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Attraction and repulsion of multi-color laser
beams in plasmas: a computational study

S. A.Yi, S. Kalmykov and G. Shvets

Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, One
University Station C1500, Austin, Texas 78712

Abstract. The nonlinear interaction of high-power multi-color laser beams in plasmas is investi-
gated numerically. Both the relativistic mass increase and the driven plasma wave contribute to the
mutual beam-beam interaction and to the development of the electromagnetic cascade. The propa-
gation of the individual cascade sidebands is modelled in the paraxial approximation. The resulting
set of coupled nonlinear envelope equations is solved numerically using a newly developed pseu-
dospectral method. We predict that two beams intersecting in the plasma can either attract or deflect
each other depending on whether their frequency detuning is slightly below or above the electron
Langmuir frequency.
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INTRODUCTION

Long-distance propagation of laser beams through plasmas is of great importance to
laser-plasma accelerators because it affects the total single-stage energy gain of the
accelerated electrons. While even the nonlinear propagation of a single laser pulse can
be fairly complex due to the phenomenon of relativistic self-focusing [1, 2, 3], multiple
beam propagation reveals a range of even more complicated nonlinear effects. Laser
beams can interact with each other through the relativistic mass effect [4, 5, 6, 7], as
well as through the electron density perturbation (electron plasma wave, EPW) driven
by the ponderomotive force of the lasers [5, 6, 7, &]. In the collinear geometry, the
latter interaction is significant because the relativistic self-focusing may be enhanced
or suppressed by the cross-focusing or defocusing effect of the EPW, depending on the
detuning frequency [5, 7]. In the non-collinear geometry, same-frequency beams can
either attract or repel each other depending on their relative phase [6]. This effect is due
to the relativistic and ponderomotive nonlinearities.

In this Report, we explore the nonlinear interaction between laser beams of different
colors; their difference frequency €2 can be close, but not equal, to the electron Lang-
muir frequency @, = (4me’ng Jm,) 1/2 (where ng, —e, and m, are, respectively, the elec-
tron background density, charge, and rest mass). First, we present a paraxial model for
the propagation of multi-color laser beams in plasmas. Next, we propose a numerical
method for solving the nonlinear paraxial equations of the model. We then present pre-
liminary numerical results which demonstrate mutual attraction and repulsion between
two frequency-detuned beams in plasmas, and conclude with an outline for future work.
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THEORETICAL MODEL

We present here a theoretical model for the propagation, electromagnetic cascading,
and mutual interaction in rarefied plasmas of weakly-relativistic frequency-detuned
laser beams. The laser propagation is modelled in the paraxial approximation, taking
into account the group velocity dispersion, and beam-beam interaction through both
the density perturbations due to the plasma wake and the relativistic mass corrections.
Long laser beams detuned in frequency by € # @, are assumed, so that the density
perturbations are due to the instantaneous (on the scale of the laser pulse duration)
plasma response to the ponderomotive beat wave. This is a 3D model, building upon
an earlier 1D model [9] for the electromagnetic cascading of multi-color laser beams in
plasmas.

Consider two laser beams shifted in frequency by Q < @y focused onto a plasma
boundary at z = 0, where z is the propagation variable, and wp is the fundamental
frequency of beam “0”. This bi-color laser beam can be described by the vector potential
(normalized to m.c?/|e|) a(x,,z = 0,€) = Relega(x, ,z = 0,&)], where

a(x,,0,8) = e ™ ag(x,,0,E) +ay(x,,0,E)e *b]. (1)

Here, €y is the unit complex polarization vector, x; = (x,y), & = ¢t —z, ko = wo/c,
and ko = Q/c. As the beams propagate through the plasma, their ponderomotive force
produces a co-moving modulation of refractive index; the latter, in turn, produces new
sidebands in the laser spectrum,

a(x,z>0,&) = 2 a(x,,z>0,E)e e 2)

]=—0c0

where &y = ko + lkg, [ is an integer. The evolution of the cascade envelopes is governed
by the set of coupled nonlinear paraxial equations:

(2i0/9z+ V2 )a; = k(1 —nf)ay, (3)
where 1); are the nonlinear refractive indices given by

Q 2 1 Um+1 Pm
(1) 3Ze( m‘?)]- @

m

k2
n *1—k—2

Here, k, = wp/c, the first term in the square brackets represents the group velocity
dispersion, and the second term represents the nonlinear response of the plasma, i.e.,
the electron density perturbations and the relativistic mass increase of plasma electrons.
P1 = Xmanda,, ., are the laser intensity moments, and N; = n; /ng are the normalized
harmonics of the driven electron density perturbations derived from the equations of
cold electron hydrodynamics:
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TABLE 1. A comparison of the efficiency of numerical methods.
Numerical parameters: dx = dy = .1562rqo, Ny = N, = 128,

dz/zgp  z-steps runtime (s)

Split-step Fourier (2nd order)  0.005 200 306
Split-step Fourier (4th order)  0.025 40 192
Pseudospectral 0.01 100 102

where n,(x | ,z,&)—np = %21 Sny(x | ,z,E e S Equation (5) assumes an instantaneous
plasma response to the periodic ponderomotive force (plasma does not have a memory),
which is justified when |Q — @, |7 > 1, where T, is the laser beam length [10]. The elec-
tron density perturbations are assumed to be phase-locked with the laser ponderomotive
force, which is justified for the non-resonant beat wave [9, 10] |Q — @,| > 3wg;, where

wgrr — (1/4)(3|aoay|?/2)"/? is the Rosenbluth-Liu saturation frequency [11].

NUMERICAL METHODS FOR SOLVING EQ. 3

Although the theoretical model described above is fully 3D, we reduce the physical
dimension to 2D, assuming infinitely long laser beams. Thus, we solve the system of
coupled nonlinear paraxial equations (3) numerically in a transverse subspace, using a
pseudospectral method which calculates the spacial dispersion term in Fourier space,
and the nonlinear plasma response in physical space. Taking the Fourier transform of
equations (3) and rewriting,

2i0a)/9z = (K +I)a + k.7 [(1 = nf)a] (©)

where the tildes and .% denote Fourier transformed quantities, and 4, &, are the x, y
wavenumbers. The set of coupled ordinary differential equations (6) can be integrated
in Fourier space using a fourth-order Runge-Kutta method. Since the nonlinear part
(1—mn?)a; must first be evaluated in physical space before taking its Fourier transform,
each full fourth-order Runge-Kutta step in z requires taking 4 fast Fourier transforms
(FFT), and 4 inverse FFTs.

We have found that this pseudospectral numerical scheme for solving the nonlinear
wave equations (3) is comparable in efficiency to a fourth-order version of the well-
known Split-Step Fourier method [12, 13]. In table 1, we show sample runtimes for
some typical physical and numerical parameters, where for each numerical method we
propagate the laser beam up to z = zg, and take the largest steps in z possible while still
conserving energy to a factor 10~#. The pseudospectral method has the shortest runtime
for a given accuracy.

MUTUAL INTERACTION BETWEEN NON-COLLINEAR BEAMS

Consider two laser beams shifted in frequency by 2 < @y propagating non-collinearly
in a plasma. If these beams are close enough to interact, the beat-wave driven electron
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FIGURE 1. Mutual interaction between non-colinear beams detuned by € = 1.25w,. Individual laser
beam intensities (conveniently approximated by |ap|> — |a1|? for better visualization) are plotted at (a)
z =20, (b) z= 2.5z, and (¢) z = 5.0zg. (d) Centroid positions of the higher frequency beam (solid line)
and the lower frequency beam (dashed line).

density perturbation acts as a co-moving periodic channel that is focusing when Q <
o, and defocusing when Q > w, [7]. Thus, the two laser beams mutually attract
if the difference frequency is slightly below the plasma frequency, and repel if the
difference frequency is slightly above. This effect is of a different nature than the earlier
described [6] mutual interaction between same-color beams.

Simulation results for two colliding laser beams (labelled / = 0, 1) are shown in Fig. 1.
The beams initially have axi-symmetric Gaussian intensity profiles in the cross-sections
perpendicular to their propagation axes. At z = 0, they are separated in the x direction by
3 beam radii and aimed towards each other at incident angles 8y = +0.014° to the z axis.
The difference frequency is Q = 1.25w,, and each beam has power Fy = Py = 0.95F,
where Py = 16.2(an/wp)*> GW is the critical power for relativistic self-focusing [3].
For weakly-relativistic beams with agy = ag; = 0.1, the initial radii of the beams are
kproo = kpror = 55. The background plasma density is ng = 1.7 x 107 em~3, and
Ao = 0.8 um corresponds to @, /wy = 0.01.

Figures 1(a), 1(b), and 1(c) show the intensities of the individual beams at z = 0,
z = 2.5zg, and z = 5.0zg, respectively, where zp = korgo /2 is the Rayleigh length.
Beam centroid dynamics in the x — z plane are displayed in Fig. 1(d), where X, =
[dx x,|a]?/ [dx, |af?. Figure 1 clearly confirms that the two beams have scattered
off of each other due to the repulsive mutual interaction.

To emphasize the importance of the frequency detuning between the beams, we have
simulated the interaction between two laser beams with the same parameters, except
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FIGURE 2. Same as in Fig. 1, except that the beams are strongly detuned by Q = 3.25@,.

that Q = 3.25w,. It is apparent from Fig. 2 that the two beams have passed through each
other, in contrast with Fig. 1. It is clear from Figs. 1 and 2 that the difference frequency
is an important parameter in the mutual interaction between multi-color laser beams.
The nonlinear susceptibility y; = (k7 /&2)(1—n7) for both cases at z = 2.0zg is shown
in Fig. 3. In Fig. 3, the darker regions correspond to higher refractive index 1), to which
the laser beams are drawn. We further note that these simulations are a work in progress,
and thus the effect of electromagnetic cascading has been neglected, taking into account
only the two-beam interactions. Understanding the effects of sideband generation on the
beam-beam interaction is the subject of future work.

SUMMARY AND FUTURE WORK

In summary, we have presented a reduced 3D model for the propagation and electromag-
netic cascading of high-power (close to the relativistic self-focusing threshold) multi-
color laser beams in rarefied plasmas. Assuming long laser pulses, we have numerically
implemented our model to investigate the mutual interaction between two almost co-
propagating frequency-detuned laser beams aimed towards each other. The defocusing
effect of the beat wave driven density perturbations has been shown to be significant in
the mutual attraction or repulsion between the beams.

In the forthcoming publications, we will investigate the effect of the growth of elec-
tromagnetic cascade sidebands on this mutual interaction. The effects of the finite pulse
duration and the resulting non-stationary plasma response will also be investigated.
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FIGURE 3. Nonlinear susceptibility ; = (k7 /k3)(1 —17) at z=2.0zg. (a), (b) I = 0,1 for @ = 1.25,,
and (c), (d) / = 0,1 for Q = 3.25w,. Centroids are marked with x’s. Darker regions correspond to higher
refractive index 7); in (a) and (b). Arrows show direction of effective force on centroids. Here / = 0
corresponds to lower frequency @ = @y, and / = 1 corresponds to higher frequency w = w4 Q.
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