

[
−E(x, y, z)

kBT

]
, (2.29)

where N = Tmsr/∆t is the number of acquired points in the time series. ∆t is

the time between samples.

By rearranging this equation, we see that from the voxel occupancy we

can recover the underlying energy landscape:

E(x, y, z) = −kBT ln [n(x, y, z)] + C, (2.30)

where the additive constant C = ln
[
Nε3

√
kxkykz

(2πkBT )3/2

]
is of no further significance

(the offset of an energy landscape is arbitrary by the work-energy theorem).

We may therefore set C = 0, or any other value we find convenient.

Let us restate equation 2.30 for the measured energy Em(x, y, z) and

voxel occupancy nm(x, y, z):

Em(x, y, z) = −kBT ln [nm(x, y, z)] + C, (2.31)

Of course our measured voxel occupancy will only be equal to the the-

oretical expression 2.29 within some error. This error is given by counting
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statistics; however the statistics are complicated by correlations between indi-

vidual counts: Consider a particle diffusing through a voxel with side length

ε. Then, by equation 2.16 the particle will on average spend a characteristic

time τε = ε2/(2D) in this voxel. If we sample the particle’s position at time

intervals ∆t, with ∆t < τε, then Ncorr = τε/∆t subsequent counts will be

highly correlated (we find the particle in the voxel for most of them). To find

an expression for the error of such correlated counting statistics an approach

by Straatsma et al. (see [133]) was adapted:

For each voxel α we have a correlated time series of equally spaced

events Xα,i, which indicate whether at time i the particle visited the voxel

(Xα,i = 1, with probability p) or the particle did not visit the voxel (Xα,i = 0,

with probability q). Consider a time series of length N . The measured voxel

occupancy is

nm,α =
N∑
i=0

Xα,i. (2.32)

By [133] the variance of the measured voxel occupancy is then given by

var(nm,α) = N var(Xα,i)(1 + 2Ncorr) (2.33)

= Npq(1 + 2Ncorr) (2.34)

≈ Np(1 + 2Ncorr) (2.35)

= nα(1 + 2Ncorr). (2.36)

where it was used that var(Xα,i) = pq for a Bernoulli-like event, and nα = Np

is the theoretical voxel occupancy of voxel α. The approximation leading to
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equation 2.35 is valid since p � q and q ≈ 1, which is the definition of a

Poisson process. Equation 2.36 is the desired expression for the variance of

the occupancy of one voxel, taking correlated counting statistics into account.

Note that the expression simplifies to Poisson statistics for the case of zero

correlation, since for Ncorr = 0 it follows that var(nm,α) = nα, as it should.

In practice, we will want to find the underlying energy landscape by

equation 2.31 from the measured voxel occupancy. Thus, the theoretical voxel

occupancy n(x, y, z) is not known. Therefore it is necessary to approximate

n(x, y, z) in equation 2.36 by the measured voxel occupancy nm(x, y, z), leading

to

var(nm,α) = nm,α(1 + 2Ncorr). (2.37)

2.2.5 Determination of the stiffness of the trapping potential

As pointed out in section 2.1, it is almost impossible to accurately

compute the spring constants for a given PFM from first principles. However,

this is not necessary, as the spring constants can easily be extracted by a

simple measurement [39].

Consider a particle trapped in the harmonic trapping potential given by

equation 2.7, interacting only with the surrounding fluid. The spring constants

can then be extracted by equation 2.29 from the measured voxel occupancy of

the particle. The problem may be treated separately for each spatial dimen-

sion, since there is no coupling between the Langevin equations for x, y, and
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z direction (see equation 2.14). For the x direction it follows then that

nm,x(x) = C̃ exp

[
− kxx

2

2kBT

]
, (2.38)

which is a Gaussian distribution with variance σ2
x = kBT/kx. C̃ is a constant

which has no further significance. The spring constant in x direction may

therefore be computed from the variance of the measured one-dimensional

voxel occupancy:

kx = kBT/σ
2
x. (2.39)

Alternatively, we may use equation 2.18 to extract the spring constant

from the autocorrelation time of the motion in i = x, y, z direction of the

trapped particle, τi,

ki =
γ0
τi
. (2.40)

Experimentally, the autocorrelation time for motion along x can be found from

the time trace by computing (see [100])

〈x(t)x(t+ T )〉 = 〈x2〉 exp
[
− T

τx

]
(2.41)

which yields τx from a mono-exponential fit.

2.3 Three-dimensional position detection

2.3.1 Position detector

We will now turn our attention to detecting the position of the confined

nano-particle within the optical trap. Independent of what approach we take to

detecting the particle’s position, the spatial resolution of the position detector
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is always intimately linked to its temporal resolution: For example, by equation

2.16 a 200 nm diameter particle diffuses on average 70 nm within 1 ms. Thus,

a 1 kHz detector has an inherent minimum position uncertainty of 70 nm for

such a particle. Therefore, in order to achieve a high spatial resolution, a

high temporal resolution is necessary. A position detector with a bandwidth

of 40 kHz has a minimum position uncertainty of 11 nm, while a 1 MHz

detector achieves an uncertainty of ∼2 nm. While a high detection bandwidth

could in principle be achieved by traditional means like video microcopy using

extremely short integration time cameras, it would be impossible to read out

the acquired frames at a high rate due to data bandwidth limitations. Even if

such a readout could somehow be achieved, the frames would still need to be

processed in order to find the particle’s position, making realtime tracking of

the particle by video microscopy impossible.

To circumvent this difficulty, a novel, high speed detection scheme based

on interferometry was first proposed by Allersma et al. in 1998 [2], but was

initially limited to the two-dimensional motion lateral to the optical axis. One

year later, Pralle et al. [102] realized that this detector could be extended to

three dimensions, thus making a photonic force microscope possible.

Figure 2.3 shows a schematic of this trapping and detection scheme.

The expanded beam of a near-infrared laser is focused through an objective

lens and forms an optical trap in the focal plane (red wavefronts in figure

2.3). A single particle is held in the trap and forward scatters a part of

the trapping beam (orange wavefronts). Transmitted light of the trapping
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Figure 2.3: Trapping and detection scheme of a photonic force microscope. A
near-infrared laser (1064 nm) is focused through an objective lens and forms
a single-beam optical trap in the focal plane of the lens. A single colloidal
nano-particle is trapped in the beam. The light from the laser beam (red), as
well as forward-scattered light from the trapped particle (orange), are collected
by a condenser lens and projected onto a quadrant photodiode (QPD). The
electrical signals of the QPD are used for 3D position tracking of the particle in
the optical trap. Movement of the stage allows for displacement of the optical
trap relative to the sample chamber with nanometer precision.

42



beam along with forward scattered light is collected by a condenser lens and

focused on a quadrant photodiode (QPD), where the two waves interfere and

produce the particle position signal. The quantitatively accurate treatment

of this signal is involved [102, 112, 113], but it can be motivated qualitatively:

When the particle moves along the x-axis, the interference pattern on the

QPD will move laterally as well. If the particle moves in y direction, the

interference pattern will move up- and downwards on the QPD. Thus, for a

small displacement of the particle from the center of the trap in x direction

(∆x)

∆x ∝ [(SI + SIII)− (SII + SIV )] = Sx, (2.42)

where Si, i = I, II, III, IV are the output voltages of the four quadrants.

Analogously, we have for a displacement in y direction

∆y ∝ [(SI + SII)− (SIII + SIV )] = Sy. (2.43)

The displacement along the optical axis is proportional to the full intensity on

the QPD:

∆z ∝ [(SI + SII + SIII + SIV )] = Sz. (2.44)

This proportionality to the full intensity is a result of Gouy phase shift (for an

elegant Fourier space treatment, see [113]). A focused laser beam undergoes a

gradual phase shift of ∆φ = π while passing through the focus. Light scattered

by the trapped particle will have a phase corresponding to its displacement

from the focus. Therefore scattered and unscattered light have a phase differ-

ence depending on the particle’s displacement from the focus, reflected in the

intensity of the interference of the two beams.
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The signals Sx, Sy and Sz (also referred to as the “detector response”)

can be directly measured by moving a particle attached to a glass coverslip

through the stationary focus along the x, y and z direction respectively, and

recording the output of the quadrant photodiode. Figure 2.4 shows the result

of such a measurement for one of the PFMs used in this work for a 500 nm

diameter polystyrene particle. Shown in red is the linear range of the detector,

in which the electronic signal can be approximated as being linearly dependent

on the displacement of the particle from the center of the trap. This linear

range was defined as the part of the curve having a slope within 15% of the

maximum slope. The full width of the linear ranges for a typical 500 nm

diameter polystyrene particle are ∆x = 200 nm, ∆y = 180 nm and ∆z = 450

nm. Equations 2.42, 2.43 and 2.44 are only valid in this range. The slope of

the linear range is called the detector sensitivity β. It describes by how much

the detector responds for a given displacement of the particle.

For large displacements from the focus, the relationship between par-

ticle motion and detector response becomes increasingly nonlinear, and the

sensitivity is no longer sufficient to calculate the correct particle position from

the detector response: additional non-linear terms must be taken into account.

This concern is addressed below.

2.3.2 Detector calibration and nonlinearity correction

As explained above, using interferometry to track the position of a

trapped particle yields electronic signals Sx, Sy and Sz that are proportional
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Figure 2.4: Typical response of the position detector of a photonic force mi-
croscope. A 500 nm diameter polystyrene particle was attached to a glass
coverslip and scanned through the focus along the x-, y- and z-axis of the
system. From the output voltages of the QPD, the detector responses Sx, Sy

and Sz were computed. Red indicates the linear range of the detector for the
given axis. The slope of the linear range is the detector sensitivity β. The full
width of the linear ranges for the given particle were ∆x = 200 nm, ∆y = 180
nm and ∆z = 450 nm. The focus is located at x, y, z = 0.
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to the particle’s motion only for small displacements from the focus. Larger

extensions lead to a non-linear relationship between particle displacement and

detector response. It is therefore necessary to find a non-linear transformation

relating the response to the particle position. In other words, it is necessary

to linearize the detector. One possibility is to record the detector response

ahead of any experiments by scanning an immobilized bead through the focus

(see figure 2.4). However, there are several severe pitfalls with this approach:

Firstly, the particle has to be adhered to a substrate in order to be immobilized.

The contact between substrate and particle changes the scattered wave from

the particle, and thus the detector response, compared to a particle diffusing

in solution. Secondly, the local environment within the sample can scatter

light as well, thus influencing the signal on the detector; the response curves

therefore change locally for different positions in the sample. This makes a

detector calibration in situ desirable.

Here, we follow a method based on the analysis of the MSD (see section

2.2.1) of the trapped particle, which allows the detector to be calibrated in

situ, at a location in the sample close to the one at which the experiment is

performed [138].

Consider the trapped particle diffusing through position x0, y0, z0 in

the trapping volume. The detector then shows a response Sx(x0) = SX0,

Sy(y0) = SY0 and Sz(z0) = SZ0. Further x0, y0, z0 may be far enough from

the focus so that the sensitivity can no longer be used to accurately describe

the relation between a small change in particle position δx and corresponding
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change in detector response δSx. We may assume though that the local slope

of the response ∂Sx/∂x does not change much over the change in particle

position δx. The local slope of the x response can then be approximated for

the voxel centered around x0, y0, z0 as

∂Sx

∂x

∣∣∣∣
SX0

=

√
MSD∗

L (SX0, t)

2Dt
, (2.45)

whereMSD∗
L is the local MSD of the detector response of the particle’s motion

in units of V2, computed from all parts of the response time trace which

start in the voxel centered around SX0. It is divided by the theoretically

expected MSD in units of m2 given by 2Dt. t is a time lag that must be short

enough so that the particle does not diffuse too far away from the voxel under

consideration. Methods to determine a suitable length of t are discussed in

[138].

This procedure is done for all voxels in the trapping volume. One can

then integrate to find x(Sx) which is the desired relation between measured

detector response and particle position which both linearizes and calibrates

the detector:

x(Sx) =

∫
1

∂xSx|SX′
dSX ′ (2.46)

The linearization and calibration for the y and z direction are obtained

in a completely analogous manner.
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2.4 Thermal noise imaging

The high resolution and high bandwidth trapping and tracking of a

small nano-particle discussed in the previous sections can be used for three-

dimensional super resolution imaging of soft matter. This imaging technique

is discussed in this section.

Thermal noise imaging (TNI) is a scanning probe technique that can

be implemented using a PFM. TNI utilizes the confined thermal motion of

the optically trapped particle as a three-dimensional, noninvasive scanner for

soft, biological material. Consider as an analogy a tennis ball (the tracer par-

ticle) randomly moving (thermal motion) through a room (the optical trap).

Let’s assume the room is empty but for some object, e.g. a table (the bi-

ological material). If the ball’s motion is now tracked for an extended time

with high spatial precision and high bandwidth (to avoid motion blur), then

a three-dimensional histogram of ball positions (voxel occupancy, see section

2.2.4.2) will feature an excluded volume of all voxels that were occupied by

the table, since they were inaccessible to the ball. Thus, a three-dimensional

(inverse) image of the table can be generated. This image is called a “thermal

noise image”. Confining the motion of the particle is essential: If there is no

confinement to the volume of interest, the particle will just diffuse away and

one cannot collect enough statistically independent data points to construct

an image. Particle positions must be measured with extraordinary bandwidth

(∼1Mhz) in order to avoid motion blur which would lead to an increase in po-

sition measurement uncertainty (see section 2.3.1). These requirements make

48



a PFM an ideal choice to perform TNI experiments.

Consider now as an example a 200 nm diameter tracer particle confined

in a weak optical trap. It’s position can be tracked with nanometer precision

(see section 2.5.6) and megahertz bandwidth (figure 2.5A). After observing

the particle’s position traces for several seconds the voxel occupancy of the

trapping volume (see section 2.2.4.2) can be computed (figure 2.5B). The time

over which the particle’s motion is tracked is the integration time of the ther-

mal noise image. Plotting an iso-occupancy surface yields the representation

shown in figure 2.5C. This representation is called the thermal noise image of

the trapping volume. If a biological fiber intersects the trapping volume, a

cylindrical volume becomes inaccessible to the diffusion of the particle (figure

2.5D). This excluded volume has a radius RE equal to the sum of the fiber’s

radius RF and the particle’s radius RP (see dashed circle in figure 2.5D),

RE = RF +Rp. (2.47)

The iso-occupancy surface for this case clearly shows the excluded volume

(see figure 2.5E) and is called the thermal noise image of the fiber. The

surface roughness of the image is dominated by the standard deviation of the

measured voxel occupancy due to correlated counting statistics (see equation

2.37). Errors in the position measurement of the particle (1 nm laterally and

7 nm axially) do not significantly impact the measured voxel occupancy since

the particle’s positions are binned into comparably large voxels (10 nm x 10

nm x 10 nm).
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Figure 2.5: Principle of thermal noise imaging. A - Typical time traces of a
200 nm diameter particle diffusing in a weak optical trap. B - The trapping
volume is subdivided into voxels, here with a side length of 10 nm each, and
the voxel occupancy (see section 2.2.4.2) is calculated. C - Isosurface of equal
voxel occupancy. This representation is called the “thermal noise image” of
the trapping volume. D - If a biofilament (green circle) is introduced into the
optical trap, parts of the trap become inaccessible to the particle’s diffusion
(dashed circle). The excluded volume thus depends on the filament’s and on
the particle’s radius. E - Isosurface of equal voxel occupancy for an optical
trap intersected by a biofilament. The excluded volume is clearly visible. This
image is termed the thermal noise image of the filament. Particle positions
were sampled at 100 kHz at a 1 MHz electronics bandwidth. The biofilament
was a single microtubule (see chapter 5). The isosurfaces are drawn for an
occupancy value of 3 counts.
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The resolution of a thermal noise image is given by two factors, the

surface roughness of the image as discussed above, and the size of the probe

particle. As an example for the impact of the probe’s size consider two biopoly-

mer fibers that are in close proximity but do not touch each other. In order to

fully scan around each of the filaments, the probe’s diameter must be smaller

than the distance between them. If the probe is too large, it will not be able to

access the space between the fibers. Consequently, this space will be visualized

as an excluded volume in the resulting thermal noise image, even though there

was no structure present in it. Thus, the two fibers cannot be fully resolved

individually; rather they appear as one large excluded volume.

In the following section we will see that Boltzmann statistics links ther-

mal noise images intimately to the energy landscape in which the tracer particle

moves.

2.4.1 The Logarithmic Relative Occupancy (LRO)

As we have seen in section 2.2.4, the energy landscape through which

the particle moves can be recovered from the voxel occupancy using Boltzmann

statistics by equation 2.31. In the most general case, this energy landscape E

is made up of the confining optical trapping potential Etrap (see equation 2.7)

and the interaction energy between the particle and the structure (e.g. the

filament) in the trapping volume Estr. There may be external contributions

to the total energy landscape: For example a tracer particle with a magnetic

moment would feel a magnetostatic contribution when exposed to an external
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magnetic field. However, such external contributions were not used in this

work, and we will ignore them in the following. Thus, by equation 2.31 it

follows for the energy landscape E that

E(x, y, z) = Etrap(x, y, z) + Estr(x, y, z) (2.48)

≈ Em(x, y, z) (2.49)

= −kBT ln [nm(x, y, z)] + C, (2.50)

where Em is the measured energy landscape, which is only equal to E within

error. nm is the measured voxel occupancy.

Etrap is analytically known once the optical trap’s spring constants

along each axis have been found (see equation 2.7 and section 2.2.5). It is

related to the theoretical voxel occupancy for an empty1 trapping volume

ntrap by equation 2.29. We therefore have

Etrap(x, y, z) = −kBT ln [ntrap(x, y, z)] + C ′. (2.51)

where C ′ is an additive constant of no further significance.

Rewriting equation 2.48 then yields the interaction energy between

tracer particle and the scanned structure:

Estr(x, y, z) = E(x, y, z)− Etrap(x, y, z) (2.52)

≈ Em,str(x, y, z) = Em(x, y, z)− Etrap(x, y, z) (2.53)

= −kBT ln

[
nm(x, y, z)

ntrap(x, y, z)

]
+ C̃, (2.54)

1“empty” here means that there is only the trapped tracer particle and no biological
material in the trapping volume.
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where again we have to approximate E by Em, and consequently can only ex-

tract the measured interaction energy between particle and structure, Em,str.

The constant C̃ may be set to zero by the work-energy theorem. The negative

natural logarithm of the ratio of measured voxel occupancy to theoretically ex-

pected voxel occupancy for an empty trapping volume is called the Logarithmic

Relative Occupancy (LRO):

LRO(x, y, z) = − ln

[
nm(x, y, z)

ntrap(x, y, z)

]
(2.55)

The LRO is equal to the measured interaction energy between the tracer par-

ticle and the scanned structure, in units of kBT . If the LRO is calculated for

an empty trapping volume, nm is equal to ntrap within error, and the LRO is

approximately zero, as one would expect.

The uncertainty of the LRO’s measurement can be found by propagat-

ing the standard deviation of the voxel occupancy:

σLRO(x, y, z) =

√
var
(
nm(x, y, z)

)
nm(x, y, z)

, (2.56)

where var
(
nm(x, y, z)

)
is the variance in voxel occupancy calculated by corre-

lated counting statistics (see equation 2.37).

It is important to remember that we have made no assumption as to

what exact form the interaction energy between particle and structure takes.

If the scanned structure is static, the energy is given by the electrostatic and

steric interaction between the particle and the structure. However, if the

scanned structure fluctuates, for example by thermal motion, the meaning
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of the interaction energy is not so clear. For this important case, which is

discussed in detail in chapter 5, the interaction energy is an “effective” energy

landscape dominated by the motion of the scanned structure.

2.4.2 The Standardized Occupancy (SO)

Voxels far away from the center of the trapping volume are visited by

the particle very rarely, and their measured voxel occupancies and LROs have

large errors. It is therefore useful to introduce a quantity which describes

the statistical significance of a given voxel occupancy measurement, i.e. how

likely it is that the difference between nm and ntrap is caused due to a change

in the underlying energy landscape, and thus due to the presence of a scanned

structure, rather than due to insufficient counting statistics. The Standardized

Occupancy (SO) quantifies by how many standard deviations the measured

occupancy of a voxel differs from its theoretical occupancy:

SO(x, y, z) =
nm(x, y, z)− ntrap(x, y, z)√

var
(
nm(x, y, z)

) (2.57)

where var
(
nm(x, y, z)

)
is the variance in voxel occupancy calculated by cor-

related counting statistics (see equation 2.37). For the case of an empty trap,

in which nm approximates ntrap, this definition of the SO is analogous to the

definition of a standardized random variable with zero mean and standard

deviation of unity. Therefore, the larger the magnitude of the SO, the more

statistically significant the measured LRO is.
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2.5 Implementation

In the course of this research, two custom built photonic force micro-

scopes in almost identical configurations were used. The first (“Single Molecule

PFM”) was based on a design by Rongxin Huang [56], but was strongly im-

proved, and its precision enhanced, especially for detection along the optical

axis. Since the axial position signal corresponds to the full intensity on the

QPD (see section 2.3.1), the power noise of the trapping beam dominates the

error with which the axial position of the trapped particle can be measured.

The initially used laser’s power noise was too large to track the axial motion

of small particles (∼200 nm diameter). Thus, a novel method to analyze the

power stability of lasers was developed by the author [72], and a large number

of commercially available DPSS lasers were compared. As a result, the initially

used Crystalaser (Crystalaser, 1W, 1064 nm, SLM, ultra-stable option, Crys-

talaser, NV, USA) was replaced with the several orders of magnitude more

stable Mephisto (Mephisto 500 mW, 1064 nm, Noise Eater Option, Innolight,

Germany).

The second PFM (“Thermal Noise Imaging PFM”) was co-developed

from scratch with Dr. Martin Kochanczyk, and is described in detail in his

dissertation [71]. It features a much lighter condenser assembly, which greatly

reduces low frequency noise in the position detection of small (∼200 nm di-

ameter) particles. The stability of both PFMs is discussed in section 2.5.6.

The author developed an extensive library of Labview Realtime soft-

ware for instrument control, calibration, data acquisition, data evaluation and
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realtime feedback from the ground up for both microscopes.

Figure 2.6 shows the design of both PFMs, as well as the beam paths

of the trapping and tracking beam, and of the fluorescence excitation and

emission. Below, the essential components of both PFMs are briefly described.

Differences between the two different microscopes are pointed out where they

exist.

2.5.1 Optical tweezers and 3D position detector

The beam (red dashed line in figure 2.6) of a continuous wave, near-

infrared DPSS laser operating in a TEM00 mode (Crystalaser, 1W, 1064 nm,

SLM, ultra-stable option, Crystalaser, NV, USA; and later Mephisto 500 mW,

1064 nm, Noise Eater Option, Innolight, Germany) was passed through a Fara-

day isolator (2I1055-WP2, EOT Inc., MI, USA) to optically decouple the laser

from the microscope, and then expanded and collimated by a 10x beam ex-

pander (Sill Optics, Germany) to overfill the back aperture of the objective

lens. It is convenient to use 1064 nm as the wavelength of the trapping laser,

as firstly, this wavelength is readily available, and secondly, the photodamage

this wavelength causes to biological material is small in comparison to other

common wavelengths [91]. Neutral density (ND) filters (Thorlabs, NJ, USA)

were used to attenuate the laser power to the desired level. A shutter was

placed in the beam path to allow a fast deactivation of the optical trap by

blocking the path of the trapping beam. A dichroic mirror reflected > 99%

of the expanded trapping beam into a high NA objective lens (UPlanSApo,
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Figure 2.6: Schematic of the components and beam paths of a PFM. See
section 2.5 for a detailed discussion.
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60x, water immersion, Olympus, Tokyo, Japan), thereby overfilling the back

aperture of the lens with an approximately homogeneous intensity distribu-

tion. This beam then forms the optical trap discussed in section 2.1 in the

focal spot of the objective lens. The intensity of the transmitted fraction of the

trapping beam was measured by a single photodiode; its purpose is discussed

later (see section 2.5.3).

Behind the focus of the objective lens, the trapping beam (and any

forward scattered light from a trapped particle) was collected by a condenser

lens (445245-9902, Zeiss, Germany) and then projected onto an InGaAs quad-

rant photodiode (QPD, G6849, Hamamatsu Photonics, Hamamatsu, Japan),

where scattered and unscattered light interfered and formed the trapped par-

ticle’s position signal. The QPD’s output voltage was amplified twice, first by

a pre-amplifier and then by a differential main amplifier (both custom built

by Wolfgang Oeffner, Oeffner MSR Technik, Germany); the pre-amplifier also

computed the detector responses Si, i = x, y, z (see equations 2.42, 2.43, and

2.44) from the output of the QPD’s four quadrants. The bandwidth of pre-

amplifier and differential amplifier was ∼1 MHz.

The amplified detector response was then sampled at 100 kHz (un-

less noted otherwise) by the Realtime Target using a high speed and high

precision DAQ board (Single Molecule PFM: NI PCI 6120, 16 bit, National

Instruments, TX, USA; and later NI PXI 5922, up to 24 bit, National Instru-

ments, TX, USA. Thermal Noise Imaging PFM: NI PCI 6120, 16 bit, National

Instruments, TX, USA). The NI PCI 6120 has an integration time of ∼9 ns
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per datapoint (private communications with National Instruments), and thus

passes the entire 1 MHz bandwidth available from the amplifiers. The NI PXI

5922 employs a hardware anti-aliasing filter which cannot be deactivated, and

has a frequency cutoff at 0.4 times the sampling frequency. Care must there-

fore be taken when utilizing the NI PXI 5922 so as to not increase the position

measurement’s uncertainty too much due to the reduced temporal bandwidth

(see section 2.3.1).

The software running on the Realtime Target then calibrated (see sec-

tion 2.3.2) and analyzed the recorded time traces in realtime, and, depending

on the experiment, sent a feedback signal to the nano-positioning stage which

repositioned the sample accordingly.

2.5.2 Sample positioning

Both PFMs were employed with x, y, z - nano-positioning stages in or-

der to position the sample relative to the stationary optical trap. The stage

used on the Single Molecule PFM (P-561, Physik Instrumente, Germany) had

an unfortunate resonance frequency of ∼180 Hz which was easily excited by

ambient noise, causing a lateral vibration of the stage with a standard devia-

tion of ∼1 nm (see section 2.5.6.1), even under optimized conditions. There-

fore, the precision of a position measurement on this microscope could not ex-

ceed 1 nm. The stage attached to the Thermal Noise Imaging PFM (PDQ375,

Mad City Labs, WI, USA) had a resonance in the kilohertz range, which is

not as easily excited by ambient noise as the 180 Hz resonance.
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Positioning commands could be sent from the Realtime Target to both

stages at a rate of ∼1 kHz, sufficient for the position feedback required in this

work.

2.5.3 Laser stabilization

Changes in the signal of the single photodiode (SPD) reflect power

fluctuations in the trapping and tracking laser. This signal was monitored by

the Realtime Target. By use of a PID loop implemented in Labview Realtime

a feedback was calculated, which then acted on the injection current of the

laser, thereby eliminating small drifts in the laser power.

2.5.4 Fluorescence microscopy

The beam of a fluorescence excitation source (X-Cite 120Q, LDGI, ON,

Canada) was focused by a fluorescence coupling lens into the back focal plane

of the objective lens, thus achieving a homogeneous illumination of the sample

in the focal plane of the lens (blue dashed line in figure 2.6). Coupling of the

beam into the beam path was achieved by a filter set consisting of an excitation

filter (filter EX), an emission filter (filter EM) and a dichroic mirror (Chroma,

VT, USA). Fluorescence emitted from fluorophores in the focal plane (green

dashed line in figure 2.6) was then collected by the objective lens, separated

from stray light by the emission filter and focused by the tube lens onto a

CCD camera (Single Molecule PFM: iXon EMCCD, Andor, UK; Thermal

Noise Imaging PFM: SensiCam QE, PCO, Germany), where it formed an
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image of the fluorescing material. Fluorescence microscopy was used to image

fluorescent particles and fluorescently labeled biofilaments.

2.5.5 Brightfield microscopy

Both PFMs were equipped with a bright field illumination source (Col-

limated LED Light Source, red, Thorlabs, NJ, USA) which served to through-

illuminate the sample through the condenser lens. A bright field image of

the focal plane of the objective lens was then recorded by the CCD camera.

Brightfield microscopy was employed to image large (> 500 nm diameter) par-

ticles, as well as support structures employed in the single biofilament assay

(see section 5.2.3).

2.5.6 Stability and position detection resolution

In this work, it was desirable to achieve nanometer resolution in the

tracking of the trapped (tracer) particle. Instabilities which lead to a decrease

in the precision of the position measurement include fluctuations in the laser

power, fluctuations in the laser pointing, fluctuations in the laser phase, as

well as vibrating mechanical components (such as lenses, mirrors, the nano-

positioning stage, etc.) that are susceptible to excitations and drift [72]. The

laser and all mechanical components were carefully chosen or designed to min-

imize such instabilities. The resulting stability of both PFMs was measured

and is discussed below. For both PFMs particles of various diameters were

immobilized by adhesion to a glass substrate, and moved into the center of
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the trapping volume. Tracking of these immobilized particles then reveals the

uncertainty in the position detection of the PFMs.

2.5.6.1 Single Molecule PFM

Crystalaser During the experiments described in chapter 3 the Single Mole-

cule PFM was equipped with a Crystalaser (see section 2.5.1). The standard

deviation in a typical position measurement of one immobilized 1 µm bead

over a time of 5 s was 1.5 nm in the lateral directions, and 1 nm along the

optical axis at a sampling rate of 100 kHz, which is at the positioning noise

of the x, y, z - nano-positioning stage. This error is thus not a limitation of

the position detector; the limiting factor is the nano-positioning stage. This

outstanding stability of the PFM is demonstrated in figure 2.7. A 1 µm di-

ameter bead was immobilized on a glass cover slide, and scanned on a 10 nm

diameter circle laterally close to the focus (figure 2.7A). The measured particle

positions are shown in figure 2.7B. Each datapoint was integrated for 100 ms.

Clearly, the scanned circle can be recovered, with little distortion. It is diffi-

cult to stabilize the sample over time scales of several minutes. The coverslip

was attached to a support using vacuum grease, and showed under optimized

conditions a drift of ∼10 nm/minute for each axis. This long term stability

was sufficient for the experiments presented in this dissertation.

Small beads (∼200 nm in diameter) which scatter much less light2 could

2The scattering cross-section of a small dielectric sphere with diameter a is ∝ a6 [60];
therefore a 200 nm diameter particle scatters ∼15000 times less light than a 1 µm particle.
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Figure 2.7: Stability and resolution of the Single Molecule PFM. A - An
immobilized 1 µm diameter bead was scanned laterally, close to the focus of
the objective lens on a 10 nm circle. B - Measured positions of the circle scan.
Positions were sampled at 100 kHz, and every plotted datapoint is the integral
of 100 ms of position data.

not be tracked along the optical axis due to the Crystalaser’s comparably

high intensity noise. The Crystalaser was therefore replaced, and an Innolight

Mephisto used for all other experiments.

Innolight Mephisto Experiments on lipid droplets (see chapter 4) were

done using the Single Molecule PFM equipped with an Innolight Mephisto

laser. Axial tracking of 200 nm diameter particles could easily be accomplished

using this laser. Axial position measurements over 5 s (sampling frequency 100

kHz) had a standard deviation of ∼8 nm, less than the typical voxel size (10

nm) used during some of the data analysis for binning. The lateral position

error was ∼2 nm, dominated by a slow (1.5 Hz) resonance which corresponds

to the eigenfrequency of the optical table floating on nitrogen-pressurized iso-
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lators. It is likely that the condenser assembly shifted slightly with the motion

of the table, causing the laser beam to move on the detector. This issue was

avoided on the Thermal Noise Imaging PFM by use of a redesigned, much

lighter condenser assembly [71].

2.5.6.2 Thermal Noise Imaging PFM

The Thermal Noise Imaging PFM (equipped with an Innolight Me-

phisto laser) was used for thermal noise imaging experiments on single mi-

crotubules and collagen networks (chapters 5 and 6), using exclusively 200

nm diameter particles. For such a particle, this PFM performs slightly better

than the Single Molecule PFM, due to the elimination of the 1.5 Hz resonance

described above. The standard deviation in a typical position measurement of

one immobilized 200 nm diameter bead over a time of 5 s was 1 nm laterally

and 7 nm along the optical axis, at a bandwidth of 1 MHz and sampling rate

of 100 kHz. This PFM uses the same sample chambers as the Single Molecule

PFM and consequently has the same long term stability of ∼10 nm/minute for

each axis, given by the drift of the sample chamber’s coverslips.
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Chapter 3

Detection of Sequential Bond Formation

The ability to track the position of a tracer particle with nanome-

ter precision is very important for the research described in this dissertation.

To demonstrate the outstanding precision in position detection that can be

achieved by use of a photonic force microscope (PFM, see chapter 2) the se-

quential formation of individual molecular bonds between a trapped particle

and a surface was resolved and is described in this chapter. As shown be-

low, the discussed method has direct impact on the study of the mechanical

properties of small biomolecules. This work was published in [7].

3.1 Introduction

Mechanical single molecule studies provide new mechanistic insight into

working and design principles of biomolecules not accessible by bulk methods.

For certain classes of biomolecules, such as molecular motors, mechanical prop-

erties are of direct importance to their function. For motor molecules, mechan-

ical measurements provide direct insight into the conversion of chemical energy

into mechanical work. For a more general class of biomolecules, mechanical

measurements reflect the conformational state of the probed molecule as well
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as changes of that state, since the mechanical properties can be seen as a result

of an elastic network of bonds formed within the biomolecule. The stability of

such a bond network is probed, for example, in single molecule unfolding ex-

periments [26, 33, 34]. These experiments provide new insight into the factors

determining bond stability and in turn elucidate the design principle for the

particular molecule or even its entire molecular class. Unfortunately, unfold-

ing experiments apply large forces to the molecule and are destructive while

conformational changes in most biomolecules are close to the thermal energy

regime. Non-destructive experiments have been performed successfully but

so far were limited to large molecules tens of nanometers in size and larger

[28, 64, 127, 128, 159]. Getting experimental access to smaller molecules in the

range of a few nanometers would be extremely beneficial. Molecules of this

size make up the majority of biomolecules and therefore access to this size

range will enable the study of a much wider range of phenomena on the sin-

gle molecule level than previously possible. Their small size will also make

it easier to compare in vitro and in silico single-molecule experiments [130],

thus improving our mechanistic insight into various phenomena such as ligand-

receptor interaction. Mechanical experiments on small molecules are challeng-

ing. The molecule of interest needs to be spanned between two surfaces which

may start to interact strongly at small separation distances via a complex in-

terplay of various types of attractive and repulsive intermolecular interactions.

In addition, the local geometry of the interacting surfaces may influence the

measurement. Therefore, it becomes important to establish criteria for single
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molecule conditions and the presence of specific or nonspecific interactions.

The work described in this chapter demonstrates that the residual ther-

mal motion of a tracer particle linked to the surface either by specific bonds

or nonspecific interactions contains a wealth of information about the local

binding conditions, even for nanometer size linker molecules. For the case of

the ligand-receptor pair biotin-avidin with a total length of approximately 5

nm (estimated from the crystal structure published in ref. [103]) the formation

of multiple specific bonds between the tracer particle and the surface could be

followed one after the other. Criteria were found to distinguish between spe-

cific and nonspecific bond formation from the three-dimensional distribution

of the position fluctuations of the tracer particle. To achieve this, the high

spatial resolution and high bandwidth position detector of the Single Molecule

PFM described in chapter 2 was used, which allowed following the particle’s

thermal fluctuations in three-dimensions. As shown below, all three compo-

nents - precision, bandwidth and three-dimensional detection - are important

to get reliable, quantitative data.

When a colloidal particle binds to a surface it is not completely im-

mobilized. Thermal forces (see section 2.2) act on the particle and cause

displacements about the point (or area) of contact, regardless of whether the

contact is formed by specific or nonspecific interactions. Typically, binding

takes place on fast time scales so that the immobilization leads to a strong

and sudden reduction in thermal position fluctuations. In the most drastic

case, the particle diffuses freely in solution while after binding it is confined

67



to displacements of just a few nanometers. In the case where the particle is

confined in an optical trap, the particle is initially constrained by the trap-

ping potential and, upon binding, it is additionally confined by the bond to

the surface. When the particle binds to the surface via a short linker, the

extent of the position fluctuations is dominated by the confinement through

the linker. Any change in linkage between the particle and the surface leads

to a change in the three-dimensional probability distribution of the particle’s

thermal position fluctuations. Such changes can either be caused by a change

in the linker length, a change in mechanical properties of the linker, or by

a change in the number of links formed. Most molecular events lead to an

abrupt change in position fluctuations allowing to temporally resolve molecu-

lar events if the particle’s position is recorded with sufficient bandwidth. If we

assume that the linker properties do not change before and after such molecu-

lar events, we can convert the three-dimensional probability distribution into

a three-dimensional energy landscape using Boltzmann statistics (see section

2.2.4) [39, 64]. In this way, we can extract quantitative information about

the contact’s properties as long as the probability distribution was measured

correctly, i.e. it was measured with sufficient spatial resolution and bandwidth.

The following sections will first focus on nonspecific interactions and

discuss the strong adhesion of a tracer particle to glass, as well as its weak

adhesion to a protein layer. Subsequently, single specific bonds and then mul-

tiple specific bonds are characterized. As we will see below, these interactions

can be clearly distinguished from each other.
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3.2 Materials and Methods

3.2.1 High bandwidth and high precision optical trapping

The Single Molecule PFM described in section 2.5 was used for the

experiments described in this chapter. This PFM has a position detection

precision of 1.5 nm laterally and 1 nm along the optical axis at a bandwidth of

1 MHz for tracer particles with 1µm diameter. Before each data acquisition

the PFM was calibrated in situ as discussed in section 2.3.2.

3.2.2 Surface preparation

15 mm diameter glass coverslips were immersed in Hellmanex II solution

(2% in deionized water, Hellma GmbH & Co. KG, Germany) and sonicated for

15 minutes. Subsequently, they were washed with and immersed in deionized

water and sonicated for another 15 minutes. This cleaning procedure was

repeated 3 times.

After drying with nitrogen gas, the coverslips were functionalized with

BSA (Rockland, PA, USA) and biotinylated BSA (B-BSA, Thermo Fisher

Scientific, IL, USA) via physisorption. Stock solutions of B-BSA (2 mg/ml)

in phosphate buffered saline (PBS) and BSA (2 mg/ml) in PBS were pre-

pared and mixed in a ratio of 1 to 100. The top surface of each coverslip

was homogeneously covered with 100 µl droplets of the BSA solution for the

non-biotinylated coverslips and BSA/B-BSA solution for the biotin function-

alized coverslips. The prepared coverslips were incubated for 20 min at room

temperature and afterwards rinsed with PBS.
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3.2.3 Particles

For single molecule experiments, 1 µm diameter polystyrene nano-

spheres covered with NeutrAvidin were acquired from Molecular Probes (In-

vitrogen, CA, USA).

The experiments on nonspecific binding to glass substrates were con-

ducted using carboxylated polystyrene nano-spheres of 1 µm diameter (Invit-

rogen, CA, USA). Note that the glass coverslip was not coated with BSA for

these experiments. The biotinylated tracer particles were prepared by silaniz-

ing 970 nm diameter silica beads (Bangs Laboratories, IN, USA) using an

APTES (2%) in acetone solution. Subsequently, NHS-Biotin (Thermo Fisher

Scientific, IL, USA) was used to covalently attach biotin to the glass beads.

3.3 Results and Discussion

3.3.1 Adhesion to glass

In this section, the nonspecific adhesion of a polystyrene tracer parti-

cle to a clean glass surface is explored as an example of a strong, nonspecific

interaction. A carboxylated polystyrene particle with diameter of 1 µm is

suspended in solution and manipulated towards the clean glass surface us-

ing optical tweezers (figure 3.1). Initially, the bead diffuses within the trap,

but binds strongly to the glass coverslip after coming into contact with the

surface. This event is referred to as “nonspecific” since it does not rely on

the specific interaction between two biomolecules. Upon the binding event,

the particle’s mean position is fixed at the location at which it adsorbed to
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the glass substrate. Its movement is reduced to thermal fluctuations around

its contact area, which depend on the strength of adhesion between particle

and substrate, and the position noise resulting from the mechanical stability

of the experimental setup. Note that the axial as well as lateral fluctuations

are reduced to the same order of magnitude. The residual fluctuations with

standard deviations of 1.5 nm along the lateral and 1 nm along the axial di-

rection are at the resolution limit (see section 2.5.6.1). The difference between

the magnitude of thermal fluctuations when the trapping potential is the only

constraint on the particle’s motion, and the residual fluctuations of the im-

mobilized particle, defines the dynamic range of our method. Binding events

can be characterized by the additional confinement they put on the thermal

position fluctuations of the particle. Binding events are easily identified by the

abrupt change in the magnitude of the thermal fluctuations along at least one

dimension. These abrupt changes occur because of the separation of timescales

between fast molecular scale events that cause the binding and the relatively

slow thermal motion of the tracer particle. The discrete changes in fluctuation

amplitudes make it possible to count the number of events that occur during

binding of the particle to the surface.

3.3.2 Adhesion to a protein layer

For the present method to be applicable to the study of specific in-

teractions, nonspecific binding as described above has to be prevented. In

optical trapping experiments, this is typically achieved by coating the surfaces
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Figure 3.1: Reduction of thermal position fluctuations by nonspecific surface
immobilization. A - A carboxylate modified latex particle of 1 µm diameter
was trapped with weak optical tweezers and its position in x, y and z direction
tracked within the trapping volume. The time traces in C show its thermal
motion in all three dimensions. B - After several seconds, the trap was ma-
nipulated towards the substrate and the particle bound irreversibly to it. This
nonspecific binding event can be seen as a strong reduction in the thermal
fluctuations of the position data along all directions.
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with blocking reagents such as bovine serum albumin (BSA), casein [64, 134]

or polyethylenglycol (PEG) [116, 144]. To demonstrate the efficiency of such

blocking, a 1 µm diameter NeutrAvidin coated polystyrene particle and, subse-

quently, a 970 nm diameter biotinylated silica particle was trapped in solution

and manipulated toward a glass coverslip coated with BSA. Figure 3.2 and

A B C

D

Figure 3.2: Shielding nonspecific interactions with a monolayer of BSA. An
avidin coated latex particle of 1 µm diameter was trapped (A) and pressed onto
a substrate which had been functionalized with a monolayer of BSA (B). The
accessible trapping volume is reduced as the substrate is moved closer towards
the center of the trap as indicated by the reduced fluctuations along the z-axis
(D). However, other than the reduced explorable space, no interaction between
particle and substrate is detected. The particle can still move to the top of the
trapping volume, and the lateral fluctuations (not shown) do not change in
form. C - After more than 20 s, the trap was rapidly manipulated away from
the substrate. Immediately, the entire trapping volume becomes available for
diffusion, as the particle is no longer restricted by the substrate.

figure 3.3 show time series of position fluctuations for each of the trapped par-

ticles. Initially, the diffusion of both particles was only confined by the spatial

extent of the trapping volume (figure 3.2A and 3.3A). Slowly each trapped par-
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ticle was then pressed onto the substrate (figure 3.2B and 3.3B). The further

the substrate moved into the trapping volume, the less volume was available

for Brownian motion of the particles (reduced axial fluctuation amplitude),

and the more often the particles collided with the substrate, thus increasing

the probability for a binding event to occur. For the NeutrAvidin coated

polystyrene particle, even after pressing it onto the substrate for more than 20

s, no binding event occurred. This is evident from the fact that the maximum

value of the axial fluctuations remained unchanged (figure 3.2D, end of phase

II). After manipulating the trap away from the surface, the particle’s position

fluctuations returned to their original levels thus indicating that no binding

event occurred (figure 3.2D, phase III). NeutrAvidin functionalized particles

could be pressed onto BSA coated substrates for several minutes without show-

ing any indication of a binding event in the position traces. However, in the

case of the biotinylated silica particle, a binding event occurred within seconds

while the trap was moved closer to the substrate. The binding event is clearly

indicated by the strong reduction of the axial thermal fluctuations of the tracer

particle (figure 3.3D). In contrast to nonspecific binding to a bare glass surface,

the residual fluctuations are in general much larger and parallel to the surface.

The 2D histogram of the tracer particle’s lateral position fluctuations reveals

an asymmetric distribution (figure 3.3E). This asymmetry is to be expected,

as the nonspecific bonds originating from the interaction of BSA residues with

biotin or from direct contact of the silica tracer particle to BSA form under

random orientation, each leading to a distinct, three-dimensional probability
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D

E

Figure 3.3: Nonspecific interactions with a BSA functionalized surface. A
biotin coated silica particle of 970 nm diameter was trapped (A) and pressed
onto a substrate which had been functionalized with a monolayer of BSA (B).
The accessible trapping volume is reduced as the substrate is moved closer
towards the center of the trap as indicated by the reduction in fluctuations
along the z-axis (D). After many collisions with the substrate, a nonspecific
bond forms between the biotin molecules on the tracer particle and the BSA
layer on the substrate (C). This binding event can clearly be deduced from the
sharp reduction of the axial fluctuations. The reduction in the lateral position
fluctuations is noticeable but small, in contrast to the situation in figure 3.1.
E - The position histogram of the lateral movement of the particle after the
binding event shows an asymmetric geometric form.
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distribution of the tracer particle position. This attribute suggests that the

shape and lateral extent of the distributions could serve as practical indicators

to distinguish between specific and nonspecific binding events.

3.3.3 Identification of single molecule bonds

To characterize the probability distributions that result from specific

bonds, the well-characterized ligand-receptor complex biotin-avidin [38, 45, 48,

59, 74, 83, 87] was studied. The receptor molecule, NeutrAvidin, was covalently

bound to a 1 µm polystyrene particle and its ligand, biotin, was covalently cou-

pled to the protein BSA (figure 3.4A). Since BSA is known to bind strongly

to glass surfaces [14], it can be used to provide a ligand-functionalized glass

surface. As shown above, BSA also fulfils an additional function of blocking

nonspecific interactions between the glass surface and the NeutrAvidin coated

particle. In order to achieve single-molecule conditions, the number of specific

biotin binding sites was reduced by co-adsorption of plain BSA so that 1 in

100 BSA molecules was functionalized with biotin. Figure 3.4C shows the re-

duction of axial position fluctuations upon formation of a single biotin-avidin

bond. The maximal lateral peak-to-peak fluctuations are also reduced, but

their reduction is much smaller. The lateral fluctuations are at least two or-

ders of magnitude larger than for strong, nonspecific binding events (compare

with figure 3.1). Note the radial symmetric shape of the lateral position fluctu-

ations. Radial symmetry is to be expected under the conditions that the single

specific bond is formed by a linker that does not have a preferred orientation
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A B

C

D

Figure 3.4: Specific interaction between an avidin coated particle and a bi-
otinylated surface. A - An avidin coated latex particle of 1 µm diameter was
trapped in solution using optical tweezers. The particle explores the trapping
volume by diffusion until it is pressed against a substrate sparsely functional-
ized with biotinylated BSA (one in hundred BSA molecules was functionalized
with biotin) (B). After several seconds, a reduction of the lateral and axial
position fluctuations indicate the formation of one specific biotin-avidin bond
(C).D - A two-dimensional histogram of the particle’s lateral movement shows
circular symmetry as expected for a single flexible molecular bond.
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and the non-specific particle-surface interaction is shielded homogeneously by

the blocking reagent. Further evidence for the formation of a single molecu-

lar bond can be obtained by considering the length of the molecular tether.

The experimental assay can be approximated by a “ball on a string” - model

(figure 3.5A). According to the model, the maximal lateral excursion of the

A B

Figure 3.5: Geometrical amplification effect. A - A simple geometrical model
for a particle with radius R tethered by a single molecule with length l to the
substrate. The linker allows the particle to move parallel to the surface with
a distance 2 ∆xmax. B - The maximal lateral displacement of the particle as a
function of linker length for particles of 500 nm and 100 nm in radius. Please
note the increased sensitivity for very short linker lengths.

tracer particle from the anchor point is given by the radius of the particle and

the length of the tether molecule. With a known particle size, an estimate

for the tether length can be extracted from the lateral fluctuation data (fig-

ure 3.5B). Assuming a bead diameter of 1000 nm, the final amplitude (peak

to peak)1 of the lateral fluctuations of approximately 150 nm corresponds to

a linker length of 6 nm. In our assay, the tether consists of biotin residues

that are attached to the BSA substrate by linkers with a length of about 2

1The peak-to-peak amplitude was estimated as 6σ, where σ is the mean of the standard
deviations of the thermal motion in x and y direction.
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nm, and from a single avidin tetramer (approximately 5 nm, estimated from

the crystal structure published in ref. [103]). Under the assumption that the

linker is free to pivot around its point of attachment to the BSA substrate,

these considerations yield a total theoretical tether length of 7 nm, which is

in excellent agreement with the measured linker length. The experimentally

determined linker length is a lower bound for the true length because of the

additional restriction of lateral fluctuations by the optical trap. In summary,

the agreement between theoretical and measured linker length, together with

the radial symmetric shape of the distribution of the position fluctuations, pro-

vide strong evidence for the formation of a single specific biotin-avidin bond

between the tracer particle and the substrate.

3.3.4 Formation of multiple molecular bonds

In the following it is shown how the formation of two or more specific

bonds can be distinguished from the formation of an individual bond. Figure

6 shows an extended time series of the x, y and z position fluctuations of a

trapped tracer particle recorded under the same experimental conditions as

described in the previous section. Several seconds after the first binding event

occurred, the magnitude of the axial and lateral fluctuations were abruptly

reduced and the tracer particle was pulled closer to the substrate. In addition,

the average x and y position changed slightly (figure 3.6, second bond). This

event is interpreted as the formation of a second specific molecular bond be-

tween the substrate and the tracer particle. If a second bond forms between
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Figure 3.6: Formation of multiple specific bonds. An avidin coated latex
particle of 1 µm diameter was weakly trapped in solution and then brought
into contact with a substrate coated with biotinylated BSA / BSA in ratio
1:100. Note that this is the same particle and same dataset as shown in figure
3.4. The position fluctuations show two distinct events of reduction in the
fluctuation amplitude indicating the formation of two specific bonds (top).
(bottom) The two-dimensional lateral histograms for the unbound particle
and the particle tethered by a single bond feature circular symmetry, while
the lateral position histogram for the doubly tethered bead shows a strong
ellipticity.
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the particle and the substrate, the magnitude of the position fluctuations is

expected to decrease because of the stronger confinement of the particle. The

strength of the additional confinement depends on parameters such as the dis-

tance between the two anchor points on the surface and the magnitude of the

residual non-specific particle-surface interaction. The formation of the second

bond also shifts the center of the fluctuations to a position half way between

the two bonds if both linkers have the same length, as is the case in our assay.

This change in average position can be used to triangulate the location of the

bonds on the surface. Finally, and most importantly, the lateral fluctuations

along the axis connecting the two bonds are smaller than the fluctuations

perpendicular to this axis, leading to an elliptically shaped probability dis-

tribution which clearly indicates the formation of a second bond and can be

used again to triangulate the position of bonds on the surface. The formation

of additional specific bonds follows essentially the same pattern. They lead

to additional abrupt changes in the magnitude of fluctuations, a shift in the

average position and a change in the shape of the lateral position histogram.

However, the magnitude of these changes gets smaller with every bond formed

so that the changes eventually become difficult to detect. Up to three binding

events could be detected in this way, limited by the number of bonds available

under the given experimental conditions and not the by the resolution of the

method.
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3.3.5 On the correlation of temporal and spatial resolution

The quality of the position histogram, and therefore the quality of the

calculated energy landscape, depends on the number of statistically indepen-

dent points in the histogram. Long observation times and a high sampling rate

ensure a precise measurement of the energy landscape. However, oversampling

does not improve the quality of the histogram because the particle needs suffi-

cient time to explore the confining energy landscape. The relevant time scale

is the position autocorrelation time of the particle, τk = γ0/keff, determined by

the local viscous drag γ0 on the particle and the effective spring constant keff of

the potential formed by the optical trap and the linkage to the surface which is

assumed to be a harmonic potential. For strongly confined particles, τk can be

as short as microseconds, which underlines the need for fast three-dimensional

position detection. In addition, fast position detection, i.e. a short integration

time, is also required to measure correct probability distributions and energy

landscapes. If slow position detectors (∼1 kHz range) are used, they would,

for example, allow a free 1 µm particle to diffuse approximately 30 nm within

the integration time of 1 ms or 100 nm within 10 ms (see also section 2.3.1).

Such long integration times eventually allow the tracer particle to sample the

confining potential several times during the acquisition of one position data

point, resulting in averaging of the particle’s position with a bias towards the

energetically favorable positions. Thus, the position signal no longer repre-

sents the particle’s true position. Consequently, the probability distributions,

as well as the derived energy landscapes, are distorted. In general, low-pass
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filtering leads to a collapse of the probability distribution making it very diffi-

cult to count multiple binding events and to distinguish between specific and

nonspecific binding events.

3.4 Conclusions

Observing the reduction of thermal position fluctuations of the tracer

particle has been used in the single-molecule field to detect binding events for

some time. However, the molecules under investigation were typically long,

spanning tens of nanometers to micrometers. The method presented here

brings the analysis of the thermal position fluctuations of tethered particles to

a completely new level by combining high-spatial-resolution position measure-

ments in three dimensions with high-bandwidth detection. This way, the prob-

lems of confirming single molecule conditions and discriminating against non-

specific interactions are solved, which are both key issues for single molecule

studies on small molecules and molecular complexes.

In summary, the method shown here brings quantitative mechanical

single molecule studies from a small number of specific molecules to the ma-

jority of proteins, paving the way for the investigation of a wide range of new

phenomena on the single molecule level.
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Chapter 4

Lipid droplets as a handle for precise motor

transport measurements

The previous chapter shows that specific bonds between small biomo-

lecules can be probed using a PFM. We will now turn our attention to larger,

but dynamic molecules, and show that processes far from equilibrium like

transport by molecular motors can also be studied with outstanding precision.

The work described in this chapter was done in collaboration with Rafael

Longoria.1 Rafael prepared the assay, including purification of lipid droplets,

polymerization of microtubules and their immobilization on glass cover slides,

and performed the video microscopy experiments. The author performed all

experiments involving the PFM, devised and implemented a scheme to deter-

mine a droplet’s suitability as a tracer particle, and analyzed all photonic force

microscopy data sets.

1Text and figures in this chapter were coauthored with Rafael Longoria and appear as a
duplicate in his dissertation by approval of his supervisor.
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4.1 Introduction

Molecular motor proteins are responsible for long-range transport of

vesicles and organelles in eukaryotic cells. In animal cells, motors of the kinesin

family move cargo towards the plus ends of microtubules while cytoplasmic

dynein carries the cargos towards the minus ends, typically arranged at the

centrosome. Much of our understanding of how molecular motors function

has benefited from single molecule measurements in vitro where individual

motors are attached to microspheres nonspecifically. Yet transport of cargos in

living cells is very different: they carry multiple similar and dissimilar motors

[75, 125, 129], as well as motor light chains and cofactors [46, 143, 148]. The

dynactin complex, a motor cofactor, is of particular interest as it bridges the

cargo and the microtubule along which it diffuses without force generation

[21]. Dynactin can also interact with both polarity motors [22] and alter

their function [70, 76]. Moreover, the organization and stoichiometry of the

different proteins on the cargo as well as the way they are attached to it can be

important in determining the ensuing dynamics. It is currently not possible

to reconstitute such transport complexes on plastic beads. It is, therefore,

important to study the native motor complex in order to understand transport

beyond the isolated motor function.

Precision measurements on individual endogenous cargos in living cells

have recently been demonstrated [52, 125, 126], and used to study the coordi-

nation of opposite polarity motors [75] and motor regulation [147]. However,

in vivo measurements suffer from three shortcomings that reduce the ability to
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dissect the details of motor dynamics and function with high precision. First,

the heterogeneity of the cell can result in local changes in motor dynamics and

compromise the high precision detection. Second, the crowded cell and mi-

crotubule tracks limit the observation time of individual cargos in isolation as

other cargos can bump into them. Third, genetic manipulation can indirectly

alter parts of the transport complex not targeted by the mutation making it

difficult to dissect function. For instance, it was previously shown that genetic

reduction of kinesin results in a concurrent reduction of cargo-bound dynein,

even though the overall cellular expression of dynein is not altered [125].

To circumvent these limitations, yet study the native transport com-

plex, the motility of purified cargo was reconstituted “ex vivo”. The term ex

vivo is used as opposed to in vitro to differentiate between the motility of pu-

rified organelles as discussed in this work, from other works using isolated mo-

tors or motors attached to microspheres. Previous works using purified cargos

extracted from different systems have focused on vesicles [53, 90, 99, 110, 129]

limiting their use for high precision measurements in an optical trap, as vesi-

cles are floppy and can deform in the trap. A large trap laser power is also

necessary to manipulate them due to their small index of refraction. It has

been recently demonstrated that sucrose filled vesicles can be easily trapped

and do not deform due to osmotic pressure [9]. However, such sucrose filled

vesicles do not naturally occur and are thus not useful for studying endogenous

transport complexes.

Here, the ex vivo transport of lipid droplets purified from Drosophila
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embryos is reconstituted. Unlike vesicles, lipid droplets are refractile spheres

of neutral lipids which have been previously used for optical trap measure-

ments in vivo [75, 125]. Here, a PFM is used to characterize their suitability

for high precision measurements ex-vivo and monitor motor dynamics at an

unprecedented bandwidth.

Using the PFM it was possible to follow the dynamics of cargo-mi-

crotubule interaction with microsecond temporal resolution. For example, by

following the position of a microtubule-bound cargo, it appears that the un-

binding of one of the cargo-microtubule tethers can correlate with the onset

of transport.

4.2 Materials and Methods

4.2.1 Lipid droplet purification

Wild-type Drosophila embryos 0-3 hrs old were collected on yeast-agar

plates, washed with ddH2O and dechorionated with 50%/50% v/v bleach/wa-

ter solution for 2-3 min. Embryos were gently homogenized with a Teflon-

pestle in lysis buffer (62.5 mM K2-PIPES, 1 mM EGTA, 5 mM MgCl2, pH

7.2) supplemented with 1X protease inhibitor cocktail (Roche cOmplete UL-

TRA mini) and 5 mM DTT. Embryo lysate was centrifuged for 10 min at

10,000 rpm at 4 ◦C and the top layer of the post-nuclear supernatant (PNS)

was collected via a cold glass pipette. This fraction is enriched with lipid

droplets. DTT and protease inhibitor supplements were added to the PNS

fraction.
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4.2.2 Motility assays

Microtubules were grown by suspending 4µg of unlabeled tubulin and

0.8µg of rhodamine labeled tubulin (T240 and T590M respectively, Cytoskele-

ton, CO, USA) in 25µl BRB80 (80 mM PIPES, 1 mM EGTA, 2 mM MgCl2,

pH 6.8) supplemented with 1 mM GTP and incubating at 37◦C for 20 min.

After polymerization, microtubules were stabilized by resuspension in BRB80

supplemented with 20 µM taxol.

The microtubules were deposited into flow chambers made with 0.02%

Poly-L-lysine treated coverslips separated by a spacer. All surfaces were

blocked using 5 mg/ml casein in blocking buffer (35mM PIPES, 5mMMg2SO4,

1 mM EGTA, 0.5 mM EDTA, pH 7.2) supplemented with 1 mM GTP and

20 µM taxol. Lipid droplet motility was observed in motility buffer (62.5mM

K2-PIPES, 1 mM EGTA, 5 mMMgCl2, pH 7.2) supplemented with 1mM ATP,

5 mM DTT, 20 µM taxol and an oxygen-scavenging system consisting of 50

U/ml glucose oxidase, 500 U/mL catalase and 12.5 mM glucose.

4.2.3 Polystyrene beads

NIST certified polystyrene beads were acquired from BangsLabs (IN,

USA), with mean diameter± standard error of d = 506±6 nm and d = 990±30

nm, henceforth referred to as 500 nm and 1 µm beads, respectively.
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4.2.4 High bandwidth and high precision optical trapping

The Single Molecule PFM described in section 2.5 was used for the

experiments described in this chapter. This PFM has a position detection

precision of 1.5 nm (2 nm) laterally and 1 nm (8 nm) along the optical axis at

a bandwidth of 1 MHz for tracer particles with 1µm (200 nm) diameter.

4.2.5 Linearization of the detector

The relation between QPD response and particle position is approxi-

mately linear only close to the center of the trapping volume (see section 2.3).

We have seen (section 2.3) that if a 500 nm diameter polystyrene particle is

deflected more than ∼100 nm laterally from the focus we may no longer treat

the detector as linear. It is reasonable to expect (and we will see below) that a

lipid droplet of a similar size that actively generates forces against a weak opti-

cal trap will be deflected much further than 100 nm from the focus. Therefore,

for high precision experiments, the detector’s response must be linearized. A

method to linearize and simultaneously calibrate the detector is described in

section 2.3.2. For calibration, this method relies on knowledge of the trapped

particle’s radius. However, here we are interested in calibrating the response

of a diffusing lipid droplet whose radius is unknown. Thus, we do not know its

diffusion constant D which is necessary to calculate the local slope of the de-

tector’s response curve using equation 2.45. We may however set the diffusion

constant to any arbitrary value, which is equivalent to using arbitrary units for

the droplet’s diameter. The linearization and calibration procedure described
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in section 2.3.2 then yields a transformation that linearizes the detector, but

transforms the detector’s output voltage into arbitrary units of position. In

other words while we can linearize the detector, the resulting linearized po-

sition signal is still uncalibrated, and we will refer to it as the uncalibrated

position signal.

For each trapped particle, a 12 s-long time trace of its position fluc-

tuations was recorded at 100 kHz at the beginning of each experimental run.

From this time trace, the transformation to linearize the detector was com-

puted (see section 2.3.2). For all work described in this chapter all recorded

detector responses were first linearized into uncalibrated position signals, even

if this is not explicitly mentioned hereafter.

4.2.6 Calibration of position signal and determination of particle
diameters

The uncalibrated position signal was calibrated as described by Tolic-

Nørrelykke et al. [139] since their method of calibration does not require any

knowledge of the radius of the trapped particle. In brief, four windows of 10 s

each of position signal were recorded at a sampling frequency of 100 kHz while

applying a sinusoidal lateral motion (amplitude 100 nm, frequency 40 Hz) to

the sample chamber. The power spectral density (PSD) of each window was

computed, and the four PSDs were averaged. From the power in the peak at

the oscillation frequency and the corner frequency of the PSD (see below) the

sensitivity of the detector (see section 2.3) was determined.
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A fit of the full hydrodynamic theory to the window- and block-averaged

PSD [10] yields the corner frequency and the uncalibrated diffusion constant

of the trapped particle. The full hydrodynamic theory requires knowledge of

the diffusing particle’s mass density. The mass density of lipid droplets was

assumed to equal 930 kg/m3.2 The density enters only as a correction factor

in the fit. The particle size computed using the fit is effectively insensitive to

the precise value of the density used: the measured size changes only by 0.1%

when the density changes by 50%. The goodness of fit is given by the weighted

sum of square errors (henceforth called SSE), which is defined as (following

[10]):

SSE = nWnB

N ′∑
k=1

(
PExperiment
k

P Theory
k

− 1

)2

(4.1)

where nW is the number of windows and nB the number of points per block.

The sum runs over all data points in the averaged and blocked PSD, and

Pk is the measured or theoretical PSD as indicated by the superscript. The

uncalibrated diffusion constant in arbitrary units found by the fit was cali-

brated using the sensitivity. The particle’s diameter d was calculated from the

calibrated diffusion constant D by the Stokes-Einstein relation

d =
kBT

3πηD
, (4.2)

where T is the temperature. The viscosity η of the buffer was assumed to be

equal to the viscosity of water at 26 ◦C.

2This value was estimated from the mass density of the neutral lipid tricaprin, see [98].
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4.2.7 Determination of spring constants

The spring constant of the optical trap can in principle be found from

the corner frequency of the PSD (see section 2.2.2) and thus could be extracted

from the calibration procedure described above. However, from repeated mea-

surements on the same trapped particle this approach was empirically found

to lead to a large scatter in determined spring constants.

It appears that the extraction of the spring constant by Boltzmann

statistics from the spatial probability distribution of the trapped particle (see

equation 2.39) leads to a more precise measurement. This method was chosen

here.

For each measurement, a 12 s long time trace of positions of the trapped

particle was recorded at a sampling frequency of 100 kHz, linearized and cali-

brated. From these data one-dimensional spatial probability distributions were

computed and the spring constants extracted.

4.3 Results

4.3.1 Long range motility of lipid droplets ex vivo

Lipid droplets in Drosophila embryos exhibit bidirectional motion along

microtubules. It has previously been shown that the molecular motors kinesin-

1 and cytoplasmic dynein, together with a multitude of motor cofactors form

the motor complex responsible for this transport of the lipid droplets in the

embryos [17, 47, 75, 125, 149]. To reconstitute cargo transport ex vivo, lipid
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droplets from early Drosophila embryos were purified (see section 4.2.1). In

microtubule
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Figure 4.1: Purified lipid droplets can exhibit long-range transport in vitro.
A - Video frames showing a lipid droplet being transported along a microtubule
attached to the microscope slide and imaged in DIC. Scale bar is 1 µm.
B - Position traces of various droplets show that they are transported at
velocities characteristic of molecular motors of around 400-1000 nm/s. Data
taken by Rafael Longoria.

order to test whether the motor-cargo complexes attached to the purified

droplets remain functional, lipid droplets were trapped with optical tweezers,

positioned over a taxol stabilized microtubule attached to a glass coverslip,

and released from the trap. Lipid droplets attached specifically to micro-

tubules and many moved several micrometers, often after multiple seconds of

fluctuating in place (see below). Figure 4.1A shows an example of long-range

motility of a lipid droplet measured by video microscopy. Figure 4.1B shows

traces of other droplets, moving with velocities of a few hundred nanometers

per second, typical of both kinesin- and dynein- transported cargos. These
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experiments demonstrate that motors attached to the droplets survive the

purification process and remained functional.

4.3.2 Purified lipid droplets are suitable tracer particles for high-
resolution experiments

Tracer particles for high-resolution optical trapping experiments need

to be spherical, homogeneous, and stable over time. In addition, their index of

refraction should be significantly higher than the surrounding medium. Since

the droplets cause a strong contrast in DIC microscopy, the latter requirement

is fulfilled. However, the other requirements are more difficult to confirm

because the images of the droplets are diffraction limited and look perfectly

homogeneous and round most of the time in bright-field and DIC contrast.

Another challenge is that their diameter varies and needs to be determined for

calibrated force and position measurements.

4.3.2.1 Roundness and homogeneity of the droplets

If a droplet is not spherical, its rotational motion would cause artifacts

in the position signal by scattering light into different directions depending on

its rotational orientation. Due to the slow timescales of rotational diffusion,

the power spectrum of an aspherical particle is expected to be elevated at

low frequencies [82, 92]. A similar effect is expected for particles with a het-

erogeneous index of refraction. Thus, the power spectra of trapped droplets

were inspected and compared to the analytical expression for the spectrum of

a spherical particle confined by a harmonic potential. To obtain the highest
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precision, the analytical expression derived from the full hydrodynamic theory

[10] was used (see section 2.2.3). To quantify the agreement between the an-

alytical theory and the data, the goodness of the fit was calculated, given by

the weighted sum of square errors (SSE, see equation 4.1). For reference, first

the PSD of a 1 µm diameter polystyrene bead, as is commonly used as a tracer

particle in single molecule experiments (figure 4.2A, circles) was inspected, and

compared to the analytical fit. The graph shows that the analytical expression

fits the data exceptionally well with a SSE of 0.027, which we will use as a ref-

erence for an excellent fit. Figure 4.2A shows the PSDs for two different lipid

droplets (circles and stars). By visual inspection of the graphs, it is obvious

that the fit to the PSD of the first droplet is much better (SSE = 0.029 ) than

the fit to the PSD of the second droplet (SSE = 0.175). For the latter, the fit

fails especially at low frequencies (dashed oval), as expected for a non-spherical

and/or non-homogeneous particle. Since it is possible that the roundness and

the homogeneity of the lipid droplets depend on their diameter, the SSE of

the fit was plotted versus the measured diameter (see section 4.2.6) for each

droplet (figure 4.2B). As a reference, the graph also shows SSEs of 500 nm

and 1 µm beads (squares and triangles). Evidently, most lipid droplets (cir-

cles) have a goodness of fit comparable to that of the reference beads. Larger

lipid droplets (> 1µm diameter) tend to show significantly larger SSEs (stars)

and therefore are problematic for high resolution experiments. To establish an

empirical standard, all lipid droplets with an SSE falling within four standard

deviations of that of the standard beads were accepted as suitable for high
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Figure 4.2: The goodness of fit to the droplets’ power spectral density (PSD)
reveals that most lipid droplets are spherical and homogenous. A - Power
spectral density plots of the thermal motion of an optically trapped 1 µm
diameter polystyrene bead (black triangles) and of the thermal motion of op-
tically trapped lipid droplets (red circles and green stars). Analytical fits of
the full hydrodynamic theory for the diffusion of a spherical particle in a har-
monic potential are shown as black lines. By visual inspection, it is clear that
the theory fits the bead’s PSD (black triangles) and the PSD of the first lipid
droplet (red circles) very well, but fails to fit the PSD of the second droplet
(green stars). The PSD of an aspherical particle is elevated at low frequencies
(dashed ellipse), and can no longer be correctly fit by the analytical theory.
This indicates that the first droplet was as spherical and homogeneous as
the polystyrene bead, while the second droplet was not. B - The weighted
sum of square errors (SSE) of the fit of the analytical theory to the PSD
as shown in A is plotted for lipid droplets (red circles and green stars) and
reference beads (500nm diameter: black squares, 1 µm diameter, black trian-
gles) versus their diameter which was determined from the fit. Most droplets
have SSEs comparable to the SSEs of the reference particles. The larger the
droplet, the more likely it is to have a high SSE. We empirically set a cutoff
at 〈SSEbeads〉 + 4σbeads (dashed line). Droplets with SSEs above this cutoff
were discarded and not used in further analysis.
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resolution measurements.

4.3.2.2 Droplet size distribution

The diameter of purified lipid droplets varies significantly and there-

fore needs to be measured with sufficient precision for each droplet in situ.

Figure 4.3 shows the diameter distribution of all droplets that were found to

be spherical and homogeneous by the criterion set in the previous paragraph.

The distribution peaks at a diameter of approximately 660 nm, and the mean
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Figure 4.3: Lipid droplet size distribution. The diameter of all droplets was
measured using the procedure outlined in section 4.2.6. Only droplets that
met the criterion for a spherical and homogeneous particle are presented.

diameter of all suitable droplets was 700 nm with a standard deviation of ±150

nm, which agrees reasonably well with previous observations in vivo [75]. The

distribution appears to be cut off towards small droplet diameters. This is

due to smaller droplets being more difficult to visualize in simple bright-field

contrast as used in these experiments. Equipping the PFM with dark-field
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illumination will enable the use of small lipid droplets as tracer particles. Al-

ternatively, DIC microscopy can be used to visualize small droplets, however,

the required additional optics can distort the trapping and detection laser

beam, compromising the PFM’s high spatial tracking precision.

In order to determine the uncertainty in the size distribution, the diam-

eters of two different types of polystyrene beads (500 nm and 1 µm diameter)

were measured and compared to the diameters provided by the manufacturer.

For the 500 nm beads the manufacturer gave a d = 506 ± 6nm (mean di-

ameter ± standard error), and experimentally the diameter was found to be

dexp = 558 ± 14nm (N = 12 beads). For the 1 µm diameter beads the man-

ufacturer provided a diameter of d = 990 ± 30nm, while experiments yielded

dexp = 1036 ± 48nm (N = 11 beads). This method thus systematically over-

estimates the particle diameter by about 50 nm in this size range. The origin

of the systematic error is currently not known. If higher accuracy is desired

in the future, further measurements using reference beads could be made to

correct for this small systematic error.

4.3.3 Detector sensitivity and spring constant of the optical trap

Two important parameters for high resolution experiments are the po-

sition sensitivity that quantifies the response of the detector signal to a change

in position of the tracer particle within the trap, and the stiffness of the trap-

ping potential. High position sensitivity ensures that the signal rises above

the laser power noise and the noise of the electronics. For a PFM, the position
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sensitivity along the optical axis depends critically on the intensity of the for-

ward scattered laser light and with that on the diameter and the ratio of the

indices of refraction of the trapped particle and of the medium that surrounds

it. Figure 4.4 shows the dependence of lateral position sensitivity on particle
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Figure 4.4: Comparison of the position sensitivity of lipid droplets and
polystyrene beads. The lateral position sensitivity of lipid droplets (red cir-
cles) increases with their diameter. It is comparable to, albeit smaller than,
the position sensitivity of 500 nm diameter polystyrene beads (black squares)
and 1 µm diameter polystyrene beads (black triangles).

diameter, both for lipid droplets (circles) as well as for two different sizes of

polystyrene beads (500 nm beads: rectangles; 1 µm beads: triangles). The sen-

sitivity increases with increasing droplet and particle diameter. Importantly,

the position sensitivity for lipid droplets is only slightly smaller than that of

500 nm polystyrene particles, which qualifies them clearly for high precision

tracking experiments.

Like the position sensitivity, the spring constant of the trapping po-
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tential that confines the tracer particle depends on the ratio of the indices of

refraction of the particle and of the surrounding medium and the diameter of

the particle. High trapping efficiency has two advantages: Less laser power

is necessary in order to confine a particle with the same stiffness and there-

fore photodamage to the molecular motors and regulatory factors on the lipid

droplets can be minimized. The second advantage is that high trapping stiff-

ness increases the available force range and a wider range of collective force

generation by teams of motors can be probed.

Figure 4.5 shows the spring constant for lipid droplets in the diameter

range from 400 nm to 1 µm as well as for 500 nm, and 1 µm polystyrene

beads. The spring constant of lipid droplets is slightly smaller than that of

polystyrene beads of the same diameter. The spring constant for lipid droplets

increases approximately linearly over the relevant size range from 400 nm to

800 nm diameter, consistent with earlier observations [75, 111].

A low laser power of ∼13 mW was used at the sample which is well

below the power that was previously employed to trap lipid droplets in vivo

without observing any photodamage [75, 125]. Nevertheless, a typical droplet

of 700 nm diameter experiences a stiffness of 7.5 pN/µm even at this low laser

power. The stiffness can easily be increased by increasing the laser power to

what was previously used for in vivo force measurements and by increasing

the numerical aperture of the objective lens.

In summary, lipid droplets are comparable to plastic beads in terms

of position sensitivity as well as trap stiffness and therefore are ideal for high
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Figure 4.5: Comparison of the spring constant experienced by lipid droplets
and polystyrene beads at the same laser power. As expected, trapped lipid
droplets feel a stiffer confinement when their diameter increases. Between a
diameter of 400 nm and 800 nm this increase is approximately linear at a
slope of 17 pN / µm2 (black line). The confinement of 500 nm diameter (black
squares) and 1 µm diameter (black triangles) polystyrene beads is stronger,
but of the same order of magnitude.

resolution experiments.

4.3.4 Lipid droplets in high resolution binding and motility assays

In section 4.3.1 it was demonstrated that many purified lipid droplets

get transported along microtubules over large distances and therefore carry the

endogenous motors and possibly many other factors that regulate transport

in vivo. High resolution force and tracking experiments could be extremely

valuable in characterizing the mechanisms of motor regulation as they allow

distinguishing between different states of motors and the sequence of events

from initial binding to the onset of force generation and transport. To demon-
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strate that purified lipid droplets are at least as good as the plastic or silica

beads used in traditional motor assays, a series of binding experiments were

performed.

Figure 4.6A shows high bandwidth time traces of binding and transport

events for a lipid droplet that interacts with a microtubule. The coordinate
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Figure 4.6: Motors and motor cofactors bind the microtubule dynamically.
See page 102 for a detailed description.

system is oriented such that the x and y axes are parallel to the coverslip,

and the z-axis points into the direction of the optical axis. The microtubule is

oriented along the x-axis. Five regimes of behavior, labeled with the Roman

numbers I through V, can be observed. In regime I, the droplet was positioned

above the microtubule and its diffusion was confined by the optical trap in
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x, y and positive z direction. The accessible volume for diffusion towards the

microtubule (negative z-axis) is cut off due to collisions with the glass coverslip

and the microtubule. The mean z-position of the droplet and the magnitude

of its vertical fluctuations abruptly change at the transition from regime I to

regime II. This indicates the binding of the droplet to the microtubule via a

motor or a motor-cofactor present on the lipid droplet [64]. The possibility of

non-specific binding to the surface of each flow cell was excluded by bringing

lipid droplets in contact with the glass surface away from any microtubule

and monitoring the z trace for any binding event for at least 20 seconds. Lipid

droplets consistently did not bind to blocked surfaces; bonds formed only when

a droplet was placed directly above a microtubule.

Interestingly, no long-range motor-driven motion in the lateral direc-

tions is observed in regime II. This can be inferred from the x and y traces

since, on the time scale of seconds, there is no significant change in their mean

values after the initial shift induced by the binding event. Thus, the droplet

was tethered to the microtubule, but the tether was not generating active

forces against the trap, even though the ATP concentration in solution was

saturating. However, the PFM makes it possible to resolve the fast time scale

dynamics in regime II: Figure 4.6B shows an expanded view of 2 seconds of

position data along the microtubule before the droplet was tethered to the

microtubule (green trace) compared to 2 seconds of data after the droplet had

tethered (teal trace). On fast time scales transient shifts in the mean are visi-

ble for the tethered droplet, which are inconsistent with a single passive tether
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which would lead to uniform position fluctuations over such a time interval

[7, 64]. Rather, the data suggest that multiple tethers bridge the droplet to

the microtubule and that their combined effect is the inhibition of long-range

transport. Such antagonist tethers could be unregulated opposite polarity mo-

tors or a motor and dynactin, for example. Methods that allow distinguishing

between these two scenarios are presented in section 4.4. Several seconds af-

ter the initial binding event, the mean of the x trace rapidly increases, while

the means of the y and z trace change only slightly (regime III). This is the

signature of active transport of the droplet directed along the x-axis, which is

consistent with the orientation of the microtubule. A closer inspection of the

transition from regime II to regime III supports the interpretation of regime

II as resulting from more than one tether (figure 4.6C): Immediately before

active transport begins, the droplet is partially released from the microtubule

implying the release of a bond as indicated by the average position trace (or-

ange to yellow). The drastic change in the tethering is more clearly seen in the

three-dimensional scatter plot of the position data (black dots). The volume

accessible to the bead increases significantly just before the motor pulls the

droplet along the positive x-axis and directional transport begins, which is

followed by a stronger restriction of its motion also along the z-axis (yellow

to black). Thus the detailed analysis of the transition is consistent with the

idea that the initial binding event was caused by more than one molecule and

that directed transport was only initiated after one of them unbound from the

microtubule.
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The run of about 200 nm with approximately constant velocity ends

with the complete unbinding of the droplet from the microtubule which can be

seen from the large increase in axial fluctuations (region IV), and is indicative

of transport driven by only a single motor. Rebinding of the droplet to the

microtubule in region V leads to immediate transport of the droplet along the

positive x-axis. The motor in this case pulls the droplet out of the detection

region of the trap.

4.4 Discussion

In this work it was demonstrated that lipid droplets purified from

Drosophila embryos are close to as good as plastic beads for high resolution

experiments with the strong advantage that at least part of the endogenous

transport machinery is preserved on the cargo. No further preparation is re-

quired. However, this advantage comes with a new challenge. Different types

of motor proteins and cofactors participate in binding and transport and, in

addition, they may change their conformation and may be in different chem-

ical states. To dissect the entire process from cargo binding to regulation of

transport, it is important that different binding states can be distinguished

and ordered in time. The number of states that can be distinguished depends

on the number of parameters that can be extracted from position time traces

and the precision with which each parameter can be measured. For instance,

by measuring the stall force of lipid droplets inside Drosophila embryos, the

number of engaged motors was determined from the number of peaks in the
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force histograms. The number of states that can be distinguished this way de-

pends on the force range and was limited in previous measurements to about

seven (three for plus-end motors, three for minus-end motors, and one for the

unbound state) [125]. To distinguish these states, it was necessary to accu-

mulate hundreds of force measurements, averaging over many different motor

configurations. From these stall force measurements one can infer mechanisms

of motor regulation as was previously demonstrated [75, 125, 147]. However,

transport is a dynamic process and the cargo has multiple motors and cofactors

that can interact with the microtubule at various time scales and in different

ordering, often not leading to active transport. In this situation, high tempo-

ral and spatial resolution experiments in three dimensions, as described in this

work, are critical. The measurements in figure 4.6A demonstrate the poten-

tial of these experiments in determining the different states of the transport

complex dynamically.

As shown in chapter 3 and in ref. [64], passive binding events can be

analyzed in detail and parameters can be extracted that characterize each

state. Here, such parameters include the stiffness of the tether along three

axes, the tether length, and its resting position in three dimensions relative

to the anchor point on the microtubule. The precision with which the pa-

rameters can be measured depends on the time spent in a particular state;

long-lived states can be characterized with high precision. Being able to dis-

tinguish between states is a necessary condition for a systematic analysis of

motor regulation. However, before the mechanistic details of motor regula-
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tion can be understood, it is important to identify all molecules (and their

state) that determine the properties of a tether. This can be achieved using

an interplay between three different approaches: measurements on purified

motors and cofactors attached individually to microspheres, measurements on

lipid droplets where specific factors have been inhibited, and measurements on

droplets purified from different Drosophila mutants. Further, there are several

ways to improve the assay, such as polarity labeling of the microtubules.

In addition to showing that various states of cargo-microtubule inter-

action can be identified, the work described here also demonstrated that tran-

sition between states can be characterized using the three-dimensional motion

of the droplet (figure 4.6C). The high precision and high bandwidth measure-

ments provided unprecedented detail that made it possible to correlate the

unbinding of a tether with the onset of transport. However, the identity of

the molecules that form the tether is not known. Cataloging the mechani-

cal properties of the various motors and cofactors present on the droplets as

described above can solve this problem. Furthermore, novel methods for ex-

tracting tether (motors and cofactors) properties during transport will make

it possible to correlate the tether state with the velocity of the droplet and the

force produced.

Finally, the genetics of the fly is tractable and many well-characterized

mutants are available. Mutants that lack factors important for motor-driven

transport, and the lipid droplets purified from them, can be systematically

studied. The correlation of the loss of these factors with changes in the states
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observed in ex vivo experiments will then provide insight into the function

of each factor being investigated. This versatility is a strong advantage in

comparison with other in vitro assays with purified cargos [13, 52, 53, 90].

4.5 Conclusions

A new ex vivo assay was introduced that enables the study of molecu-

lar motor cooperativity and regulation of same- and opposite-polarity motors

with a higher level of complexity than that obtained via traditional in vitro

studies. The pesented approach uses purified endogenous lipid droplets from

Drosophila embryos as high precision tracer particles for use in photonic force

microscopy experiments. The purified droplets were shown to be comparable

to the plastic or silica beads typically used in in vitro studies, when carefully

selected based on the goodness of the fit to their power spectrum at low fre-

quency. Furthermore, high resolution position traces of droplets binding to

and getting transported along microtubules in vitro were presented. A wealth

of information can be extracted from these traces such as properties of the

tether and the averaged path of the droplet which allows studying the transi-

tions that lead to the motile state. Finally, the high resolution tracking data

can be used to investigate motor cooperativity and regulation. Genetic ma-

nipulation of Drosophila embryos may be used to decipher the role of each

factor in this complex process of motor driven transport regulation.
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Chapter 5

Thermal noise imaging of microtubules

It is the goal of the presented research to acquire three-dimensional

thermal noise images (see section 2.4) of the networks of biofilaments. The

stability, resolution and position detection bandwidth of a photonic force mi-

croscope as discussed in the previous chapters is indispensable for this imaging

technique. To demonstrate the power of thermal noise imaging, images of indi-

vidual microtubules (not cross-linked to a network) are presented and quanti-

tatively analyzed in this chapter. The author performed all research described

in this chapter in collaboration with Martin Kochanczyk. Both researchers

shared the workload of each described experiment, of the development of the

analytical theory, and of all analyses evenly, unless noted otherwise.

5.1 Introduction

Microtubules are a major component of the cytoskeleton of eukaryotic

cells and perform a diverse set of biological functions (see section 1.1.1). They

provide the mechanical strength to resist cellular deformations [1, 79], main-

tain cell polarization during directional cell migration [153], generate forces

to move chromosomes during mitosis [1, 37, 124], act as tracks for molecular

109



motor-based intracellular transport [117], and facilitate the exchange of me-

chanical signals with the cell’s extracellular environment [61]. A large set of

proteins binds to microtubules, leading, depending on the protein, to micro-

tubule stabilization, destabilization, bundling and cross-linking [30, 81]. Struc-

tures formed from microtubules can also specifically bind to other modules

within the cell. For example, the protein WHAMM1 binds to microtubules,

actin filaments and membranes, and can cross-link these structures [15, 37].

The mechanical properties of the formed structures depend on the prop-

erties of the individual filaments, and on their degree and fashion of connect-

edness. The biological functions of individual microtubules outlined above

appear to require them to be mechanically stiff: for example, to provide me-

chanical strength they must withstand buckling and stretching, and in order

to provide stable tracks for molecular motors they have to remain stationary

under an applied load. However, during their polymerization they must avoid

obstacles in the cytoplasm and find their binding partners, presumably by ther-

mal motion, in order to form structures, requiring them to be mechanically

flexible.

This apparent contradiction, and the desire to understand the proper-

ties of higher level structures made from individual filaments, has led to in-

creased recent interest in the mechanical properties of individual microtubules.

The focus has been to extract a single parameter quantifying their stiffness,

1WASP homolog-associated protein with actin, membranes and microtubules
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the persistence length lp (see section 1.3.2). Early studies found a seemingly

random spread of one order of magnitude in lp for individual in vitro polymer-

ized and taxol stabilized (see section 1.1.1) microtubules [36, 44]. It was later

realized that the anisotropic structure of microtubules gives rise to a contour

length lc dependent persistence length [95, 96, 135] (see figure 5.1), unifying

the previous measurements.

Figure 5.1: The persistence length of individual microtubules increases as a
function of contour length. Solid line: Analytical fit which takes the anisotropy
of the microtubular architecture into account. Reprinted from [96].

Short microtubules are flexible, presumably allowing them to efficiently

explore the volume in their vicinity by large transversal thermal fluctuations.

Thus, during its polymerization, a short microtubule can circumvent obstacles

in its path, and efficiently find binding partners in its surroundings. Micro-

tubules that have a contour length comparable to the diameter of eukaryotic

cells (∼12 µm) are fairly stiff materials, with a persistence length of several

millimeters, facilitating the biological functions outlined above [96].
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The transversal thermal fluctuations of biofilaments are important for

several reasons: First, they are of biological relevance, as explained above. Sec-

ond, if a filament is confined on both ends, its transversal fluctuations report on

its tension: The larger the tension, the smaller one expects its transversal fluc-

tuations to be. This feature is of special importance when considering networks

of filaments as discussed in section 1.3.4. Lastly, they can be used to measure

a filament’s persistence length. Measurements of transversal fluctuations serv-

ing this purpose have so far relied on video microscopy [44, 63, 96, 135], making

it difficult to characterize short microtubules (lc < 4 µm), due to the small

amplitude of their shape fluctuations. Additionally, video microscopy cannot

resolve transversal fluctuations of filaments cross-linked to three-dimensional

networks, which is currently a matter of great interest (see section 1.3.4).

In the following, thermal noise imaging is introduced as a novel quanti-

tative method to both image individual short microtubules, and extract their

transversal fluctuations. An analytical theory is formulated to extract the per-

sistence length from the acquired datasets. This method can be implemented

to image networks of filaments, as demonstrated in chapter 6.

5.2 Materials and Methods

5.2.1 Microtubule preparation

Microtubules were grown by suspending 4µg of unlabeled tubulin and

0.8µg of rhodamine labeled tubulin (T240 and T590M respectively, Cytoskele-

ton, CO, USA) in 25µl BRB80 (80 mM PIPES, 1 mM EGTA, 2 mM MgCl2,
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pH 6.8) supplemented with 1 mM GTP and incubating at 37◦C for 10 min to

30 min, depending on the desired microtubule length.

After polymerization, microtubules were stabilized by resuspension in

BRB80 supplemented with 20 µM taxol. Thus, all microtubules in this work

were taxol stabilized, even if this is not mentioned hereafter.

5.2.2 High bandwidth and high precision optical trapping

The Thermal Noise Imaging PFM described in section 2.5 was used for

the experiments described in this chapter. This PFM has a bandwidth of 1

MHz and position detection precision of 1 nm laterally and 7 nm along the

optical axis for tracer particles with 200 nm diameter. Before each data acqui-

sition the PFM was calibrated in situ as discussed in section 2.3.2. For some

of the shown datasets the PFM’s bandwidth was low-pass filtered to 50 kHz.

For a 200 nm diameter particle diffusing in water at room temperature, this

decrease in bandwidth introduces a ∼10 nm “motion blur” in the detection of

the particle’s position (see section 2.3.1). This uncertainty is at the bin-width

of the voxel occupancy (see section 2.2.4.2 and 2.4) and thus is not expected

to significantly decrease the fidelity of the measurement. Typical spring con-

stants of the potential confining the tracer particle were kx = 1.5 pN/µm,

ky = 1.0 pN/µm and kz = 0.15 pN/µm. The corresponding autocorrelation

times of the tracer particle’s diffusion were τx = 1.1 ms, τy = 1.7 ms, and

τz = 11 ms.
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5.2.3 Single filament assay

The experimental assay used to study the transversal thermal fluctua-

tion of microtubules by thermal noise imaging has to fulfill three requirements:

First, at least one end of each microtubule must to be grafted to a support to

keep it from diffusing away. With only one end grafted, the other “free” end is

expected to exhibit large transversal thermal fluctuations. If the microtubule

is spanned between two supports and both ends are immobilized, it is still

expected to transversally fluctuate between the supports, but less than in the

case with free end. Second, the introduced supports must have a negligible

refraction of the trapping and tracking beam of the PFM (see section 2.3).

Third, the supports must lift the microtubules far away from the boundaries

of the sample chamber, in order to ensure that neither the thermal motion

of the microtubules, nor the thermal motion of the tracer particles couple

hydrodynamically to those boundaries. When using the PFM to detect the

position of small particles (∼200 nm diameter) close to boundaries between

materials with different optical indices, position artifacts on the detector were

observed. These artifacts are likely caused by optical surface effects; however

their precise origin is not yet understood. Lifting the microtubules away from

the boundaries has the additional benefit of avoiding these position detection

artifacts.

These requirements were fulfilled in an assay designed by Dr. Martin

Kochanczyk: Microtubules were spanned in random directions over a holey

carbon film (hole width: 7µm, hole periodicity: 9µm) on a copper electron
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Figure 5.2: Single filament assay. A - Schematic of the assay. Microtubules
(green) were adhered to a holey carbon film supported by an electron mi-
croscopy grid. B - Combined bright field and fluorescence image taken with
the PFM. A single microtubule spans a hole of the carbon film, and a single
tracer particle (bright spot) is held close to the middle of the filament using
optical tweezers. C - Sketch of the experimental situation in B
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microscopy grid (spacing of the copper grid: 127µm; S 7/2, Quantifoil, Elec-

tron Microscopy Sciences, PA, USA) (see figure 5.2A). The 20 µm thick copper

grid was glued to a glass coverslip using a biochemically inert, solvent-free sili-

cone glue (Elastosil N10, Wacker, Germany). The copper’s thickness provides

sufficient lift to avoid any hydrodynamic coupling between the glass coverslip

and the microtubules or tracer particles [50].

It was empirically determined that the tightly focused trapping beam

did not intersect with the copper grid as long as the optical trap was positioned

at least ∼10 µm from the edge of the copper grids. No datasets were acquired

any closer to the copper than this threshold. The holey carbon film on the

other hand is only 20 nm thick, and it is possible to position the optical trap in

close proximity (down to ∼200 nm distance) to it without intersecting the film.

When measuring this closely to the film, care must be taken to not intersect

it with the trapping beam: The carbon grid absorbs infrared light strongly,

resulting in explosive local heating when it intersects the optical trap.

Microtubules must be grafted to the holey carbon film strongly so that

at least one end point and the tangent of that end point are fixed. This

was achieved by coating the holey carbon film by 50% Poly-L-lysine (PLL) in

deionized water. PLL has a strong non-specific interaction with microtubules

and is commonly used to immobilize them on surfaces [119]. Initially, the

carbon film was found to be too hydrophobic to be coated with the PLL

solution. This problem was solved by exposing the entire assembly – coverslip

with glued grid – to an oxygen plasma [104] for 2 seconds at ∼130 mTorr. The
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coverslip with the glued, plasma cleaned grid was then quickly assembled to

a sample chamber by adding a metal spacer, and after the next steps, a top

coverslip.

The carbon film was then immediately coated with 50 µl of PLL so-

lution and incubated for 20 min at room temperature. In typical assays, the

PLL solution is allowed to dry on the surface onto which the microtubules are

to be adhered. This was not possible here, since the air-liquid interface of the

drying PLL solution destroyed the carbon film on the grid by surface tension.

Instead, the PLL solution was rinsed off the grid with copious amounts of

deionized water.

At this point the top coverslip was added to the sample chamber. Fluid

inside the chamber could be exchanged through small channels in the metal

spacer: 200 µl of BRB80 buffer to displace the DI water, and subsequently 200

µl of microtubules in BRB80 were flushed into the chamber. The microtubules

were allowed to adhere to the PLL coated carbon film for several minutes.

Unattached microtubules were then removed from the sample chamber by a

flush with 200 µl of a solution containing tracer particles (see section 5.2.4) and

an oxygen scavenging system consisting of 50 U/ml glucose oxidase, 500 U/mL

catalase and 12.5 mM glucose in BRB80 supplemented with 20µM taxol.

Microtubules and tracer particles could then be observed in fluores-

cence microscopy, while the holey carbon film was visible in bright field con-

trast. Figure 5.2B shows a combined fluorescence and bright field image for a

microtubule spanning a 7 µm hole in the carbon film. A tracer particle is held

117



with the optical trap close to the middle of the microtubule (bright spot). A

schematic of this is shown in figure 5.2C

5.2.4 Tracer particle preparation

Fluorescent polystyrene beads with a diameter of (190± 29) nm (mean

± nominal standard deviation) were acquired from Bangs Labs (sun coast

yellow, Bangs Laboratories, IN, USA). Without further preparation these par-

ticles nonspecifically attach to microtubules when allowed to repeatedly collide

with them. This behavior is incompatible with thermal noise imaging (section

2.4) since the scanning probe must diffuse around the scanned structure and

not adhere to it. To prevent this interaction, the particles were coated with

bovine serum albumin (BSA) by incubating them them at high concentration

(at least) overnight in a solution of 5 mg/ml BSA in phosphate buffered saline

(PBS). Beads from this stock solution were then diluted into BRB80 for each

experiment. As shown in chapter 3, BSA can be used to shield the nonspe-

cific interaction between a tracer particle and a substrate. Each BSA protein

is approximately 1.4 nm x 0.4 nm x 0.4 nm in size [155]. Thus, each parti-

cle’s diameter is expected to increase by at most ∼3 nm due to the coating,

assuming that the particles are coated in a monolayer of BSA.
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5.3 Results and Discussion

5.3.1 Thermal noise images

Thermal noise imaging is a three-dimensional scanning probe technique

that can image nano-structures in three dimensions with super resolution. The

optically trapped tracer particle’s position is detected using a PFM, by read-

ing out the interference pattern between the unscattered trapping beam and

the light forward scattered by the particle. If the imaged structure addition-

ally scatters the beam, detecting the tracer particle’s position becomes more

difficult (see section 6.3.1.1). It was found that microtubules scatter orders of

magnitude less light than the tracer particle though, and can be imaged in a

straightforward manner.

If the imaged structures are static during the scan (i.e. there are no

thermal fluctuations), the excluded volume in the thermal noise images repre-

sents the inverse of the scanned structure (plus the radius of the tracer particle,

see section 2.4 for a detailed discussion). Data interpretation is more compli-

cated for fluctuating structures. In the following we will therefore first discuss

the imaging of a microtubule confined on both ends, which only has a small

(but not negligible, as we will see in section 5.3.2.4) magnitude of transversal

fluctuations.

5.3.1.1 Microtubule grafted on both ends

Voxel occupancies (see section 2.2.4.2 and 2.4) were measured along a

microtubule whose ends were grafted to the holey carbon film support (figure
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5.3A). For all experiments described in this chapter, the power of the trapping

beam was adjusted so that the width of the trapping volume explored by the

particle was ∼300 nm laterally and ∼900 nm axially, allowing the particle to

diffuse completely around a microtubule centered in the middle of the trapping

volume.2 The step size along the microtubule between voxel occupancy mea-

surements was 100 nm, ensuring that subsequently acquired occupancies had a

large overlap (figure 5.3B). Twenty-eight individual occupancy measurements

were performed, each with an integration time of 4 s and a particle position

sampling rate of 100 kHz, resulting in a total scan length of 2.8 µm. The

scan was started 4.5 µm from the support; the full length of the microtubule

between grafting points was 10.6 µm. The overlapping voxel occupancies were

summed up to yield a cumulative voxel occupancy of the entire scan (figure

5.3C). Each iso-occupancy surface of this cumulative occupancy is a thermal

noise image of the scan. The image for an isovalue of 5 is shown in figure

5.3D (outside: blue, inside: silver). The front of the three dimensional image

was cut away to allow a better view of the “channel” caused by the presence

of the scanned microtubule. The “kink” close to the middle of the channel is

very likely not a feature of the microtubule itself, but rather an artifact of the

measurement caused by a change in the full light intensity on the detector.

This change in intensity may have had its origin in a drift in the laser power,

2“Width” here is defined as 6σi, where σi = kBT/ki is the standard deviation of the
one-dimensional Gaussian position distribution along axis i = x, y, z (compare equation
2.39). 6σi corresponds to good approximation to the peak to peak position fluctuations
along the i-axis.
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Figure 5.3: Thermal noise image of a microtubule grafted on both ends.
A - Schematic of the single filament assay. The trapped particle was stepped
in 100 nm steps along a microtubule which was grafted on both ends to a
support (holey carbon film). At 28 positions along the microtubule the tracer
particle’s voxel occupancy was measured (B). C - The individual overlapping
voxel occupancies were summed up to yield a cumulative voxel occupancy of
the entire scan. D - Thermal noise image computed from the cumulative voxel
occupancy (cumulative voxel occupancy = 5 for this surface). The front half
of the image was cut away to reveal the channel caused by the presence of the
scanned microtubule. Individual voxel occupancies had an integration time of
4 s and particle positions were sampled at a rate of 100 kHz.
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or in additional light being scattered by the copper grid or carbon film.

Coordinate system transformation and position feedback Stepping

the trapping volume along the microtubule while keeping the microtubule in

the center of the trap is not trivial: First, the microtubule is in general not

aligned with one of the major axes of the instrument (i.e. not aligned with

the x- or y-axis of the positioning stage). Second, the microtubule will not be

perfectly confined to one z-plane. For example, a slight bend in the carbon

support of less than 3 degrees causes the mean of the microtubule’s contour

to rise by 100 nm over a lateral run of 2 µm. Third, the instrument had

a slow, but noticeable drift of approximately 10 nm/min, which had to be

compensated for during data acquisition.

In order to address the first problem, a fluorescence microscopy image

was taken of each microtubule before acquiring thermal noise images. From

the fluorescence image, the microtubule’s angle with the x-axis of the system

was determined. Using this angle, software developed by the author performed

a coordinate transformation in realtime, transforming the acquired data and

the stage positions to rotate the x-axis of the system in the direction of the

microtubule. All experiments were thus performed in the frame of the micro-

tubule, with the microtubule aligned with the x-axis of this frame.

The second and third concerns were simultaneously addressed by a

position feedback scheme designed and implemented by the author. After

acquisition of each voxel occupancy, the LRO and SO were computed (sections
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2.4.1 and 2.4.2) and collapsed into two dimensions along the direction of the

microtubule (figures 5.4A and 5.4B). The LRO is the effective interaction
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Figure 5.4: Principle of position feedback. Shown are the two-dimensional
LRO (A) and SO (B) computed for each voxel occupancy measurement along
the scanned microtubule. The circular excluded volume in the middle of the
trapping volume is clearly visible as an extremely high energy barrier in the
LRO, and as an underpopulated volume in the SO. C - LRO of pixels which
have a corresponding SO < −4. The center of mass of this thresholded LRO
was computed and indicates the mean position of the microtubule (dashed
orange cross).

energy between the particle and the microtubule, in units of kBT , while the SO

gives the statistical significance of the change in voxel occupancy compared to

an empty trapping volume. In order to detect the position of the microtubule

relative to the optical trap, the center of mass of the two-dimensional LRO

was computed for all pixels for which SO < −4 (figure 5.4C). This threshold

in the SO prevents voxels at the edge of the trapping volume, which have

LROs with large error, from contributing to the center of mass calculation.

The center of mass of the LRO equals the average position of the microtubule.

If the center of mass was not found to be within ±100 nm of the center of

the trapping volume, the sample was automatically repositioned to move the
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microtubule into the center of the trap, and a new image was acquired. Only

upon successful acquisition of an image that had the microtubule centered was

the trap stepped to the next position along the microtubule.

5.3.1.2 Microtubule grafted on one end

So far we have considered a double-grafted microtubule which can be

considered to be a fairly static structure. Its thermal noise image features

an excluded volume which is linked to the inverse image of the filament. We

will now discuss a microtubule grafted on only one end, and free on the other

end. Such a microtubule is expected to exhibit large transversal fluctuations,

especially at points along its contour far from the point of grafting. As we have

seen in section 2.4, thermal noise imaging reports on the effective interaction

energy between the tracer particle and the scanned structure. If the scanned

structure fluctuates, this effective interaction energy changes, resulting in a

change in the acquired images. Thus, in contrast to the channel with constant

diameter seen in the thermal noise image of the double-grafted microtubule,

we expect the thermal noise image of the microtubule with a free end to change

when the trapping volume is stepped along the microtubule’s contour towards

the free end.

Voxel occupancies were acquired along a microtubule with a free end,

at a step size of 100 nm between individual measurements (figure 5.5A), at 20

positions, starting at a distance of 1.5 µm from the support (arrows in figure

5.5A). Each occupancy measurement had an integration time of 4 s and a par-

124



ticle position sampling rate of 100 kHz. The full contour length of the scanned

microtubule was 7.3 µm. Position feedback during data acquisition was per-

formed as described in section 5.3.1.1. The thermal noise image (isovalue =

5) of the cumulative voxel occupancy of the scan is shown in figure 5.5B (out-

side: blue, inside: silver). Half of the image is cut away, revealing a channel

caused by the scanned microtubule. However, in comparison to the image of

the doubly confined microtubule (figure 5.3C), the channel shown here gets

smaller the further the scanned position is from the support. Eventually, the

channel even vanishes completely. We may understand this behavior by con-

sidering the transversal fluctuations of the microtubule. If the microtubule’s

shape fluctuation is dominated by motion on time scales that are slower than

the tracer particle’s autocorrelation time, the microtubule will slowly fluctuate

out of the way as the particle explores the trapping volume. Thus, with larger

fluctuation amplitude of the microtubule, more and more volume becomes ac-

cessible to the particle. Eventually, at a sufficient distance from the support,

the microtubule’s transverse fluctuations are so large that the entire trapping

volume becomes accessible to the particle’s diffusion. Thus, the further the

imaged volume is from the support, the smaller the channel, until it vanishes

entirely. As we will see below, the change in the effective interaction energy

landscape caused by the presence of the microtubule can still be extracted

from the data, even if the excluded volume vanishes.
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Figure 5.5: Thermal noise image of a microtubule with a free end. A - The
microtubule was grafted on one end and free to fluctuate on its free end. The
scan was started 1.5 µm from the support, and voxel occupancy measurements
were performed in 100 nm steps along the microtubule (arrows). B - Thermal
noise image computed from the cumulative voxel occupancy (isovalue 5). The
front half of the image was cut away to reveal the channel caused by the
fluctuating microtubule. Occupancy measurements had an integration time of
4 s and particle positions were sampled at a rate of 100 kHz.
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5.3.2 Quantitative analysis of thermal noise images

5.3.2.1 Theoretical description of transversal microtubule fluctua-
tions

Before quantitatively analyzing the acquired thermal noise images we

will first review some of what is known about the transversal fluctuations of

a grafted microtubule with contour length lc and persistence length lp. The

x

z(s)

s = 0

s = l
c

Figure 5.6: Shape fluctuations of a grafted microtubule (green) with a free
end. When no forces act on the grafted microtubule its configuration coin-
cides with the x-axis (dashed line). Under the influence of thermal forces, the
microtubule’s shape fluctuates and is described by the deviation z(s) from the
forceless configuration. Note that the deviation z is a function of the position
along the microtubule’s contour s, and not a function of the position along the
x-axis.

shape fluctuation z of a microtubule in an aqueous solution as a function of

position s along its contour (see figure 5.6) follows the hydrodynamic beam

equation [63, 150]

κ
∂4z

∂s4
= −γ

∂z

∂t
, (5.1)

where κ = kBT lp is the flexural rigidity of the microtubule, and γ is its per-

pendicular drag coefficient. γ was approximated by the perpendicular drag on

a cylinder [20],

γ =
4πη

ln (lc/d+ 2 ln 2− 1/2)
, (5.2)
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where η is the viscosity of the surrounding fluid and d is the diameter of the

microtubule.

For the boundary conditions of a grafted microtubule with a free end,

equation 5.1 is solved by a set of n solutions (see [63])

zn(s, t) = e−t/τnWn

(
s

lc

)
. (5.3)

The spatial modes Wn (figure 5.7) form a complete orthonormal set on the

domain [0,1] and are defined by

Wn(α) =
− cosh qn − cos qn
sin qn + sinh qn

(sin qnα− sinh qnα) + cos qnα− cosh qnα, (5.4)

where the qn are the subsequent solutions of cos qn cosh qn = −1. “Complete”

here means that the space of shapes of grafted fluctuating microtubules can

be constructed by linear combinations of the modes Wn,

z(s) =
∞∑
n=1

√
1

lc
anWn

(
s

lc

)
, (5.5)

where the coefficients an are called mode amplitudes.

Each mode Wn is randomly thermally excited by the interaction be-

tween the microtubule and the solvent, and then decays away (see equation

5.3) with a correlation time τn of [63]

τn =
γ

κ

(
lc
qn

)4

. (5.6)

This continuous excitation and subsequent decay corresponds to random walks

of the mode amplitudes an in confining potentials with stiffness kn = γ/τn [71].
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Figure 5.7: First three modes of microtubular shape fluctuations for a micro-
tubule grafted to a support at s = 0.

The modes are independent and their amplitudes are uncorrelated random

variables with zero mean, thus

〈aiaj〉 =
〈
a2i
〉
δij. (5.7)

It follows by equipartition that

1

2
kn
〈
a2n
〉

=
1

2
kBT (5.8)〈

a2n
〉

=
kBT

kn
(5.9)

〈
a2n
〉

=
1

lp

(
lc
qn

)4

. (5.10)
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We may now derive the variance of the fluctuation of every point along

the contour of the grafted microtubule. By equations 5.5, 5.7 and 5.10 we have〈
z2(s)

〉
=

〈
1

lc

∑
i

∑
j

aiajWi

(
s

lc

)
Wj

(
s

lc

)〉
(5.11)

=
1

lc

∑
i

∑
j

〈aiaj〉Wi

(
s

lc

)
Wj

(
s

lc

)
(5.12)

=
1

lc

∑
n

〈
a2n
〉
W 2

n

(
s

lc

)
(5.13)

=
1

lc

∑
n

1

lp

(
lc
qn

)4

W 2
n

(
s

lc

)
. (5.14)

Since microtubules are relatively stiff filaments, the deviations z(s) from

the x-axis are small, and we may approximate s ≈ x. Thus〈
z2(x)

〉
=

1

lc

∑
n

1

lp

(
lc
qn

)4

W 2
n

(
x

lc

)
, (5.15)

which is the desired relation between the variance of the transversal fluctua-

tions of a grafted microtubule, and the distance from the support.

The variance of the individual mode amplitudes (equation 5.10) is in-

versely proportional to the mode number qn to the fourth power. It is therefore

often sufficient to truncate the infinite sum in equation 5.15 after several terms

and only study the contributions of the first few modes to the total filament

fluctuation variance. This will be referred to as the “truncated” expression for

the variance of the microtubule’s transversal fluctuations. The question now

arises whether there are cases when higher order modes must be considered.

It has been shown that the variance of the transversal fluctuations of

an arbitrary point along the contour of a grafted microtubule with a free end

130



can also be written in closed form [43, 96, 135]:〈
z2(x)

〉
=

x3

3lp
. (5.16)

It is interesting to compare this expression to the truncated result (equation

5.15 truncated to several terms). Figure 5.8 shows that equation 5.16 and

equation 5.15 truncated to down to two terms agree over a surprisingly long

range of the microtubule. As long as a point along the contour sufficiently far

(> 0.4lc) from the support is chosen, its transversal fluctuations are completely

dominated by the first two modes. For positions closer to the support, higher

order modes must be taken into account. In the present work, thermal noise

0.0 0.2 0.4 0.6 0.8 1.0

0.2
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0.8
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truncated to

3 terms

10 terms

20 terms
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Figure 5.8: Ratio of the truncated expression of 〈z2(x)〉 and closed form x3

3lp

of the variance of the transverse fluctuations along the contour of a grafted
microtubule. For positions far from the support, this ratio equals unity, and
the two expressions yield equal results.

images were acquired sufficiently far from the support, and microtubular shape
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fluctuations can be considered to be dominated by only the first ∼3 spatial

modes to sufficient precision.

5.3.2.2 Interaction between the tracer particle and a fluctuating
microtubule: analytical theory

We will now derive an analytical expression for the LRO of an optically

trapped particle interacting with a grafted fluctuating microtubule. Since we

are using an uncharged and BSA coated tracer particle (section 5.2.4), we

shall ignore any electrostatic interaction between the tracer particle and the

microtubule and only consider steric interactions, which are complicated by

the transversal fluctuations of the filament. The magnitude of the transversal

fluctuations changes along the contour of the microtubule (equation 5.16), even

over the small extent of a single trapping volume. When measuring the voxel

occupancy of one trapping volume, collapsing it along the microtubule into

two dimensions and computing its LRO (see figure 5.4) one therefore averages

over all magnitudes of transversal fluctuations present along the microtubule in

this volume. This effect is small though: For example, consider a microtubule

with a persistence length of 2 mm and a trapping volume with depth of 300

nm located on the microtubule 2.2 µm from the support. For this case, the

transversal fluctuations change by less than ±5 nm from their mean from the

beginning of the volume to its end.

By collapsing the LRO into two dimensions one can therefore reduce the

necessary analytical description to a two-dimensional problem perpendicular
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to the microtubule. The problem can be reduced even further: The transversal

fluctuations of the microtubule are radially symmetric. The two dimensional

LRO perpendicular to the microtubule is thus expected to have radial symme-

try as well. We may therefore reduce the problem to one (radial) dimension

(figure 5.9).

R

r = 0

d

r

r - R - d/2 r + R + d/2

Figure 5.9: Coordinate system for the theoretical treatment of microtubule-
tracer particle interaction. The microtubule (green) radially fluctuates away
from its equilibrium position at r = 0. Due to steric exclusion, it cannot in-
tersect with the tracer particle (pink) located at r. Thus, it cannot enter the
region between r −R− d/2 and r +R + d/2.

We will now begin by deriving the one-dimensional probability density

of the trapped particle while it is interacting with the fluctuating microtubule.

From this probability density we shall then calculate a one-dimensional ex-

pression for the radial LRO.

If no microtubule is present in the trapping volume (i.e. when the trap-

ping volume is empty), the one dimensional probability density of the tracer

particle follows from equation 2.21 and is given by

pp(r) = C exp

(
− kr2

2kBT

)
. (5.17)
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r is the radial displacement of the particle from the focus, k is a radial spring

constant describing the trapping potential, and C normalizes the probability

density. The optical trapping potential is not radially symmetric, and the

spring constant k depends on the direction in which the particle is extended

from the focus. However, as we will see, this spring constant does not appear

in the final form of the derived LRO, and its precise value is therefore of no

further consequence.

Every point on the contour of the microtubule performs Gaussian dis-

tributed transversal fluctuations with a variance given by equation 5.16,

〈
z2(x)

〉
=

x3

3lp
=

x3kBT

3κ
. (5.18)

This corresponds to the motion of that point in a harmonic potential with an

effective spring constant of

keff (x) =
3κ

x3
. (5.19)

The spatial probability density of the point along the microtubule contour is

thus

pMT (r) = C̃ exp

(
−keffr

2

2kBT

)
, (5.20)

where C̃ =
√

keff
2kBTπ

normalizes the distribution.

As an approximation we may then express the probability that the
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microtubule is intersecting the particle located at r (figure 5.9) as

r+R+d/2∫
r−R−d/2

pMT (r
′) dr′ =

1

2

erf
r +R + d/2√

2x3

3lp

− erf

r −R− d/2√
2x3

3lp

 (5.21)

where d is the diameter of the microtubule, R is the radius of the tracer par-

ticle, and x is the distance from the support. This approximation ignores all

cases in which the microtubule is extended from the focus under a different

angle than the particle. In order to include these cases, the probability of

intersection between particle and microtubule has to be derived using a two-

dimensional approach, which leads to integrals that can not be solved analyti-

cally. It was numerically verified that equation 5.21 closely approximates this

two-dimensional result. Further, the analytical theory based on the described

approximation successfully extracts the microtubule’s persistence length from

simulated datasets (see below and ref. [71]).

Complementary, the probability that the microtubule is not intersect-

ing the particle located at r is

1−
r+R+d/2∫

r−R−d/2

pMT (r
′) dr′ =

1− 1

2

erf
r +R + d/2√

2x3

3lp

− erf

r −R− d/2√
2x3

3lp

 . (5.22)
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The probability density to find the tracer particle at a certain distance

from the center of the trap when scanning around a fluctuating microtubule,

pp,MT , is equal to the probability density in absence of the filament, pp, multi-

plied by the probability that the microtubule was not intersecting the particle

at that position. Thus

pp,MT (r, x) =

pp(r)

1− 1

2

erf
r +R + d/2√

2x3

3lp

− erf

r −R− d/2√
2x3

3lp

 (5.23)

By equation 2.55 the desired expression for the one-dimensional LRO

is then

LRO(r) =

− ln

1− 1

2

erf
r +R + d/2√

2x3

3lp

− erf

r −R− d/2√
2x3

3lp

+ C, (5.24)

where C is an arbitrary offset. As we will see in the next section, thermal

noise imaging allows us to measure the one-dimensional LRO, which can then

be fitted using equation 5.24. The distance from the support x, the particle

radius R, and filament diameter d are known, leaving the persistence length

lp and offset C as the only fit parameters. We can therefore extract lp from

the acquired thermal noise images by a fit to the measured LRO. Analyses of

simulated datasets verifying the success of this approach can be found in Dr.

Martin Kochanczyk’s dissertation [71].
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Figure 5.10: Two-dimensional LROs along a grafted microtubule with a free
end. The LRO changes with increasing distance from the support (color coded
frames of each panel corresponding to arrows in figure 5.5A, and white text
in the bottom right of each plot). The further the distance from the support,
the shallower the energy barrier experienced by the diffusing particle.
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5.3.2.3 Microtubule grafted on one end

As an example consider the same grafted microtubule with a free end of

length 7.3 µm which was studied in section 5.3.1.2. We will now analyze it in a

more quantitative fashion and extract its persistence length from the acquired

data. Figure 5.5A shows the experimental configuration; the arrows indicate

the positions along the microtubule at which voxel occupancies were measured.

For 17 positions along the contour, separated by 100 nm each, and indicated

by colored arrows (black to red to yellow), two-dimensional projections of the

LRO were computed and are shown in figure 5.10. Each panel represents a

different distance from the support; the frames of the panels are color coded

to match the arrows in figure 5.5A. The energy barrier caused by the presence

of the microtubule can be seen as a blue disk in each panel. As expected it

decreases with increasing distance from the support and thus with increasing

transversal fluctuations of the filament.

As discussed in section 5.3.2.2, we’ll now make use of the radial sym-

metry of the LRO and reduce it to one dimension. Starting from the cen-

ter of the microtubule’s energy barrier, the two-dimensional LRO is aver-

aged along concentric circles (figure 5.11A), yielding the one-dimensional LRO

which is a function of radial distance from the microtubule’s center. These

one-dimensional radial LROs are plotted for each distance from the support

in figure 5.11B. The color code indicates the distance from the support and

again matches the arrows in figure 5.5A. LROs close to the point of grafting

(black and brown curves in figure 5.11B) feature a measured infinitely high
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Figure 5.11: Extraction of the persistence length. A - Two-dimensional LROs
were averaged on concentric circles. The resulting one-dimensional, radial
LROs are plotted for all distances from the support (B). The color code cor-
responds to the positions indicated by arrows in figure 5.5A. C - Analytical
fits (dashed lines) to the one-dimensional LROs (solid markers) yield the per-
sistence length as a fit parameter. Thus, a value for the persistence length can
be independently extracted from each two-dimensional LRO along the support
(D).
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energy barrier, stretching from the microtubule’s center (r = 0) to a distance

between r = 50 nm and r = 100 nm. An infinitely high energy barrier means

that voxels within this distance from the center of the microtubule were never

visited by the particle during the 4 second long observation time since the

microtubule’s transversal fluctuations were too small to vacate them. These

voxels make up the “excluded” part of the trapping volume.

It is evident that LRO measurements further from the support (red and

yellow curves in figure 5.11B) do not feature any excluded volume: There are

no voxels with an infinitely high interaction energy barrier, and the particle

could access all voxels, implying that they were at times vacated by the micro-

tubule due to its larger transversal fluctuations. However, a high interaction

energy of several kBT is still clearly measurable, which can be used to quan-

tify these transverse fluctuations. The further the measurement is from the

support, the larger the transverse fluctuations, and the smaller the effective

interaction energy gets, as expected.

In order to extract the microtubule’s persistence length from the data,

each one-dimensional LRO along the microtubule is fit with the analytical

expression given by equation 5.24 (figure 5.11C). Several parameters are held

constant during the fit: the particle radius R, and filament diameter d = 25

nm are known, and the distance from the support x is measured by analyzing

the fluorescence contrast images. This leaves only the persistence length and

an additive offset as free parameters for the fit. Extracted persistence lengths

for each voxel occupancy (and thus two-dimensional LRO) measurement along
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the grafted microtubule with contour length 7.3 µm are shown in figure 5.11D.

The data are scattered around a persistence length of (2.4±0.3) mm; the given

error is the standard deviation of the scatter around the mean. The precision

of the mean is discussed in section 5.3.2.5.

Inserting the extracted persistence length into equation 5.16, we may

conclude that the microtubule’s transversal fluctuations increased from a stan-

dard deviation of 22 nm at the beginning of the scan to 77 nm at the end of

the 2 µm long scan.

Persistence length of short microtubules The method outlined above

was applied to measure the persistence length of short microtubules (lc <

4µm), a length regime that has been inaccessible to established techniques.

Voxel occupancies were acquired along 15 microtubules, ranging in contour

length from 600 nm to 7.7 µm. The persistence length of each microtubule was

extracted from the one-dimensional LROs along its contour, as demonstrated

above.

The persistence length increases with increasing contour length over

several orders of magnitude (figure 5.12), from lp = 25µm for the shortest

measured microtubule, to 2.4 mm for the longest. The data for microtubules

with long contour length (lc > 4µm) is comparable to previous measurements

[96, 135], validating the present method. Interestingly, for short microtubules

(lc < 2µm) lp drops rapidly, indicating novel, previously inaccessible behav-

ior in this length regime. It appears that short microtubule with a contour
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Figure 5.12: Microtubule persistence length as a function of contour length for
short microtubules. Thermal noise imaging reveals that the persistence length
of a microtubule drops strongly for small (lc < 2µm) microtubules.

length of approximately lc = 1µm are very flexible (lp ≤ 0.1 mm); however

their persistence length seems to increase by an order of magnitude once their

contour length doubles to lc = 2µm. This supports the hypothesis outlined in

the introduction: short microtubules might be be flexible in order to avoid ob-

stacles during polymerization, while long microtubules might be stiff in order

to fulfill their biological function.

We have so far seen that the rather large transversal fluctuations of a

microtubule with a free end can be quantified by thermal noise imaging. The

next section demonstrates that small changes in transversal fluctuations can

also be easily resolved.
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5.3.2.4 Microtubule grafted on both ends

Consider the same microtubule imaged in section 5.3.1.1, which was

grafted on both ends to the holey carbon film support. Due to its boundary

conditions we expect it to be completely immobilized close to the points of

grafting, but able to fluctuate in between. Similar to a biofilament in a net-

work, the magnitude of these transversal fluctuations depends on the tension

of the filament, which in the present assay is random, as it depends on the

microtubule’s random conformation, and thus its random momentary tension,

while it was binding to the support. One-dimensional LROs were computed

from the voxel occupancies discussed in section 5.3.1.1, for different positions

200 nm apart, starting at a distance of 4.5 µm from the support (arrows in

figure 5.13A). The color code of the arrows matches the colors of the LRO

curves in figure 5.13B. The tracer particle felt an infinitely high energy bar-

rier at almost all measured distances from the support, in stark contrast to

the microtubule with a free end discussed in section 5.3.2.3. The closer the

measured position is to the support (black curves), the larger the excluded

volume. When stepping further away from the grafting point, the excluded

volume gets smaller (red and yellow curves), indicating an increase in the

microtubule’s transversal fluctuations, as one would expect. Finally, at the

second to last measured position, the excluded volume vanishes completely,

and the particle could explore the entire trapping volume, albeit with a large

energy barrier of approximately 6 kBT in magnitude. The last measured posi-

tion along the microtubule again features an infinite energy barrier and thus
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Figure 5.13: LROs along a microtubule grafted on both ends. A - The mi-
crotubule was grafted on both ends. Voxel occupancies were acquired with a
spacing of 200 nm, starting 4.5µm from the support. B - One-dimensional
LROs computed for the positions marked in A. The excluded volume defined
by the position of the infinite energy barrier decreases with increasing distance
from the support, indicating an increase in the transversal fluctuations of the
microtubule.
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an excluded volume, which may indicate that the particle was scanned over the

most flexible position along the microtubule, and the transversal fluctuations

start to get smaller again towards the end of the scanned range.

It was thus demonstrated that thermal noise imaging can not only

quantify the fairly large transversal fluctuations of grafted microtubules with

free ends, but also of microtubules confined on both ends, which more closely

mimic the behavior in a biopolymer network.

5.3.2.5 Discussion of errors

The precision of the presented measurements is discussed in this section.

Both the radius of the tracer particle R, and the distance from the grafting

point x must be known precisely in order to extract the persistence length lp

by fitting equation 5.24 to the acquired datasets. The uncertainty in R and x

dominate the error in the analytical fit, and thus the error of the measurement

of lp.

Uncertainty in the particle radius R. The manufacturer of the tracer

particles specifies a diameter of (190 ± 29) nm (mean ± standard deviation

of the ensemble). However, measurement of the hydrodynamic diameter of 20

particles as described in section 4.2.6 yielded 187 ± 10 nm; i.e. the measured

spread in diameter was significantly smaller than specified by the manufac-

turer.

The hydrodynamic radius does not necessarily reflect the effective ra-
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dius for thermal noise imaging though: The tracer particles are made from

polystyrene; i.e. they are polymer “balls” which may have a considerable

amount of polystyrene “hairs” sticking out of their surface. This corona of

hairs can be as thick as 7 nm [122]. As a result, the precise diameter of a

polystyrene particle is an ill defined quantity. Further, for the derivation of

the analytical theory of microtubule-probe interaction, we assumed a steric

interaction between microtubule and probe. This is, of course, not entirely

correct: negatively charged residues on the microtubules (“E-hooks”) extend

up to 3.5 nm from the microtubule’s surface [105, 106] and electrostatically

interact with charged residues on the BSA layer around each bead.

All these effects were accounted for by setting the radius in equation

5.24 to an effective radius of R = (125±15) nm. This estimate was verified by

analyzing the excluded volumes (i.e. the volumes in which the LRO is infinitely

high) in thermal noise images of microtubules grafted on both ends, acquired

close to the points of grafting. The transversal fluctuations of the microtubules

are expected to be negligible in this case, and the effective particle radius can

be extracted from the excluded volume by equation 2.47. All such control

experiments yielded particle radii in the estimated range when assuming a

radius of RF = 12.5 nm for the microtubule.

Uncertainty in the distance from the support x. The distance x of the

trapping volume from the microtubule’s point of grafting was determined by

fluorescence microscopy. Due to the diffraction limit, it was estimated that x
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could be extracted to a precision of ±100 nm.

Resulting uncertainty of the measured persistence length lp. In order

to determine the error of the extracted persistence length, the one-dimensional

LROs were fitted with all permutations of R±15 nm and x±100 nm, yielding a

set of four values for lp. The largest of these values was used as the persistence

length’s upper bound, and the smallest as its lowest bound. This in general

lead to an asymmetric error around the mean of lp, as indicated by the error

bars in figure 5.12.

5.4 Conclusions

In this chapter, thermal noise imaging was established as a quantita-

tive tool to simultaneously image biofilaments and quantify their transversal

fluctuations. The tracer particle’s voxel occupancy can be displayed as a ther-

mal noise image, or used to compute the LRO which is equal to the effective

interaction energy between the imaged filament and the tracer particle.

Microtubules grafted on one or both ends were chosen as a model sys-

tem to demonstrate the power of this novel technique. An analytical theory

was developed to relate the LRO to the transversal fluctuations of the imaged

microtubule, allowing the extraction of the microtubule’s persistence length.

Using this method, the persistence lengths of very short microtubules were

measured, and a surprising new regime of dependence on contour length un-

covered: Microtubules below 2 µm in length show a dramatic decrease in
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persistence length, and thus a dramatic increase in flexibility, supporting the

hypothesis that short microtubules during polymerization can avoid obstacles

and find binding partners due to their comparably large transversal fluctu-

ations. Finally, it was demonstrated that the transversal fluctuations of a

microtubule confined on both ends can be quantified from its thermal noise

images, paving the way for the measurement of transversal fluctuations inside

a biopolymer network for the first time (chapter 6).
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Chapter 6

Thermal noise imaging of collagen networks

Having demonstrated that thermal noise imaging can visualize individ-

ual biopolymers (see chapter 5), we will now focus on imaging biopolymer

networks. This chapter shows that thermal noise imaging can characterize

the local submicroscopic architecture of collagen networks, and can elucidate

mechanical properties of individual collagen fibrils in situ.

6.1 Introduction

Collagen (see section 1.2) is the most abundant protein in animal tis-

sues [25], where it forms a major component of the extracellular matrix. Its

mechanical properties have an impact on many biological processes: The speed

at which motile cancer cells invade collagen networks depends on the density

of the networks [68]. Cancer cells can locally densify and align the network

around them [142], which affects the motion of other cells in their vicinity,

possibly enhancing network invasion [145]. Pairs of endothelial cells growing

in a collagen network mechanically sense each other and form cell-cell contacts,

provided that the network is compliant enough [108]. Further, the stiffness of

the matrix influences the fate of cells, for example, depending on its mechanical
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properties, cell differentiation or apoptosis can be induced [62].

Collagen fibrils have a bending modulus on the order of 0.1 GPa [158],

resulting in a persistence length of ∼2 m, which makes them much stiffer than

microtubules (see chapter 5). We therefore expect that they can be treated

to first approximation as stiff rods. This will be confirmed in this chapter by

verifying that, unlike fluctuating microtubules (section 5.3.2), their thermal

noise images show no transversal fluctuations.

microscopic

shear deformation

branching angle

remains constant under shear

branching angle deforms with shear

su
b

m
icro

sco
p

ic b
e

h
a

v
io

r

o
f b

ra
n

ch
in

g
 a

n
g

le
s

option A

option B

shear force

shear force

Figure 6.1: Submicroscopic behavior of junctions in collagen networks under
shear. Under an applied shear force, two intersecting fibrils may either slide
against each other (A), or their branching angle may be fixed (B).
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Locally or globally applied loads thus likely result in deformation and

displacement of junctions in addition to bending and stretching of filaments.

However, the submicroscopic behavior of the junctions has been inaccessible to

established experimental methods (see section 1.3.4)1, and is not understood

[142], despite the fact that it is essential to the understanding of mechanical

signal transduction through the network. For example, two collagen fibrils at

a junction may either be interacting sterically, and slide against each other

under the application of a load, or the angle at which they intersect may be

fixed (figure 6.1). The behavior of branching angles under network shear is

an important parameter in theoretical models of biopolymer networks. For

example, a recent numerical model of collagen networks [78] assumes that

the fibrils are coupled in all degrees of freedom at the junctions, i.e. that the

branching angles are fixed. This, though, appears unlikely given the observed

plasticity of such networks under large strains [142].

In this chapter we will see how thermal noise imaging can be imple-

mented to visualize junctions in collagen networks for the first time under

physiological conditions with super resolution, paving the way for the study of

their behavior under applied loads. Further, the LROs of the acquired voxel

occupancies verify that the observed collagen fibrils did not measurably fluctu-

ate transversally and can indeed be approximated as stiff rods. Additionally,

1It might be possible to acquire a super resolution image of a collagen network using
the concurrently emerging technique of 3D STORM, given that the transversal fluctuations
of the individual fibrils are negligible as shown in this work. However, STORM requires
the network to be fluorescently labeled, which could change its structure. Currently no 3D
STORM data of collagen networks exists.
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it will be shown how fibril diameters can be extracted from the acquired data.

6.2 Materials and Methods

6.2.1 Preparation of collagen networks

Collagen gels were polymerized following a procedure established by

Professor Dr. Ben Fabry’s laboratory at the University of Erlangen-Nuremberg

[84]. Acid-soluble rat-tail tendon collagen (type I, Collagen R, 354236, BD

Biosciences, NJ, USA) and bovine-dermis collagen (type I, Collagen G, 354231,

BD Biosciences, NJ, USA) were mixed at relative concentrations of 1:2. The

mixture was then diluted to a total collagen concentration of 2.4 mg/ml by

adding equal parts of 10x DMEM (D2429, Sigma Aldrich, MO, USA) and 0.27

M NaHCO3.
2 To induce gel polymerization, the pH of the solution was raised

to pH 10 using 1 M NaOH. If desirable, the collagen concentration can then

be reduced by adding a diluter solution consisting of one part 10x DMEM, one

part 0.27 M NaHCO3 and 8 parts deionized water, adjusted to pH 10 using 1

M NaOH. All components were kept on ice during mixing.3

30µl of the mixture were then quickly pipetted into a preassembled

sample chamber consisting of a glass coverslip and a metal spacer, and left to

polymerize for >45 min at 37 ◦C in a 5% CO2 atmosphere. Polymerizing the

2Fibrils can be polymerized from pure collagen R or collagen G solutions, and DMEM
and NaHCO3 are not essential for fibril formation either. However, the described protocol
has become a standard in three-dimensional cell culture and was chosen for its biological
relevance.

3The adjustment of the pH thus occurred in the cold, which is one of two possible
polymerization pathways with different intermediate aggregates (see section 1.2).
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network inside the sample chamber ensures its attachment to the coverslip,

which is a prerequisite for a mechanically stable assay. After polymerization,

the gel was gently rinsed with 1 ml of 1x phosphate buffered saline (PBS).

Care was taken to never let the gel dry out.

For these polymerization conditions, the formed gel is largely made up

of collagen fibrils rather than collagen fibers, i.e. most collagen fibrils in the

network do not bundle to fibers.4

6.2.2 Tracer particle preparation

The same fluorescent polystyrene beads with a measured diameter of

(187 ± 10) nm (mean ± standard deviation see section 5.3.2.5) were used as

in section 5.2.4. However, coating the beads with BSA did not prevent their

adhesion to collagen fibrils. Instead, the particles were coated with poloxamer

407 (16758, Sigma Aldrich, MO, USA), a block co-polymer consisting of a

central hydrophobic block of polypropylene glycol (PPG, 67 repeat units),

flanked on each side by a hydrophilic polyethylene glycol block (PEG, 98 repeat

units) [86].

Tracer particles were incubated at room temperature at least overnight

in a solution of 2 mg/ml poloxamer 407 in PBS. From this stock solution the

particles were further diluted into PBS for each experiment.

Poloxamer 407 self assembles as a brush on the surface of the polysty-

4Personal communication with Janina Lange.
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Figure 6.2: Self-assembly of a poloxamer on polystyrene beads. A - The
hydrophobic PPG block binds to the polystyrene bead, while the hydrophilic
PEG blocks form a brush pointing outward. The thickness of the brush formed
by the PEG blocks depends on the density of adhesion of the poloxamer to
the bead (B and C). This adhesion density is determined by both the radius
of the bead and the length of the PPG block (data not shown). Adapted with
permission from [77]. Copyright 1994 American Chemical Society.
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rene beads [77, 86], with the hydrophobic PPG block attaching to the particle,

while the hydrophilic PEG blocks form coils pointing radially outwards (figure

6.2). The thickness of the brush formed by the PEG blocks depends on the

density of adhesion of the poloxamer to the bead (figure 6.2B and C), which

is determined by both the radius of the bead and the length of the PPG block

[77]. This thickness has been measured for several different poloxamer-bead

combinations, but not for poloxamer 407. When assembled onto a 190 nm

diameter bead, the thickness of the formed brush can however be extrapolated

from the available data to be on the order of 10 nm [77]. Taking into account

the particle’s size distribution, the uncertainty caused by the poloxamer brush,

and allowing for a small corona of polystyrene hairs on each particle’s surface

(see section 5.3.2.5), we will assume an effective particle radius of (105 ± 15)

nm.

6.2.3 High bandwidth and high precision optical trapping

The Thermal Noise Imaging PFM described in section 2.5 was used for

the experiments described in this chapter. This PFM has a bandwidth of 1

MHz and position detection precision of 1 nm laterally and 7 nm along the opti-

cal axis for tracer particles with 200 nm diameter. Before each data acquisition

the PFM was calibrated in situ as discussed in section 2.3.2. Typical spring

constants of the potential confining the tracer particle were kx = 1.5 pN/µm,

ky = 1.0 pN/µm and kz = 0.15 pN/µm. The corresponding autocorrelation

times of the tracer particle’s diffusion were τx = 1.1 ms, τy = 1.7 ms, and
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τz = 11 ms.

For all experiments described in this chapter, detector signals were

sampled at 100 kHz with a full electronics bandwidth of 1 MHz.

6.2.4 Experimental assay

After polymerization (section 6.2.1), the sample chamber was closed

by a top coverslip (figure 6.3A). Tracer particles in PBS (section 6.2.2) were

flushed into the chamber through channels in the metal spacer. The laminar

flow of this flush is located predominantly above the collagen gel, resulting in

the tracer particles being deposited above, and not inside the collagen network.

The sample was then incubated for >2 hours to allow the tracer particles to

diffuse deep into the gel. At this point the sample chamber can be mounted on

the PFM. Tracer particles can be viewed using fluorescence microscopy, and

the gel produces a small but visible bright field contrast (figure 6.3B). After

optically trapping one of the tracer particles thermal noise images (see section

2.4) can be acquired.

The network extends deep into the sample chamber, and it is tempting

to try to image far away from the bottom coverslip. It is important to keep in

mind that the light distribution close to the focus, and therefore the fidelity

of the optical trapping potential and of the position detection decreases with

increasing distance from the bottom coverslip due aberrations introduced by

transmission through the collagen network. A distance from the bottom cov-

erslip of up to 30µm was empirically found to be suitable for thermal noise
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Figure 6.3: Collagen gel assay. A - A collagen network is polymerized inside
a sample chamber, after which tracer particles in PBS are added. Tracer
particles (orange) in the network (green) can be optically trapped (red beam)
and thermal noise images can be acquired. B - Brightfield image of a collagen
network acquired with the PFM.
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imaging experiments inside collagen networks.

6.3 Results and Discussion

6.3.1 Thermal noise imaging

In comparison to the single filament assay discussed in chapter 5, ther-

mal noise imaging inside a collagen network poses two additional challenges,

and we will discuss here how they can be overcome. Firstly, collagen fibrils are

much thicker than microtubules, and forward scatter a significant portion of

the trapping and tracking beam onto the detector, leading to artifacts in the

position signal. This effect must be corrected for to accurately measure the

position of the tracer particle. Secondly, the total acquisition time for large

combined thermal noise images must be reduced. In order to acquire meaning-

ful images of local network architecture at the very least the volume around

a junction has to be imaged, which is on the order of 1µm3 as we will see.

It was demonstrated in chapter 5 that such large images can be constructed

by adding up individual partially overlapping voxel occupancies, which yields

the cumulative voxel occupancy of the scan (section 5.3.1.1). The width of

individual trapping volumes was ∼300 nm laterally and ∼900 nm axially, as

in chapter 5. To ensure sufficient overlap, individual voxel occupancies were

measured at positions spaced 100 nm laterally and 300 nm axially (see figure

6.4A for a two-dimensional sketch). For example, a volume of approximately

1µm x 1µm x 1µm can be imaged by acquiring an individual voxel occupancy

measurement at each grid point on a 10 x 10 x 2 (x x y x z) grid (red dots in
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Figure 6.4: Raster scan through a biopolymer network. A - Voxel occupancies
are acquired centered around positions spaced by 100 nm laterally and 300 nm
axially. B - 10 x 10 x 2 (x x y x z) grid (red dots) spaced 100 nm laterally
and 300 nm axially. The arrows indicate the direction in which the trapping
volume is moved between voxel occupancy measurements. Two collagen fibrils
(green) are drawn into the figure to indicate that this is, indeed, a scan through
a network.
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figure 6.4B). With an integration time of 4 s for each individual voxel occu-

pancy, this scan takes 13.3 minutes – a very long time, even considering the

instrument’s exceptionally small long timescale drift of 10 nm/min. Scanning

a 2µm x 2µm x 2µm volume (which approximately corresponds to a 20 x 20

x 5 grid) takes over two hours, a time scale over which the instrument can-

not be expected to be stable even under the most opportune circumstances.

Therefore, a different scanning strategy must be implemented to reduce this

total acquisition time.

6.3.1.1 Correction of the position signal for network scattered con-
tributions

= +

A B C

position signal + o!set o!set position signal

Figure 6.5: Correcting the position signal for network scattered contributions.
To first order approximation, the intensity striking the detector (A) may be
approximated as the sum of the signal caused by the network alone (B), plus
the position signal of the particle in absence of the network (C). A is acquired
by reading out the detector while the particle is trapped. B can be indepen-
dently measured after releasing the particle from the trap. The actual position
signal (C) can then be computed.

Recall that in absence of the collagen network the position of the opti-

cally trapped tracer particle is determined by reading out the intensity of the
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interference of the light forward scattered by the particle (orange wavefronts in

figure 6.5) with the light of the trapping beam (red wavefronts) on the PFM’s

quadrant photodiode (QPD, see section 2.3.1). This can be mathematically

described as the interference of the scattered electric field Ep(bp) with the elec-

tric field of the incoming beam Ein [113]. The scattered electric field depends

on the particle’s position relative to the focus, bp (see figure 6.6), while the

incident electric field is particle position independent. The intensity striking

Figure 6.6: Definition of particle and fibril position vectors.

a certain area element on the QPD is equal5 to the square of the sum of the

electric fields at that location

Iposition(bp) = |Ep(bp) +Ein|2 (6.1)

= |Ep(bp)|2 + |Ein|2 + 2 〈Ep(bp),Ein〉 , (6.2)

where the dependence of each term on the location on the QPD is not explicitly

shown to improve readability. This intensity distribution is integrated over

the area of each of the four quadrants to arrive at the detector responses Si,

5up to a multiplicative constant, see equation 2.6. We may neglect this constant here since
the scaling between detector response and particle position is determined by the detector
calibration in situ.
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(i = I, II, III, IV ), which are related to the particle’s position signal (see

section 2.3.1). The intensity of the incoming beam |Ein|2 does not depend on

the tracer particle’s position and contributes a constant offset to the voltage

output of all four quadrants, and thus does not contribute to the position

signal. It therefore can be set to zero (or any other constant) for the following

discussion, and the detector response is thus given by the following intensity

distribution on the QPD

Iposition(bp) = |Ep(bp)|2 + 2 〈Ep(bp),Ein〉 . (6.3)

Consider now a collagen fibril close to the focus of the laser beam. The

fibril will forward scatter light of the trapping beam, described by the electric

field Efibril(bf ), which depends on the fibril’s position relative to the focus, bf

(see figure 6.6). This forward scattered light will be projected onto the QPD.

In absence of the tracer particle (figure 6.5B) the intensity distribution on the

detector is thus given in complete analogy to the arguments above as

Ifibril(bf ) = |Efibril(bf )|2 + 2 〈Efibril(bf ),Ein〉 . (6.4)

Let’s now consider both the particle and the fibril being close to the

laser beam’s focus, as is the case during thermal noise imaging. The intensity
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at a given area element of the QPD is now [123]

Itotal(bp, bf ) = |Ep(bp) +Ein +Efibril(bf )|2

= |Ep(bp)|2 + |Efibril(bf )|2

+ 2 〈Ep(bp),Ein〉

+ 2 〈Ein,Efibril(bf )〉

+ 2 〈Efibril(bf ),Ep(bp)〉 ,

(6.5)

where again |Ein|2 has been set to zero. We will assume that the amount of

light scattered by the particle and by the fibril is small. Thus, to first order

approximation, we may neglect the term 2 〈Efibril,Ep〉 and write

Itotal(bp, bf ) = |Ep(bp)|2 + 2 〈Ep(bp),Ein〉

+ |Efibril(bf )|2 + 2 〈Ein,Efibril(bf )〉

= Iposition(bp) + Ifibril(bf ).

(6.6)

This relation is graphically illustrated in figure 6.5.

During each individual voxel occupancy measurement the fibril’s posi-

tion with respect to the focus is assumed to be fixed6, and the total intensity

distribution on the detector is given by the signal caused by the particle’s mo-

tion, Iposition(bp), plus an additional constant offset determined by the position

6This approximation is valid for collagen networks, since we may assume that the
transversal fluctuations of each fibril will be small due to collagen’s large persistence length
of several meters. More flexible filaments, such as actin, are typically much thinner than
collagen fibrils and likely scatter much less light. Thus, when measuring in networks made
from flexible filaments the correction outlined in this section is likely not necessary, since the
light scattered by the tracer particle is orders of magnitude larger than the light scattered
by individual filaments in the network.
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of the fibril, Ifibril(bf ). Integrating equation 6.6 over the four quadrants of the

detector yields for the total signal on the detector (see section 2.3.1 and [123])

Sα,total(bp, bf ) = Sα,position(bp) + Sα,fibril(bf ), (6.7)

and thus, for the detector response that reflects only the motion of the particle,

Sα,position(bp) = Sα,total(bp, bf )− Sα,fibril(bf ), (6.8)

where α = x, y, z. It is this Sα,position(bp) that must be determined to pre-

cisely measure the tracer particle’s position. Therefore, in order to extract the

position time trace of the diffusing particle, two measurements are necessary:

For each voxel occupancy measurement at a certain location in the sample, the

time traces of the signals Sα,total(bp, bf ) of the particle’s motion in the presence

of a fibril are recorded. Subsequently, the particle is released from the optical

trap, and the constant offsets Sα,fibril(bf ) caused by the fibril are measured at

the same location in the sample. The detector’s response due to the particle’s

motion, Sα,position(bp), can then be computed by equation 6.8. Calibration of

this response (see section 2.3.2) then yields the particle’s position time trace.

Having demonstrated how the particle’s position time trace can be mea-

sured even if additional light is scattered by the network, we will now turn our

attention to improving the total acquisition time by implementing a smart

scanning strategy.
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6.3.1.2 Raster scans with feedback

Consider acquiring voxel occupancy measurements centered around po-

sitions on a grid, as shown in figure 6.7A. A two-dimensional grid is drawn

for clarity, but the approach outlined in the following applies to three dimen-

sional grids as well. It is evident from the sketch that at most grid positions

the trapped tracer particle does not interact with the network while explor-

ing its trapping volume. Acquisition of voxel occupancies at these positions

leads to thermal noise images of “empty space” which provide no information

about the network. If voxel occupancies are only measured at positions that

are close to the network’s filaments (red grid positions in figure 6.7A), the net-

work architecture is fully imaged, but the total acquisition time is dramatically

reduced.

Positions close to filaments were found by an initial rapid raster scan

of the trapped particle through the grid, during which 100 ms long time traces

of Sα,total, α = x, y, z, were acquired at each position. Using the detector’s

sensitivity (see section 2.3.2), this signal can be related to the tracer’s po-

sition (albeit not corrected for nonlinearities in the detector response), plus

an unknown position offset since the detector has not yet been corrected for

the signal offsets introduced by the light scattered by the network (see sec-

tion 6.3.1.1). These 100 ms long time traces are not long enough to compute

meaningful voxel occupancies: The autocorrelation time along the optical axis

is ∼17 ms, implying that the time traces contain only ∼6 independent po-

sition measurements for the particle’s axial motion. However, they are long
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A

B C

Figure 6.7: Raster scanning strategy with feedback. A - Collagen fibrils are
detected by a rapid raster scan of the trapped particle through the network.
The presence of fibrils was detected by the change of the standard deviation of
the tracer particle’s thermal motion when a fibril is present (compare B and
C). Voxel occupancies are only acquired at positions close to the filaments
(red grid points in A), eliminating the imaging of empty space.

166



enough to estimate the means 〈α〉 and the standard deviations σα (figure

6.7C) of the particle’s motion. Since the unknown offsets of the position sig-

nal change between grid positions the tracer particle’s mean positions are not

a useful measure. However, the position standard deviations σα are indepen-

dent from the unknown offsets and can be compared to the reference standard

deviations of diffusion in the empty trapping potential (figure 6.7B), given by

σα,ref =
√

kBT/kα (compare equation 2.39), where α = x, y, z. If a filament is

present in the trapping volume, the particle can no longer explore the entire

volume, and the standard deviation of the particle’s motion along at least one

axis is expected to decrease (figure 6.7C).

For experiments described in this chapter, a decrease of at least one of

the standard deviations to σα < 0.4σα,ref was empirically found to be a reliable

measure to determine whether fibrils were close to a given grid position. Voxel

occupancies were acquired at all grid positions that fulfilled this condition, and

at their nearest neighbors.

The raster scanning strategy described in this section is a feedback

mechanism on the dwell time at a certain grid position: If no filament is

present, the grid position is not revisited for the acquisition of a voxel occu-

pancy, and the full dwell time spent at it is 100 ms. If the tracer particle

interacts with a filament, the voxel occupancy is measured by acquiring a 4 s

long time trace of the particle’s diffusion, and the total dwell time at the grid

position is 4.1 s. This approach can significantly decrease total acquisition

times depending on the amount of “empty” space in the imaging volume. An
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example is discussed in section 6.3.1.4.

6.3.1.3 Acquiring thermal noise images inside a collagen network:
essential steps

The following steps are necessary in order to successfully image a large

volume inside a collagen network: First, a grid is defined corresponding to

the positions at which individual voxel occupancies are to be acquired (figure

6.4). Second, the trapped tracer particle is navigated to an empty space in the

network, at which no filaments intersect the trapping volume, and the detector

is calibrated (see section 2.3.2). In this work, this calibration position always

corresponded to the first grid position, but this is not a requirement. Third,

after calibration, the particle is rapidly stepped through the grid (raster scan),

with a short detector response acquisition time at each grid position (here:

100 ms), and the positions at which the tracer interacts with the network’s

filaments are found (see section 6.3.1.2). Fourth, at all positions found this

way, time traces of the detector response Sα,total, long enough to populate

three-dimensional position histograms (i.e. voxel occupancies), are recorded

(here: time traces were 4 s long). Fifth, the particle is released from the optical

trap by closing the shutter in the trapping beam path. As soon as the particle

has diffused away, the shutter is re-opened, and the constant offsets Sα,fibril

are acquired by averaging short (here: 20 ms long) traces of the signal at

each of the positions from step four. Finally, the corrected detector responses

Sα,position can be calculated by equation 6.8. The particle’s position time traces

at each grid position are subsequently found by calibrating Sα,position, and the
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voxel occupancy at each position can be computed. The cumulative voxel

occupancy is then calculated as in section 5.3.1.1.

In order for the described approach to succeed, the positions of the

fibrils in the sample chamber are not allowed to change significantly between

the acquisition of each Sα,total and its corresponding offset Sα,fibril. However,

as discussed in section 2.5.6, the instrument had a drift of 10 nm/min un-

der optimal conditions, shifting the sample on the order of one fibril diameter

within 15 min.7 Consequently, all attempts to implement the described “offset

correction” failed when a time longer than 15 min passed between the acqui-

sition of Sα,total and Sα,fibril, limiting the total data acquisition time, and thus

the total volume that could be explored to approximately 225 individual trap-

ping volumes. A possible method to circumvent this limitation is discussed in

chapter 7.

Steps two through five of the discussed method were implemented as

a Labview Realtime program, and can be executed with minimal user inter-

action. Before calibration, the user must manually move the tracer particle

to a pore in the network. A pore can be identified by realtime monitoring

of the (uncalibrated) two-dimensional xy and yz position histograms of the

tracer particle’s diffusion, computed from the continuously recorded signals

7Additionally it can not be excluded that some fibrils move relative to the sample chamber
during data acquisition. However, by monitoring the signals Sα,fibril for an extended amount
of time, it was verified that the total drift of the position of the monitored fibrils was on
the order of the known drift of the sample chamber. Any additional motion of the fibrils
relative to the sample is therefore likely a small effect.
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Sα,total. Structures in the trapping volume are clearly visible in these his-

tograms, and the volume can be moved around in nanometer-sized increments

until an empty space in the network is found. Further, after step four, the user

must determine whether the tracer particle has diffused sufficiently far away

before re-opening the shutter and continuing to step five.

6.3.1.4 Thermal noise image of a section through a collagen gel

In this section, we will verify that performing a raster scan with feed-

back (see section 6.3.1.2) can indeed decrease the total acquisition time of

thermal noise images in biopolymer networks. For this purpose, a section of

a collagen network (concentration 2.4 mg/ml) was imaged. The section was

defined by a grid of 1 x 81 x 5 (x x y x z) points, which corresponds to an

approximate depth x width x height of the imaged volume of 0.3µm x 8µm x

2µm (figure 6.8). If voxel occupancies with an integration time of 4 seconds

were to be acquired at each of the 405 grid positions, the total acquisition

time would approximate 27 min. However, the raster scan found only 157 grid

positions in proximity to fibrils (some of which were false positives, compare

figure 6.8), reducing the total acquisition time to approximately 10 minutes,

an increase of over 60% in efficiency. Voxel occupancies were acquired only at

these positions and figure 6.8 shows a thermal noise image of the cumulative

occupancy (isovalue 10).

It is apparent from the excluded volumes in the image that four fibrils

intersected the scanned section, the leftmost at a shallow angle, and the other
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Figure 6.8: Thermal noise image of a section through a collagen gel. Filaments
were detected by a raster scan along a two-dimensional grid consisting of 1 x
81 x 5 grid positions (x x y x z). This area is approximately given by the blue
frames in A and B. Voxel occupancies were only acquired at positions at which
filaments were detected, and at their nearest neighbors. A - Thermal noise
image of the cumulative voxel occupancy (isovalue 10). Four fibrils intersected
the sectional scan, and are sketched in B to guide the eye (green filaments).
The thermal noise image of the individual trapping volume displayed in the
top right is the position at which the detector was calibrated. Other imaged
trapping volumes that are not in proximity to the fibrils were false positives
during the raster scan. The collagen concentration of the network was 2.4
mg/ml.
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three fibrils at steep angles, as sketched in figure 6.8B to guide the eye. If

many such scans are acquired within the same network, the mean distance

between fibrils can be determined, which is called the pore size of the network.

Fibril diameters can be extracted as well, as we will see in section 6.3.2.

6.3.1.5 Thermal noise imaging of network junctions

We will now turn our attention to imaging local network architecture.

The location of a network junction was estimated from bright field microscopy

images (figure 6.3B), and a trapped tracer particle was moved into its vicin-

ity. By realtime monitoring of the (uncalibrated) two-dimensional xy and yz

position histograms computed from the detector responses Sα,total(bp, bf ) (sec-

tion 6.3.1.1), it was verified that collagen fibrils were present at the estimated

position. The trapping volume was then moved to an adjacent pore in the

network (<500 nm from the junction), and the detector was calibrated. The

grid size for the raster scan was chosen to extend over the entire junction by

a best guess based on the bright field microscopy image. The positions of the

filaments were then found by the raster scan, and subsequently voxel occu-

pancies were measured for all trapping volumes in the proximity of fibrils. In

the following, we will discuss the resulting thermal noise images of two such

acquisitions.

Figure 6.9A shows the thermal noise image (isovalue 10, grid size 7 x

7 x 2) of a junction in a collagen network (concentration 0.6 mg/ml). Several

fibrils meet at this junction (sketched in figure 6.9B), and we will focus on
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Figure 6.9: Thermal noise image (isovalue 10) of the branching of two collagen
fibrils, without (A) and with (B) sketches of the fibrils (green). Both the
front and the back view of the three dimensional image are shown. The fibrils
(marked by arrows in B) are seen to branch from the back of the image to its
front. The collagen concentration of the network was 0.6 mg/ml.
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two of them which are marked with arrows. In the front view, there is a

thin strand of accessible volume visible between the fibrils, which vanishes

quickly when we follow them towards the back of the scanned volume. Thus,

the distance between the fibrils decreases from slightly larger than the tracer

particle’s diameter to smaller than the particle’s diameter, and the particle

can no longer diffuse in between the fibrils. This could indicate the branching

of a bundle of two fibrils.

The thermal noise image of a second junction (isovalue 10, grid size 11

x 11 x 2, collagen concentration 2.4 mg/ml) is shown in figure 6.10. 12 views

of the same image are displayed, each rotated by a further 30 degrees around

the optical axis. The excluded volume of the image consists of two channels,

indicating the presence of two fibrils which intersect each other at an angle

close to 90 degrees. A close up view of the junction reveals its submicroscopic

structure (figure 6.11): The channel formed by fibril 1 appears to be located

above the channel formed by fibril 2. This feature can be quantified by in-

specting a slice of the cumulative occupancy perpendicular to the orientation8

of fibril 2, at the location of fibril 1 (figure 6.11B). Fibril 2’s channel is 160 nm

below the excluded volume created by fibril 1, indicating that the diameter

of fibril 2 was 160 nm, assuming the fibrils were lying on top of each other

(figure 6.11C). Fibril 2’s diameter was also independently measured using the

method described in section 6.3.2.3, with a result of (150 ± 30) nm, strongly

supporting the hypothesis that the two fibrils were in contact. Further, this

8the orientation of fibril 2 was found by the algorithm explained in section 6.3.2.2.
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Figure 6.10: Thermal noise image of a junction in a collagen network. Twelve
views of the same image are shown, each rotated by a further 30 degrees
around the optical axis. The image shows the presence of two fibrils (sketched
in green to guide the eye) intersecting each other at an angle of approximately
90 degrees. The axis cue has a length of 200 nm in each direction, and the
collagen concentration of the network was 2.4 mg/ml.
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diameter agrees well with typical fibril diameters expected for the polymeriza-

tion conditions used in this work [154].

Thus, thermal noise imaging reveals the submicroscopic local structure

of collagen networks, and the experiments shown here pave the way for the

study of the behavior of junctions under applied loads. Possible experimental

designs to apply such loads compatible with photonic force microscopy are

discussed in chapter 7.

6.3.2 Quantitative analysis of thermal noise images in collagen net-
works

We will now discuss how the effective interaction energy between the

tracer particle and the filaments (i.e. the LRO, see section 2.4.1) can be ex-

tracted from the acquired data. Recall the calculation of the LRO along mi-

crotubules as discussed in section 5.3.2: Due to the radial symmetry of the

fluctuations of the filament the dimensionality of the LRO can be reduced

from three to one dimension without loss of information. This is possible by

calculating the LRO of individual voxel occupancy measurements, collapsing

them along the filament axis into two dimensions, and finally averaging on

concentric circles centered on the filament to find the radial behavior. Two

complications must be overcome to make this approach viable for measure-

ments in collagen networks: First, the diameter of collagen fibrils is too large

for them to be imaged using individual voxel occupancy measurements. Only

thermal noise images created from cumulative voxel occupancies can image
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Figure 6.11: Submicroscopic structure of a junction of collagen fibrils.
A - Zoomed view of the thermal noise image shown in figure 6.10. The axis
cue has a length of 200 nm in each direction. B - Slice of the cumulative
occupancy perpendicular to fibril 2 at the position of fibril 1. The channel
formed by fibril 1 is approximately 160 nm above the channel formed by fibril
2. This indicates that fibril 2 had a diameter of 160 nm if the two fibrils were
lying on top of each other (C).
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collagen fibrils. A method must therefore be developed to combine the LROs

of several individual voxel occupancy measurements into one cumulative LRO.

Second, unlike microtubules in the single filament assay described in section

5.2.3, the orientation of collagen fibrils in the gel is not known - in particular,

the fibrils are not confined to one xy plane in the sample chamber. Thus, after

imaging a filament, its orientation must be algorithmically found before the

radial behavior of the LRO can be analyzed.

6.3.2.1 Cumulative LROs

z

x

100 nm

A B

Figure 6.12: Geometry for the computation of cumulative LROs. A - Voxel
occupancy measurements (red) around a fibril (green). The tracer particle is
drawn in pink, and the excluded volume is indicated by a dashed line. B -
LROs computed from voxel occupancy measurements with different amounts
of excluded volume have different energy offsets (see text on page 179).

The LRO describes the effective interaction energy between the tracer

particle and the imaged structure up to an additive constant C̃, and can be

computed from each individual voxel occupancy measurement by equation
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2.54. It was argued that the constant C̃ is of no significance, since the offset

of an energy landscape is arbitrary by the work-energy theorem. However,

we now want to combine several LROs computed from individual occupancy

measurements (figure 6.12A), some of which overlap with the scanned struc-

ture. These LROs may have different offsets C̃. Consider two such occupancy

measurements, as shown in figure 6.12B. For each one individually, the LRO

is equal to the effective energy landscape explored by the particle. However

the two energy landscapes have different offsets C̃. During the occupancy

measurement on the left a larger part of the trapping volume was inacces-

sible to the diffusion of the particle than for diffusion in the right trapping

volume. Thus, for the left voxel occupancy measurement, particle positions

are distributed over a smaller volume, leading to a larger occupancy value for

each voxel, which results in a larger constant C̃. In order to combine the two

calculated LROs their offset in energy must be adjusted. For this purpose, the

average energy difference between each of the overlapping voxels (dark shaded

area in figure 6.12B) was calculated, weighted by their error (see equation

2.37). One of the two LRO measurements was then adjusted by addition of

this energy difference to equalize the energy offsets of the measurements. In

the non-overlapping volumes, the cumulative LRO is then given by the corre-

sponding values of the individual LROs, and within the overlapping volume

it is given by their weighted average. The cumulative LRO of more than two

voxel occupancy measurements is found by successive addition of individual

LROs as outlined above.
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6.3.2.2 Determination of the orientation of imaged fibrils
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Figure 6.13: Determination of fibril orientation. A - Thermal noise image
(isovalue 10) of a fibril in a collagen network. It is evident from the shading of
the excluded volume that the fibril is not aligned with the x-axis of the coordi-
nate system. From the components of surface normals along the central slice
through the thermal noise image (B) the fibril’s orientation can be computed.
The thermal noise image can then be rotated to align the fibril’s orientation
with the x-axis, and the surface normals along x direction vanish, as expected
(D).

Fibrils in a collagen gel are oriented in random directions, and can be

curved and thus change their direction along their contour. In order to analyze

the radial behavior of the cumulative LRO, the local direction of the imaged

fibril must be determined from the acquired data. Consider the thermal noise
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image of an individual fibril shown in figure 6.13A (image acquired on a 3 x

15 x 3 grid, collagen concentration: 2.4 mg/ml). It is clear from the channel’s

shading that the filament was not oriented along the current x-axis (i.e. it was

not perpendicular to the yz-plane). A method is now introduced to compute

the unit vector along the fibril’s contour. Using this unit vector, the thermal

noise image, cumulative occupancy, and cumulative LRO can be rotated so

that the fibril is aligned with the x-axis of the coordinate system.

The method requires that the fibril is already roughly aligned with the

desired orientation, e.g. by manual rotation of the thermal noise image. Let us

examine a slice through the center of such a thermal noise image, as shown in

figure 6.13. Since the thermal noise image has already been roughly aligned,

the cross-section of the excluded volume appears as a circle or ellipse. The

surface normals of voxels along this ellipse point towards the center of the

fibril, and their components are plotted in figure 6.13B. Consider now all pairs

of surface normals around the excluded channel which are separated by 90

degrees. An example of two such normals are sketched into figure 6.13A. The

normalized cross product of each such pair of vectors yields a resulting unit

vector into the local direction of the fibril. The unit vectors resulting from all

pairs of cross products around the cross-section of the channel are averaged to

yield the mean local direction of the fibril. The thermal noise image is then

rotated to align this mean unit vector with the x-axis of the coordinate system.

For the example shown here, the rotated view is drawn in figure 6.13C. The

surface normals of the rotated thermal noise image’s channel (figure 6.13D)
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have vanishing components along the x-axis, as expected for an image of a

fibril aligned with this axis, verifying that the method indeed rotates the fibril

in the desired direction.

6.3.2.3 LROs and fibril diameters

Consider now the cumulative LRO of the same measurement whose

thermal noise image is shown in figure 6.13, computed as described in section

6.3.2.1, and rotated into the direction of the fibril as shown in section 6.3.2.2.

A slice perpendicular to the fibril through the center of the three-dimensional

LRO is plotted in figure 6.14A. Note that since the LRO was rotated, the

optical axis of the microscope no longer lies within the drawing plane. The

excluded volume has an elliptical shape, and is not circular as one would expect

(see figure 6.14B for a fit). Such elliptical shapes were found for all fibrils

analyzed this way (N = 8). All fibrils approximately aligned with an xy-plane

of the PFM showed elliptically shaped excluded volumes for which the minor

axis of the ellipse was aligned with the optical axis. This could imply that

the cross-sectional symmetry of the fibril is broken during polymerization, for

example by gravity – an unlikely scenario. More likely, the observed ellipticity

is caused by position detection artifacts: Light that travels through the fibril,

but is not scattered by it, receives a phase shift, which influences the axial

detection of the tracer particle’s position (see section 2.3.1).

Due to the elliptical shape of the LRO it is not possible to compute

the one-dimensional radial LRO by averaging along concentric circles as was
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Figure 6.14: Cumulative LRO of a collagen fibril. A - Slice through the
three-dimensional LRO, perpendicular to the fibril’s local orientation. Same
data as in figure 6.13. The excluded volume (infinite values of the LRO) was
elliptical, and not circularly symmetric as expected. B - An ellipse was fitted
to the excluded volume, and the radial behavior of the LRO found for the
major and minor axis separately. For each of the two axes two cones were
defined, and data with equal distance from the fibril’s center were averaged
within the corresponding cones. The resulting radial LROs are shown in C.
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done for microtubules (section 5.3.2.3). Rather, two radial LROs were com-

puted, one each for the behavior along the major and minor axis of the ellipse

respectively. In order to average the two-dimensional data, two sets of cones

were defined (figure 6.14B). The opening of the cones belonging to the major

axis of length a is given by comparing a circle with radius a/2 centered at

the center of the ellipse to the behavior of the ellipse: The cone describes the

range over which circle and ellipse diverge by less than 5%. The cones for

the minor axis were computed in an analogous fashion. Within each set of

cones, data points of the two-dimensional LRO equidistant from the center of

the excluded volume were averaged to yield the one-dimensional, radial LRO

associated with the respective axis. Both radial LROs are plotted in figure

6.14C. Recall the one-dimensional LROs for a grafted microtubule with one

free end. Voxels along energy barriers of up to 4 kBT can easily be reached

by the particle’s diffusion during the given observation time of 4 seconds per

individual occupancy measurement. For the collagen fibril though, the highest

explored LRO above zero effective interaction energy is ∼0.8 kBT , after which

the effective interaction energy immediately increases to infinity. The absence

of voxels at high energy levels implies a very stiff filament without transversal

fluctuations, since transversal fluctuations would introduce such voxels (see

sections 5.3.2.2 and 5.3.2.3). The small change in effective interaction energy

from the infinite energy barrier outwards is not yet understood. It is unlikely

that this effect is caused by electrostatic interactions between the particle and

the collagen fibril, since such interactions are shielded by the ions of the PBS
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buffer, and decay away over a Debye length of less than a nanometer [131].

The long range of the decay of over 100 nm therefore cannot be explained by

electrostatics.

The infinite energy barriers are located at a distance of 170 nm and 190

nm from the fibril’s center respectively. Assuming that the fibril is stationary,

we may compute its diameter from these values. Since the value along the

minor axis is likely distorted due to artifacts on the detector, we will consider

the radius of the excluded volume to be 190 nm. With a tracer particle radius

of 105 ± 15 nm equation 2.47 yields a fibril radius of 85 ± 15 nm, in excellent

agreement with the fibril diameter extracted in section 6.3.1.5 for identical

polymerization conditions.

6.4 Conclusions

In this chapter, quantitative thermal noise images of the local architec-

ture of biopolymer networks are shown for the first time. Two major difficulties

were overcome to facilitate these images: First, a method was developed to

correct the signal on the detector for light scattered by the collagen fibrils.

Second, an efficient scanning strategy based on a feedback mechanism was

introduced, which can significantly reduce the total acquisition time for large

scale images. The images of two junctions of collagen fibrils were discussed to

demonstrate the wealth of information accessible by the novel technique.

Additionally, a method to compute the effective interaction energy (cu-

mulative LRO) between the tracer particles and the filaments was introduced.
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From its analysis, it was concluded that collagen fibrils do indeed behave like

stiff rods and do not show any measurable transversal fluctuations. Further,

the fibril diameter could be extracted from the data, and agrees well with

expected diameters for the present polymerization conditions.

Together with chapter 5 these results pave the way for the imaging of

networks of semi-flexible polymers, such as actin.
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Chapter 7

Summary and future work

It is the goal of this work to develop a novel technique capable of imag-

ing the local architecture of biopolymer networks with super resolution, while

simultaneously extracting the distribution of forces acting on the individual

cross-linked filaments. Such measurements are necessary for a deep under-

standing of the macroscopic mechanical properties of biopolymer networks,

and are expected to help in the design of novel biomimetic materials. As was

argued in the introduction (section 1.3.3), the transversal fluctuations of a

semi-flexible filament report on its tension. If the transversal fluctuations of

the filaments in a network can be measured, the distribution of forces in the

network can be determined.

In this dissertation, it is shown that thermal noise imaging implemented

using a PFM can accomplish both: The measurement of transversal fluctua-

tions of individual microtubules is described in chapter 5, and the visualization

of the submicroscopic local architecture of a network of collagen fibrils is shown

in chapter 6.

Even though collagen fibrils in a network do not exhibit any measur-

able transversal fluctuations and behave like stiff rods (see section 6.3.2.3),
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their thermal noise images contain a wealth of information about their local

architecture that had been inaccessible up to now. For example, as shown in

section 6.3.1.5, thermal noise imaging can visualize the submicroscopic details

of junctions in collagen networks. Thus, the local behavior of such junctions

under local or global loads can now be studied under physiological conditions

for the first time. The response of the network to local loads is of biological

interest, since living cells in a collagen network induce and react to local stress

variations in the network and locally remodel the network around them [142].

In order to model such local loads, magnetic beads with magnetic moment m

can be embedded in the network and a force applied by a magnetic field gra-

dient ∂Bα/∂α, α = x, y, z, created by a pair of anti-parallel current carrying

coils (see figure 7.1) [140]. The force that each magnetic bead enacts on the

network is then

F = (m · ∇)B. (7.1)

The size of the magnetic beads must be chosen to be on the order of or larger

than the pore size of the network; otherwise the applied force will just move

the bead through the network rather than applying a local load to it. Thus, for

the networks used in this work the magnetic beads must be several microns

in diameter. A pair of such coils is currently being implemented into the

PFM used in this work. Once the integration has been completed junctions in

the network can be imaged before and after the application of local loads of

different magnitudes.

Global strains can be applied to the network by polymerizing the col-
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Figure 7.1: Application of local loads to a collagen network by magnetic
beads. Magnetic beads with magnetic moment m are embedded in a col-
lagen network, and a magnetic field gradient ∂Bα/∂α, α = x, y, z, is applied
by two anti-parallel current carrying coils. The force acting on the bead is
then F = (m · ∇)B.
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lagen gel in contact with both the top and the bottom coverslip of the sample

chamber, and then shearing the coverslips against each other. Implementing

this geometry, without impacting the exceptional long time scale stability of

the instrument is challenging though.

In vivo, collagen molecules in fibrils are typically cross-linked, and such

cross-linking has been speculated to have an impact on the junctions in the

network [35, 142]. By thermal noise imaging, the effect of different cross-linking

reagents on the submicroscopic behavior of individual junctions under local or

global loads can now be directly measured, and is expected to yield valuable

insights for the design of novel materials.

In order to gain good statistics of the behavior of junctions in a net-

work under load, many junctions in the same network have to be imaged.

However, as discussed in section 6.3.1.3, currently data acquisition is limited

to ∼15 min of imaging, which corresponds to 225 individual occupancy mea-

surements, each integrated for 4 seconds. While this is sufficient to image the

volume around a single junction, a large part of the network covering several

junctions cannot be explored. Recall that this limitation is due to the long

timescale drift of the instrument of 10 nm/min. The particle’s position signal

must be corrected for the constant offsets introduced by light scattered by

the collagen fibrils (see section 6.3.1.1). For that purpose the constant offsets

Sα,fibril, α = x, y, z, caused by the collagen fibrils must be recorded at each

grid position after acquisition of the signals Sα,total at each position of the

grid. However, during 15 min of imaging (i.e. of acquiring the Sα,total), the
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instrument drifts by approximately one collagen fibril diameter. Thus, when

revisiting each grid position to acquire the signals Sα,fibril the fibrils are no

longer present at their original positions, the signals Sα,fibril have changed,

and the correction of the position signal fails. Thus, in order to facilitate large

scale imaging, the already exceptionally small long timescale drift must either

be further reduced, a very challenging endeavor, or the problem must be cir-

cumvented. One elegant solution that does not depend on a further reduction

of the instrument’s drift involves acquiring the signals Sα,total, and immedi-

ately, before proceeding to the next grid position, the signals Sα,fibril. By

this approach the position offsets at a certain grid position in the sample are

measured immediately after measuring the corresponding total signals, and

the sample will have drifted by an insignificant amount between the measure-

ments. One then proceeds to acquire data at the next grid position, again first

measuring the total signals, and immediately afterwards the offsets. Thus,

in principle one could then acquire data for as long a time and as large of

a volume as desirable. Implementing this concept is non-trivial though: In

order to acquire the signals Sα,fibril the particle must be released from the

trap; however in order to measure the signals Sα,total at the next grid posi-

tion a particle must be present in the trapping volume. This can be realized

by use of a second optical trap (see figure 7.2). The red beam in figure 7.2

indicates the regular trapping and tracking beam, which is used during the ac-

quisition of voxel occupancies. The optical trap indicated in blue has the sole

purpose of providing a “storage position” for the tracer particle which keeps
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Figure 7.2: Strategy for immediate offset correction. See page 191 for a de-
tailed description.
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it from diffusing away when the red trapping volume needs to be empty so

that the signals Sα,fibril can be recorded. The blue optical trap will therefore

be referred to as the “storage” trap. Acquisition of data at each grid position

then follows the following sequence: Initially (figure 7.2A) the storage trap is

switched off, and the signals Sα,total are recorded. Subsequently, the sample

is moved several micrometers relative to the trapped tracer particle (figure

7.2B), positioning the particle at a position in the network at which it can be

temporarily stored, and the (blue) storage beam is switched on. The sample is

then rapidly1 positioned so that the (red) trapping beam overlaps the original

grid position, while the probe particle is “ripped” out of the (red) optical trap

and remains left behind at its new position in the sample. This new position

must overlap with the trapping volume of the storage trap, in which the probe

is now trapped (figure 7.2C). The signals Sα,fibril can now be acquired since

the (red) trapping beam is only scattered by the collagen fibrils close to the

focus, and not by the tracer particle. The (blue) storage beam may be causing

artifacts on the detector, and it may be advantageous to “blink” it on and

off, i.e. to switch between figure 7.2D and E. Switching the storage beam on

and off fast enough keeps the stored particle from diffusing away, while short

time traces of the offset signals Sα,fibril can be acquired every time the stor-

age beam is off. After the position offset has been determined with sufficient

fidelity, the sample is rapidly stepped to move the tracer particle back into

1Rapid positioning of the sample may cause large inertial forces which could deform the
network. These forces can be avoided by moving the storage trap using beam steering optics
instead of moving the sample.
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the (red) trapping and tracking beam (figure 7.2F). The particle can then be

moved to the next grid position, and the described acquisition sequence can

be restarted from the beginning.

Integration of the electromagnetic coils and the storage trap into the

PFM will enable the large scale visualization of biopolymer networks under

loads. Thermal noise imaging may then be applied to networks of semi-flexible

filaments. Their local architecture can be visualized, and their transversal fluc-

tuations measured by combining what we have learned from the experiments

on fluctuating microtubules and stiff collagen networks. These experiments

are expected to yield the insights necessary to test existing theories, and to

help in the design of novel biomimetic materials.
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