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Abstract 

Tempo and Mode of Diatom Plastid Genome Evolution 

 

Mengjie Yu, PhD 

The University of Texas at Austin, 2017 

 

Supervisors:  Edward C. Theriot & Robert K. Jansen 

 

Diatoms are mostly photosynthetic eukaryotes within the heterokont lineage. Their plastids 

were derived through secondary endosymbiosis of a red alga. Despite years of phylogenetic 

research, relationships among major groups of diatoms still remain uncertain.  Additional 

plastid genome (plastome) sequences can not only provide more insight into diatom plastid 

evolution, but also assess phylogenetic relationships among the major lineages of diatoms.  

In my dissertation, I have more than doubled the available plastome sequences.  My work 

in the plastome evolution in Thalassiosirales, one of the more comprehensively studied 

orders in terms of both genetics and morphology, showed highly conserved gene content 

and gene order within this order.  I also documented the first instance of the loss of 

photosynthetic genes psaE, psaI and psaM in Rhizosolenia imbricata.  By extensively 

sampling the diatoms with critical phylogenetic positions, I presented the largest genome 

scale phylogeny yet published for diatoms based on 103 shared plastid-coding genes from 

40 diatoms and Triparma laevis as the outgroup.  The most recent diatom classification 

posits that there are three major clades of diatoms: Coscinodiscophyceae (informally radial 

centrics), Mediophyceae (bi- or multipolar centrics), and Bacillariophyceae (pennates).  

Phylogenetic analysis of plastome data recovered the radial centric Leptocylindrus as the 

sister group to the remaining diatoms and recovered the polar diatoms Attheya plus 
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Biddulphia in a clade sister to pennate diatoms.  Statistical analysis comparing this 

optimal tree to trees constraining diatoms to the existing classification strongly rejected 

monophyly for the Coscinodiscophyceae and Mediophyceae.  Extensive plastome 

rearrangements and variable gene content were observed among the 40 diatom species.  

Astrosyne radiata, recovered on the longest terminal branch, experienced extensive gene 

loss.  The nucleotide substitution rates of plastid protein coding genes were estimated, 

and their patterns were compared across different gene categories.  Relationships between 

substitution rates and plastome characteristics, such as indels, genome size, genome 

rearrangement, were examined.  The analyses also revealed a strong positive correlation 

between sequence divergence and gene order change in diatom plastomes. 
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Chapter 1: Introduction 

 Diatoms are mostly photosynthetic eukaryotes within the heterokont lineage. They 

are unicellular organisms with delicate siliceous walls, forming a monophyletic group 

within the heterokont algae.  The plastid of diatoms was derived when a eukaryotic cell 

engulfed a red alga through secondary endosymbiosis.  Variable plastid genome sizes and 

extensive genome rearrangements have been observed.  However, little is known about 

plastid genome evolution within order- or family-level clades, and extensive plastid 

genome studies across the diatom phylogeny are still lacking.  The research in this 

dissertation focused on two main areas of plastid genome evolution in diatoms.  First, this 

dissertation addressed the mode of plastid genome evolution in diatoms.  Gene content, 

genome size and genome rearrangement were examined within and across the diatom 

phylogeny, and the genome scale phylogeny was discussed.  Second, this dissertation 

focused on the tempo of plastid genome evolution in diatoms. The pattern of mutation rate 

of plastid genes was examined, and correlations between genome rearrangement and 

mutation rates were tested.  

 In Chapter 2, extensive sampling was conducted within Thalassiosirales, one of the 

more comprehensively studied diatom orders in terms of both genetics and morphology. 

Seven complete diatom plastid genomes are reported here including four 

Thalassiosirales:  Thalassiosira weissflogii, Roundia cardiophora,  Cyclotella sp. 

WC03_2, Cyclotella sp. L04_2, and three additional non-Thalassiosirales 

species Chaetoceros simplex, Cerataulina daemon, and Rhizosolenia imbricata.  The 

sizes of the seven genomes varied from 116,459 to 129,498 bp, and their genomes are 

compact and lack introns.  We found the larger size of the plastid genomes of 

Thalassiosirales compared to other diatoms was due primarily to expansion of the inverted 
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repeat.  Gene content within Thalassiosirales was more conserved compared to other 

diatom lineages.  Gene order within Thalassiosirales was found to be highly conserved 

except for the extensive genome rearrangement in Thalassiosira oceanica.  Cyclotella 

nana, Thalassiosira weissflogii and Roundia cardiophora shared an identical gene order, 

which was inferred to be the ancestral order for the Thalassiosirales, differing from that of 

the other two Cyclotella species by a single inversion. A few gene loss patterns were also 

discovered.  The genes ilvB and ilvH were missing in all six diatom plastid genomes 

except for Cerataulina daemon, suggesting an independent gain of these genes in this 

species. The acpP1 gene was missing in all Thalassiosirales, suggesting that its loss may 

be a synapomorphy for the order and this gene may have been functionally transferred to 

the nucleus. Three genes involved in photosynthesis, psaE, psaI, psaM, are missing 

in Rhizosolenia imbricata, which represents the first documented instance of the loss of 

photosynthetic genes from diatom plastid genomes. 

     In Chapter 3, we expanded our taxon sampling across the major clades of diatom 

phylogeny.  We reported another 18 diatom plastome sequences ranging in size from 

119,120 to 201,816 bp. We found that Plagiogramma staurophorum had the largest 

plastome sequenced so far due to large inverted repeats and a 2,971 bp group II intron 

insertion in petD gene.  We also found that the continuation of the pattern of psaE, psaI 

and psaM genes loss in Rhizosolenia fallax., the closely related species of Rhizosolenia 

imbricate.  Based on 103 shared plastid-coding gene from 40 diatoms and Triparma 

laevis as the outgroup, we reported the largest genome scale phylogeny yet published for 

diatoms.  From our phylogeny, Leptocylindrus was recovered as sister to the remaining 

diatoms and the clade of Attheya plus Biddulphia was recovered as sister to pennate 

diatoms, strongly rejecting monophyly for two of the three proposed classes of diatoms. 
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 In Chapter 4, we explored the patterns of plastid genes mutation rates in 40 diatom 

species across the diatom phylogeny.  We found most accelerated rates in the long branch 

bearing species Astrosyne radiata and Proboscia sp.  Consistent with previous studies, 

dN and dS rate in genes integral to photosynthesis were much lower than other groups, 

while the replicative DNA helicase gene dnaB showed the highest dN and dS value.  A 

significant positive correlation was observed between dN, dS and dN/dS and the number 

of indels. However, no obvious correlation was found between the substitution rates and 

plastid genome size.  Significant correlation between pairwise mutation rates and genome 

rearrangement measured by inversion distance were detected, with the long branch species 

Astrosyne radiata showing the highest correlation score.   
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Chapter 2: Conserved gene order and expanded inverted repeats 

characterize plastid genomes of Thalassiosirales 

This Chapter is published in PloS ONE 9(9): e107854. Mengjie Yu is co-first and 

corresponding author. 

 

Introduction 

Diatoms are unicellular organisms with delicate siliceous walls, forming a 

monophyletic group within the heterokont algae (Evans et al., 2004; Julius and Theriot, 

2010; Round and Crawford, 1984; Theriot et al., 2011).  Most diatoms are photosynthetic 

and are responsible for one quarter of global net primary production, and they are the main 

biological mediators of the silica cycle in the oceans (Nelson et al., 1995).  The 

completion of nuclear and plastid genome sequences for three diatoms, Cyclotella nana 

Hustedt (Armbrust et al., 2004) (formerly Thalassiosira pseudonana Hasle & Heimdal 

(Alverson et al., 2011)), Phaeodactylum tricornutum Bohlin(Bowler et al., 2008), and 

Thalassiosira oceanica Hasle (Lommer et al., 2010), allowed the exploration of their 

evolutionary history in a genomic context.  For example, one environmentally-driven 

gene transfer event has been reported in T. oceanica, where the petF gene encoding 

ferredoxin was transferred from the plastid to the nucleus (Lommer et al., 2010).  

Replacing the iron-sulfur protein ferredoxin by iron-free flavodoxin presumably 

contributed to the ecological success of T. oceanica in iron limited environments (Lommer 

et al., 2010). 
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Understanding possible adaptive events such as the transfer of petF requires a dense 

taxon sampling of the trait of interest over a well-resolved phylogeny.  The 

Thalassiosirales Glezer & Makarova are the only diatom order with a moderately well-

resolved phylogeny that has been used to formally examine the evolution of ecological, 

morphological and genetic traits, particularly with regard to adaptation across marine and 

freshwater environments (Alverson, 2007; Nakov et al., 2014). 

Fifteen diatom plastid genomes have been sequenced so far (Brembu et al., 2013; 

Galachyants et al., 2012; Lommer et al., 2010; Oudot-Le Secq et al., 2007; Ruck et al., 

2014; Tanaka et al., 2011).  The overall organization of these genomes is conserved with 

all of them having a large single copy region (LSC), small single copy region (SSC), and 

two inverted repeats (IR).  However, the plastid genomes range from ~ 116 to 165 kb, and 

they show extensive genome rearrangements, gene loss, duplication and functional 

transfers of genes to the nucleus (Ruck et al., 2014).  The first introns in diatom plastid 

genome were reported in the rnl and atpB genes of Seminavis robusta (Brembu et al., 

2013), and extrachromosomal plasmids were found in several diatom plastid genomes 

(Brembu et al., 2013; Ruck et al., 2014). 

In this study, plastid genome sequences are reported for four more thalassiosiralean 

diatoms (Thalassiosira weissflogii (Grunow) G. Fryxell & Hasle, Cyclotella (F.T. Kützing) 

A. de Brébisson sp. L04_2, Cyclotella (F.T. Kützing) A. de Brébisson sp. WC03_2 and 

Roundia cardiophora (Round) Makarova) and representatives of three other diatom orders, 

Chaetoceratales Round & Crawford (Chaetoceros simplex Ostenfeld), Hemiaulales Round 

& Crawford (Cerataulina daemon (Greville) Hasle in Hasle & Syvertsen) and 
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Rhizosoleniales  Silva (Rhizosolenia imbricata Brightwell).  Gene content, genome size 

and gene order are compared across the genomes to better understand plastid genome 

evolution within Thalassiosirales. 

 

Materials and Methods 

Diatom strains and culture conditions 

Seven diatom strains from different sources were examined (Appendix Table A.1). 

There were no permissions required for those collection sites, and there are no 

endangered/protected diatoms. All DNA were extracted from cultured materials, several of 

which are already publicly available. Cerataulina daemon, Roundia cardiophora and 

Rhizosolenia imbricata were grown in marine f/2 medium (Guillard, 1983)in a Percival 

model I-36LL incubation chamber (Percival, Boone, Iowa, USA) at 21 oC; Cyclotella sp. 

L04_2 and Cyclotella sp. WC03_2 were grown in COMBO medium (Interlandi and 

Kilham, 1998) on a window-lit lab bench; Thalassiosira weissflogii and Chaetoceros 

simplex were grown in f/2 medium (Guillard, 1983) on a window-lit lab bench.  The 

incubator was illuminated with fluorescent lights using a 12:12 hour light:dark 

photoperiod. 

 

DNA extraction 

Diatom cells were pelleted in a Sorvall RC-5B refrigerated superspeed centrifuge 

(DuPont Company, Newton, CT, USA) for 20 minutes at 7649 × g from a culture in the 

late logarithmic phase of growth.  Cells were lysed using a PARR Cell Disruption Bomb 
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(Parr Instrument Company, Moline, IL, USA) filled with nitrogen gas at 1500 psi.  

Isolation of DNA was performed following Doyle and Doyle (Doyle and Doyle, 1987)with 

modifications.  Cetyl trimethylammonium bromide (CTAB) buffer was augmented with 

3% PVP and 3% beta-mercaptoethanol (Sigma, St. Louis MO, USA).  Organic phase 

separation was repeated until the aqueous fraction was clear.  DNA pellets were 

resuspended in ~200 μL DNase-free water.  Following treatment with RNase A 

(ThermoScientific, Lafayette, CO, USA) samples were again subjected to phase separation 

with chloroform, and DNA was recovered by ethanol precipitation.  Samples were 

resuspended in DNase-free water, evaluated for concentration by NanoDrop and stored at 

-20o C. 

 

DNA sequencing and genome assembly 

Paired-end (PE) libraries with insert sizes of 400 bp were prepared at the Genome 

Sequence and Analysis Facility (GSAF) at the University of Texas at Austin.  Illumina 

HiSeq 2000 paired-end platform (Illumina, San Diego, CA, USA) was used to sequence 

total genomic DNA.  The PE Illumina reads were assembled with Velvet v.1.2.08 

(Zerbino and Birney, 2008; Zerbino et al., 2009) using multiple k-mers ranging from 71 to 

83.  Plastid contigs were identified by BLAST analyses of the assembled contigs against 

published diatom plastid genomes from NCBI.  The boundaries between inverted repeats 

and single copy regions were confirmed bioinformatically or using PCR and Sanger 

sequencing.  The latter two techniques were also utilized to fill gaps in the plastid genome 

sequences.  The PCR primers used for Sanger sequencing were designed by Primer3 
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(Untergasser et al., 2012)  in Geneious R6 v.6.1.6 (Drummond and al, 2010) (Appendix 

Table A.2). 

 

Genome annotations and analyses 

Plastid genomes were annotated using Dual Organellar GenoMe Annotator 

(DOGMA) (Wyman et al., 2004), followed by manual corrections for start codons using 

Geneious R6 v.6.1.6.  tRNA genes were predicted using DOGMA (Wyman et al., 2004) 

and tRNAscan-SE 1.21 (Schattner et al., 2005).  Boundaries of rRNA genes, tmRNA ssra 

gene and signal recognition particle RNA ffs gene were delimited by direct comparison to 

sequenced diatom orthologues with Geneious R6 v.6.1.6 (Drummond and al, 2010).  

Circular plastid genome maps were generated with Organellar GenomeDraw (OGDraw) 

(Lohse et al., 2007).  Repeated sequences were identified by performing BlastN v.2.2.28+ 

comparisons of each plastid genome against itself with an e-value cutoff of 1e-10 and at 

least 90 percent sequence identity.  Annotated plastid genomes are available from 

GenBank using accession numbers KJ958479 – KJ958485. Genome rearrangements were 

estimated with MAUVE after eliminating one copy of the inverted repeat (Darling et al., 

2004).  Numbers of genome inversions were inferred by GRIMM (Tesler, 2002). 

 

Identification of genes transferred to the nucleus and signal peptides 

Genes absent from plastid genomes were searched for by BLAST searches in 

Cyclotella nana nuclear genome against assembled contigs of transcriptome assemblies of 

T. weissflogii (MMETSP0878) and Rhizosolenia setigera (MMETSP0789) from the 
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Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP) website  

(http://marinemicroeukaryotes.org/) and nuclear assembly of T. oceanica 

(http://www.ncbi.nlm.nih.gov/Traces/wgs/?val=AGNL01#contigs) using BLASTN with 

an e-value cutoff of  1e-10.  The previous reported nuclear copy of acp gene in Cyclotella 

nana (XM_002290970) was used as the query sequence to search for the missing acp 

genes.  SignalP was used to predict signal peptides and cleavage sites (Petersen et al., 

2011). 

 

Phylogenetic analysis 

Sequences of 20 plastid genes (psaA, psbC, petD, petG, atpA, atpG, rbcL, rbcS, 

rpoA, rpoB, rps14, rpl33,rnl, rns, ycf89, sufB, sufC, dnaK, dnaB, clpC)  from 22 diatom 

taxa were aligned with MAFFT (Katoh et al., 2005).  This included 15 published diatom 

plastid genomes and the seven genomes sequenced in this study.  All sequences were 

included, and protein-coding genes were partitioned by gene and codon position.  A 

maximum likelihood tree was constructed with RAxML7.2.8 (Stamatakis, 2006a), using 

the substitution model GTR+G+I and “-f a” option, and 1000 bootstrap replicates were 

performed to evaluate support for clades. 

 

Results  

 General features of plastid genomes 

All seven sequenced plastid genomes mapped as single circles with two IRs 

dividing the genome into LSC and SSC regions (Figure 2.1).  The genomes are compact 
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and lack introns.  The three rRNA subunits (5S, 16S and 23S) are in the IR.  Twenty-

seven tRNAs together with two other RNAs, transfer-messenger RNA (ssra) and plastid 

signal recognition particle RNA (ffs), are found in all genomes.  Nucleotide composition 

is highly conserved, with G+C content ranging from 30-32% (Appendix Table A.3).  Four 

pairs of overlapping genes are present in the seven diatom genomes; sufC-sufB by 1 bp;  

psbD-psbC by 53 bp;  atpD-atpF by 4bp versus 1 bp in Rh. imbricata; and rpl4-rpl23 by 

17 bp in the two the Cyclotellas versus  8 bp in the other species (Appendix Table A.3). 

The number of protein-coding genes ranges from 122 to 130.   All protein-coding genes 

use the standard plastid-bacterial genetic code except for psbC in Ro. cardiophora, which 

uses ACG as the start codon instead of ATG.  General features of the seven plastid 

genomes are compared with the two published thalassiosiralean genomes in Appendix 

Table A.3. 

 

Gene loss 

The protein-coding gene complement of the six Thalassiosirales plastid genomes is 

almost identical with 125 shared genes.  A few notable exceptions were found.  ycf66 in 

Ro. cardiophora is a pseudogene as evidenced by several internal stop codons.  The 

acpP1 (acyl carrier protein) gene and the syfB (Phenylalanyl-tRNA synthetase) gene are 

missing in all Thalassiosirales (Figure 2.2; Appendix Table A.4).   acpP1 is present in all 

three sequenced non-Thalassiosirales diatoms; however,  syfB is missing only in the more 

distantly related Rh. imbricata (Figure 2.2; Appendix Table A.4).  The ycf42 gene is 

missing in both Ce. daemon and Ch. simplex.  The ilvB and ilvH genes, the large and small 
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subunits of acetolactate synthase, are only found in Ce. daemon (Figure 2.2; Appendix 

Table A.4).  Several genes are missing from Rh. imbricata, including three photosynthetic 

genes (psaE, psaI and psaM), the protein translation elongation factor Tu (tufA), syfB and 

ycf35. 

 

Functional gene transfer from plastid to nucleus 

One ORF with 83.41% identity to the Cyclotella nana hypothetical plastid targeted 

acyl carrier protein gene acp3 (XM_002290970) was found in the assembled transcriptome 

contig (MMETSP0878-20121228|7451_1) of T. weissflogii.  The canonical signal 

peptide cleavage site ASAFVP, same as the signal peptide cleavage site of the acp3 gene 

in Cyclotella nana, was found and indicated plastid targeting after cleaving between the 

endoplasmic reticulum (ER) signal peptide and transit peptide (Appendix Figure A.1).  

However, SignalP did not indicate the presence of a signal peptide (Appendix Figure A.1).  

BLAST analyses of the nuclear acp3 gene of Cyclotella nana against the T. oceanica 

nuclear genome revealed one ORF with 86.64% identity.  The canonical signal peptide 

cleavage site ASAFAP was found (Appendix Figure A2.1), and SignalP indicated peptide 

signaling to the ER.  Searches for the missing syfB gene using gene sequences from the 

closely related species Ce. daemon and Ch. simplex against the nuclear genome of Cy. nana 

and T. oceanica and the transcriptome assembly of T. weissflogii did not identify any 

matches.  Searching the annotated transcriptome data on the MMETSP website of a 

related species Rhizosolenia setigera Brightwell CCMP 1694 showed several contigs 
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(MMETSP0789-20121207|1125_1, MMETSP0789-20121207|12246-1 etc.) annotated as 

elongation factor Tu domain or elongation factor Tu binding domain.  

 

 Genome size and repetitive DNA 

The size of the seven sequenced diatom plastid genomes ranges from ~ 116 kb in 

Chaetoceros to ~ 129 kb in Cyclotella (Appendix Table A.3).  Plastid genomes of the 

Thalassiosirales are larger than the three non-Thalassiosirales species (Ch. simplex, Ce. 

daemon and Rh. imbricata, Appendix Table A.3).  The sizes of the LSC of the 

Thalassiosirales are similar to other diatoms sequenced here, however, the sizes of the SSC 

(24-27 kb) are smaller (27-40 kb) (Figure 2.3, Appendix Table A.3).  The IRs of 

Thalassiosirales tend to be larger, ranging from 18 to 23 kb, compared to 7 kb in Ch. 

simplex and Ce. daemon to 16 kb in Rh. imbricata (Figure 2.3, Appendix Table A.3).  The 

plastid genomes are compact with small intergenic spacer regions averaging 87-155 bp 

(Appendix Table A.3).  BLASTN analysis of each plastid genome against itself revealed 

only five short tandem repeats in Thalassiosirales with lengths ranging from 79 to 90 bp 

(Appendix Table A.5). 

The rrnS-trnI-trnA-rnL-rrn5 gene cluster comprises the core of the IR.  In 

Thalassiosirales, genes at the boundaries of IRs and single copy regions are the same, 

except for T. oceanica, which has an IR expanded through the clpC gene in SSC (Figure 

2.3).  The Chaetocerotales (Ch. simplex) and Hemiaulales (Ce. daemon) plastid genomes 

are smaller than the other diatoms examined.  The IR of Ch. simplex is 7403 bp, which is 

slightly larger than the IR of Ce. daemon at 7004 bp (Figure 2.3).  The IR of Ch. simplex 
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includes one more gene (acpP) than Ce. daemon.  The IR of Rhizosoleniales (Rh. 

imbricata) is larger than Ch. simplex and Ce. daemon. 

 

Ancestral plastid genome organization of Thalassiosirales 

 

To reconstruct the ancestral plastid genome organization of Thalassiosirales, shared 

inversions and ancestral IR/SSC and IR/LSC boundaries were identified.  The Mauve 

alignment identified thirty-two locally collinear blocks (LCBs) shared by the nine diatom 

plastid genomes examined (Appendix Table A.6).  Gene order within Thalassiosirales is 

very conserved, except for T. oceanica (Figure 2.4).  Cyclotella nana, T. weissflogii and 

Ro. cardiophora have identical gene orders.  Likewise, Cyclotella sp. L04_2 and Cy. sp. 

W03_2 have identical gene orders.  The gene order of these two groups differs by only a 

single inversion of five adjacent LCBs (-19)(-15)(-14)(-9)(-10) between rpl 19 and rpl 20 

in the LSC region (Appendix Table A.6; Figure 2.4).  The plastid genome of T. oceanica 

is much more rearranged than other members of Thalassiosirales.  GRIMM analysis 

estimated that ten inversions could explain the different gene orders between Ro. 

cardiophora and T. oceanica (Appendix Figure A.2).  Based on the most parsimonious 

reconstruction, the ancestral gene order of Thalassiosirales is the same as that of Ro. 

cardiophora, T. weissflogii and Cy. nana.  The ancestral IR/LSC and IR/LSC boundaries 

in Thalassiosirales are shared by Ro. cardiophora, T. weissflogii, Cy. nana, Cy. sp. L04_2 

and Cy. sp. WC03_2. 

Genome rearrangements between Thalassiosirales and the other three diatoms 

sequenced 
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Twenty inversions were inferred between the ancestral Thalassiosirales condition 

and Rh. imbricata (Appendix Table A.7).  Fourteen inversions were inferred between the 

Thalassiosirales ancestral gene order and Ce. daemon, and seventeen inversions were 

inferred between the Thalassiosirales ancestral gene order and Ch. simplex (Appendix 

Table A.7).  Among those inversions two inverted gene blocks, (8) to (-8) and (23) to (-

23), are shared by all three non-Thalassiosirales (Appendix Table A.7).  In addition, two 

inversions, (10)(9) to (-9)(-10) and (30)(31)(32)(27)(26)(25) to (-25)(-26)(-27)(-32)(-31)(-

30), are shared by Ce. daemon and Ch. simplex (Appendix Figure A.3).  Chaetoceros 

simplex and Ce. daemon gene orders are more similar to each other than either is to Rh. 

imbricata (Figure 2.4, Appendix Table A.7).  The most extensive genome rearrangement 

occurs between T. oceanica and Rh. imbricata, which differ by twenty-five inversions 

(Appendix Table A.7).  

 

Discussion  

 The Thalassiosirales is a well-supported monophyletic diatom order common in 

marine, brackish, and freshwater habitats.  Due to the monophyletic origin, we expect that 

the plastid genomes within this order will share many features in terms of gene content, 

genome size and gene order.  All Thalassiosirales plastid genomes are very compact, 

lacking introns and having only a few short repeats.  In contrast, genome organization of 

outgroup species varies considerably.  The Thalassiosirales show a much higher level of 

conservation of genome organization compared to a recent comparison of a more 

phylogenetically diverse assemblage of diatoms (Ruck et al., 2014).  Denser sampling of 
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this order provides valuable insights into the dynamics of plastid genome evolution within 

a single order.  

 

 

Conserved gene content within Thalassiosirales  

 

The plastid genomes of Thalassiosirales have 126-127 protein-coding genes, 

together with 3 rRNAs and 27 tRNAs (Appendix Table A.3).  Gene content variation is 

limited in the order with only few notable gene losses/transfers compared to other diatoms 

(Figure 2.2).  The acpP1 and syfB genes are absent from all Thalassiosirales.  It is well 

known that plastid genes tend to undergo a sequential process of transfer from the plastid 

to the nucleus (Jansen and Ruhlman, 2012).  Centralized regulation of plastid metabolism 

in the nucleus has been suggested as a potential driving force for these transfers (Lommer 

et al., 2010).  A nuclear encoded plastid targeted acyl carrier protein gene was reported in 

Cyclotella nana (Oudot-Le Secq et al., 2007) and Synedra acus (Galachyants et al., 2012).  

Previous research showed that a conserved amino acid motif AXAFXP at the cleavage site 

of the signal peptide was crucial for plastid targeting (Gruber et al., 2007).  A nuclear 

encoded, plastid targeted acyl carrier gene was located in the nuclear genomes of T. 

weissflogii and T. oceanica with a canonical AXAFXP motif (Appendix Figure A.1).  

Searching the transcriptome data of Cyclotella meneghiniana from the MMETSP website 

also revealed an ORF (CAMNT_0012963711) with 84.91% identity with the acp3 gene in 

Cyclotella nana, and with an ASAFVP signal peptide cleavage motif indicating plastid 
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targeting (data not shown).  These results suggest that acpP1 in Thalassiosirales likely 

represents a functional transfer from the plastid to the nucleus.  

Transfer of petF from the plastid to the nucleus is unique to a single species of 

Thalassiosirales, T. oceanica (Brembu et al., 2013; Galachyants et al., 2012; Kowallik et 

al., 1995; Oudot-Le Secq et al., 2007; Tanaka et al., 2011).  It was suggested that this 

transfer may have been driven by an adaptation to a low iron environment (Lommer et al., 

2010).  To test whether this transfer is environmentally driven or limited to a single 

species, denser taxon sampling of species throughout the diatom phylogeny in different 

environments with varying amounts of iron is needed.  The sequencing of the plastid 

genome of Skeletonema, the closest relative of T. oceanica (Alverson et al., 2007), and 

other diatoms living in the open water with low iron concentration will enhance the 

understanding of the forces causing the transfer of the petF gene.  Another possible gene 

loss/transfer within Thalassiosirales is ycf66, which is a pseudogene in Ro. cardiophora as 

suggested by the presence of several internal stop codons.  However, more nuclear data 

are needed to test whether this gene is lost completely or it has been transferred to the 

nucleus. 

 

Variation of gene content in non-Thalassiosirales species 

There are large differences in gene content in non-Thalassiosirales plastid genomes 

(Figure 2.2).  The large and small subunits of acetolactate synthase, ilvB and ilvH, are 

reported present in all sequenced red algal plastid genomes (Janouškovec et al., 2013).  

There has been a history of repeated loss of these genes among the 16 diatom genomes 
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(Ruck et al., 2014).  Among the seven new plastid genomes reported here, ilvB and ilvH 

are absent in all species except Cerataulina daemon.  The most parsimonious 

reconstruction of gene gain/losses suggests that these genes were reacquired independently 

by this species.  More plastid genomes need to be sampled to better understand the 

loss/gain history of these genes across the diatom tree. 

The ycf42 gene is missing from the plastid genomes of both Ce. daemon and 

Chaetoceros simplex.  This gene was reported lost from the plastid genome of Fistulifera 

sp. JPCC DA0580 (Tanaka et al., 2011), Leptocylindrus danicus and Cylindrotheca 

closterium (Ruck et al., 2014), and has been pseudogenized in the plastid genomes of 

Asterionellopsis glacialis, Asterionella formosa, Eunotia naegelii and Didymosphenia 

geminata (Figure 2) (Ruck et al., 2014).  More nuclear genome sequences are needed to 

determine whether ycf42 has been transferred to the nucleus or has simply been lost. 

The ycf35 gene is missing from the Rh. imbricata plastid genome, representing the 

first case of the loss of this gene from a diatom.  The tufA gene, encoding chloroplast 

protein synthesis elongation factor Tu, is also missing in Rh. imbricata.  In the green algal 

ancestor of land plants, tufA was transferred from the plastid to the nucleus (Baldauf and 

Palmer, 1990).  It is possible that tufA in Rh. imbricata has been functionally transferred 

to the nucleus but more nuclear data for this species is needed to confirm the transfer.  

The most noteworthy gene losses are from the Rh. imbricata plastid genome where 

the three photosynthetic genes psaE, psaI and psaM are missing.  It is well-known that 

parasitic prokaryotes and eukaryotes have experienced extensive genome size reduction 

due to loss of genes that are no longer functional (Moran, 2001; Vivares et al., 2002).  The 
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plastid genome of non-photosynthetic euglenoid flagellate Astasia longa lost all 

photosynthetic genes from its plastid genome except for rbcL (Gockel and Hachtel, 2000).  

The non-photosynthetic parasitic flowering plant Epifagus virginiana only contains 42 

genes, all genes for photosynthesis and chlororespiration, together with many tRNA and 

RNA polymerase genes have been lost (Wolfe et al., 1992).  But the loss of photosynthetic 

genes from plastid genomes of non-parasitic plants or algae is rare (Green, 2011).  There 

are two possible explanations for the loss of psaE, psaI and psaM from the Rh. imbricata 

plastid genome.  First, these genes may have been functionally transferred to the nucleus.  

Second, several studies have documented the presence of the endosymbiont, diazotrophic 

cyanobacterium Richelia intracellularis living within the siliceous frustules of several 

Rhizosolenia species, including Rh. clevei and Rh. hebetata (Ashworth et al., 2013; Madhu 

et al., 2013; Villareal, 1990).  So, it is possible that the missing photosynthetic genes of 

Rh. imbricata have been horizontally transferred to the endosymbiont, similar to the 

situation that occurred in the sea slug (Rumpho et al., 2008).  However, without nuclear 

genome/transcriptome data for Rh. imbricata or evidence that a cyanobacterial 

endosymbiont genome has acquired these genes, it is not possible to determine which of 

these explanations is more likely. 

 

Genome size 

Plastid genome size varies among diatoms, ranging from 116,251 bp in Synedra 

acus (Galachyants et al., 2012) to 165,809 bp in Cylindrotheca closterium (Ruck et al., 

2014).  Expansion/contraction/loss of the IR, gene loss and duplication, and reduced size 
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of the introns and intergenic spacer regions are the major factors contributing to variation 

in genome size (Jansen and Ruhlman, 2012).  The large genome of Cylindrotheca 

closterium is mainly due to expanded intergenic spacer regions, which accounts for up to 

one quarter of the Cylindrotheca plastid genome (Ruck et al., 2014).  It has been 

previously reported that the larger plastid genome size of T. oceanica compared to the 

Cyclotella nana is due to the expansion of the inverted repeat (Lommer et al., 2010).  

Thalassiosirales have larger plastid genomes than the three sequenced non-Thalassiosirales 

diatom in this study (Figure 1, Appendix Table A.3), and most of the diatom species 

sequenced by Ruck et al. (Ruck et al., 2014).  The low number of repeats and the larger 

IRs in Thalassiosirales compared other species (Appendix Table A.3, Figure 2.3) indicates 

that their larger genome size is due to expansion of the IR.   

 

Genome rearrangements 

 

Evolutionary events can alter the gene order through inversion, 

expansion/contraction of the IR, gene duplication/loss, and transposition.  Inversions 

caused by recombination between repeated sequences are considered the major mechanism 

for gene order changes in plastid genomes (Jansen and Ruhlman, 2012).  There have been 

numerous rearrangements among published diatom genomes (Ruck et al., 2014), however, 

only two species of Thalassiosirales were previously sampled.  Completion of plastid 

genomes of four additional members of the Thalassiosirales and additional diatom species 

from other lineages shows that gene order within Thalassiosirales is highly conserved with 

the exception of T. oceanica.  The sequenced Thalassiosirales plastid genomes have three 
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different gene order patterns.  The first and most common pattern is shared by Ro. 

cardiophora, T. weissflogii and Cyclotella nana and it represents the ancestral gene order 

for the order.  The second pattern occurs in the two freshwater Cyclotella species, which 

have one inversion in the LSC region that may be a synapomorphy for this clade (Figure 

2.2, Appendix Tables A.6 - A.7).  The third pattern is represented by T. oceanica, which 

is distinct from the rest of the Thalassiosirales.  The genome has ten inversions relative to 

the ancestral genome arrangement for the order (Figure 2.2, Appendix Table A.7).  The 

IR boundary of T. oceanica is also distinct from the rest of the Thalassiosirales (Figure 

2.3).  IR boundary shifts are a common phenomenon (Goulding et al., 1996) and is likely 

one of the factors contributing to the extensive rearrangements in T. oceanica.  Alverson 

et al. (Alverson et al., 2007) examined the molecular phylogeny of Thalassiosirales and 

found that T. weissflogii and Cyclotella species group together, while T. oceanica is more 

phylogenetically distant from the Thalassiosirales that share similar gene order.  To 

examine whether the gene order change is gradual or punctuated, a wider sampling of 

plastid genomes across the rest of the Thalassiosirales will be needed to elucidate gene 

order evolution in this order.
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Figure 2.1. Plastid genome maps of seven newly sequenced diatom species.  Species that 

share the same circular map have the same gene order.  Genes on the outside are 

transcribed clockwise; those on the inside counterclockwise.  The ring of bar graphs on 

the inner circle display GC content in dark grey. 
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 Figure 2.2.  Phylogeny of Thalassiosirales and other diatom species based on twenty 

plastid protein-coding genes with gene/intron loss and plastid genome rearrangement 

events mapped on the branches.  Number of genome inversions within Thalassiosirales 

were estimated based on Thalassiosirales ancestral genome using GRIMM.  Taxa in bold 

are new genomes sequenced in this study. 
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Figure 2.3. Comparison of inverted repeat boundaries in the seven diatom species newly 

sequenced for this study plus the two previously sequenced Thalassiosirales.  Tree is 

that of Figure 2 with previously sequenced outgroup taxa pruned for visual simplicity.  

The numbers in brown indicate plastid genome size; the numbers in black below each 

genome fragment indicate the sizes of the LSC, IR and SSC, respectively.  Protein 

coding genes at the IR boundaries are listed in blue. Three red gene blocks are rrn5, rns 

and rnl, respectively.  Names in bold are Thalassiosirales.  Underscored names are for 

taxa newly sequenced for this study. 
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Figure 2.4.  Gene order comparison of the plastid genomes of seven diatoms sequenced 

for this study plus previously sequenced Thalassiosirales.  Alignments were performed in 

Geneious R6 with mauveAligner.  Taxon names in bold are members of the 

Thalassiosirales.  Names underscored are those sequenced for this study. 
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Chapter 3: Analysis of Forty Plastid Genomes Resolves Relationships in 

Diatoms and Identifies Genome-scale Evolutionary Patterns 

This Chapter is published for publication in Advances in Botanical Research Volumn  85, 

2018, Pages 129-155, where Mengjie Yu is first and corresponding author. 

 

Introduction 

 Diatoms are photoautotrophic eukaryotic, single celled heterokont algae and play 

an important role in the global geological cycle, being responsible for one quarter of 

primary production, as well as being the primary biological mediators of the silica cycle in 

the oceans (Nelson, Treguer et al. 1995).  They have delicate siliceous cell walls, which 

have been utilized to morphologically define taxa.  Diatoms were traditionally classified 

into two major groups, centrics and pennates, with the former typically exhibiting radial or 

bi-(multi) polar symmetry, and the latter normally with bilateral symmetry.  The pennates 

may or may not have a pair of slits in the cell wall (i.e. raphe).  The centrics are 

paraphyletic, and have been divided into groups based on their wall outline (circular vs. 

triangular or quadrate).  The pennates can be further divided into two groups, the raphe-

bearing (“raphid”) pennates and those without raphe slits (“araphid”). Traditional 

morphological studies showed considerable disagreement in diatom classification.  

Among those classification schemes, three strikingly different hypotheses were proposed.  

Steinecke (Steinecke 1931) proposed that centrics and pennates were each monophyletic 

sister taxa, and raphid pennates were monophyletic and nested within araphid pennates.  

In stark contrast, Simonsen (Simonsen 1979) concluded that centrics were paraphyletic, 

and araphids were monophyletic and nested within paraphyletic raphids.  In disagreement 
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with the previous two classifications, Round and Crawford (Round and Crawford 1981; 

Round and Crawford 1984) later argued that the three major lineages (centrics, araphid 

pennates and raphid pennates) were derived independently, and were thus each 

monophyletic. 

 Molecular phylogenies were similar to traditional phylogenies in that relationships 

varied from study to study, without a clear consensus as to arrangement of radial and (bi- 

or multi-) polar centrics (Theriot, Cannone et al. 2009; Theriot, Ashworth et al. 2010).  

Again, a few studies have produced radically different topologies, and relationships among 

diatoms are still a matter of debate (CHESNICK, KOOISTRA et al. 1997). Here, we cite 

only a range of results to illustrate our point. Araphid monophyly, as proposed by Round 

and Crawford (Round and Crawford 1981; Round and Crawford 1984), was supported by 

analysis of the coxI gene dataset with limited taxon sampling (Ehara, Inagaki et al. 2000). 

Centric monophyly was recovered using the nuclear-encoded small subunit ribosomal 

RNA (SSU) dataset (Van de Peer, Van der Auwera et al. 1996).  These studies led to a 

reclassification of diatoms with Medlin et al. (Medlin and Kaczmarska 2004) naming the 

bulk of radial centrics as the Coscinodiscophyceae, the bi- and multi-polar centrics plus the 

order Thalassiosirales as the Mediophyceae and the pennates as the Bacillariophyceae.  

Each was argued to be monophyletic based on analysis of nuclear-encoded SSU.  This 

classification, referred as the CMB hypothesis, has been under debate because different 

taxon sampling, alignments and optimality criteria can yield different results with radials 

being either monophyletic or not and polars (plus Thalassiosirales) being monophyletic or 

not (CHESNICK, KOOISTRA et al. 1997; Alverson, Jansen et al. 2009; Theriot, Ashworth 
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et al. 2015).  Incongruence in phylogeny was also reported using diatom plastid protein-

encoded genes versus nuclear encoded SSU (Theriot, Ashworth et al. 2010). 

 The variations in results have led to inclusion of more sources of molecular data for 

resolving diatom relationships.  The focus has been primarily on plastid genes due to the 

challenges of using nuclear data.  The nuclear genome of eukaryotes is composed largely 

of multiple copy genes, making it difficult to reliably determine orthology.  A more 

complex issue is that the diatom nuclear genome may be a chimeric assemblage due to 

multiple horizontal gene transfer events through diatom evolutionary history (Bowler, 

Allen et al. 2008).  In contrast, the plastome is largely composed of single copy genes, 

with limited horizontal gene transfer events (Ruck, Nakov et al. 2014).  Plastid protein 

coding genes are also easily aligned across a wide range of diatoms (Theriot, Ashworth et 

al. 2015).  A recent study testing the phylogenetic informativeness using a broader suite 

of diatom plastid genes showed that the addition of plastid data adds signal instead of noise, 

and these same authors suggested that a phylogenomic study of plastid genes would 

provide valuable information for resolving the diatom phylogeny (Theriot, Ashworth et al. 

2015).  

 Advances in sequencing technology have opened the door for generating genomic 

sequences more cheaply and quickly to better understand diatom evolution.  The plastome 

organization potentially provides insights into diatom evolution.  The first two diatom 

plastomes were sequenced in 2007 (Oudot-Le Secq, Grimwood et al. 2007), since then the 

number of sequenced diatom plastid genomes has increased greatly.  Although the overall 

organization of these plastomes is conserved, all with a large single copy region (LSC), a 
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small single copy region (SSC), and two inverted repeats (IR). Sequencing of 

phylogenetically diverse diatoms showed remarkable variation in genome size, gene 

content and gene order (Ruck, Nakov et al. 2014), with  expansion of the IR and intergenic 

regions being the primary cause of plastome size variation (Ruck, Nakov et al. 2014; Sabir, 

Yu et al. 2014). Extensive plastome sequencing in Thalassiosirales, an order with a 

moderately well-resolved multi-gene phylogeny, showed a high level of conservation of 

genome organization among closely related species (Sabir, Yu et al. 2014).  One 

environmentally-driven gene transfer event was reported in T. oceanica, where the petF 

gene encoding ferredoxin was transferred from the plastid to the nucleus, contributing to 

the ecological success of T. oceanica in iron limited environment by replacing the iron-

sulfur protein with iron-free flavodoxin (Lommer, Roy et al. 2010).  A plastid to nuclear 

gene transfer event of the acyl carrier protein gene acpP was also reported in all 

Thalassiosirales (Sabir, Yu et al. 2014).   

 Due to the limited number of plastome sequences available, phylogenomics has 

previously not been an option for resolving questions about diatom systematics.  In 

addition to the paucity of diatom plastome data, the lack of genomes from potential 

outgroups meant early attempts at phylogenomics were unrooted.  Thus monophyly of the 

Coscinodiscophyceae, which previous single and multi-gene phylogenies recover as either 

monophyletic or a basal grade, could not be tested.  The sister group to pennate diatoms, 

which recovered as the bipolar diatom Attheya in a phylogeny with nine nuclear and plastid 

genes (Sorhannus and Fox 2011), could also not be tested as the genome was not available.  
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A phylogenetic framework with more complete taxonomic sampling is necessary to 

identify and understand patterns and processes of diatom plastome evolution.   

 In this study, we nearly doubled the number of sequenced plastomes and added 

critical taxa such as Attheya.  We also included the recently sequenced genome of 

Triparma, a close relative of diatoms (Tajima, Saitoh et al. 2016), to provide a more in-

depth examination of diatom plastome evolution and to resolve phylogenetic relationships 

among major clades. 

 

Materials and Methods  

Diatom strains and DNA extraction.   

 Eighteen diatom strains were collected from different sources (Appendix Table 

B.1).  Taxon sampling was based on Theriot et al. (Theriot, Ashworth et al. 2015).  The 

medium and cultivation methods are described in Appendix Table B.1.  All DNAs were 

extracted from cultured materials.  Diatom cells were pelleted in a Sorvall RC-5B 

refrigerated superspeed centrifuge (DuPont Company, Newton, CT, USA) for 20 minutes 

at 7649 × g from a culture in the late logarithmic phase of growth.  Cells were lysed using 

a PARR Cell Disruption Bomb (Parr Instrument Company, Moline, IL, USA) filled with 

nitrogen gas at 1500 psi.  Isolation of DNA was performed following Doyle and Doyle 

(Doyle 1987) with modifications.  Cetyl trimethylammonium bromide (CTAB) buffer 

was augmented with 3% PVP and 3% beta-mercaptoethanol (Sigma, St. Louis MO, USA).  

Organic phase separation was repeated until the aqueous fraction was clear.  DNA pellets 

were resuspended in ~200 μL DNase-free water.  Following treatment with RNase A 
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(ThermoScientific, Lafayette, CO, USA) samples were again subjected to phase separation 

with chloroform and DNA was recovered by ethanol precipitation.  Samples were 

resuspended in DNase-free water, evaluated for concentration by NanoDrop and stored at 

-20o C. 

 

DNA sequencing and genome assembly.   

 Paired-end (PE) libraries with insert sizes of 400 bp were prepared at the Genome 

Sequence and Analysis Facility (GSAF) at the University of Texas at Austin.  Illumina 

HiSeq 2000 platform (Illumina, San Diego, CA, USA) was used to sequence total genomic 

DNA.  The PE Illumina reads were assembled with Velvet v.1.2.08 (Zerbino and Birney 

2008; Zerbino, McEwen et al. 2009) using multiple odd number k-mers ranging from 71 

to 83 on stampede supercomputer at the Texas Advanced Computing Center (TACC).  

Plastid contigs were identified by BLAST analyses of the assembled contigs against 

publicly available diatom plastid genomes from NCBI.  The boundaries between inverted 

repeats and single copy regions were confirmed using Motif search in Geneious R6 v6.1.6 

(Drummond and al 2010).  Bowtie2 mapping (Langmead and Salzberg 2012) was utilized 

to fill gaps in the plastid genome sequences. 

 

Genome annotations and analyses.   

 Plastid genomes were annotated using Dual Organellar GenoMe Annotator 

(DOGMA) (Wyman, Jansen et al. 2004), followed by manual corrections for start codons 

using Geneious R6 v.6.1.6.  tRNA genes were predicted using DOGMA (Wyman, Jansen 
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et al. 2004) and tRNAscan-SE 1.21 (Schattner, Brooks et al. 2005).  Boundaries of rRNA 

genes, tmRNA ssra gene and signal recognition particle RNA ffs gene were delimited by 

direct comparison to sequenced diatom orthologs with Geneious R6 v.6.1.6 (Drummond 

and al 2010).  The length of total genome, IR, SSC and LSC were shown in Appendix 

Table B.3.  Genome length variation was analyzed using APE library in R (Paradis, 

Claude et al. 2004).   

 

Phylogenetic analysis.   

 Sequences of 103 shared plastid protein-encoding genes from 40 diatom taxa and 

the outgroup Triparma laevis were aligned with MAFFT (Katoh, Kuma et al. 2005) based 

on translated protein sequences.  This included twenty two published diatom plastid 

genomes, one outgroup species Triparma laevis and the eighteen plastid genomes newly 

sequenced in this study.  Three different partitioning schemes were analyzed including no 

partitioning (one partition), partition by codon position (3 partitions), and partition by 

codon position and gene functional group (21 partitions).  Genes in each functional group 

were listed in Supplementary Table S2.  A maximum likelihood tree for each partition 

was computed on TACC Stampede supercomputer using RAxML 8.2.9 (Stamatakis 2014) 

with the substitution model GTR+G and “-f a” option.  1000 bootstrap replicates were 

performed.  The probabilities conferred upon the molecular data by trees in which 

Araphids, Mediophyceae, Coscinodiscophyceae, and Coscinodiscophyceae plus 

Mediophyceae were each constrained as monophyletic were tested using the AU 

(Approximately Unbiased) and SH (Shimodara-Hasegawa) tests (Shimodaira 2002).   
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 To test the possibility of recombination in diatom plastid genomes, eleven 

conserved gene order blocks occurring in most diatoms were identified (Appendix Table 

B.3).  Gene blocks 1 to 4 and 6 to 10 were concatenated due to short sequence length.  

Four resulting concatenated sequence alignments (gene blocks 1-4, gene block 5, gene 

blocks 6-10 and gene block 11) were used to construct phylogenetic trees using RAxML 

with codon partition.  SH tests (Shimodaira 2002) were run among the four resulting trees 

to test the congruency with the concatenated tree using 103 protein coding genes. 

 

Gene Order Analysis 

 Genome rearrangements were estimated with MAUVE after eliminating one copy 

of the inverted repeat (IRB copy) (Darling, Mau et al. 2004).  The rearrangement 

distances between gene orders were measured by Genome Rearrangements in Man and 

Mouse (GRIMM) and visualized using d3heatmap library in R (Tesler 2002).  Correlation 

between substitution rates (estimated from branch lengths on the ML tree) and genome 

rearrangement distances were analyzed using Pearson correlation coefficient and Pearson 

test with Bonferroni multiple testing correction.  The gene order tree with varying branch 

lengths to best fit the constrained ML sequence tree was constructed using PAUP v 4.0b10 

(Swofford 2003) not allowing negative branch lengths. 

 

 

Gene Content Analysis 
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 Gene loss and gain events were mapped to the ML cladogram using Dollo 

parsimony in MacClade v4.08 (Maddison and Maddison 2000) based on the gene content 

comparison table (Supplementary Table S5).  The presence and absence of genes were 

encoded as 1 and 0, respectively.  Gene pseudogenization events were encoded as 2, and 

the states (absent, present, and pseudogenized) were treated as ordered.  Dollo parsimony 

was used as an approximation of the assumption that genes were more likely to be lost 

from the plastome than gained, and that functioning genes are more likely to become 

pseudogenes than the reverse.   

 

Results  

Phylogenomic Analysis.   

 All partition schemes yielded trees with identical topologies and very similar 

branch lengths and bootstrap (BS) support values (Figure 3.1; Supplementary Figures. B.1-

B.3).  We present the results of the dataset partitioned by functional category and codon 

position.  The maximum likelihood tree has 100% BS support values on most nodes 

(Figure 3.1).  Raphid pennate diatoms (labeled “Raphid”) were recovered as a 

monophyletic group sister to a clade of araphid pennate diatoms (“Araphid 2”) with 100% 

BS support.  Within raphid diatoms, Eunotia naegelii was sister to the rest of the raphid 

diatoms with 100% BS support.  The model diatom Phaeodactylum tricornutum was 

recovered as sister to Didymosphenia germinata, but with only 52% BS support.  Within 

Araphid 2, Astrosyne radiata was recovered on an extremely long branch.  Araphid 1 was 

sister to Araphid 2 plus the Raphid group with 100% BS. 
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 The Mediophyceae (bi- and multi-polar diatoms plus the Thalassiosirales) were 

contained in three clades (“Polar 1”, “Polar 2” and “Polar 3”) and was paraphyletic.  

Attheya longicornis formed Polar clade 3 with the two Biddulphia species, and together 

were sister to the pennate diatoms (Araphid 1 and 2, plus Raphid) with 100% BS support.  

The clade Polar 2 was sister to the Polar 1 clade with 94% BS support.  The 

Thalassiosirales (including the euryhaline model diatom Cyclotella nana Hustedt, which 

was sister to two undescribed freshwater species of Cyclotella), were in Polar 1 clade, and 

were monophyletic with 100% BS support. Eunotogramma sp. and Lithodesmium 

undulatum were sequentially related to the Thalassiosirales with 100% BS support.  

Biddulphia plus Attheya formed a clade with 100% BS support, and that clade was sister 

to pennates with 100% BS support. 

 The radial centrics of the Coscinodiscophyceae (Radial 1, 2 and 3) formed a basal 

grade.  Within Radial 3 Guinardia striata was nested within Rhizosolenia spp. with low 

BS support.  The two remaining radial centrics groups, Proboscia sp. (Radial 2) and 

Leptocylindrus danicus (Radial 1) formed a grade at the base of the tree with each node 

having 100% BS support. 

 Monophyly of Araphids, Mediophyceae, Coscinodiscophyceae, and Mediophyceae 

plus Coscinodiscophyceae were each strongly rejected in favor of the best unconstrained 

tree by AU and SH tests (P values < 0.005). 

 Comparison of the maximum likelihood tree constructed by 4 different gene order 

blocks revealed the conservation of five internal branches separating major clades as 

indicated by arrows in Figure 3.1 and red lines in Supplementary Figure 3.4.  All trees in 
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Supplementary Figure 3.4 showed the following relationships: Leptocylindrus danicus 

sister to the rest of diatoms; Polar diatoms paraphyletic with Biddulphia plus Attheya sister 

to pennates; Raphids monophyletic within the monophyletic pennates.  These 

relationships were consistent with the tree constructed using 103 concatenated genes in 

Figure 3.1.  The SH tests also showed none of those trees was significantly worse than 

the concatenated tree. 

 

Genome Size.   

 Plastome length varied across clades (Figure 3.2) with Plagiogramma 

staurophorum exhibiting the largest size of 201,816 bp among all sequenced diatoms 

(Supplementary Table B.4).  The Araphid 1 group (indicated in red), where P. 

staurophorum was recovered, showed relatively larger genome size compared to other 

groups (Figure 3.2).  Large variation in IR length was found in Araphid 2 (violet) and 

Raphid (purple) groups, where the longest IR was almost 2-3 times longer than the shortest 

(Figure 3.2).  Sister to Araphid and Raphid groups, the Polar 3 clade (brown) displayed a 

relatively conserved genome length, with little variation within the LSC, SSC and IR. 

 Polar 1 (light green) and Polar 2 (dark green) groups also showed relatively 

conserved genome lengths, with Eunotogramma sp. and Plagiogrammopsis van heurckii 

showing the largest genome size in the Polar 1 and Polar 2 clades, respectively.  The 

Radial 3 group (dark blue) had relatively conserved genome length ranging from 118,120 

bp to 125,283 bp (Appendix Table B.4).  Triparma laevis, the outgroup species, showed 

the longest LSC and the shortest IR in the dataset (Figure 3.2; Appendix table B.4). 
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 IR length showed more variation across the groups than the length of LSC and SSC 

(Figure 3.2).  Phylogenetic independent contrast analysis showed that IR length 

contributed to the majority of the plastome size variation with R2 = 0.6875.  In 

comparison, the LSC and SSC contributed a relatively smaller portion, with R2 = 0.2959 

and 0.1036, respectively (Appendix Figure B.5).  

 

Gene Content.  

 Dollo parsimony was used to optimize gene losses and gains on the diatom 

phylogeny as an approximation of the higher likelihood that genes are lost from the 

plastome rather than gained (Figure 3.3).  Three genes involved in light-independent 

chlorophyll a biosynthesis, chlB, chlL and chlN, together with RNA polymerase omega 

subunit rpoZ, were entirely absent in the forty sequenced diatom plastid genomes.  In 

contrast, two hypothetical plastid ORFs with unknown functions (ycf89 and ycf90) were 

absent in the outgroup species Triparma laevis but present in all 40 diatom plastomes 

(Figure 3.3). 

 Other genes appear to have undergone multiple losses, such as elongation factor Ts 

tsf, which was lost 11 times, and the acetolactate synthase large and small subunits IlvB 

and IlvH, which were lost 10 times.  

 Loss through pseudogenization was relatively rare. The phenylalanyl-tRNA 

synthetase beta chain gene syfB showed seven losses and one pseudogenization event.  

The gene ycf66 underwent one pseudogenization event but no losses.  The gene ycf42 was 

an exception with four pseudogenization events.   
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 The branches with the largest number of gene losses (Proboscia sp. and Astrosyne 

radiata, 11 each) were also those with the greatest amount of inferred nucleotide 

substitution based on branch lengths (cf. Figures 3.1, 3.3). 

 Finally, introns were detected in atpB in Radial 2 species Proboscia sp. and in petD 

in Araphid 1 species in Plagiogramma staurophorum.  A Conserved Domain Database 

(Marchler-Bauer and Bryant 2004) search of these introns revealed a reverse transcriptase 

with group II intron origin with E-values of 5.24e-44 and 7.89e-40 for atpB and petD, 

respectively (Appendix Figures B.6 and B.7).  Blast comparisons of the intron-encoded 

proteins against NCBI revealed that the top hits were green algae reverse transcriptase with 

50% and 54% nucleotide sequence identity, respectively. 

 

Gene Order.   

 The 40 diatom plastomes exhibit various degrees of gene order rearrangement 

(Figure 3.4; Appendix Table B.6).  The MAUVE alignment identified 42 locally collinear 

blocks (LCBs) shared by the plastid genomes examined (Appendix Table B.7).  Closely 

related species share more similar gene orders.  Identical gene orders were found in Radial 

3, Polar 1, Polar 3 and Raphid groups.  The mostly extensive sampled Polar 1 clade 

showed six very similar gene orders, with four Thalassiosirales (Roundia cardiophora, 

Thalassiosira weissflogii, Discostella pseudostelligera, Cyclotella nana) having exactly 

the same gene order, and the two closely related Cyclotella taxa differ by one gene block 

inversion (Appendix Table B.7).  
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 Gene order and sequence divergence was strongly positively correlated in some 

regions of the tree.  Approximately 40% of the Bonferroni corrected P values of the 

Pearson correlation between pairwise branch length and gene order rearrangement 

distances were significant (Appendix Table B.8).  For example, Astrosyne radiata, which 

had the longest branch in the sequence tree (Figure 1), also exhibited a high level of gene 

order rearrangement and had a high correlation value of 0.71 (Appendix Table B.8).  

Similarly, Proboscia sp. had the next longest branch and also exhibited high levels of gene 

order rearrangement (Figures 3.1, 3.4).  

 

Discussion 

 The advent of sequencing technology and powerful computers made it possible to 

sequence the whole plastomes in a short amount of time at a reasonable cost.  Given the 

phylogenetic diversity of diatoms, it is critical that a wider diversity be studied for their 

genomic properties to better understand their evolutionary history.  In this study, we 

sampled extensively across the diatom phylogeny, especially taxa whose phylogenetic 

placement remains controversial.  Our results provide deeper insights into diatom 

phylogeny and the dynamics of the plastome evolution. 

 

 

Phylogeny of diatoms.   

 Medlin et al. (Medlin and Kaczmarska 2004; Medlin 2017) proposed a 

classification with three monophyletic classes based primarily on SSU rDNA sequence 
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analysis, Coscinodiscophyceae (radial centric), Mediophyceae (polar centric), and 

Bacillariophyceae (araphid and raphid pennate) or the CMB hypothesis.  This hypothesis 

has not been widely accepted.  In their higher level classification of eukaryotes, Adl et 

al.(Adl, Simpson et al. 2005) explicitly considered the Coscinodiscophyceae and 

Mediophyceae to be paraphyletic.  Since then other studies have recovered the “grade” 

hypothesis, in which the Coscinodiscophyceae and Mediophyceae are each paraphyletic, 

some have recovered one or the other as monophyletic (Theriot, Ruck et al. 2011).  The 

foundational problem is that the taxon sampling and molecular sampling to date have 

simply not generated a robust result.  The CMB hypothesis is only 7 steps longer than the 

grade hypothesis (the most parsimonious hypothesis, L=14094 steps) using SSU data 

alone, for example (Theriot, Ashworth et al. 2010).  Theriot et al. (Theriot, Ashworth et 

al. 2010) analyzed SSU, rbcL and psbC for 136 diatoms under ML; the optimal solution 

was again the grade hypothesis, but it was not statistically significantly different than the 

CMB hypothesis.  In short, for most data and taxon sets in the diatom literature, it takes 

little to turn the CMB hypothesis into the grade hypothesis, and vice versa. 

 In the resulting search for more genes that might provide information about the 

diatom phylogeny, Theriot et al. (Theriot, Ashworth et al. 2015) found that individual 

plastid genes return results that disagree with traditional views, the CMB hypothesis, the 

grade hypothesis and indeed even with one another.  In instances where plastids are 

biparentally inherited, there is the possibility that species hybridization could lead to 

recombination in the plastome, and to conflict between gene trees (D'Alelio and Ruggiero 

; Sullivan, Schiffthaler et al. 2017).  Such instances might result in different plastid genes 
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yielding different but strongly supported trees.  The individual gene trees recovered by 

Theriot et al. (Theriot, Ashworth et al. 2015), however, were not robustly supported.  

After studying the potential for saturation, and analyzing signal/noise ratios, they argued 

that individual plastid genes could be concatenated.  Doing so, they recovered the grade 

hypothesis with strong support.  Their conclusion was that the signal in the individual 

genes was low, but that it was additive.  While the noise levels were high, they were not 

correlated and did not sum to a positively misleading signal.  Thus, incongruence among 

plastid genes seemed to be best explained simply by noise. 

 We examined the potential for plastome hybridization as a source of misleading 

signal by analyzing four subsets of the plastome genome: two large blocks of genes that 

each seem to be inherited as a single locus and two concatenated subsets of smaller blocks 

of genes with each smaller block acting as a single locus returned trees rejecting the CMB 

topology in the same manner (Leptocylindrus sister to all other diatoms; Attheya plus 

Biddulphia sister to pennates). We cannot reject the hypothesis that (relatively minor) 

examples of plastome hybridization are occurring and may affect some parts of the tree.  

But it seems certain there are not two or more different strong signals for different 

relationships, and it seems certain that signal for the tree in Fig. 1 comes from across 

plastome. 

 We also tested the 103 combined plastid genes with three different partitions.  All 

phylogenetic analyses showed the same tree topology with slightly different bootstrap 

support (Appendix Figures B.1 - B.3).  The resulting ML tree partitioned by codon and 

gene functional group showed the Coscinodicophyceae (“radial centrics”) and 
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Mediophyceae (“bi- and multi-polar centrics”) were not monophyletic, while the 

Bacillariophyceae (raphid diatoms) were monophyletic with high bootstrap support (Figure 

3.1).  The AU tests of araphid pennate monophyly suggested by Simonsen (Simonsen 

1979) and the CMB monophyly suggested by Medlin (Medlin 2017), were both strongly 

rejected with P values less than 0.05. 

 Our results also show that Cyclotella nana (Thalassiosira pseudonana), the model 

marine diatom abundant in the world’s oceans and freshwaters, is more closely related to 

the euryhaline genus Cyclotella (Figure 3.1), which is congruent with Alverson et al. 

(Alverson, Beszteri et al. 2011).  Another model marine diatom Phaeodactylum 

tricornutum is sister to Didymosphenia geminata in the Raphid clade with low bootstrap 

support (Figure 3.1).  Raphid diatoms are a diverse clade and are currently under-

sampled.  More extensive taxon sampling in this group may further elucidate the 

phylogenetic position of this model organism. 

 

Plastome Evolution.   

 Plastome size varies within diatoms, with sizes ranging from 116,251 to 201,816 

bp (Figure 2, Appendix Table B.3).  Several factors such as expansion or contraction of 

the IR, loss and duplication of genes, gain of introns and expansion of intergenic spacer 

regions are responsible for variation in genome sizes (Jansen and Ruhlman 2012).  It has 

been previously reported that the larger plastid genome size in Thalassiosirales was mainly 

due to expansion of the IR (Sabir, Yu et al. 2014).  Our study reports the largest diatom 

plastome at 201,816 bp in Plagiogramma staurophorum (Appendix Table B.3).  This 
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species also has the largest IR among diatoms at 34,888 bp (Figure 2 and Appendix Table 

B.3).  The large size of the genome is mainly due to the IR expansion.  An introduction 

of a 2,971 bp group II intron in petD also contributed to the larger size of P. staurophorum.  

This is consistent with our phylogenetic independent contrast analysis that IR length 

contributed to the majority of the plastome size variation (Appendix Figure B.5).   

 Our extensive sampling across diatom phylogeny also showed the similarity of 

genome sizes within clades (Figure 3.2), which is consistent with previous finding that 

species within Thalassiosirales having similar plastid genome size (Sabir, Yu et al. 2014).  

Ruck et al. (Ruck, Nakov et al. 2014) reported that larger intergenic space regions and the 

introduction of foreign genes played an important role in the expansion of plastome size.  

Within the Araphid 1 clade, the introduction of SerC1 gene probably contributed to the 

relative larger size of Psammoneis obaidii. 

 Massive numbers of gene losses occur across diatom plastomes (Figure 3.3).  The 

four gene losses [chlB, chlL, chlN and rpoZ] together with two hypothetical protein gains 

[ycf 89 and ycf90] appear to be synapomorphies for diatoms.  Gene loss in plastomes is 

often associated with a functional gene transfer to the nucleus.  Acyl carrier protein 

acpP1, the gene involved in the lipid metabolism pathway, was reported missing in all 

Thalassiosirales and a hypothetical transfer from plastid to nucleus transfer was proposed 

(Sabir, Yu et al. 2014).  In this study, expanded taxon sampling in the Polar 1 group again 

confirmed the order-wide loss of acpP1 in all Thalassiosirales and Eunotogramma (Figure 

3.3), and we found the gene loss event occurred at the split between Lithodesmium and 

Thalassiosirales.  Ferredoxin gene petF, an ecologically driven plastid to nucleus transfer 
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in T. oceanica (Lommer, Specht et al. 2012), is also absent from the Astrosyne radiata 

plastome. Astrosyne radiata has not only undergone extensive gene order rearrangement 

and sequence divergence (Figure 3.1 and Appendix Figure B.7), it has also experienced 

extreme morphological divergence, having entirely lost the symmetry of pennate 

morphological structure (Ashworth, Ruck et al. 2012).  Gene loss was suggested as a 

pervasive source of genetic change that potentially causes adaptive phenotype diversity 

(Albalat and Canestro 2016).  Our gene content comparison showed massive gene loss 

(11 losses) in the A. radiata plastome.  The connection between plastid evolution and 

morphological evolution suggests that perhaps the nuclear genome of A. radiata also 

experienced radical change. 

 Another long branch bearing species, Proboscia. sp., has also experienced massive 

gene loss (Figure 3.4, 10 losses) and a rare instance of an intron gain in atpB.  However, 

in this case gene losses seem only weakly correlated with gene order rearrangement.  

Actinocyclus and Coscinodiscus are morphologically similar, identical in gene order and 

exhibit two losses each of functional genes (one due to pseudogenenization in 

Coscinodiscus).  In contrast, the extensively sampled diatom order Thalassiosirales 

showed a pattern of stasis in gene content and gene order except for T. oceanica, which has 

a high degree of reorganization but only one gene loss and one gene gain.  The branch 

leading to Rhizosolenia fallax and R. imbricata exhibits the next highest level of gene loss 

(5 losses), but very few gene order changes (Figure 3.4). 

Photosysnthetic gene loss is rare in diatom plastomes.  Three noteworthy gene losses 

reported in diatom plastomes were the photosynthetic genes psaE, psaI and psaM missing 
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from Rhizosolenia imbricata (Sabir, Yu et al. 2014).  Our study also documented the loss 

of psaE, psaI and psaM in Rh. fallax, a species sister to Rh. imbricata but these genes are 

present in Rh. setigera, an earlier diverging Rhizosolenia in the Radial 3 clade (Figure 3.3).  

This indicates that the loss of these three photosynthetic genes occurred at the split between 

Guinardia and the more recently derived Rhizosolenia species. 

 There has been a history of repeated loss of the acetolactate synthase large and 

small subunits, ilvB and ilvH among diatom plastomes (Ruck, Nakov et al. 2014; Sabir, Yu 

et al. 2014).  The tRNA synthetase gene, syfB, has a similar history of repeated loss in 

several diatom plastid genomes (Figure 3.3).   A pseudogene copy is retained in 

Coscinodiscus radiatus indicating that losses are ongoing.  The translation factor gene tsf 

shows a similar pattern (Figure 3.3).  Ruck et al. (Ruck, Nakov et al. 2014) proposed a 

single deep plastid-to-nuclear transfer of tsf.  In our study, we also found repeated losses 

of tsf, but data are not available at this time to determine if there have been multiple 

transfers to the nucleus.  

 Group II introns are mostly found in plants, fungi, eubacteria and archaea.  The 

first group II intron encoding intronic maturase was found in tRNA-Met in the red alga 

Gracilaria (Janouškovec, Liu et al. 2013).  There were reports of a group II intron in the 

atpB gene of the diatoms Seminavis robusta and psaA gene of Toxarium undulatum 

(Brembu, Winge et al. 2013; Ruck, Linard et al. 2016).  We found two additional group 

II introns, one in petD gene in Plagiogramma staurophorum, and another in atpB gene in 

Proboscia sp.  Both reverse transcriptases within the introns are most similar to reverse 

transcriptase in green algae.  There have been studies reporting genes of green algal origin 
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in diatom nuclear genomes (Bowler, Allen et al. 2008), and an endosymbiotic gene transfer 

from green algae was proposed (Moustafa, Beszteri et al. 2009).  More intensive 

molecular investigation would likely reveal more evidence for the origin and evolution of 

those introns. 

 Highly conserved gene order within clades and extensively rearranged gene orders 

across groups have been reported in previous diatom plastome studies (Ruck, Nakov et al. 

2014; Sabir, Yu et al. 2014).  Our extended sampling further confirmed the conservation 

of gene order in closely related species and extensive rearrangement in distantly related 

species (Figure 3.4).  Correlations between rates of nucleotide substitution and genomic 

rearrangements were detected in angiosperms (Jansen, Cai et al. 2007; Weng, Blazier et al. 

2013).  A significant positive correlation between nucleotide substitution and gene order 

rearrangement is present on the long branch leading to A. radiata (Appendix Table B.7).  

The longest branch in Polar 1 group, T. oceanica, also showed a significant correlation 

between sequence divergence and genome rearrangement (Appendix Table B.7).   

 Doubling the size of available plastome data of diatoms has greatly expanded our 

understanding of plastome evolution across this large and diverse photosynthetic clade.  

With the inclusion of Triparma laevis as the outgroup, we strongly rejected the CMB 

hypothesis of diatom classification.  Our data suggests that Radial diatoms evolved as a 

grade, Polar diatoms and Araphid diatoms are paraphyletic, and Raphid diatoms are 

monophyletic and nested within the pennates.  The 103 combined plastid gene data set 

also strongly suggests that Attheya together with the Biddulphia group is the sister to the 

pennate diatoms.  Our expanded sampling again confirmed that expansion of IR played 
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the major role of plastome size variation.  Gene content and order of closely related 

species is much more conserved than distantly related species.  Extensive gene loss events 

were also observed.   Our study also shows a strong positive correlation between 

sequence divergence and genome rearrangement in diatoms, a phenomenon that has been 

documented in flowering plants (Jansen, Cai et al. 2007; Weng, Blazier et al. 2013; 

Schwarz, Ruhlman et al. 2017).  Expanded studies of the sequence divergence in terms of 

substitution rates will provide more insights into the driving force for diatom plastome 

evolution. 
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Figure 3.1. Maximum likelihood tree inferred from 103 shared plastid genes of 40 diatom 

species and the outgroup Triparma laevis.  Branch lengths are proportional to the number 

of nucleotide changes as indicated by the scale bar (0.7 substitutions per site). Asterisks at 

nodes indicate 100% bootstrap support; numbers indicate bootstrap support values.  

Different colors indicate different diatom groups.  The arrows indicate consistent 

branches separating different clades in gene order combination analysis. 
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Figure 3.2. Genome length variation across 40 diatom species and the outgroup Triparma 

laevis.  Colors indicate different diatom groups same as Figure 1.  LSC = large single 

copy, SSC = small single copy, IR = inverted repeat.  The length of LSC, SSC and IR 

were scaled differently.  Scale on x axis in kilobases (Kb). 
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Figure 3.3 Gene and intron loss and gain events mapped on the cladogram of the ML 

plastid gene tree using Dollo parsimony.  
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Figure 3.4. Heatmap of pairwise genomic rearrangement distance estimated by GRIMM.  

The intensity of the color is proportional to the degree of genome rearrangement.  Dark 

blue indicates higher degree of genome rearrangement, and light color indicates lower 

degree of genome rearrangement. 
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Chapter 4: Correlation Between Plastome Nucleotide Substitution Rates and 

Genome Organization across Diatoms 

Introduction  

 Knowledge of genome architecture evolution and nucleotide substitution rates is 

essential for our understanding of molecular sequence evolution and estimation of 

phylogenetic relationships.  Synonymous substitutions (dS) are largely invisible to natural 

selection, while nonsynonymous substitutions (dN) may be under selective pressure. The 

ratio of non-synonymous (dN) and synonymous (dS) substitution rates is an indicator of 

selection. Variable dN/dS ratios among lineages may indicate adaptive evolution or relaxed 

selective constraints.  Thus comparing rates of nucleotide substitutions provides a 

powerful tool for understanding the mechanisms of DNA sequence evolution.  

Comparison of nucleotide substitution rates across functional groups of genes 

provides insight into plastome evolution.    Genes encoding subunits that are integral to 

photosynthesis, such as ATP synthase (atp genes), cytochrome b6f complex (pet genes) 

and photosystems I and II (psa and psb genes) have been shown to have lower rates of 

nucleotide substitution than other functional groups in angiosperms (dicot and monocot) 

and conifers (Buschiazzo et al., 2012; Chang et al., 2006; Guisinger et al., 2008a; Guisinger 

et al., 2010).  Ribosomal protein (rpl and rps) genes and RNA polymerase (rpo) genes 

were shown to have accelerated mutation rates (Blazier et al., 2016; Guisinger et al., 2011). 

 In addition to rate differences between gene functional groups, rate variation 

relative to genomic features such as genome rearrangements can also provide insights into 

the forces shaping plastome evolution.  Evolutionary events can alter the gene order 
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through gene duplication usually via expansion of the inverted repeat (IR), inversions, 

insertions and deletions (indels). Previous studies have identified a significant positive 

correlation between rates of nucleotide substitution and gene order changes in angiosperms 

plastid genomes, bacterial genomes, and arthropod mitochondrial genomes (Belda et al., 

2005; Jansen et al., 2007; Shao et al., 2003; Weng et al., 2013; Xu et al., 2006).  

Disruption of DNA repair, recombination and replication (DNA-RRR) systems has been 

suggested to cause highly elevated nucleotide substitution rates and genome 

rearrangements (Jansen and Ruhlman, 2012).  A recent study revealed a significant 

correlation between dN of DNA-RRR genes and plastome complexity in an angiosperm 

family (Zhang et al., 2016).  Previous studies shwoed a negative correlation between 

genome size and substitution rates in previous plastome studies (Schwarz et al., 2017; Wu 

and Chaw, 2014).  

Large-scale sequencing now allows us to compare thousands of genes in all 

domains of life.  Factors affecting rates of sequence evolution in plastid genomes have 

extensively examined including speciation rates (Barraclough and Savolainen, 2001), 

generation time (Chang et al., 2006),  gene function , and gene copy number (Wolfe et 

al., 1987). Synonymous and non-synonymous substation rates vary widely within and 

between taxa.  Survey of 25 gene families in four grass species showed significantly 

heterogeneous dN/dS ratio across the branches, with majority of the ratio less than1.0 

suggesting of selective constraint on amino acid substitution (Zhang et al., 2001).   

Comparing conifer to angiosperms, significantly slower evolution rates were found in 

conifer, however with higher dN/dS ratio indicating higher adaptation (Buschiazzo et al., 
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2012).  Study of variation in substitution rates among genes and lineages in ferns revealed 

faster gene substitution rates in ferns than seed plants (Wolf et al., 2011).  Order specific 

nucleotide acceleration was found in Poaceae within the monocot (Guisinger et al., 2010).  

Dramatically lower  substitution rates were also in conifers than in angiosperms, and 

those differences vary across functional categories of genes (Buschiazzo et al., 2012).  

Other factors related to life history have also been proposed to influence 

substitution rates.  Previous studies on angiosperms (Barraclough and Savolainen, 2001; 

Duchene and Bromham, 2013), birds(Lanfear et al., 2010) and reptiles found a correlation 

between synonymous substitution and net diversification, suggesting a possible causal link 

between mutation rate and net diversification.  Study show that tree and shrubs with long 

generation time has lower rate of mutation, while herbaceous plants with short generation 

time has higher rates of mutation (Smith and Donoghue, 2008). 

 Pattern of genome architecture change also seem to be associated with mutation 

rates. Previous studies showed a tendency of plastid genes in close proximity revealed 

similar changes of selection (Wicke et al., 2014).  Strong correlation between high 

sequence divergence and low GC contents were detected(Wicke et al., 2014).  Studies in 

ciliates found more fragmented genomes having significantly elevated mutation rate(Zufall 

et al., 2006). 

 Diatoms are the most species-rich group of phytoplankton in the ocean (Kooistra et 

al., 2007), originating about 250 Ma (Sorhannus, 2007).  They are diploid and mainly 

dominated by asexual reproduction.  Diatoms have a high capacity to accumulate 

mutations.  Whole genome sequencing showed that the difference in genetic sequence 
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diversity between model diatom species Thalassiosira pseudonana and Phaeodactylum 

tricornutum is comparable to that between mammals and fish (Bowler et al., 2008).  

Diatoms reflect a fundamentally different evolutionary path from higher plants, green and 

red algae because they are derived from a secondary endosymbiosis between a non-

photosynthetic eukaryote and a red alga.  Diatoms offer an ideal opportunity to examine 

the patterns of nucleotide substitution rates for a secondary endosymbiosic lineage. 

 Studies on diatom substitution rates are advancing our knowledge on its evolution.  

Previous work has shown that dS and dN were lower in diatom plastid genes than in nuclear 

genes, and there was a negative correlation between the dS in plastid genes and the degree 

of  codon usage bias (Sorhannus and Fox, 1999).  The ecologically important 

transporters (SITs), which import silicic acid from the environment into the diatom cell, 

experienced strong purifying selection among 45 marine and freshwater thalassiosiroid 

diatoms (Alverson, 2007).  Analyzing gene expression profiles in three genera of diatoms 

revealed positive selection in orphan genes and genes encoding protein-binding domains 

and transcriptional regulators (Koester et al., 2013). Whole genome sequencing of the cold-

adapted pennate diatom Fragiolariopsis cylindrus revealed an association between dN/dS 

and condition-dependent expressions and a correlation between diversifying selection and 

allelic differentiation (Mock et al., 2017).  

  So far, no studies have yet compared substitution rates of diatom plastid genes on 

genome scale.  Here, we carried out the first comparative study of substitution rates of 

diatom plastid genes in a genome scale. We explored the pattern of diatom plastid gene 

substitution rates.  Our study also examined the correlation pattern between plastome 
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mutation rates and potential genome features, such as genome size, indels, and genome 

rearrangement. This work advances our current understanding of diatom plastid genome 

evolution and the forces shaping the tempo and mode of diatom plastid genome evolution. 

 

Methods 

Gene Sequence Alignment and Phylogenetic Analysis 

 Plastid protein-coding genes were extracted from the 40 complete diatom plastomes 

across diatom phylogeny together with the outgroup species Triparma laevis.  The 103 

shared plastid gene sequences were aligned with MAFFT (Katoh et al., 2005).  Protein-

coding genes were partitioned by codon and gene functional category.  A maximum 

likelihood tree was constructed with RAxML7.2.9 (Stamatakis, 2006b), with the 

substitution model GTR+G and “-f a” option.  1000 bootstrap replicates were performed.  

The maximum likelihood tree was then used as a constraint tree for estimating substitution 

rates.  

 

Nucleotide Substitution Rates 

 Nucleotide substitution rates (dN and dS) were estimated using the codeml function 

implemented in PAML (Yang, 2007).  Codon frequencies were determined by the F3×4 

model.  Gapped regions were excluded with the parameter cleandata = 1 to avoid spurious 

rate inference.  Pairwise rates with the outgroup species Triparma laevis were estimated 

with the parameter runmode = -2.  Mutation rates were estimated for both the 
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concatenated sequence and the sequences in different functional groups as listed in 

Supplementary Table 4.1.  

Plastid Genome Complexity Analysis 

 The number of indels for the concatenated 103 protein coding genes was calculated 

using a custom python script in which Triparma laevis was used as a reference.  Whole 

genome alignment among the forty diatom species was performed using the 

ProgressiveMauve algorithm in Mauve v2.3.1 (Darling et al., 2004).  The same copy of 

IR (IRb) was removed from the plastid genome where two copies were present.  The 

locally collinear blocks (LCBs) identified by the Mauve alignment were numbered with 

positive or negative sign based on strand orientation to identify synapomorphic genome 

rearrangements and estimate genome rearrangement distance.  Inversion (IV) distances 

were estimated using GRIMM (Tesler, 2002).  Genome size included only one copy of 

the IR for consistency. 

Correlation between Substitution Rates and Genome Characteristics 

 Pairwise dN and dS values were calculated for each taxon compared to the outgroup 

species Triparma laevis, and corresponding dN/ dS ratios were calculated.  Correlations 

of dN and dS with plastome size and number of indels for each genome were tested.  

Phylogenetic Generalized Least Squares was performed using the ‘ape’ and ‘nlme’ 

packages in R.  The constraint tree was utilized with outgroup taxa pruned.   

 Pairwise nucleotide substitution rate and inversion distance for each diatom species 

were collected as vectors.  The correlations between two vectors were calculated.  The 

correlation between the rate of nucleotide substitution and the rate of genome 
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rearrangement were tested using Pearson test.  The resulting p-values were Bonferroni 

corrected using the built-in p.adjust function to remove the effect of multi-hypothesis 

testing. 

 

Results 

Substitution Rate in a Phylogenetic Context 

 Most clades were recovered with strong bootstrap support (see bootstrap support 

values in Figure 3.1). The radial centrics of the Coscinodiscophyceae (Radial 1, 2 and 3) 

formed a basal grade.  The Mediophyceae (bi- and multi-polar diatoms plus the 

Thalassiosirales) were contained in three clades (“Polar 1”, “Polar 2” and “Polar 3”) and 

was paraphyletic.  Araphid 1 was sister to Araphid 2 plus the Raphid group.  Within 

Araphid 2, Astrosyne radiata was recovered on an extremely long branch.  Raphid 

pennate diatoms (labeled “Raphid”) were recovered as a monophyletic group sister to a 

clade of araphid pennate diatoms (“Araphid 2”).       

The dN and dS trees showed very similar pattern in branch length variation.  The 

most accelerated lineage was branch 63 leading to Astrosyne radiata (Figure 4.1).  Branch 

4 leading to Proboscia sp. also showed accelerated rates in both dN and dS.  Comparing 

substitution rates in different functional groups also showed the most accelerated rates on 

branch 63 (Appendix Figures C.1 and C.2).  

 

Rate Variation in Functional Groups of Genes  
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 Gene sequences in each functional category were concatenated to estimate dS and 

dN. The patterns of nonsynonymous and synonymous substitution rates in different 

functional groups were similar (Figure 4.2).  RNA polymerase genes had the highest 

median values of dN and dS among the major gene categories.  Ribosomal protein genes 

(rpl and rps) also had high median values of dN and dS.   Both the dN and dS median 

values of the genes integral to photosynthesis, such as psa, psb, pet and ATP genes, were 

much lower than the other groups.  Comparisons of the individual genes in the other gene 

category (Appendix Table C.1) showed that the highest dN and dS was for dnaB, the 

replicative DNA helicase gene (Appendix Figures C.3 and C.4). 

 dN and dS were highly positively correlated for genes involved in similar functions.  

Photosystem I psa genes and photosystem II psb genes had correlation coefficients of 0.95 

and 0.96 for dN and dS, respectively (Appendix Figures C.5 and C.6).  Ribosomal protein 

small subunit (rps) genes and large subunit (rpl) genes had correlation coefficients of 0.96 

and 0.97 for dN and dS, respectively.  RNA polymerase genes were also highly correlated 

with rpl genes in both dN and dS.  

 

 

Correlation between Substitution Rates and Plastome Characteristics 

 A significant positive correlation was observed between dN, dS, dN/dS and the 

number of indels (Figure 4.3).  Both dN and dS showed positive correlation with the 

number of indels, while the ratio of dN and dS showed negative correlation with indel 

number.  All correlations were significant with p-values less than 0.05 and small standard 
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errors (Figure 4.3).  No obvious correlation was found between the substitution rate and 

plastid genome size (Appendix Figure C.7).  However, Astrosyne radiata, which had the 

highest dN and dS, among diatoms, showed a relatively small genome size compared with 

the rest of diatoms. 

 Correlations of pairwise mutation rate and genome inversion distance were tested 

among 40 diatom plastid genomes.  Our results showed that dN had 25 significant 

correlations among the 40 pairwise comparisons at the significance level of 0.05 (Figure 

4.4, Appendix Table C.2).  dS and dN/dS had 18 and 13 significant correlations among 

the 40 pairwise comparisons, respectively.  Polar 1 group, the mostly extensively sampled 

group of diatoms (indicated by the light green color in Figure had the largest percentage of 

significant correlation, with 7 out of 9 in both dN and dS and 6 out of 9 in dN/dS.  

Astrosyne radiata, the long-branch diatom, showed significant correlations in all of dN 

(p=2.41e-06), dS (p=2.23e-03) and dN/dS (p=3.55e-04) (Appendix Table C.2).  Astrosyne 

gene order inversion distance also showed the highest correlation coefficient of 0.7431 

with dN.  

 

 

Discussion 

 Identifying the pattern of nucleotide substitution underlying plastid gene evolution 

is key to understanding the mutational and selective cores responsible for diatom plastid 

genome evolution.  In our study, over one hundred plastid genes were examined across 

40 diatom species.   The ribosome subunit and RNA polymerase genes showed 
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accelerated nucleotide substitution rates compared to photosystem genes psa, psb, pet and 

ATP genes.  Positive correlations were uncovered between substitution rates and number 

of indels and genome rearrangements.  By using genomic scale sequences of an 

understudied yet important group in the tree of life, our study sheds light on the pattern and 

the forces shaping molecular evolution in diatom plastid genomes.  

Lineage specific mutation rates  

 Lineage specific mutation rates were reported in previous studies.  A general 

elevation of nucleotide substitution rates were observed in carnivorous versus non-

carnivorous Lentibulariaceae, the plants exhibiting the most sophisticated implementation 

of carnivorous syndrome (Wicke et al., 2014).  Studies in the marine cyanobacterium 

Prochlorococcus found significantly lower genome-wide average dN/dS ratio in high-

light-adapted groups versus those in the closely related sister group Synechoccus (Hu and 

Blanchard, 2009). The authors argued that the lower dN/dS ratios suggest ingrelatively 

larger effective population size, which is consistent with their ocean abundance observation 

of Prochlorococcu (Hu and Blanchard, 2009).  Among major groups of gymnosperms, 

significantly slower synonymous and nonsynonymous substitution rates  were found in 

cycad comparing to Pinaceae (Wu and Chaw, 2015). Conifers had lower level of 

substitution rates compared to angiosperms, and it is proposed that reduced levels of 

nucleotide mutation coupled with large effective population size were the main 

contribution factor (Buschiazzo et al., 2012). Among seed plants, acceleration of non-

synonymous rate in the subtree Euphorbia was also detected (Lee et al., 2011). The tufA 
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genes, which encodes the elongation factor Tu, was found evolving at a fast pace in green 

algae Coleochaetophyceae, compared with other sister clades (Lemieux et al., 2016).  

 In this study, we found significantly higher mutation rate in the long branch bearing 

species Astrosyne radiata, comparing to the rest of the diatoms (Figure 1). Extensive gene 

loss was also found in Astrosyne (Chapter 2).  Our results suggest unprecedented 

evolutionary events might be going on the branch leading to Astrosyne. Additional taxon 

sampling around the Astrosyne might help us better elucidate the evolutionary changes in 

araphid 2 clade. 

Differential Mutation Rates in Gene Functional Groups   

 Gene essentiality is the most studied factor for mutation rate variation, with the idea 

that essential genes are subject to stronger selective constraint than non-essential genes 

(Wilson et al., 1977).  Several studies in various organisms have demonstrated that 

variation in nucleotide substitutions is correlated with expression levels in which highly 

expressed genes evolve at a slower rate (Drummond et al., 2006; Sharp, 1991; Shields et 

al., 1988). Studies in plants Picea also showed negative correlation between substitution 

rate and gene expression, underlying that highly expressed genes might undergone greater 

selective constraints than lowly expressed genes (De La Torre et al., 2015).  However, 

study over 3,000 mouse essential genes showed the relative importance of factors in 

determining mammalian protein evolution in descending order are gene compactness, gene 

essentiality, gene expression level (Liao et al., 2006). Studies of evolutionary rate in 

mammals and flies showed little correlation with expression level, but the rates of adjacent 

protein domains tend to fluctuate together (Du et al., 2013). 
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Diatom plastid genes mainly fall into two categories, those involved in the 

photosynthetic apparatus and in the transcription-translation apparatus.  The first category 

mainly includes photosynthesis genes psa (photosystem І), psb (photosystem II), pet 

(cytochrome b6/f complex) and atp (chloroplast ATP synthase).  The second category 

involves RNA polymerase and ribosome proteins. It was found in conifers that genes 

involved in signal transduction and regulation of transcription and nucleic acid seem more 

likely to evolve under reduced constraint; whereas genes involved in translation, protein 

assembly, chlorophyll biosynthesis  and cellular organization are under strong selective 

constraint (Buschiazzo et al., 2012).  It was suggested that genes involved in signal 

transduction and regulation of transcription experienced adaptive selection which allow for 

responsiveness and plasticity to defend themselves against herbivores and pathogens; 

whearas genes in translation, cellular organization and chlorophyll biosynthesis were under 

strong selective constraint due to the fact that those processes are highly conserved 

(Buschiazzo et al., 2012) . Similar patterns were also found in angiosperms (Chang et al., 

2006; Guisinger et al., 2008a; Guisinger et al., 2010). Studies in unicellular green alga 

Ostreococcus showed that faster evolving genes encode significantly more membrane or 

secretion associated genes, as cell surface modification is driven by selection on resistance 

to viruses (Jancek et al., 2008). In our study, the results also showed similar pattern that 

genes involved in photosynthesis had relatively lower substitution rates than genes in 

transcription-translation apparatus (Figure 4.3).   

 

Correlation between Substitution Rates and Plastome Characteristics 
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Indels 

 Indels are thought to be a major driving force in sequence evolution (Britten, 1986).  

Previous studies in a broad range of eukaryotes and bacteria revealed that mutation rate is 

substantially elevated in regions surrounding sites that have undergone a short insertion or 

deletion mutations (Hodgkinson and Eyre-Walker, 2011; Hollister et al., 2010; Tian et al., 

2008; Zhu et al., 2009).   On 50bp either side of an indel, the mutation rate increased 30-

fold in yeasts (Tian et al., 2008) and 6-fold in humans (Hodgkinson and Eyre-Walker, 

2011).  An “indel-induced mutation” hypothesis was introduced stating that presence of 

an indel is induces a high mutation rate (Tian et al., 2008).  Indels were also reported 

associated within regions of repetitive DNA (Dettman et al., 2016).  Studies in the 

carnivorous plant Lentibulariaceae showed a strong correlation of indels and substitution 

rates across plastid non-coding regions (Wicke et al., 2014). Similar to previously 

published results, we found both dN and dS had significant positive correlations with the 

number of indels in coding regions (Figure 4.3).  

Studies in cotton showed the ratio of substitution rate and indel increased as divergence 

time increased (Xu et al., 2012). 

 

Size 

 Previous studies of diatoms showed that the plastome size variation is mainly due 

to IR expansion and the introduction of foreign genes (Ruck et al., 2014; Sabir et al., 2014). 

An inverse relationship between mutation rate per base pair and genome size was proposed 

by Drake et al.  (Drake, 1991; Drake et al., 1998).  Bradwell et al. (Bradwell et al., 2013) 
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showed a negative correlation between mutation rate and genome size in Riboviruses.  

Lynch et al. (Lynch et al., 2006) hypothesized that low organelle DNA substitution rates 

contribute to a more permissive environment leading to organelle genome expansion and 

high mutation rates resulting in genome contraction.  Tests of this hypothesis in flowering 

plant organelle genomes showed some mixed results (Schwarz et al., 2017; Sloan et al., 

2012). Significant correlation were found in gymnosperm Picea between gene family size 

and rates of sequence divergence (De La Torre et al., 2015).  Negative association were 

found between dS values and cpDNA size in Cupressophytes, a conifer clade, but no 

association as detected for dn or dN/dS values(Wu and Chaw, 2014). 

  Our analyses did not show any significant relationship between mutation rates and 

genome size (Appendix Figure C.7).  In fact, Astrosyne radiata, the diatom species that 

experienced multiple gene loss (Figure 3.3) showed the highest mutation rate in both dN 

and dS even though it has a relatively small genome size.  More extensive sampling in the 

Araphid 2 clade (where the long branch bearing species Astrosyne belongs) would likely 

provide more information on the fast evolving mutation rate and plastid genome size. 

Genome Rearrangement 

 Previous studies have shown a positive correlation between genome rearrangement 

and nucleotide substitution rates (Guisinger et al., 2008b; Schwarz et al., 2017; Weng et 

al., 2013).  In our result, significant correlations between genome rearrangement and 

substitution rates were also observed in diatoms (Figure 4.4, Supplementary Table S4.2).   

The results also showed that dN had the largest number of significant correlations among 

all the pairwise comparisons.  One possible mechanism could be improper DNA repair 
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leading to genome rearrangement and increased nucleotide substitution.  It has been 

suggested that genes involved in DNA replication, recombination, and repair (DNA-RRR) 

systems may be responsible for elevated nucleotide substitution rates and increased 

genome rearrangement in plastid (Guisinger et al., 2008b; Zhang et al., 2016).  DNA 

repair mechanism is also proposed to explain the rearrangement and mutation rate in plant 

mitochondria (Christensen, 2013).   Completed sequences for additional highly 

rearranged diatom plastid genomes, and characterization of genes involved in DNA repair 

in diatoms are need to better understand the highly accelerated substitution patterns.  
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Figure 4.1. dN and dS trees estimated using maximum likelihood and 103 concatenated 

protein coding gene sequences. The bars at the base of each tree indicates the number of 

nucleotide substitutions per codon. dN and dS trees are on different scale. Numbers on the 

branches in the dN tree are branch numbers.  
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Figure 4.2.  Boxplot of the number of nonsynonymous (dN) and synonymous (dS) 

substitutions for functional groups of genes. 
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Figure 4.3. Relationship between the number of indels and substitution rates. Scatterplots 

were constructed and the regression line (dashed blue) and statistical values are shown. X-

axis gives the number of indels in each species. 
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Figure 4.4. P values for pairwise correlation of substitution rate and genome inversion 

distance in each diatom. Alpha = 0.05 (red horizontal line) was used to access the 

significance level. The colored bar indicates different clades of diatoms. From left to right: 

radial 1, radial 2, radial 3, polar 1, polar 2, polar 3, araphid 1, araphid 2, raphid. 
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Appendix 

Chapter 2 

 

 

 

Appendix Figure A.1.  Processing sites of nuclear encoded plastid targeted acyl carrier  

protein. The signal peptide (blue) is removed by signal peptidase (SPase) and the transit 

peptide (green) is removed by stromal processing peptidase (SPP). The signal peptide and 

transit peptide junction site show a canonical AXAFXP motif. 
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Appendix Figure A.2.  Inversion events from the Roundia cardiophora plastid genome to 

Thalassiosira oceanica plastid genome. 
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Appendix Figure A.3.  Inversion events from the Roundia cardiophora plastid genome to 

three non-Thalassiosirales. 
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Taxon Source/locality GenBank 

Accession 

  

Cerataulina daemon   Atlantic coast, FL, USA 

Approx. 26.9o N,  -80.0o W 

 KJ958484 

Chaetoceros simplex   CCMP 200 KJ958479 

Cyclotella sp. L04_2  Lake Ohrid, Macedonia  KJ958480 

 

Cyclotella sp. WC03_2  Waller Creek, TX, USA 

30.12 o N, 97.43 o W 

KJ958481 

Thalassiosira weissflogii CCMP 1336 KJ958485 

 

Rhizosolenia imbricata Harbor Branch Oceanographic Institute boat dock, FL, USA 

Approx. 27.5o N, -80.3o W 

KJ958482 

Roundia cardiophora Achang Reef, Guam, USA 

13.249o N,  144.697o W 

KJ958483 

Abbreviation: CCMP (National Center for Culture of Marine Phytoplankton) 

 

Appendix Table A.1.  Taxa used for plastid genome sequencing with source and GenBank 

accession numbers. 
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Primer name Sequence (5' → 3') 

Cerataulina_psaA_trnK_F TGA CCT GGT TGT GCC CAT TT 

Cerataulina_psaA_trnK_R ACC AAA CTG AGC TAT ATC CCG T 

Cerataulina_trnP_ycf45_f GAA CCT ACG ACA CCC TGG TC 

Cerataulina_trnP_ycf45_R ACA AGA GAT ATT AAA AAG GCA ACG A 

Cerataulina_psaC-psbX_F ACG AGT TGT TTC TGC GCC TA 

Cerataulina_psaC-psbX_R TGC ACC TGT TTT AAT CGC AGC 

Cerataulina_psbY_rbcR_F TGC ACC TGT TTT AAT CGC AGC 

Cerataulina_psbY_rbcR_R TCA GCA GCA CGT GTA AAG CT 

Cyclotella_L04_2_petG_F TCA AAT TGA TTT CCA CGA CGA T 

Cyclotella_L04_2_psaI_R ACC AAC AAG TGG TAC AAG AA 

 

Appendix Table A.2.  PCR Primers used for finishing diatom plastid genome sequencing 

and confirming boundaries between inverted repeats and single copy regions. 
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 T. 

weissflogii  

Cy.      

sp.  

L04_2  

Cy. sp. 

WC03_2 

Cy.  

nana  

T. 

oceanica  

Ro. 

cardiophora  

Ch. 

simplex  

  

Ce. 

daemon  

Rh. 

imbricata  

Size (bp)  127,601  129,400  129,498 128,814  141,790  126,871 116,45

9  

120,144  120,956  

SSC  26,496  27,620  27,602 26,889  24,106  26,274 39,517  40,590  27,482  

LSC  64,555  65,268  65,210 65,250  70,298  64,387 62,136  65,546  61,244  

IR  18,276  18,256  18,261 18337 23,693  18,105 7,403  7,004  16,115  

G+C content  30.8%  30.3%  30.0% 30.7%  30.4%  31.0% 32.1%  31.2%  31.8%  

Protein 

coding 

genes  

127  127  127 127  126a 

  

126b 

 

128c 

 

130d 

 

122e 

 

rRNA  

genes 

3  3  3 3  3  3 3  3  3  

tRNA genes 27  27  27 27  27  27 27  27  27  

Other      

RNAs 

2  2  2 2  2+flrn 

 

2 2  2  2  

genome 

coding for 

genes  % 

85.18%  

 

85.25%  

 

84.88%  

 

85.56%  

 

79.67%  

 

85.16%  

 

87.34%  

 

84.56%  

 

79.46% 

Gene 

density 

(genes/kb) 

1.41 1.39 1.39 1.38 1.30 1.42 1.45 1.41 1.41 

Average 

IGS (bp) 

106.08  

 

106.06  

 

108.76  

 

103.31  

 

155.82 104.57 87.27 109.79 145.30 

 

Overlapping  

genes  

 

sufC-sufB: 

1nt 

 
atpF-atpD: 

4nt 

 
psbC-psbD: 

53nt 

 
rpl4-rpl23: 

8nt  

 

sufC-sufB: 

1nt 

 
atpF-atpD: 

4nt 

 
psbC-psbD: 

53nt 

 
rpl4-rpl23: 

17nt  

 

sufC-

sufB:  

1nt 
 

atpF-

atpD:  
4nt 

 

psbC-
psbD: 

53nt 

 
rpl4-

rpl23: 

17nt  
 

sufC-sufB: 

1nt 

 
atpF-

atpD: 4nt 

 
psbC-

psbD: 

53nt 
 

rpl4-

rpl23: 8nt  
 

sufC-sufB: 

1nt 

 
atpF-atpD: 

4nt 

 
psbC-psbD: 

53nt 

 
rpl4-rpl23: 

8nt 

 

sufC-sufB: 

 1nt 

 
atpF-atpD:  

4nt 

 
psbC-psbD: 

53nt 

 
rpl4-rpl23:  

8nt  

 

sufC-

sufB:    

1nt 
 

atpF-

atpD: 
4nt 

 

psbC-
psbD:  

53nt 

 
rpl4-

rpl23: 

8nt  
 

sufC-sufB: 

1nt 

 
atpF-

atpD: 4nt 

 
psbC-

psbD: 53nt 

 
rpl4-

rpl23: 8nt  

 

sufC-sufB: 

 1nt 

 
atpF-atpD: 

1nt 

 
psbC-psbD: 

53nt 

 
rpl4-rpl23:  

8nt  

 

Abbreviation: Thalassiosira (T.), Cyclotella (Cy.), Roundia (Ro.), Chaetoceros (Ch.), Cerataulina(Ce.), 

Rhizosolenia(Rh.) 

a: missing petF,  has orf127 

b: ycf66 is a pseudogene 

c: missing ycf42, has acpP1 and syfB 

d: missing ycf42, has acpP1 and syfB, ilvB, ilvH 

e: missing psaE, psaI, psaM, ycf35, tufA, syfB, has acpP1. 

 

Appendix Table A.3. Plastid genome features of seven sequenced diatoms in comparison 

with Cyclotella nana and Thalassiosira oceanica. 
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Appendix Table A.4.  Gene content comparison of seven sequence diatom plastid 

genomes with other published diatom plastid genomes. Intact genes are indicated by dark 

blue, pseudogenes as light blue, and missing genes in light yellow. 
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Appendix Table A.4. Continued 
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Appendix Table A.4. Continued 
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Appendix Table A.4. Continued 
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Species Identity Alignment length 
Number  

of mismatches 
Number of gap opens Start1 End1 Start2 End2 E-value Bit score 

Cy. sp. 

W03_2 
100 84 0 0 65293 65376 65211 65294 1e-36  152 

Cy. sp. 

W03_2 
100 82 0 0 83554 83635 83472 83553 2e-35 149 

Cy. sp. 

L04_2 
100 79 0 0 65268 65346 65190 65268 7e-34 143 

T. 

oceanica 
96.67 90 3 0 29941 30030 18564   18475 2e-35 149 

T. 

oceanica 
91.25 80 7   0 6626 6705 5376 5297 1e-24 113 

 Generic abbreviations are: Cyclotella (Cy.), Thalassiosira (T.). 

 

Appendix Table A.5.  Predicted repeat pairs in seven sequenced diatom plastid genomes. 
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Rhizosolenia 

imbricata 
-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 13 14 15 16 -17 18 19 20 21 -22 -23 24 -25 -26 -27 -28 -29 30 31 32  

Chaetoceros 

simplex 
-4 12 1 11 10 9 8 13 5 7 -3 2 -16 -15 -14 17 6 18 19 20 21 30 31 32 27 26 25 -24 23 -22 -28 -29 

Cerataulina 

daemon 
1 -17 12 11 10 9 8 13 5 7 3 2 -16 -15 -14 -4 6 18 19 20 21 29 28 22 30 31 32 27 26 25 -24 23 

Cyclotella 

nana 
1 10 9 14 15 19 20 8 12 11 6 18 17 16 13 5 7 4 3 2 21 29 28 22 23 24 30 31 32 27 26 25 

Thalassiosira 

weissflogii 
1 10 9 14 15 19 20 8 12 11 6 18 17 16 13 5 7 4 3 2 21 29 28 22 23 24 30 31 32 27 26 25 

Roundia 

cardiophora 
1 10 9 14 15 19 20 8 12 11 6 18 17 16 13 5 7 4 3 2 21 29 28 22 23 24 30 31 32 27 26 25  

Cyclotella 

sp.W03_2 
1 -19 -15 -14 -9 -10 20 8 12 11 6 18 17 16 13 5 7 4 3 2 21 29 28 22 23 24 30 31 32 27 26 25  

Cyclotella  

sp. L04_2 
1 -19 -15 -14 -9 -10 20 8 12 11 6 18 17 16 13 5 7 4 3 2 21 29 28 22 23 24 30 31 32 27 26 25 

Thalassiosira 

oceanica 
1 10 -15 -14 -21 -20 -16 9 18 17 -7 -5 4 3 -11 -12 -13 -8 6 19 2 22 31 30 -25 -24 -23 -29 27 -32 -26 33 28  

Note: Only one IR is included in this analysis. 

Highlighted area indicates the one single inversion between Roundia cardiophora plastid genome and 

Cyclotella sp. W03_2 and Cyclotella sp. L04_2 plastid genomes. 

 

Appendix Table A.6.  The permutation of number coded Locally Colinear Block (LCB) 

for each plastid genome. Negative number indicates an inversion of the given LCB. 
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 T. 

weissflogii  

Cy.    

sp.  

L04_2  

Cy.    

sp. 

WC03_2 

Cy.  

nana  

T. 

oceanica  

Ro. 

cardiophora  

Ch. 

simplex   

Ce. 

daemon  

Rh. 

imbric

ata  

T. 

weissflogii 
         

Cy.  sp. 

L04_2 
1         

Cy. 

sp.WC03_2 
1 0        

Cy. nana 0 1 1       

T. oceanica 10 11 11 10      

Ro. 

cardiophora 
0 1 1 0 10     

Ch. simplex 17 18 18 17 22 17    

Ce. daemon 14 15 15 14 19 14 8   

Rh. 

imbricata 
20 21 21 20 25 20 14 12  

Abbreviation: Thalassiosira (T.), Cyclotella (Cy.), Roundia (Ro.), Chaetoceros (Ch.), Cerataulina(Ce.), 

Rhizosolenia(Rh.).  The zero inversion in yellow indicates those three plastid genome Cy. nana, T. 

weissflogii and Ro. cardiophora have the same gene order. 

 

Appendix Table A.7.  Pairwise number of inversions inferred by GRIMM.  
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LCB number Genes names 

1 psaA, psaB 

2 psaF, psaJ 

3 ycf90, psbI 

4 petB, psaD 

5 psbD, psbC 

6 secG, psaM 

7 ycf12, psbZ 

8 dnaB, rpl12 

9 psbX, psbV 

10 rpl19, ssra 

11 petA, ycf3 

rps1 
12 rps18, rps2 

13 psbK, psaI 

14 rbcS, atpA 

15 psbB,  psbH 

16 petN, ycf33 

17 petG 

18 rps14, ftsH 

19 psaE, rpl20 

20 ycf45, acpP 

21 ycf89, rrn5 

22 psbA 

23 psaC 

24 ccsA 

25 rps6, thiG 

26 clpC 

27 rps10, rps12 

 
28 ccs1, ycf46 

29 rpl34, rpl32 

30 rps16, groEL 

31 dnaK, rpl16 

32 rpl18, rpl31 

 
 

Appendix Table A.8.  Genes at the boundary of each Locally Colinear Block (LCB). 
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Chapter 3 

 

 
 

Appendix Figure B.1.  Maximum likelihood tree from analysis of 103 shared plastid 

genes with no partition. 
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Appendix Figure B.2.  Maximum likelihood tree from analysis of 103 shared plastid 

genes with codon partition. 
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Appendix Figure B.3.  Maximum likelihood tree from analysis of 103 shared plastid 

genes with gene category partition. 
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Appendix Figure B.4.  Comparison of maximum likelihood tree constructed from 4 

different gene blocks with codon partition. The 5 branches in red represent the consistent 

branches separating Radial 1 from the rest of clades, separating Polar 2 from Polar 3 and 

the Pennate, separating Polar 3 from the Pennate, separating Araphid1 from Araphid 2 and 

Raphid, separating Araphid 2 from Raphid, respectively. The branches in red are consistent 

with the corresponding branches with arrow in Figure 3.1. 
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Appendix Figure B.5.  Relationship between total genome size and LSC, SSC and IR 

respectively after applying phylogenetic independent contrast analysis. The blue line 

indicates the regression line. The shaded area indicates 95% of confidence interval. The 

coefficient of determination is indicated by R squared. 
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Appendix Figure B.6.  Conserved domain search result of atpB group II intron in 

Proboscia sp. 
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Appendix Figure B.7.  Conserved domain search result of petD group II intron in 

Plagiogramma staurophorum.  

 

 



 91 

 
 

Appendix Figure B.8.  The gene order tree constructed using gene order inversion 

distance and 103 protein coding genes as constraint.  Different colors indicate different 

diatom groups. 
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Taxon Source/locality Culture condition 

Acanthoceras 

zachariasii 

Lake Okoboji, Iowa, USA 20-24oC,  0 ppt,  

WC 

Actinocyclus subtilis University of Guam Marine 

Lab outflows, Guam, USA 

27oC, 32 ppt,  f/2 

Astrosyne radiata Gab Gab Beach, Guam, USA 27oC,  32 ppt,  f/2 

Attheya longicornis CCMP 214 4oC,  32 ppt,  f/2 

Biddulphia 

biddulphiana 

Gab Gab Beach, Guam, USA 27oC,  32 ppt,  f/2 

Biddulphia tridens Long Beach, California, 

USA 

20-24oC,  32 ppt,  f/2 

Discostella 

pseudostelligera 

Upper Bull Shoals Lake, 

Missouri, USA 

20-24oC,  0 ppt,  WC 

Entomoneis sp. Jeddah, Saudi Arabia 27oC,  40 ppt,  f/2 

Eunotogramma sp. Atlantic Coast, South 

Florida, USA 

20-24oC,  32 ppt,  f/2 

Guinardia striata Port O'Connor, Texas, USA 20-24oC,  32 ppt,  f/2 

Licmophora sp. Duba, Saudi Arabia 27oC,  40 ppt,  f/2 

Plagiogramma 

staurophorum 

Taelayag Beach, Guam, 

USA 

27oC,  32 ppt,  f/2 

Plagiogrammopsis van 

heurckii 

Moss Landing, California, 

USA 

14oC,  32 ppt,  f/2 

Proboscia sp. Duba, Saudi Arabia 27oC,  40 ppt,  f/2 

Psammoneis obaidii Markaz Al Shoaibah, Saudi 

Arabia 

27oC,  40 ppt,  f/2 

Rhizosolenia fallax Duba, Saudi Arabia 27oC,  40 ppt,  f/2 

Rhizosolenia setigera Lady's Island, South 

Carolina, USA 

20-24oC,  32 ppt,  f/2 

Triceratium dubium Al-Wajh, Saudi Arabia 27oC,  40 ppt,  f/2 

 

Appendix Table B.1. Taxa used for plastid genome sequencing with source. 
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Category Genes  

Photosystem psaA, psaB, psaD, psaF, psaJ, psaL, psbA, psbB, psbC, psbD, psbE, 

psbF, psbH, psbI , psbJ, psbK, psbL, psbN, psbT, psbV, psbX, psbY, 

psbZ 

Cytochrome  

b/f complex  

petA, petB, petD, petG, petL, petM, petN 

ATP synthase atpA, atpB, atpD, atpE, atpF, atpG, atpH, atpI 

RubisCo 

subunit 

rbcL, rbcS, rbcR 

RNA 

polymerase 

rpoA, rpoB, rpoC1, rpoC2 

Ribosomal 

proteins 

rpl1, rpl2, rpl3, rpl4, rpl5, rpl6, rpl11, rpl12, rpl13, rpl14, rpl16, 

rpl18, rpl19, rpl20, rpl21, rpl22, rpl23, rpl24, rpl27, rpl29, rpl31, 

rpl32, rpl33, rpl34, rpl35,  rps2, rps3, rps4, rps5, rps7, rps9, rps10, 

rps11, rps12, rps13, rps14, rps16, rps17, rps18, rps19, rps20 

Other genes cbbX, ccs1, ccsA, chlI, clpC, dnaB, ftsH, groEL, secA, secG, secY, 

sufB, sufC, tatC, ycf3, ycf12, ycf46 

  

Appendix Table B.2. 103 shared protein coding genes partitioned by functional groups. 
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Gene Block Genes  

1 sufC, sufB, rbcL, rbcS 

2 atpI, atpH, atpG, atpF, atpD, atpA 

3 secG, psaD, petB, petD 

4 rpl12, rpl1, rpl11, dnaB 

5 petA, tatC, atpE, atpB, ycf3,rps18,rpl33,rps20,rpoB, rpoC1, rpoC2 

6 psbD, psbC 

7 psbB, psbT, psbN, psbH 

8 psbJ, psbL, psbF, psbE 

9 Rpl34, secA, rpl27, rpl21, rbcR 

10 dnaK, rpl3, rpl4, rpl23, rpl2, rps19 

11 rpl22 

rps3,rpl16,rpl29,rps17,rpl14,rpl24,rpl5,rps8,rpl6,rpl18,rps5,secY, 

rpl36,rps13,rps11,rpoA,rpl13,rps9,rpl31,rps12,rps7,tufA,rps10 

  

Appendix Table B.3. Genes in conserved gene order blocks among most of diatom 

plastid genomes. 

 

 

 

 

 

 

 

 

 

 



 95 

Name LSC SSC IR Total Clade 

Acanthoceras zachariasii 63924 39368 8550 120392 Polar2 

Actinocyclus subtilis 59040 38042 11019 119120 Radial3 
Asterionella formosa 62681 40193 9182 121238 Araphid2 

Asterionellopsis glacialis 72585 51181 11129 146024 Araphid1 

Astrosyne radiata 50213 37953 21433 131032 Araphid2 
Attheya longicornis 65290 44231 10022 129565 Polar1 

Biddulphia biddulphiana 63612 40024 9246 122128 Polar1 

Biddulphia tridens 66995 39752 9774 126295 Polar1 

Cerataulina daemon 65546 40590 7004 120144 Polar2 

Chaetoceros simplex 62136 39517 7403 116459 Polar2 

Coscinodiscus radiatus 60402 36643 12584 122213 Radial3 

Cyclotella  sp. WC03_2 65292 27684 18261 129498 Polar1 
Cyclotella nana 65250 26889 18338 128814 Polar1 
Cyclotella sp. L04_2 65268 27620 18256 129400 Polar1 

Cylindrotheca closterium 86398 49671 14870 165809 Raphid 
Didymosphenia germinata 63610 40370 6996 117972 Raphid 

Discostella pseudostelligera 64734 26735 18896 129261 Polar1 

Entomoneis sp. 64114 43246 7348 122056 Raphid 
Eunotia naegelii 73679 24857 27185 152906 Raphid 

Eunotogramma sp. 84201 39912 24102 172317 Polar1 
Fistulifera sp. JPCC DA0580 62994 45264 13330 134918 Raphid 

Guinardia striata 59711 38870 11782 122145 Radial3 
Leptocylindrus danicus 66724 40981 8754 125213 Radia1 

Licmophora sp. 64999 40389 7898 121184 Araphid2 

Lithodesmium undulatum 61086 37854 11860 122660 Polar1 

Phaeodactylum tricornutum 63674 39871 6912 117369 Raphid 

Plagiogramma staurophorum 77767 54273 34888 201816 Araphid1 

Plagiogrammopsis van heurckii 74042 41125 12069 139305 Polar1 
Proboscia sp. 57631 39450 20584 138249 Radia2 
Psammoneis obaidii 73911 51965 21523 168922 Araphid1 

Rhizosolenia fallax 59165 28184 18967 125283 Radial3 
Rhizosolenia imbricata 61244 27482 16115 120956 Radial3 
Rhizosolenia setigera 58541 38332 12069 121011 Radial3 
Roundia cardiophora 64387 26274 18105 126871 Polar1 
Seminavis robusta 70540 61497 9434 150905 Raphid 
Synedra acus 61724 40937 6795 116251 Araphid2 
Thalassiosira oceanica 70298 24106 23693 141790 Polar1 
Thalassiosira weissflogii 64555 26494 18276 127601 Polar1 
Triceratium dubium 65233 38936 8106 120381 Polar1 
Trieres sinensis 65346 38908 7725 119704 Polar1 
Triparma laevis 91600 15946 4984 117514 outgroup 

Appendix Table B.4. Genome size comparison of forty diatom plastid genomes together 

with the outgroup species Tripama  
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1 intact gene 

0 missing gene 

Ψ pseudogene 

Intact genes are indicated by dark blue, pseudogenes as light blue, and missing genes in 

light yellow 

 

Appendix Table B.5.  Gene content comparison of forty diatom plastid genomes 

together with the outgroup species Triparma laevis.. 
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Appendix Table B.5. Continued 
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Appendix Table B.5. Continued 
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Appendix Table B.5. Continued 
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Appendix Table B.6. The permutation of number coded Locally Colinear Block (LCB) for 

each plastid genome. Negative number indicates an inversion of the given LCB.  The 

species with same gene order are highlighted in same color. 
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Pink highlights indicate significant P values. 

 

Appendix Table B.7. Correlation test score between pairwise branch length estimated 

from maximum likelihood tree and gene order inversion distance inferred by GRIMM. 
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Chapter 4 

 
Appendix Figure C.1. Heatmap of non-synonymous substitution rates on different branches 

across gene functional groups. Branch numbers on the y-axis correspond to the branch 

labels on the phylogeny in from Figure 4.1 with the outgroup taxa removed.  The intensity 

of the color is proportional to the value of dN with darker values having higher dN. 
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Appendix Figure C.2. Heatmap of synonymous substitution rates on different branches 

across different gene functional groups. Branch numbers on the y-axis correspond to the 

branch labels on the phylogeny in Figure 4.1 with the outgroup taxa removed.  The 

intensity of the color is proportional to the value of dS with darker values having higher 

dS. 
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Appendix Figure C.3.  Boxplot of the number of nonsynonymous (dN) substitutions for 

groups of genes and individual genes. 
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Appendix Figure C.4.  Boxplot of the number of synonymous (dS) substitutions for 

groups of genes and individual genes. 
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Appendix Figure C.5.  Heatmap of correlation of nonsynonymous (dN) substitution rates 

among major gene functional groups. The numbers in white represent correlation 

coefficient. The colors are proportional to the color bar on the right. 
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Appendix Figure C.6.  Heatmap of correlation of synonymous (dS) substitution rates 

among major gene functional groups. The numbers in white represent correlation 

coefficient. The colors are proportional to the color bar on the right. 
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Appendix Figure C.7. Relationship between the plastid genome size (only one IR was 

included) and substitution rates.  
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Category Genes  

Photosystem  I psaA, psaB, psaD, psaF, psaJ, psaL 

Photosystem  II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI , psbJ, psbK, 

psbL, psbN, psbT, psbV, psbX, psbY, psbZ 

Cytochrome  

b/f complex  

petA, petB, petD, petG, petL, petM, petN 

ATP synthase atpA, atpB, atpD, atpE, atpF, atpG, atpH, atpI 

RubisCo subunit rbcL, rbcS, rbcR 

RNA polymerase rpoA, rpoB, rpoC1, rpoC2 

Ribosomal 

proteins large 

subunit 

rpl1, rpl2, rpl3, rpl4, rpl5, rpl6, rpl11, rpl12, rpl13, rpl14, rpl16, 

rpl18, rpl19, rpl20, rpl21, rpl22, rpl23, rpl24, rpl27, rpl29, rpl31, 

rpl32, rpl33, rpl34, rpl35 

Ribosomal 

proteins small 

subunit 

rps2, rps3, rps4, rps5, rps7, rps9, rps10, rps11, rps12, rps13, 

rps14, rps16, rps17, rps18, rps19, rps20 

Cytochrome c 

biogenesis 

protein 

ccs1, ccsA 

Protein 

translocase 

subunit 

secA, secG,  secY 

Fe-S cluster 

assembly protein 

sufB, sufC 

Other genes cbbX,  chlI,  clpC,  dnaB,  ftsH,  groEL,  tatC, ycf3,  ycf12,  

ycf46 

  

 

Appendix Table C.1. List of functional groups of genes with indication of which gene 

belongs in each category. 
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Species dN Cor 

dN Adjusted  

P value dS Cor 

dS Adjusted 

P value W Cor 

W Adjusted  

P value Clade 

Leptocylindrus.danicus 0.249362463 1 0.274406108 1 -0.0947601 1 Radial1 

Proboscia.sp. 0.281901059 1 0.209321483 1 0.1019521 1 Radial2 

Actinocyclus.subtilis 0.421786386 0.299431933 0.363209145 0.921825966 0.2509063 1 Radial3 

Coscinodiscus.radiatus 0.416940345 0.331100498 0.38572864 0.612029705 0.2493974 1 Radial3 

Rhizosolenia.setigera 0.466018696 0.111588386 0.369400225 0.825877165 0.4058141 0.41484544 Radial3 

Guinardia.striata 0.511819208 0.034681049 0.43514724 0.225242417 0.4100105 0.3813526 Radial3 

Rhizosolenia.fallax 0.504714175 0.042023163 0.463100951 0.119579107 0.3876155 0.59064546 Radial3 

Rhizosolenia.imbricata 0.449402086 0.164155514 0.440441621 0.200582541 0.2543502 1 Radial3 

Lithodesmium.undulatum 0.173043419 1 0.163370113 1 -0.1890741 1 Polar1 

Eunotogramma.sp. 0.142648235 1 0.161402882 1 -0.1539923 1 Polar1 

Roundia.cardiophora 0.674043907 0.000102068 0.689209635 4.90E-05 0.4489244 0.16594097 Polar1 

Thalassiosira.weissflogii 0.697095747 3.28E-05 0.695149186 3.63E-05 0.5610295 0.00811869 Polar1 

Discostella.pseudostelligera 0.696753636 3.34E-05 0.699876785 2.84E-05 0.5778036 0.00468999 Polar1 

Thalassiosira.oceanica 0.775774078 2.64E-07 0.778485249 2.16E-07 0.6735405 0.00010451 Polar1 

Cyclotella.nana 0.710748719 1.59E-05 0.713458405 1.37E-05 0.6004613 0.00212756 Polar1 

Cyclotella.sp.L04_2 0.702493306 2.48E-05 0.714705524 1.28E-05 0.5544628 0.00998511 Polar1 

Cyclotella.sp.WC03_2 0.702450644 2.48E-05 0.714486026 1.30E-05 0.5549535 0.00983337 Polar1 

Plagiogrammopsis.van.heurckii 0.539178885 0.015901802 0.517654516 0.029528124 0.2912593 1 Polar2 

Trieres.sinensis 0.55324712 0.010370159 0.55223179 0.010701918 0.3504453 1 Polar2 

Triceratium.dubium 0.54893446 0.011846083 0.548404246 0.012039974 0.3496521 1 Polar2 

Cerataulina.daemon 0.385386993 0.61597059 0.414586181 0.347493932 0.1296736 1 Polar2 

Acanthoceras.zachariasii 0.607803552 0.001625466 0.549880351 0.011507131 0.4872444 0.06623323 Polar2 

Chaetoceros.simplex 0.607150507 0.001665304 0.529659953 0.021014678 0.5170309 0.03004423 Polar2 

Attheya.longicornis 0.324697507 1 0.330594406 1 0.2832113 1 Polar3 

Biddulphia.tridens 0.573014743 0.00550208 0.545305193 0.013231303 0.3795144 0.68713137 Polar3 

Biddulphia.biddulphiana 0.590314317 0.003053483 0.565746504 0.006978508 0.3827313 0.64734071 Polar3 

Asterionellopsis.glacialis 0.41273536 0.360865861 0.250482164 1 0.3720415 0.78756207 Araphid1 

Plagiogramma.staurophorum 0.48560559 0.069037318 0.401567136 0.451263897 0.0826206 1 Araphid1 

Psammoneis.obaidii 0.444644599 0.182706417 0.278596095 1 0.3807752 0.67129707 Araphid1 

Asterionella.formosa 0.479432935 0.080560614 0.445734299 0.178303945 0.2112848 1 Araphid2 

Astrosyne.radiata 0.743113847 2.41E-06 0.598559319 0.002278767 0.6461316 0.00035515 Araphid2 

Synedra.acus 0.62298395 0.000911655 0.439424521 0.205129545 0.4939714 0.05574699 Araphid2 

Licmophora.sp. 0.682795027 6.72E-05 0.496816073 0.051773684 0.4754451 0.08887504 Araphid2 

Eunotia.naegelii 0.493281213 0.05675078 0.390963517 0.554255499 0.3688571 0.8339466 Raphid 

Cylindrotheca.closterium 0.58102035 0.004207043 0.453658639 0.148968941 0.5317408 0.01978609 Raphid 

Seminavis.robusta 0.574853202 0.005176409 0.422466096 0.295205369 0.5885402 0.00324857 Raphid 

Entomoneis.sp. 0.660163357 0.00019283 0.586512136 0.003485367 0.5802484 0.00431866 Raphid 

Fistulifera.sp.JPCC.DA0580 0.507540489 0.038952023 0.436830462 0.21713278 0.4393604 0.20541924 Raphid 

Didymosphenia.germinata 0.601524138 0.002047095 0.505160094 0.041524793 0.562476 0.00775239 Raphid 

Phaeodactylum.tricornutum 0.599266452 0.002221449 0.516731197 0.030295096 0.5620021 0.00787073 Raphid 

 

Appendix Table C.2. Correlation coefficient and adjusted P values for correlation between 

substitution rates and genome rearrangement measured by inversion distance.  Red entry 

indicates significant p values. 
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