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This work is motivated by the nonlinear wave-particle interaction prob-

lems. To build a self-consistent theory, we consider eigenmodes of the bulk

plasma as well as the dynamics of the energetic particles. The modes of our

particular interest are the Alfvén Cascades and the Toroidicity Alfvén Eigen-

modes (TAE), which we describe using Magnetohydrodynamic(MHD) analysis

and the AEGIS codes. We investigate the stabilizing effect for the Alfvénic

waves from continuum damping, especially near the TAE gap. For the ki-

netic description of the energetic particles, we propose new canonical straight

field line coordinates to model the guiding center motion. We then formulate

wave-particle interaction problem using the action-angle variables.

In Chapter 2, we interpret Alfvén Cascades observed in Madison Sym-

metric Torus (MST). We do linear MHD calculations and find the mode fre-

quency, structure, and stability boundary. We then perform MHD simulation
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using the AEGIS code, with the equilibrium reconstructed from experiment.

The result is discussed and compared with the experimentally observed fea-

tures.

In Chapter 3, we analyze continuum damping for Alfvénic waves, espe-

cially in the extreme situation near the TAE gap. We find that the continuum

tip absorption feature is actually related to the existing of TAEs in the gap.

On the technical level, we improve the numerical scheme of AEGIS and resolve

two closely-spaced singularities. As a result, the absorption features observed

in the simulation show good agreement with our analytical calculation.

In order to simulate the energetic particle guiding center motion in the

Hamiltonian form, we propose a new set of straight magnetic field line coor-

dinates. The new coordinates exist for general tokamak devices and facilitate

both MHD calculations and energetic particles.

The new coordinate system makes it very convenient to take the ad-

vantage of the Hamiltionian structure of the guiding center motion. We use a

canonical transformation to action-angle variables to formulate the interaction

model for particles. The action-angle variables allow us to resolve wave-particle

resonances and describe the conserved quantities for resonance particles. The

model can give us a complete picture for nonlinear stage of wave-particle in-

teraction.
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Chapter 1

Introduction

1.1 Fusion reaction and tokamak

Fusion power has long been believed to be the ultimate solution to

human energy crisis. The fusion fuel, such as deuterium, is resourceful on

the earth. Like the fission reaction, fusion has the advantage of high energy

capacity and is helpful to reduce the emission of greenhouse gases compared to

fossil fuels. For instance, one kilogram of deuterium (D) and tritium (T) fuels

would release 108 kWh of energy, which is equivalent to a 1 GW power station

for a day. On the other hand, Fusion is much safer than fission. The product

of fusion reactions is much less radioactive than that from fission reactions.

What’s more, potential hazards resulting from an uncontrolled chain reaction

can not occur with a fusion reactor.

Actually, the development of mankind has always been relying on the

fusion power either directly or indirectly during the human history. Fusion

reaction happens in the core of the sun and most stars in the universe. The

tremendous power in this process leads to photon production in sun’s pho-

tosphere, and is absorbed when the photons travel to earth to enable life to

develop. Although this energy transmission is not efficient, it bred most lives
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on earth. That being said, it will be great breakthrough if we can reveal the

secrets of the sun and take control of the fusion reaction on this planet.

However, there are challenges associated with opportunities in develop-

ing an actual power plant based on fusion reaction. Controlled fusion requires

the confinement of a hot plasma dilute gas rather than compact fission rods.

Though in principle feasible, the confinement issue turns out to be so difficult

that scientists are still attempting to achieve their goal after half a century’s

effort. In order to start the fusion reaction, the fuel is heated to a very high

temperature to overcome the repulsive force between the positive charged nu-

clei. Therefore, the most challenging problem of controlled nuclear fusion is

to maintain a steady equilibrium state of the fusion system and suppress all

the instabilities that degrade the fuel’s confinement.

A number of efforts are made to control the high temperature fuel and

sustain nuclear fusion. Unlike the confinement of fusion fuel in the sun, it is

impossible to pull the fusion fuel together using gravitational attraction with

much smaller reactor on earth. Instead, people has proposed to compress and

heat the fuel with the help of high-energy laser beams. This approach is called

inertial confinement. Other than the inertial confinement, another approach

is magnetic confinement fusion, which tries to confine the fuel with magnetic

field and has a lot progress in the effective energy production [24, 48].

Different types of magnetic confinement devices have been designed and

built, in which the tokamak is the most successful device so far. Tokamaks

confine the plasma-state fuel in the torus-shaped chamber. In a tokamak,
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Figure 1.1: An illustration of tokamak and the magnetic field.

the magnetic field spirals around the donut-shape plasma. The magnetic field

has poloidal component entirely through plasma current and toroidal field

components through the external coils. Safety factor q is often used as the

winding number of magnetic fields: one poloidal transit occurs for every q

toroidal transits. Other configurations such as the stellarator, reversed field

pinch configuration, or spheromak have either externally generated poloidal

fields or very different magnetic configuration than a tokamak. All of these

devices aim to study how to confine the high temperature plasma and then

control the particle flux and heat load deposited on the wall.

Currently, the largest burning plasma experiment- ITER (International

Thermonuclear Experimental Reactor)-facility is under construction in Cadarache,
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France. The ITER tokamak has the 18 niobiumt-in toroidal field coils and the

superconducting central solenoid coil to produce a field of 13.5 tesla. At their

maximum field strength, they are expected to have the sufficient confinement

to generate a burning plasma. [29, 40]

1.2 Generation of energetic particles

During fusion reaction or heating process, particles that are more en-

ergetic than the majority of the plasma can be generated. In the design of

practical fusion power plant, energetic particle physics is a key issue which

affect the energy balance of the system. For example, the most promising fu-

sion reaction is the D-T reaction, in which the nuclei of deuterium and tritium

fuse to produce an alpha particle and a neutron, which carry the most part of

fusion energy, i.e.

D + T = He(3.5MeV ) + n(14.1MeV ). (1.1)

To achieve fusion reaction, the reactant need to reach plasma state with high

temperature in order to overcome the Coulomb barrier between deuterium and

tritium nuclei. In principle, a practical fusion reactor will need no external

heating during the reaction (though auxiliary heating will be used for the ig-

nition and burn control), and the plasma temperature must be maintained for

a sufficient confinement time to obtain a net yield of energy. Thus, we have

to confine the fusion products as a source to heat the reactants in order to

sustain the fusion reaction. In the D-T reaction, neutrons are lost directly
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from the system, carrying away a large amount of fusion power, whereas al-

pha particles are expected to be trapped in plasma and continue to heat the

system. Generally, an important measure of the condition for a system to

reach fusion ignition is that the heating of the plasma by the fusion product

(mainly energetic alpha particles) is sufficient to maintain the temperature of

the plasma against all losses without external power input. Only when the

breakeven is reached, the burning plasma is self-heated and generate power.

Therefore, it is very important to investigate the confinement and transport

of the energetic particles for fusion study.

Although the population of energetic alpha particles is relatively small

compared to the background density, failure to confine this minority group of

particles may result in deleterious consequences. The loss of energetic particles

means that the heat source of the plasma is missing, which can quench the

fusion. In addition, if the energetic particles are not properly confined at the

core, the wall will be degraded since no material can stand the huge energy

flux from the direct impact of energetic alpha particle.

Among all the mechanisms of energetic particle transport, collisions

may be the most intuitive process. Collision between energetic particle and

bulk plasma particles result in energy exchange during the confinement of en-

ergetic particles. However, according to the collision theory, the collision time

is rather long (0.5s in ITER’s targeted burning plasma) as the fast particles

tend to be collisionless. Also, most of the alpha particle energy will first heat

electrons through the electron drag process during collision. Only about 10%
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of the alpha particle energy directly heats ions, which is the reactant species

that needs to be hot to have reasonable fusion production. Thus, the time scale

for energetic particles to deposit most of their energy into the bulk plasma for

self-heating fusion reaction is relatively long.

Instead, these energetic particles can easily lead to instabilities and

turbulence through the wave-particle interaction. So far it is known that

some waves in tokamak, such as Alfvénic waves, become unstable due to the

energetic alpha particles which transfer kinetic energy and momentum of alpha

particles to the waves. The momentum transfer can cause alpha particles to

cross field lines and possibly be lost to the walls, which brings trouble to our

confinement[49]. On the other hand, the wave-particle interaction is a more

efficient way to extract energy from alpha particles in a controlled manner

than the electron drag. If this can be done without the alpha particles loss,

we can expect energy transferred to the background plasma significantly faster

and the fusion efficiency greatly improved [19]. Therefore, the understanding

of nonlinear coupling processes involved in fast ion interaction with waves

is important to global stability, confinement, Alfvén channeling, heating and

current drive, thermal instabilities, etc. [14, 26, 27]

1.3 Alfvénic waves in fusion devices

Among the waves that exist in plasmas, the shear Alfvén wave con-

stitutes one of the most fundamental modes of the Magnetohydrodynamic

(MHD) spectrum. In a plasma, shear Alfvén waves are transverse electro-
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magnetic waves that propagate along the magnetic field. It is analogous to

the mechanical waves on magnetic field string with the magnetic pressure as

the tension and the mass density provided by the plasma. Shear Alfvén wave

dispersion relation is:

ω2
A = k2‖V

2
A (1.2)

Here wave vector along the equilibrium magnetic field is k‖ = k ·B0/B0, the

Alfvén velocity is VA = B0/
√

4πρ and ρ is plasma mass density.

In a tokamak, at the cylindrical limit, the periodicity of the system

require that there exists two integers, a toroidal mode number n and a poloidal

mode number m, such that

k‖m =
n−m/q
R0

where q is the safety factor, R0 is the distance from the symmetry axis of

the tokamak to the magnetic axis. Because of the radial in-homogeneity in

the wave vector and Alfvén speed, the shear Alfvén dispersion relation is a

continuous function with radius and is thus called shear Alfvén continuum.

In the presence of the shear Alfvén continuum, radially-extended waves will

be stabilized because of the interaction with Alfvén continuum, which is also

called continuum damping/continuum absorption [23]. Continuum absorption

results in mode conversion from the global oscillation to the local shear Alfvén

wave limited to the vicinity of a certain resonant surface, which can efficiently

damped through phase mixing and transfer wave energy to the plasma kinetic

energy.
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Figure 1.2: An example of the shear Alfvén continuum spectrum. Due to
toroidicity, a frequency gap appears in the continuum spectrum. TAE waves
cab be excited due to energetic particles in the gap region. [31]

However, the continuum can have gap structure due to toroidicity, simi-

lar to the propagation gap occurs at the Bragg frequency in solid state physics.

In a torus with a small inverse aspect ratio (ε = a/R0 << 1, where a is distance

from the wall to the magnetic axis), the magnetic field can be approximated

by B ≈ B0(1− εcosθ) where θ is the poloidal coordinate. The parallel compo-

nent of the wave vector now also depends on the poloidal coordinate θ which

can lead to the coupling of the dispersion relations belonging to neighboring

poloidal mode numbers m and m + 1. The crossing of m and m + 1 compo-

nents in the continuum spectrum is expected to be at the radius where the
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wave number equals:

k‖m1(r0) = −k‖m+1(r0).

But the toroidicity resolves the degeneracy of intersection and produces gaps

in continuum spectrum. Within these gaps global modes can exist without

experiencing strong continuum damping.

Figure 1.3: (a) RSAEs (blue line) and TAEs (red line) are pointed out along
with toroidal mode number (n). The solid overlaid line is the safety factor
profile (q) and the dashed line is the electron temperature profile. (b) n= 3
Alfvén continuum including toroidal rotation. The horizontal lines mark n=3
RSAE (blue line) and TAE (red line) frequencies from (a), and the BAEs have
lower frequencies. From Ref. [47]
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The poloidal symmetry-breaking in the toroidal confinement device

leads to the couplings between neighboring poloidal harmonics, which not only

opens a gap in the continuous shear Alfvén spectrum, but also produces dis-

crete Alfvén eigenmodes. These modes are called toroidicity-induced Alfvén

eigenmodes (TAEs) [18, 50]. These TAEs are linearly excited and is undamped

to the lowest order in the gap. Dissipation however may still present due to

weak viscosity, resistivity and remnant interaction with the continuum in spa-

tial regions where the wave amplitude is weak [43, 44].

Besides TAEs, other discrete Alfvén eigenmodes can exist near contin-

uum accumulation points due to shaping, magnetic shear, energetic particle

effects and other effects[38, 2, 21]. The properties of these discrete eigenmodes

such as frequency or mode structure are mostly determined by the background

plasma. For instance, a similar gap mode is the β-induced Alfvén eigenmode

(BAE) [12]. The BAE gap is introduced by the coupling between compressible

acoustic waves and the shear Alfvén continuum. Another important kind of

the discrete modes-Alvén Cascade (or RSAEs)-will be introduced in Chapter

2.

1.4 Different regimes of wave-particle interaction

As discussed, various discrete eigenmodes exist in the gap. These modes

can easily be driven unstable by the free energy in the fast ion distribution

function if the energetic particles satisfy the resonance condition[21, 20]. For

example, the TAE structure and eigenfrequency ω0 can be calculated from the
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MHD equations. Since the wave is weakly damped due to thermal plasma

kinetic effects, it can be excited by a small group of passing particles which

satisfy the resonance condition ω0 = k‖v‖ (where v‖ is the parallel velocity

to the equilibrium magnetic field). In this scenario, the mode structure and

frequency is predetermined by the bulk plasma and damping is minimal, while

the energetic particle effects are often perturbative.

For frequencies located inside Alfvén continuum, continuum damping

will stabilize the global oscillation. However if the energetic particle pressure

is sufficiently high compared to the thermal pressure, the energetic particle

drive can overcome the continuum damping and non-MHD modes are excited

[17]. These mode structure sensitively depend on the energetic particle distri-

bution. Their frequencies usually correspond to the characteristic frequencies

of the energetic particle orbital motion, and sweep as the instabilities de-

velop. These modes constitute a non-linear system where MHD and energetic

particle contribution can both be important and are called Energetic-Particle-

Modes(EPM).

To study the wave-particle interaction, we can start from the simple 1D

bump-on-tail problem, which is a very common instability in plasma physics

[3]. When the energetic particles have an inverted distribution, forming a

bump on the tail of the thermal particle distribution, there will be an insta-

bility with the strong wave excitation. In the linear theory, the bump-on-tail

instability can be thought of as the inverse of Landau damping, where the

existence of more particles that move faster than the wave phase velocity as

11



compared with those that move slower, leads to an energy transfer from the

particles to the wave [1, 25]. The instability saturates when the distribution

is flattened at the resonance region.

Figure 1.4: Experimental observation is successfully explained by the Berk-
Breizman model in the MAST spherical tokamak. Modes that are driven
unstable by neutral beam ions begin at the TAE frequency, then chirp upward
and downward in frequency. From Ref.[42].

Experimental results, in the case of neutral beam injection, demonstrate

that EPMs exhibit a hard nonlinear regime with rapid frequency sweeping.

Small deviations from the initial eigenfrequency for the case of a near-threshold

instability were first studied by Berk-Breizman (BB) and co-workers[5, 6, 7].

This model show that when the bump-on-tail instability evolves into its non-

linear stage, Bernstein-Greene-Kruskal (BGK) modes [28] are formed due to

nonlinear properties of the instability resonances, provided that each resonance

is sufficiently separated so that mode overlap does not arise. The interplay
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between the wave field, which tends to flatten the distribution of resonant

particles, and the source and sink relaxation processes, which tend to restore

the unstable distribution function, leads to various nonlinear effects [14].

The Berk-Breizman model demonstrates three kinds of behavior emerge,

namely steady-state, periodic, or explosive response[11]. It was shown that the

explosive state evolved into hole and clump phase-space structures in the fast

particle distribution function, which support a pair of BGK nonlinear modes,

and the motion of these coherent structures causes frequency chirping signals

to appear[8, 4]. The rate of frequency shift can be calculated by the bal-

ance between the rate of energy being nonlinearly extracted from the resonant

particles and the power dissipated into the background plasma through the

various damping mechanisms present in the system. The Berk-Breizman sce-

nario has been proved to be successful in explaining the frequency chirping

events observed in experiments where the range of frequency chirping is small.

Note that in the spontaneous hole-clump creation model, the initial

quantitative description was limited to the case of small frequency deviations

from the bulk plasma eigenfrequency. However, there are experimental ob-

servations of frequency sweeping events in which the change in frequency is

comparable to the frequency itself. As the mode amplitude saturates due to

flattening of the distribution function of the energetic particles, the physical

picture of each evolving phase-space structure is a BGK mode whose frequency

changes in time and its structure is notably affected by the frequency shift.

A non-perturbative model based on the adiabatic description of the fast par-

13



ticles contribution has been developed by Breizman [41, 10] to interpret the

long range chirping for an isolated nonlinear resonance. This non-perturbative

approach is premised on the assumption that the width of the separatrix sup-

ported by the BGK mode is small compared with the characteristic width of

the unperturbed distribution function. The underlying idea is that coherent

structures with varying frequencies represent nonlinear traveling waves in fast

particle phase space. Different from the bulk plasma eigenfrequency, a small

coherent group of these particles can still produce an observable signal with a

frequency.

Figure 1.5: NBI-driven chirping modes on MAST, From Ref.[22].

In this thesis, we exhibit our effort to numerically generalize the non-

linear wave-particle interaction model that is valid for both perturbative and

nonperturbative case. In chapter 2, We do ideal MHD analysis for the bulk

14



plasma and discuss the stability of the Alfvén Cascade as the discrete eigen-

modes, which is observed in Madison Symmetric Torus. In chapter 3, we

investigate the continuum damping, especially around the TAE tip, which is

important for EPM with significant frequency sweeping. In chapter 4, we turn

to the kinetic study of the energetic particles and find that there is a preferable

magnetic field for the description of energetic particle guiding center motion.

In chapter 5, we describe the action-angle model that combine the previous

efforts and simplify the resonant particle dynamics to one dimensional prob-

lem.
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Chapter 2

Alfvén Cascade in the Madision Symmetric

Torus

2.1 Introduction of Alfvén Cascade

In the experiments to obtain Internal Tranport Barriers, the safety

factor profiles q(r) often becomes non-monotonic. Such plasmas have a region

of magnetic shear reversal, which creates new extremes in the Alfvén spectrum.

In addition to the TAEs, these plasmas can also accommodate the so-called

Alfvén Cascades, also known as reversed-shear Alfvén eigenmodes (RSAEs).

The Alfvén Cascades are associated with the extremum point of the shear

Alfvén continuum localized at the magnetic surface with the minimum value

of q(r), labelled as q0. In the simplest case of cold (low pressure) plasma, this

gives

ωAC(t) ≈ VA
R0

|n− m

q
|+ ∆ω

Note that the first (dominant) term on the right-hand side of the equation is

the shear Alfvén continuum frequency at the zero shear point. The correction

∆ω describes a deviation of the Alfvén Cascade eigenfrequency from the con-

tinuum, and it originates from the effects of large ion orbits, toroidicity and

thermal plasma pressure gradient.
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In the evolution of the plasma current, the eigenfrequency of the Alfvén

Cascades, ωAC(t), changes in step with q0(t) in accordance with the local

dispersion relation for shear Alfvén waves, while ∆ω remain nearly constant

on the time scale of q0(t) evolution. Except in the vicinity of TAE gap, Alfvén

Cascade consists of predominantly one poloidal Fourier component and the

mode structure agrees quantitatively with MHD calculation.

Figure 2.1: A illustration of the magnetic shear reversal, continuum spectrum
extreme, and the mode structure for Alfvén Cascades

2.2 AEGIS scheme

The Alfvén Cascade can be numerically calculated by the Adaptive

ideal-magnetohydrodynamics Shooting code-AEGIS(short for Adaptive EiGen-

function Independent Solution)[51]. The ideal MHD equations used in AEGIS

is derived from single fluid and Maxwells equations:
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ρ
dv

dt
=−∇P + J×B

E =− v ×B

∂P

∂t
=− v · ∇P − ΓP∇ · v

∂ρm
∂t

=− v · ∇ρm − ρm∇ · v

∂B

∂t
=∇× E

µ0J =∇×B

where ρm is mass density, v denotes fluid velocity, P is plasma pressure, Γ

represents the ratio of specific heats, E and B represents respectively electric

and magnetic fields, J is current density, and bold faces denote vectors.

After linearization of the perturbed MHD equations, one obtains a

single equation for

µ0ρm
d2ξ

dt2
=[∇×∇× (ξ ×B)]×B + (∇×B)× [∇× (ξ ×B)]

+∇(ξ · ∇P + ΓP∇ · ξ),

(2.1)

where ξ is the perturbed plasma displacement, and B is the equilibrium mag-

netic field.

The plasma parallel compressibility is neglected here, since that corre-

sponds to the acoustic wave propagating along the magnetic field line. Using

Fourier decomposition in the poloidal (θ) and toroidal (ζ) directions, the per-

turbed quantities are transformed as:

ξψe−inζ =
∞∑

m=−∞

ξm
1√
2π

ei(mθ−nζ). (2.2)
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Then we get the final equation for the ξψ(∇ψ component of ξ)

(Fξ
′

ψm + Kξψm)
′ − (K†ξ

′

ψm + Gξψm) = 0, (2.3)

To solve this equation, AEGIS employs a multiple-region shooting scheme

to avoid the numerical pollution by direct shooting. In this scheme, the entire

region from the plasmas magnetic axis to the plasma edge is divided into mul-

tiple regions, the complete set of independent solutions in each region is first

calculated. The adaptive-mesh shooting method is used to obtain the inde-

pendent solutions, especially at the magnetic axis and singular mode surface.

These independent solutions can then be used to construct the global solution

that satisfies the boundary conditions.

2.3 Study of the Alfvén Cascade in the MST: Paper A

Figure 2.2: MST magnetic field configuration
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The Madison Symmetric Torus (MST) is a Reversed Field Pinch(RFP)

device locates in Madison, Wisconsin. Unlike tokamak, in RFP devices, the

toroidal field is weak and the distinct configuration - low safety factor and

high magnetic shear - are likely to bring interesting variations for the study

of Alfvén Cascades. During the neutral beam heating experiments of MST,

there are observations of busty fast-ion-driven instabilities(mainly n = 4 and

n = 5)[35, 36]. These modes are localized at the core, which is away from

the TAE gap. Besides, both modes are dominated by the m = 1 component

and their frequencies are lower than the TAE frequency. The fact that con-

Figure 2.3: Spatial and frequency (in the plasma frame) distribution of line-
integrated electron density fluctuation power for the n=4 and n=5 Energetic
Particle modes. The Alfvén continua at the mid-plane are over plotted: solid
line for m=1, n=5 and dashed line for m=1, n=4. [35]

tinuum spectrum is relatively flat at the core and close to the mode frequency

easily evoke our speculation that these modes are Alfvén Cascades. Since
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the mode is localized at the core and there are no coupling between different

poloidal components, we focus on the simplified cylindrical model analytically

and found the coexistence of n = 4 and n = 5 modes require a small parameter

window for the pressure gradient. We also reconstruct equilibrium from MST

experiment and use AEGIS code to numerically study the stability. Note that

MST equilibrium contains magnetic island close to the core, we seek for modes

localized within the core and vanish before the first magnetic island. Paper A

presents details of such study for the modes observed in MST [34].
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Chapter 3

Continuum absorption near the TAE gap

3.1 Analogues of continuum absorption - Landau damp-
ing problem

The methodology developed for the analysis of continuum absorption

is very similar to that of the classical Landau damping problem. Landau

damping can be defined as damping of a collective mode of oscillations in a

plasma, where collisions between the charged particles are negligibly rare [30].

This phenomenon was predicted in 1946 for Langmuir oscillations.

In the 1D Landau damping problem, we consider the initial value prob-

lem for a localized Langmuir perturbation. We assume that the ions form an

immobile, neutralizing background and we shall look for electrostatic plasma

waves. Considering only small perturbations of the distribution function δf

and linearizing the Vlasov equation, one finds:

∂δf

∂t
+ v

∂δf

∂r
+

e

m

dφ

dr

∂f0
∂v

= 0

d2φ

dr2
=

e

ε0

∫
δfdv

where φ is the electric potential, f0 is the equilibrium distribution

function. We can assume the perturbed quantities vary with r and t as
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exp(i(kr − ωt)). Combine the two equations, we get

1 +
e2

ε0mk2

∫
k(∂f0/∂v)

ω − kv
dv = 0

We can interpret this equation as the dispersion relation for electrostatic

plasma waves, which relates the wave-vector, k, to the frequency, ω. How-

ever, this dispersion relation has a serious problem, since the integral has a

singularity in velocity space, where ω = kv, and is not properly defined.

The way to get around this problem is to introduce the Laplace trans-

form of δf with respect to t:

δf(ω) =

∫ ∞
0

δf(t)e−iωtdt. (3.1)

If ω possesses a positive real part, then above integral is well defined. Note

that in ω = ω0 + iν, ν actually can be interpreted as the collision frequency.

Suppose that, to a first approximation, ω is real. Letting ω tend to the real

axis from the domain Im(ω) > 0, we obtain:

1 +
e2

ε0mk2
P.v.

∫
k(∂f0/∂v)

ω − kv
dv +

iπe2

ε0mk3

(
∂f0
∂v

)
u=ω/k

= 0 (3.2)

The last term in the left hand side will result in a damping effect to the wave.

This damping effect is called Landau damping, which does not depend on the

artificial collision frequency ν.

Similarly, in the continuum absorption problem, the simplified equation

for a single harmonic in the cylindrical limit is:

d

dr
(ω2 − ω2

A(r))
dΦm

dr
− k2(ω2 − ω2

A(r))Φm = 0, (3.3)

23



where ωA(r) is the local Alfvén frequency, Φm is a single harmonic of the

perturbed electric field. The singularity in this equation occurs at r0 where

ω = ωA(r0), and has the same origin as the one that in the Landau damping

problem. Continuum absorption then results from the singularity where the

energy get absorption. A reliable way of assessing continuum absorption is to

consider an initial value problem, and then use a Laplace transform technique.

A close similarity with Landau damping then becomes obvious, and it is easy

to get that the continuum absorption is inversely proportional to the slope of

the continuum dωA(r0)/dr.

3.2 Continuum absorption near the TAE gap : paper B

However, as shown in the introduction, TAE gap forms due to toroidic-

ity induced coupling in the Alfvén continuum of a tokamak. In this case, the

continuum is nearly flat at the edges of the TAE gap and forms two tips,

which is different from the cylindrical case. The need to evaluate continuum

absorption at the tips arises when energetic particle driven modes chirp away

from the TAE frequency and hit one of the tips[16]. Recalling the cylindrical

picture, one might then expect the continuum absorption is huge at the tip.

Yet, a more careful investigation would need to take into account the coupling

between neighboring poloidal harmonic due to toroidicity.

It is noteworthy that the meaning of continuum absorption is different

between the discrete eigenmode case and the energetic particle mode case.

Continuum absorption can occur when the tails of the discrete eigenmodes
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Figure 3.1: Continuum absorption needs to be evaluated for the case that the
energetic particle mode frequency near the tip

cross the continuum. In this case, the mode structure is robust and the eigen-

frequency is predetermined, while the continuum crossing only introduces a

small modification. Thus for a given eigenmode, we can define the wave en-

ergy which will fix the continuum absorption, since the result of continuum

absorption is mostly determined by the local mode and continuum structure.

Then the continuum spectrum effectively introduces a damping rate for the

discrete eigenmode case.

On the other hand, the mode structure and frequency are not fixed

but depend on the drive in the energetic particle mode case. Even with the

same frequency, energetic particle mode structure varies for different types of

energetic particle distribution, which means the continuum absorption is not

predetermined. So unlike the eigenmode case, continuum absorption rate is
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not defined, and the exact value of continuum absorption only make sense if

we specify the type of drive for energetic particle modes.

Thus, for the general calculation of energetic particle modes near the

TAE gap, we need to introduce an external source to probe the continuum

absorption, which mimics the energetic particle current in the chirping event.

Also, like in the Landau damping problem, we use Laplace transform to resolve

the MHD singularities [52], which is equivalent to introducing a friction force

acting on the plasma flow. We have modified the ideal MHD eigenvalue code

AEGIS to implement this approach numerically. In order to resolve the two

nearby singularities near the tip frequency, we set the adaptive grid in AEGIS

at the continuum crossings after iteratively search.

Figure 3.2: Occurrence of multiple TAEs in the gap due to increasing ε∗ = ε/s
. From Ref.[15].

To analytically look at the problem, we use the singular perturba-
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tion method near the gap, which procedure is similar to the classical TAE

theory[13]. As a result, we find the tip absorption pattern is highly correlated

to TAEs. The MHD equations contain two dimensionless parameters: the

inverse aspect ratio ε and the magnetic shear s. Depending on their relative

values, the gap accommodates one, two, or multiple TAEs. Meanwhile, in our

study, we found the different absorption patterns near the lower tip and the

upper tip varies, which has deep connection with the nearby TAE frequencies.

These features are also observed in our simulation, suggesting the continuum

damping problem is well resolved and we can fully calculate the bulk plasma

response with AEGIS module. For more details of our work, please see paper

B in the appendices [33].
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Chapter 4

Canonical straight field line coordinates

4.1 Introduction to magnetic flux coordinates

In the MHD calculation of previous two chapters, magnetic flux coor-

dinates are used. In the presence of strong magnetic field, the hot plasma is

usually very anisotropic because particles are relatively free to stream in the

direction along the magnetic field. Due to this anisotropy, there is often con-

siderable simplification using the coordinate system aligned with the magnetic

field, which is magnetic flux coordinates[46].

Figure 4.1: (a)Magnetic flux coordinates in a tokamak; (b) nested Magnetic
surfaces in the tokamak cross section
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A two dimensional surface defined by χ(r) = constant is said to be a

magnetic surface if at any point the equilibrium magnetic field lies within the

surface, i.e. B ·∇χ = 0. The existence of nested magnetic surfaces over a large

fraction of the plasma volume is an essential for long term confinement. Thus,

we can use magnetic flux label χ as one of the new coordinates instead of using

all three cylindrical coordinates (R, φ, Z) if we find the magnetic surfaces χ.

Assuming perfect axisymmetry, the equilibrium magnetic field can be generally

expressed as:

B = ∇φ×∇χ(R,Z) + g(R,Z)∇φ, (4.1)

where both χ and g are unknown functions, and χ is also the poloidal flux

function. In the MHD equilibrium, we have

J×B = ∇P

µ0J = ∇×B

Take the projection of first equation (the force balance equation) with respect

to ∇φ, B, ∇χ, we obtain the following restrictions:

g =g(χ)

p =p(χ)

and also the Grad-Shafranov equation [45]

R
∂

∂R
(

1

R

∂χ

∂R
) +

∂2χ

∂Z2
+ µ0R

2 dp

dχ
+ g

dg

dχ
= 0. (4.2)

29



The Grad-Shafranov equation helps to find the magnetic surfaces with equi-

librium measurement of p and g in the experiment. Then magnetic flux coor-

dinates can then be constructed using χ, poloidal angle, and toroidal angle.

Figure 4.2: Straight field line coordinates [24]

Furthermore, we call a flux coordinate system straight field line if

B = ∇φ×∇F (χ) +∇H(χ)×∇θ).

For instance, if we use general flux label ψ(χ) instead of χ and we keep the

geometric angle φ, so that the equilibrium field is

B = χ
′∇φ×∇ψ + g∇φ.

If we use (ψ, θp, φ), the Jacobi for the coordinate transform in Cartesian coor-

dinates is

J =
1

∇ψ ×∇θp · ∇φ
.
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Then in order for the coordinates to be straight field line, θp has to satisfy:

1

∇ψ ×∇θp · φ
=
qχ

′
R2

g

Here (ψ, θp, φ) is often called PEST coordinates. Besides PEST coordinates,

there are various kinds of straight field line coordinates for different definition

of the angles. Straight field line coordinates are especially useful for linear

stability calculations where one often use the spectral representation in the

toroidal and poloidal directions. From example, it can be easily seen that

q = m/n when k‖ vanishes, which stands for a single magnetic flux called the

rational surface.

4.2 Canonical straight field line coordinate: Paper C

However, when it comes to the description of energetic particle, the

straight field line coordinates are not optimal. The motion of charged parti-

cles in electromagnetic fields consists of the free-streaming motion along the

magnetic field, and the gyromotion perpendicular to the magnetic field. In

order to integrate particle motion for the required length of time, such as the

wave-particle interaction time scale, an expansion of the motion in the gyro

radius needs to be done, with the rapid gyro motion averaged and only guiding

center motion left. This work has been done and the guiding center motion La-

grangian is derived by the Littlejohn in Ref.[37]. In the Littlejohn Lagrangian,

the guiding center phase space is six-dimensional, but the six dynamical vari-

ables in the Lagrangian do not form three canonical pairs. Thus, the most
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natural variables in the Littlejohn Lagrangian doesn’t preserve a Hamiltonian

structure.

In paper C, we look into Littlejohn Lagrangian to obtain a Hamiltonian

description of the guiding center motion in the unperturbed fields. We find the

crux of finding canonical coordinates lies in proper choice of spatial coordinates

that suits the geometry of magnetic field. Thus we introduce new ”canonical

straight field line coordinates” by eliminating the covariant and contravariant

components of the radial magnetic field simultaneously [39]. The fact that

the radial component of the magnetic field vanishes allows us to express the

guiding center Lagrangian in terms of the angle coordinates and their conjugate

momenta in a straightforward way. Meanwhile, the new coordinates are also

straight field line coordinates, which is beneficial for MHD simulations [32].
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Chapter 5

Wave-particle interaction model in

action-angle variables

Based on the works done with the MHD module and the new magnetic

flux coordinates, we now turn to the nonlinear wave-particle interaction model

in realistic tokamaks. Particles near the resonance produce the most signifi-

cant nonlinear response, which needs to be included in the MHD equations.

As discussed in the introduction chapter, previous 1D analysis reveals different

nonlinear scenarios, ranging from benign mode saturation to spontaneous for-

mation of nonlinear coherent structures (phase space holes and clumps) with

time-dependent frequencies. The conclusions from the 1D model are difficult

to apply to the realistic tokamaks directly, due to sophisticated particle mo-

tion in the tokamak magnetic field. The way to overcome this difficulty is to

note that particle motion in the unperturbed tokamak magnetic field is fully

integrable within the guiding center approximation, which suggests canonical

transformation to action-angle variables. Besides, though the wave-particle in-

teraction is nonlinear, the wave amplitude is still small compared to the strong

equilibrium magnetic field. We can therefore use the action-angle variables of

the unperturbed motion to describe the wave-particle interaction.
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In this chapter, we present a procedure of reducing the energetic par-

ticle dynamics from 3D realistic tokamak to 1D bump-on-tail model, by using

the action-angle variables for the energetic particle guiding center motion.

First, the action-angle variables are determined for the particle motion in the

unperturbed field. We then consider Hamiltonian description of the interac-

tion in the single resonance case, which effectively becomes one-dimensional

using action-angle variables. This implies that the resonances are well sepa-

rated in phase space so that the energetic particle response can be treated as

a sum over several independent resonances. With the reduced Hamiltonian

formalism, coherent phase space structures and the corresponding energetic

particle transport can be investigated in the vicinity of each isolated nonlinear

resonance, similar to the 1D problem.

5.1 Action-angle variables for unperturbed guiding cen-
ter motion

5.1.1 From guiding center Lagrangian to Hamiltonian formulation

The charged particle motion in the presence of strong magnetic field is

an old topic in plasma physics, in which the difficulty is to follow the particle

orbit for a long time comparable to the confinement time. A relevant techinique

in this case is the guiding-center approximation, because the gyro radius of the

charged particle is small compared to the characteristic size of the tokamak

magnetic field. After averaging over the fast gyro motion, the guiding center

equations can be written in the Lagrangian form. The Lagrangian for the
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guiding center motion was derived by Littlejohn as

L(X, µ, v‖, ξ) =
e

c
A · Ẋ +mv‖

(B · Ẋ)

B
+
mc

e
µξ̇ − µB − 1

2
mv2‖. (5.1)

The dynamical variables in this Lagrangian are: X (the guiding center posi-

tion), µ = mv2⊥/2B (the magnetic moment), ξ (the gyroangle), and v‖ (the

parallel velocity). The magnetic field B, the vector potential A, and the scalar

potential Φ are evaluated at the guiding center position.

In the Littlejohn Lagrangian, magnetic moment µ is an invariant. When

the fields are time independent, particle energy is also conserved. In addition,

toroidal angular momentum is conserved in a tokamak, because the equilib-

rium magnetic field is designed to be axisymmetric. With the three conser-

vation laws, the guiding center motion is fully integrable within Hamiltonian

description.

We use the canonical straight field line coordinates discussed in Chapter

4 to obtain a set of canonical coordinates from Littlejohn Lagrangian. As

shown in Chapter 4, the equilibrium magnetic field and the vector potential

can be expressed using canonical straight field line coordinates as

B =Bθ(ψ, θ)∇θ +Bζ(ψ, θ)∇ζ

A =Aθ(ψ)∇θ + Aζ(ψ)∇ζ =

∫
qχ

′
dψ∇θ − χ∇ζ

where θ and ζ stand for the redefined poloidal and toroidal angles. We can

then easily write the Lagrangian in the Hamiltonian form:

Lpart = Pθθ̇ + Pζ ζ̇ +
mc

e
µξ̇ −H(Pφ;Pθ; θ;µ) (5.2)
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where

Pθ =
eAθ
c

+mv‖
Bθ

B0

Pζ =
eAζ
c

+mv‖
Bζ

B0

are the canonical angular momenta for θ, ζ. Here (Pζ , Pθ, ζ, θ) are now new

dynamical variables for the Lagrangian, in addition to (µ, ξ). The Hamiltonian

H = µB0 +
1

2
mv2‖

needs to be expressed in terms of the new dynamical variables. Compared to

the original variables (v‖, ψ, ζ, θ), the quantities (Pζ , Pθ, ζ, θ) form canonical

pairs for the Hamiltonian. It is apparent that Pζ is a conserved quantity since

the Lagrangian doesn’t have dependence on ζ from the equilibrium field.

Note that our canonical straight field line coordinates also provide

Hamiltonian formalism for relativistic particles. In the relativistic case

 L = (
e

c
A + p‖

B

B
) · Ẋ +

m0c

e
µξ̇ −H (5.3)

where γ = 1/
√

1− v2/c2, m0 is the rest mass. H = γm0c
2 and can also be

written as

H =

√
1 + (2/m0c2)µB(X, t) +

p2‖
(m0c)2

m0c
2

The definitions of magnetic moment and parallel moment are:

µ =
γm0c

Be
ξ̇
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p‖ = γm0
B

B
· Ẋ

Then the canonical moments can be easily generalized as

Pθ =
e

c
Aθ + p‖bθ;

Pζ =
e

c
Aζ + p‖bζ ;

where p‖ is linked to E(H), Pζ , µ through

p‖ = ±
√
H2

c2
−m2

0c
2 − 2m0µB

5.1.2 The equations of motion and the unperturbed guiding center
orbits

To integrate the guiding center motion, we start from the Hamiltonian

formulation, rather than directly from the Lagrangian.The equations of motion

are:

Ṗθ = −∂H
∂θ

; Ṗζ = −∂H
∂ζ

; θ̇ =
∂H

∂Pθ
; ζ̇ =

∂H

∂Pζ

Since H is an explicit function of (v‖, ψ, ζ, θ), we calculate the partial deriva-

tives of H through the chain rule based on the coordinate transformation from

xk(Pθ, Pζ , ζ, θ) to yk(v‖, ψ, ζ, θ). The transformation between xk and yk is

|∂xk
∂yj
| =


∂v‖Pζ ∂ψPζ ∂ζPζ ∂θPζ
∂v‖Pθ ∂ψPθ ∂ζPθ ∂θPθ

0 0 1 0
0 0 0 1


The inverse is

M = |∂yk
∂xj
| = 1

D


∂ψPθ ∂ψPζ Tψζ Tψθ
∂v‖Pθ ∂v‖Pζ Tζv‖ Tθv‖

0 0 D 0
0 0 0 D


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with

D = ∂v‖Pζ∂ψPθ − ∂v‖Pθ∂ψPζ

Tαβ = ∂αPζ∂βPθ − ∂αPθ∂βPζ

Then the equation of motion is

dxk
dt

= Skj
∂H

∂xj

where

S =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


The transform matrix M allows us to change variables from xk to yk to obtain:

dyk
dt

= (MSMT )kj
∂H

∂yj
,

or equivalently:
v̇‖
ψ̇

ζ̇

θ̇

 =
1

D


0 0 −∂ψPθ ∂ψPζ
0 0 ∂v‖Pθ −∂v‖Pζ

∂ψPθ −∂v‖Pθ 0 0

−∂ψPζ ∂v‖Pζ 0 0

 ·

∂v‖H

∂ψH
∂ζH
∂θH


Note that both sides of the equation are now functions of (v‖, ψ, ζ, θ) on the

orbit. We now denote Bθ/B0 = I, Bζ/B0 = g, and Aζ = −χ,Aθ =
∫
qχ

′
dψ,

after which then the last two equations of motion become:

ζ̇ =
1

D
(qχ

′
+ v‖∂ψI)v‖ − Iµ∂ψB0,

θ̇ =
1

D
(χ

′ − v‖∂ψg)v‖ + gµ∂ψB0.
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These expressions can be used to calculate the frequencies of the toroidal and

poloidal orbital motion. This set of equations of motion exactly conserves

the Hamiltonian. In the Roscoe White’s book [48], the equations of motion

are similar, but the equilibrium field is expressed in non-canonical Boozer

coordinates[9]. As a result, the equations involve an additional time derivative

term associated with ψ̇. This inconvenient contribution was artificially ignored

to use the Hamiltonian formalism, which affects calculations of particle orbits

and frequencies.

For guiding center motion in the unperturbed field, energy E, magnetic

moment µ, and toroidal angular momentum Pζ are conserved quantities and

determine the guiding center orbit. The only possible ambiguity is whether

particle moves along or oppose to the magnetic field. Given (E,Pφ, µ), the

parallel velocity is

v‖ =±
√

2E − 2µB0(ψ, θ)

the plus and minus sign depends on the particle direction. If the magnetic

moment is small, parallel velocity preserves its sign and the guiding center

motion will be mostly along the magnetic field, with small deviation that

comes from the drift motion. These particles are called passing particles, and

we use ”copassing” to refer to particle steaming along the magnetic field, and

”conterpassing” referring to the particles move opposite to the magnetic field.

In the axisymmetic case, we can project their orbit from 3D torus geometry to

the poloidal cross section with fixed toroidal angle(namely ”Poincaré map”),

the projection will be simply a closed curve or a single point.

39



Figure 5.1: Different orbit types in tokamak field. The magnetic field pa-
rameters are close to the ITER configuration. We fix the value of µ and
simulate particles with different toroidal angular momentum and Energy(up
to 3.5 Mev). Banana particles vanish when the total energy E increase (which
stands for higher parallel velocity).

The guiding center motion with large magnetic moment is more compli-

cated. As we see from the previous expression, the parallel velocity is a rather

complicated function of the magnetic field configuration. In particular, for the

nonuniform magnetic field on the tokamak poloidal plane, guiding center mo-

tion with large magnetic moment are reflected by field gradients and prevented

from penetrating the stronger field side. These particles are called ”banana

particles”. The meaning of their name becomes transparent when we look at
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the guiding center orbit projection on the poloidal plane. The magnetic field

works as a potential well, so the banana orbit is trapped to the outer board

region with weaker field and cannot finish a complete circle. As the particle

parallel velocity reverses sign at the turning point θ = θb, the bounce motion

combined with drift motion across magnetic field forms a crescent shape in the

poloidal plane [48, 24].

Figure 5.2: Poincaré map of passing particles in the tokamak cross section,
with the plasma boundary shown by green lines.

To calculate the guiding center orbit, we can also use the conserved

quantities. For Pφ to be conserved, we can interpolate to find ψi for a given

θi on the orbit. For banana orbits,

Pφ =
Aφ(ψi+, θi)

c
+

√
2E − 2µB0(ψi+, θi)

m

Bφ(ψi+, θi)

B0(ψi+, θi)

=
Aφ(ψi−, θi)

c
−m

√
2E − 2µB0(ψi−, θi)

m

Bφ(ψi−, θi)

B0(ψi−, θi)
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Figure 5.3: Poincaré map of banana particles in the tokamak cross section

Here B0 is the equilibrium magnetic field. ψi+ stands for the outer branch for

the banana particles and ψi− stands for the inner branch. Similarly we can

interpolate to find the trajectory of passing particles. Once the orbit is calcu-

lated, we can find v‖ and Pθ on every point of the orbit. By integrating along

the orbit(for example using
∫
dt =

∫
1/θ̇(θ)dθ), we can easily find θ(t) and ζ(t).

Note that in the integration, θ̇(θ) vanishes at the turning point of banana par-

ticle. This singularity is integrable as the kernel is of type
∫

1/
√

1− xdx at

the turning point.

5.1.3 Construction of action-angle variables for the unperturbed
motion

Without perturbed field, the guiding center motion is fully integrable.

In this section we find the transformation from the explicit variables (v‖, ψ, θ, ζ)
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to the action-angle variables for unperturbed guiding center motion. Among

the momenta, µ and Pζ are already conserved action variables. We then only

need to find the action variable for θ:

P̃θ =

∫
c

Pθdθ,

where the integral is along the particle orbit. Specifically, for passing par-

ticles, the integration is from 0 to 2π; for trapped particles, the motion in

poloidal plane is limited from θl to θu. Supposing the new angles are θ̃, ζ̃, ξ̃,

the generating function is

G = ζP̃ζ + ζ
mc

e
µ̃+

∫ θ

0

Pθ[H̃; P̃ζ ; µ̃; θ]dθ (5.4)

Then we can relate the transformed quantities through the generating function

[7]. We keep the other two action-µ and Pζ-since they are already constants

of motion:

Pζ =
∂G

∂ζ
= P̃ζ

µ =
e

mc

∂G

∂ζ
= µ̃

The angles after transformation then become:

θ̃ =
∂G

∂P̃θ
=

∂

∂P̃θ

∫ θ

0

Pθ[H̃; P̃ζ ; µ̃; θ]dθ =

∫ θ

0

∂Pθ
∂H

∂H

∂P̃θ
dθ =

∫ θ

0

˙̃θ

θ̇
dθ

ζ̃ =
∂G

∂Pζ
= ζ +

∂

∂Pζ

∫ θ

0

Pθ[H̃; P̃ζ ; µ̃; θ]dθ = ζ +

∫ θ

0

[
˙̃ζ

θ̇
+
∂Pθ
∂Pζ
|H ]dθ

ξ̃ =
∂G

∂µ
= ξ +

∂

∂µ

∫ θ

0

Pθ[H̃; P̃ζ ; µ̃; θ]dθ = ξ +

∫ θ

0

[
˙̃ξ

θ̇
+
∂Pθ
∂µ
|H ]dθ
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If we plot the original toroidal and poloidal angles on particle orbits as func-

tions of time, there will be a linear part and an oscillating part. After the

canonical transformation, the angles are linear functions of time from 0 to 2π.

An easier approach can be used to construct the coordinate transfor-

mation. Following the previous equations of motion, given E,Pζ , µ, there is a

unique guiding center orbit and we can find (ψ(t), θ(t), ζ(t), v‖(t)) as well as

the frequencies (ωθ, ωζ). Note in the action-angle variables, θ̃ = ωθt, ζ̃ = ωζt,

which we can use to replace the dependence on time in the original angles.

Therefore, we use the one-to-one correspondence between angles and time to

get:

ψ = ψ(P̃θ, P̃ζ , t(θ̃))

θ = θ(P̃θ, P̃ζ , t(θ̃))

v‖ = v‖(P̃θ, P̃ζ , t(θ̃))

ζ = ζ(P̃θ, P̃ζ , t(ζ̃))

which forms the transformation from (v‖, ψ, θ, ζ) to (P̃ζ , P̃θ, θ̃, ζ̃).

5.2 Scheme to calculate kinetic response of resonance
particles to perturbed field

5.2.1 Particle Hamiltonian with perturbed field

In the previous section, we constructed the action-angle variables for

the unperturbed motion. In order to use the equilibrium action angle variables

for the wave-particle interaction model, we need to express the perturbed
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Hamiltonian in terms of the unperturbed canonical variables.

The guiding center Lagrangian in perturbed field is

 L = (
e

c
A +mv‖

B

B
) · Ẋ +

mc

e
µξ̇ − µB − 1

2
mv2‖ − eΦ

We assume the general form of A = A0 + δA, B = B0 + δB, in this case

the non-canonical piece ψ̇ will appear, which makes it difficult to achieve the

Hamiltonian formalism. However, note that wave amplitude is still small com-

pared to the strong equilibrium field. This enables us to use the expansion

with respect to the perturbed field and the canonical perturbation theory to

simplify the problem.

To obtain the Hamiltonian with the perturbed field, we search for the

appropriate coordinates, like the canonical straight field line coordinates for

the unperturbed field. Given the specific form of perturbation, we try to

change (ψ, θ, ζ) to (ψ, θn, ζn) to eliminate the ψ components of A and B in

the Lagrangian. Let

θ = θn + f(ψ, θn, ζn, t)

ζ = ζn + g(ψ, θn, ζn, t)

and assume that ψ components vanishes in the new coordinates. According

to expression for the vector potential and magnetic field before and after the

coordinate transformation:

A = A0 + δA = Anθ∇θn + Anζ∇ζn,

B = B0 + δB = Bn
θ∇θn +Bn

ζ∇ζn,

45



f and g need to satisfy:

f =

∫
δAψB0ζ − δBψA0ζ

A0ζB0θ − A0θB0ζ

dψ

g =

∫
δBψA0θ − δAψB0θ

A0ζB0θ − A0θB0ζ

dψ

The modification in the poloidal and toroidal angles are small and pro-

portional to the perturbation. Due to the small change of variables, the equilib-

rium fields are also slightly different from the original expressions, for example:

Anθ (θn, ζn) = Anθ (θ, ζ) +
∂Anθ
∂θ

(θn − θ) +
∂Anθ
∂ζ

(ζn − ζ) = Anθ (θ, ζ)

b(θn, ζn) =
B(θn, ζn)

B(θn, ζn)
= [bθ + δbθ + bθ

∂f

∂θ
+ bζ

∂g

∂θ
+
∂bθ
∂θ

f ]∇θn

+[bζ + δbζ + bζ
∂g

∂ζ
+ bθ

∂f

∂ζ
+
∂bζ
∂θ

f ]∇ζn

With the new coordinates (θn, ζn), we can express the Lagrangian in the

Hamiltonian form (similar to the unperturbed guiding center motion). The

Lagrangian in the new coordinates is

L =(
e

c
Anθ +mv‖b

n
θ )∇θn · Ẋ + (

e

c
Anζ +mv‖b

n
ζ )∇ζn · Ẋ +

mc

e
µξ̇

− µB − 1

2
mv2‖ − eΦ

Note that our change of coordinates involves time, so

∇θn · Ẋ = θ̇n −
∂θn
∂t

= θ̇n +
∂f

∂t
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which transforms the Lagrangian to

L =(
e

c
Anθ +mv‖b

n
θ )θ̇n + (

e

c
Anζ +mv‖b

n
ζ )ζ̇n +

mc

e
µξ̇ − µB − 1

2
mv2‖ − eΦ

+ (
e

c
Anθ +mv‖b

n
θ )
∂f

∂t
+ (

e

c
Anζ +mv‖b

n
θ )
∂g

∂t

=Pθnθ̇n + Pζnζ̇n +
mc

e
µξ̇ −H

According to this Hamiltonian form, we can get the corresponding canonical

momenta. Compared to the unperturbed motion, the modifications in canon-

ical momenta are:

∆Pθ =mv‖
∂(bθ)

∂θ
f +

e

c
(A0θ

∂f

∂θ
+ A0ζ

∂g

∂θ
+ δAθ)

+mv‖(b0θ
∂f

∂θ
+ b0ζ

∂g

∂θ
+ δbθ)

∆Pζ =mv‖
∂bζ
∂θ

f +
e

c
(A0θ

∂f

∂ζ
+ A0ζ

∂g

∂ζ
+ δAζ)

+mv‖(b0θ
∂f

∂ζ
+ b0ζ

∂g

∂ζ
+ δbζ)

Here we use the fact that Aθ and Aζ are independent of θ, and the system is

toroidally symmetric.

As a result, the perturbed fields will change the Hamiltonian as well as

the canonical variables. The new Hamiltonian is:

H(Pθn, Pζn, µ, θn, ζn) =µB +
1

2
mv2‖ + eΦ− (

e

c
Anθ +mv‖b

n
θ )
∂f

∂t

− (
e

c
Anζ +mv‖b

n
ζ )
∂g

∂t

(5.5)
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with the variables

θn =θ − f(ψ, θ, ζ, t)

ζn =ζ − g(ψ, θ, ζ, t)

Pθn =Pθ + ∆Pθ(v‖, ψ, θ, ζ, t)

Pζn =Pζ + ∆Pζ(v‖, ψ, θ, ζ, t)

where (θ, ζ, Pθ, Pζ) are the set of canonical variables for unperturbed motion.

Note that all modifications from the perturbed field are linearly pro-

portional to the perturbation (∆B/B). Ideally we need to take into account

the modification of canonical variables, which means recalculating the particle

orbit in the presence of perturbation. However, for resonant particles, we are

able to use the unperturbed guiding center orbit instead. The reason is that

perturbation in Hamiltonian is proportional to ∆B/B, which can result in

the change in momentum of order
√

∆B/B. Thus, we can only focus on the

modification in the Hamiltonian, and characterize the resonant particles by

their unperturbed orbits.

To write the new Hamiltonian in terms of the unperturbed orbit quan-

tities, the first contribution comes directly from the perturbed field:

∆H1 = µ(B −B0) + eΦ− (
e

c
A0θ +mv‖bθ)

∂f

∂t
− (

e

c
A0ζ +mv‖bζ)

∂g

∂t
.

We also need to take into account modification of the coordinates from (Pθ, Pζ , θ, ζ)

to (Pθn, Pζn, µ, θn, ζn). We keep the first order term and get:

H0(Pθn, Pζn, µ, θn, ζn) = H0(Pθ, Pζ , µ, θ) + ∂H0

∂Pθ
∆Pθ + ∂H0

∂Pζ
∆Pζ − ∂H0

∂θ
f.

48



here H0(Pθ, Pζ , µ, θ) means the exact unperturbed Hamiltonian in the equilib-

rium field. Thus the total perturbed Hamiltonian in terms of the unperturbed

coordinates is

H1(Pθ, Pζ , µ, θ, ζ) =µ(B −B0) + eΦ− Pθ(
∂f

∂t
+
∂H0

∂Pθ

∂f

∂θ
+
∂H0

∂Pζ

∂f

∂ζ
)

− Pζ(
∂g

∂t
+
∂H0

∂Pθ

∂g

∂θ
+
∂H0

∂Pζ

∂g

∂ζ
)

+
∂H0

∂θ
f − ∂H0

∂Pθ
[mv‖

∂bθ
∂θ

f +
e

c
δAθ +mv‖δbθ]

− ∂H0

∂Pζ
[mv‖

∂bζ
∂θ

f +
e

c
δAζ +mv‖δbζ ]

(5.6)

In this way, we can separate the Hamiltonian into two parts: the un-

perturbed part which is completely integrable, and the small perturbation

part that comes from the perturbed field. This description is valid for reso-

nant particles when perturbation is small and greatly simplifies our discussion.

We ignore the inaccuracy in the coordinate transformation for the resonance

dynamics, and use equilibrium orbits to describe energetic particle transport.

5.2.2 Reduction to one dimensional motion for resonance particles

The constructed Hamiltonian and the action-angle variable transfor-

mation makes it immediately clear that the resonant particle dynamics can be

reduced to one dimensional.

Suppose we have the MHD response in the form

δAψ = ΣδAψm
1√
2π

exp{imθ − inζ}
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We can then find f and g and thus the perturbed Hamiltonian. The particle

Hamiltonian can be split into the unperturbed part (H0) and perturbed part

(H1), both in terms of the unperturbed canonical variables,

H = H0(Pθ, Pζ , θ, µ) +H1(Pθ, Pζ , θ, ζ, µ).

Since we are considering the equilibrium orbit, we can use the action-angle

variables for unperturbed guiding center motion. In these variables, it is easy

to identify the resonant particles through the resonance condition. In the

general case where the mode frequency chirps, we sum over all the resonances

and write the total Hamiltonian in the form:

H = H0(P̃θ, Pζ , µ) + ΣH1(P̃θ, Pζ , µ, l1, l2)exp(il1θ̃ + il2ζ̃ − i
∫
ω(t)dt) + c.c.

where l1 and l2 distinguish different resonances. We assume the case where

only one resonance is essential:

H = H0(P̃θ, Pζ , µ) +H1(P̃θ, Pζ , µ, l1, l2)exp(il1θ̃ + il2ζ̃ − iω(t)t) + c.c.

here

H1(P̃θ, Pζ , µ, l1, l2) =
1

(2π)2

∫ ∫
e−il1θ̃−il2ζ̃H

′
(Pθ, Pζ , µ, θ, ζ)dθ̃dζ̃

which can be calculated through the integral along the unperturbed orbit. The

function H1 represents a projection of the perturbed electromagnetic field onto

the wave-particle resonance, which is the dominant part of the total perturbed

Hamiltonian. Furthermore, if the perturbed field has a specific toroidal mode

number, for example:

ξ(ψ, θ, ζ) = Σξm
1√
2π

exp{imθ − inζ},
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Then l2 has to be equal to −n for resonance condition, in which case:

H1(Pθ, Pζ , µ, l1,−n) =
1

2π

∫
e−il1θ̃ein(ζ̃−ζ)Σ

1√
2π
eimθH

′

m(Pθ, Pζ , µ)dθ̃ (5.7)

Note the angles only appear as a combination in the perturbed Hamil-

tonian, we consider the canonical transformation with new angle

q = l1θ̃ + l2ζ̃ ,

and corresponding new momentum is

p = αP̃θ + βPζ .

In order for the transformation to be canonical, the other pair of variables are:

J = l1Pζ − l2P̃θ, Q = − ζ
l1
.

Then the Hamiltionian becomes

H = H0(J, p, µ) +H1(J, p, µ, l1,−n)exp(−iq − i
∫
ω(t)dt),

which is a periodic function of the phase q only. We can see that the quantities

J as well as µ are constants of motion in this Hamiltonian, allowing a simpli-

fied 1D dynamics for resonant particles. In this description, the distribution

of the ambient passing particles remains unperturbed, thus the corresponding

kinetic equation is unnecessary to solve numerically. Near the resonance fre-

quency, there is a trapped area of width proportional to the square root of the

perturbation amplitude, in which the trapped resonant particles form a locally
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flat distribution. During the frequency sweeping event, the trapped resonant

particles preserve the value of their distribution function when the resonance

carries them along the constant J lines in phase space, where J = l1Pζ − l2P̃θ.

Figure 5.4: Schematic plot of resonant particle transport during frequency
sweeping. The shaded areas are resonant region in the momentum space. The
trapped resonant particles form a locally flat distribution across the resonance
and preserve the value of their distribution function along the dashed lines
when frequency chirps. From Ref. [10].

With the new Hamiltonian expressed in (J, p, q, Q), the kinetic equation

can be simplified. We first ignore collisions, then the governing equation for
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resonance particle distribution function f(J, p, q, Q) is

∂f

∂t
+
∂H0

∂P̃i

∂f

∂Q̃i

− ∂H0

∂Q̃i

∂f

∂P̃i
+
∂H1

∂P̃i

∂f

∂Q̃i

− ∂H1

∂Q̃i

∂f

∂P̃i
= 0

Here, the advantage of using Hamiltonian in convection terms is to

conserve the particle flow in phase space. We separate the equilibrium distri-

bution and perturbed distribution: f = F0 + δf . For energetic particles, the

equilibrium distribution F0 needs to be a function of the constants of motion

(J, p, µ). Thus the equation for δf is

∂δf

∂t
+
∂H0

∂J

∂δf

∂Q
+
∂H0

∂p

∂δf

∂q
+
∂H1

∂J

∂δf

∂Q
+
∂H1

∂p

∂δf

∂q
− ∂H1

∂q

∂δf

∂p
=
∂H1

∂q

∂F0

∂p

Note that H0 and H1 doesn’t depend on Q, then we can average to eliminate

Q dependence and get < δf > (J, p, q):

∂ < δf >

∂t
+
∂H0

∂p

∂ < δf >

∂q
+
∂H1

∂p

∂ < δf >

∂q
− ∂H1

∂q

∂ < δf >

∂p
=
∂H1

∂q

∂F0

∂p

After further simplification since J is constant:

∂ < δf >

∂t
+ (l2ωζ +

∂H1

∂p
)
∂ < δf >

∂q
− ∂H1

∂q

∂ < δf >

∂p
=
∂H1

∂q

∂F0

∂p
. (5.8)

This equation is greatly simplified for the resonant particles. Once we get

the distribution in terms of (J, p, q), it is easy to recover δf(J, p, q, Q) as a

uniform function on Q. This resonant particle response will then enter the

MHD equations in the form of external current or pressure, in order to get the

frequency sweeping rate through power balance equation.
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5.2.3 Progress in the numerical procedure

The objective of the numeric module is to evaluate the resonance parti-

cle interaction with waves, for which the kinetic equation of resonant particles

is solved as well as the MHD module. The canonical straight field line coordi-

nates are used both for the MHD part and the resonant particle calculation.

In the kinetic module, we focus on the 1D dynamics of trapped resonant

particle as discussed before, in terms of the variables (J, p, q, Q) that derive

from the action angle variables. Note that the resonance Hamiltonian actually

projects the perturbed electromagnetic field from real space coordinates to

the action-angle coordinates, and the perturbed distribution function needs to

be described back in the real space coordinates for the MHD module. It is

therefore necessary to implement coordinate transformation from action-angle

variables to the real space numerically.

Table 5.1: Normalization of physical quantities

Physical quantity Normalization constant
time eBR/(mc)

length R0

velocity mc/(eBRR0)
magnetic field BR

vector potential BRR0

energy e2B2
R/(m

3c2R2)

For simplicity, we normalize the physical quantities according to table
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5.1. Then the particle Lagrangian becomes:

P
′

θ = A
′

θ + v
′

‖
Bθ

B0

P
′

ζ = A
′

ζ + v
′

‖
Bζ

B0

and the new Lagrangian is

L
′
= [A

′
+ v

′

‖b] · Ẋ′ −H ′

H
′
=
v2‖
2

+ µ
′
B

′
;µ

′
=

v2⊥
2B′

We build the numerical module that takes (E,Pζ , µ) (and the type of

particle) to generate the guiding center orbits information. The corresponding

(v‖, ψ, θ, ζ) along the orbits are written as a function of (P̃θ, Pζ , θ̃, ζ̃). Thus, this

procedure implies the coordinate mapping from (v‖, ψ, θ, ζ) to (P̃θ, Pζ , θ̃, ζ̃).

For our calculations of variables (J, p, µ) (where J = l1Pζ − l2P̃θ, p = Pζ/l2),

we generate the uniform grid in J since it is constant of motion. The trans-

formation from (v‖, ψ, θ, ζ) to (P̃θ, Pζ , θ̃, ζ̃) is performed on each grid point.

The coordinate transformation is calculated once, and stored for sub-

sequent use. For example, the coordinate transformation is generated on the

grid shown in Fig. 5.5. In the single resonance case, assuming a pair of integers

(l1, l2), we also plot the resonance line for different frequencies.

The coordinate transformation is used in the process of getting per-

turbed Hamiltonian on the grid mesh, since the perturbed fields are only func-

tions of real space and need to project to action-angle variables for different res-

onant particles. Also, after calculation of the kinetic equation in action-angle
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Figure 5.5: The computational grid for calculating the 1D dynamics of the
resonant particles with the resonance number l1 = 1 and l2 = 1. The grid is
uniform on J and p, since the particles are only allowed to move along the
horizontal line (constant J). Resonance center can be found given the wave
frequency. For instance, we plot the resonance line for 200 kHz and 500 kHz
wave frequency.

variables, as the distribution function needs to be transformed to real space

coordinates and integrated to find corresponding pressure or current effect in

the MHD equations. Since (J, p, q, Q) are linked to (Pθ, Pζ , θ, ζ) by canonical

transformation, and we know the transformation matrix from (Pθ, Pζ , θ, ζ) to

(v‖, ψ, ζ, θ). which has the determinant as

D = ∂v‖Pζ∂ψPθ − ∂v‖Pθ∂ψPζ
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so we can change the distribution function to the real space to calculate ener-

getic particle current.

δf(v‖, ψ, ζ, θ) = (δf(J, p, q, Q)) ∗ 1/D

Up to now, the coordinate transformation module and the kinetic mod-

ule is finished. AEGIS code is needed for calculation of MHD response, and

is modified for the current source and continuum damping. The ongoing ef-

fort is to change the ideal MHD code from eigenvalue to initial value code, to

calculate the nonlinear wave and particle interaction.
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Chapter 6

Summary

Wave and energetic particles interaction often give rise to frequency

chirping events and energetic particle transport associated with the forma-

tion of coherent structures in phase space. This phenomenon, which has often

been described with the electrostatic bump-on- tail model, extends to more

general nonlinear evolution regime. In this thesis, we do a series of theo-

retical and numerical studies along the line to explore the characteristics of

energetic particle driven modes. We modify the AEGIS code for the purpose

of studying the MHD response in the wave particle interaction model. In

particular, the continuum absorption near the TAE gap, which is related to

the classical TAE theory, are studied and the results are compared with the

simulation. Moreover, canonical straight field line coordinate is proposed for

tokamak simulation. We then use the action-angle variables to pinpoint the

resonant particle and and show how to generalize the nonlinear bump-on-tail

interaction model to a more realistic model in tokamaks.

After an introduction and review of the previous studies on different

types of energetic particle and wave interaction, the primary numerical tool,

the AEGIS code are introduced and used to analyze the Aflvén cascade in
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MST in chapter 2. In the first part of chapter 2, we review the previous stud-

ies about the Alfvén cascade instability. The discussion of Aflvén cascade in

MST is attached in paper A, in which excellent agreements are obtained be-

tween the analytical result from screw pinch model and simulation result with

actually experimental equilibrium setup. Besides, further analysis establishes

constraints on the safety factor and plasma pressure, under which two modes

can exist simultaneously.

In chapter 3, driven by the need to describe continuum absorption in

the frequency sweeping events, we examine the dissipation response of the

Alfvén continuum to external source with frequency slightly outside the edges

of toroidicity-induced spectral gap. The main challenge of this problem is the

toroidicity induced coupling between neighboring poloidal components. In-

spired by the classical TAE theory, we use the singular perturbation technique

near the gap in our theoretical calculation. The AEGIS scheme is changed ac-

cordingly to resolve continuum absorption. The result of our study is present

in paper B, where different continuum absorption features are found near the

upper and lower tip, associated with the characteristics of nearby TAEs.

The discovery of the new global straight field line coordinates for a

toroidal plasma configuration is described in chapter 4. The new coordinate

system provides a canonical description of particle guiding center motion while

maintaining the straight field line feature. These coordinates are convenient

for combining MHD calculations with kinetic modeling of energetic particles.

We demonstrate how the new coordinate system can be constructed by trans-
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forming the poloidal and toroidal angles, along with verification of the new

coordinate in paper C.

In chapter 5, we build the wave particle interaction model in action-

angle variables in realistic tokamaks. The objective is to focus on the Hamil-

tonian for a small group of resonant particles adiabatically in 1 dimensional

phase space, as the region distant from the resonant structures has little effect

on the most critical nonlinear behavior. We start by calculating unperturbed

guiding center orbit with the Littlejohn Lagrangian, and get the coordinate

transformation to action angle variables on the canonical straight field line co-

ordinates. In the action angle variables, we derive the Hamiltonian formalism

in the presence of perturbation, which is effectively 1 dimensional dynamics.

The Hamiltonian formalism is helpful to calculate kinetic equation and get the

Liouville flow in particle phase space, so that the resonant particle response

can be included in the MHD equations.

The remaining interesting task is to change the ideal MHD eigenvalue

code to initial value code, to calculate the nonlinear wave and particle inter-

action. The scheme to follow the resonant particle dynamics is an initial-value

problem, which requires the evolution of the energetic particle distribution

function and the wave simultaneously. When the MHD module becomes ini-

tial value, the numerical procedure we developed are easy to include the reso-

nant particle effect in the MHD part for analysis of nonlinear wave frequency

sweeping events.
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paper A Alfvén modes in the Madison Symmetric Torus
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This work presents a theoretical and computational analysis of core-localized energetic particle
driven modes observed near the magnetic axis in the Madison Symmetric Torus [L. Lin, W. X.
Ding, D. L. Brower et al., Phys. Plasmas 20, 030701 (2013)]. Using measured safety factor and
plasma pressure profiles as input, the linear ideal MHD code Adaptive EiGenfunction Independent
Solution (AEGIS) [L. J. Zheng and M. Kotschenreuther, J. Comput. Phys. 211, 748 (2006)] reveals
Alfv!enic modes close to the measured frequencies. The AEGIS results together with a reduced
analytical model demonstrate that the modes are essentially “cylindrical” and dominated by a
single poloidal component (m¼ 1). The modes are localized at the plasma core where the magnetic
shear is weak and continuum damping is minimal. Detailed analysis establishes constraints on
the safety factor and plasma pressure, under which two modes can exist simultaneously. VC 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4891659]

I. INTRODUCTION

Alfv!en eigenmodes are ubiquitous in magnetically
confined plasmas and can lead to deleterious effects, such as
enhanced energy losses.1,2 They tend to be unstable in the
presence of fast ions produced by neutral beams injection, rf
heating, or fusion reactions.

Observation and theoretical studies of Alfv!en eigenm-
odes have been extensive for tokamaks3–7 and stellara-
tors.8,9 In Reversed Field Pinch (RFP) devices, the weak
toroidal field and the distinct configuration—low safety
factor and high magnetic shear—are likely to bring inter-
esting variations of Alfv!en eigenmodes. However, theoreti-
cal studies are less mature for the RFP than they are for
tokamaks and stellarators. In particular, recent experimen-
tal observations of fast-ion-driven instabilities associated
with neutral beam heating on Madison Symmetric Torus
(MST), a typical axisymmetric RFP device, call for theo-
retical analysis.

MST plasmas exhibit bursts of the n¼ 4 and n¼ 5
modes in the Alfv!enic frequency range during 1 MW
neutral beam injection.10–12 As seen in Fig. 1 of Ref. 10,
both the n¼ 4 and n¼ 5 mode frequencies lie outside the
toroidicity induced Alfv!en gap, but rather close to the
Alfv!en continuum (xA¼ kkvA) near the magnetic axis.
There is a maximum for the n¼ 5, m¼ 1 Alfv!en continuum
spectrum at r¼ 0 and a minimum for the n¼ 4, m¼ 1 at
r¼ 0 (also see Fig. 1). Since the spatial profile of the local
Alfv!en frequency near magnetic axis is nearly flat and fast
ions are located at the plasma core, the axis is a preferred
location for hosting localized Alfv!en modes. This feature
is reminiscent of Global Alfv!en Modes13 or Alfv!en
Cascades.14 Toroidicity-induced coupling is less important
here than it is for the Toroidal Alfv!en Eigenmode (TAE).
In this case, it is natural to consider an Alfv!enic mode with
a single poloidal component (m¼ 1) as a candidate expla-
nation of the experimental observations, and this paper
presents such analysis for the modes observed in MST.

Whereas an earlier work15 stressed the role of pressure gra-
dient, we show that a finite pressure gradient is not a neces-
sary ingredient for the n¼ 4 mode. We also discuss
conditions that are required for simultaneous existence of
the n¼ 4 and n¼ 5 modes.

We first choose a screw pinch geometry in the MHD
model to analyze the mode structure and properties of the
m¼ 1 mode. We then use a toroidal equilibrium constructed
with Variational Moments Equilibrium Code (VMEC)16

to simulate the modes using Adaptive EiGenfunction
Independent Solution (AEGIS). The paper is organized as fol-
lows: In Sec. II A, an equilibrium configuration is introduced
for the screw pinch model. In Sec. II B, the mode equation is
presented, followed by numerical solution of this equation in
Sec. II C. The numerical results from AEGIS are described in
Sec. III. The concluding section (Sec. IV) is a brief summary.

II. SCREW PINCH MODEL

A. Screw pinch equilibrium

For simplicity, we first consider cylindrical approxima-
tion for the RFP field, because the mode frequency is away
from the TAE gap and toroidicity-induced coupling is rela-
tively small for the mode localized at the core.

The ideal MHD equilibrium condition is

J" B ¼ rP; (1)

where B is the equilibrium magnetic field, J is the current
density, and P is the plasma pressure.

In the cylindrical case, where B¼ (0, Bh, Bz) and all
equilibrium quantities depend only on radius r, Eq. (1)
reduces to

#B0 # B2
h

rB
¼ l0P0

B
; (2)

where l0 is the vacuum permeability. Note that the character-
istic length L in the z direction in the cylindrical model is
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related to the RFP major radius by L¼ 2pR. We use q¼ rBz/
RBh to denote the safety factor, and b¼ 2l0P/B2 to represent
the equilibrium plasma beta, which transforms Eq. (2) to

ðB2Þ0 ¼ # 2B2
z r

q2R2
# bB2
! "0

;

B2ð Þ0 þ 2B2r

1þ r2

R2q2

 !

q2R2

¼ #b0B2 # b B2ð Þ0:

Consequently, the magnetic field can be written as

B2 ¼ B2
0 exp #

ðr

0

1

1þ b
b0 þ 2r'

R2q2 þ r'2

$ %
dr'

& '
; (3)

where B0 is the on-axis field and the profiles of q and b are
assumed to be given. In the MST experiment, the major
radius is R¼ 1.5 m and the minor radius is a¼ 0.5 m. Near
the core, we can approximate the MST equilibrium by para-
bolic profiles of the safety factor, q ¼ q0ð1# jqr2=a2Þ, and
plasma beta, b ¼ b0ð1þ jbr2=a2Þ. The parameter q0 is the
safety factor at the magnetic axis (its experimental value is
0.22, with a 10% error10). In what follows, we choose the
value of jq in such a way that the continuum and the location
of the q¼ 0.2 rational surface are close to the experimental
data (since the n¼ 5 magnetic island appears in the experi-
ment). Considering the experimental error bars, the value of
jq can vary from 0.7 to 1.5. We only take into account the
bulk plasma beta, which has the value of 0.02 at the mag-
netic axis (b0( 0.02) with a positive gradient near the
plasma core in MST case, reflecting radial decrease in the
toroidal magnetic field. We ignore the fast ion pressure in
this idealized MHD analysis, because significant anisotropy
of that pressure requires kinetic treatment for its accurate
description. Considering the error bars, we can vary the b
gradient parameter jb from 0 to 2.5. The near-axis approxi-
mations for q and b give the following approximate expres-
sions for the equilibrium magnetic field in the screw pinch
model:

B¼B0 1# r2

2 b0þ1ð Þq2
0R2
# b0jb

2a2 b0þ1ð Þ
r2

 !

;

Bz¼B0 1# b0þ2ð Þr2

2 b0þ1ð Þq2
0R2
# b0jb

2a2 b0þ1ð Þ
r2

 !

;

Bh¼B0
r

Rq0
# b0þ2ð Þr3

2 b0þ1ð Þq3
0R3
þ jqr3

q0Ra2
# b0jbr3

2a2 b0þ1ð Þq0R

 !

:

(4)

B. Eigenmode equation

Let n ¼ ðnr; nh; nzÞ be a small displacement of a plasma
element from its equilibrium position. We use a Fourier rep-
resentation for n in the screw-pinch

n r; h; z; tð Þ ¼ n rð Þexp i xtþ mh# nz

R

$ %( )
;

where x is the mode frequency, m is the poloidal mode num-
ber, and n/R is the wave number in the z direction. Starting
from the mode equation derived in Ref. 17, we ignore the
viscosity terms and obtain the following simplified equation
for the perturbed electric potential U¼ rnr:

d

dr
A xð Þ

dU
dr

$ %
# C xð ÞU ¼ 0; (5)

with

A xð Þ ¼
q
r

x2 # x2
a

! "
v2

s þ v2
A

! "
x2 # x2

h

! "

D
;

C xð Þ ¼ #
q
r

x2 # x2
a

! "
þ 4n2B2

h

l0r3R2

x2 # x2
g

D

þ d

dr

B2
h

l0r2
þ 2nGBh

l0r2DR
v2

s þ v2
A

! "
x2 # x2

h

! "
" #

;

D ¼ x4 # k2
0ðv

2
s þ v2

AÞx
2 þ v2

s x
2
ak2

0;

x2
a ¼

F2

l0q
; x2

h ¼
v2

s

v2
s þ v2

A

x2
a; x2

g ¼
v2

s

v2
A

x2
a;

v2
A ¼

B2

l0q
; v2

s ¼
cP

q
;

F ¼ mBh

r
# nBz

R
; G ¼ mBz

r
þ nBh

R
; k2

0 ¼
m2

r2
þ n2

R2
;

where vA ¼ Bffiffiffiffiffiffi
l0q
p is the Alfv!en velocity, vs stands for sound

speed, q is the equilibrium plasma mass density, and c refers
to the ratio of specific heats. In the zero-beta limit, Eq. (5)
reduces to the eigenmode equation derived earlier in Ref. 18.
The Alfv!en continuum spectrum is given by x¼xA¼ kkvA,
where kk ¼ m

q # n
! " Bz

RB.
We restrict our consideration to shear Alfv!en modes

whose frequencies are much lower than the compressional
mode frequency. In addition, we use the near-axis approxi-
mation as in Eq. (4) for all equilibrium quantities and ignore
the radial dependence of plasma density q. The

FIG. 1. The n¼ 5, m¼ 1, and n¼ 4, m¼ 1 local Alfv!en frequencies versus
normalized radius for q0¼ 0.211, jq¼ 1.16, b0¼ 0, and jb¼ 0. The fre-
quency is normalized by the on-axis Alfv!en frequency vA/Rq0

( 7.2" 105 Hz. The n¼ 4 and n¼ 5 eigenmode frequencies are marked by
dotted lines.
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corresponding simplified expressions for A(x) and C(x) in
Eq. (5) after dividing by B2

0 are given by

A xð Þ ¼ #
r

m2
x2 # x2

a

! "
;

C xð Þ ¼ #
1

r
x2 # x2

a

! "
þ Hr;

(6)

where H is a constant that is totally determined by (q0, b0,
jq, jb)

H ¼ 2b0jb

b0 þ 1ð Þa2q2
0R2

2nq0

m
# 1

$ %
þ 4jq

a2R2q2
0

1# nq0

m

$ %

# 4n2

R4q2
0m2

1# nq0

m

$ %
þO 1# nq0

m

$ %2
 !

:

Here, we use the fact that kk) k0 and b0) 1. In what
follows, we set m¼ 1 because the observed mode frequency
is close to the m¼ 1 branch of Alfv!en continuum in the
MST experiment. The coefficient A(x) in front of the
second-derivative term in Eq. (5) is proportional to r,
whereas the non-derivative coefficient C(x) contains both
1/r and r terms. In the region close to the magnetic axis, the
dominant term in C(x) is the 1/r term and has the same sign
as A(x). As a result, the perturbed potential U of the m¼ 1
mode is proportional to r near the axis. At larger radii, the
Hr term becomes more important than the 1/r term in C(x).
If the Hr term changes the sign of C(x) relative to A(x), we
may expect a rollover in U and a localized mode near the
core.

In the n¼ 5 and m¼ 1 case, the mode in the experi-
ment is above xA(0), so that the coefficient A(x) is nega-
tive. A positive value of C(x) near the core will therefore
be favorable for a localized mode to appear above the con-
tinuum tip. Since the factor of jq in H is negative (mainly
determined by 1# nq0/m¼ 1# 5" 0.22¼#0.1), C(x)
tends to be positive if q is sufficiently flat and jq is
small. For the term containing jb, the factor in front (i.e.,
2nq0/m# 1) is positive, so that parameter jb should also be
large in order to make C(x) positive and establish the
mode. We thus conclude the nearly flat q profile and posi-
tive jb help establish the n¼ 5, m¼ 1 mode above the
continuum.

On the other hand, when n¼ 4 and m¼ 1, a good candi-
date mode lies below the minimum of continuum and A(x)
is positive as a result. Accordingly, C(x) should be negative
in order for the mode to have the roll over. Since the factor
of jq (i.e., 1# nq0/m) is now positive, we still expect jq to
be small to get negative C(x) as in the n¼ 5 case. In con-
trast, the coefficient (2nq0/m# 1) in front of the pressure
gradient term is positive, which suggests that negative values
of jb should help establish a localized mode.

To summarize, a flattish q profile near the core facili-
tates mode existence in both n¼ 5 and n¼ 4 cases. But the
effects of b gradient are opposite on the two modes: Positive
b gradient helps the n¼ 5 but inhibits the n¼ 4 mode and
vice versa. The simultaneous existence of the two modes can
therefore be viewed as an informative constraint on the q and
b profiles within MHD model.

C. Localized modes in the screw pinch core

In this section, we present numerical solutions of the
mode equation, Eq. (5), together with sensitivity studies for
the n¼ 5, m¼ 1 and n¼ 4, m¼ 1 localized modes.

The core magnetic field in MST is B¼ 0.29 T and the
core value of the bulk plasma beta (b0) is( 0.02. The core
electron density, ne¼ 1.0" 1019 m#3, is assumed to be con-
stant in our calculations, and we set c¼ 0 for simplicity.
Given the equilibrium profile calculated from Eq. (3), Eq. (5)
becomes a second order differential equation that can be
solved with a shooting code, starting from the magnetic axis
where U is proportional to r. A frequency scan is used to find
a localized solution for which U vanishes at the outer
boundary.

We use an artificial outer boundary condition with U¼ 0
before the q¼ 0.2 rational surface. The underlying reason is
that the mode frequencies in the MST experiment cross the
Alfv!en continuum away from the core, as shown in Refs. 10
and 11. This crossing means that any global Alfv!en mode
ranging from the core to the edge could have significant
damping. Additional boundary condition tests show the
modes are not sensitive to the position of the boundary. We
therefore seek modes that are localized within the core and
vanish before the first magnetic island to ensure small con-
tinuum absorption.

Using the shooting code for Eq. (5), when b is set to
zero, we are able to find both the n¼ 4 and n¼ 5 modes
when q is sufficiently flat. Figure 1 shows the continuum
spectrum and the mode frequencies for n¼ 4 and n¼ 5 when
q0¼ 0.211, jq¼ 1.16 and b¼ 0, jb¼ 0. The n¼ 5 mode
appears slightly above the continuum tip and the n¼ 4 mode
lies below its continuum minimum. The computed n¼ 4 and
n¼ 5 mode frequencies are approximately 110 kHz and 42
kHz, respectively, being quite close to the MST experimental
observations. The corresponding n¼ 5, m¼ 1 and n¼ 4,
m¼ 1 mode structures are plotted in Figs. 2 and 3, respec-
tively. Both modes are localized between the magnetic axis
and the q¼ 0.2 rational surface (r( 0.1 m).

We find that the modes change significantly and can dis-
appear when we vary the q profile and b profile within the

FIG. 2. The n¼ 5, m¼ 1 perturbed electric potential U for q0¼ 0.211,
jq¼ 1.16, b0¼ 0, and jb¼ 0. The mode has a rollover very near the core
and the mode frequency is 42 kHz.
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experimental error bars. Figure 4(a) shows that the n¼ 5
mode structure becomes more localized when q is steeper
(for a given b profile), and that the mode frequency moves
closer to the continuum frequency. The n¼ 5 mode eventu-
ally disappears when the q profile becomes too steep. In the
case of fixed q profile, the n¼ 5 mode disappears when the b
gradient parameter jb is below some critical positive values,
whereas positive jb is favorable to the mode (as shown in
Fig. 4(b)). Such dependence on q and b gradients agrees

with the conjecture made in Sec. II B and confirms sensitiv-
ity of the mode structure and existence to the magnetic shear
and plasma beta.

For the n¼ 4, m¼ 1 case, we also change the q and b
profiles and find that q profile has the same effect on the
structure and existence as in the n¼ 5 case (Fig. 5(a)).
However, the effect of b gradient is different: negative gradi-
ent helps establish the n¼ 4 mode (Fig. 5(b)) whereas the
n¼ 4 mode disappears when the b gradient becomes too
positive.

The screw pinch model shows that both the n¼ 5 and
n¼ 4 modes appear close to the position where the modes
were observed in experiment and have small continuum
damping due to their localization in the core. Based on the
n¼ 4 and n¼ 5 mode sensitivity study, we confirm the con-
clusion that a flattish q profile near the core is essential for
mode existence within the MHD model but b gradient has
opposite effects on these modes. Furthermore, after parame-
ter scan, Fig. 6 gives the range of q and b gradient where
both n¼ 4 and n¼ 5 modes can exist when q0¼ 0.21 and
b0¼ 0.02.

III. MODES IN TOROIDAL GEOMETRY

The AEGIS code19 is utilized to extend our analysis to
toroidal geometry for more realistic modeling of the
observed modes. AEGIS is a linear MHD code with an

FIG. 3. The n¼ 4, m¼ 1 perturbed electric potential U for q0¼ 0.211,
jq¼ 1.16, b0¼ 0, and jb¼ 0. The mode frequency is 111 kHz.

FIG. 4. The n¼ 5, m¼ 1 mode structure for various gradients of q and b
with q0¼ 0.207 and b0¼ 0.02. In (a), the b gradient is set to be zero and q
gradient parameter jq changes. (b) Shows the mode structure for different b
gradient profiles, while q gradient parameter jq remains 0.78.

FIG. 5. The n¼ 4, m¼ 1 mode structure for various gradients of q and b,
with q0¼ 0.207 and b0¼ 0.02. In (a), the b gradient is fixed (jb¼ 0) and jq

varies. (b) is for different b gradient profiles and jq remains 0.78.
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adaptive grid mesh in radial direction, and Fourier decompo-
sition in the poloidal and toroidal directions. To solve the ra-
dial eigenvalue problem, it constructs an appropriate linear
combination of the independent solutions of the Euler-
Lagrange equations.

Plasma equilibria are based on the MST experimental
data for the safety factor, plasma density and plasma
pressure (only bulk plasma beta is taken into account).
Equilibrium profiles for all quantities are calculated by

VMEC16 and then adapted to AEGIS input. Figure 7 shows
the pressure profile and safety factor profile for one equilib-
rium. A distinctive feature of MST is that the safety factor is
significantly smaller than unity everywhere and that it is
nearly flat in the plasma core. The horizontal axis in Fig. 7
labels the normalized distance between the magnetic axis
and magnetic surfaces on the outboard side of the midplane.
The magnetic surfaces are shown in Fig. 8, and they are
nearly circular close to the magnetic axis.

In our simulation, the computational domain extends
from the magnetic axis to the nearest magnetic island (i.e.,
q¼ 0.2 rational surface at r( 0.1 m) and has around 300 ra-
dial grid points (see Fig. 8). To find the eigenmodes, we use
the cylindrical boundary condition nm / rm# 1 for radial dis-
placement at the magnetic axis and set nm¼ 0 near the first
magnetic island. The mode is assumed to be incompressible
in these calculations.

FIG. 7. The safety factor and bulk plasma pressure profiles used as input in
AEGIS. The horizontal axis denotes the normalized distance between the
magnetic axis and magnetic surface at h¼ 0.

FIG. 8. The coordinate system used in AEGIS, with minor radius 0.5 m. The
equilibrium quantities on the grids result from interpolation of the input
equilibrium.

FIG. 6. The parameter window for n¼ 4 and n¼ 5 modes when q0¼ 0.21,
b0¼ 0.02. The shaded area marks the coexistence range for the n¼ 4 and
n¼ 5 modes.

FIG. 9. The n¼ 5 and n¼ 4 continuum spectra calculated for the equilib-
rium in Fig. 8, where the frequency is normalized by the on-axis Alfv!en fre-
quency vA/Rq0( 7.2" 105 Hz and the x axis denotes the distance between
the magnetic axis and magnetic surface at h¼ 0. The n¼ 4 and n¼ 5 eigen-
mode frequencies are also marked in this figure.
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After frequency scanning, we find both n¼ 5 and n¼ 4
eigenmodes for the equilibrium in Fig. 7. Figure 9 shows the
n¼ 4 and n¼ 5 continuum spectrum and mode frequency, in
which the frequency is normalized by the Alfv!en frequency
(vA/Rq0( 7.2" 106 Hz). The continuum and the mode fre-
quencies obtained from AEGIS are close to that in the screw
pinch model shown in Fig. 1. By checking the n¼ 5 eigen-
mode (Fig. 10) and n¼ 4 eigenmode (Fig. 11), we observe
that the modes are single component dominant and are simi-
lar in their radial structure to the localized modes in the screw
pinch case, which justifies simplifying assumptions used in
Sec. II. We also note that the parameters of the equilibrium in
Fig. 7 are in the n¼ 5 and n¼ 4 coexistence range in Fig. 6.

In Ref. 12, the n¼ 4 mode is reported around 120 kHz
and the n¼ 5 mode frequency is around 65 kHz in the
plasma frame when q0( 0.21. In our simulations, since the
modes exist near the continuum, the frequency is sensitive to
the safety factor q0 at the magnetic axis. In the case of
q0¼ 0.211, the n¼ 4 mode has frequency near 110 kHz and
the n¼ 5 mode frequency is 42 kHz. In another equilibrium
with q0¼ 0.218, the n¼ 4 frequency is 95 kHz and the n¼ 5
frequency is 58 kHz (see Fig. 12). One can therefore
approach the observed n¼ 4 and n¼ 5 mode frequencies by
choosing an appropriate q0 value within the experimental
error bars.

In addition, the MST experiment shows an n¼ 6, m¼ 1
mode emerges instead of the n¼ 5, m¼ 1 mode when the
field reversal parameter decreases and q0 becomes smaller
than 0.2.12 In our simulation, we use the q0¼ 0.18 equilib-
rium generated with experimental data, and also find the
n¼ 6 mode near the measured frequency. The corresponding
continuum and the mode structures are plotted in Figs. 13
and 14. The n¼ 6 mode shares many characteristics of the
n¼ 5 localized mode. The calculated frequency, 76 kHz, is
also sensitive to q0. The mode frequency will be within the
error bars of the experimental value 100 kHz after changing
q0 value.

IV. SUMMARY AND DISCUSSION

In this paper, both cylindrical and toroidal MHD analy-
ses are used to investigate the Alfv!en modes in MST. In the
cylindrical model, we first consider an analytic equilibrium
with parabolic safety factor and plasma pressure (b) profiles,
and discuss the effects of those profiles on the modes. We
then use a shooting code to solve the eigenmode equation
near the plasma core. In the toroidal case, we reconstruct the
equilibrium numerically based on MST experimental data.
We then use the AEGIS code to study localized modes.

FIG. 10. The n¼ 5 perturbed electric potential Um for the equilibrium in
Fig. 8, with the “zoom-in” view of sideband components. The mode fre-
quency is 42 kHz.

FIG. 11. The n¼ 4 perturbed electric potential Um is plotted for the equilib-
rium in Fig. 8. The mode frequency is 112 kHz.

FIG. 12. Comparison of the experimental frequency with simulation results
for different values of q0 around 0.21. The shaded area marks the experimen-
tal error bars.

FIG. 13. The n¼ 6 continuum spectrum calculated for q0¼ 0.18, where the
frequency is normalized by the on-axis Alfv!en frequency vA/Rq0. The n¼ 6
eigenmode frequency is marked by the dotted line in this figure.
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We find coexisting n¼ 4 and n¼ 5 modes in both cylin-
drical and toroidal calculations. These modes are localized at
the core and can therefore have low continuum damping.
The mode structure can be affected by safety factor and b
gradients and become similar to the experimental modes
excited by a population of fast ions.

We also find that coexistence of the n¼ 4 and n¼ 5
modes in the MHD model is possible only within a certain
range of plasma pressure gradients. A flattish q profile
always helps to establish the n¼ 4 and n¼ 5 modes, but
pressure gradient has opposite effects on the modes. The
window for pressure gradient where both modes can exist is
calculated in the cylindrical model, and our toroidal simula-
tions find the two modes within that window.

As opposed to Ref. 15, we demonstrate that the n¼ 4
mode does not generally require a pressure gradient for its
existence. By varying the q profile within the experimental
error bars, we find the n¼ 4 mode when there is small or no
pressure gradient. Moreover, the pressure gradient cannot be
too large, because the existence of the n¼ 5 mode limits the
pressure gradient from above.

The n¼ 4 and n¼ 5 mode frequencies are near the
experimental frequencies. The n¼ 4 mode resides slightly
below the continuum spectrum minimum at the plasma core
and the n¼ 5 mode is close to the continuum spectrum maxi-
mum at the plasma core. Their frequencies are sensitive to
the safety factor value at the plasma core. Considering the

10% uncertainty in q0, both modes can have frequencies
within 15% of the experimental frequencies.

We also find the n¼ 6 localized mode with AEGIS near
the experimental frequency. The simulation agrees with the
observation that the n¼ 6 mode emerges instead of the n¼ 5
mode when the field reversal parameter decreases in the
MST experiment. The n¼ 6 mode shares many characteris-
tics of the n¼ 5 localized mode.

It should be pointed out that our MHD analysis does not
capture the kinetic response of the fast ions. We performed an
additional AEGIS simulation with an isotropic pressure model
for fast ion effect on the equilibrium, and the result shows
that both modes still exist and additional n¼ 5 localized
modes appear above the continuum. Yet, anisotropy of the
fast ion pressure still needs to be incorporated in future work.

Although the MHD model provides a good starting point
and we find modes near the observed frequencies in MST,
there are still several inconsistencies with current experimen-
tal observations. First, the experimentally observed n¼ 5
mode does not have a clear Alfv!en scaling (see Fig. 4 from
Ref. 10). Another difficulty is presented in Fig. 15 which
shows the measured mode frequencies (in the plasma frame
of reference) in recent MST experiment (with experimental
error bars), as well as the estimated core Alfv!en frequencies
at the r¼ 0, vs. core safety factor q0. Although the calculated
frequencies at q0( 0.21 are within the experimental error
bars, the plot shows that the measured mode frequencies
have weaker dependence on the central q value than
expected. Additionally, experimentally observed inboard-
outboard spatial asymmetry of various modes12 is an issue
not addressed by the present theory.

The existing discrepancies with experiment indicate the
need to go beyond the MHD model in future investigations.
Also, the role of plasma compressibility and toroidicity-
induced coupling between the shear Alfv!enic and acoustic
modes needs to be assessed for the q0( 0.2 scenario. The
key open question is whether fast ions change the mode
structure significantly to create the observed inboard-
outboard spatial asymmetry.12 It is also important to investi-
gate the n¼ 5 mode coupling to magnetic island in the
q0( 0.2 case. On the other hand, a more accurate q profile
measurement is required to resolve the differences between
the experimental observations and theoretical results since
toroidal field is not measured directly in current experiments.

FIG. 14. The n¼ 6 perturbed electric potential Um. The mode frequency is
76 kHz.

FIG. 15. The n¼ 5 and n¼ 4 measured
frequencies versus central q value. The
estimated core Alfv!en frequencies are
in the shaded areas.
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New global straight field line coordinates are introduced for a toroidal plasma configura-
tion. The new coordinate system provides a canonical description of particle guiding center 
motion while maintaining the straight field line feature. These coordinates are convenient 
for combining MHD calculations with kinetic modeling of energetic particles. We demon-
strate how the new coordinate system can be constructed by transforming the poloidal and 
toroidal angles. Numerical examples show comparison of the new coordinates with various 
non-canonical coordinates for the same equilibrium configuration.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Tokamaks are designed to have closed, nested magnetic surfaces on which plasma pressure is constant as required by the 
force balance. The Grad–Shafranov equation determines configuration of these surfaces for the tokamak equilibrium [1]. Due 
to strong anisotropy associated with the magnetic field, the magnetic surface label ψ is a convenient radial coordinate for 
computations. The corresponding commonly used magnetic flux coordinates (ψ, θ, ζ ) are the magnetic flux, the generalized 
poloidal and toroidal angles. In most cases, the generalized angles (θ, ζ ) do not have to be the geometric poloidal and 
toroidal angles (θg, φ). For convenience, the generalized angles are often chosen so that the magnetic field lines are straight 
when plotted on (θ, ζ ) plane, i.e.:

B = χ ′(∇ζ × ∇ψ + q(ψ)∇ψ × ∇θ),

where q(ψ) is the safety factor, χ(ψ) is the poloidal magnetic flux with prime denoting the derivative with respect to ψ , 
and B · ∇ψ = 0. These coordinates are the so-called straight field line coordinates and they are particularly convenient for 
stability analysis. The coordinate system in which the field lines are straight is not unique. The commonly used versions of 
the straight field line coordinates are PEST [2], Hamada [3], equal arclength, and Boozer [4] coordinates.

It should, however, be noted that these four versions are not optimal for Hamiltonian description of the particle guiding 
center motion in tokamaks. A Hamiltonian description of the guiding center equations of motion is essential for investigating 
particle trajectories on very long times since it satisfies the Liouville theorem. The guiding center motion is known to be 
governed by the Littlejohn Lagrangian [5]:

L(X,μ, v‖, ξ) = e

c
A · Ẋ + mv‖

(B · Ẋ)

B
+ mc

e
μξ̇ − μB − 1

2
mv2‖ − e�. (1)
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The dynamical variables in this Lagrangian are: X (the guiding center position), μ = mv2⊥/2B (the magnetic moment), 
ξ (the gyroangle), and v‖ (the parallel velocity). The magnetic field B, the vector potential A, and the scalar potential � are 
evaluated at the guiding center position. The guiding center phase space is six-dimensional, but the six dynamical variables 
in the Lagrangian do not immediately split into three canonical pairs for Hamiltonian formalism. The reason is that the 
Littlejohn Lagrangian generally contains time derivatives of four variables rather than three. These four are the components 
of X and the gyroangle.

There have been several attempts in the past to eliminate the extra time derivative and find a set of canonical variables 
(two coordinates and two momenta besides μ and ξ ). One of the attempts is based on Boozer coordinates [4], in which the 
Jacobian is J = ((∇ψ × ∇θ) · ∇ζ )−1 = 1/B2. The contravariant radial component of B is zero in these coordinates. However, 
the covariant component Bψ associated with the nonorthogonality of the coordinates does not generally vanish. The neglect 
of nonzero Bψ modifies the Lagrangian and thus the equations of motion, which is undesirable. Later, in Ref. [6], a simple 
change of the guiding center velocity is introduced to achieve a canonical form with a claim that the orbit in the poloidal 
plane and the toroidal precession remains unchanged. Yet that procedure is not equivalent to coordinate transformation and 
does not preserve the Littlejohn Lagrangian either, which can distort the time-dependence of the original gyrocenter motion 
in long-term simulations.

Reference [7] offers a rigorous alternative. By redefining the poloidal angle, it introduces a new coordinate system in 
which both the vector potential A and magnetic field B only have two nonzero covariant components; this procedure elim-
inates the ψ̇ term from the Lagrangian. Although Ref. [7] gives the poloidal angle transformation analytically for Shafranov 
equilibrium, it is impractical to find such a coordinate system globally in numerical simulations when the flux surfaces are 
not circular. The transformation introduced in Ref. [7] gives orthogonal coordinates with one of the coordinate axes being or-
thogonal to A and B locally. It is unfortunate that nonuniformity of this coordinate system is significant in many equilibrium 
configurations of interest, such as elliptically shaped equilibria. Also, the magnetic field lines are not automatically straight 
in the orthogonal coordinates. For these reasons, numerical implementation of the orthogonal coordinates is challenging for 
realistic tokamaks.

To eliminate this difficulty, we herein construct a new type of global coordinates by modifying the poloidal and toroidal 
angles simultaneously, so that

A = Aθ (ψ)∇θ + Aζ (ψ)∇ζ,

B = Bθ∇θ + Bζ ∇ζ.

It then follows from Eq. (1) that the guiding center Lagrangian can be written as a function of the canonical variables 
(θ, ζ, Pθ , Pζ ):

L = Pθ θ̇ + Pζ ζ̇ + mc

e
μξ̇ − H, (2)

where the Hamiltonian is defined as

H = μB + 1

2
mv2‖ + e�,

with

Pθ = e Aθ

c
+ mv‖

Bθ

B
,

Pζ = e Aζ

c
+ mv‖

Bζ

B
,

and two of the three coordinates (poloidal and toroidal angles) automatically become canonical variables. These coordinates 
provide a rigorous Hamiltonian form as in Ref. [7], and they are also suitable globally unlike the orthogonal coordinates. 
Moreover, the new coordinates preserve the straight magnetic field line feature, which makes them perfectly compatible 
with existing codes. In what follows, we call them “canonical straight field line coordinates”. In Sec. 2 of this paper, we 
discuss how to construct such coordinates. Section 3 shows their numerical implementation for realistic tokamaks. Section 4
is a brief summary.

2. Construction of the canonical straight field line coordinates

In the general straight field line coordinates (ψ, θ, ζ ), the magnetic field B has the following contravariant representation:

B = χ ′(∇ζ × ∇ψ + q∇ψ × ∇θ),

and the corresponding covariant representation for the vector potential A is:

A =
(∫

qχ ′dψ

)
∇θ − χ∇ζ.
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To construct the new coordinates, we use the same magnetic flux variable ψ and modify the poloidal and toroidal angles. 
In order to preserve periodicity in the poloidal and toroidal directions, we seek the new generalized poloidal and toroidal 
angles (θc, ζc) of the form:

θc = θ + ν(ψ, θ), ζc = ζ + ν1(ψ, θ), (3)

where ν and ν1 are periodic functions of θ . We choose

ν1 = qν, (4)

to ensure that the new coordinates maintain straight field lines:

B = χ ′(∇ζc × ∇ψ + q∇ψ × ∇θc), (5)

and the expression for A remains the same:

A =
(∫

qχ ′dψ

)
∇θc − χ∇ζc .

Then the only constraint on the canonical coordinates is that the covariant radial component of B is zero, i.e.

Bψ = B · �eψ = 0, (6)

where

�eψ = J (∇θc × ∇ζc).

Taken together, Eqs. (3)–(6) give a partial differential equation for ν:

∂ν

∂ψ
= C1

∂ν

∂θ
+ C2ν

∂ν

∂θ
+ C2ν + C1, (7)

where

C1 = G12 + qG31

G22 + 2qG23 + q2G33
,

C2 = − q′G22 + qq′G23

G22 + 2qG23 + q2G33
,

with

G22 = J (∇ζ × ∇ψ) · (∇ζ × ∇ψ),

G33 = J (∇ψ × ∇θ) · (∇ψ × ∇θ),

G12 = J (∇θ × ∇ζ ) · (∇ζ × ∇ψ),

G31 = J (∇ψ × ∇θ) · (∇θ × ∇ζ ),

G23 = J (∇ζ × ∇ψ) · (∇ψ × ∇θ).

The matrix elements Gik as well as the functions C1 and C2 are herein evaluated in the original straight field line coordi-
nates. After solving for ν , we obtain a canonical straight field line coordinate system in which:

A = Aθc (ψ)∇θc + Aζc (ψ)∇ζc,

B = χ ′(∇ζc × ∇ψ + q(ψ)∇ψ × ∇θc) = Bθc ∇θc + Bζc ∇ζc .

Equation (7) can be integrated directly by shooting method as a first-order differential equation. For the global coordinate 
system to exist, a constraint from the Jacobian is imposed on the solution. The new Jacobian ( J c) is related to the original 
Jacobian ( J ) by:

Jc = (∇ψ × ∇θc) · ∇ζ−1
c ∼ (∇ψ × ∇θ) · ∇ζ−1 = J

1 + ∂ν
∂θ

,

which shows that the coordinate transformation would introduce a singularity if the denominator vanishes in this expres-
sion. In order to avoid such singularity, we need to ensure that

∂ν

∂θ
+ 1 	= 0.

We find that this constraint can indeed be satisfied in general cases of tokamaks, which follows from a convenient 
ordering of the coefficients in Eq. (7): C1 
 C2. For simplicity, we demonstrate this ordering in PEST coordinates. The PEST 
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Fig. 1. The canonical coordinates constructed with the boundary condition ν0 = 0 for the ITER-like equilibrium (generated with the equilibrium code TOQ). 
The equilibrium parameters are: plasma beta β = 0.08, aspect ratio ε ∼ 1/3, elongation κ = 1.86, and triangularity δ = 0.5. The new grid mesh is very 
similar to the PEST grid mesh.

coordinate system uses the geometric angle φ as the toroidal angle. In this case, the coefficients in Eq. (7) can be estimated 
as:

C1 ∼ −|∇φ|2∇ψ · ∇θp

|∇ψ |2|∇θp|2 ∼
( a

R

)2 ∇ψ · ∇θp,

C2 ∼ −qq′|∇ψ |2|∇θp|2
|∇ψ |2|∇θp|2 ∼ 1,

where a is the minor radius and R is the major radius of the tokamak. The inverse aspect ratio (ε = a/R) and the factor 
∇ψ · ∇θp are usually less than unity in tokamaks. As a result, this ordering indicates that the nonlinearity is relatively 
small in Eq. (7) and does not bring in numerical difficulty, so that the final coordinates are not drastically different from 
the original coordinates (ν ∼ O (ε2)). If ν is sufficiently small, the new Jacobian is close to the PEST Jacobian, and the 
transformation does not introduce singularities. This feature is essential for global coordinate transformation.

3. Numerical implementation

In this section, we describe a computational module that uses a realistic tokamak equilibrium configuration file (like 
DCON [8] or EFIT [9]) and provides the canonical straight field line coordinates. We also present a comparative simulation 
of resistive wall instability in the new and old coordinates as a test case.

The developed module solves Eq. (7) in general straight field line coordinates. Since the poloidal angle dependence in 
Eq. (7) is a periodic function, we use Fourier representation of ν and factors C in Eq. (7):

νm = 1√
2π

π∫
−π

νe−imθ dθ,
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Fig. 2. The difference in poloidal angle (ν) between PEST and new coordinates at different radial locations (ψ = 0.25, 0.5, 0.75, 1). The horizontal axis stands 
for the poloidal angle θ in PEST coordinates.

Fig. 3. The covariant component of radial magnetic field Bψ versus poloidal angle in PEST and canonical straight field line coordinates.

Cmm′ = 1

2π

π∫
−π

C(θ)ei(m′−m)θ dθ.

We thereby obtain a set of ordinary differential equations for the Fourier components of ν:

∂νm

∂ψ
=

∑
i, j

iCmi
1 δi j jν j +

∑
i, j,k

i√
8π

Cmi
2 δi j jν j−kνk +

∑
i

Cmi
2 νi + C1m,

and we then truncate this set appropriately to achieve convergence of the solution.
We set ν = ν0 at the innermost flux surface and integrate the nonlinear equations radially outwards with this boundary 

condition. Note that there is a considerable freedom in choosing ν0 as long as ν0 is not too large to produce singularity in 
the solution. We use an integration subroutine (D02BJF) from NAG (Numerical Algorithms Group) library, which is a fixed 
order Runge–Kutta method, and the computation tolerance is set to 10−5.

We have tested the coordinate transformation module for various realistic equilibria, and the results render global canon-
ical straight field line coordinates. We first take an up-down-symmetric ITER-type equilibrium, and solve for ν in the PEST 
coordinates with ν0 = 0 on magnetic axis. The integration error is within the tolerance, and the Fourier series converges 
quickly. Fig. 1 shows the resulting grid mesh in the new coordinates, which is very similar to the PEST grid mesh. In Fig. 2, 
we plot ν versus θ at various radial positions. We find that the modification of the poloidal angle is very small and is 
therefore free from numerical difficulties associated with the orthogonal coordinates. We also compare Bψ in the new co-
ordinates to that in the PEST coordinates (see Fig. 3) and find that Bψ vanishes in the new coordinates as expected. For the 
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Fig. 4. The canonical coordinates for the asymmetric COMPASS equilibrium with the boundary condition ν0 = 0. The new grid mesh is also similar to the 
PEST grid mesh.

Fig. 5. Bψ versus poloidal angle in PEST and new coordinates for the COMPASS equilibrium.

asymmetric COMPASS [10] equilibrium, we also find that the grid mesh of the new canonical coordinates with ν0 = 0 is 
similar to the original PEST coordinates (Fig. 4), and Bψ vanishes in the new coordinates (see Fig. 5).

The new canonical coordinate system is flexible with regard to boundary condition. For example, we can use the bound-
ary condition according to Hamada coordinates (which specifies Jacobian J = const.) instead of setting ν0 = 0, and we then 
obtain a different grid mesh. As seen from Fig. 6, the grid mesh of the final canonical coordinates is denser at the outboard 
midplane than that in Fig. 1. This feature is also present in the numerical tests for other types of equilibria such as COM-
PASS and Shafranov equilibrium. Thus, by applying different boundary conditions, we are able to optimize the new canonical 
coordinates for particular calculations.

The new coordinate transformation module has been incorporated into the AEGIS [11] code with Fortran 90/95. For 
benchmark purpose, we calculate the Resistive Wall Mode (RWM) in the new coordinates against the Hamada coordinates. 
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Fig. 6. The grid mesh of canonical coordinates for the ITER-like equilibrium with boundary condition close to Hamada coordinates.

Fig. 7. The n = 1 resistive wall modes computed by AEGIS in the coordinate described in Fig. 6. The poloidal magnetic flux ψ is used as the horizontal 
coordinate and different Fourier components of plasma displacement ξψ = ξ · ∇ψ are plotted. Total amount of poloidal components is 20. The critical wall 
position is at ψ = 1.375.
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Fig. 8. The n = 1 mode calculated in Hamada coordinates for the ITER-like equilibrium. The total amount of poloidal components is the same (20) and 
critical wall position is also ψ = 1.375.

Resistive wall modes are the external kink mode with a resistive wall. The external kink modes can be stabilized by having a 
perfectly conducting wall close to the plasma inside the critical wall position, but the resistive wall modes are still unstable 
in this case [12]. We find good agreement in all respects, such as the growth rate, mode structure, the critical wall position, 
etc. Fig. 7 shows the n = 1 resistive wall mode for the ITER-type equilibrium using the coordinates in Fig. 6, which is similar 
to the result computed in Hamada coordinates shown in Fig. 8. The critical wall position is also in good agreement with 
similar amount of sidebands. The new canonical coordinate system is also ready to be used with other existing MHD codes.

4. Summary

To summarize, we introduce new canonical straight field line coordinates by changing the poloidal and toroidal angles of 
the general straight field line coordinates. The new coordinates eliminate the covariant and contravariant components of the 
radial magnetic field, which was previously possible only in orthogonal coordinates and was impractical for the tokamak 
equilibrium. The fact that the radial component of the magnetic field vanishes allows us to express the guiding center 
Lagrangian in terms of the angle coordinates and their conjugate momenta in a straightforward way. In addition, the new 
coordinates are also straight field line coordinates, which is advantageous to MHD simulations.

Our simulation results show that the new coordinates are numerically feasible. In the coordinate transformation, cor-
rections to the poloidal and toroidal angles are small, and global coordinate system exists in general for tokamaks. Besides, 
multiple canonical coordinates can coexist due to the flexibility of the boundary conditions, which offers a variety of options 
for different problems.
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