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Abstract 

Exploring Methods for Finding Solutions to Polynomial Equations 

Donald Wayne Beaver, M.A. 

The University of Texas at Austin, 2010 

Supervisor:  Efraim Armendariz 

There are many methods for solving polynomial equations. Dating back to the 

Greek and Babylonian mathematicians, these methods have been explored throughout the 

centuries. The introduction of the Cartesian Coordinate Plane by Rene Descartes greatly 

enhanced the understanding of what the solutions actually represent.  

The invention of the graphing calculator has been a tremendous aid in the 

teaching of solutions of polynomial equations. Students are able to visualize what these 

solutions represent graphically. This report explores these methods and their uses.
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Chapter 1:  Introduction 

 

Typical secondary curricula introduce the basic concept of functions with first 

order linear equations.  Teachers invest great time, effort, and creativity as they convey 

the ideas of obtaining solutions and the meanings behind those solutions.  In solving 

linear equations, the concept of balancing an equation can be made concrete and tangible 

by allowing students to experience the phenomenon with a balance scale.  There exists a 

seemingly endless supply of manipulatives which students can use to visualize most 

fundamental mathematics concepts.  However, making the transition from solving these 

basic first order equations to higher order polynomials can prove quite challenging for 

both student and teacher.  It is at this point in mathematics when one must move from the 

concrete to the abstract.  Whereas the balance scale provides a core foundational 

understanding of solving linear equations, the zero product theorem is not so easily 

demonstrated.  While the basic idea of the theorem itself seems attainable, using this as a 

method to solve quadratic equations is not always readily understood by students.  

Additionally, because so much emphasis is placed on finding the one solution to a first 

order equation, students often have great difficulty grasping the concept that more than 

one solution may exist to a given equation. 

The introduction of the graphing calculator has been a tremendous aid in allowing 

the student to actually see the points where the function crosses the x-axis.  

Unfortunately, making the connection from the viewing window to the written 

polynomial equation requires students make the abstract connection between the zero 

product theorem and x-intercepts.  While solving a linear equation can be done without 

much mathematical depth, solving quadratics demands students have a fairly in depth 

understanding of what it means to be a function, the relationship between the equation 
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and its domain and range, and how the function itself produces the points associated with 

the graph.  The students are now able to really connect the solutions obtained by the 

quadratic formula, completing the square, and factoring to what they see in the viewing 

window.  Fortunately, once a student reaches this level of understanding, the transition to 

cubic, quartic, and higher degree equations proves far less taxing.   

Once certain concepts are understood by the student, the x-intercepts are easily 

seen as the inputs into a polynomial function that generate the number 0 as the output, or 

solutions of the polynomial equation P(x) = 0. Specifically these concepts are: 

 
i. what it means to be a function  
ii. the meaning of Domain and Range of a function 
iii. all inputs of the Domain generate outputs in the Range that   

                        are associated with points on the graph of the function 

 

Similarly, cubic, quartic, and higher degree equations are seen in the same 

manner. The methods used to find the solution to quadratic equations, such as completing 

the square, factoring, and the quadratic formula, are taught in first year Algebra classes, 

but a connection (or meaning) comes to fruition when the actual graphs are seen. 

Another problem arises when solutions to quadratics are complex numbers that 

are not real numbers. It is hard for the student to visualize what is taking place since the 

complex solutions are not often seen or are not easy to graph. The quadratic formula 

yields these complex solutions, but what is their meaning? And when discussing the 

solutions to a cubic equation, how do these solutions appear in the graph of the 

polynomial associated with that equation? 

Because most of what is discussed in secondary mathematics education in relation 

to polynomial functions and their graphs is “local behavior,” finding the zeros of a 

polynomial is crucial to the understanding of the function. The previously discussed 
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methods for finding solutions and what they mean are subjects addressed in this report. 

Even though each of these methods is of very little value in themselves, when used in 

combination with each other, a function’s behavior can be discovered. Further use of 

methods learned in calculus such as the derivative of a function or relative extrema, are 

also helpful but not discussed here.  

Polynomials of a second degree, or quadratics, take three forms, each of which 

has its own purpose. The three forms and their use are: 

Name    Form    Use  
     Standard Form  cbxaxxf  2)(        easy to generate points,                                              
                                                                                           especially the y-intercept 
 
    Vertex Form  baxcxf  2)()(         easy to find vertex (a, b)          

                                                                               and graph  
    

    Root Form              ))(()( 21 rxrxaxf       easy to find the x-intercepts      
                                                                                           (r1, 0) and (r2, 0) 
 

When graphing the parabola generated by a quadratic, the vertex form is 

preferred. Once the student has manipulated the equation into this form, a simple chart 

with the vertex in the center entry and two values of x to the left and right (or 

above/below the y in the case of horizontal parabolas) is sufficient to see its shape. 

If the graph of the parabola intersects the x-axis, these are referred to as the real 

zeros of the function. In the case of parabolas that do not cross the x-axis, the numbers 

that can be substituted for x that generate the number 0 for y are still complex solutions.  

Consider a parabola whose equation in vertex form is 

 

baxcxf  2)()( . 
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As mentioned earlier, the vertex is (a, b). Letting f(x) = 0 and solving for x,  

 

0 = c(x – a)2 + b 

 


c

b
 (x – a)2 

 

c

b
  = x – a 

 

x =  a 
c

b
 . 

 

Depending on the algebraic signs of b and c, the parabola will have real or 

complex roots, but the spacing about the axis of symmetry is the same. In Figure 1, the 

roots are  i , where   the x-coordinate, or abscissa of the vertex, and   is half the 

length of the chord determined by the horizontal line y = 2b and where b is the y-

coordinate, or ordinate, of the vertex. The chord is referred to as the latus rectum and 

passes through the focus of the parabola. As the parabola is shifted down, these become 

real roots and the horizontal line is simply the x-axis, as illustrated in the transition from 

Figure 1 to Figure 2 below. 
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Figure 1. Graph of baxcxf  2)()(  [6, p. 248] 

 

Figure 2. Graph of )(xf shifted 3b units down  [2, p. 248] 

 

A simple example would be to consider the parabola with vertex (0, -1) and c = 1 

 

   1)( 2  xxf   
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and with real roots at ( )0,1 . If the parabola was shifted up two units to have a new 

vertex at (1, 0), but c remains the same, the new complex roots are ( )0,i .  
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Chapter 2: A Geometrical Approach 

 

Long before Rene Descartes introduced the Cartesian Coordinate Plane, the Greek 

mathematicians found solutions to quadratic equations geometrically. A few of these 

methods will be discussed here. 

A well known theorem in mathematics resulting from triangle similarity states 

that in a right triangle the altitude drawn to the hypotenuse is the geometric mean 

between the segments into which it is divided. In the proportion 
c

b

b

a
 , b is the 

geometric mean of a and c. 

Simple geometric constructions can be made using a straight edge and compass, 

as shown in Figure 3. Then some use of simple algebra and geometry provides visual 

solutions that are generated for the following quadratic equations: 

    i. 02  cbxx   

    ii. 02  cbxx  

iii. 02  cbxx   

iv. 02  cbxx  
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Figure 3. Euclidean constructions for i. and ii.  [4, p. 363] 

 

Figure 4. Euclidean Constructions for iii. and iv. [4, p. 363] 
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The first equation (i.) can be verified by setting ACx 1  and BCx 2 . The previously 

mentioned theorem then states  

 

     
BC

c

c

AC
  

 

or                                                   

 

          BCACc  . 

 

But since    

 

 ACx 1   and  1xbBC  , 

 

it follows that    

 

     

.0

)(

1
2

2
1

11







cbxx

cxbx

cxbx

 

 

 



 10

Similarly the second equation ii. can be solved. However, equations iii. and iv. 

make use of another well known theorem stating that the square of a tangent segment 

drawn from a point in the exterior of a circle is equal to the product of the secant segment 

and the outer secant segment. 

 

Carlyle’s Method.  

In the early 1800’s another method was suggested using the intersection of a 

circle with the x-axis to show solutions to the equation 02  cbxx . For if the 

equation of a particular circle with a diameter having endpoints at (0, 1) and (-b,c) given 

by 0)1(22  cycbxyx  is evaluated for y = 0, the equation simplifies to the 

desired quadratic.  

To illustrate, consider the quadratic equation 

 

     0322  xx . 

 

If the circle whose diameter has endpoints at (0, 1)  and (-2, -3) is graphed, the roots of 

the quadratic equation are also the abscissas of the points of intersection of the circle with 

the x-axis as shown in Figure 5. In this case 31 x  and 12 x . 
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x

y

(0,1)

(-3,0) (1,0)

(-1,-1)

(-2,-3)

 

   Figure 5. Graph of 5)1()1( 22  yx  

 

It is customary to solve a quadratic equation by graphing its corresponding 

quadratic function as a parabola and locating points where the graph crosses the x-axis. 

Hornsby suggests an alternate method which incorporates the graph of the “parent 

function”  y = x2 and somewhat simplifies the process. [3, p.364] Solving the quadratic 

equation  

 

     02  cbxx   

 

is equivalent to finding the points of intersection of the line cbxy  . This 

phenomenon is easily seen because if the left side of the equation is solved for x2, the 

equation becomes  

     .2 cbxx   
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In the example used earlier, y = x2 + 2x – 3, the points of interest are the intersection of  

 y1 = -2x + 3  with  y2 = x2 , i.e. (-3, 9) and (1, 1) as shown in Figure 6 below: 

 

(-3,9)

(1,1)

 

                                      Figure 6. 2
21 ;32 xyxy   

 

The abscissas of these points are the solutions to the original quadratic equation. 
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Chapter 3: Iteration as a Technique 

 

An alternate method of solving polynomial equations is offered by Butts with 

some interesting results. [2] The process will be demonstrated here with a quadratic even 

though use of the Quadratic Formula would be an easier method of solution. Consider the 

function 

 

    22)( 2  xxxP . 

 

The goal is to find roots of the polynomial, that is the x-values that make P(x) = 0 or, the 

x-values that satisfy the equation  

 

     0222  xx . 

 

Instead of proceeding with the Rational Root Theorem, Butts suggests putting the 

equation in an alternate form and applying iteration to this equation to find a fixed point.  

A fixed point, 0x , is a particular value of x such that 00 )( xxf  . 

One alternate form could be 

 

     
2

22 


x
x  . 

 

Iteration is the process by which a seed (or initial) value 0x  is substituted into the right 

side of this equation, then the result )( 0xf  is then substituted for x until the two values 

are identical, the aforementioned fixed point. For if the output (functional value) is equal 

to the input (x-value) accurate to any desired decimal approximation, that particular value 
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satisfies the alternate form and therefore will satisfy the original form, yielding the 

desired result. If a seed value converges to a fixed point, the root has been found. 

However, sometimes the seed value will diverge to   in which case iteration fails. To 

ensure convergence, the following definition and ensuing theorem guarantee intervals of 

convergence. 

 

Definition. The magnification factor MF  of  f(x) at x = xo is   

 

    ))(( oxfMF  = 



 2

)()(
lim

0




oo xfxf
. 

 

This definition leads us to the theorem:  The Fixed Point Iteration Algorithm converges if 

1))(( xfMF  for values of x near the seed value "0x   [2, p. 5]. In this example,  

 

   


 2

)()(
lim|))((|

0






oo
o

xfxf
xfMF

 

           




 2

2

2)(

2

2)(

lim

22

0








 








 




oo xx

 

 

              




 2

2222
lim

2222

0






oooo xxxx
 

 

                            

     



 4

4
lim

0

ox


  

      ox ,  
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so that convergence is guaranteed if  .11.,.,1  oo xeix  

The theorem doesn’t necessarily determine the smallest interval of convergence, 

merely one that guarantees convergence. Choosing the seed value to be 0, it can be 

verified after 42 iterations with a scientific calculator that the sequence converges to 

approximately 0.732051, a root of the polynomial accurate to six decimal places. If a 

seed value of 3 is chosen, the sequence diverges to   and no root is found. 

There exist three types of fixed points; attracting, repelling, and neutral. The 

iteration method only finds roots when a fixed point is an attracting fixed point.  
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Chapter 4: Finding Roots Of Higher Degree Polynomials 

 

Finding the roots of higher degree polynomials is much more difficult than 

finding the roots of linear or quadratic functions. A few theorems and properties make the 

process easier.  

i.  If  r is a root of a polynomial function, then )( rx  is a factor of the   

    polynomial,  

      ii. Any polynomial function with real coefficients can be written as the 

product of linear factors )( rx  and quadratic factors )( 2 cbxax   

which are irreducible over the real numbers. 

 

A quadratic factor that is irreducible over the reals is a quadratic function with no 

real zeros; equivalently those that have a negative discriminant. 

Another helpful theorem is Descartes’ Rule of Signs, which states that the number 

of variations in (algebraic) signs throughout the polynomial determines the number of 

positive roots that the function will have. The Rule will not tell where the polynomial’s 

roots are, but will tell how many to expect when finding them. Consider the following 

polynomial in its original form: 

 

   .3422)( 2345  xxxxxxf  

           

Without concern for the actual values of the coefficients themselves, notice that the 

algebraic signs change four times. Thus there will be, at most, four positive roots. 

Conveniently, the roots come in “pairs,” so if one positive root is found, finding another 

positive root is in order. 
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To find the number of negative roots,  f(-x) is generated: 

 

3)()(4)(2)()(2)( 2345  xxxxxxf  

 

3422)( 2345  xxxxxxf . 

 

Since there is only one sign change, this polynomial has exactly one negative root. So 

once that root is found, looking for another negative root becomes moot. Therefore, there 

are 4, 2, or 0 positive roots and exactly 1 negative root. To illustrate the “nature of the 

roots,” that is, the number and type (real or complex), a chart is generated.  

 

                Table 1. Number and nature of possible roots 

Number of positive 

real roots 

Number of negative 

real roots 

Number of  

complex roots 

4 1 0 

2 1 2 

0 1 4 

 

The Rational Root Theorem also can be used as an aid to finding roots of a 

polynomial function of the form: 

 

         01
1

1 ...)( axaxaxaxf n
n

n
n  

  .   
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Assuming the coefficients are all integers and a root of the polynomial is rational, the 

numerator of the root is always a factor of a0 and the denominator is a factor of an. In the 

example above, if any rational roots exist, they must come from the “bank” of  

 

           
2

3
,

2

1
,3,1  or . 

 

As stated earlier, each of these theorems is not all that helpful alone, but when 

used in combination with one another, finding roots becomes easier. The idea is to use 

these tools in combination in order to find a rational root. This is usually done by 

synthetic division, then compressing the equation and repeating the process until the 

polynomial is expressed as the product of linear factors or irreducible quadratic factors 

that can be solved using the quadratic formula. Students sometimes find this process 

laborious and tedious. If, however, a student realizes some important facts about the 

process, there comes a realization that even though a root is not found by synthetic 

division, it is not a waste of time. The remainder from synthetic division is synonymous 

with the functional value, so it still yields a point on the graph. Also, if )0(f is positive 

but )1(f is negative, a logical choice to try next would be 
2

1
; since the polynomial is a 

function its graph must cross the x-axis between 0 and 1. That is, the graph cannot “go 

around” that portion because then it would not be a function. Of course, there is always 

the possibility that the root may be irrational. 

Taking the Rational Root Theorem to a higher level, Redmond [7] proves a 

theorem that states “If )(xP  is a polynomial in the form   

 

  01
1

1 ...)( axaxaxaxf n
n

n
n  

     2n  
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where 0a , an, and )1(f are all three odd numbers, then )(xf has no rational roots.” [7] 

While this does not apply to the previous function )2( na , let’s consider the example 

Redmond gives: 

 

  3275125287)( 2345  xxxxxxf  

 

in which a5 = 1, 0a = -3275, and )1(f  = -3169, all odd numbers. Redmond assures that 

this particular polynomial has no rational roots. An easier example, one which will be 

discussed later, is  

 

   1)( 2  xxxf            

 

a2 = 1, a0 = 1, and f(1) = 3 (all odd numbers) which has as its roots {
2

31 i
}, 

obviously complex roots. 

As seen earlier, the Rational Root Theorem simply narrows the search for rational 

roots of the polynomial. In many cases a great majority of roots can be eliminated before 

attempting the tedious process of synthetic division. Barrs, J. Braselton, and L. Braselton 

offer the Imaginary Rational Root Theorem, which narrows the search for imaginary 

roots. [1] The theorem states:  

 

01
1

1 ...)( axaxaxaxP n
n

n
n  
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is an nth degree polynomial function with integer coefficients. If x i  i
r

q

r

p
  

are rational imaginary zeros of P(x), where  and 0  are rational, p, q, and r are 

integers, then r2 is a divisor of an and p2 + q2 is a divisor of a0. 

To illustrate this theorem, consider the following polynomial function: 

 

   5262)( 234  xxxxxP .                                     (1.1) 

 

The possible rational roots are 1, -1, 5, and -5. Synthetically dividing with these possible 

roots yields remainders of 16, 8, 1040, and 520, respectively, therefore there are no 

rational roots. An application of the imaginary rational root theorem indicates that since  

1 = 02 + 12 and 5 = 12 + 22, the possible complex rational roots would be given by  

,21,21 ii  and i  with corresponding factors ,52,52 22  xxxx and x2 + 1. 

The chart below gives the results when P(x) is divided by each of these potential factors. 

 

Table 2. Results of dividing (1.1) by quadratic factors with rational complex zeros. 

Possible Zero Possible Factor Quotient Remainder 

    i21  522  xx  942  xx     -40 

  i21  522  xx      12 x         0 

      i     12 x  522  xx        0 

 

Therefore,  

  5262 234  xxxx )52)(1( 22  xxx  

 

and    
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  5262 234  xxxx = 0  if ixorix 21 .  

 

Another interesting (but perhaps not so useful) theorem is afforded by Luthar. [5] 

According to Luthar, Luddhar’s Theorem states “If dcxbxaxxP  23)( , with a, b, 

c, and d integers, a ,0  b ,0  the function has a rational root if there exist non-zero 

integers l, m, p, and q such that c = l + m, b = p + q, ,p
d

lm
 and l

a

pq
 . That rational 

root is given by -
p

l
[5, p. 107]. The following example illustrates Luddhar’s Theorem.  

Let 

    

51526)( 23  xxxxP .  

 

Since 
5

15

2

6
 , the function can be written as  

 

   )13(5)13(2)( 2  xxxxP   

 

            = )52)(13( 2  xx  

               

which yields a rational root of -
3

1
. The theorem and its process essentially amount to 

“factoring by grouping” for this example, but the next problem illustrates its worth. 

Consider a polynomial that is not factorable by grouping: 

 

   6116)( 23  xxxxP .  
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Select two integers whose sum is 11, the coefficient of the term involving x. For example, 

let l = 9 and m = 2. Now p and q must be determined.  So  

 

p = 3
6

29





d

lm
 

 

so that  

 

q = b – p = 6 – 3 = 3. 

 

Checking the other condition on q, namely,  

 

q = 3
3

19





p

la
; 

 

thus Luddhars’s conditions are satisfied. Consequently, the original function can now be 

written as  

 

   62933)( 223  xxxxxxP  

 

            )3(2)3(3)3(2  xxxxx  

 

            )23)(3( 2  xxx  

            

            )2)(1)(3(  xxx . 
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Consider a quadratic function with complex roots given by bia  . Using a well 

known fact that the quadratic function with roots r1 and r2   is given by  

 

   

.2

)])([()]()[(

)()()(

222

2

2121
2

baaxx

biabiaxbiabiax

rrxrrxxf







 

 

This equation can be easily transformed by completing the square into 

 
22 )( axby   

 

from which it is evident that, if OA  and AP  are measured as shown in Figure 7. The 

complex roots will be given by APiOAiba  . 

 

 
Figure 7. 222 2)( baaxxxf               Figure 8. )2)(()( 222 cbbxxaxxf   
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To illustrate, consider the following quadratic function: 

 

    42)( 2  xxxf  

or 
222 )3(112)(  xxxf , 

 

where .3,1  ba  It is easily shown by completing the square that the function can be 

written in vertex form as 

 

    3)1()( 2  xxf . 

 

The vertex of this parabola is (1, 3) and OA = 1 while AP = 3. According to Yanosik [8], 

the complex roots would be given by  

 

    31 iAPiOA  . 

 

Using the quadratic formula to generate the roots, this fact is seen to be true. Similarly, 

the cubic function given by 

  

   )2)(()( 222 cbbxxaxxf   

 

will yield the real root a  and the complex roots icb  by the following method. As 

shown in Figure 8, a line is drawn through A(a, 0) tangent to the graph at P. BP is 

measured and the slope m of the tangent line is calculated. Yanosik suggests (and proves 

in another article) the complex roots are  
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    miBPicb  . 

 

An example to illustrate follows. The roots of the aforementioned quadratic will 

help in the illustration. Take the cubic function given by: 

 

)42)(2(

8)(

2

3





xxx

xxf

 

 

The graphs of this function and the corresponding tangent are shown in Figure 9.  

 

 

Figure 9. Graphs of  63)(;8)( 3  xxgxxf  

 

From the graph (and the factored form of the function), it can be seen that the real root is 

–2. If Yanosik is correct, the complex roots are given by 

 

                                                 miBPicb  , 

 

indicating that BP = 1 and the slope of the tangent is 3. The line shown tangent in Figure 

9 indeed has a slope of 3 and is tangent at the point (1, 9) yielding BP = 1. 
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In a previously mentioned polynomial function, the real roots of the polynomial 

seem to “disappear” as the graph is shifted up. For example, Figure 10 shows a graph of 

the following function: 

    1)( 2  xxxf   

 

   

 

 

 

 

 

Figure 10. Graph of 1)( 2  xxxf .  

 

Figure 11. Graph of 1)( 2  xxxf .  

 

Notice that the function has real roots at x = 
2

51
. However when the function with 

equation 
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1)( 2  xxxf  

 

is graphed (see Figure 11), the roots become imaginary. 

Complex numbers are defined to be expressions of the form bia  treated as 

residues to the modulus 12 i . Modulus in this sense is used in the same way as modulus 

in a clock. That is, a time of 20 o’clock is considered to be 8 o’clock (mod 12). It’s the 

residue, or remainder, when 20 is divided by 12. In using the Rational Root Theorem 

mentioned earlier, when a possible root is “checked” by synthetic division, if the 

remainder is zero, the number is a root. However if there is a remainder other than zero, 

that remainder is the same as the functional value at that value of x. Therefore, it is a 

point on the graph of the polynomial. 

Similarly, this phenomenon occurs with polynomial residues to the modulus 

12 y . If any polynomial in y (with real coefficients) is divided by 12 y  the remainder 

is of the form bya   with a and b being real numbers. The polynomial mentioned before 

  

     1)( 2  xxxP  

 

has no real solutions, but  

 

    )1(mod01 22  yxx  

 

has solutions 
2

31 y
x


  because if 

2

31 y
x


  then 

 

  1
2

31

2

31
1

2

2 






 








 


yy
xx  
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).1(mod0)1(
4

3

4

33

4

43223321

4

4

4

322

4

3321

22

2

2

2

















yy

y

yyy

yyy

 

Long and Hern use modulus surfaces to explain this phenomenon. In Figure 10, 

the graph shows the real roots mentioned earlier. [4] Figure 12 shows taking the absolute 

value of the function, gives somewhat of an insight as to the appearance of the modulus 

surface associated with this function as seen in Figure 13. The “low points” of the surface 

signify the real roots. If the function is shifted up two units, the surface is that shown in 

Figure 14. The appearance of the two are similar, but seem to be rotated horizontally 
2


 

radians. 

 

Figure 12.  1)( 2  xxxg  
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Figure 13. 1)( 2  xxxf     Figure 14. 1)( 2  xxxf  

 

 

Figure 15. Paths of zeros of 0
2 axx   as 0a  varies over  1,1 .  

 

The zeros of a polynomial are continuous functions of the coefficients of that 

polynomial. Hence as the coefficient a0 of the polynomial z2 + z + a0 changes 

continuously from –1 to +1 on the real axis, the positions of the low points on the 

corresponding modulus surfaces move along a continuous path along the complex plane 
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with the beginning and end positions as shown in Figure 15. Since the zeros are given by 

2

411 0a
, they will remain real until 

4

1
0 a at which point they become complex. 

When 
4

1
0 a , the polynomial 

4

12  zz  is a perfect square and has a real zero at 

2

1
x . Considering cubic functions of the nature 0

3)( axxf  , as 0a varies over an 

interval [- ], , it is seen that the roots appear to be at the endpoints of the “spokes of a 

wheel,” with a rotation of 
3


 radians, depending on whether  is positive or negative as 

shown in Figure 16. This phenomenon is consistent with the concepts illustrated by 

DeMoivre’s Theorem. 

 

 

 

 

 

 

 

 

Figure 16. Paths of zeros near a triple zero of 0
3 ax   for 0a  in   ,  
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Chapter 5: Conclusion 
 

Several methods for solving polynomial equations have been introduced in this 

report. Depending on the nature of the polynomial and what is known, some methods are 

more appropriate than others. The underlying fact is that the more methods that are 

known, the more proficient one becomes at solving these equations. 

Most secondary mathematics teachers agree that the introduction of the graphing 

calculator has greatly aided in student learning. While some might argue that the 

understanding of algorithms and processes is essential to advancement in mathematics, 

the introduction of the graphing calculator into lessons can assist in enhancing the 

understanding of these concepts.  
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