
Copyright

by

Philip Christopher Milling

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211339951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for Philip Christopher Milling
certifies that this is the approved version of the following dissertation:

Identifying Infection Processes

with Incomplete Information

Committee:

Sanjay Shakkottai, Supervisor

Constantine Caramanis

David Morton

Sujay Sanghavi

Gustavo de Veciana

Identifying Infection Processes

with Incomplete Information

by

Philip Christopher Milling, B.S., M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2014

Dedicated to my family.

Acknowledgments

I would first like to thank my co-authors on the papers upon which this

thesis is based, Prof. Constantine Caramanis, Prof. Shie Mannor, and Prof.

Sanjay Shakkottai. They were extremely helpful in writing each paper, supply-

ing many ideas and suggestions, including some of the algorithms considered

in this paper. Their help with writing/editing the introduction and problem

statement was especially valuable, as was their assistance in improving the

clarity and precision of the language throughout.

I am extremely grateful to my advisor, Prof. Sanjay Shakkottai, for

his enthusiastic support and guidance. His help has been invaluable, from

formulating new research problems to assistance in any administrative issues.

He always motivated me to think about my problems in new ways, and I credit

many of my accomplishments to his assistance. Whenever I had difficulty, he

always provided value insight and advice to help me resolve any issues.

I am also thankful to Prof. Constantine Caramanis. His support and

feedback has been helpful and insightful, and he has always encouraged me

to expand my horizons. It has been a privilege to work with him on the

papers underlying this thesis. I would like to thank Prof. Sujay Sanghavi for

participating in my committee, as well as for his thought-provoking class I had

the privilege of taking. I would like to thank Prof. Gustavo de Veciana as well

v

for being a committee member and for being an enjoyable teacher. I would

also like to thank Prof. David Morton for being a committee member.

Finally, I would like to thank my family and friends. Your encour-

agement and occasional nagging has helped motivate me through this long

journey. I never would have made it here without your support.

vi

Identifying Infection Processes

with Incomplete Information

Publication No.

Philip Christopher Milling, Ph.D.

The University of Texas at Austin, 2014

Supervisor: Sanjay Shakkottai

Infections frequently occur on both networks of devices and networks

of people, and can model not only viruses, but also information, rumors, and

product use. However, in many circumstances, the infection process itself is

hidden, and only the effects, e.g. sickness or knowledge, can be observed. In

addition, this information is likely incomplete, missing many sick nodes, as

well as inaccurate, with false positives. To use this data effectively, it is often

essential to identify the infection process causing the sickness, or even whether

the cause is an infection. For our purposes, we consider the susceptible-infected

(SI) infection model. We seek to distinguish between infections and random

sickness, as well as between different infection (or infection-like) processes in

a limited information setting.

We formulate this as a hypothesis testing problem, where (typically)

in the null, the sickness affects nodes at random, and in the alternative, the

vii

infection is spread through the network. Similarly, we consider the case where

the sickness may be caused by one of two infection (or infection-like) processes,

and we wish to find which is the causative process.

We do this is a setting with very limited information, given only a single

snapshot of the infection. Only a small portion of the infected population re-

ports the sickness. In addition, there are several other limitations we consider.

There may be false positives, obfuscating the infection. Similarly, there may be

a random sickness and epidemic process occurring simultaneously. Knowledge

of the graph topology may be incomplete, with unknown edges over which the

infection may spread. The graph may also be weighted, affecting the way the

infection spreads over the graph. In all these cases, we develop algorithms to

identify the causative process of the infection utilizing the fact that infected

nodes will be clustered. We demonstrate that under reasonable conditions,

these algorithms detect an infection with asymptotically zero error probability

as the graph size increases.

viii

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1

1.1 Main Contributions . 4

1.2 Thesis Outline . 6

Chapter 2. Fundamental Problem 7

2.1 Introduction . 7

2.1.1 Contributions . 9

2.1.2 Related Work . 10

2.2 Model and Algorithms . 13

2.2.1 Infection Model . 13

2.2.2 Reporting Model . 14

2.2.3 Normalization . 15

2.2.4 Graphs . 15

2.2.5 Error Probability . 17

2.2.6 Algorithms . 18

2.3 Results . 22

2.3.1 Grids . 22

2.3.2 Trees . 27

2.3.3 Erdös-Renyi Graphs: . 31

2.4 Simulations . 34

2.4.1 Methodology . 35

ix

2.4.2 Error Rate Versus Graph Size 36

2.4.3 Error Rate Versus Infection Size 37

2.4.4 Error Rate Versus Reporting Probability 42

2.5 Conclusion . 43

Chapter 3. Distinguishing Two Infections 46

3.1 Introduction . 46

3.2 Problem Statement . 48

3.2.1 Infection Model . 48

3.2.2 Graph Independence . 49

3.2.3 Comparative Ball Algorithm 52

3.3 Main Results . 53

3.3.1 Graph Conditions . 54

3.3.2 Main Theorem . 56

3.3.3 Detectable Graphs . 58

3.3.3.1 Grids . 58

3.3.3.2 Erdös-Renyi graphs 61

3.4 Simulations . 65

Chapter 4. False Positives 69

4.1 Introduction . 69

4.2 Problem Statement . 71

4.2.1 Graph Conditions . 71

4.2.2 False Positives . 74

4.2.3 Algorithm . 75

4.3 Main Results . 76

4.3.1 Randomly Located . 77

4.3.2 Adversarial . 78

4.4 Simulations . 81

x

Chapter 5. Mixed Infections 84

5.1 Introduction . 84

5.1.1 Related Work . 86

5.2 Problem Statement . 87

5.2.1 The Infection Process 87

5.2.2 Graphs . 89

5.2.3 Algorithm . 90

5.3 Main Results . 93

5.4 Simulations . 97

Chapter 6. Unknown Edges 102

6.1 Introduction . 102

6.2 Model . 103

6.2.1 Missing Edges . 104

6.3 Results . 104

6.3.1 Short Edges . 106

6.3.2 Long Edges . 107

6.4 Simulation . 110

Chapter 7. Weighted Graphs 112

7.1 Introduction . 112

7.2 Problem Statement . 113

7.2.1 Weighted Infection Model 114

7.2.2 Graphs . 115

7.2.3 Additional Constraints 116

7.2.4 Algorithm . 117

7.3 Results . 122

7.3.1 Basic Problem . 122

7.3.2 False Positives . 128

7.3.3 Unknown Edges . 130

7.4 Simulations . 135

7.4.1 Algorithm Comparison 136

7.4.2 Weights . 137

7.4.3 Unknown Edges . 139

xi

Chapter 8. Conclusions and Future Work 141

8.1 Future Work . 143

Appendices 145

Appendix A. Chapter 2 Proofs 146

A.1 Proof of Theorem 2.3.3 . 146

A.2 Proof of Theorem 2.3.4 . 149

A.3 Proof of Theorem 2.3.5 . 152

A.4 Proof of Theorem 2.3.6 . 154

A.5 Proof of Theorem 2.3.7 . 156

A.6 Proof of Theorem 2.3.8 . 157

Appendix B. Chapter 5 Proofs 161

B.1 Proof of Theorem 5.3.1 . 161

B.2 Proof of Theorem 5.3.2 . 163

Bibliography 167

Vita 176

xii

List of Tables

2.1 Random Sickness vs. Epidemic Summary 45

xiii

List of Figures

2.1 Example Random Sickness and Epidemic. 10

2.2 Random Sickness vs. Epidemic: Grid. 38

2.3 Random Sickness vs. Epidemic: Erdös-Renyi Graphs. 39

2.4 Random Sickness vs. Epidemic: Infection Size. 41

2.5 Random Sickness vs. Epidemic: Real World Graph. 44

2.6 Random Sickness vs. Epidemic: Reporting Probability 44

3.1 Independent Neighborhood Example. 52

3.2 Two Epidemics: Various Graphs. 66

3.3 Two Epidemics: Custom Scaling. 68

4.1 False Positives: Simulation Results. 82

5.1 Mixed Infections: Varying Infection Size. 99

5.2 Mixed Infections: Varying Infection Rates. 100

5.3 Mixed Infections: Varying Bound Count. 101

6.1 Long Unknown Edge Example. 105

6.2 Unknown Edges: Simulation Results. 111

7.1 Example Weighted Infection. 119

7.2 Worst-Case for Weighted Infection. 120

7.3 Weighted Graphs: Algorithm Comparison. 137

7.4 Weighted Graphs: Varying Weights. 138

7.5 Weighted Graphs: Including Unknown Edges. 140

xiv

Chapter 1

Introduction

Research into social networks garnered increased interest in recent years.

These networks can represent relationships between people, devices, and com-

panies. In an age where online networking services such as Twitter and Face-

book play an increasingly ubiquitous role is peoples’ lives, understanding social

networks is now more vital than ever before. These services both make social

networks more important, but also makes analyzing them more feasible and

useful. There is a massive amount of information available about the inter-

actions between people, as well as about the individuals themselves, that can

analyzed to provide superior service, better targeting of ads, and many other

applications. Though the number of ways to approach and analyze this data

is practically unlimited, this thesis focuses mainly on developing our under-

standing of infections over such graphs.

An infection on a network is a simple representation of a process where

some state spreads from one person/entity to another. This is clearest in a

standard infection: a biological or computer virus. A virus spreads from an

infected person or device to another person/device they are connected to. For

people, this would be from one person to another person they spend significant

1

amount of time with. That is, it spreads between people in close social contact.

Likewise, for computers and other devices, viruses can spread through physical

networks, but also through social networks. For example, many computer virus

exploit the trust people have in email that appears to be from acquaintances

to infect additional people. These infections can be modeled as nodes (people

or devices) spreading an infection over a network. This network may be real

life social contacts, Internet social networks, physical networks, etc. We use

the SI infection model, where the infection spreads at a constant rate across

the edges of a graph, and once a node becomes infected, it never recovers.

There are two classes of approaches to understanding infections, which

can be termed the forward and backward problems. In the forward problem,

the goal is to understand how the infection spreads over the social network.

Topics in this area include understanding the speed and size of infections

and determining how the shape of the network impacts the infection’s spread.

Considerable effort has been devoted to such problems. On the other hand,

the backward problem involves trying to infer properties of the infection when

given the resulting infection. Relative to the previous class of problem, work

on this topic is lacking. This is despite of the number of potential applications

for this approach, especially with the amount of data readily available on many

social networks.

In many cases, the key question is, is there an infection occurring and

what is its causative network? Prior work on topic has focused on a high

information regime, where one has knowledge of the entire infection process,

2

and possibly even of multiple infections. The focus of thesis is on the low and

unreliable information regime. Information on the infection is sparse, and even

unreliable, characteristics of many practical data sets. Under these conditions,

the goal is to distinguish between two candidate hypothesis for the infection

process. These infection processes may be random sicknesses, or spread from

node to node on a graph. We refer to the latter case an an epidemic.

There are many applications to this problem. In the case of an illness

in a population, the ability to distinguish between a mostly random sickness

(such as the common cold) and a very infectious illness (such as the flu) can

be invaluable. Early detection of such infections could lead to faster and more

efficient resources deployment, earlier warnings for the population and similar

benefits. This is likewise true for device malfunctions. They may be due to

part defects, or be caused by malware spreading over the network. Again,

distinguishing between these two cases would be helpful in diagnosing and

thereafter solving the problem.

A similar application can be found in the case of advertising. For

instance, suppose there is a Facebook ad promoting some product. If the

advertisement is effective, product usage will spread over the Facebook social

network. In this case, we want to know if the the advertisement led to a

significant increase in the popularity of that product. Identifying an epidemic

on that network as a significant contributor to increased product use in this

case would mean that the advertisement was effective.

3

1.1 Main Contributions

We develop algorithms to determine the causative infection process

between two alternative possibilities. We do this for several low information

regimes, as well as different types of infection processes. Our approach relies

on utilizing the clustering of the sick nodes on the infection graph. When

the sick nodes are clustered on a graph, the nodes are likely the result of an

epidemic on that graph.

We evaluate our algorithm performance by the asymptotic error proba-

bility. In particular, we are interested in the range of infection sizes for which

the error probability tends to 0 as the graph size increases. Note that once

the entire graph is infected, it is impossible to distinguish between different

infection processes since there is no topological information. Likewise, when

the infection contains only a small number of sick nodes, it is likely no node

reports an infection, and again solving the problem is impossible. For each

of our algorithms, we demonstrate sufficient conditions on the infection size

(and other problem parameters) so that the error probability vanishes asymp-

totically. Our conditions are generally lenient, and in some cases, they are

order-wise optimal in the infection sizes for which they succeed. These are

supported by simulations. The simulations also provide intuition on the be-

havior of the error probability as the algorithm parameters vary.

The fundamental problem we consider first is where the infection is

either due to a random sickness (nodes are sick independently with identical

probability), or an epidemic (the infection spreads from node to nodes across

4

the graph). We develop two algorithms to distinguish between these infections

processes. In the first, we evaluate the likelihood that the sick nodes are from

an epidemic by the size of the smallest ball containing the nodes. In the

second, we rate the probability of an epidemic by the size of the smallest tree

containing all the sick nodes. We evaluate these on three standard graphs:

grids, trees, and Erdös-Renyi graphs. We find that in most cases, the ball

based algorithm is superior or equal to the tree algorithm.

The next case we consider is when the infection spreads on one of

two different graphs. We require these graphs to satisfy basic topological

constraints satisfied by many standard graphs. By comparing the relative

clustering on each graph using the minimum containing ball’s size as before,

we demonstrate it is possible to determine the correct infection graph with

high probability.

We extend our algorithm to be more robust by eliminating outliers. We

apply this algorithm to the case when there are false positives, both random

and adversarial. Another variation we consider is distinguishing between two

mixed infection processes, where a random sickness and epidemic processes

occur simultaneously. However, in one process, the epidemic is the dominate

process. A similar robust algorithm is shown to succeed in this case as well.

In addition, we examine when some edges on the graph are not known, which

we show can also be solved by our algorithm.

The final case we consider is weighted graphs. In these graphs, the

infection may spread at different rates between different pairs of nodes. We

5

develop a modified algorithm that uses the size of the largest ball that con-

tains a minimum density of sick nodes. This algorithm is shown to achieve

asymptotically zero error probability and in simulations, may perform better

than previous algorithms.

1.2 Thesis Outline

In Chapter 2, we consider the fundamental problem of distinguishing

a random sickness from an epidemic. In Chapter 3, there are two different

epidemics that must be distinguished. In Chapter 4, we analyze the case

when there are false positives. The problem we consider in Chapter 5 is when

the infection processes are a mixture of random sicknesses and epidemics. In

Chapter 6, we examine the case when some edges of the infection graph are

unknown. Finally, we analyze infections on weighted graphs in Chapter 7.

Our conclusion and opportunities for future work are presented in Chapter 8.

6

Chapter 2

Fundamental Problem

2.1 Introduction

It is vital to understand and identify the spread of infections through

networks, social and physical, in order to respond appropriately, whether

through quarantines, predicting future spreads, planning for future actions,

etc. In these circumstances, the key challenge is to understand the process by

which the infection is spreading with limited information available.

The situation we consider is when the infection is observed at a par-

ticular time. Other time related information, particularly the time when each

sick becomes infected, is not available. Likewise, it is not known which node

infects which other nodes. Without the time history of the infection, it is im-

possible to directly determine how the infection spread, including determining

the underlying network. However, the set of sick nodes can be used to evaluate

whether a provided hypothesis for the infection process is likely.

We suppose that there are two candidates for the process by which the

The work in this chapter appears in the following publication:
Chris Milling, Constantine Caramanis, Shie Mannor, and Sanjay Shakkottai. Network
forensics: random infection vs spreading epidemic. SIGMETRICS Perform. Eval. Rev.,
40(1):223–234, June 2012.

7

infection is spreading, one of which represents the true infection process. The

infection is either the result of a random sickness, or an epidemic. The param-

eters of these hypotheses are fully specified to the algorithm. In particular, the

full infection network is known. The collection of sick nodes is used to evaluate

both processes to determine which is the most likely cause of the infection.

In an epidemic, the sickness travels along the edges of the network

from a source and results in a clustered infection. On the other hand, in a

random sickness, each node is sick randomly and independently with some

probability. Then there is no structural relationship between sick nodes in a

random sickness. Exploiting this characteristic helps us determine whether or

not a collection of sick nodes represents an epidemic. For example, there may

be many people with flu-like symptoms being treated in some area. We would

like to determine whether this represents an actual outbreak of the flu, or just

an occurrence of several colds, using the topological information in the set of

sick people.

If the full set of infected nodes were known, this problem would be

relatively simple to solve in most circumstances. Simply testing the connec-

tivity of the nodes would be sufficient. However, real data is almost never so

complete. Thus, we assume the knowledge of the sick nodes is only partial.

This information may be available from self-reports of the infection, which will

necessarily not include all the nodes. For example, only a portion of people in-

fected with an illness may go to the doctor, or only a portion of those infected

may be correctly identified. Alternatively, if the data is from a survey, it is

8

impossible to reach every person. The fact that the knowledge of the infected

nodes is incomplete must be considered to accurately discover the spreading

mechanism of viruses. This limitation can be modeled by having each node

decide randomly whether to report the infection.

We phrase this as a hypothesis testing problem. Our null hypothesis

is that the infection is caused by a random sickness. On the other hand,

the alternative hypothesis is that the infection resulted from an epidemic. In

a Type I error, a random sickness is mistaken as an infection, because for

example, the randomly sick nodes were grouped like an infection. A Type II

error is when an infection is incorrectly diagnosed as a random sickness, often

because the infection has grown too large. Figure 2.1 provides examples of

when a Type I and a Type II error might occur.

In this chapter we consider only this most basic formulation. The algo-

rithms we develop represent a fundamental and simple solution to the problem

of identifying the correct infection process. Later chapters cover extensions of

this problem in additional limitations on the information available, and for

other infection models. These will build on the approach developed here.

2.1.1 Contributions

We develop several algorithms to solve these problems. These algo-

rithms use the clustering of the sick nodes to estimate the most likely causative

process from the two hypotheses. We term these algorithms the Threshold Ball

Algorithm and the Threshold Tree Algorithm. These algorithms use the small-

9

Figure 2.1: Grid graphs with infected nodes red. The left-hand graph shows
a possible Type I error, with randomly sick nodes unfortunately clustered. If
there are very few reporting sick nodes, such errors are impossible to rule out,
hence our results impose an assumption that at least log n nodes report. The
right-hand graph shows a possible Type II error, where the infection has spread
out considerably, and the many false negatives make the infection appear like
a random sickness. If the infection has spread too far, such errors are again
difficult to rule out, hence our results provide guarantees in the presence of
upper bounds on the number of infected nodes.

est ball and smallest tree, respectively, that contain all the reporting sick nodes

as the key measurement to evaluate whether the sickness is random, or due

to an epidemic. These algorithms compare that measurement to a calculated

threshold to determine whether the sick nodes are clustered like an epidemic.

We prove that for a reasonable range of infection sizes, these algorithms have

a probability of error that tends to 0 as the infection size increases.

2.1.2 Related Work

Most of the work on the susceptible-infected (SI) infection model has

focused on understanding the spread and speed of infection, the analytic side

10

of infections. These infections have been analyzed has been for a variety of

settings, such as for graph with both local and global spreading [4], and even

where infected nodes are mobile [24]. Though our problem is not on this

analytic side, we leverage many such results in our proof.

A majority of the work on the inference side of infections is on esti-

mating various parameters of the infection. Demiris and O’Neill estimate the

infection rate using time data for the complete set of infected nodes [15, 16].

One method to doing this is to use a Bayesian inference approach [15]. Another

interesting approach is to use Markov chain Monte Carlo (MCMC) methods

to estimate the infection rate [16, 58].

A related idea is inferring the source of the infection. Shah and Zaman

develop an algorithm to determine the most likely source of an infection given

the complete set of infected nodes [56]. The method can be efficiently cast as

a belief-propagation algorithm to find the maximum-likelihood estimator for

tree. It can be applied to general graphs by approximating them by breadth

first search (BFS) trees to estimate the infection source. They show through

simulations that the estimated infection source is often close to the true in-

fection source for several types of graphs. Following this work, there have

been extensive studies on this problem of determining an infection’s source in

various contexts [55, 37, 38, 17, 32, 36, 63].

Netrapalli and Sanghavi consider the related problem of estimating

the graph structure using the infection information [51]. In this instance, no

knowledge regarding the network structure is provided. However, they use

11

the full set of infected nodes, as well as the time information regarding when

each node is infected. Multiple infections are performed on this same graph,

which allows their algorithm to detect patterns in infection times, and thereby

infer a graph structure similar to the true network. They develop both a

maximum-likelihood and greedy algorithm, and establish probability of error

upper bounds based on the number of samples.

A similar problem is also considered by Gomez-Rodriguez [22] with

random incubation times (the time from when a node becomes infected until

it can infect its neighbors). They develop an algorithm that approximates the

maximum-likelihood graph and bound the log-likelihood distance from the

optimum graph. The ability to determine the full graph structure is similar to

determining the true infection process considered here, except that candidate

processes are not required. However, this approach requires extreme amounts

of information that is not fully available in many contexts. First, the full

infection set with time stamp information is required, as opposed to only

a partial infection set with no time information. Second and perhaps more

problematic, this data must be obtained over many infections. Then though

their solution may be considered more powerful, their data requirements make

it impossible to use in the minimal information regime.

An alternative interpretation of our problem is that we seek to deter-

mine if any of the likely ‘infection shapes’ (from the set of infected nodes) ex-

plain the known sick nodes. From this perspective, our work is closely related

to the problem in [1], [2]. In that work, the authors consider a hypothesis

12

testing problem where every node reports an i.i.d standard normal random

variable, except (in the alternative hypothesis) for a cluster of nodes reporting

a normal with positive mean, from a class of possible clusters.

2.2 Model and Algorithms

In this section, we formally specify the problem details. The models

described here form the foundation of the rest of this thesis.

2.2.1 Infection Model

We consider an infection spreading on a graph G = (V,E), where n =

|V |, the number of nodes. The infection spread according to the standard

susceptible-infected (SI) infection model [20]. Initially, at time 0, a random

node on the graph is selected to be infected. This node is the infection source.

For each edge connected from the infected node to a susceptible node, a clock

is started that expires after duration which is independent and exponentially

distributed with rate 1. After the clock for an edge expires, the adjacent

susceptible node (if it has not been infected already along a different edge)

becomes infected. Then, new clocks are started for each edge between this

node and adjacent susceptible nodes in the same way as before. In this way,

the infection spreads at rate 1 through the network until time t has passed.

In addition, we also consider a random infection. In this case, the time

t is not used. Rather, each node independently becomes sick with a probability

q′. Then the expected number of sick nodes is determined by q′ rather than by

13

time t, and is equal to q′n. By setting q′ appropriately, the expected infection

size can be normalized to a desired value.

Though we phrase the random sickness as being fixed in time, it is also

possible to imagine it as an infection spreading on a complete graph. Since

there is no structure distinguishing different nodes, the resulting sick nodes

would appear random. In this sense, distinguishing a random sickness from an

infection is the same problem as distinguishing two different infection graphs.

The main difference is that, even if the expected number of sick nodes is the

same, a random sickness has less variance than an infection on a complete

graph.

2.2.2 Reporting Model

After the infection proceeds for time t, a subset of the infected nodes

report. The reporting mechanism is simple, and identical for both processes.

At this time, each sick nodes decides to report their sickness independently

with probability q. We define the full set of sick nodes as S, and the set of

reporting nodes as Srep. Therefore, E[|Srep|] = qE[|S|]. If q is very small, then

we may only have a very small proportion of the sick nodes report, which is the

most difficult setting for this problem. In our theorems, we only require that

a logarithmic (in n) number of sick nodes report, even if the entire infection is

much larger. Both t and q may depend on n, and we write t(n) and q(n) when

it is necessary to make this dependence clear.

14

2.2.3 Normalization

The goal in solving this problem is to use the ‘shape’ of the sick nodes to

determine the causative infection process. To highlight this, it is necessary to

remove other factors that could be used when possible. In particular, we must

remove differences in the expected number of infected nodes. If the expected

infection size was significantly different in each process, the infection size itself

would suffice to distinguish the two processes. For this reason, we want to

match to expected infection size. For the case of a random sickness, q′ (the

probability of a node being sick) is set so that q′n is equal to the expected size

of the epidemic.

2.2.4 Graphs

In order to analyze the asymptotic performance of our algorithms, we

consider infinite families of graphs, where the graph size has no upper limit.

Formally, we denote a family of graphs as G = {G(n)}. Each G(n) is a collection

of graphs G(n), each of degree n. For each of these, there is a (possibly trivial)

probability space
(
G(n), σ(G(n)), P (n)

)
. A series of graphs {G(n)} is chosen

from
∏

n G
(n), and an infection spreads on each graph as described as above.

Examples of families are d-dimensional grids, Erdös-Renyi graphs, and trees.

An mentioned previously, the infection time t(n) and reporting probability q(n)

may depend on the graph size. We are interested primarily in the properties

of the infection as n → ∞. For additional clarity in our results, we drop the

superscript (n) when the n is clear from context.

15

For this problem, we consider standard graph topologies representative

of the typical social networks. There are two main types of topologies to con-

sider. The first type are geographic topologies. These topologies are for social

networks where social contact is primarily from geographic proximity. The

distinguishing aspects of these graphs are the large number of local cycles and

absence of long range edges. That is, they have a relatively large diameter. A

convenient representative from these graphs are multidimensional grid graphs.

These graphs are be represented as a lattice, where adjacent points of the

lattice are connected by an edge. Such graphs exhibit the required properties

and are simple enough to analyze. We connect the opposing sides forming a

torus to avoid edge effects.

The second type of topology that must be represented is a tree-like

social network. These topologies have much lower diameters (logarithmic in

the size of the graph). Most social networks, especially over the Internet, fit in

this category. In addition, this problem is much more difficult on these types of

graphs because the infection spreads much faster. A suitable representative for

this graph topology is an Erdös-Renyi graph. An Erdös-Renyi graph is formed

by starting with a graph with no edges. Then an edge is randomly added

between each pair of nodes independently with a fixed probability. This type

of graph will exhibit the desired properties when the edge probability is set

appropriately. We also consider trees, which have the same local structure as

Erdös-Renyi graphs. The performance of our algorithms on each these graphs

also provides an insightful contrast.

16

These topologies represent our reference topologies for the purpose of

determining how the graph structure determines the performance of our al-

gorithms. In addition, we perform simulations on these graphs, as well as

graphs from real data, to evaluate our empirical performance and support our

theorems.

2.2.5 Error Probability

We assume the prior probability of both processes are equal. We label

the random sickness as Process 0 and the epidemic as Process 1. We phrase the

error probability in the language of hypothesis testing. The null hypothesis H0

is that Process 0 is the true infection process. Correspondingly, the alternative

hypothesis H1 is that Process 1 is the true infection process. The error where

the infection is caused by Process 0, but we label it Process 1, is termed a

Type I error. Likewise, when the infection is caused by Process 1, but we

believe it is caused by Process 0, it is a Type II error. Then the overall error

probability is the average of the Type I and Type II error probabilities.

Another major question to be resolved is how the algorithm’s perfor-

mance should be judged. The goal is to choose the correct infection process

with the minimum probability of error. One possible measure is the asymptotic

error rate of the algorithm. However, for many graphs, the error probability

does not decrease exponentially in the graph size, and the probability is highly

dependent on the expected infection size. The objective however is to estab-

lish a clear range of parameters for which this problem can be solved, so this

17

measure is unsuitable.

For this reason, the performance of the algorithm will be measured in

the range of parameters (such as infection size) for which the probability of

error decays to 0 as the graph size increases without bound. Equivalently, we

are interested when both the Type I and Type II error probability decays to 0.

That is, the algorithm is measured by the range of parameters for which the

error probability eventually is low. Though the error probability may decay

slowly, this is a straight forward condition on when the algorithm succeeds,

allows for clear valid parameter ranges, and is relevant for all graph topologies.

2.2.6 Algorithms

The key idea we use is that when the sickness is due to an epidemic,

the sick nodes will be clustered on the graph. On the other hand, in a random

sickness, the nodes will be spread out evenly over the network. However, there

are multiple ways to measure clustering of sick nodes.

We use two methods to rate the clustering, ‘ball clustering’ and ‘tree

clustering’. These are the basis of the two algorithm we consider, the Threshold

Ball Algorithm and Threshold Tree Algorithm respectively. The idea of these

clustering is as follows. For ‘ball clustering’, we look at the smallest radius ball

that contains all the sick nodes. The radius of this ball acts as a ‘score’ for the

level of clustering. If the radius is small, then the sick nodes are well clustered.

On the other hand, if the radius is close to the radius of the entire graph, then

the sick nodes are heavily separated. For ‘tree clustering’, the ‘score’ is the

18

number of nodes in the smallest tree containing all the sick nodes. In this

case, the measure can be also be phrased as the smallest possible infection

that could have resulted in the set of reporting sick nodes. Once the score

is determined, it is compared against a threshold determined either by the

infection time t or the number of reporting nodes.

To define our algorithms, we use the following definitions. With a

graph G, a node v, and radius r, we use Ballv,r(G) to denote the collection

of all nodes on G that are at a distance of no more than r from the central

node v, where graph distance is measured by hop-count. For any collection of

nodes S, we now denote by Ball(G,S) the smallest-radius ball that contains all

the nodes in S, and we let BallRadius(G,S) denote its corresponding radius.

Finally, let Tree(G,S) be the smallest subtree of G containing all nodes in

S, and TreeSize(G,S) be the number of nodes in this tree. The algorithm to

determine BallRadius(G,S) can be specified simply as follows.

Determining the size of the smallest tree containing all the sick nodes

is a more difficult problem. This tree is the minimum Steiner tree [29], and

finding it is an NP-hard problem. However, there are efficient algorithms that

give approximate solutions, guaranteeing no more than twice the optimum

number of nodes or better [44, 26].

From these measures of clustering, we can then define the Threshold

Ball Algorithm and Threshold Tree Algorithm. As mentioned, these algorithms

compute a ‘score’ rating the clustering of the sick nodes appear. If the score

is below a specified threshold (which would be set using the infection time t),

19

Algorithm 1 BallRadius

Input: Graph G; Set of reporting sick nodes Srep;
Output: Radius r

k ←∞
for all v ∈ V do
d← 0
for all u ∈ Srep do

if dist(u, v) > d then
d← dist(u, v)

end if
end for
if d < k then
k ← d

end if
end for
return k

then the sick nodes are sufficiently clustered and algorithm labels the sickness

an epidemic.

Since it may not be possible to know the duration of the epidemic, we

also consider adaptive versions of these algorithms. In this case, the threshold

is determined by using the number of infected nodes and the graph topology

to estimate the infection time. With a sufficiently accurate estimate of the

infection time, the threshold can be computed as before. These algorithms are

analyzed in a similar way as the basic threshold algorithms.

20

Algorithm 2 Threshold Ball Algorithm

Input: Graph G; Set of reporting sick nodes Srep

Parameters: Threshold m
Output: EPIDEMIC or RANDOM

k ← BallRadius(G,Srep)
if k ≤ m then

return EPIDEMIC
else

return RANDOM
end if

Algorithm 3 Threshold Tree Algorithm

Input: Graph G; Set of reporting sick nodes Srep

Parameters: Threshold m
Output: EPIDEMIC or RANDOM

k ← TreeSize(G,Srep)
if k ≤ m then

return EPIDEMIC
else

return RANDOM
end if

21

2.3 Results

We prove that the probability of error tends to 0 for a reasonable range

of infection sizes. For grid graphs, the sufficient conditions to guarantee low

probability of error for the Threshold Ball Algorithm are looser than those for

the Threshold Tree Algorithm. That is, the Threshold Ball Algorithm seems

to perform better than the Threshold Tree Algorithm on a grid, and our sim-

ulation results reflect this as well. However, we have not proven necessary

conditions that confirm this result. For tree graphs, our results suggest that

the Threshold Tree Algorithm is slightly superior to the Threshold Ball Algo-

rithm. On Erdös-Renyi graphs, the conditions are similar, but empirically, the

Threshold Ball Algorithm performs somewhat better. Overall, the Threshold

Ball Algorithm performs better and is much more efficient.

2.3.1 Grids

First we analyze the performance of our algorithms on grid graphs. Let

the graph G = Grid(n, d) be such a grid network with n nodes and dimension

d, so the side length is n1/d. We avoid edge effects by adding edges that wrap

from one side to the other, which makes the graph a torus. This modifica-

tion allows us to avoid dealing with additional complexities resulting from the

choice of the initial source of the infection.

In order to evaluate our algorithms on a grid, we need to understand

the expected shape of the epidemic. Since we model the time it takes the

infection to traverse an edge as an independent exponentially distributed ran-

22

dom variable, the time a node is infected is the minimum sum of these random

variables over all paths between the infection origin and that node. This sim-

ply phrases the infection process in terms of first-passage percolation on this

graph. This allows us to use a result characterizing the ‘shape’ of an infec-

tion on this graph (see [34]). Let I(t) be the set of infected nodes at time t.

Identifying the nodes of the graph with points on the integer lattice embed-

ded in Rd with the infection starting at the origin, let us put a small `∞-ball

around each infected node. This allows us to simply state inner and outer

bounds for the shape of the infection. To this end, define this expanded set as

B(t) = I(t) + [−1/2, 1/2]d.

Lemma 2.3.1 ([34]). There exists a set B0 and constants C1 to C5 such that

for x ≤
√
t,

P{B(t)/t ⊂ (1 + x/
√
t)B0} ≥ 1− C1t

2de−C2x

and

P{(1− C3t
−1/(2d+4)(log t)1/(d+2))B0 ⊂ B(t)/t}

≥ 1− C4t
d exp (−C5t

(d+1)/(2d+4)(log t)1/(d+2)).

That is, the shape of the infected set B(t) can be well-approximated

by the region tB0. In addition, the variation of the edge is on the order of
√
t

or less.

Moreover, one can show that this set B0 is symmetrical and convex.

Define µ
4
= supx{(x, 0, ..., 0) ∈ B0}. That is, µ is effectively the rate the

23

infection spreads along an axis. Then B0 contains an `1-ball and is contained

in an `∞ ball: {x : ‖x‖1 ≤ µ} ⊂ B0 ⊂ [−µ, µ]d. Note that µ does not depend

on the realization of the process, only the dimension of the grid. Though this

result is for infinite grids, it applies to the torus case as well. One way to

see this is to label the nodes of an infinite grid ‘1’ to ‘n’ so that all nodes

where each coordinate is the same modulo n1/d have the same label, forming

an infinite pattern of the size n torus. Since the non-self-intersecting paths on

the torus correspond to such paths on this infinite grid, and the infection time

of a node is the minimum traversal time over all such paths, the infection on

the torus spreads no faster than it does on the infinite grid. In addition, we

consider only infection times sufficiently small that edge effects do not come

into play.

The second result we need is to show that the number of reporting

sick nodes is close to the expected number. This follows from the following

well-known Chernoff bound.

Lemma 2.3.2. If at least s nodes are sick, then the number of reporting nodes

will be at least (1− δ)qs with probability at least 1− exp(−(1− δ)2qs/2).

For each result, we first present sufficient conditions when the threshold

is based on the time t. When the time is known, the estimated expected

infection size and spread can be determined, which allows the threshold to

be set more accurately. However, the infection duration or speed would often

not be known. In that case, the infection time can be estimated from the

24

number of reporting infected nodes, and the threshold can be set using this

estimation. With the adaptive thresholds, the maximum infection size in our

sufficient conditions is typically reduced by a factor of log n.

Theorem 2.3.3. Suppose the infection spreads on a grid, and we use the

Threshold Ball Algorithm. Suppose that the expected number of reporting nodes

scales at least as log n.

(a) Suppose t is known. Set the threshold m = 1.1dµt. Then there exists

constant C6 such that, if the expected number of infected nodes is less

than C6n,

P (error)→ 0.

(b) Next, suppose time t is unknown. Let Xrep be the number of nodes re-

porting an infection, |Srep|. Use threshold m = 1.1d2(Xrep log log n/q)1/d.

Then provided that for a constant C7, the expected number of infected

nodes is less than C7n/ log log n,

P (error)→ 0.

Proof outline. This theorem follows using the shape theorem given in Lemma

2.3.1: the epidemic will be contained within a ball with radius scaling linearly

with time. A simple counting argument is sufficient to show that the random

sickness will be sufficiently spread out. The proof details are given in the

appendix.

25

Then for the Threshold Ball Algorithm, the infection can be identified

when up to a constant fraction of the network is infected. This is clearly order-

wise optimal. The reason this ball algorithm works so well is that the shape of

the infection can be well approximated by ball. This fact can be shown from

use percolation theory on infinite lattices [34]. We find that the Threshold Ball

Algorithm heavily outperforms the Threshold Tree Algorithm in this setting.

Theorem 2.3.4. Consider an infection spreading on a grid. Apply the Thresh-

old Tree Algorithm and assume the expected number of reporting nodes scales

at least as log n.

(a) Consider when t is known. Use threshold m = (3µt)d. Then there exists

constant C8 such that, if the expected number of infected nodes is less

than C8n/(log log n/q)d,

P (error)→ 0.

(b) Consider unknown t. Define Xrep as the number of nodes reporting an

infection, as set the threshold to m = Xrep log log n/q. If there exists

constant C9 such that expected number of infected nodes is less than

C9n/(log log n/q)3d,

P (error)→ 0.

Proof outline. The size of the Steiner tree for the epidemic is clearly no larger

than the size of the epidemic, so the Type II error probability clearly goes to

0. We lower bound the size of the Steiner tree containing a random sickness

26

by dividing the grid into blocks, and showing the tree must travel through a

large number of these blocks. See the appendix for details.

2.3.2 Trees

In this section, we analyze the algorithm performance on a tree. A tree

is represents a simple type of social network, where there are no cycles that

complicate the infection process. Thus, let G be a balanced tree with n nodes,

constant branching ratio c, and a single root node a. To reduce edge effects,

we force the infection to start at the root of the tree instead of being randomly

placed. This makes the infection spread more evenly through the network and

not be bottlenecked by the root node (as it would be if the infection started

at a leaf node).

First, we provide sufficient conditions for the Threshold Ball Algorithm

to succeed with probability tending to 1. As before, the thresholds are first set

based on t, and an adaptive threshold is set based on the number of infected

nodes. A key fact used here is that on trees with a fixed branching distribution,

the infection speed (the graph distance from the root of the farther infected

node divided by the time) can be upper bounded with high probability as time

scales.

This speed bound follows from results in first passage percolation [7]. In

particular, one can compute the fastest-sustainable transit rate. This quantity

is basically the time from the root to the leaves, normalized for depth, as the

size of the tree scales. Formally (again, see [7] for details), let us consider

27

a limiting process of trees whose size grows to infinity, with Γn denoting the

balanced tree on n nodes, and δ(Γn) denoting the set of paths from the root to

the leaves, and for a node v ∈ p for some path p ∈ δ(Γn), let Xv denote the time

it takes the infection to reach node v. Then the fastest-sustainable transit rate

is defined as: limn infp∈δ(Γn) lim supv∈p
Xv

depth(v)
. Basic results [7] show that this

quantity exists, and thus shows that the rate at which an infection travels,

defined as the maximum distance of the infection from the root over time,

converges to a constant b that depends on the branching ratio. The probability

that an infection travels at a faster rate converges (exponentially) to 0 in the

size of the tree.

Computing the speed constant may be difficult. One simple method

that is applicable to all graphs with maximum degree d̄, upper bounds the

infection process by an infection on a degree d̄ tree. See Section 3.3.3.2 for

additional detail regarding this technique. Then we can use a bound in [7] to

find that a degree d̄ tree satisfies the speed condition with speed 1.1(d̄ + 1).

Therefore, the original graph satisfies it with the same speed. Depending on

the graph structure, this bound may be weak.

Theorem 2.3.5. Suppose G is a balanced tree with constant branching ratio

and the Threshold Ball Algorithm is used. Additionally, suppose t is sufficiently

large that the expected number of reporting nodes is at least log n.

(a) In the case t is known, there exist constants b, β such that if the expected

number of infected nodes is less than nβ, then the algorithm with threshold

28

m = 1.1bt succeeds:

P (error)→ 0.

(b) On the other hand, suppose t is not known. Define Xrep as |Srep|.

Then there exists constants b2 and β, such that with the threshold set

to m = 1.1b2 log(Xrep(log log n)2/q), where if the expected number of in-

fected nodes is less than nβ,

P (error)→ 0.

The constant β is identical in both parts (a) and (b).

Proof outline. This result follows using the speed bound for trees. In addition,

the random sickness (nearly) always contains a leaf node under the given

conditions, and therefore can only be covered by a ball of maximum size. The

details of the proof are presented in the appendix.

That is, there is some exponent β < 1 such that, as long as the expected

number of infected nodes is less than nβ, the Threshold Ball Algorithm works

well on a tree. Next, we consider the Threshold Tree Algorithm.

Theorem 2.3.6. Consider a balanced tree G with constant branching ratio and

suppose that the Threshold Tree Algorithm is applied to this problem. Suppose

q = ω(log log n/ log n), and t is sufficiently large that the expected number of

reporting nodes is at least log n.

29

(a) Consider when t is known. Then for any constant α < 1, if the expected

number of infected nodes scales as less than nα, with threshold m =

E[|S|] log log n,

P (error)→ 0.

(b) Suppose t is not known. Set Xrep = |Srep|, the number of nodes reporting

an infection. Use threshold m = Xrep(log log n)3/q. Then if for any

constant α < 1, the expected number of infected nodes is less than nα,

P (error)→ 0.

Proof outline. We again can upper bound the Steiner tree size of the epidemic

by the size of the epidemic itself. Lower bounds on the Steiner tree size for the

random sickness are obtained by showing the tree must include most of the

branches down to a certain depth due to the large number of sick leaf nodes.

See the appendix for the complete details of the proof.

Note that the Ball Algorithm succeeds until the farthest infected node

reaches the edge of the graph. At this point, the ball radius can increase no

further, thus there is no hope of distinguishing an epidemic from a random

sickness. Since this farthest point travels at a faster rate than the bulk of

the infection, the Ball Algorithm can only work up to some time logc n/b.

However, the Tree Algorithm can still correctly identify an infection with high

probability nearly to the point where Θ(n) nodes are sick. This includes

infection times close to logc n, the time it takes for almost every node to be

30

infected. From this, we see that the Tree Algorithm works for a wider range of

times compared to the Ball Algorithm. This is demonstrated by simulations

in Section 2.4.

2.3.3 Erdös-Renyi Graphs:

The final graph we consider are Erdös-Renyi graphs. These represent

standard social networks, with both a small diameter and rapid epidemics.

Both of these factors make this problem more challenging. Define the graph

G = G(n, p) to be the graph with n nodes and for each pair of nodes, there

is an edge between them with probability p. In the section above, we used

c to denote the branching ratio. We overload notation and use it again to

measure the spread of the graph, but here as the (approximate) expected

degree: let p = c/n with c > 1. In this regime, the graph is almost surely

disconnected, but there is a giant component. Since this problem would be

trivial on a disconnected graph, we limit both the epidemic and random sick

nodes to the giant component. Unlike the case of trees, we are unable to

distinguish infection from random sickness for close to a constant fraction of

nodes. Instead, we consider infections that cover only o(n) nodes. As is well-

known (e.g., [18]) in this connectivity regime, the graph is locally tree-like, and

hence tree-like in the infected region. Then locally, the infection behaves very

similar to the trees in the last section, and as might be expected, our results

are similar.

As before, first we analyze the Threshold Ball Algorithm.

31

Theorem 2.3.7. Suppose we use the Threshold Ball Algorithm with G =

G(n, p). Consider the case when the expected number of reporting nodes is no

less than log n.

(a) Suppose we have knowledge of t. There are constants b3, β2 where, using

threshold m = 1.1b3t and with expected number of infected nodes less

than nβ2,

P (error)→ 0.

(b) Consider unknown t. We set Xrep to be the number of nodes reporting

an infection, |Srep|. Then there exists constants b4 and β2 such that for

threshold m = b4 log(Xrep(log log n)2/q) and if the expected number of

infected nodes is less nβ2,

P (error)→ 0.

The constant β2 is the same for both (a) and (b).

Proof outline. The Type II error probability is shown to be low using a similar

speed result as in the case for trees. Neighborhood size bounds are used to

establish that a random sickness is spread out so the Type I error rate also

decays. The details of the proof are presented in the appendix.

Therefore, the form of the sufficient condition is the same as for trees:

for a constant β2, the Threshold Ball Algorithm will succeed for expected

infection size up to nβ2 . However, this constant β2 is not the same as β from

32

the previous section. The condition for the Threshold Tree Algorithm is easier

to compare.

Theorem 2.3.8. Suppose G = G(n, p). Also suppose the Threshold Tree

Algorithm is applied. Assume that the expected number of reporting nodes is

at least log n and q is constant.

(a) Consider the case where t is known. Let the threshold m = E[|S|] log log n.

For any α < 1/2, if the expected number of infected nodes scales as less

than nα,

P (error)→ 0.

(b) Suppose we have unknown t. Define Xrep as |Srep|. In this case, set the

threshold to be m = Xrep(log log n)3/q. Then like before, for any constant

α < 1/2, if the expected number of infected nodes is less than nα,

P (error)→ 0.

Proof outline. Again, we use the size of the epidemic to bound the size of the

Steiner tree containing the reporting nodes in that case. Bounding the size of

the Steiner tree of the random sickness is much harder. We examine the value

equal to the sum over all reporting nodes of the distance from that node to the

nearest reporting node. It can be shown that the Steiner tree size is at least

half this value. Using appropriate bounds on neighborhood sizes, we lower

bound this quantity. The proof details can be found in the appendix.

33

Then, the Threshold Tree Algorithm algorithm works for exponents up

to 1/2, as opposed to 1 for a tree. For the Erdös-Renyi graph, the sufficient

condition for the ball and tree algorithms are not directly comparable. Our

simulations results are similar. The Threshold Tree Algorithm has a lower error

probability at smaller infections sizes, but the Threshold Ball Algorithm works

better for larger infections, when the problem is more challenging. Overall,

the Threshold Ball Algorithm seems superior for this graph topology.

2.4 Simulations

In this section we provide simulation-based evidence of the theoreti-

cal results of the previous sections. The simulations aim to demonstrate, in

particular, two facts. First, the thresholds specified in the previous sections

do actually work empirically: as the graph size increases, the probability of

both types of error decrease to zero. In addition, this provides insight into

how quickly the probability of error decays. While our results include rate

estimates given as part of the proof of correctness, we have not made an effort

to optimize these in this work. Second, we seek to describe the relative per-

formance of each algorithm, and show that it is as described above. Thus, we

show that the Ball Algorithm outperforms the Tree Algorithm on a grid; the

Tree Algorithm performs better than the Ball Algorithm on a balanced tree

(for larger infections); and on an Erdös-Renyi graph, the performances are

similar, with the Ball Algorithm performing slightly better. We accomplish

this by determining the probability of error for a range of infection times. We

34

call an algorithm superior if it works in a wider range of times.

2.4.1 Methodology

We executed both of our algorithms under a variety of conditions to

estimate the probability of error. In order to use the Threshold Tree Algorithm

in a reasonable time frame, it was necessary to use an approximate Steiner

tree algorithm. Naturally, since the exact problem is NP-hard, this would

be required in any practical use of this algorithm at the moment. However,

as a consequence, the empirical results may differ from the true theoretical

result that would be obtained by employing an exact algorithm. Nevertheless,

approximation algorithms typically have reasonable performance and we do

not expect significant deviation from the correct results. The approximation

algorithm we use is the Mehlhorn 2-approximation algorithm provided by the

Goblin library [44]. This algorithm is an efficient algorithm which produces a

Steiner tree with no more than twice the optimal number of edges.

Each of the points in these results represents the average of 10000 runs.

The average infection size, which is used to normalize the expected infection

size in a random sickness, was determined by averaging the results of 10000

infections. For each simulation, we use a reporting probability q = 0.25 (unless

otherwise specified), and other parameters (n, t and m) as specified in each

section below. Finally, the graphs are plotted with error bars at one standard

deviation.

35

2.4.2 Error Rate Versus Graph Size

Though our theoretical results have characterized the range for which

each algorithm works, naturally we wish to see empirically the error proba-

bility for each algorithm and the rate at which the error decreases as graph

size increases. Both Type I and Type II error probabilities were determined

for each algorithm and graph topology. For this section, we have chosen time

to keep the fraction of infected nodes at a consistent scaling. In particular,

t = 0.2
√
n for the grid, and t = 0.5 log(0.5n) with p = 2/n for the Erdös-Renyi

graph. The exact constants for these scalings were chosen empirically so that

the probability of error was low and the Type I and Type II errors were as bal-

anced as possible. The thresholds m were also chosen with the same scaling,

according to our theoretical results. To be exact, for the grid, the Threshold

Ball Algorithm used threshold m = 0.75
√
n and the Threshold Tree Algo-

rithm used threshold m = 0.28n. For the Erdös-Renyi graphs, the Threshold

Ball Algorithm used threshold m = 0.69 log(4.33n) and the Threshold Tree

Algorithm used threshold m = 0.03
√
n log n log n.

Figure 2.2 presents our results for grid graphs. The error probability

of the Threshold Ball Algorithm on a grid is very low, while the tree algo-

rithm performs relatively poorly. This is expected since the Threshold Ball

Algorithm is closely aligned with the shape of an epidemic on this graph. The

Threshold Tree Algorithm has a much higher error probability which decays

slowly with n, in particular the Type II error.

Next, the results for Erdös-Renyi graphs are in Figure 2.3. Here we see

36

again that the Threshold Ball Algorithm performs better than the Threshold

Tree Algorithm, at least for larger n, and that the error probability also seems

to be decreasing faster for the Threshold Ball Algorithm as well. Though

a tree more closely matches the infection shape on an Erdös-Renyi graph,

it is also easier for a random sickness to mimic a small tree, especially for

small world graphs like Erdös-Renyi graphs. This causes the Threshold Ball

Algorithm to be ultimately superior. The Threshold Tree Algorithm is superior

for larger infection sizes on bottle necked graphs (such as trees) where the

random sickness can be easily distinguished, as we see in Section 2.4.3.

2.4.3 Error Rate Versus Infection Size

Next, we examine empirically how the infection duration affects the

probability of error for each of our algorithms. As discussed above, we compare

the two algorithms by the range of infection sizes for which they work, and

accordingly, we call an algorithm superior if it maintains a lower probability

of error for a larger infection size (fraction of total infected nodes). We use

thresholds that minimize the empirical overall probability of error. That is,

the sickness was chosen to be either an infection or simply random with equal

probability, and the threshold with minimum probability of error from the

simulations was chosen.

These results are presented in Figure 2.4 for grids, trees, and Erdös-

Renyi graphs. For each of the graph topologies, we used a graph size of

n = 1600. The error probability is plotted against the average infection size

37

Figure 2.2: Empirical Type I and Type II error probability vs graph size for grid graphs.

The sample size is 10000 and infection size scales linearly with n.

38

Figure 2.3: Empirical Type I and Type II error probability vs graph size for graphs

G(n, 2/n). The sample size is 10000 and infection size scales order-wise as
√
n.

39

from the simulation. This choice better conveys how infection size affects the

error rate, which is the chief question of interest.

These charts allow us to compare the performance of the algorithms.

It is clear that the error probability of the Threshold Ball Algorithm is less

than that of the Threshold Tree Algorithm on both the grid and Erdös-Renyi

graphs. On these graphs, the Threshold Ball Algorithm performs uniformly

better across variations in fraction of nodes infected. However, the results on

a tree are more complex. When the total infection is small, the Threshold Ball

Algorithm has superior performance. However, as a larger fraction of the net-

work becomes infected, the Threshold Tree Algorithm has better performance.

We believe it is this right tail that is most significant. In the regime where

many of the nodes are infected, the infection is likely to have reached some of

the leaves by this time, thus explaining the superiority of the Threshold Tree

Algorithm in this regime.

However, many practical applications of these algorithms would occur

when the infection is still of limited size, in which case the Threshold Ball

Algorithm would perform better. The best algorithm would depend on the

circumstances.

It is particularly interesting to ask how these results extend to real-

world graphs, as opposed to random (or highly regular) graphs that we have

constructed. To this end, we used the call-graph from an Asian telecom net-

work. In this graph, each node is a cell customer, and there is an edge between

two users if they contacted each other over this network during a certain range

40

Figure 2.4: This figure shows the overall error probability for each algorithm, for each of

the three topologies we consider, over a range of infection sizes.

41

of time. Since the original graph was too large for practical simulation times,

we cut out a partial subset. We chose a random node and all nodes with a

distance 9 and used the induced subgraph generated by these nodes. The re-

sulting graph has size n = 13189. The probability of error for a range infection

sizes are presented in Figure 2.5. We see that the results are similar to those

for a Tree graph, where the Threshold Ball Algorithm performs better on small

infections, but it is out performed by the Threshold Tree Algorithm in larger

infections. This is to be expected, as the intuition for the Threshold Ball Al-

gorithm stems from the geometry of spatial grid-like networks. The call-graph

here is very much tree-like (with very small diameter and high degree), and

infections are unlikely to propagate to the same depth across various leaves.

This results in poor ball “fits,” especially as the infected fraction of nodes

grows. This intuition is indeed borne out in the simulations.

2.4.4 Error Rate Versus Reporting Probability

The final simulation focused on determining how varying the report-

ing probability affects the probability of error. Our theoretic results do not

provide any intuition on the how the error probability will change as the re-

porting probability increases, and simply require a minimum reporting proba-

bility (sufficiently large so that at least log n nodes report) for good algorithm

performance. To provide this otherwise absent information, we simulated the

Threshold Ball Algorithm on a grid graph with 1600 nodes. We used epidemic

durations of t = 10 and t = 11, close to the threshold where the probability

42

of error for the algorithm begins to increase rapidly. The threshold m was set

to the optimum value as determined empirically. The average probability of

error, with epidemic and random sickness equally likely, are shown in Figure

2.6.

The figure shows that at very low reporting probabilities, the error

probability is high. However, the probability of error decreases rapidly as

q increases. Once q reaches a value where approximately 40% of infected

noded report their infection, the error probability is near a minimum and

increased knowledge of the reporting nodes does not substantially improve

the algorithm’s performance. Note that there is a slight jump in the error

probability around q = 0.6 which is caused by the fact that the threshold

must be an integer, and this jump represents when the threshold increases by

one.

2.5 Conclusion

We develop the Threshold Ball Algorithm and the Threshold Tree Al-

gorithm, and show that these algorithms can distinguish between a random

sickness and an epidemic on a variety of graph topologies. A summary of the

maximum infection size for which our algorithms succeed from our sufficient

conditions is shown in Table 2.1 (where reporting probability is constant).

From our analytic and empirical results, we conclude that the ball based al-

gorithm is superior. It is more efficient and has a lower probability of error

for most of our tests. In later chapters of this thesis, we focus on the ball

43

Figure 2.5: This figure shows the overall error probability for each algorithm on a real

world graph.

Figure 2.6: The error probability of the Threshold Ball Algorithm on a grid graph (n =

1600) for a large range of reporting probabilities, with a sample size of 10000.

44

algorithm and variations of it.

Table 2.1: Summary of maximum proven distinguishable infection sizes.

Graph Ball Algorithm Tree Algorithm

Grid Θ(n) Θ(n/(log log n)d)

Tree Θ(nβ) Θ(n1−ε)

Erdös-Renyi Θ(nβ2) Θ(n1/2−ε)

45

Chapter 3

Distinguishing Two Infections

3.1 Introduction

People and devices routinely interact through multiple networks – con-

tact networks – be they virtual, technological or physical, allowing the rapid

exchange of ideas, fashions, rumors, but also viruses and disease. Through-

out this paper we refer to anything that spreads over a contact network as

an epidemic. In many domains, it is of critical importance to understand the

causative network of that epidemic. Economists, sociologists and marketing

departments alike have long sought to understand how ideas, memes, fads

and fashions, spread through social networks. Meanwhile, epidemiology has

understood the value of knowing the causative network of disease epidemics,

from Influenza to HIV. Indeed, at one point, HIV was known as the “4H dis-

ease” where 4H referred to “Haitians, Homosexuals, Hemophiliacs, and Heroin

users” [62, 12]. Understanding the causative network has greatly contributed

to controlling the worldwide spread of the virus.

The work in this chapter appears in the following publication:
Chris Milling, Constantine Caramanis, Shie Mannor, and Sanjay Shakkottai. On identifying
the causative network of an epidemic. In Proceedings of 50th Annual Allerton Conference
on Communication, Control, and Computing, October 2012.

46

While smartphone viruses have not yet supplanted computer viruses

as the spreading technological threat of the hour, their potential for broad

destructive impact is clear. Just as different human viruses may have dif-

ferent dominant spreading networks (again, compare Influenza and HIV), so

may smartphone viruses spread over multiple networks, including bluetooth,

SMS/MMS messaging, or e-mail. Yet the symptoms of these viruses may be

deceptive, appearing to be simple hardware failure, and may disguise the true

infection mechanism.

A first step towards containing epidemics, be they technological or phys-

ical, relies on properly understanding the phenomenon as an epidemic in the

first place, and then, accurately understanding the causative spread, before

then adopting network-specific strategies for containment, quarantining and

treatment.

Many factors complicate the process of determining the causative net-

work. First, possibly because of long latency/hibernation periods, variation

in reporting/detection, or simply lack of data, in some cases it may be diffi-

cult or impossible to collect accurate longitudinal data. Equally importantly,

the reporting set of those infected (be they people or devices) may be only a

tiny fraction of those in fact infected. We consider the most dire information

regime: we assume we have data from only a single snapshot of time, where

only a (perhaps vanishing) fraction of the infected population reports.

With these data, this paper focuses on determining the causative net-

work for the spread of an epidemic (e.g., virus, sickness, or opinion) from

47

limited samples of the network state. We do this in the setting where we

are given two possible graphs over which epidemic may spread. Provided the

networks are sufficiently distinct, we use the topological differences of the in-

fection on each graph to determine which network represents the true infection

process.

3.2 Problem Statement

In this section, we detail the infection model and required graph prop-

erties. We specify our proposed algorithm, the Comparative Ball Algorithm,

which we analyze throughout the rest of this chapter.

3.2.1 Infection Model

We assume that an epidemic is propagating on one of the two graphs,

G1 or G2. The objective is to determine on which network it is spreading.

We reiterate that this ‘epidemic’ could model many situations, including the

spread of a cellphone virus, physical sickness of humans, and opinions or in-

fluence about products or ideas.

Given that the epidemic is on graph Gi, the spread occurs as follows

(the standard SI dynamics [20]). A node is randomly selected to be the epi-

demic seed, and thus is the first infected node. At random times, the illness

spreads from the sick nodes to some subset of the neighbors of the sick nodes,

according to an exponential process. Specifically, associate an independent

mean 1 exponential random variable with each edge incident to an infected

48

and an uninfected (a susceptible) node. The realization of this random variable

represents the transit time of the infection across that specific edge. Thus an

infected node proceeds to infect its neighbors, with each non-infected neigh-

bor becoming infected after the random transit time associated with the edge

between the infected node and this neighbor. This process proceeds until

eventually the entire graph Gi is infected.

In either case, the infection continues until some time t(n). At this time,

a sub-sample of the infected nodes report their infection state independently,

each with some probability q(n) < 1. Both t(n) and q(n) may depend on the

total number of nodes n. We let S(n) denote the set of infected nodes, and let

S
(n)
rep ⊆ S(n) be the set of reporting infected nodes. Note that S(n) is a function

of t(n) and S
(n)
rep is a function of both t(n) and q(n). On the causative network of

the infection, S(n) will be a clustered, connected set of nodes. Unless required

for clarity, we suppress the dependence on n and write t, q, S and Srep for the

infection time, reporting probability, set of infected nodes, and set of reporting

nodes respectively.

3.2.2 Graph Independence

For the statistical problem of distinguishing the causative network to

be well-posed, the contact networks encoded by graphs G1 and G2 must be

sufficiently different. Note that this does not imply that the topology of the

graphs must be different (indeed, it could be identical). Rather, the neighbor-

hoods of each graph must be distinct, i.e., the nodes that are near an infected

49

node with respect to one graph, must be different from the nodes near the same

infected node, with respect to the other graph. We note that if this is not the

case, then both graphs encode approximately the same causative network, and

hence solving the comparative graph problem is not that important.

In this paper, we encode this idea of graphs having sufficiently differ-

ent neighborhoods via a probabilistic construction that guarantees that cor-

responding nodes on the two graphs have independent neighborhoods. This

essentially means that given a node, v, its neighborhood in G1 and its neigh-

borhood in G2 are independent. We suppose that both graphs G1 and G2 come

from graph families G1 and G2 as defined in Section 2.2.4. For each pair of

these graphs, we require them to have independent neighborhoods as defined

by the following construction.

Definition 3.2.1. Graphs G1 and G2 have independent neighborhoods if their

nodes are labeled as follows. Let V be the set of nodes in the population under

consideration. These nodes are mapped to the nodes in G1 and G2 (V1 and

V2) by uniformly random labeling functions. That is, let label1 : V1 7→ V be

a one-to-one function where the mapping is chosen uniformly at random. Let

label2 be likewise defined for V2, and independently from label1. Two nodes

are identified if they receive the same label (that is, map to the same vertex

in the population V), and hence are both infected or both well. Hence we can

talk about a single set of common nodes, and then edges that come from G1,

and edges that come from G2.

50

For a set of nodes I, define L1(I) =
⋃
i∈I{label1(i)} and similarly for

L2. Then when G1 and G2 have independent neighborhoods as defined above,

for any pair of sets of nodes I1 ⊂ V1 and I2 ⊂ V2, L1(I1) and L2(I2) are inde-

pendent. In particular, a set of clustered nodes on one graph may correspond

to any possible set of nodes on the other graph, each equally likely.

This independent neighborhood condition is simply one way to make

precise, and encode into a probabilistic framework, the natural condition that

two graphs have neighborhoods that are “unrelated.” For a practical example,

consider the bluetooth contact graph during a commuter’s subway transit to

work in a busy city, compared to the e-mail contact graph. The majority

of people on the subway are typically strangers and hence do not exchange e-

mails; meanwhile the majority of co-workers and friends have different morning

commutes, and hence are not in bluetooth range during the morning commute.

That is, nodes (in this case, people) that are connected or nearby on one graph

(the proximity graph) may be spread out on the other graph (the e-mail contact

graph). The distances between pairs of nodes on each graph are approximately

independent.

On the causative network, the epidemic will consist of a connected, clus-

tered set of infected nodes. However, due to the above condition, the infection

will appear to be a completely random sickness on the other graph. That is,

the infection will only be clustered on the network over which the infection

spread. This fact can be exploited to determine the correct network. Fig-

ure 3.1 shows an example of two graphs that have indepedent neighborhoods.

51

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

3 1 9 16

14 2 7 5

13 15 8 4

10 12 6 11

Figure 3.1: This figure shows two different graphs with the random labels from
the independent neighborhood condition shown. Infected nodes are colored
red. Note that nodes with the same label have the same status (e.g. both are
infected).

Note that the infection on the right-hand graph is unclustered.

3.2.3 Comparative Ball Algorithm

We provide an algorithm for this problem called the Comparative Ball

Algorithm. The algorithm is natural, given the discussion above. We find the

smallest ball on that graph that contains all the reporting infected nodes. We

take the ratio of the radius of this ball to that of the graph’s diameter. These

ratios – called the score of each graph – serve as a topology independent mea-

sure of clustering on each graph. The Comparative Ball Algorithm returns the

graph with the smallest normalized clustering ratio. This is formally described

below.

For the below algorithm, define Ball(G,S) as (possibly one of) the

ball containing all the nodes in S with the minimum radius, and denote the

52

radius of this ball as RadiusBall(G,S). As we have done above, we denote the

diameter of the graph by diam(G).

Algorithm 4 Comparative Ball Algorithm

Input: Two graphs, G1 and G2; Set of reporting infected nodes Srep;
Output: G1 or G2

a1 ← RadiusBall(G1, Srep)
b1 ← diam(G1)
x1 ← a1/b1

a2 ← RadiusBall(G2, Srep)
b2 ← diam(G2)
x2 ← a2/b2

if x1 ≤ x2 then
return G1

else
return G2

end if

3.3 Main Results

We analyze the performance of the Comparative Ball Algorithm for

a wide variety of graph topologies. To do this, we impose two fairly mild

conditions on the graphs, termed the speed condition and the spread condition.

If both graphs satisfy these conditions, then we prove that the Comparative

Ball Algorithm correctly identifies the causative network with probability of

error tending to zero asymptotically for a wide range of infection size. In fact,

the algorithm is order-wise optimal in the maximum infection size for which

is succeeds. We then show that two standard graph topologies, grids and

Erdös-Renyi graphs, satisfy the required conditions.

53

3.3.1 Graph Conditions

Distinguishing between two graphs is only meaningful when neither

graph has a trivial neighborhood structure. For instance, if one graph is the

complete graph, there is no topological information conveyed by knowing which

nodes are sick on that graph, and the problem is roughly equivalent to the ran-

dom sickness vs. infection case. The first order of business is understanding

precisely what conditions we require the topology of graphs G1 and G2 to sat-

isfy, making precise the notion of “non-trivial neighborhood structure” where,

unlike for example the star graph, an epidemic exhibits some statistically de-

tectable clustering. There are two key properties required: first, the infection

must spread at a bounded speed; second, a random collection of nodes on the

graph must, with high probability, not exhibit a strong clustering. Of course,

the star graph fails with respect to the minimum spread of random nodes con-

dition. As another example that fails the bounded speed condition, consider

a tree whose nodes have degree dk+1 at level k.

We now state these conditions precisely, and in addition, we show,

many graphs satisfy these conditions, including familiar topologies like the d-

dimensional grid and the Erdös-Renyi graphs. It is also easy to see that any

graph with bounded degree also satisfies these two conditions.

We first restate the following definition:

Definition 3.3.1. Given a graph G = (V,E) and a subset of its nodes, S ⊆ V ,

let RadiusBall(G,S) denote the radius of the smallest ball that contains S.

54

Note that for any set S, RadiusBall(G,S) can be easily computed in

time O(|V |2 · |S|).

Let G = {G(n)} denote a family of graphs, where G(n) denotes the subset

of the graphs of G that have n nodes. For each n, there is a (possibly trivial)

probability space
(
G(n), σ(G(n)), P (n)

)
from which graphs are drawn. Concrete

examples include the set of d-dimensional grid graphs, Erdös-Renyi graphs

with bounded expected degree, d-regular trees, etc.

Definition 3.3.2. A family G satisfies the speed and spread conditions, if there

exist constants sG, bG and βG, such that for sequences {G(n)} picked randomly

from the product probability space
∏

n G
(n), the following hold with probability

approaching 1 as n increases, where the probability is over the random subset

of nodes in the definitions below, and, in the case of random families, G, such

as Erdös-Renyi graphs, over the selection of G(n) as well:

Speed Condition: For infections starting at a randomly selected node,

and for infection times t(n) → ∞, the set S(n) of nodes infected at time

t(n) satisfies RadiusBall(G(n), S(n)) < sGt
(n) with probability tending to

1 as n increases.

Spread Condition: First, diam(G(n)) = Ω(log n). Define S(n) as a set

of nodes chosen uniformly at random from all nodes in G(n) (as in a

random sickness), with
∣∣S(n)

∣∣ > βG log n. Given such a set, we require

that RadiusBall(G(n), S(n)) > bGdiam(G(n)) with probability approaching

1 as n increases.

55

These two conditions essentially encode the properties required so that

an infection spreading on a graph G
(n)
1 (chosen from family G1) exhibits clus-

tering, and, conversely, if it is spreading on another graph G
(n)
2 (chosen from

family G2) with independent neighborhoods (as described above) then there is

no clustering with respect to G
(n)
1 .

Note that to ease notation, whenever the context is clear, we drop the

superscript (n) that denotes the number of nodes.

If a graph G satisfies both of these conditions, we say that the graph

is ‘detectable’. An infection on a detectable graph is sufficiently well behaved

that it is possible is detect whether it is likely that an infection spread on that

graph.

3.3.2 Main Theorem

Using the algorithm definition, we prove sufficient conditions for the

probability of error of the Comparative Ball Algorithm decaying to 0.

Theorem 3.3.1. Consider families of graphs G1 and G2 satisfying the speed

and spread conditions above and with independent neighborhoods, and let the

sequence {(G(n)
1 , G

(n)
2)} denote a sequence of graphs drawn from G1 and G2.

Consider infection times t(n) such that the number of reporting infected nodes

scales at least as max(βG1 , βG2) log n. Then when the infection spreads over G1,

if t < bG2diam(G1)/sG1, the Comparative Ball Algorithm correctly determines

G1 is the causative network with probability approaching 1. Similarly, for an

56

infection on G2, if t < bG1diam(G2)/sG2, then the Comparative Ball Algorithm

correctly identifies the infection with probability approaching 1.

Proof. By symmetry, it is sufficient to prove that an infection spreading on G1

is indeed detected as such. Suppose then, that G1 is the causative network.

For every n, let Srep (again we suppress dependence on n when it is clear from

the context) denote the set of reporting sick nodes, where |Srep| > βG2 log n.

Though Srep will be clustered on G1 since it is the causative network, by the in-

dependent neighborhood assumption, this set of nodes is randomly distributed

overG2. By the speed and spread conditions, with probability approaching 1 as

n scales, RadiusBall(G1, Srep) < sG1t and RadiusBall(G2, Srep) > bG2diam(G2).

Then the score for the first graph satisfies score(G1) < sG1t/diam(G1) < bG2 by

hypothesis. Similarly, score(G2) > bG2diam(G2)/diam(G2) = bG2 . Therefore,

the algorithm correctly identifies an infection.

Note in particular that sG and bG are constants for both graph families.

Therefore, the algorithm can distinguish infections for infection times order-

wise the same as the diameter of the graph. Since the infection spreads at a

constant rate 1, the diameter of the graph is also order-wise the same time as

it would take to infect the entire network. Naturally, it would be impossible

to distinguish infections at the point when infection has spread over the whole

network. Hence, Theorem 3.3.1 guarantees that the algorithm distinguishes

infections for infection times that are order-wise optimal.

57

3.3.3 Detectable Graphs

Though we show that our Comparative Ball Algorithm performs well

on detectable graphs, it is as yet unclear what graphs are detectable, and

hence how meaningful our result is. In fact, our speed and spread conditions

are fairly mild and are satisfied by many typical graph topologies. To illustrate

this fact, we prove that grids and Erdös-Renyi graphs satisfy these conditions

using the similar ideas as in Chapter 2.

Theorem 3.3.2. Both d-dimensional grids, and the giant component of Erdös-

Renyi graphs with constant average degree, are detectable.

Proof. This result follows immediately from Lemmas 3.3.3, 3.3.4, 3.3.5, and

3.3.6 presented below.

3.3.3.1 Grids

First, we consider d dimension grids of size n. A grid consist of a lattice

of nodes with side length n1/d. In order to avoid edge effects, we connect each

node on the edge to its corresponding node on the other side, forming a torus.

This also means the initial infected node does not effect the way the epidemic

spreads. Grids serve as a useful model of geographic social networks, where

nodes is close physical proximity are connected. These are characterized by a

large number of small cycles and a relatively large diameter.

Lemma 3.3.3. Let G(n) = Grid(n, d) and let t(n) denote any sequence of

increasing times, t(n) → ∞. As defined above, S
(n)
rep denotes the (random)

58

subset of nodes infected by the epidemic, that report their infected status. Then

there exists a constant µ such that

RadiusBall(G(n), S(n)
rep) < 1.1dµt(n),

with probability converging to 1 as n→∞.

Proof. We drop the indexing w.r.t. n, since the context is clear. Let µ
4
=

supx{(x, 0, ..., 0) ∈ B0} from Lemma 2.3.1 and m = 1.1dµt. Then we must

show RadiusBall(G,Srep) < m with probability approaching 1. Note that if

the infection can be limited to the subgrid [−m/d,m/d]d (with appropriate

translations), then this condition is satisfied. Define E as the event that

RadiusBall(G,Srep) ≥ m. Therefore, using Lemma 2.3.1,

P (E) < 1− P{B(t) ⊂ [−m/d,m/d]d}

< C1t
2de−C2t−1/2(m/(dµ)−t) (3.1)

= C1t
2de−0.1C2t1/2

→ 0.

Equation 3.1 follows from Lemma 2.3.1 with x = t−1/2(m/(dµ) − t), using

[−m/d,m/d]d ⊃ m/(dµ)B0 = (t+ t1/2x)B0. Hence, RadiusBall(G,Srep) satis-

fies the required bound with high probability.

Lemma 3.3.4. Let G(n) = Grid(n, d). Let S(n) be a collection of nodes chosen

uniformly at random from G(n), such that
∣∣S(n)

∣∣ > log n for sufficiently high

59

n. Then

RadiusBall(G(n), S(n)) > n1/d/4,

with probability converging to 1 as n→∞.

Proof. Again we drop the n-index wherever context makes it clear. By as-

sumption, we have a set S of random nodes with |S| > log n. Define X = |S|.

We show the probability all nodes in S are within some ball of radius n1/d/4

decays to 0 with n. There are at most n of these balls, since each node is in

correspondence with the ball centered on itself (though two different centers

may result in the same ball). Then consider one of these balls. There are less

than l = (n1/d/2)d nodes in that region (the number of nodes in a ‘box’ of

side n1/d/2). Within this ball, there are at most
(
l
X

)
arrangements of the sick

nodes out of
(
n
X

)
total possible arrangements. Therefore, the probability all

the sick nodes are within the region is no more than(
l

X

)/(n
X

)
=
l!(n−X)!

(l −X)!n!

≤ (l/n)X .

Using a union bound over the n balls, we find that the probability there

is a ball of that size containing all nodes in S is at most n(l/n)X . Then

n(l/n)X < n

(
1

2d

)logn

= n1−d log 2

→ 0.

Therefore, RadiusBall(G,S) > n1/d/4 with probability converging to 1.

60

Since the diameter of a grid is (nearly) d/2n1/d, we see that a grid

satisfies both the speed condition (Lemma 3.3.3) and the spread condition

(Lemma 3.3.4), and hence grids are detectable.

3.3.3.2 Erdös-Renyi graphs

Now we consider Erdös-Renyi graphs, representing infections that spread

over low diameter networks (the diameter grows logarithmically with network

size). An Erdös-Renyi graph is a random graph with n nodes, where there is

an edge between any pair of nodes, independently with probability p. These

graphs are denoted G(n, p). We study the Erdös-Renyi graph in the regime

where p = c/n, for some positive constant c > 1. This setting leads to a

disconnected graph; however, there exists a giant connected component with

Θ(n) nodes with high probability in the large n regime. In this paper, we

restrict our attention to epidemics on this giant component. Thus we limit

both the infection and the random set of reporting nodes (due to the labeling

when the infection occurs on the alternative graph) to occur exclusively on the

giant connected component. If the infection on the other graph contains too

many nodes for the giant component, we simply ignore the excess, but this

point is already outside the regime of interest.

In order to establish that the Erdös-Renyi graph is detectable, we show

first that on these graphs, an infection spreads at a bounded speed, and second,

that randomly selected nodes are spread out. In fact, the two results given in

this section also hold for bounded-degree graphs. The key properties used in

61

the proofs are a speed upper bound for trees from [7] and that the number of

nodes within distance m from a given node is O(m3cm log n). Both of these

are true (and even simpler) for bounded-degree graphs. The remainder of the

proofs immediately carries over to this class. For simplicity, and because the

randomness of the Erdös-Renyi graphs presents some further complications,

we state everything in terms of the Erdös-Renyi graphs.

Lemma 3.3.5. Let G(n) denote the connected component of a realization of

a G(n, p) graph, and let the sequence t(n) denote increasing time instances,

scaling (without bound) with n. As above, let S
(n)
rep denote the random subset of

nodes reached by the epidemic, that also report. Then there exists a constant

C6 such that

RadiusBall(G(n), Srep) < C6t
(n),

with probability converging to 1 as n→∞.

Proof. Since the dependence on n is clear, we drop the index of n. This

theorem essentially states that there is a maximum speed at which the infection

can travel on an Erdös-Renyi graph. The statement follows from a similar

maximum speed result for trees [7]. Therefore, it remains to show how this

result can be applied to an Erdös-Renyi graph. To do this, we upper bound

an infection on an Erdös-Renyi graph by a tree that represents the routes on

which an infection can travel. Since an Erdös-Renyi graph is locally tree-like

[18], we expect this approximation to be fairly accurate for low times, though

this is not necessary for the proof.

62

Consider the tree G̃ formed as follows. The root of the tree is the

initial infected node. The next level contains copies of all nodes adjacent to

the original node in the Erdös-Renyi graph. Each of these have descendants

that are copies of their neighbors, and so on. Note all nodes may (and likely

do) have multiple copies.

We start an infection at the root of G̃ and let it spread for time t.

Consider the induced set of infected nodes, S̃rep, as the set of nodes in G

which have copies that are infected on G̃. Since the distance of a copy from

the root of G̃ is no less than the distance from the original node to the original

infection source, we see that the distance the infection has traveled on G̃ is no

less than the distance from the infection source to the farthest node in S̃rep

(on G). Note that the S̃rep stochastically dominates the true infected set S.

That is, for all sets T , P (T ⊂ S̃rep) ≥ P (T ⊂ Srep).

This stochastic dominance result follows from the fact that the transi-

tion rates are universally equal or higher for the induced set. Hence, we con-

clude RadiusBall(G,Srep) is also stochastically dominated by RadiusBall(G, S̃rep),

and the latter is upper bounded by the depth of the infection in the tree, which

using the speed result, is bounded by C6t for some speed C6. That is, with

probability tending to 1,

RadiusBall(G,Srep) < C6t.

63

Next, we use the neighborhood sizes on this graph to provide a lower

bound to the ball size needed to cover a random infection.

Lemma 3.3.6. Let G(n) = G(n, p), and let S(n) denote a collection nodes

sampled uniformly at random from G(n), such that
∣∣S(n)

∣∣ scales at least with

log n. Then

RadiusBall(G(n), S(n)) >
log n

3 log c
,

with probability converging to 1 as n→∞.

Proof. We suppress the index n for clarity. We proceed by bounding the

probability that all the random nodes are within a ball of radius m. This is

possible only if all nodes in S are within distance 2m from any given node in S.

Now, the number of nodes within a distance 2m from a given node is no more

than 16m3c2m log n with probability 1 − o(n−1) [11]. Then the probability of

all nodes fitting inside one such ball is at most(
16m3c2m log n

n

)|S|−1

<

(
16m3c2m log n

n

)logn−1

.

Then this decays to 0 at least as fast as n−1 if

16m3c2m log n

n
< n−1/ logn.

Finally we set m = logn
3 log c

as desired. Hence c2m = n2/3. Using this substitution,

the above term reduces to

16m3c2m log n

n
=

16m3n2/3 log n

n

=
16(log n)4

27(log c)3n1/3

< (log n)4n−1/3 < n−1/ logn (3.2)

64

for sufficiently large n. Therefore, RadiusBall(G,S) > logn
3 log c

with probability

converging to 1.

The diameter of the giant component of an Erdös-Renyi graph is Θ(log n)

[18]. Thus, Lemmas 3.3.5 and 3.3.6 establish that an Erdös-Renyi graph sat-

isfies both the speed and spread conditions respectively.

3.4 Simulations

We simulated the performance of the Comparative Ball Algorithm to

evaluate the performance empirically. We determined the error rate over a

range of t for several pairs of graphs. We evaluated the two different standard

graph topologies considered earlier, grids and Erdös-Renyi graphs.

We simulated the infections on various pairs of the graphs over a range

of times. In order to portray the results in a comparable way, we plotted the

error rate versus the average infection size instead of time. This is necessary

because different times result in very different infection sizes for the different

graphs. That is, the infection is large even at low t on an Erdös-Renyi graph,

and vice versa for a grid graph. This would introduce a misleading effect in

the results.

Each node in the graphs received a random label to ensure indepen-

dence. We use n = 1, 600 for each graph with q = 0.25. For the Erdös-Renyi

graphs, we use p = 2/1, 600. The probability of error was computed over

10, 000 trials. There are two possible types of errors in each simulation, when

65

Figure 3.2: This figure shows the error probability for the algorithm on pairs of standard

graphs. Various (conditional) error probabilities are illustrated – ‘T:’ corresponds to the

true network, and ‘A:’ corresponds to the algorithm output.

the infection spreads on the first graph, and when it spreads on the second.

We label the error event ‘T:G1; A:G2’ for the error where the infection in fact

travels on graph G1 (True event), but the algorithm incorrectly labels it as

occurring on graph G2 (Algorithm output).

The results of these simulations are shown in Figure 3.2. Note that up

to about 5% of the network reporting an infection, the error rates are low in

all cases. The error rates are consistently low for the ‘T:Grid1;A:Grid2’ com-

parison up to the point where the whole network is infected. When comparing

a grid and an Erdös-Renyi graph, there is a bias to label it an Erdös-Renyi

graph at higher times, causing the ‘T:Grid;A:G(n,p)’ error to be very high

66

and conversely, the ‘T:G(n,p);A:Grid’ error to be very low. This bias results

from the fact the diameter of the graph is not necessarily the optimum scaling

for the Comparative Ball Algorithm. Though (as shown in our theoretical

results) the two graphs can be still be distinguished at lower infection sizes,

using suboptimal scaling means that overall error probability will be high for

large infections, with a bias toward one of the graphs. This suggests that by

simply modifying the Comparative Ball Algorithm to normalize with respect

to a scaled graph diameter (where the scaling parameter would be graph de-

pendent), we could balance these two error probabilities, and thus result in

improved performance. To illustrate, by choosing a diameter scaling value of

1.6 for the Grid graph, the plot in Figure 3.3 indicates that one could distin-

guish between G(n,p) and Grid graphs for a significantly larger range.

67

Figure 3.3: This figure shows the error probability for the G(n,p) vs. Grid graphs for the

scaled diameter setting (diameter of G(n,p) graph is scaled by 1.6).

68

Chapter 4

False Positives

4.1 Introduction

Identifying the process causing an infection can be essential to reacting

appropriately, and it is challenging when the set of sick nodes is incomplete,

and especially inaccurate. In previous chapters, we demonstrated that by using

the clustering of the sick nodes, it is possible to distinguish between a random

sickness and an infection, and between two different infections. However, the

algorithms employed were very sensitive to outliers. A single false positive, a

node reporting sickness when it is not actually infected, can drastically change

how clustered the algorithms rate the sick nodes. In particular, when any node

at maximum distance from the infection source falsely reports sickness, then

the ball algorithm will conclude that the sick nodes are maximally spread.

That is, it will never be able to identify the infection.

However, real data is often inaccurate. For example, online records

(flu-related keywords in social networks [13], or Internet searches such as in

The work in this chapter appears in the following publication:
Chris Milling, Constantine Caramanis, Shie Mannor, and Sanjay Shakkottai. Detecting
epidemics using highly noisy data. In Proceedings of the Fourteenth ACM International
Symposium on Mobile Ad Hoc Networking and Computing, pages 177–186, 2013.

69

Google Flu Trends [23]) provide large but noisy data sources for detecting flu

epidemics, but potentially containing many false positives. In evaluating the

spread of the flu, there may be many people reporting flu-like symptoms, but

have a different ailment. To be useful in in practical applications, the algorithm

must be modified to be robust. This requires filtering out false positives before

evaluating the clustering of the sick nodes. These false positives may occur in

two possible ways. In the easier case, the false positives are randomly spread

out over the network. In the second case, the false positives may be placed

arbitrarily, such as chosen by an adversary so that the problem is as difficult

as possible. For example, if the sick nodes were created by a random sickness,

the adversary may place the false positives in a cluster so that the sickness

appears closer to an infection.

We consider the task of distinguishing a random sickness from an in-

fection in the presence of false positives. After the infection proceeds for some

time, a fraction of the sick nodes report the sickness. Then, we add a num-

ber of false positives proportional to the number of reporting nodes. In other

terms, a fixed fraction of the complete set of reporting nodes are false posi-

tives. These false positives are either arranged randomly or are chosen by an

adversary. Under these conditions, the problem is to determine whether the

original sick nodes are due to a random sickness or infection.

We develop a robust algorithm based on the ball clustering to solve

these problems, called the Quantile Ball Algorithm. We prove that this algo-

rithm can distinguish the processes for a wide range of infection sizes in the

70

presence of false positives. When the false positives are located randomly, the

algorithm succeeds with high probability when the fraction of reporting nodes

that are false positives is any value less than one, though the largest infection

that can be successfully detected decreases when there are larger numbers of

false positives. For adversarial placement of the false positives, we show that

the algorithm succeeds as long as the faction of nodes that are false positives

is less than one half. This is the best theoretically possible.

4.2 Problem Statement

The fundamental aspects of this problem are the same as in basic prob-

lem from Chapter 2. The random sickness versus infection problem is setup

as before. The infection spreads according to the SI model for time t. For

the random sickness, each node is randomly and independently infected with

probability q′. This probability is set so that the expected size of the random

sickness is the same as that of the infection. Each of the sick nodes reports

with a fixed probability q. See Section 2.2 for additional details. Next we

formally describe the necessary graph properties, as well as the false positives

and mixed infection.

4.2.1 Graph Conditions

We assume the graphs are sufficiently well behaved that it is possible to

distinguish an infection process. These conditions are similar to the conditions

for a graph to be detectable as described in Chapter 3, but slightly more

71

detailed. These conditions guarantee that first, the infection spreads only up

to a fixed maximum speed, and second, that the random nodes are spread out.

However, we require somewhat more complex conditions for our results. The

conditions are labeled limited epidemic speed and limited neighborhood size.

Definition 4.2.1. A graph family G has limited epidemic speed if there exist

finite, positive constants sG, λG such that for sufficiently large n, a graph

G(n) chosen randomly from G(n) and an epidemic starting at any node a with

duration t(n), with S(n) defined as the set of nodes infected at time t(n),

P (RadiusBall(S(n)) > sGt
(n)) < e−λGt

(n)

.

The speed sG in the above definition is in fact an upper bound on the

speed, in that we require no matching lower bound. Nevertheless, we refer

to it as the speed for brevity. In addition, we also need a constraint on the

neighborhood size.

Definition 4.2.2. A graph family G has limited neighborhood size if, for graph

G(n) chosen randomly from G(n), diam(G(n)) scales as Ω(log n) and there exists

a increasing concave function b
(n)
G (x) such that for all 1 ≤ x, b

(n)
G (x) > 0 and

all balls on G(n) of radius no more than b
(n)
G (x) contains less than x nodes with

probability tending to 1.

These conditions hold for typical graph topologies such as grids and

Erdös-Renyi graphs, as can be seen from the proofs for the results in Section

3.3.3. In fact, both of these previous conditions follow for any graph with

72

a bounded degree distribution, as stated formally below. For these graphs,

the neighborhood size function does not vary with n. We note that there are

multiple choices for this function, but by using tighter functions (accounting

for the exact graph topology), the sufficient conditions given in our results are

improved.

Theorem 4.2.1. Let G be a graph family whose graphs have maximum degree

d̄. Then G has both limited epidemic speed and limited neighborhood size.

Proof. First, the spread of the epidemic on any graph G(n) from G can be upper

bounded by a tree of degree d̄ where nodes are repeated for each path to them.

See [47] for details on this bound. Then using a speed upper bound for trees,

we find that G has limited epidemic speed, where the exponential probability

of error follows from a Chernoff bound [7]. Next, using the maximum degree

condition, the number of nodes within distance r from an arbitrary node u

of any graph G(n) is at most d̄r+1. Therefore, for any x, 1 ≤ x, no ball

of radius logd̄ x − 1 contains more than x nodes. From this, we see that

diam(G(n)) ≥ logd̄ n − 1. Letting bG(x) = logd̄ x − 1, we see this satisfies the

desired condition for limited neighborhood size. This completes the proof.

We suppress the index (n) on the graph G and the infection parameters

when it is clear from context. Likewise, we omit the index (n) and subscript G

from sG, λG, and b
(n)
G (x) for clarity. When it is clear from context, we reference

the family G by a representative graph G from that family. That is, we say a G

has limited epidemic speed and limited neighborhood size if its family G does.

73

We assume that the speed sG and spread function b
(n)
G (x) are known. Next,

the following simple lemma (using a balls-in-bins argument) proves useful in

the sequel, so we give it here.

Lemma 4.2.2. Consider graph G. Let 0 < x < 1 and δ > 0. Then there

exists ε depending on δ with 0 < ε < 1 such that the following is true. Let

S be a collection of nodes chosen uniformly at random with |S| = Ω(log n).

Let B be a collection of nodes with |B| < (1 − ε)xn. Then the probability

that B contains at least x fraction of the random nodes in S decays to 0 as n

increases. In particular,

P (|B ∩ S| ≥ x |S|) < e−δ|S|.

The main way we use this lemma is to show that the probability that

a large fraction of randomly selected nodes fall in a ball around a given node,

goes to zero.

4.2.2 False Positives

In this problem, we add false positives to the set of reporting sick nodes.

Then, only a fixed fraction of the reporting nodes available to the algorithm

reflect nodes that are actually sick. Define Srep to be the set of reporting sick

nodes. Let f be a fixed constant with 0 < f < 1, representing the relative

fraction of false positives compared to truly sick nodes. We will then add false

positives to get S̄rep, the set of both reporting sick nodes and false positives,

which is then made available to the algorithm. Set the number of false positives

74

to be f |Srep|. Note that the fraction of all the reporting nodes that are false

positives is f
1+f

.

The false positives are then added either randomly or by an adversary.

In the random setting, choose f |Srep| nodes uniformly over the entire graph.

If f |Srep| > n, then only n nodes are chosen, though distinguishing infections

is impossible at this point. We allow nodes that are already in Srep to be

chosen. Let Arep be these false positive nodes. Then S̄rep = Srep

⋃
Arep. Note

then that there may be less than f |Srep| false positives. However, this effect

will be small for small infections.

In the adversarial regime, the false positives are placed arbitrarily. In

particular, the adversary places the false positives in whatever way would

lead to the highest probability of error for our algorithm. Then, we require

the algorithm to be able to handle any arrangement of the false positives.

As before, defining Arep as the set of false positives, set the complete set of

reporting nodes S̄rep = Srep

⋃
Arep. We allow the adversary to choose repeats

as in the random arrangement case, though generally this makes the problem

easier.

4.2.3 Algorithm

To solve this problem, we use a modification of the Threshold Ball

Algorithm (from Section 2.3) called the Quantile Ball Algorithm. It is defined

in terms of a parameter α, with 0 < α ≤ 1. In this algorithm, we find the

smallest radius ball that contains a fraction α of the reporting nodes. That

75

is, the algorithm is given the set of all reporting nodes S̄rep. Then it finds the

ball of minimum radius containing at least α
∣∣S̄rep

∣∣ of the reporting nodes in

S̄rep. This lets the algorithm ignore the worst fraction of the reporting nodes.

The algorithm uses a threshold r on this infection size as the maximum radius

such a ball can have to be labeled an EPIDEMIC. However, it can reduce the

number of true infected nodes that are evaluated, which reduces the accuracy

of the algorithm. The algorithm is specified formally as follows.

Algorithm 5 Quantile Ball Algorithm

Input: Graph G; Set of reporting infected nodes Srep;
Parameters: Quantile α, Threshold m
Output: EPIDEMIC or RANDOM

c← α [|Srep|]
for all (u ∈ V do
B ← BallG(u,m)
if |B ∩ Srep| ≥ c then

return EPIDEMIC
end if

end for
return RANDOM

4.3 Main Results

We will establish several sufficient conditions for when the Quantile Ball

Algorithm can successfully determine the causative process of the infection. In

particular, we show that the probability of error decreases to 0 for reasonable

ranges of infection sizes for any value of f (the ratio of false positives to true

reporting nodes) if the false positives are arranged randomly. For adversarial

76

false positives, it is possible for f < 1 (over half the reporting nodes are actually

sick). The first case we consider is when the nodes are located randomly.

4.3.1 Randomly Located

When the false positives are spread randomly through the graph, then

the behavior of a random sickness does not change: it is still an unclustered set

of sick nodes. That is, if we find any large set of clustered nodes, the sickness

is very likely to be an infection. By filtering out a sufficient number of false

positives, this case becomes roughly equivalent to the basic random sickness

vs. infection problem. Then we expect that this case is substantially easier

than the adversarial case. We show that is in fact the case, and that we can

distinguish a random sickness from an infection even with an arbitrarily high

faction of false positives.

Theorem 4.3.1. Let f > 0. Assume the number of reporting nodes is ω(log n).

Then there exists a constant C0 such that if the infection time satisfies t <

b
(

n
C0(1+f)

)
/s, using the Quantile Ball Algorithm, setting the parameters α =

1/(1 + f) and m = st, the infection type can be correctly distinguished with

probability approaching to 1.

Proof. The proof proceeds in a very similar way to Theorem 4.3.2. First

suppose the infection is an epidemic. We can cover all true reporting nodes

with probability scaling to 1 using the speed definition. Since at least an

α fraction of the reporting nodes are truly infected, our algorithm correctly

77

reports the infection is an epidemic. Therefore the Type II error probability

decays to 0.

Now suppose the infection is a random sickness. Since the false positives

are also random, the reporting nodes with the false positives are simply are

larger set of random nodes. Define C0 as the same constant as in the proof of

Theorem 4.3.2. Assume m < b
(

n
C0(1+f)

)
. Using Lemma 4.2.2 in the same way

as previously, we see that no ball of radius m contains over a α = 1/(1 + f)

fraction of the random nodes with probability approaching 1. In this case,

our algorithm returns random sickness. Thus the Type I error probability also

tends to 0.

Roughly speaking, this means that for infection times less than an

upper bound order-wise the same as the time to infect a constant fraction of

the network, the Quantile Ball Algorithm successfully distinguishes a random

sickness from an infection with high probability and for any fraction of false

positives. This is possible by choosing α to eliminate the false positives.

4.3.2 Adversarial

Next, consider the adversarial regime, where false positives are placed

by an adversary seeking to maximize our probability of error. The Quantile

Ball Algorithm succeeds in this case as well.

Theorem 4.3.2. Suppose G is as described. Suppose further that f < 1

and set f ′ = (1 − f)/(1 + f) > 0. Suppose t scales such that the number

78

of reporting nodes is Ω(log n). Then there exists a constant C0 such that if

t < b(f ′n/C0)/s, the Quantile Ball Algorithm with α = 1/(1 + f), and m = st

correctly determines the type of infection with probability tending to 1 with the

number of nodes, n.

Proof. First we show that the Type II error probability decays to 0. To this

end, suppose the infection is in fact an epidemic. Consider only the true

reporting nodes Srep, and recall S̄rep is the set of all reporting nodes, including

the false positives. Note that |Srep| ≥ α
∣∣S̄rep

∣∣. By the definition of speed s,

the probability the epidemic spreads outside a ball of radius m = st decays to

0, so this ball covers Srep and hence at least α fraction of the reporting nodes.

Therefore it is correctly labeled an epidemic.

Now we show that the Type I error probability also decays to 0. We

need to show no ball of radius m can cover α = 1/(1+f) fraction of the nodes.

Since only f/(1 + f) of the nodes are false positives, the ball must contain at

least (1− f)/(1 + f) = f ′ > 0 true reporting nodes. Then it is sufficient that

the probability there exists a ball of radius m covering f ′ |Srep| true reporting

nodes (which are located randomly) decays to 0.

By assumption, for some constant C ′, |Srep| > C ′ log n for sufficiently

large graphs. Let δ = 3/C ′ and ε > 0 as guaranteed by Lemma 4.2.2. Set

C0 = 1/(1 − ε) and assume m < b(f ′n/C0). Therefore, no ball of radius m

contains over f ′n/C0 nodes. Consider one of the n balls of radius m (one ball

79

for each possible center node), call it B. Then by Lemma 4.2.2,

P (|B ∩ Srep| ≥ f ′ |Srep|) < e−δ|Srep|.

Then for sufficiently large n, e−δ|Srep| = o(1/n2). Therefore, from a union

bound, there is some ball of radius m containing over f ′ fraction of the true

reporting nodes with probability at most o(1/n). Hence, no such ball covers α

fraction of the nodes in S̄rep with probability tending to 1 so the Type I error

probability goes to 0.

That is, for a similar bound on the infection duration as before, the

Quantile Ball Algorithm can succeed for any f < 1. This means that as long

as the true infected nodes are in the majority, it is possible to distinguish a

random sickness from an infection. With some thought, it is clear that this is

the best possible for any algorithm (in terms of size of f). If the number of

false positives were the same as (or more than) the number of true reporting

nodes, then it is possible for the adversary to completely imitate the incorrect

infection process. This fact is given in the following theorem.

Theorem 4.3.3. Suppose f = 1 and the random sickness is normalized so

that the infection size distribution is equal for both infection processes. Then

the probability of error for any algorithm is at least 0.5.

Proof. There is a simple adversarial algorithm that guarantees a probability of

error of 0.5. Recall the a priori probability for each infection process is equal.

When the infection is from an epidemic, the adversary chooses nodes randomly

80

exactly as in the random sickness. When the infection is from a random

sickness, the adversary chooses nodes exactly as in an epidemic. Therefore, in

all cases, exactly half the nodes are due to an epidemic, and half are due to

a random sickness. Since the infection size is normalized, each collection of

infected nodes is equally likely to be an epidemic as a random sickness. Then

the probability of error for every set S̄rep is 0.5 (no matter the algorithm), and

hence the overall probability is 0.5.

4.4 Simulations

We evaluate the Quantile Ball Algorithm by the empirical error proba-

bility, the average error probability for both Type I and Type II errors, weight-

ing both equally. We used a grid graph with n = 4900, and infection time

t = 10. The reporting probability was fixed at q = 0.25. The infection was

simulated for 1000 trials for each infection processes (a random sickness and

an epidemic), running the Quantile Ball Algorithm for each set of reporting

nodes. The expected size of the random sickness was normalized to the em-

pirical average size of the epidemic. We set the ball size parameter m to the

optimal value as determined empirically. The probability of error is plotted

against the empirical expected fraction of infected nodes. That is, for each

set of parameters, we estimated the expected number of infected nodes from

the simulations, which was divided by n to determine the fraction infected.

This expected fraction of infected nodes conveys the size of the infection, and

hence the difficulty of the problem (since the task is more difficult the larger

81

Figure 4.1: This figure shows the overall error probability, the sum of equally
weighted Type I and Type II error rates, for a grid graph. The false positives
were located randomly on the graph. The x-axis measures the expected frac-
tion of nodes truly infected. As in our results, α = 1/(1 + f). The ball radius
m was set to the optimal value empirically.

the infection is). Note that since q = 0.25, the expected fraction of reporting

nodes is approximately 0.25 times as large.

We present our simulation results on the probability of error for grid

graphs for a variety of false positive frequencies. As in our analytical setting,

the random sickness infection size was normalized to the same distribution as

the epidemic as determined empirically. The results are shown in Figure 4.1.

The error probability is very low up to a very large number of truly

infected nodes. It climbs fairly slowly as the number of false positives in-

creases. Even when two-thirds of the reporting nodes are false positives, the

82

error probability is low even up to an expected 40% of the network infected.

Therefore our algorithm works very well in this setting.

83

Chapter 5

Mixed Infections

5.1 Introduction

The study of epidemic spread over social, communication, and human

contact networks, be it a contagion of a human or computer virus, or a rumor,

opinion or trend, begins with two basic questions: do we indeed have a spread-

ing epidemic, and if so, what is the causative network spreading it? Numerous

famous examples from the history of epidemiology ([57, 12]) have illustrated

the importance and difficulty of determining the causative network. With

accurate data collected over time, for example, from high accuracy medical

diagnoses of a known illness, the causative network essentially reveals itself.

Yet such data are rarely available. More to the point, highly incomplete and

noisy data often are available. Indeed, the challenge arises in particular, when

time lapse data of “true” illness is not available, and when the data we do

have is highly noisy.

The key idea in this work, is that different spreading mechanisms have

The work in this chapter appears in the following publication:
Chris Milling, Constantine Caramanis, Shie Mannor, and Sanjay Shakkottai. Detecting
epidemics using highly noisy data. In Proceedings of the Fourteenth ACM International
Symposium on Mobile Ad Hoc Networking and Computing, pages 177–186, 2013.

84

different statistical signatures, in terms of the subset of people infected. This is

certainly the case when the causative graphs are very different, and the subset

of nodes (people, machines, etc.) the epidemic has reached (“infected nodes”)

are completely and accurately revealed. As discussed, however, the data avail-

able are typically noisy. Moreover, the larger the fraction of the network the

contagion has reached, the more this “network signature” is washed out. This

paper explores these tradeoffs. We consider a broad class of graphs: graphs

with bounded degree. The degree controls the infection’s speed. We consider

the case most relevant in spread of rumors, technology and ideas: the super-

position of two spreading mechanisms. Indeed, in the age of mass advertising

and mass media, trends spread friend-to-friend, but also through television,

Internet ads, and similar advertising efforts that exhibit a “star-like” contagion

network [27].

We consider two such mixed processes. In each process, the infection

and random sicknesses occur at different rates, but the network is the same for

both. One mixed process however is more infectious than the other. That is, in

one process, the infection rate is much higher than the random sickness, and in

the other, the random sickness dominates. Note that this is a generalization of

the problem of distinguishing a random sickness from an infection. However,

now there will be outliers that makes the problem more challenging. We

provide sufficient conditions for determining which is the dominant effect, when

only a vanishing fraction of infected nodes report, and when no time-lapse data

are available.

85

5.1.1 Related Work

Analyzing the spread of epidemics under the susceptible-infected (SI)

model [20] has been considered in depth for a variety of graphs and circum-

stances [4, 24]. Myers et al. consider a problem similar to the mixed infection

regime [50]. That is, nodes infect each other through the network as usual, but

in addition, nodes are become sick randomly as well. In their model, nodes

become ’exposed’ to information, and may decide become infected, exposing

their neighbors to the information, with a probability dependent on the num-

ber of times they were exposed. An external source exposes nodes randomly

at a time-varying rate, and nodes may expose their neighbors after they are

infected. Their goal is to estimate the external infection rate and other algo-

rithm parameters. To accomplish this, the full sequence of infected nodes and

the times they were infected is required. The difference between this result

and the proposed problem, beyond the model differences, is first, here only

a partial set of the infected nodes is known. This is a nontrivial restriction,

heavily impacting the algorithm used. On the other hand, our algorithm must

only distinguish between two distinct processes, as opposed to estimating the

random sickness rate. As in the case of estimating the graph structure (Sec-

tion 2.1.2), the key distinguishing factor of our work is the minimal amount

of information available to the algorithm.

86

5.2 Problem Statement

We consider two infection processes spreading on the same graph G.

At a single instant in time, some portion of the infected nodes report being

infected, and we must use this information to evaluate which infection process

most likely caused the infection. We use the same reporting process as in

Chapter 2, where each sick node reports with probability q. In this case

however, instead having a pure random sickness and a pure epidemic, both

infection processes are a mixture of both a random sickness and an epidemic.

Equivalently, the processes are mixtures of an epidemic on a star graph and

an epidemic on a well-structured graph. We refer to these as mixed infections.

However, one process is dominated by the random sickness process and takes

the role of the random sickness. Phrasing this as a hypothesis testing problem,

our null hypothesis is that the mostly random infection process is the cause

of the infection. The alternative is that the other epidemic dominated mixed

infection is the causative process.

5.2.1 The Infection Process

Let G = (V,E) denote the graph along which the infection spreads.

As discussed above, in the case of an epidemic spreading node-to-node, G is a

structured graph (e.g., d-dimensional grid). The initial node of the infection

is selected uniformly at random. We let n = |V |, the size of the graph. The

diameter of the graph is denoted diam(G).

Given a graph G, the contagion spreads as follows. At time zero, an

87

initial node is selected and called “infected.” For the structured graph case,

we assume this initial infected node is selected uniformly at random. For the

star graph, it is the external central node. The infection spreads from that

node to its neighbors, across the edges of the graph. The spreading occurs

according to a standard susceptible-infected (SI) model [20, 18, 34] for an

epidemic. The spreading rate is parameterized by a single number, or rate.

To make clear the distinction between the rate for a structured graph or for

a star graph, we use η to represent the rate of the structured graph, and γ/n

the rate of the star graph. We divide by n in the case of the star graph so that

new infections appear at rate γ (ignoring the shrinking number of susceptible

nodes). This means the following: for each infected node and for each edge

incident to that node, we start an exponential clock, i.e., a clock that expires

after an exponentially distributed length of time, of expectation 1/η, i.e., of

rate η for a structured graph, and n/γ, i.e., of rate γ/n, for the star graph.

The expiration of a clock indicates that the adjacent node becomes infected

(if it is not already infected) and new clocks are started for each edge from

this newly infected node. In this way, the infection spreads along the edges of

the graph in a node-to-node fashion.

The star graph infects nodes at rate γ/n, and then these infected nodes

infect their neighbors on the structured graph (e.g., the grid) at rate η. Thus,

in this superposed process, nodes become infected at random at some rate

γ, which we term ‘seeds’. The infection then spreads from these seeds as an

epidemic on graph G at the (different) rate η. With the combination of these

88

processes, the infection will appear as multiple ‘balls’ of decreasing size. The

first infection will be much larger, followed by smaller balls and then (possibly)

individual infected nodes.

In this setting, we consider two different processes: one where the dom-

inant factor is the random infection (the spread from the star graph) and the

other where it is the spread along the structured graph that dominates. Thus,

in the first setting we have γ � η, and the random infection dominates the

epidemic, and in the second setting, η � γ, and the epidemic spread domi-

nates the infection process. We define S as the set of infected nodes at a given

time t, and let Srep be the set of reporting infected nodes.

5.2.2 Graphs

We consider on graphs G chosen from family G with constant bounded

degree. That is, suppose that for a constant d̄, every vertex in the graph has

degree no more than d̄ for each graph in that family. This condition suffices

to limit the speed at which the epidemic can spread through the network,

and otherwise makes the epidemic well behaved. In particular, from Theorem

4.2.1, the graph has limited epidemic speed and limited neighborhood size. See

Section 4.2.1 for details on these conditions. We restate these conditions for

the reader’s convenience.

Definition 5.2.1. A graph has limited epidemic speed if there exist finite,

positive constants s, λ1 such that for sufficiently large n and time t, and an

89

epidemic starting at any node a,

P (v(a, t) > st) < e−λ1t.

Definition 5.2.2. A graph G has limited neighborhood size if diam(G) scales

as Ω(log n) and there exists a increasing concave function b(x) such that for

all b(x) > 0 and all balls of radius no more than b(x) contain less than x nodes

for sufficiently large n with probability tending to 1.

5.2.3 Algorithm

We use an extension of the Quantile Ball Algorithm from Section 4.2.3.

Like in that algorithm, we use a parameter α satisfying 0 < α ≤ 1, and only

look at the α fraction most clustered nodes. However, in this case, we also use

β balls to contain the infected nodes, with β ≥ 1, since there may be multiple

clusters from the epidemic.

We term our algorithm the Multiple Ball Algorithm. The Multiple Ball

Algorithm is simple to describe: it searches for the smallest ball/collection of

balls that covers a minimum fraction of the reporting infected nodes. Of

course, it has no way to tell if a reporting sick node is truly infected or a

false positive, and as emphasized above, this is not the goal of this paper. If

the resulting radius of this ball is small enough, it declares that there is an

epidemic; otherwise, it concludes that the infection process is in fact a random

illness. This algorithm is efficient, as even the brute-force implementation

runs in time at most O(|V |2 · |E|) when there is a single ball, and in general,

order-wise polynomial in |V | · |E|.

90

The algorithm takes three parameters α, β and m. These parameters

are tailored to the problem at hand, including, in the case of m, the size of

the graph. As input, it takes a graph G and a set of reporting infected nodes

Srep. If the algorithm can cover an α-fraction of the infected nodes with β

balls, each of radius at most m, it declares the infection to be an epidemic;

otherwise, it labels the infection a random illness. In most cases, it is sufficient

to use a single ball (that is, β = 1).

Algorithm 6 Multiple Ball Algorithm

Input: Graph G; Set of reporting infected nodes Srep;
Parameters: Quantile α, Number of Balls β, Threshold m
Output: EPIDEMIC or RANDOM

c← α [|Srep|]
for all (u1, u2, . . . , uβ) ∈ V K do
B ←

⋃
1≤i≤β BallG(ui, r)

if |B ∩ Srep| ≥ c then
return EPIDEMIC

end if
end for
return RANDOM

In the basic Multiple Ball Algorithm, we considered the case when all

balls have the same radius. However, in many cases, when multiple balls are

used, it makes sense to have some balls smaller than others. For example,

the epidemic won’t spread as far from a node that became randomly sick

late into the infection, compared to the node that initially sick. To account

for this, we also consider a modification of the previous algorithm called the

Scaling Multiple Ball Algorithm. In this algorithm, the radius of the balls

91

scales linearly up to the radius of the largest ball, m. When there is only one

ball (β = 1), this algorithm is identical to the previous one.

Algorithm 7 Scaling Multiple Ball Algorithm

Input: Graph G; Set of reporting infected nodes Srep;
Parameters: Quantile α, Number of Balls β, Threshold m
Output: EPIDEMIC or RANDOM

c← α [|Srep|]
for all (u1, u2, . . . , uβ) ∈ V K do
B ←

⋃
1≤i≤β BallG(ui, ri/β)

if |B ∩ Srep| ≥ c then
return EPIDEMIC

end if
end for
return RANDOM

Both forms of the Multiple Ball Algorithm take computation time ex-

ponential in β. This time can be substantially reduced by modifying the

algorithms to be greedy. More precisely, instead of optimizing over all possible

collections of balls, the greedy algorithm first tries to cover as many report-

ing nodes as possible with the largest ball. Then, it covers as many of the

remaining reporting nodes as possible with the next largest ball, and so on.

The resulting algorithm is much more efficient when there are a large number

of balls, but may return an incorrect result. We analyze only the exact forms

of the Multiple Ball Algorithm unless otherwise stated.

92

5.3 Main Results

Mixed processes, with both an infection component and random sick-

ness component, can be distinguished in a similar way as in the case of false

positives from Chapter 4. This is because, if the infection component domi-

nates, the initial infection will be much larger than the others, so the secondary

infections can be treated as outliers. Likewise, if the random component dom-

inates, the infections from the many random seeds will be spread over the

graph, so no small ball can contain many of the infected nodes.

We consider two distinct infection processes. In Process 0, the infection

spreads mostly randomly. Let γ0, η0 be the infection rates for the random

sickness and epidemic respectively and t0 be the infection time for Process 0.

For clarity, we also call Process 0 “Process SR-WE” (Strong random, weak

epidemic). In Process 1, the infection is dominated by the epidemic, and let

γ1, η1, and t1 be the corresponding parameters as before. We label Process 1

“Process WR-SE” (Weak random, strong epidemic). Note that the infection

is the same if the rates are scaled up by the same factor that time is scaled

down. Then we can say that the epidemic dominates in Process 1 relative

to Process 0 if η1/γ1 � η0/γ0. Unlike in the previous chapters, we apply no

explicit normalization. Rather, we provide sufficient conditions on the range

of the parameters for which the Multiple Ball Algorithm succeeds.

Theorem 5.3.1. Consider an infection spreading as in Process 0. Suppose

qγ0t0 = ω(log n). Suppose there exists a constant integer C3 ≥ 1 where η0t0 =

93

o
(
(γ0t0)−1/(1+C3)

)
and for some ε > 0, suppose that m+C3 < b

(
αn

βd̄C3+1(1+ε)

)
.

Then the Type I error probability for both the Multiple Ball Algorithm and

Scaling Multiple Ball Algorithm decays to 0 as n increases.

Proof outline. The conditions in the theorem are sufficient to show that the

epidemic will not spread more than a constant distance from any seed. Due to

this, it is sufficient to show that an α fraction of the seeds cannot be contained

by the balls. Standard bounds on the spread of a random sickness is sufficient

to complete the proof. See the appendix for the details of the proof.

Next consider the infection spreading by Process WR-SE [Process 1].

Then we can characterize the range for which the Type II error goes to 0 as

follows.

Theorem 5.3.2. Consider an infection from Process 1. Suppose m > sη1t1,

where s is the speed of the infection when it spreads at rate 1, β is a constant,

and η1t1 scales to infinity. Suppose α = o(β(1 + γ1t1)−1), and log(β/α) =

o(η1t1). Then for both forms of the Multiple Ball Algorithm, the Type II error

probability tends to 0.

Proof outline. Using the assumptions, we show that additional seeds are un-

likely. In fact, β/α is larger than the number of seeds. Therefore, the largest

β epidemics contain at least an α fraction of the infected nodes. Using the

speed bound, the threshold is sufficiently large enough to contain each epi-

demic. Therefore, the Multiple Ball Algorithm succeeds. A similar approach

94

works for the Scaling Multiple Ball Algorithm. The proof details are in the

appendix.

Finally, recall we can choose the algorithm parameters α, β and m.

Then the question is, when can we choose appropriate algorithm parameters

so that the probability of error goes to 0? This is answered by the following

theorem.

Theorem 5.3.3. Suppose there exists C3 such that η0t0 = o
(
(γ0t0)−1/(C3+1)

)
and qγ0t = ω(log n). Suppose η1t1 = ω(log(γ1t1)), γ1t1 = ω(1), and sη1t1 =

o
(
b(n
γ1t1

)
)

. Then the algorithm parameters can be chosen so that the proba-

bility of error for the Multiple Ball Algorithm approaches to 0.

Proof. We must choose m, α and β so that sη1t1 < m < b
(

αn
C4β(1+ε)

)
− C3

and α = o(β(γ1t1)−1), log(β/α) = o(η1t1), where C4 = d̄C3+1. We set β = 1,

though note that we can use β > 1 by inversely scaling α with β. First we

consider the conditions on α. Define an arbitrary slowly increasing function

g(n) = θ(1), g(n) = o(γ1t1). This is possible since η1t1 = ω(1). Choose

α = (γ1t1g(n))−1. Then we have

log(1/α) = log(γ1t1g(n))

< 2 log(γ1t1)

= o(η1t1).

Thus α satisfies the desired conditions. Now we show it is possible to choose

an appropriate m. By hypothesis, sη1t1 = o(b(n
γ1t1

)). From our choice of α,

95

for sufficiently large n, α
C4(1+ε)

< 1
γ1t1

. Using the concavity of b(x),

b

(
n

γ1t1

)
<

γ1t1
α/(C4(1 + ε))

b

(
αn

C4(1 + ε)

)
= o

(
b

(
αn

C4(1 + ε)

))
. (5.1)

Therefore, sη1t1 = o(b(αn
C4(1+ε)

)), with sη1t1 = ω(1) by hypothesis. Thus it

is clear m can be chosen with sη1t1 < m < b
(

αn
C4(1+ε)

)
− C3, for example by

averaging each side. With this choice of parameters, the conditions of Theorem

5.3.1 and Theorem 5.3.2 are satisfied. Hence, both the Type I and Type II

error probabilities tend to 0.

The above conditions are fairly opaque however. These conditions can

be described roughly as follows:

• The total number of nodes that can be covered by a β balls of radius 2m

(where m increases with n) must scale a constant factor less than the

total number of nodes times α.

• In Process SR-WE [Process 0], the expected number of reporting seeds

must be order-wise more than log n.

• In Process SR-WE, the infection spreads no more than a constant dis-

tance.

• For Process WR-SE [Process 1], the thresholdmmust be set large enough

that a ball of radius m covers the largest infection (using the epidemic

speed).

96

• For Process WR-SE, the expected number of seeds must be order-wise

less than βα−1.

• For Process WR-SE, βα−1 must be order-wise less than exponentials in

η1t1.

One interesting observation is that even when there are multiple clus-

ters, it is still possible to use only a single ball in our algorithm, as long as α

is reduced appropriately. This fact is borne out in our simulations.

5.4 Simulations

To support our analytic results, we performed a variety of simulations

of the performance of our algorithms. Each of our simulations was performed

on a grid with n = 4900, and with the opposing edges connected to form a

torus. We use an infection time of t = 10 (unless otherwise stated) and a

reporting probability of q = 0.25. The average probability of our algorithm

was determined over 10000 trials, where each infection process was equally

likely to be the causative infection.

To normalize the infection sizes, we adjusted the rates so that the in-

fection sizes for both infection processes would be similar. This was done by

first choosing the epidemic rate for each process, and then empirically finding

the random rate to three significant digits so that expected number of infected

nodes hit a target value, typically with a specified fraction of the network being

infected. This was done so that all the infections (for the various parameters)

97

would be fairly comparable. Process SR-WE [Process 0] used an epidemic rate

of 0.2, and we varied the epidemic rate for Process WR-SE [Process 1].

Figure 5.1 shows the probability of error using the Multiple Ball Algo-

rithm with a single ball (β = 1) for various infection sizes. The infection rate

for Process WR-SE [Process 1] is given on the x-axis. As expected, the larger

the infection, the more difficult it is to use clustering to determine whether an

infection is mostly random or mostly an epidemic. When an expected 60% of

the nodes in the network are infected, then the probability of error stays high,

even for much larger infection rates. Note that there is a maximum infec-

tion rate before the target infection size is exceeded regardless of the random

sickness rate. We used Process WR-SE infection rates close to that maximum.

Next we determine the effect of α on the probability of error. Again,

β = 1. These results are shown in Figure 5.2. Surprisingly, changing α has

a relatively small effect on the probability of error. The largest effect seen is

using too large a value for larger Process WR-SE infection rates (when the

probability of error is low). However, that is still relatively small. Then our

algorithm seems fairly insensitive to the value of α.

Finally, we use the Scaling Multiple Ball Algorithm with multiple balls,

implemented as a greedy algorithm. The probability of error is plotted in

Figure 5.3. This simulation used a larger grid graph with n = 10000 with 1000

trials. Process SR-WE [Process 0] had an infection rate of 0.1 and random

rate so that the expected infection size was 20% of the graph. We set the

parameter α = 1 for β = 1 and α = 0.75 otherwise, which was empirically the

98

Figure 5.1: This figure shows a chart of the overall error probability for various
expected fraction infected against the Process WR-SE infection rates. The
Process SR-WE infection rate is 0.2. The parameter α = 0.5. The ball radius
m was set to the optimal value empirically.

optimum value of α for each β from several tested values. The x-axis shows

the infection rate for Process WR-SE [Process 1]. From the simulation, we

find using multiple balls achieves a reduction in error probability for β ≥ 5,

especially at lower infection rates of Process WR-SE, when the problem is

more difficult. However, this reduction does come at a cost of computation

time.

99

Figure 5.2: This figure shows the overall error probability for multiple values
of α and Process WR-SE infection rates. The Process SR-WE infection rate
is 0.2 and the expected fraction infected was 40%. The parameter m was set
to the optimum value.

100

Figure 5.3: This figure shows the error probability for the Scaling Multiple
Ball Algorithm for a range of β (ball count). The simulation used a grid
graph with n = 10000, 1000 trials, a Process SR-WE infection rate of 0.1 with
t = 10. The random sickness rate was set so the expected fraction infected
was 20%. The parameters α and m were set to the optimum value from a set
of predetermined values.

101

Chapter 6

Unknown Edges

6.1 Introduction

Modern life is dominated by communicated across networks, from over

the Internet, phones, or through traditional contact networks. Virus, infor-

mation, and rumors travel on these networks as well, and identifying when

these infectious processes spread is valuable in many cases. Using data about

a subset of infected people/devices (attained using infection reports, polling,

etc.) and the associated network, it is possible to distinguish an infection

from simple random noise, modeled as a random sickness [46]. Though sparse

knowledge about infected users is often fairly straightforward to obtain, it may

be different to know the entire social network. We pose the question: if the

network on only known inexactly, is it still possible to determine when an

infection occurs?

For many online networks, the information on the entire social network

(formed by friends, followers, and equivalent relationship) is available. Yet

even in these cases, this network may not entirely represent the network over

which an infection spreads. For instance, there may be friends who do not

use that social networking service. In the case of the spread of information,

102

communicating to these offline friends causes the appearance of that informa-

tion ‘jumping’ across the network. In the worst case, the infection may spread

to someone at a far distance on the social network, causing the infection to

not appear clustered as expected. Algorithms to distinguish between random

sicknesses and epidemics must be robust against these jumps.

To solve this problem, we use the Multiple Ball Algorithm. We consider

this problem in both the cases of unknown short and unknown long edges. For

unknown short edges, the distances on the graph do not change substantially

by their removal. We demonstrate that our algorithm can tolerate an arbitrar-

ily large number of unknown short edges and still perform well. In the case

of long edges, which may substantially change the network topology, we show

that the algorithm succeeds when there are up to a constant number of these.

These analytic results are supported by simulations.

6.2 Model

We base our model on that presented in Chapter 2. Let G from graph

family G be the complete true social network on which an epidemic may spread

as a SI infection process. We are presented with a set of sick nodes. These are

either from a random sickness, or from the aforementioned epidemic. Only a

small fraction of these infected nodes report their infection, each with proba-

bility q. The sizes of each infection process are normalized to be equal.

We require constraints on G so that there is sufficient topological infor-

mation to distinguish the two processes. In particular, we require the graph to

103

have limited epidemic speed and limited neighborhood size, as defined Section

4.2.1. As shown in Theorem 4.2.1, these conditions are satisfied by all bounded

degree graphs.

6.2.1 Missing Edges

In this case however, some edges in G are unknown. These unknown

edges may be chosen arbitrarily, or under constraints detailed in the following

sections. Define Ḡ as the subgraph of G with these edges removed. That is,

Ḡ is the known social network. Note equivalently we can start with Ḡ and

add these unknown edges to form the social network G, which may be useful if

the known edges should have some structure. The algorithm has knowledge of

only the subgraph Ḡ (and the associated speed and spread functions). With

only this limited knowledge, the task is to distinguish an epidemic spreading

on G from a random sickness.

We say a set of unknown edges Ē is has maximum length ` if, for each

e = (u, v) ∈ Ē, distḠ(u, v) ≤ `. That is, removing the edges increases the

distance between any two previously connected edges to at most `.

6.3 Results

To solve this problem, we use the Multiple Ball Algorithm as given in

Section 5.2.3. In this algorithm, we attempt to contain an α fraction of the

infected nodes with β balls of radius m, where α, β, and m are algorithm

parameters.

104

Figure 6.1: A grid with one long unknown edge, represented by the thick
arrow. The infected nodes are colored red. The infection appears to jump
across the graph when the long edge is not known.

We divide the problem into two cases. In the first case, all the unknown

edges are ‘short’. The known graph then closely resembles the true social

network, just with some errors. The epidemic will still result in a clustering

of reporting infected nodes, and therefore can still be identified. In fact, we

show that for reasonable infection sizes, we can tolerate an arbitrarily large

number of such missing edges. The second cases is when some edges are ‘long’.

These edges allow the epidemic to jump large distances, and may cause the

set of infected nodes to appear as many different clusters. Figure 6.1 shows

an example. We show our algorithm can tolerate a constant number of such

edges.

105

6.3.1 Short Edges

Suppose the set of unknown edges has maximum length `, where `

is a constant. Because of this, the distance between any two nodes cannot

increase by more than a factor of `. Note that for all nodes u and radius r,

BallG(u, r/`) ⊆ BallḠ(u, r) ⊆ BallG(u, r). Due to this fact, the known graph

Ḡ satisfies the spread constraint for bḠ(x)
4
= bG(x). In addition, if Ḡ satisfies

the spread constraint for some function b̃Ḡ(x), the original graph G satisfies

that constraint with function b̃G(x)
4
= b̃Ḡ(x)/`. Likewise, since the epidemic

would travel slower on Ḡ, Ḡ satisfies the speed constraint. In order to set

the threshold, we also require that the speed of the infection does not change

substantially. A large speed change is possible even with short edges if they

are in sufficient quantity. Formally, we suppose that for a known constant

κ ≥ 1, if speed condition applies to Ḡ with speed s̄, it applies to G with speed

κs̄. If the speed of an epidemic on the original graph is known (for example,

from prior epidemics), then this condition is not necessary for the threshold

to be calculable.

Theorem 6.3.1. Suppose G is the true social network and satisfies the speed

and spread constraints. Let Ḡ be the known subgraph of G with edges with

length at most c removed, and suppose it has speed s̄ and spread function

bḠ(x). Suppose t increases with n sufficiently that the number of reporting

nodes is Ω(log n), and that for some constant ε > 0, t < bḠ(n/(1 + ε))/(κsḠ`).

Under these conditions, the Multiple Ball Algorithm using m = κsḠ`t (and

α = 1, β = 1) identifies the type of infection correctly with probability tending

106

to 1 with the number of nodes, n.

Proof. Suppose first the sickness was caused by an epidemic. Note that by

the speed condition on G, the infection can be contained with high probability

inside a ball of radius sGt (where the ball in on G), and sG ≤ κsḠ. Since

the distance between any two nodes can increase by a factor of at most `, the

infection is contained in a ball on Ḡ with radius κsḠ`t. Therefore, the Type

II error probability decays to 0.

Now consider a random sickness. Any ball on Ḡ with radius m can

contain no more nodes than the same ball (with the same center and radius)

on G since removing edges only increases the distance between nodes. By

hypothesis, m < b(n/(1 + ε)) for some ε. Hence from the spread condition,

each ball contains no more than a 1/(1 + ε) fraction of the network with

high probability. From standard arguments as in our previous results, the

probability that a random set of at least log n nodes is entirely contained in

only a fraction of the network decays to 0 exponentially. From a union bound

over the n possible balls, we find that the Type I error probability also decays

to 0.

6.3.2 Long Edges

As before, let G be the correct graph and suppose it satisfies the speed

and spread constraints. A constant number, K, of these edges are unknown

by the algorithm. These unknown edges are chosen arbitrarily and may be

any length. Then Ḡ is the subgraph of G known by the algorithm, differing

107

only by these K edges. Note that as in the case of short unknown edges, Ḡ

satisfies the speed and spread conditions.

To handle the possible multiple clusters, we use the Multiple Ball Al-

gorithm with β > 1. This algorithm can successfully determine whether the

causative process is an epidemic or not in this problem for a simple reason.

Since there are at most K jumps (across the K missing edges), there are at

most K + 1 separate infections. Therefore, the infection can be contained in

balls around each of these separate infections (for sufficiently small infections).

This intuition is proven in the following theorem.

Theorem 6.3.2. Let Ḡ is the known subgraph of G, that is, with the unknown

edges removed. Suppose that the number of unknown edges is at most K.

Define constants C1 = [3(K+ 2)]−1/2 and C2 = C1α/(K+ 1). Suppose t scales

such that the number of reporting nodes is Ω(log n) and t < bḠ(C2n)/sḠ. Using

the Multiple Ball Algorithm with α be an constant, 0 < α ≤ 1, β = K+ 1, and

m = sḠt, the infection type can be determined with probability tending to 1 as

the graph size increases.

Proof. First we show that the Type II error probability decays to 0 as n→∞.

To do this, we define a set of nodes a0, a1, . . . , aK as follows. Set a0 to the

initial infected node. The first time the infection traverses one of the unknown

edges, let a1 be newly infected node. Likewise, let a2 be the infected node

from the second time the infection traverses an unknown edge, and so on.

Since there are only K edges, and an infection can spread across an edge at

108

most once, there are at most K such infected nodes from ‘jumps’, which we

call ‘seeds’. Any remaining undefined nodes are set arbitrarily. This is well

defined since two nodes cannot be infected at the same time almost surely.

Now consider the epidemic process where each of these seeds is infected

at time 0 and the infection spreads over Ḡ. Note that this behaves the same

as the original process except the ‘seeds‘ are infected at an earlier time. The

removal of the unknown edges does not reduce the spread of the infection

since the end points are already infected. Since the spread of the infection is

monotonic in time, the infection is only larger on this new process.

As mentioned, since removing edges can only reduce the speed of the

infection, we know Ḡ satisfies the speed condition as well. Therefore, the

spread of the infection (ignoring missing edges) around node ai for any 0 ≤

i ≤ K is at most m = sḠt with probability tending to 1. Hence by a union

bound, the entire set of infected nodes is contained by K+1 balls, one around

each seed of radius m, with probability tending to 1. The spread on this new

process is only larger, so the same property applies to the actual epidemic.

Therefore, the Multiple Ball Algorithm correctly labels it an epidemic with

probability tending to 1.

Now, consider the Type I error probability. From the spread condition

and since m < bḠ(C2n), each ball on Ḡ can contain at most C2n nodes, and

hence, all collections contain less than βC2n = C1αn nodes. Consider any set

of such balls, and let B be the nodes their union contains. Recall Srep is the

set of reporting sick nodes (located randomly). From standard balls-in-bins

109

arguments as in Lemma 4.2.2,

Pr(|B ∩ Srep| ≥ α |Srep)| ≤ e
−|Srep|

3C2
1

≤ n−(1/C1)2/3

= n−(K+2)

using the fact that |B| ≤ C1αn and |Srep| ≥ log n. There are no more than nβ

such collections of balls. From a union bound over all collections B,

Pr(∃B : |B ∩ Srep| ≥ α |Srep|) ≤ nβ−(K+2)

= n−1.

Therefore, the probability that an α fraction of the sick nodes can be contained

by β balls of radius m, that is, the Type I error probability, decays to 0.

6.4 Simulation

For our simulations, we assumed there were a small number of un-

known, arbitrarily long edges. We started with a grid graph with n = 4900,

and added a fixed number, K, of edges. Each edge connected two nodes, both

chosen independently uniformly at random. Each of these additional edges

were unknown by the algorithm (so only the grid graph was known). The

reporting probability is q = 0.25. The Scaling Multiple Ball Algorithm was

applied to this problem with α = 1, β = K + 1, and the threshold m set to

the optimum value. This algorithm was implemented in the more efficient,

but inaccurate, greedy form as described in Section 5.2.3. We expect that the

110

Figure 6.2: This figure shows the overall error probability for a grid graph
with K additional randomly located unknown edges. The empirical expected
fraction of nodes that are infected is shown on the x-axis. The parameters are
α = 1, β = K + 1, and m set optimally.

inaccuracies have no significant impact on the probability of error. The ran-

dom sickness was normalized to have the same expected size as the epidemic.

The overall probability of error was determined using 10000 trials, with equal

number of epidemics and random sicknesses. This error probability is plot-

ted against a range of expected infection sizes (as determined empirically) in

Figure 6.2.

In all cases, the error probability is low until most of the graph is

infected. Then, we see that empirically, the Scaling Quantile Ball Algorithm

performs well in the presence of unknown edges.

111

Chapter 7

Weighted Graphs

7.1 Introduction

Detecting failures and infections spreading over a network requires be-

ing able to distinguish a phenomenon that is spreading from node to node

through a contact process, from a collection of random failures occurring by

chance, or perhaps driven by an external source or event. The importance of

correct diagnosis of a spreading phenomenon – i.e., understanding that that

there is indeed a spreading epidemic, and properly detecting the contact net-

work over which it spreads – has been well documented in the history of human

virus epidemiology and computer networks alike [12, 42, 57].

A key assumption in prior work is homogeneity of the spreading net-

work; that is, the epidemic is assumed to spread at a constant (probabilistic)

rate. In real world networks, both these key assumptions typically do not

hold. For starters, close relations transmit infection more readily than distant

connections. More troubling is the assumption that the contact network is

The work in this chapter is to appear in the following publication:
Chris Milling, Constantine Caramanis, Shie Mannor, and Sanjay Shakkottai. Local detec-
tion of infections in heterogeneous networks. In Proceedings of INFOCOM, IEEE, 2015.
(To appear).

112

known. While some network connections may be known (e.g., nuclear fam-

ily), others can only be estimated and should be best modeled by probabilistic

connections of different strength, especially from publicly available data. For

example, publicly (or relatively easily) available data may include a list of

coworkers, but typically would not include statistics on pairwise daily inter-

action times among employees. While a model assuming a known uniform

weight among all coworkers equaling the edges among family members may

well be inaccurate, one that assigns weighted edges that capture whatever

partial knowledge may be available, can be significantly more accurate and

representative.

Any realistic modeling of real-world epidemics must, therefore, be able

to accommodate heterogeneous edges. This is precisely the topic of the present

paper. Given a snapshot of an epidemic on a non-homogeneous graph, our

objective is to correctly diagnose the existence of the epidemic, especially

when parts of the network are not known, and when the data themselves are

highly noisy, corrupted via high levels of false positives and false negatives.

7.2 Problem Statement

We use a similar model as in previous chapters. The infection is caused

either by a random sickness or an epidemic. At a single time t, each infected

node reports with probability q. We suppose that the infection processes are

normalized so the expected infection size is the same for both processes. Using

the set of reporting nodes and knowledge of the graph structure, we seek to

113

determine whether the infection was caused by an epidemic or simply a random

sickness. The set S denotes the complete set of infected nodes at time t, and

Srep denotes the set of reporting nodes.

7.2.1 Weighted Infection Model

The variant we consider is when the graph for the infection is weighted.

Let G = (V,E) be the infection graph, with nodes V and edges E. For each

edge eij between nodes i and j, there is a weight wij > 0. The infection spreads

over this graph in a manner similar to a standard SI infection. Initially, a

single randomly chosen node is the infection source, say node i. For each

edge connected from this node to an adjacent susceptible node, say node j,

a clock is started with exponentially distributed duration with mean 1/wij.

When a clock expires, the susceptible node on that edge becomes infected

(if it is not already infected by a different source). When a node becomes

infected, clocks are started for each edge connected to that node in that same

way, with the expected duration of the clock determined by the edge weight.

The infection spreads between connected nodes in this way until time t has

passed. Therefore, the higher the weight is between two nodes, the faster the

infection will travel between them. At this time, the infected nodes report

independently with probability q. In this case, we constrain q = ω(1/ log n).

These weights can substantially change how the infection spreads across

the graph. Edges with very low weights can almost be ignored. The infection

will spread mostly on edges with higher weights. Then the effective topology

114

of the graph may be closer to the topology due to the higher weight edges.

A challenge with weighted graphs is that it can be difficult to evaluate the

infection structure, such as determining the expected time to infect a particular

node, without excessive computation.

7.2.2 Graphs

For graph G and arbitrary nodes i and j, define len(i, j) as the length,

in hop count, between i and j. Similarly, define dist(i, j) as the minimum

weighted distance between i and j. Our algorithm considers “balls” on these

graphs to be all nodes within a certain distance (this distance is weighted)

from a central node. For graph G, node i and radius r, define Ball(G, i, r) =

{j ∈ V : dist(i, j) < r}.

We suppose the graphs satisfy two conditions, and call such graphs

acceptable graphs. These conditions are similar to the speed and spread condi-

tions of previous chapters, though we include lower bounds. As before, graphs

with bounded maximum degree satisfy these conditions. The bounded speed

condition states roughly that the infection spreads at a bounded speed.

Definition 7.2.1. Consider graph family G. This family satisfies the bounded

speed condition for minimum speed s(−) and maximum speed s(+) (both con-

stants) if, for infection time t increases with n without bound, for graph G,

infection S and infection source i,

P
(
Ball(G, i, s(−)t) ⊆ S ⊆ Ball(G, i, s(+)t)

)
→ 1.

115

That is, the infection spreads at least a distance s(−)t and at most a distance

s(+)t.

The bounded spread condition requires that the neighborhood sizes are

well behaved. The spreading functions may scale with n, but we are most

interested in graphs of bounded degree, in which case these functions vary

only with x. Most importantly, we want to constrain the neighborhood size

as the graph size increases.

Definition 7.2.2. A graph family G satisfies the bounded spread condition

with concave increasing spreading functions b(−)(x) and b(+)(x), 1 ≤ x if, for

graph G(n) drawn from this family, with probability tending to 1 the following

holds for each node i and number of nodes x < n:

∣∣Ball(G, i, b(−)(x))
∣∣ < x <

∣∣Ball(G, i, b(+)(x))
∣∣ .

7.2.3 Additional Constraints

In addition to the basic problem, we consider two additional variants.

First, there may be false positives, uninfected nodes that report a sickness

regardless. Second, there may be unknown edges of the graph. Though both

of these constraints have been considered previously, we now consider them in

the context of weighted graphs.

We use the same false positive model as in Chapter 4. The number

of false positives is set by fixing the ratio between the number of reporting

infected nodes and the number of false positives. For a constant f ≥ 0 and

116

|Srep| truly reporting nodes, we set the number of false positives to be (approx-

imately) f |Srep|. For each of the bf |Srep|c false positives, we independently

choose a random node from the entire graph and that node reports an infec-

tion, where repeats are allowed.

The second constraint is the some edges of the graph are not known.

From this perspective, the infection may appear to ‘jump’ between two nodes.

We consider the same cases as in Chapter 6. We define the length of a missing

edge as follows. For a removed edge e connecting nodes i and j, we say the

length of e is distḠ(i, j), the weighted distance between i and j on the graph

with missing (unknown) edges. For a constant `, removed edges are considered

short if their length is at most `. Otherwise, they are called long edges.

7.2.4 Algorithm

Our approach to solving this problem involves characterizing the shape

of an infection. The distance between two nodes appears to be a good approx-

imation of how easily an epidemic can spread from one node to the other. The

shorter the (weighted) distance, the faster the infection spreads. However, this

ignores the topological considerations: the number of short paths also matters.

Nevertheless, we show that the distance measure is sufficient to approximate

the shape of an epidemic in this situation, and thereby distinguish an epidemic

from a random sickness.

The heterogeneity in edges fundamentally changes the way we need to

think about inference in this setting. From an algorithmic viewpoint, earlier

117

work that addressed this kind of inference problem [46, 47, 48] did so by

essentially detecting the boundary of the infected region – in essence, they

compare the radius of a ball that ‘covers’ the reporting infected nodes to a

fixed threshold. We call this algorithm the Threshold Ball Algorithm. If the

radius is small, then they report that there is an epidemic. However such

a test is sub-optimal, both analytically as well as in simulations when the

network edges have heterogeneity. Analytically, this occurs because estimates

of the radius of a ball covering the infected nodes does not have sufficient

probabilistic concentration guarantees for our inference purposes. Intuitively,

this happens because with edge non-homogeneities, the ‘boundary’ of infection

can have large protuberances (think of ray-like objects flaring out of the ball-

like footprint of infected nodes). These can cause outer radius estimates to

be poor. However, taking a volume inside the infected region and estimating

infection densities turns out to be much more robust. See Figure 7.1 for an

example.

The Threshold Ball Algorithm performs especially poorly if it uses hop

count to measure the ball radius. For some graph topologies, such as a grid

with diagonal edges, it is possible that the outer ball around the epidemic

covers the entire graph, even when the epidemic is relatively small. Figure 7.2

shows an example of this phenomenon. In that example, the radius of the ball

necessary to surround the infection is equal to the radius of the entire graph,

even if the epidemic is fairly small. Therefore, the Threshold Ball Algorithm

cannot distinguish this epidemic from a random sickness in this case, even if

118

Figure 7.1: A weighted grid with infected nodes colored red, where the in-
fection travels faster in the horizontal direction. Due to the weights, the ball
surrounding the infected nodes (blue) is excessively large compared to the
more robust internal ball (green).

all nodes report. However, the inner ball approach we use still succeeds.

Our algorithm is called the Ball Density Algorithm. The algorithm

takes parameters m and d. The algorithm searches through the graph, and

determines whether any ball of radius m has a density of reporting nodes at

least d. As before, a ball of radius m is defined as all nodes within some

distance m of some central node. If there is a ball with sufficient density, the

reporting nodes appear sufficiently clustered and the infection is labeled an

‘epidemic.’ Otherwise, it is labeled a ‘random sickness.’

The Ball Density Algorithm is similar to the scan statistic considered

by Arias-Castro et al. [1, 2]. In that work, each node v reports a standard

Gaussian Xv except for possibly in a cluster K ∈ Km, which report i.i.d.

119

Figure 7.2: An epidemic on a weighted grid including diagonals with infected
nodes colored red. The infection travels faster in the horizontal direction,
denoted by the thicker lines. The Ball Density Algorithm will likely succeed
for this infection, but the Threshold Ball Algorithm will not.

Gaussians with positive mean µK . The scan statistic is defined as

max
K∈Km

1√
|K|

∑
v∈K

Xv.

If this statistic is above a threshold, then there is likely an anomalous cluster.

For our problem, this cluster would correspond to the epidemic. Unlike in

our case however, all possible clusters are known. Also, in [1], they set µK =

|K|−1/2 ΓK and analyze necessary and sufficient bounds on ΓK . That is, the

mean deviation of the nodes in that cluster (µK) may decay on the order of

the square root of number of nodes in that cluster. Because of this, it is better

to divide by
√
|K| (as opposed to |K|) in the scan statistic. However, in our

120

case, the reporting probability is always q regardless of the infection size, so

we must divide by the ball size to find the mean reporting rate (the density).

In addition, computing the scan statistic may be computationally intensive if

Km is large, even when restricted to an ε-net. The Ball Density Algorithm on

the other hand is always efficient.

Ideally, we want the density threshold d to be close to the expected

density in the infected set, q. However, q may not be known. In that case,

we can estimate the required density by comparing it to the density outside

the ball. If the infection density within the ball is sufficiently higher than the

density outside the ball, that ball is likely within an epidemic. Along these

lines, we use a modified form of the algorithm called the Relative Ball Density

Algorithm. In this algorithm, if the density within a ball of radius m exceeds

the density outside the ball by a factor of at least β > 1, we label the infection

an ‘epidemic.’

Algorithm 8 Ball Density Algorithm

Input: Graph G; Set of reporting infected nodes Srep;
Parameters: Density d, Radius m
Output: EPIDEMIC or RANDOM

for all i ∈ V do
if |Ball(G, i,m) ∩ Srep| / |Ball(G, i,m)| ≥ d then

return EPIDEMIC
end if

end for
return RANDOM

121

Algorithm 9 Relative Ball Density Algorithm

Input: Graph G; Set of reporting infected nodes Srep;
Parameters: Relative Ratio β, Radius m
Output: EPIDEMIC or RANDOM

for all i ∈ V do
ExternalBall← V \ Ball(G, i,m)
d← β |ExternalBall ∩ Srep| / |ExternalBall|
if |Ball(G, i,m) ∩ Srep| / |Ball(G, i,m)| ≥ d then

return EPIDEMIC
end if

end for
return RANDOM

7.3 Results

We show that the Ball Density Algorithm can distinguish between a

random sickness and an epidemic on a weighted graph under the specified

conditions. In addition, we also show that this algorithm is reliable. The

algorithm still succeeds even if there are false positives or some edges of the

graph are not known.

7.3.1 Basic Problem

The fundamental case is when we have access to the entire graph G

and the reporting nodes Srep with no false positives. Later sections include the

case when there are false positives, and when some graph edges are unknown.

We demonstrate that the Ball Density Algorithm and Relative Ball Density

Algorithm can succeed in determining the type of infection with asymptotic

probability 1, and characterize the range of infection sizes for which this is

122

possible.

Our results require the fact that the number of reporting nodes in a

set is highly clustered around its expectation. This follows from the following

well-known Chernoff bound:

Lemma 7.3.1. Suppose in a set U of nodes, each node reports an infection

independently with probability q. Let Urep be the set of reporting nodes inside

U . Then for any δ > 0,

P (|Urep| ≥ (1 + δ)q |U |) < exp(−δ2q |U | /3)

and

P (|Urep| ≤ (1− δ)q |U |) < exp(−δ2q |U | /2).

We begin by limiting the density of a random sickness and of an epi-

demic. We use the fact that, when all balls of a specified radius contain at

least log2 n nodes, every such ball has density close to its expectation. Roughly

speaking, the following two theorems provide the conditions for the Type I and

Type II error probabilities to tend to 0.

Theorem 7.3.2. Consider an acceptable graph G of size n with random sick-

ness Srep. Let ε > 0 be a small constant. Consider ball radius m satisfying

b(+)(log2 n) < m and density threshold d = (1− ε)q. If the expected number of

infected nodes is less than (1 − 2ε)n, the density of every ball of radius m is

less than d with probability tending to 1.

123

Proof. Note that a ball of radius m contains at least log2 n nodes. By hy-

pothesis, the expected reporting node density over the entire network is less

than (1− 2ε)q. Therefore, for any collection of nodes, the expected density of

infected nodes in that region is less than (1−2ε)q. Let δ = (1−ε)/(1−2ε)−1.

From the Chernoff bound Lemma 7.3.1, for a set of nodes of size k, the proba-

bility the density of reporting nodes in the set is over (1+δ)(1−2ε)q = (1−ε)q

is less than exp(−δ2(1 − 2ε)qk/3). Hence, for k ≥ log2 n (that is, for balls of

radius m), and with q = ω(1/ log n), this probability decays to 0 faster than

1/n. Using a union bound over the n balls of radius m (one for each central

node), each with at least log2 n nodes by the condition on m, we find that all

of them contain density less than (1− ε)q with probability tending to 1.

Theorem 7.3.3. Consider an acceptable graph G of size n with reporting

infected set Srep from an epidemic. Let ε > 0 be a small constant. For time

t > b(+)(log2 n)/s(−), ball radius b(+)(log2 n) < m < s(−)t and density threshold

d = (1−ε)q, the density of nodes within a ball of radius m around the infection

origin is at least d.

Proof. From the speed condition, with probability tending to 1, the infection

contains all nodes within distance s(−)t of the origin. In particular, it contains

the ball of radius m. The expected density in that ball is q (the reporting

probability). As in Theorem 7.3.2, since the ball size is at least log2 n, the

probability the density is less than (1−ε)q decays to 0 using Lemma 7.3.1.

Combining these two results gives the conditions for when the Ball Den-

124

sity Algorithm succeeds. That is, the infection time must be large enough that

the ‘inner ball’ of the epidemic (that is, the largest ball completely contained

in the epidemic) includes at least log2 n nodes. Second, the expected infection

size must be no more than a constant factor less than n. By setting the den-

sity threshold closer to q, the factor can be improved, so that the algorithm

succeeds when nearly the entire network is infected.

Theorem 7.3.4. Suppose G is an acceptable graph with size n, and let ε > 0

be a small constant. In addition, suppose that the expected number of infected

nodes is at most (1 − ε)n and t > b(+)(log2 n)/s(−). Using the Ball Density

Algorithm with parameters m satisfying b(+)(log2 n) < m < s(−)t and density

d = (1− ε/2)q, the algorithm successfully distinguishes a random sickness and

an epidemic with probability tending to 1.

Proof. First, consider a random sickness. From Theorem 7.3.2, all balls of

radius m have density less than d with probability approaching 1. In this case,

the algorithm corrects label the infection a random sickness. Now consider an

epidemic. From Theorem 7.3.3, there is a ball of radius m contained in the

epidemic with density at least d with high probability. Again, the algorithm

successfully labels it an epidemic. Therefore, both the Type I and Type II

error probability tend to 0.

We require that the expected infection size is at most a small factor

less than the size of the network and spreads at least enough to contain log2 n

nodes. Since it is impossible to distinguish a random sickness from an epidemic

125

when the entire network is infected, this is at least order-wise optimal in the

maximum infection size. However, to set the density parameter, we assume

that q is known. When it is unknown, we must instead use the Relative Ball

Density Algorithm, where the minimum density is set to be a factor of β

higher than the density in the rest of the network. The Relative Ball Density

Algorithm succeeds in a similar range of times as the previous algorithm.

Theorem 7.3.5. Let G be an acceptable graph of size n and ε > 0 be a small

constant. Let β > 1. Suppose that the expected number of infected nodes is at

least log2 n, and that t < s−1
(+)b(−)(n/(β + ε)). Apply the Relative Ball Density

Algorithm with radius m satisfying b(+)(log2 n) < m < s(−)t and relative factor

β. Then the algorithm correctly identifies the type of infection with probability

approaching 1.

Proof. Suppose the infection is a random sickness. Let k = E[|Srep|]. Then

the expected density in any set of nodes is k/n. Let δ = β−1
β+1

, so β = 1+δ
1−δ .

Applying the same method as in Theorem 7.3.2, with probability tending to

1, for each ball, the density within the ball is less than (1 + δ)k/n and the

density outside the ball is at least (1−δ)k/n. Therefore, the ratio between the

two is less than β so the algorithm correctly identifies it is a random sickness.

Next, suppose the infection is an epidemic. Let δ = ε/(β + ε). Using

Theorem 7.3.3, the infection contains an m radius ball with density at least

(1−δ)q. From Lemma 7.3.1, the density of the entire infected set is at most (1+

δ)q. From the speed condition, we know with high probability, the epidemic is

126

within a ball of radius s(+)t, containing at most n/(β+ε) nodes by assumption.

No nodes outside that ball report an infection. Therefore, the external density

is at most (1 + δ)q/(β + ε). After some calculation, we find the ratio of the

internal and external density (1 − δ)(β + ε)/(1 + δ) is at least β. Hence, the

algorithm identifies it as an epidemic with probability tending to 1.

We only prove the Relative Ball Density Algorithm succeeds for time

such that the maximum epidemic spread covers nearly up to the network size,

in contrast to the time when the expected epidemic size is nearly n for the orig-

inal algorithm. There may be a constant factor between these times, depend-

ing on the network topology. That is, the algorithm may only be order-wise

optimal in infection time, not infection size.

Note that the entire network is (likely) infected for t = s−1
(−)b(+)(n). In

addition, from concavity, b(−)(n/(β + ε)) > 1/(β + ε)b(−)(n). From this, we

conclude the Relative Ball Density Algorithm is order-wise optimal in infection

time so long as for some constant C, for all x, b(+)(x) < Cb(−)(x). That is,

as long as the lower and upper bounds on neighborhood size are similar. For

example, this is true for grids and trees. In addition, for some graphs, such as

grids, being order-wise optimal in infection time is the same as being order-

wise optimal in infection size. However, for tree graphs, it means success is

only guaranteed for infection sizes up to nγ for some γ < 1. Nevertheless, we

do not need knowledge of the reporting rate for this algorithm.

127

7.3.2 False Positives

For most data sources, the knowledge of the infected nodes is likely to be

unreliable. We already include the possibility that there are false negatives,

but there are also likely to be false positives, i.e., nodes that report being

infected when they are not.

Recall that the number of false positives is parameterized as a factor f

of the number of actual infected nodes. Thus, there are at most f |Srep| false

positives, and these are spread randomly over the network. We show that

our algorithms can tolerate an arbitrary number of randomly located false

positives, though the maximum solvable infection size is reduced.

Theorem 7.3.6. Consider an acceptable graph G of size n, and an infection

on the graph, with false positive ratio f . Let ε be some small constant. Suppose

the infection time is such that t > b(+)(log2 n)/s(−) and the expected infection

size is less than (1 − ε)n/(1 + f). Then the Ball Density Algorithm, with

parameters m in the range b(+)(log2 n) < m < s(−)t and density d = (1−ε/2)q,

determines the type of infection with probability that tends asymptotically to 1.

Proof. First, note that adding false positives only increases the density of

nodes. Then clearly the Type II error probability decays to 0 as shown in

Theorem 7.3.4. The remaining case is when the infection is a random sickness.

As compared to the case without false positives, the density is increased by a

factor of up to (1 + f), for an expected density of q(1 + f)E[|S|]/n. As before,

128

as long as d is greater than this quantity, the Type I error probability decays

to 0. By assumption, q(1 + f)E[|S|] < q(1− ε) < d, so we are done.

The Relative Ball Density Algorithm can also succeed in this setting.

Again, it can tolerate an arbitrary number of false positives, as long as the

infection size is sufficiently low. The maximum infection time is order-wise the

same as that in the case without false positives, and hence is also order-wise

optimal with balanced neighborhood size bounds.

Theorem 7.3.7. Suppose G is a size n acceptable graph. Let ε > 0 be a small

constant, and let β > 1. Assume that the infection time t satisfies

b(+)(log2 n)/s(−) < t < s−1
(+)b(−)

(
n

(1 + f)(β + ε)

)
.

By using the Relative Ball Density Algorithm with radius m satisfying the

inequality b(+)(log2 n) < m < s(−)t and with relative factor β, the type of

infection can be determined with probability approaching 1.

Proof. For this theorem, the random sickness case is the easiest. The composi-

tion of false positives and the random sickness is similar to a random sickness

with higher reporting rate. Just as in Theorem 7.3.5, the density inside and

outside any ball is close to its expectation (and equal for both regions) and

hence the Type I error probability tends to 0.

Now consider an epidemic on G. From the lower bound on t, the

expected infection size is at least log2 n. Using the upper bound on t as in

Theorem 7.3.5, the density of true reporting nodes over the network is at most

129

q(1 + f)−1(β + ε)−1. Since the false positives increase this expected density

by at most a factor of (1 + f), the outer density is at most q/(β + ε). As

before, the expected density of the ball contained in the infection is q, plus

additional density from the false positives. Hence, as desired, the ratio between

the densities is at least β with probability tending to 1.

7.3.3 Unknown Edges

Another source of error is incomplete knowledge of graph structure.

Complete knowledge of contact networks may be difficult to determine, and

there may be unknown edges. Nevertheless, if these unknown edges are not

too numerous, then it is still possible to distinguish epidemics and random

sicknesses. We consider two types of missing edges. There may be a large

number of missing edges, but they are ‘short.’ On the other hand, there may

be a few missing ‘long’ edges.

First we consider the case where there are many short edges. That is,

suppose that for some constant `, each missing edge eij satisfies distḠ(i, j) ≤ `

as in Section 6.3.1. As before, using this property, we find that the distance

between any two nodes i and j on Ḡ increases by a factor of at most ` over the

distance on G, since the length of each edge on the shortest path connecting

the two nodes increases by at most that factor. Additionally, removing edges

only lengthens the distance between nodes, never decreases it. By accounting

for the possible increase in distance, we again show that the Ball Density

Algorithm can distinguish the infection types.

130

Theorem 7.3.8. Let G be an acceptable graph with size n. Suppose the only

unknown edges on G are short edges with length at most `. Let ε > 0. As-

sume that the expected number of infected nodes is at most (1 − ε)n and

t > b(+)(log2 n)/(`s(−)). For the Ball Density Algorithm, use parameters radius

m and density d with `b(+)(log2 n) < m < s(−)t and density d = (1 − ε/2)q.

Then this algorithm correctly determines whether the infection is a random

sickness or an epidemic with probability approaching 1.

Proof. As compared to Theorem 7.3.4, the lower bound on m is scaled up by

a factor of `. The ball on Ḡ of radius m must contain at least log2 n nodes,

because it contains the ball on G of radius m/`, which by assumption contains

at least log2 n nodes. Hence, from Theorem 7.3.2, the density of a random

sickness on all of these balls is no more than (1 − ε/2)q, an upper bound on

the overall density. Therefore, the Type I error probability goes to 0.

In addition, the ball of radius m on Ḡ is contained in the ball of radius

m on G, since distances only increase. Therefore, in an epidemic, this ball is

contained within the infected set and has density greater then (1 − ε/2)q by

Theorem 7.3.3. From this, the Type II error probability also vanishes.

From Theorem 7.3.8, we see that by simply increasing the minimum

ball size to ensure we cover a sufficient portion of the network even with

edges missing, the Ball Density Algorithm succeeds as before. Therefore, we

conclude it is very tolerant of missing short edges. A similar result holds for

the Relative Ball Density Algorithm.

131

Theorem 7.3.9. Consider an acceptable graph G of size n, and let ε > 0 be a

small constant. Set β > 1. In an infection, suppose that the number of infected

nodes is at least log2 n, and that t < s−1
(+)b(−)(n/(β + ε)). Using the Relative

Ball Density Algorithm with radius m in the range `b(+)(log2 n) < m < s(−)t

and relative factor β, the infection type is correctly determined with probability

tending to 1.

Proof. Just as in Theorem 7.3.8, a ball of radius m on Ḡ contains at least

log2 n nodes. In addition, such a ball around the source of an epidemic is

contained within the epidemic with high probability as m < s(−)t. These are

the conditions necessary for the error probability to decay to 0 as shown in

Theorem 7.3.5.

Now consider the case when there are few, but arbitrary length un-

known edges. Since these edges are not known, the infection appears to jump

across the graph when it traverses on one of these edges. Then suppose there

is a bound on the number of these edges, K. Therefore, there are at most K

jumps (with at most one per edge), and at most K + 1 clustered epidemics on

Ḡ. However, each of these clusters has a high density, and the algorithm still

succeeds with a slight modification. Namely, we only consider balls containing

at least log2 n nodes in the algorithm. If there are no such balls at that radius,

the infection is labeled a random sickness, though this case will not occur with

the radius specified.

132

Theorem 7.3.10. Let G be an acceptable graph with size n, and suppose all

but K edges are known. Let ε > 0 be a small constant. Consider an infection

with expected size at most (1− ε)n and duration t > 2b(+)((K+1) log2 n)/s(−).

Apply the Ball Density Algorithm, setting the parameters m so that b(+)((K +

1) log2 n) < m < s(−)t/2 and density d = (1 − ε/2)q, with the additional

requirement that the number of nodes within any considered ball must be at

least log2 n. Then a random sickness and an epidemic can be distinguished

with probability approaching 1.

Proof. From our additional condition, we know the balls contain log2 n nodes.

As in previous theorems, we know from Theorem 7.3.2 that the random sick-

ness density is less than d and the Type I error probability goes to 0. Next

consider an epidemic. We know the ball on Ḡ is contained within the ball

on G of the same radius. Split the infection into two phases, each of length

t/2. From the speed condition, for each node within distance s(−)t/2 from

the infection origin, the ball of radius less than s(−)t/2 around that node is

contained in the infection. Applying Theorem 7.3.3, we see that, if any such

ball has at least log2 n nodes, it has the required density.

The main fact to be proved is that there is such a ball of radius m on

Ḡ containing at least log2 n nodes. The ball of this radius on G contains at

least (K + 1) log2 n nodes by hypothesis. This ball can be split into ‘clusters’,

where a cluster is a ball around the node on the far side of one of the unknown

edges. There are at most (K + 1) of these clusters, and therefore, at least

one of them has log2 n nodes. Then, the ball of radius m around the center

133

of that cluster both is contained in the infection, and contains log2 n nodes as

desired.

The range of infection sizes for which we succeed is very similar to case

without missing edges. The radius used in the algorithm has a tighter range,

and the minimum infection time is larger. Note that the number of missing

edges K we can tolerate must satisfy (at least) K < n/ log2 n. The Relative

Ball Density Algorithm behaves in a similar way.

Theorem 7.3.11. Suppose G is an acceptable graph of size n, with at most K

unknown edges. Let ε > 0 and β > 1. Assume that the expected number of in-

fected nodes is at least log2 n and t < s−1
(+)b(−)(n/(β+ε)). Use the Relative Ball

Density Algorithm with radius m in range b(+)((K + 1) log2 n) < m < s(−)t/2

and relative factor β, with the additional requirement that we consider only

balls containing at least log2 n nodes. This algorithm accurately distinguishes

whether the infection is a random sickness or an epidemic with probability

going to 1.

Proof. From the additional algorithm condition, the ball contains at least

log2 n nodes, so in the same way as Theorem 7.3.5, we see that the Type

I error probability goes to 0. For the epidemic, using the result from Theo-

rem 7.3.10, we know there is a ball contained within the infection of radius m

on Ḡ with at least log2 n nodes. This ball satisfies the necessary conditions

for the same approach as in Theorem 7.3.5 to work. Then the Type II error

probability tends to 0.

134

7.4 Simulations

We now provide simulation results that confirm our analytic results. In

addition, these simulations provide additional insight into how the probability

of error changes with variations in the parameters. First, we compare the

performance of the Ball Density Algorithm and the relative version with other

algorithms. In the next section, we illustrate the effect that changing the

weights of the graph has on the probability of error. Finally, we show the

probability of error for various numbers of missing edges.

For these simulations, we consider a grid graph where all the horizontal

edges have one weight, and the vertical edges have another. Note that structure

is desired in these weights. If the weights were simply random, then the

infection behavior would be nearly the same as an unweighted infection with

a modified edge traversal time distribution. We use graph size n = 4900. The

reporting probability is q = 0.25, and no false positives or missing edges are

used unless specified. The ball radius parameter is set to be the optimum value

as determined empirically. For the Ball Density Algorithm, we set the density

threshold to d = 0.245, close to q. For the Relative Ball Density Algorithm,

we use a relative ratio of β = 2. After 1000 trials, the overall probability

of error is determined by the average of the error probabilities of both the

random sickness and epidemic cases. Other problem parameters are stated in

each section below.

135

7.4.1 Algorithm Comparison

In this paper, we present two algorithms to distinguish random sick-

nesses from epidemics: the Ball Density Algorithm with fixed density and

the relative density of that algorithm. For this section, we denote these the

‘Density’ and ‘Rel. Density’ algorithms respectively. Though we show both

of these algorithms succeed over similar ranges of infection sizes, we have not

directly compared these algorithms analytically. To compare them, we have

simulated both on a grid graph, with weights in {1, 10}. In addition, there are

other algorithms to consider. Our algorithms use weighted balls, but it is also

possible to use balls where the distance is measured in hop counts. We denote

this variation of the Relative Ball Density Algorithm as ‘Rel. Density with

Hops.’ Another possible algorithm is the Ball Algorithm as presented in [46].

In this algorithm, the infection is labeled an epidemic if all the infected nodes

can be contained within a ball of a specified radius. Note that this algorithm

is (nearly) equivalent to the Relative Ball Density Algorithm with infinite rel-

ative factor β. This algorithm is denoted ‘Ball’, and the version where hop

counts are used for the distance is denoted ‘Ball with Hops.’

The simulation results are presented in Figure 7.3 (the ‘Ball with Hops’

algorithm is omitted for clarity). There is a clear ordering of the algorithm per-

formance. From best to worst, the algorithms are ‘Rel. Density’, ‘Ball’, ‘Rel.

Density with Hops’, ‘Ball with Hops’ and finally ‘Density.’ For example, when

around 89% of network is infected, the error probabilities are approximately

1%, 2%, 3%, 4%, and 5% respectively. Then we see that on this graph, the

136

Figure 7.3: This figure shows the overall error probability for a grid graph
(n = 4900) with the weights on horizontal edges of 1, and on vertical edges of
10 over a range of infections sizes for different algorithms.

Relative Ball Density Algorithm performs better than the other algorithms,

including the Ball Algorithm from prior work. We also see that including the

effects of the weights in the graph is necessary for optimal performance. The

regular Ball Density Algorithm lags behind, partially due to the inability to

adapt as well to larger infection sizes, enabling a random sickness to more

easily exceed the specified density threshold.

7.4.2 Weights

As the difference in edge weights increases, the more skewed the infec-

tion becomes towards the larger edge weights. To examine how tolerant our

algorithm is towards different edge weights, we simulated the Relative Ball

137

Figure 7.4: This figure illustrates the overall error probability for the Relative
Ball Density Algorithm on a grid of size n = 4900. The edge weights on the
horizontal edges are 1, and the weights on the vertical edges are given in the
legend.

Density Algorithm on a grid, fixing the weight of the horizontal edges at 1 and

varying the weights of the other edges. The probability of error is shown in

Figure 7.4. As the figure shows, though the error probability increases slightly

as the weights increase, the performance of the algorithm is very similar regard-

less of edge weight distribution on this graph. Then we conclude the Relative

Ball Density Algorithm appropriately adapts to the weight distribution in this

case.

138

7.4.3 Unknown Edges

One key feature of our algorithm is that it is robust against unknown

edges. We simulated the Relative Ball Density Algorithm for various numbers

of missing edges to confirm this analytic result. The simulations use a grid

graph with edge weights 1 and 10, but add a variable number of long distance

edges between nodes chosen uniformly at random from the grid, each with

weight 1. These edges are unknown to the algorithm, causing an epidemic to

appear as multiple clusters. The probability of error for different numbers of

these missing edges is shown in Figure 7.5. Note that due to this construction,

the epidemic also spreads somewhat faster the more missing edges there are.

As the figure shows, though the error probability increases significantly at

smaller infection sizes compared to the case without missing edges, it is still low

until a majority of the network is infected. In addition, the error probability

increases very slowly as the number of missing edges increases.

139

Figure 7.5: This figure presents the overall error probability when using the
Relative Ball Density Algorithm on a grid graph with n = 4900 with horizontal
and vertical edge weights of 1 and 10 and additional unknown random edges
of weight 1, for various numbers of missing edges.

140

Chapter 8

Conclusions and Future Work

In this thesis, we have considered the problem of distinguishing between

two infection processes when only limited and unreliable information is avail-

able. The fundamental case of this problem is when an infection appearing

among the population may represent just a random sickness, or an epidemic

that must be identified. Quickly determining when an epidemic occurs is

frequently essential is rapidly understanding, containing, and curing it. We

present two algorithms to solve this problem, the Threshold Ball Algorithm

and the Threshold Tree Algorithm, both of which use the idea of clustering of

the infected nodes to determine if an epidemic is present. We show that both

of these algorithms achieve asymptotically vanishing error probabilities over a

large range of infection sizes on three standard graph topologies, grids, trees,

and Erdös-Renyi graphs. In fact, for grids, our maximum achieveable infection

size is order-wise optimal. From our analytical and simulation results, we con-

clude the Threshold Ball Algorithm has superior or nearly equal performance

to the Threshold Tree Algorithm, and is more efficient to implement.

We also consider the case when we must distinguish between two epi-

demics with differing network structure. To solve this problem, we develop

141

two conditions on the graphs. First, it must satisfy a speed constraint, stat-

ing roughly that the epidemic cannot travel faster than a constant speed on

that graph. Second, the graph must be sufficiently spread out so that a set

of random nodes isn’t clustered on the graph. When those conditions holds,

we show that the Relative Ball Algorithm can determine which epidemic is

the causative process with high probability. These two conditions, the speed

and spread conditions, ensure that the epidemic is well behaved and we apply

related conditions for the rest our results.

In order to make our algorithm more robust, we develop the Quantile

Ball Algorithm and the Multiple Ball Algorithm. This modification is sufficient

to handle the case when there are false positives. In fact, we show that we can

handle the case when an arbitrarily large fraction of the reporting nodes are

false positives if they are located randomly, and up to the maximum possible

fraction of false positives if they are placed adversarially. The Multiple Ball

Algorithm is also sufficiently robust to handle unknown edges in the epidemic’s

graph, including an arbitrarily large number of short edges. We also show that

in the case of two possible mixed infections, where the random sickness and

epidemic occur simultaneously, this algorithm can determine which whether

the infection occured due to the more infectious process provided the processes

are sufficiently distinct.

Finally, we develop a new algorithm for weighted graphs termed the Ball

Density Algorithm. We demonstrate that this algorithm is able to distinguish

between a random sickness and an epidemic under these more challenging

142

circumstances. In addition, this algorithm is shown to be robust to both false

positives as well as unknown edges of the graph. We find empirically that this

algorithm slightly outperforms the Threshold Ball Algorithm.

8.1 Future Work

Though we have considered many variations of the problem of distin-

guishing infection processes, as always there are still many question left unan-

swered. Throughout this work, we only consider epidemics based on the SI

infection model, where once nodes become sick, they never recover. However,

in many cases, the susceptible-infected-recovered (SIR) model would be more

appropriate, especially in the case of diseases. In this model, where nodes

recover from their infection, the expected ‘shape’ of the infected region is not

simply a cluster of nodes, but rather contains nodes only at the edges of a ball,

and appears closer to a torus. Due to the reduction in the number of reporting

nodes (since less nodes are infected at a given time), our current algorithms

may have poor performance. An improved algorithm designed for this case

would be valuable in many settings.

Though we have shown that in the majority of cases, our algorithms

can determine the causative infection process for maximum infection times

that are order-wise optimal, this does not mean they are order-wise optimal

in infection size. For graphs in which the infection spreads rapidly such as

tree-like graphs, these algorithms only succeed when up to nβ nodes are in-

fected for some constant β (depending on the graph, algorithm, and other

143

parameters). This raises the question, how large can the infection be such

that it is still possible to distinguish a random sickness from an epidemic for

these graph topologies? Developing a converse result determining the neces-

sary conditions for our algorithm to succeed would help answer this question.

In addition, it would be useful to know exactly how the performance of our

algorithm compares to the theoretical optimal algorithm. Along these lines,

work could focus on developing alternative algorithms that may have superior

performance, perhaps by considering a more restrictive class of graphs.

144

Appendices

145

Appendix A

Chapter 2 Proofs

A.1 Proof of Theorem 2.3.3

Proof of Theorem 2.3.3(a). To prove this theorem, we prove the following

more general statement. Let m be the threshold for the Ball Algorithm and

suppose (2m/d+ 1) < n1/d. If for some ε > 0,

t <
m

dµ(1 + ε)
,

the Type II error probability decreases to 0 as t, m, and n increase. In addition,

the Type I error probability also decreases to 0 in the limit if

tdq

(
n1/d − 2m/d− 1

n1/d

)
= ω(log n).

We begin with the Type II error probability, which we denote by EII :

the probability we mistake an epidemic for a random sickness. As long as m

is chosen as in the statement of the theorem, we are guaranteed that if the

sickness is in fact from an epidemic, then using the above lemma, the spread

of the infection is limited to the subgrid [−m/d,m/d]d with high probability,

where the origin is set to be the original infected node. Consequently, all nodes

must be within m steps of the origin since the grid is d-dimensional. That is,

146

we have

EII < 1− P{B(t) ⊂ [−m/d,m/d]d}

< C1t
2de−C2t−1/2(m/(dµ)−t),

from Lemma 2.3.1, where we use x = min (t−1/2(m/(dµ)− t), t1/2). Therefore,

given ε > 0, t < m
dµ(1+ε)

, indeed the error goes to 0 as t and n increase.

Next, we consider Type I error, EI : the probability we mistake a ran-

dom sickness for an infection process. This happens if all the reporting sick

nodes happen to fall inside the ball of radius m/d. Recall the expected size of

the random sickness is the same as that of the epidemic. We can get a lower

bound on this number for the infection process (and hence for the random

sickness process) this time using the inner bound on B0. For the infection pro-

cess, the second part of Lemma 2.3.1 asserts that the infected region contains

all nodes within the l1-ball of radius w = (1−C3t
−1/(2d+4)(log t)1/(d+2))µt with

probability at least 1− P1, where

P1 = C4t
d exp (−C5t

(d+1)/(2d+4)(log t)1/(d+2)).

Therefore at least 2 bw/dcd nodes will be sick with that probability, and hence

there will be on average, at least 2q bw/dcd sick nodes reporting. What is the

probability that the random sickness model with (at least) this many sick nodes

will have all reporting nodes inside the sub grid [−m/d,m/d]d? There are

L = (2m/d+ 1)d nodes in that region. Evidently, any given sick node satisfies

that property with probability L/n, so they all satisfy it with probability at

147

most (L/n)2q(w/d)d . Note that any dependence between sick nodes only reduces

the probability. After this, we use a union bound to find that the probability

no such region contains all sick nodes is at most P2 = n(L/n)2q(w/d)d .

Putting it all together, we have,

EI < 1− (1− P1)(1− P2) < P1 + P2

< C4t
d exp

(
−C5t

(d+1)/(2d+4)(log t)1/(d+2)
)

+ n

((
2m/d+ 1

n1/d

)d)2q(w/d)d

.

and

2(w/d)d ≥ 2d−dµdtd(1− dC3t
−1/(2d+4)(log t)1/(d+2)).

Note that P2 dominates as n increases. We want to find the regime

when this probability tends to 0. That is, we want

n exp(2d−dµdtdqd ln

(
1− n1/d − 2m/d− 1

n1/d

)
(1− dC3t

−1/(2d+4)(log t)1/(d+2)))→ 0.

Using a Taylor expansion and some simplification, we find a sufficient

condition for this is that

tdq

(
n1/d − 2m/d− 1

n1/d

)
= ω(log n).

This completes the proof of the general statement. In addition, the Type I

error can be shown to dominate in the range of interest. Theorem 2.3.3(a)

follows immediately using the threshold provided.

148

Proof of Theorem 2.3.3(b). Let Xrep be the number of reporting sick nodes,

and let X̄ = Xrep/q (that is, X̄ is basically the expected number of sick nodes

based on the number reporting). Recall S is the complete set of sick nodes.

From the Lemma 2.3.2, we have

P (X̄ log log n < |S|)→ 0

Let µ be the asymptotic rate at which an infection travels as before, and let

ε > 0. From the proof of Theorem 2.3.3(a), at time t, we know for δ > 0

P (|S| < (2(1− ε)µt/d)d)→ 0

Hence t < (X̄ log logn)1/d

2(1−ε)µ/d with high probability. Naturally increasing t only

increases the infection size, so it is only necessary to consider the maximum

likely t. In particular, if the threshold m = 1.1dµtmax = 1.1d2X̄ log logn)1/d

2(1−ε) , then

from Theorem 2.3.3(a), the adaptive thresholding will work with Type I error

probability approaching 1. In addition, if X̄ is ω(log n), the Type II error

probability will decay to 0 as well from the same theorem.

A.2 Proof of Theorem 2.3.4

Proof of Theorem 2.3.4(a). First consider the Type II error probability. Using

Lemma 2.3.1 like in Theorem 2.3.3, the epidemic is contained in a ball of

radius 1.5µt with high probability and hence the size of the epidemic is less

than (3µt)d = m. Since the nodes in the epidemic are connected, the reporting

nodes can clearly be connected by a Steiner tree with size less than that of the

epidemic. Therefore, the Type II error probability decays to 0.

149

Now consider Type I errors, so assume the infection is caused by a ran-

dom sickness. With Lemma 2.3.1, we find that the ball of radius 0.5µt/d is

contained in the epidemic, and therefore at least
(
µt
2d

)d
nodes are infected.

Hence, E[|S|] > (2d/3)dm. Assume by hypothesis that E[|S|] < n/(8 ×

(3/d)d log logn/q)d. Divide the grid into blocks of size L = n log logn
qE[|S|] (that is,

the regions should be grid sections of side length L1/d). Note that the expected

number of reporting nodes in each block is log log n. It is easy to see that at

least half of the blocks contain a reporting node, for example with a Chernoff

bound. Consider the shortest path (duplicate edges allowed) connecting all

the reporting nodes. This is no more than twice the length of the Steiner tree

since a path can traverse a tree by traveling along each edge twice.

For each 2× 2× · · · × 2 region, color each block a different color, and

each such region in the same pattern. Note that there are 2d colors used.

Consider the sequence of colors of the blocks the path travels through. Since

blocks of the same color are separated by a distance of L1/d, whenever a color

is repeated, the path must travel at least that distance. Because there are

only 2d colors and at least n/(2L) blocks, there are at least n/(2d+1L)−1 such

repetitions (subtracting the first instance of the colors). Therefore, the path

has length at least

150

(n

2d+1L
− 1
)
L1/d =

(
qE[|S|]

2d+1 log log n
− 1

)(
n log log n

qE[|S|)]

)1/d

>
qE[|S|]

2d+2 log log n

(
n log log n

qE[|S|]

)1/d

>
n1/d(qE[|S|])1−1/d

2d+2 log log n

>
n1/dq1−1/dddm

4(3d) log log nE[|S|]1/d

> 2q−1/dm > 2m

where the last line uses our hypothesis on maximum number of infected nodes.

Hence, the Steiner tree has size at least m and the Type I error probability

approached 0.

Proof of Theorem 2.3.4(b). By a Chernoff bound, we see that m is larger than

the number of infected nodes with high probability. Since the Steiner tree is

smaller than the number of infected nodes, the Type II error probability clearly

decays to 0. Turning to the Type I error rate, we can apply the same approach

as for the non-adaptive case. In this case, set L = n log logn
Xrep

. Applying the same

reasoning as before, the length of the Steiner tree connecting random nodes is

at least

Xrep

2d+3 log log n

(
n log log n

Xrep

)1/d

>
n1/dX

1−1/d
rep

2d+3 log log n

=
n1/dqm

3× 2d+3X
1/d
rep (log log n)2

151

Therefore, we are done if 3 × 2d+3(log log n)2X
1/d
rep < qn1/d, that is, if Xrep <

qdn/(3 × 2d+3(log log n)2)d. From standard Chernoff bounds, we see Xrep <

qE[|S|] log log n ≤ E[|S|] log log n with high probability. From our hypothe-

sis, using the appropriate constant C1, E[|S|] < n/(3 × 2d+3)d(log log n/q)3d.

Therefore, Xrep < q3dn
(3×2d+3)d(log logn)3d−1 < qdn/(3 × 2d+3(log log n)2)d as de-

sired.

A.3 Proof of Theorem 2.3.5

Proof of Theorem 2.3.5(a). To prove this theorem, we prove the following

more general statement:

For some constant β < 1, if qE[|S|] = ω(1) and E[|S|] < nβ, then the

Type I error probability tends to 0. Next, there exists a constant b such that if

b0 > b and the threshold m > b0t for all n, then the Type II error probability

converges to 0 asymptotically, as the tree size scales.

The Type II error bound follows from the fact that the epidemic speed

is no more than a constant b [7].

The Type I error result follows simply as well. Given the branching

ratio, c, there are cm+1−1
c−1

nodes within a distance m from the root. The

probability of a Type I error is (approximately) (c
m

n
)|Srep| – the probability

that the randomly sick nodes are closer than the threshold m to the root.

Then if cm is o(n), it is sufficient that the probability that |Srep| = 0 goes to 0.

This occurs if the expected number of reporting sick nodes is ω(1). That is, we

152

need qE[|S|] = Θ(qe(c−1)t) = ω(1), calculating E[|S|] with a simple differential

equation (shown at the end of this proof). Alternatively, if cm = αn for some

constant α < 1, then we require |Srep| to increase with n with probability 1.

The same condition as before is sufficient for this to be true. This completes

the Type I result.

Using both these results, there is a choice of m such that both error

types become rare as long as cb0t < αn, so ct < (αn)1/b0 . The theorem follows

using a particular threshold.

Now we conclude by showing how we can calculate E[|S|] with the

following differential equation. Let t′ be a variable infection time. Let X(t′)

be the number of infected nodes and Y (t′) be the number of ‘border’ nodes,

uninfected nodes adjacent to an infected node. When a new node becomes

infected, Y (t′) increases by c − 1. Because of this, and since border nodes

become infected at rate 1, Y (t′) = (c − 1)X(t′) + 1 and dE[Y (t′)]/dt = (c −

1)E[Y (t′)]. Solving this equation gives E[Y (t′)] = ce(c−1)t′ and E[X(t′)] =

c/(c − 1)e(c−1)t′ − 1/(c − 1) > e(c−1)t′ . Therefore, we find E[|S|] ≈ c/(c −

1)e(c−1)t.

Proof of Theorem 2.3.5(b). First, note that E[|S|] scales at least as e(c−1)t (un-

til the infection reaches the leaves of the graph). In fact, for any fixed ε > 0,

|S| > e(c−1)t/(1+ε) with probability approaching 1 (for example, see [25]). Now

we can proceed as in the proof of Theorem 2.3.3(a).

As before, let Xrep be the number of reporting sick nodes and X̄ =

153

Xrep/q so X̄ log log n < |S| with high probability. Then we conclude tmax =

1/(c − 1) log(Xrep/q(log log n)2). Hence, by setting b2 = b/(c − 1), we see the

Type II error probability converges to 0 by Theorem 2.3.5(a). Using the same

theorem, we see the Type I error will also go to 0.

A.4 Proof of Theorem 2.3.6

Proof of Theorem 2.3.6(a). We prove the following generalization of the theo-

rem: The Type I error probability converges to 0 for any choice of the threshold

m = o(qE[|S|] log n) with qE[|S|] = O(nα) for some α < 1. In addition, the

Type II error probability converges to 0 if m = ω(E[|S|]).

To prove the Type II error result (mistaking an infection for a random

sickness), note that the size of the infection is E[|S|] ≤ e(c−1)t. Since the Steiner

tree containing the reporting nodes can be no larger than the infection itself,

the Type II error converges to 0 as long as we use a threshold m = ω(E[|S|])

from Markov’s inequality.

Next, we evaluate the Type I error probability (mistaking a random

sickness for an infection). This requires estimating the size of the Steiner

tree containing the reporting sick nodes. Suppose there is an α < 1 such

that E[Srep] = O(nα). Since the number of sick nodes increases with n, the

probability that there are sick nodes on at least two subtrees of the root node

goes to 1, hence the root of the tree is in the Steiner tree connecting the

randomly sick nodes with high probability. Given this, we see that a node

is in the Steiner tree if and only if it is infected or a node below it in the

154

tree is infected. Let N = |Srep|. Since E[|Srep|] is ω(1), N is ω(1) with high

probability. Choose the first level in the tree that has at least N/c nodes. Then

there are between N/c and N subtrees below that level. It is straightforward

to show that each sick node in the tree has at least a 1/2 probability of being a

leaf node since c ≥ 2. Since at least N nodes are sick, at least N/4 of the leaf

nodes are sick and distributed independently among the at most N subtrees.

Therefore, the total number of subtrees with sick nodes at the bottom is at

least N/(8c). In addition, each leaf node in a separate subtree requires a path

at least up to the aforementioned level in the Steiner tree. This gives us the

following high probability bound on the Steiner tree size.

Steiner Tree Size >
N

8c
(logc n− logcN)

> N
(1− α) logc n

8c

= |Srep|
(1− α) logc n

8c
.

For any w = o(E[|Srep|]), we know that |Srep| > w with probability approach-

ing 1. Also, if E[|Srep|] = O(nα), then Sr = O(nα) with high probability.

Therefore, if m = o(qw logc n), which is equivalent to m = o(E[|Srep|] log n),

the Type I error probability tends to 0.

Proof of Theorem 2.3.6(b). Let Xrep be the number of reporting sick nodes,

X̄ = Xrep/q. Then X̄ log log n upper bounds |S| with high probability. Like be-

fore, |S| log log n > E[|S|] with probability approached 1. Then from Theorem

2.3.6(a), we see that both probability of errors will decrease to 0 asymptoti-

cally.

155

A.5 Proof of Theorem 2.3.7

Proof of Theorem 2.3.7(a). The proof follows similar lines as in the previous

section, so we omit most details. In particular, we show the following: Using

a threshold m < logn
3 log c

and qE[|S|] = ω(1), the probability of a Type I error is

at most o(n−1). In addition, the probability of a Type II error converges to 0

as long as m > bt for a constant b specified in the proof.

We bound the probability of a Type II error again using the notion

of the fastest sustainable transit rate from first-passage percolation [7]. As

in Theorem 2.3.5, the constant b comes from the calculation of the infection

spreading rate, and the results follow similarly.

To control the probability of a Type I error, we have to bound the

probability that all randomly sick nodes are within a ball of radius m on the

graph. A sufficient condition for this is that all nodes are within distance 2m

from a given sick node, or there are 0 nodes sick. The latter probability is

simply (1− q)n which decays exponentially. Also, with probability 1− o(n−1),

the number of nodes within a distance 2m from a given sick node is no more

than 16m3c2m log n [11]. Then the error probability in this case is at most(
1− 16m3c2m logn

n

)n
. Then this decays exponentially as long as c2m = o(n),

which occurs when m < logn
3 log c

. Therefore, it is sufficient to show m < logn
3 log c

.

Since the infection size is o(n), we use a branching process approximation to

find that for some λ, E[|S|]→ eλt [18]. Define β2 = λ/(3×1.12b log c). Assume

156

E[|S|] < nβ2 as hypothesized. Then asymptotically with high probability,

λt < 1.1β2 log n.

With some computation, m = 1.1bt < log n/(3 log c). Hence, the Type I error

probability also decays to 0.

Proof of Theorem 2.3.7(b). As shown in [18], E[|S|] scales asymptotically as

eλt for some constant λ. In particular, for abitrary constant ε > 0, E[|S|] >

eλt/(1+ε) with probability approaching 1. Then let Xrep be the number of

reporting sick nodes, and X̄ = Xrep/q, so X̄ log log n will upper bound |S| with

high probability. From this, we conclude tmax = 1/λ log(Xrep/q(log log n)2).

Then by Theorem 2.3.5(a), with b2 = b/λ, we see that the Type II error

probability converges to 0. From the same theorem, the Type I error will go

to 0 as well.

A.6 Proof of Theorem 2.3.8

Proof of Theorem 2.3.8(a). We show the following more general statement:

The Type II error probability decays to 0 if the threshold is chosen as m =

ω(E[|S|]) and E[|S|] = o(n). The Type I error probability goes to 0 when m <

kqE[|S|] for some constant k = o(log(n/(qE[|S|])2)) and qE[|S|] = o(
√
n).

First, if the sickness is from an infection, the smallest tree connecting

the reporting sick nodes must have size no more than the actual number of

sick nodes. Hence, to bound the Type II error, it is sufficient to bound the

157

probability the number of infected nodes is over a certain size. This probability

decreases to 0 as long as m is ω(E[|S|]) when E[|S|] = o(n). To see this, recall

that in this regime, the graph looks locally tree-like. Consequently, we can

bound the maximum number of infected nodes using bounds on the distance

an infection can travel (e.g., see [7]). Again, Markov’s inequality provides the

exact error bound in the theorem statement.

To control Type I error probability, that a random sickness is mistaken

for an infection, we must lower bound the size of the Steiner tree of a random

sickness. For v ∈ Srep, let dv denote the distance from that node to the nearest

other sick node. First we show that
∑

v∈Srep
dv ≤ 2SizeTree(G,Srep). Note that

the bound is attained for some graphs, such as a star graph with the central

node uninfected.

Consider the Steiner tree subgraph, and duplicate all edges on it. Since

the degree of each node in the subgraph is even, there is a cycle that connects

all these nodes. Naturally, the length of this cycle, which is twice the size of

the Steiner tree, is larger than the length of the smallest cycle connecting all

sick nodes. In addition, the length of this cycle is at least
∑

v∈Srep
dv, since

the distance from one sick node to the next sick node in the cycle is clearly no

smaller than the distance from that sick node to the closest sick node. This

establishes that
∑

v∈Srep
dv ≤ 2SizeTree(G,Srep).

Now we simply need to bound dv. To do this, we need an understanding

of the neighborhood sizes in a G(n, p) graph. But as the size of the graph

scales, this is also straightforward to do: recalling that the probability of an

158

edge is c/n and hence the expected degree of each node is (asymptotically) c,

then for typical nodes and arbitrary constant ε > 0, there are no more than

((1 + ε)c)d nodes within distance d provided that d = ω(log log n), using a

branching process approximation.

Let Xrep be the number of reporting sick nodes. Now assume Xrep =

o(
√
n). Let ε > 0 and l = εn/X2

rep. Let k = o(log(n/X2
rep)). Using the above

distance distribution calculation, we find that each sick node v, there are less

than l nodes within distance k. As the sick nodes are randomly selected, the

probability that none of these are within a distance k from v is bounded by

(1 − Xrep/n)l → e−ε/Xrep → 1 − ε/Xrep. Thus the distance to the closest

sick node to v is at least k, i.e., dv > k, with high probability, and using

a simple union bound, the same is true, simultaneously, for all sick nodes.

Hence the Steiner tree joining the set of reporting sick nodes is of size at least

SizeTree(G,Srep) ≥ (1/2)
∑
dv = (1/2)kqE[|S|], with probability decaying to

zero. Therefore, the Type I error probability tends to 0 as long as the threshold

satisfies m < kqE[|S|]/2, for k = o(log(n/(qE[|S|])2)). Using this result, we

find that the Tree Algorithm can succeed so long as q log(n/(qE[|S|])2) = ω(1).

This is a complex condition, though the conditions given in the theorem are

sufficient for it to be true.

Proof of Theorem 2.3.8(b). As before, let Xrep be the number of reporting sick

nodes, X̄ = Xrep/q. Then X̄ log log n upper bounds |S| with high probability.

As in Theorem 2.3.8(a), |S| log log n > E[|S|] with probability approaching

159

1. Then from Theorem 2.3.8(a), we see that both probability of errors will

decrease to 0 asymptotically.

160

Appendix B

Chapter 5 Proofs

B.1 Proof of Theorem 5.3.1

Proof. First we show that no infection (from a single seed) spreads farther

than a distance C3, so each infection contains at most a constant d̄C3+1 nodes

(where, recall, d̄ is a bound on the maximum degree of the graph). Consider

an arbitrary seed a and all paths of length C3 + 1 beginning at a. There are

at most d̄C3+1 such paths. An infection from a must spread over one such

path in time t0 to spread farther than distance C3. Since the traversal time

of an edge has distribution Exp(η0), the probability the infection can spread

over the edge in time t0 is 1 − e−η0t0 < η0t0. Then using a union bound, the

probability that the infection spreads more than a distance C3 is less than

(d̄η0t0)C3+1. Let ε2 satisfy 0 < ε2 < 1. By hypothesis, the expected number of

seeds is γ0t0 = ω(log n) (as q ≤ 1), so since the number of seeds is binomially

distributed, from standard concentration results, the number of seeds is at

most 1 + (1 + ε)γ0t0 with probability tending to 1. Let P be the probability

the infection spreads farther than distance C3. Then from a final union bound,

161

P < (1 + (1 + ε)γ0t0) (d̄η0t0)C3+1

= o
(
2γ0t0d̄

C3+1(γ0t0)−1
)

(B.1)

= o(2d̄C3+1).

Eq. (B.1) follows from our hypothesis η0t0 = o
(
(γ0t0)−1/(1+C3)

)
. Therefore,

P → 0 so the infection travels no more than a distance C3 with probability

tending to 1.

Now we need to show no collection of β ball of radius m contains over

an α fraction of the reporting nodes. This is sufficient even for the Scaling

Multiple Ball Algorithm since the m is an upper bound on the radius of each

ball. We first consider all infected nodes. Let ε > 0 be a constant as specified

in the theorem statement. For convenience, let C4 = d̄C3+1, the maximum

number of nodes in a ball of radius C3. Consider an arbitrary node a, and

let Binner = Ball(a,m), Bouter = Ball(a,m + C3). Then from the previous

result, any seed that has an infection that spreads to a node in Binner must

be inside Bouter (since it can only travel a distance C3). By the hypothesis

that m + C3 < b
(

αn
C4β(1+ε)

)
, |Bouter| < αn

C4β(1+ε)
. Therefore, β balls contain

less than αn
C4(1+ε)

nodes. Let u be the number of seeds, so u = ω(log n), again

by hypothesis. Then from Lemma 4.2.2, the number of seeds within Bouter is

less than αu
C4(1+ε/2)

with probability greater than 1− 1/n2. Each of these seeds

infects less than C4 nodes, so the total number of infected nodes within Binner

(which must all be from seeds in Bouter) is less than αu
1+ε/2

. Hence, this ball

162

contains less than a α
1+ε/2

fraction of the infected nodes.

Finally, we need to show the reporting process does not significantly

impact the fraction of infected nodes seen in the balls. We consider an equiv-

alent method of choosing the reporting nodes: first the number of reporting

nodes is chosen (with the appropriate distribution), and then these are dis-

tributed uniformly over the infected nodes. Let Xrep be the number of report-

ing nodes |Srep|. Then we need to find the probability that αXrep reporting

nodes are within Binner. As we just showed, the probability that any par-

ticular reporting node is within that region is at most α
1+ε/2

. From a stan-

dard balls-in-bins argument like in Lemma 4.2.2, since αXrep = ω(log n),

P (|Srep ∩Binner| > αXrep) < 1/nβ+1. That is, the probability that at least

αXrep of the reporting nodes are in that region is at most 1/nβ+1.

Since each collection of balls contains over an α fraction of the reporting

nodes with probability no more than 1/nβ+1, from a union bound, we find the

probability that any of the nβ possible set of balls exceeds this bound is at most

1/n. In this case, our algorithm correctly labels it ‘RANDOM’. Therefore, the

Type I error probability decays to 0 as desired.

B.2 Proof of Theorem 5.3.2

Proof. First we consider the Multiple Ball Algorithm, we show an upper bound

on the number of seeds (recall seeds are the nodes randomly infected). The

number of seeds is equal to one (the initially infected node) plus a Binomial

random variable with mean γ1t1. Let U be the set of seeds. Since β
α

=

163

ω(1 + γ1t1), from the distribution, β
α
> |U | with probability scaling to 1.

Define the function R(a) for seed a as the radius of the epidemic that

began at a. Formally, let ω be a realization of the epidemic process, with ωe

defined as the time it takes for the epidemic to spread across edge e and tω(a)

as the time from when the seed a became infected to the end of the infection

(time t1). Then for any node v, let t̃ω(a, v) be the distance from a to v on G

with edge weights equal to ωe, which is the time it would take the epidemic to

spread from a to v. Finally, R(a)
4
= max{distG(a, v) : t̃ω(a, v) ≤ tω(a)}.

From the speed definition, there exists a constant λ such that for each

seed a,

P (R(a) > sη1t1) < e−λη1t1 .

Now we apply a union bound to see that,

P (∃a ∈ U : R(a) > sη1t1) <
β

α
e−λη1t1

< eλη1t1/2e−λη1t1 (B.2)

= e−λη1t1/2 → 0,

where Equation B.2 follows from the fact that log(β/α) = o(η1t1). Therefore,

each seed spreads no farther than a distance m with probability tending to 1.

We now show that our algorithm returns ‘EPIDEMIC’ in this case.

Cover the seed with the largest (reporting) infection using a ball of radius m,

which we showed covers the entire infection for that seed. If β > 1, we cover

the seed with the second largest infection with the next ball, and so on. From

164

our previous result, each such ball covers the infection from the seed entirely.

Since there are at most β/α seeds total, β of which are covered, the fraction of

reporting infected nodes covered is at least β/β
α

= α. Therefore, an α fraction

of the reporting infected nodes has been covered a ball of radius m, so the

Multiple Ball Algorithm returns ‘EPIDEMIC’ as desired.

Now we prove the same result for the Scaling Multiple Ball Algorithm.

Divide up the total infection time t1 into β evenly sized sections. Each section

has duration t1/β, and therefore, since 1
α

= ω(1+γ1t1/β), the number of seeds

in any region is less than 1
α

from a union bound and accounting for the initial

infected node. Now consider the ith region, starting at time (β−i)t1/β, and let

Ui be the set of all seeds that became infected during that time range. Then

each seed a ∈ Ui has an infection duration less than it1/β. From the speed

condition, in the same way as before, for each seed a ∈ Ui,

P (R(a) > sη1it1/β) < e−iλη1t1/β

≤ e−λη1t1/β.

From a union bound like before,

P (∃i, a ∈ Ui : R(a) > sη1it1/β) <
β

α
e−λt1/β

< eλη1t1/(2β)e−λη1t1/β

= e−λη1t1/(2β) → 0.

Then with probability tending to 1, for each i and seed a ∈ Ui, the

infection from a can be contained in the ith ball of the Scaling Multiple Ball

165

Algorithm, ordering from smallest to largest. Now, for each 1 ≤ i ≤ β, cover

the largest infection (in terms of reporting nodes) from seeds in Ui with the

ball of radius sη1t1i/β. Therefore, since each region has at most 1
α

nodes, for

each region, at least α fraction of the reporting nodes from infections starting

during that time frame are contained in a ball. Thus, the Scaling Multiple

Ball Algorithm can contain at least an α fraction of the reporting nodes in the

collection of balls, and hence returns ‘EPIDEMIC’.

166

Bibliography

[1] Ery Arias-Castro, Emmanuel J. Candès, and Arnaud Durand. Detection

of an anomalous cluster in a network. The Annals of Statistics, 39:278–

304, 2011.

[2] Ery Arias-Castro, Emmanuel J. Candès, Hannes Helgason, and Ofer Zeitouni.

Searching for a trail of evidence in a maze. The Annals of Statistics,

36:1726–1757, 2008.

[3] Norman T. J. Bailey. The Mathematical Theory of Infectious Diseases

and its Applications. Griffin, 1975.

[4] Frank Ball and Peter Neal. Poisson approximation for epidemics with

two levels of mixing. The Annals of Probability, 32(1B):1168–1200, 2004.

[5] Michel Benaim and Raphael Rossignol. Exponential concentration for

first passage percolation through modified poincaré inequalities. Annales

de l’Institut Henri Poincaré, Probabilités et Statistiques, 44(3):544–573,

06 2008.

[6] Itai Benjamini, Gil Kalai, and Oded Schramm. First passage percolation

has sublinear distance variance. The Annals of Probability, 31(4):1970–

1978, 10 2003.

167

[7] Itai Benjamini and Yuval Peres. Tree-indexed random walks on groups

and first passage percolation. Probability Theory and Related Fields,

98:91–112, 1994.

[8] Vincent D. Blondel, Jean-Loup Guillaume, Julien M. Hendrickx, and

Raphä’el M. Jungers. Distance distribution in random graphs and appli-

cation to network exploration. Physical Review, 76(066101), 2007.

[9] Béla Bollobás. Random graphs. Springer, 1998.

[10] Garrett Brown, Travis Howe, Michael Ihbe, Atul Prakash, and Kevin

Borders. Social networks and context-aware spam. In Proceedings of the

2008 ACM conference on Computer supported cooperative work, CSCW

’08, pages 403–412. ACM, 2008.

[11] Fan Chung and Linyuan Lu. The diameter of sparse random graphs.

Adv. in Appl. Math, 26:257–279, 2001.

[12] Jon Cohen. Making headway under hellacious circumstances. SCIENCE,

313:470–473, July 2006.

[13] C. Corley, D. Cook, A. Mikler, and K. Singh. Text and structural data

mining of influenza mentions in web and social media. International

Journal of Environmental Research and Public Health, 7:596–615, 2010.

[14] M. Damron, J. Hanson, and P. Sosoe. Sublinear variance in first-passage

percolation for general distributions. arXiv:1306.1197, June 2013.

168

[15] Nikolaos Demiris and Philip D. O’Neill. Bayesian inference for epidemics

with two levels of mixing. Scandinavian Journal of Stat., 32:265–280,

2005.

[16] Nikolaos Demiris and Philip D. O’Neill. Bayesian inference for stochastic

multitype epidemics in structured populations via random graphs. Jour-

nal of the Royal Stat. Society Series B, 67(5):731–745, 2005.

[17] Wenxiang Dong, Wenyi Zhang, and Chee Wei Tan. Rooting out the

rumor culprit from suspects. In Proceedings of IEEE International Sym-

posium on Information Theory, pages 2671–2675, 2013.

[18] Rick Durrett. Random Graph Dynamics. Cambridge University Press,

2007.

[19] F-Secure. Bluetooth-worm:symbos/cabir, 2012. http://www.f-secure.com/v-

descs/cabir.shtml.

[20] Ayalvadi J. Ganesh, Laurent Massoulié, and Donald F. Towsley. The

effect of network topology on the spread of epidemics. In INFOCOM,

pages 1455–1466, 2005.

[21] Manuel Gomez-Rodriguez, David Balduzzi, and Bernhard Schölkopf. Un-

covering the temporal dynamics of diffusion networks. arXiv:1105.0697,

2011.

169

[22] Manuel Gomez-Rodriguez, Jure Leskovec, and Andreas Krause. Inferring

networks of diffusion and influence. ACM Trans. Knowl. Discov. Data,

5(4):21:1–21:37, February 2012.

[23] Google Flu Trends, http://www.google.org/flutrends/.

[24] A. Gopalan, S. Banerjee, A. Das, and S. Shakkottai. Random mobility

and the spread of infection. In Proc. IEEE Infocom, 2011.

[25] D. R. Grey. Asymptotic behaviour of continuous time, continuous state-

space branching processes. Journal of Applied Probability, 11(4):669–677,

December 1974.

[26] Clemens Gröpl, Stefan Hougardy, Till NierHoff, and Hans Jürgen Proömel.

Approximation Algorithms for the Steiner Tree Problem in Graphs, pages

235–279. Kluwer Academic Publishers, 2000.

[27] Adrien Guille, Hakim Hacid, Cecile Favre, and Djamel A. Zighed. In-

formation diffusion in online social networks: A survey. SIGMOD Rec.,

42(2):17–28, July 2013.

[28] C Douglas Howard. Models of first-passage percolation. In Probability

on discrete structures, pages 125–173. Springer, 2004.

[29] F. K. Hwang and Dana S. Richards. Steiner tree problems. Networks,

22(1):55–89, 1992.

170

[30] Svante Janson, Tomasz Luczak, and Andrzej Rucinski. Random graphs,

volume 45. John Wiley & Sons, 2011.

[31] K. Johansson. Transversal fluctuations for increasing subsequences on

the plane. Probab. Theory Related Fields, 116:445–456, 2000.

[32] Nikhil Karamchandani and Massimo Franceschetti. Rumor source detec-

tion under probabilistic sampling. In Proceedings of IEEE International

Symposium on Information Theory, pages 2184–2188, 2013.

[33] Harry Kesten. Percolation theory and first-passage percolation. The

Annals of Probability, pages 1231–1271, 1987.

[34] Harry Kesten. On the speed of convergence in first-passage percolation.

The Annals of Applied Probability, 3(2):296–338, Nov 1993.

[35] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne

VanBriesen, and Natalie Glance. Cost-effective outbreak detection in net-

works. In Proceedings of the 13th ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, KDD ’07, pages 420–429,

New York, NY, USA, 2007. ACM.

[36] Andrey Lokhov, Marc Mèzard, Hiroki Ohta, and Lenka Zdeborovà. Infer-

ring the origin of an epidemic with dynamic message-passing algorithm.

Phys. Rev. E, 90:012801, 2014.

[37] Wuqiong Luo and Wee Peng Tay. Identifying infection sources in large

tree networks. In 9th Annual IEEE Communications Society Conference

171

on Sensor, Mesh and Ad Hoc Communications and Networks (SECON),

pages 281–289, June 2012.

[38] Wuqiong Luo and Wee Peng Tay. Finding an infection source under the

sis model. In Proceedings of IEEE International Conference on Acoustics,

Speech and Signal Processing, pages 2930–2934, 2013.

[39] Wuqiong Luo, Wee Peng Tay, and Mei Leng. Identifying infection sources

and regions in large networks. IEEE Transactions on Signal Processing,

61(11):2850–2865, June 2013.

[40] Russell Lyons. The ising model and percolation on trees and tree-like

graphs. Communications in Mathematical Physics, 125(2):337–353, 1989.

[41] Russell Lyons and Robin Pemantle. Random walk in a random environ-

ment and first-passage percolation on trees. The Annals of Probability,

20(1):125–136, 1992.

[42] New York Times Bits Blog, http://bits.blogs.nytimes.com/2012/12/13/lookout-

toll-fraud/.

[43] Robert May and Alun Lloyd. Infection dynamics on scale-free networks.

Phys. Rev. E, 64:066112, 2001.

[44] Kurt Mehlhorn. A faster approximation algorithm for the steiner problem

in graphs. Information Processing Letters, 27:125–128, 1988.

172

[45] Eli A Meirom, Chris Milling, Constantine Caramanis, Shie Mannor, Ariel

Orda, and Sanjay Shakkottai. Localized epidemic detection in networks

with overwhelming noise. arXiv:1402.1263, 2014.

[46] Chris Milling, Constantine Caramanis, Shie Mannor, and Sanjay Shakkot-

tai. Network forensics: random infection vs spreading epidemic. SIG-

METRICS Perform. Eval. Rev., 40(1):223–234, June 2012.

[47] Chris Milling, Constantine Caramanis, Shie Mannor, and Sanjay Shakkot-

tai. On identifying the causative network of an epidemic. In Proceedings

of 50th Annual Allerton Conference on Communication, Control, and

Computing, pages 909–914, October 2012.

[48] Chris Milling, Constantine Caramanis, Shie Mannor, and Sanjay Shakkot-

tai. Detecting epidemics using highly noisy data. In Proceedings of the

Fourteenth ACM International Symposium on Mobile Ad Hoc Networking

and Computing, pages 177–186, 2013.

[49] Chris Milling, Constantine Caramanis, Shie Mannor, and Sanjay Shakkot-

tai. Local detection of infections in heterogeneous networks. In Proceed-

ings of INFOCOM, IEEE, 2015. (To appear).

[50] Seth A. Myers, Chenguang Zhu, and Jure Leskovec. Information diffu-

sion and external influence in networks. In Proceedings of the 18th ACM

SIGKDD international conference on Knowledge discovery and data min-

ing, KDD ’12, pages 33–41, New York, NY, USA, 2012. ACM.

173

[51] Praneeth Netrapalli and Sujay Sanghavi. Learning the graph of epidemic

cascades. SIGMETRICS Perform. Eval. Rev., 40(1):211–222, June 2012.

[52] Philip D O’neill. Bayesian inference for stochastic multitype epidemics in

structured populations using sample data. Biostatistics, 10(4):779–791,

2009.

[53] Yuval Peres. Probability on trees: An introductory climb. In Pierre

Bernard, editor, Lectures on Probability Theory and Statistics, volume

1717 of Lecture Notes in Mathematics, pages 193–280. Springer Berlin

Heidelberg, 1999.

[54] A. Sasaki, H. Gatewood, and A. Ozonoff et. al. Evidenced-based tool

for triggering school closures during influenza outbreaks. Japan. Emerg

Infect Dis., 15:1841–1843, november 2009.

[55] D. Shah and T. Zaman. Rumors in a network: Who’s the culprit? IEEE

Transactions on Information Theory, 57, August 2011.

[56] Devavrat Shah and Tauhid Zaman. Detecting sources of computer viruses

in networks: Theory and experiment. SIGMETRICS Perform. Eval.

Rev., 86:203–214, 2010.

[57] J. Snow. On the mode of communication of cholera. John Churchill,

1855.

174

[58] George Streftaris and Gavin J. Gibson. Statistical inference for stochatic

epidemic models. In Proc. 17th International Workshop on Statistical

Modeling, pages 609–616, 2002.

[59] Michel Talagrand. Concentration of measure and isoperimetric inequali-

ties in product spaces. Publications Mathmatiques de l’Institut des Hautes

tudes Scientifiques, 81(1):73–205, 1995.

[60] Remco Van Der Hofstad, Gerard Hooghiemstra, and Piet Van Mieghem.

First-passage percolation on the random graph. Probability in the Engi-

neering and Informational Sciences, 15(02):225–237, 2001.

[61] Wikipedia. Commwarrior-a — Wikipedia, the free encyclopedia, 2012.

[Accessed 30-Sept-2012].

[62] Wikipedia. HIV/AIDS — Wikipedia, the free encyclopedia, 2012. [Ac-

cessed 30-Sept-2012].

[63] Kai Zhu and Lei Ying. Information source detection in the sir model: a

sample path based approach. In Information Theory and Applications

Workshop (ITA), 2013, pages 1–9. IEEE, 2013.

175

Vita

Philip Christopher Milling was born in Boynton Beach, Florida on

February 10, 1985. He received his Bachelor of Science degrees in Electri-

cal Engineering and in Mathematics from the University of Texas at Austin

in May 2007. He received a M. S. E. degree in Electrical and Computer Engi-

neering also from The University of Texas at Austin in May 2009. Currently

he is pursuing a Ph.D. under the supervision of Dr. Sanjay Shakkottai.

Permanent address: milling.chris@gmail.com

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

176

