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Abstract 

 

Methods of Genotype Imputation for Genome-wide Association Studies 

 

 

Lin Qiu, M.S.Stat. 

The University of Texas at Austin, 2016 

 

Supervisor:  Miachel Daniels 

 

 

In genetic epidemiological studies, missing data problems arise when genotypes 

of particular markers are unavailable for reasons of data quality, cost efficiency or 

technical design. Genotype imputation is a well-established statistical technique for 

estimating unobserved genotypes in association studies. Imputation methods are 

implemented by copying haplotype segments from a densely genotyped reference panel 

into individuals typed at a subset of the reference variants. By this way, genotypes can be 

estimated and tested for association at variants that were not assayed in a study. This 

report first summarizes the missing data mechanisms. Then an overview of the different 

methods that have been proposed for genotype imputation is provided and some thoughts 

for future directions are given. 
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Chapter 1 

 
                Missing Data 

 
 

1.1 Introduction 
 
In statistics, missing data, occur when no data value is stored for the variable in an 

observation. Missing data are a common occurrence and have challenged researchers 

since the beginnings of field research, particularly for longitudinal research, which 

involves multiple waves of measurement on the same individuals. The procedures 

researchers use were mainly developed in the twentieth century which designed for 

complete data.  

Missing data can adversely impact the validity of statistical inferences.   

 

1.2  Sources of Missing Data  
 

There are three main sources of missing data in survey research: noncoverage, total 

nonresponse, and item nonresponse (Groves et al., 2004). Noncoverage happens when 

some population have no chance of being selected in the sample. Missing data comes 

from nonresponse when a respondent refuses to respond to any item on the survey. Item 

nonresponse occurs when only partial of the items on the survey is being completed.    
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Among these three sources of missing data, noncoverage and total nonresponse can 

be addressed by using appropriate sampling weights that are designed to make the sample 

accurately represent the target population (Cheema, 2014). However, missing values due 

to item nonresponse cannot be fixed by using weights. Listwise deletion of cases with 

item nonresponse will result in loss of some of the valuable information and potentially 

lead to bias. Missing value imputations account for the uncertainty in the missing value.  

A main concern with missing data is whether the sample with complete data is still 

representative of the target population (Roth, 1994). Let’s take an example of a sample of 

100 high school students of whom 5 are from school A. If data on A school are missing, 

at 5%, the overall missingness rate is small. In addition sample from the other schools 

was not representative of its target population because if does not contain any of A 

school. If school A is the ‘same’ as the other schools, there will be no problem. However, 

we cannot check this since we don’t observe data from school A. 

 

1.3 Missing Mechanisms 
 

Missing data mechanisms are typically categorized into three groups (Rubin, 1976): 

missing completely at random (MCAR), missing at random (MAR), and missing not at 

random (MNAR). 

If subjects who have missing data are a random subset of the complete sample of 

subjects, missing data are called completely at random (MCAR). When missing data are 

MCAR, the set of subjects with no missing data is a random sample from the target 
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population. Using only complete data will give unbiased results. However, such an 

analysis is less efficient. 

MAR occurs when when missingness does not depend on the observed data.  

Data are MNAR when the probability of missing data on a variable depends on the 

value of that variable.  
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                 Chapter 2 
 

      Missing Data in Genetic Epidemiology 
 
 

2.1  Introduction 
 

In genetic epidemiological studies, missing data problems arise when genotypes 

of particular markers are unavailable for analysis for reasons of data quality, cost 

efficiency or technical design. Imputation methods work by using haplotype patterns in a 

reference panel to predict unobserved genotypes in an experimental sample. To make 

inference on an observed genotypes using unobserved genotypes we use information 

from a set of comprehensively typed individuals (like HapMap or the 1000 Genomes 

Project). The most common genotype imputation methods including IMPUTE, 

fastPHASE, MaCH and BEAGLE (Marchini & Howie, 2010).  

Human genetic epidemiology aims to identify genetic variants related to specific 

phenotypes, usually diseases or disease-associated traits. Genotyping studies have been 

always confined to selected marker sets, mainly single nucleotide polymorphisms (SNPs) 

that are formatted on commercially available microarrays. Genome-wide association 

studies (GWAS) based on linkage disequilibrium (LD), only use a small number of SNPs 

that characterize 80% of the genetic variation in a given population (Krawczak, 2015). 

Depends on how they are chosen, SNPs might be proxies of truly causative mutations. 

Unfortunately, commonly used microarray-based SNPs genotyping result in errors. 
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Genotype imputation methods can help scientists address the missing data problem 

(Marchini & Howie, 2010). 

 
2.2  Imputation Methods 

   
Various genotype imputation methods have been proposed for epidemiological 

studies. The main difference between those genotype imputation methods is how the 

conditional genotype distribution of an SNP is defined and used. Assuming we have data 

at L diallelic autosomal SNPs and that the two alleles at each SNP have been coded 0 and 

1. H denotes a set of N haplotypes at these L SNPs while G is the set of genotype data at 

the L SNPs. The purpose of genotype imputation is to predict the genotypes of those 

SNPs that have not been genotyped in the study sample. All of those imputation methods 

discussed here assume the missingness is MAR and are HMM based imputation methods 

(including IMPUTE v1). They infer the missing genotypes for each study individual 

independently, conditional on the reference panel. By doing so, the reference panel is 

used to analytically integrate over the phase uncertainty in each individual’s multilocus 

genotype. 

 

2.2.1 IMPUTE  
 

Marchini et al. (2007) devised the first version of IMPUTE method (Figure 1). 

IMPUTEv1 is based on an extension of the hidden Markov models (HMMs) for 

simulating coalescent trees (Fearnhead & Donnelly, 2001) and for modeling of linkage 
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disequilibrium and estimating of recombination rates (Li & Stephens, 2003). The method 

is based on an HMM of each individual’s genotype vector  conditional upon a set of 

N known haplotypes H. A Hidden Markov Model (HMM) has the form 

 

,                      (1) 

 

where  and  are two sequences of hidden states 

at the L sites and . The can be thought of as the pair of haplotypes from 

the reference panel H that are being copied to form the genotype vector . The term

 defines the prior probability on how the pair of copied haplotypes 

changes along the sequence and is defined by a Markov chain in which the switching 

rates depends on an estimate of the fine-scale recombination map across the genome. The 

initial state of the Markov chain is uniform on the states 

 

,                                                   (2) 
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(3) 
 

 and  is the per generation genetic distance between sites  and . The 

prior distribution could be written as 

 

,          (4) 

 

The term  defines how the observed genotypes will be close to but 

not exactly the same as the haplotypes being copied. 
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Figure 1 Genotype imputation with IMPUTE based on Krawczak (2015). 0 and 1 indicating the 
presence or absence of a reference allele, the imputation base (reference set of haplotypes) is phased 
and contains four different haplotypes. (a) The population haplotype is assumed to be a mosaic of 
haplotypes from the reference set. Defined by Markov chain model with transition probabilities, the 
respective haplotype distribution depends both on the population history and the local recombination 
map. Bold arrows indicate high transition probabilities; while think arrows represent lower transition 
probabilities. Red means mutations. (b) Genotype data with missing data at untyped SNPs(question 
marks). (c) Each sample is phased and the haplotypes are modeled as a mosaic of those in the haplotype 
reference panel. (d) Missing genotypes in the study sample are imputed using the matching haplotypes 
in the reference set. In general, the probability of an un-phased genotype with missing data is evaluated 
by considering all possible pairs of mosaic haplotypes that would be compatible with the observed data. 
And the most probable pair determines the most probable genotypes at un-typed SNPs. 
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IMPUTEv2 developed by Li & Stephens (2003), a more flexible approach than 

IMPUTEv1 was used. Rather than perform a separate, analytical imputation step for each 

individual, IMPUTEv2 imputes all individuals together in an iterative framework. SNPs 

are divided into two disjoint sets based on whether an SNP was genotyped in both the 

study sample and reference panel (set T) or just was genotyped in the reference panel (set 

U). The haplotypes at SNPs in the study sample (set T) are estimated first and then alleles 

at SNPs in U are imputed conditional on the current estimated haplotypes. Specifically, it 

runs a Markov chain Monte Carlo (MCMC) algorithm that alternates between two basic 

steps: 1) Phase all observed genotypes and impute any sporadically missing genotypes at 

SNPs in the study sample (SNPs in the set T). Pool phase information across all 

individuals that are genotyped at a given SNP; 2) For each haplotype inferred in the 

previous step, use the reference panel to impute missing alleles at untyped SNPs (Howie 

& Marchini, 2009). A probability distribution for the haplotypes is defined similar to 

IMPUTEv1, and the two haplotypes have the highest posterior probability are selected 

for the study sample. IMPUTEv2 is much faster compared to IMPUTEv1 since the 

imputation step is haploid imputation, reducing computation time from O (N2) in 

IMPUTEv1 to O (N) in IMPUTEv2(N denotes the number of possible haplotypes) 

(Howie, Donnelly & Marchini, 2009 ; Marchini & Howie, 2010).    
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2.2.2 fastPHASE  
 

This method is based on SNP haplotypes tend to cluster into groups with similar 

haplotypes (Sheet & Stephens, 2006), and has been implemented in an association-testing 

program called BIMBAM (Servin & Stephens, 2007). This model specifies a set of K 

unobserved states to represent common haplotypes and each cluster (kth) is assigned a 

weight (akl) proportional to the fraction of haplotypes contained in each cluster at site l. 

 

,                                                             (5) 

 
 

is the frequency of allele 1 at each site in each cluster. fastPHASE models 

population haplotypes as an HMM with transitions between states. 

 

,                                    (6) 

defines how likely the observed genotypes, and models 

patterns of switching between states which represent clusters not the reference 

haplotypes. And here, a likelihood can be written as 
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An EM algorithm is used to fit the model, and a forward-backward algorithm is 

used to impute the missing genotypes conditional on the parameter estimation. 

Researchers found that by averaging a set of estimates resulted much better results than 

just a single estimate. fastPHASE uses smaller sets of states which should reasonably be 

computationally faster, however, this advantage is partly outweighed by working with 

abstract clusters requires many parameters. And also, in fastPHASE more unknown 

parameters are involved in the likelihood calculations than in IMPUTE, plus the effect of 

cluster weights, fastPHASE has greater standard errors on parameter estimaties. Fixing 

some of the parameters at values obtained from a phased imputation base could be a 

possible solution (Marchini & Howie, 2010). 
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2.2.3 MaCH 
 

MaCH employs an HMM model which is very similar to IMPUTE, but, in 

contrast to IMPUTE and fastPHASE, MaCH does not require a separate imputation base, 

by constantly updates the phase of each individual’s genotype data conditional on the 

current haplotype estimates of all the other samples. This model can be written as 

 

Figure 2 Genotype imputation with fastPHASE based on Krawczak (2015). Haplotypes are 
assumed to cluster. A,B,C and D define different sets of the Markov chain generating the 
haplotype distribution. The alleles are color-coded, and different colors correspond to identical 
alleles at a given position. 
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,                                 (8) 

 

 is the set of estimated haplotypes except I, Z is the hidden states of HMM, w

determines how similar is to the copied haplotypes, and controls transitions 

between the hidden states(Marchini & Howie, 2010). The population haplotype 

distribution is determined iteratively and parameters and are also updated during each 

iteration.  

Based on a reference panel of haplotypes, H, imputation of unobserved genotypes 

is accommodated by adding H to the estimated haplotypes . Then through the 

haplotypes sampled iteratively the marginal distribution of the unobserved genotypes can 

be estimated. 

 
 
2.2.4 BEAGLE 
 

The BEAGLE method (Browning, 2006) forms an HMM by locally clustering the 

haplotypes at each marker position along a chromosome. The clusters are defined at the 

allele not the haplotype level. Another difference with fastPHASE is that cluster number 

is region-dependent not fixed. The model has no parameters that need to be estimated and 

it is applied to a given set of haplotypes in two steps. The local level of allelic association 

between proximal markers determines the transition probabilities rather than global 

haplotype frequencies.  

P(Gi |D− i ,θ ,η) = P(Gi∑ | Z,η)P(Z |D− i ,θ )

D− i

η Gi θ

η θ

D− i
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There is no need to model the historical recombination process since Markov 

chain has no ‘long-term memory’, and no mutation needs to be allowed because the sole 

states of the Markov chain in BEAGLE are truly observed alleles. All of these features 

make BEAGLE computationally faster in genotype imputation compared to other 

methods mentioned above. However, the drawback is that BEAGLE has to be based on 

full study sample which means it cannot be split up like IMPUTE2. There will 

automatically be assigned a probability of zero if any haplotype containing an 

unaccounted allele combination at neighbouring markers. 
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Figure 3 Genotype imputation with BEAGLE. Different from fastPHASE based on Krawczak (2015), 
BEAGLE method defines clusters at the allele rather than the haplotype level, for SNPs, the cluster 
number equals two at each position (blue or orange). Both the local level of inter-marker allelic 
association in the imputation base and study sample determines the haplotype distribution probabilities. 
Broken arrows indicate the Intermediate transition probabilities. 
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                 Chapter 3 

 
Comparison Between Imputation Methods 

 

 

Researchers have carefully studied the performance of these commonly used 

genotype imputation frameworks (Marchini & Howie, 2009 ; Nothnagel et al., 2009 ; 

Wang et al.,2012 ; Liu et al.,2014).  

Marchini & Howie (2010) summarized the properties of each of the most popular 

imputation methods according to the reference panels the methods can handle (Table 1), 

properties of the study samples (Table 2), program options (Table 3), computational 

performance and error rates (Table 4). They found that IMPUTE v2 is the most accurate 

approach among IMPUTEv1, MACH, fastPHASE, and BEAGLE based on their 

simulation scenario and under a MAR assumption, but all the methods produce similar 

performance. Moreover, to further examine how methods perform on a large reference 

panel of haplotypes, like 1000 Genomes Project, the author used a reference panel of 

1,000 haplotypes consisting 500 and 1,000 individuals and applied HAPGEN simulation 

based on pilot CEU haplotypes from the 1000 Genomes Project in a 5 Mb region on 

chromosome 10. The results showed IMPUTEv2 is faster compared to BEAGLE and 

fastPHASE.  
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Table 1 Reference properties. 

Table 2 Properties of the study sample. 
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Wang et al. (2012) proposed a new nearest neighbor method (NN) and a weighted 

variant (WNN) which both follow the coalescent theory that the target individual has a 

genotype sequence similar to one from the population. Besides these two methods, they 

also implemented fastPHASE, Npute (Roberts et al., 2007) and several machine learning 

imputation methods including support vector machine (SVM), a local neural network 

(NeuralNet), and a local first order Markov chain (MC). The results showed NN and 

WNN were among the most efficient methods, and performed much better than other 

methods except fastPHASE in missing SNP genotype imputation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 Properties of program options and features. 
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Liu et al. (2014) systematically examined the genotype imputation performance 

based on whole-genome DNA sequencing data from 90 individuals. By using the 

percentage of variants that were accurately imputed as the criteria to evaluate imputation 

performance, firstly, they found that minimac and IMPUTE2 have better imputation 

performance compared to BEAGLE and multi-population reference panel showed better 

performance than just using a reference panel from the same population. Second, 

investigators usually rely on imputation quality measure to remove poorly imputed 

variants from further analysis.  

 

 

 

 

 

 

 

 
Table 4 Computational performance. ★Imputation of 1377 samples on the Affy500k chip from 
120 CEU Hapmap2 haplotypes; 7.5 Mb region. Data comes from (Howie, et al., 2009). ＃Imputation 
of 500(1000) samples genotyped at 872 SNPs from 1000 haplotypes at 8712 SNPs in a 5 Mb region. 
Timings based on datasets simulated using HAPGEN and the pilot CEU haplotypes from the 1000 
Genomes project in a 5 Mb region on chromosome 10. ζ Error rates from (Howie, et al., 2009), the 
results for IMPUTEv2 have been updated. Scenario B error rates given are for lllumina SNPs imputed 
from Affymetrix SNPs. Error rates for Affymetrix SNPs imputed from lllumina SNPs are given in 
brackets. 
 
 
 
 
 
the 1 
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Chapter 4 

 
Discussion and Future directions 

 
 

 
From the missing data scenarios considered in these studies IMPUTEv2 had both 

higher accuracy and faster computation. Howie et al. (2011) believes the success of 

IMPUTE2 is due to its computational strategies and its model of DNA sequence 

variation. From the perspective of models’ algorithm, BEAGLE and fastPHASE combine 

haplotypes into clusters which speeds up the computation process since it restricts the 

number of HMM states that need to be involved. BEAGLE and fastPHASE only need to 

run the calculations on a smaller set of clusters instead of performing HMM calculations 

on every haplotype in the dataset. By contrast, IMPUTEv2 and MaCH perform HMM for 

every haplotype in a state; however, using all of the states makes computation intractable, 

and so IMPUTEv2 restricts the states. The intuition is that the “surrogate family 

members” identified should include the most informative haplotypes for a particular 

individual in a particular part of the genome.  Both of these state-reduction approaches 

speed up imputation, and Howie et al. (2011) demonstrated that IMPUTEv2 achieves 

higher accuracy than BEAGLE for the scenarios they examined, and it is particularly 

obvious at low-frequency variants in datasets that have higher haplotype diversity. 

Clustering methods will obscure the differences among those haplotypes which reduces 

the ability to impute low-frequency variants. As datasets continue to grow more, states 



 21 

will be needed to add to HMMs for clustering methods to be accurate, IMPUTEv2 will 

need to be modified to balance accuracy and running time in future practical use. 

Another technique for increasing the efficiency of imputation is called “pre-

phasing”(Howie et al., 2012) which could maintain accuracy while reducing 

computational costs. 

Genotype imputation is becoming a de rigeur part of genome-wide association 

studies (GWAS) that have delivered hundreds of bona-fide associations to complex 

human diseases (Hindorff et al., 2009) and it will continue to be over the next few years. 

The main factor that will influence which imputation method is used will be those that 

can handle the increasing availability of next-generation sequencing data with much 

larger numbers of SNPs. That is also the challenge for imputation methods in using 

larger, more diverse set of haplotypes.  

Certainty needs to be exercised in using imputation methods. First, the most 

commonly used data from HapMap and 1000 Genomes Project comprise a diverse 

selection of reference populations. As a consequence, genotype imputation using these 

resources as reference set (imputation base) may be a valid component of genotype-

phenotype association tests since statistical tests evaluate data based on the null 

hypothesis that cases and controls from the same population. Thus, if the null hypothesis 

is incorrect, it does not seem sensible to draw inference on the haplotype distribution and 

to estimate risks from imputed genotypes. Meanwhile, genotype imputation has been 

suggested to improve the fine mapping of disease association signals. However, p-values 

calculated for observed genotypes and the imputed genotypes are not directly comparable 
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(Krawczak, 2015). The p-values for imputed genotyped may be incorrect if the null 

hypothesis is wrong since imputation base is not representative of the haplotype 

distribution as discussed above.  

Finally, genotype imputation should follow similar rules of good scientific 

practice like laboratory-based data generation. There have been a lot of efforts made in 

the past to define criteria for data quality in genetic disease association studies (Anderson 

et al., 2010). Therefore, it is necessary to develop a similar level of accuracy and 

reliability evaluation criteria for genotype imputation.  
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