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PREFACE

In any space satisfying Axioms 0,1, 2,3, 4, and 5 of

R,L, Moore 1 s Foundations of Point Set Theory a large body

of Plane Analysis Situs theorems hold true. Nevertheless,

not every such space is a subset of the plane even if com-

pletely separable. However, Moore has shown that if such

a space satisfies certain additional axioms, it is a subset

of a plane. This problem has also been studied by Leo Zip-

pin and, more recently, by J,H* Roberts, In this paper

the problem is again attacked, and the treatment empha-

sizes the rather peculiar role played by connectedness.

As a matter of fact, connectedness enters into all of the

axioms used by the author except Axioms 0,1, and 6,

In Part I a certain space is studied which, although

not necessarily a subset of a plane, nevertheless, posses-

ses many of the properties of a plane. However, if the

space of Part I is completely separable or metric, it is

shown to be a subset of a plane or a sphere.

Definitions of terms peculiar to the treatment are

given in the text. For the definition of terms not defin-

ed, the reader is refered to R,L. Moored Foundations of

Point Set Theory, Many of the notational conventions of

this work are also used here without explanation*



I wish to thank Professor R.L. Moore for attracting

my attention to mathematics, for suggesting the present

problem, and for many helpful suggestions in the course

of its development.
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PART I

CONSEQUENCES OF AXIOMS 0-4 AND 51

R. L. Moore*s Axiom **Ef P is a point of a region

R, there exists a connected domain D containing P and bound-

ed by a compact continuum T such that D+T is a subset of

R.l— suggests the following two axioms:

Axiom lf P is a point of a region R, there exists

in R a domain D containing P such that the boundary of D is

and

Axiom sf: If P is a point of a region R, there exists

in R a domain D containing P such that the boundary of D is

connected. 3

There is, however, a certain amount of similarity be-

tween these last two asioms. For suppose that a space sat-

isfies Moore*s Axioms 0,1, and 2 and Axiom sj. Then, if

P is a point of a region R, there exists a region R* con-

taining P and lying together with its boundary in R. And

by Axiom there exists in R* a domain D containing P and

whose boundary p is compact. But p may be covered by a

Tffioore, R.L.: Foundations of Point Set Theory, Amer-

ican Mathematical Society Colloquium Publications, Vol. XIII,
New York, 1932.

2a space satisfying this axiom is said to be local-

ly peripherally compact.
3a space satisfying this aclom is said to be local-

ly peripherally connected.
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a finite collection of connected domains each lying in R

but not containing P or having P for a limit point. Hence,

the following theorem holds true and will be used here-

after as

Axiom sf: If Pis a point of a region R, there exists

in R a domain D containing P whose boundary is a subset of

the sum of a finite number of continua lying in R-D.

In a sense Axiom 5$ is common to both Axioms and

in that it follows as a theorem from either of them in the

presence of Axioms 0,1, and 2.

Now let Sbe a space satisfying Moore*s Axioms 0,1,

2, and 4 and Axiom 5f

Theorem. If no point separates the point A from the

0. Every region is a point set.
Axiom 1. There exists a sequence &i, Gg, G3,... such

that (1) for each n, Gn is a collection of regions cover-

ing S, (2) for each n, Qrn+\ is a subcolleotion of Gr~, (3)
if R is any region whatsoever, X is a point of R ana Y is a

point of R either identical with X or not, then there exists
a natural number m such that if g is any region belonging
to the collection G

m
and containing X then 1 is a subset of

(R-Y)+X, (4) if Mi, Mg, M3, ...
is a sequence of closed

point sets such that, for each n, M
n contains Mn+i and, for

each n, there exists a region gn
of the collection Gfo such

that Mn is a subset of gn,
then there is at least one

point common to all the point sets of the sequence Mi, Mg,
Mt, ... •

Axiom 2. If P is a point of a region R there exists a

non-degenerate connected domain containing P and lying
wholly in R.

Axiom 4. If J is a simple closed curve, S-J is tile

sum of two mutually separated connected point sets such,

that J is the boundary of each of them.
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point B, there exists a simple closed curve J containing

A and B.^

In the proof that is to follow no use will be made

of Axioms 3 or 4, and no use will be made of Axiom 6f ex-

cept at the points A and B.

Proof. Let AB denote an arc from Ato B. Then, if

R is a region containing A, suppose that there exists no

point 0 of AB*R such that no point X of the arc AO of AB

separates A from 0 in R. Then there exists a sequence ot

of points X of AB such that the sequence oi converges to

A and if X and Y are points of c& and X follows Y in o(,

then X separates A from Yin R. Hence, for each point X

of oi except the first, R-X is the sum of two domains Ux

and Vx such that Vx
contains A and Ux contains every point

of oL preceding Xin oU But the point X does not separate

A from B; so there exists an arc from Ato B lying in

S-X, and in this arc there exists an arc segment PE lying

in R such that AB*PE«P and E belongs to the boundary of

R.
6

Therefore, if for no Xofd is P identical with A,

there exists a sequence Xi, Xg, X3, ... of points of ot

and a sequence PgEg, P3E3, ... of arcs such that

sgee r.l. Moore® B Foundations of Point Set Theory,

p. 124 (this work will be refere& to hereafter as Found-
ations)

,
and G.T. Whyburn, BOn the Cyclic Connectivity

Theorem**, Bull. Am. Math. Soc.. Vol. 37, 1931, pp.429-433.
6Thi s noCation will be used throughout to denote the

arc minus its end points.



for each n (1) AB*PnEn=*Pn , (2) En belongs to the boundary

of R, (3) l>
nEn is a subset of R, and (4) Xn+x separates

Z from E in R. But (1), (2) and (3) lead to
-1

a contradiction of (4), for since there exists a domain D

lying in R and containing A whose boundary is a subset of

the sum of a finite collection A of continua lying in R-D,

there exists a continuum M of A lying in R-A such that M

does not contain more than a finite number of the points

Xx, Xg, X3, ... but for infinitely many values of n, M

contains a point of PnEn . Therefore, either there exists

an arc PE which is a subset of an arc from P to B such that

PE*AB=P=A, or if R is any region whatsoever containing A,

there exists a point 0 of AB*R such that no point of the

interval AO of AB separates A from 0 in R.

Suppose the latter. Let Rx, Rg, R 3, ... be a mono-

tonic sequence of regions closing down on A and Oi, 0p 9

... be a sequence of points of AB such that for each

n (1) the arc Aon is a subset of R
n ,

(2) no point Xof Aon

separates A from 0
n in Rn * For each n and each point X

of Aon there exists an arc TXn lying in Rn and having only

its end points in common with AB such that the segment Sxn

of AB between these end points contains X and is a subset

of R
n . For each m there exists a finite collection H

n
of

the segments Sxn covering the arc o
n+xon+20n+2 of AB. But each

4
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Sxn+Txn is a simple closed curve lying in Rn . Hence, tnere

exists a sequence Jg, J3, ... of simple closed curves

sucn tnat (1) for eacn mJm
and Jm+i nave at least two

points in common and (2) if R is a region containing A tnere

exists a number 6 sucn tnat if m>6 tnen Jm is a subset of

R. Hence, by Tneorera 35 of Cnapter II of Foundations tnere

exists in 2J m a simple closed curve containing A and a

segment of AB.

If, on tne otner nand, tnere exists an arc PE wnicn is

a subset of an arc PB from P to B sucn tnat PE*AB=P=A, tnen

tnere exists in PB an arc PXi sucn tnat P and are tne

only points nas in common witn AB. But AB)

forms a simple closed curve containing A and some segment

of AB.

So in eitner case tnere exists a simple closed curve

containing A and some segment OF of AB. Likewise, tnere

exists a simple closed curve Jg containing B and a segment

YE of AB. Now for eacn point X of tne arc FY of AB, tnere

exists an arc T x sucn tnat Tx Jans only its end points in

common witn AB and tne segment Sx of AB lying between tnese

end points contains X. Some finite collection of tnese

segments S
x covers tne arc FY. Since every Sx+Tx is a

simple closed curve, tnere exists a sequence of simple

closed curves •• >
suca tnat for eacn



n<k Jn contains at least two points of Jn+l* By Theorem

35 of Chapter II of Foundations there exists in the sum

of these simple closed curves a simple closed curve J con-

taining A and B.

The example as indicated in the figure is a subset

of a plane with the shaded portions removed. Except for

those points of the arc XAY different from A, the bound-

aries of these shadded portions are not removed# It will

be easily seen that the

result is a connected,

connected im klelnen in-

ner limiting subset of

the plane and hence, sat-

isfies Axioms 0,1, and

Also Axiom 5f is satisfied at every point except A#

As a matter of fact, the space is locally compact at every

point except A# It is also true that if Xis a point and

R is a region containing A, there exists in R an arc (or a

simple closed curve) separating A from X. Still there ex-

ists no simple closed curve containing A and B# So the

above theorem does not hold true in this space#

Theorem 2# The space S is either acyclic or contains

p
no cut point. 0

?See Theorem 9 of Chapter II of Foundations.

°Leo Zippin has done something or this nature in his

paper, •tin Continuous Curves and tne Jordon Curve Theorem® 1
,

Amer. Jour. Math., Vol. 52, 1950, pp. 531—350.

6
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Proof. Suppose that S contains a simple closed curve

J. Then it is evident from Axiom 4 that S is connected

and that no point of J separates S. Suppose that some point

X separates S. Let AX denote an arc with end points A and

X and such that AX*J»A. Let M denote the set of cut points

of S that belong to AX and let B denote the first point

of M in the order from A to X. B is a cut point of S. For

if it is not, then B is a sequential limit point of a se-

quence of points Bi, Bp, 83, ... of M and at the same time

lies on a simple closed curve C containing an arc segment

of AX which contains B; hence, C contains points of the

sequence B<>, 83, ... which contradicts Axiom 4. But

since AB of AX contains no point of M, no point separates

A from B in S and therefore, there exists a simple closed

curve containing A and B which again contradicts Axiom 4.

It is not the purpose of this paper to treat the a-

cyclic case;
9

so we shall at this point assume R.L. Moore’s

Axiom 3: If ois a point, S-0 is connected.

Theorem 3. If A and B are distinct points, there ex-

ists a simple closed curve separating A from B.

Proof. THere exists a simple closed curve J such

that J is the sum of two arcs AXB and AYB. S-J is the sum

of two connected domains I and E each having J for its

boundary. Hence, there exists two arcs X’O’Y* and X*o*Y#

such that (1) the points X® and X* lie on the segment AXB

a space is a Regular (Menger) Curve.



and the points Y 1 and Y# lie on the segment AYB, and (2)

the segment X^'Y 1 is a subset of I and the segment X#0#Y#

is a subset of E. The simple closed curve formed by the

sum of the four arcs X'O'Y*, X*o*Y*, X'X*(of AXB), and Y*Y#

(of AYB) separates A from B in S.

Theorem 4. If A, B, and u> are three distinct points,

there exists a simple closed curve separating A from B-Hjo.

Proof. Let BXw denote an arc from B to cu not contain-

ing A. For each point P of BXu> there exists a simple clos-

ed curve Jp separating P from A* So there exists a finite

number of simple closed curves Ji, Jg, Jg, ... , Jn
such

that if P is a point of BXuj, some one of them separates P

from A. By Theorem 13 of Chapter 111 of Foundations

Jg+ .. +J
n

contains a simple closed curve J separating A

from the arc BXu) and hence, from B+u>.

Theorem 5* If P and u> are dlstlnce points not belong-

ing to the closed and compact point set H, there exists a

simple closed curve separating P from H+u>.

Proof* For each point Xof H there exists a simple

closed curve J separating P from X+u>* Since H Is closed

and compact, tnere exists a finite number of simple closed

curves Jg, J3, Jn
such that if Xis any point of H,

some one of these separates P from X+u>* For each integer

i£n let Ti denote an arc from to and let M denote

8
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the compact continuum Ji+Jg+..+Jn+Ti+Tg+..+T n. The con-

tinuum M separates P from H+u>. Now for each point X of M

let C denote a simple closed curve separating X from P and

let Cg, C3, ... , Cj denote a finite collection of these

whose interiors with respect to P as the point at infinity

cover M. By Tneorem 13 of Chapter 111 of Foundations Ci+

Cg+..+Cj contains a simple closed curve separating P from

M and hence, separating P from H+uu.

With the nelp of Tneorem 5, the arguments of R.L.

Moore with slight modifications prove that a number of tne

theorems of Chapter IV of Foundations hold true in this

space. Of these the following will be used:

Tneorem 6. If tne points A and B belong to different

components of tne closed and compact point set M, tnere ex-

ists a simple closed curve separating A from B and contain-

ing no point of M. (Tneorem 10 of Foundations. Chapter IV).

Tneorem 7. If oo and £ are two connected point sets

and neitner of tne two mutually exclusive closed and compact

point sets H and K separates oo from p, tnen H+K does not

separate 06 from A. (Tneorem 16).

Theorem 8. If the common part of tne two closed and

compact point sets H and K is a continuum and neither H nor

K separates tne point A from tne point B, tnen H+K does not

separate A from B. (Tneorem 18).

Tneorem 9. No arc separates S. (Tneorem 19)*



10

Tneorem 10. If tne points A and B are separated from

eacn otner by tne closed and compact point set M tnen tney

are separated from eacn otner by a continuum which is a sub-

set of M and which contains no proper subset tnat separates

A from B. (Tneorem 24).

Tneorem 11. IfPisa point of a domain D, tnere ex-

ists a region R containing P sucn tnat if a simple closed

curve J is a subset of R, one of tne complementary domains

of J is a subset of D.

Proof* Let Q denote a domain lying in D and contain-

ing P sucn tnat tne boundary of Q is a subset of tne sum

of a finite collection A of continua lying in D-Q. By

Axiom 3 S-P is a connected domain* By Tneorem 1 of Cnap-

ter II of Foundations tnere exists an arc joining any two

points of S-P and in particular wnen tne points belong to

diffenent continua of tne collection A. Hence, tne bound-

ary of Qis a subset of a continuum M lying in S-P. Since

M is closed and does not contain P, tnere exists a region

R wnicn contains P and no point of M but wnicn is a sub-

set of Q* If a simple closed curve J is a subset of R,

botn of its complementary domains contain points of Q*

If botn of tnese domains contain points of S-D, tnen botn

of tnem must oontain points of M. And in tnis case M must

contain some point of J. But M contains no point of J.
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Hence, one of the complementary domains of J is a subset

of D.

Theorem 12. If© is a complementary domain of a com-

pact continuous curve M and P is a point of the boundary of

D, then K*D+P is a connected, connected im kleinen inner

limiting set.

Proof* It is evident that Kis a connected inner lim-

iting set. It is furthermore evident that Kis connected

im kleinen at every one of its points with the possible ex-

ception of P. Suppose that Kis not connected im kleinen

at P. Then there exists a domain Q containing P such that

the component of Q,* K, C, that contains P is not open with

respect to K at the point P. Hence, there exists a se-

quence o(/ of points of K converging to P such that each point

of oL belongs to some component of Q*K but not to C, and no

two points of oo belong to the same component of Q*K. There

exists a point 0 of K not belonging to Q, for otherwise

Q#K«K would be connected and open with respect to K at P.

For each point X of the sequence iX, let XO denote an arc

from X to 0 lying in D, and let Y denote the first point

in the order from X to 0 that XO has in common with the

boundary of Q.

Now let R be a region containing P and lying in Q,

sucn that if J is a simple closed curve lying in R, one

of its complementary domains is a subset of Q, and let
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and Qg denote domains lying togetner witn tneir boundaries

in R and containing P such that Qi contains Qg and the

boundary of Qg, is a subset of tne sum of a finite collec-

tion A of continua lying in Qi-Qg* For Infinitely many

points X of tne sequence ql tne interval XY of the arc XO

contains a point of some one of tne continua of tne finite

collection A. Hence, there exists a continuum H of A such

that for infinitely many points X of oO the arc XY contains

a point of H. Now let Dh and Dp denote connected domains

lying togetner with their boundaries in R and containing

H and P respectively such that DH #Dp*o.

For each point X of ot/ such tnat X lies In Dp and the

arc XY contains some point of H, let TX denote an arc ly-

ing in Dp such tnat T belongs to M but the segment TX is a

subset of D and let Z denote a point of XY*H sucn tnat the

interval XZ of tne arc XY is a subset of R. Now D
H lies

in Q and contains points of more tnan one component of Q*K

and henoe, contains some point of M. For eacn Z let ZW

denote an arc lying in Dh sucn that tne segment ZW is a

subset of R and Wis a point of M. Thus, for some infin-

ite subsequence Xi, Xg, X3, ... of cCtnere correspond se-

quences of pointB Ti, Tg, T3, ... and Wg, W3, ... sucn

that (1) tne points Tg, ... belong to Dp*M, (2)

the points Wg, W3, ... belong to Djj*M, (3) for eacn

n TnXn+XnZn+Z
n

W
n

contains an arc T
n

W
n lying in R, and (4)
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if mj*n, TmWm and T^n are mutually exclusive and lie in

different components of Q*K. Since Mis compact and a con-

tinuous curve, tnere exists two mutually exclusive con-

nected subsets dp and dH of M*R which are open with re-

spect to M such that for infinitely many values of n and

in particular for the three different values a, b, and c of

n, T
n

and W
n

lie in dp and djj respectively. Let TaTb and

TaTc denote arcs lying in dp and WaWk and WaWc denote arcs

lying in dn* There exist three arcs AO2B, and AO3B

lying In TaTb+TaW
a

+Waffb , T aTb+TbWb+WaWb, and T
a

T
o
+Tcff

c
+W

a
Wc

respectively and having their end points A and B in common.

Therefore, by Theorem 5 of Chapter 111 of Foundations» the

sum of two of these arcs, say and AO3B, forms a simple

closed curve J lying in R and whose interior with respect

to some point u; of the boundary of Q contains the segment

of the third arc, namely, AO2B. But the interior of J is

a subset of Q and contains no point of the component of Q*K

which contains points of the segment AOgB and has limit

points in the boundary of Q. This is a contradiction, and

K is connected im klelnen at P.

Tue following theorems follow immediately from Theorem

12 together with Theorem 10 of Chapter II of Foundations.

Theorem 13. Every point of a simple closed curve is
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accessable from either of its complementary domains.

Theorem 14. If T is an arc, every point of T is ac-

cessable from S-T.

Furthermore, a number of the intuitive propositions

concerning abutting and crossing arcs hold true. Although

some of these will be used in arguments to follow, they

will not be stated and the reader is referen to Chapter IV,

Theorems 28-32, of Foundations for their precise statement

and proof. Some of these proofs must be modified, however,

to be valid for the set of axioms used here.

Theorem 15. An arc is accessable from both sides at

any interior point.

Theorem 16. If the arc AB is a subset of the connect-

ed domain D and D-AB is connected, then D contains a simple

closed curve J separating A from B.

Proof. Since the arc AB is accessable from both sides

at an interior point 0, there exist two arcs EO and FO a-

butting on AB from different sides such that neither EO nor

FO has any point except 0 in common with the arc AB. The

aros EO and FO contain points and respectively, such

that the arcs EiO and lie in D. In D-AB there exists

an arc and In there exists a simple clos-

ed curve J lying in D and separating A from B.

Theorem 17. If P is a point of a connected domain D,
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then there exists a region R containing P such that if X

is a point of R-P, X lies in a simple domain which together

with its boundary is a subset of D.

Proof. If D is S, tJie theorem is evident from Theorem

3. Suppose that the boundary of D is not vacuous and that

the theorem is false. Then there exists a sequence c& of

points X converging to P such that X does not lie in a

simple domain which together with its boundary is a sub-

set of D. Let A denote a monotonic sequence of connected

domains Q closing down on P. Let Qx denote an element of

A lying in D such that any simple closed curve lying in

$X has one of its complementary domains in D. It is clear

from Axioms 3 and 5£ that contains only a finite num-

ber of components. One of these components, say Cx> con-

tains two points Xx and Xg of oC. Let Tx denote an arc

from Xx to Xg lying in Cx» Let Qg denote the first element

of A which follows Qx and contains no point of Tx* One of

the components of Qg-P contains two points X 3 and X 4 of 06

and an arc Tg from Xg to X4. Let Qg denote the first ele-

ment of A not containing a point of Tx+Tg. Then Qg-P con-

tains an arc Tg whose end points are points of oC. If this

process is continued, one may construct a sequence of mut-

ually exclusive arcs Tx, Tg, Tg, ... converging to P such

that, for each n, T
n

is a subset of Qn-P and the end points
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of T
n

are points of ot By the preceding theorem, for each

n, Tn separates For each n one of tne components of

Ql«T n
does not contain P and in this component there exists

an arc segment W
n containing no point of Tl+T2+.. +T

n_i•

Now since P+Ti+Tg+..+T n does not separate space (Theorems

9 and 7), there exists an arc segment lying in

Tg+..+T n ) having one end point in W
n

and the other end

point in the boundary of For each n let L
n

denote the

component of Qi~(P+Ti+Tg+..+Tn ) which contains W
n Then

for each nT
n separates L

n
from P in and L

n contains

points of both T
n

and the boundary of Now by Axiom 5f

there exists in a domain U which contains P and whose

boundary is a subset of the sum of a finite number of con-

tinua lying in There is a continuum H of this set

which, for infinitely many values J of n, contains a point

of Lj while U contains Tj. But if kis the smallest value

of J, P+H+ZLj is a connected point set in containing

P and Lfc. This is a contradiction.

Definition. If P is a point and there exists a se-

quence of simple domains closing down on P, then P is said

to be a simple point. A non-simple point is said to be an

edge point.

Theorem 18* The set of simple points is everywhere

dense#



17

Proof. Suppose tnat Ris a region. With the help

of repeated applications of Theorem 17 it may be shown that

there exists a sequence Dg, D3, ... of simple domains

lying in R such tnat for each n (1) D
n

contains Dn+l and

(2) D
n

lies in some region of the collection Grn of Axiom 1.

By (4) of Axiom 1 there exists a point P common to Di, Dg,

D3, ...
and hence, to Dg, D3, ... and by (3) of Axiom

1 P is tne only common point. Tne point P is simple and

lies in R.

Theorem 19. No completely separable point set con-

tains uneountably many edge points.

Proof. Let H denote the collection of all edge points

belonging to tne completely separable point set M. If Xis

a point of H, tnere exists no sequence of simple domains

dlosing down on X. Hence, for eacn point X of H tnere ex-

ists an Integer nx suen that no region of &
nx

of Axiom 1

contains a simple domain containing X. If H is uncountable,

tnere exist an integer k and an uncountable subset K of H,

eucn tnat if X is a point of K, nx=k. Since M is complete-

ly separable, K nas a point P of condensation. Let D de-

note a connected domain containing P and lying in a region

of Gfc of Axiom 1. By Theorem 17 tnere exists in D a region

R containing P sucn tnat every point X of R-P is contained

in a simple domain lying in D. This is clearly a contra-

diction.
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Theorem 20* If M is a countable set of simple points,

S-M is arc-wise connected.

Tills theorem may be proved without using Axioms 4 and

5? by a modification of R.L. Moore*s proof of Theorem 1 of

Chapter II of Foundations*The kernal of this proof is

the construction of a sequence Ci, Cg, C3, *.. of simple

dhains of connected domains from a point A to a point 5

such that the common part of the point sets Cf>CgCJ> •.

Is an arc from Ato B. Now for each n Cf{ is a connected

domain, and it is easy to see that no finite number of sim-

ple points disconnects a connected domain* Hence, if (1)

A and B are any two points of S-M, (2) M=*Px+Pg+P3+ *••

and (3) for each n the chain Cn is constructed so that Cg

contains no point of the set Px+Pg+«*+Pn , then the arc from

A to B of Moore*s construction will not contain any point

of M.

Theorem 21. If M is a countable set of simple points,

S-M is cyclioly connected.

Proof. If A and B are any two points of S-M, tnen by

Theorem 20 there exists an arc AXB in S-M. With the help

of Theorems 7,9, and 12 one may show that S-AXB is a space

also J*R. Kline, Concerning the Complement of a

Countable Infinity of Point Sets of a Certain Type, lB Bull*
Amer* Math* Soc*, Vol. 23, 1917, pp* 290-292*

lie* denotes the sum of the elements of C.
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satisfying Axioms 0,1, 2, and 3, Hence, by Theorem 20

there exists an arc AYB lying in S-(M+AXB). AXB+AYB forms

a simple closed curve lying in S-M and containing A+B.

Theorem 22, No compact set of edge points separates

two simple points from each other.

Proof, Suppose that A and B are two simple points

and Mis a compact set of edge points. Suppose that n is

any fixed integer. Then there exists from Ato B a simple

chain of simple domains such that each element of the chain

is a subset of some region of On of Axiom 1. For suppose

the sontrary. Let denote the set of all points X such

that there exists from A to X a chain of simple domains

whose elements are each a subset of some region of On*

Since A is a simple point, is a connected domain. This

domain does not contain B, and its boundary is a subset

of M. Hence, is a closed and compact point set which

separates A from B. By Theorem 10 and Axiom 3, 5 contains

a non-degenerate continuum separating A from B. Henoe, M

is uncountable which contradicts Theorem 19,

Now with the help of Theorem 9 of Chapter II of Found

atlons and Theorem ? one may snow that a simple domain is

a space satisfying Axioms 0,1, 2,3, 4, and s£, and that

the complementary domain of a point is also such a space*
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Let M*PI+Pg+Pg+... . Let Ci denote a simple chain of sim-

ple domains from A to B such that (1) each element of is

a subset of some region of and (2) Cf does not contain

Pi# Now the boundary of the domain Cf is a closed and com-

pact point set not separating A from B; so there exists a

simple closed curve separating it from A+B (Theorem 5 in

modification). Hence, there exists in Cf a simple domain

Di containing A+B. Let Cg denote a simple chain of simple

domains from A to B such that if c is an element of C2, (1)

T? is a subset of some element of (2) c is a subset of

some region of Gg and (3) o does not contain Pg. This pro-

cess may be continued and by Theorem 80 of Chapter I of

Foundations Cf*Cg»CJ« ... is a continuum. Hence, M does

not separate A from B.

As a matter of fact, tne above process may be carried

out along the lines of the proof of Theorem 1 of Chapter II

of Foundations, so as to show that S-M is arc-wise and even

cyclicly connected.

That Theorem 22 does not remain true if tne condition

of the compactness of M is omitted is shown by the follow-

ing example. Let space consist of all points of the number

plane whose ordinates are not zero together with those

ordinates are zero but whose abscissas are rational. If

(X0,Y0) is a Point whose ardinate Y 0 is not zero, then
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for eacn number r< jY0 ) let V
r(X0 ,Yo) denote tne point set

consisting of(X0 0,0)Y0 ) togetner witn all points (X,Y) wnicn

lie at a distance less tnan r from (X0 »Y0 ). No Vr con-

tains a point of tne X-axis* Let Pg, P3, ... denote

tne points of the X-axis wnose abscissas are rational.

For eacn integer m let denote tne point set consist-

ing of P
m togetner witn tne interiors of tne teo isocles

triangles witn vertices at Pm and bases parallel to tne

X-axis, sucn tnat (1) tne angle at tne vertex of eacn is

one radian, (2) tne altitude 1% of eacn is less tnan or

or equal to 1/m and (3) for eacn

for eacn m and n® let R
mn

® satisfy tne conditions imposed

on Rmi except tnat tne vertex angle in 1/n® radians and tne

altitude is less tnan h^n®. Tne point sets V
r

(X,Y) and

R
mn

l snail be called regions, and for eacn integer n Gn

of Axiom 1 snail denote tne collection of all of tne point

sets Vr witn r<l/n togetner witn all of tne point sets

witn n®>n. It can be snown tnat Axioms 0,1, 2,3, 4, and

5} nold true in tnis space. Furtnermore, tne space is com-

pletely separable and locally compact at all but a count-

able no-wnere-dense set of points, namely, tne set of edge

points. Tnis set of points actually separates tne lower

naif of tne space from tne upper naif of tne space. Hence,

tne above tneorem does not bold true wnen A is in tne lower
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half of the space and B is in tne upper half of tne space,

the point set of tne above argument consisting of all

the points below the X-axis.

Definition. If a domain is connected and contains

one of the complementary domains of each simple closed

curve lying in it, then it is said to be simply connected.

Definitions. Suppose that P is a point of a domain

R and A is a collection of continua whose sum separates P

from tne boundary of R such tnat each continuum of A lies

in a component of R-P whose boundary contains P but no

component of R-P contains more than one element of A. Then

tne collection A is said to be minimal with respect to R

and P. And if D is a domain containing P whose boundary

is a subset of A #
,

then A is said to surround D minimally

with respect to R and P.

Theorem 23* If A is a collection of contlnua will eh

surrounds a connected domain D minimally with respect to

a domain R and a point P, tnen (a) each component of R-P

whose boundary contains P contains one and only one ele-

ment of A, and (b) no component of D-P has boundary points

in more than one element of A.

Proof, (a) By definition if C is a component of

R-P wnose boundary contains P, then C contains not more

tnan one element of A. But since S-P is connected, the

boundary of C also contains a point of tne boundary of R;

nence, C must contain at least one element of A. There-



23

fore, C contains one and only one element of A.

(b) Suppose that there exists a component C* of D-P

which has boundary points in more than one element of A.

Let C denote the component of R-P which contains C*. Then

C contains more than one element of A. But since D is con-

nected, the boundary of C contains P. This is a contradic-

tion of (a).

Theorem 24. IfPisa point of a domain R, not S,

there exist in R a connected domain D containing P and

finite collection A of continua such that A surrounds D

minimally with respect to R and P.

Proof. Let D* denote a domain lying in R and con-

taining P whose boundary is a subset of tne sum of the ele-

ments of a finite collection A* of continua lying in R-D 1
.

Let N denote the sum of all the continua of A 1 which lie

in components of R-P whose boundaries contain P. If H

and K are components of N lying in the same component C

of R-P, let T denote an arc in C from a point of J to a

point of K. Let A denote the collection of all components

of the point set obtained by adding N to the sum of the

arcs T. The collection A minimally separates P from the

boundary of R. Let D denote the component of R-A* that

contains P. Then, the boundary of D is a subset of A*,

and hence, A surrounds D minimally with respect to R and P*
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Theorem 25, If D is a connected domain and there ex-

ists a collection A of continua such that A surrounds D

minimally with respect to a domain R and a point P, then

D is simply connected.

Proof. Suppose, on the contrary, that there exists in

D a simple closed curve J such that neither of its comple-

mentary domains I and E are subsets of D. Since J lies in

D, both I and E contain points of D and, therefore, points

of the boundary p of D. Let Tj and Tg denote arcs irre-

ducible from J to p*l and pE respectively which lie in

S-P and let T denote an interval of J*(S-P) from Tj to Tg.

The continuum Tj+T+Tg lies in R-P and contains points of

two different continua of A* This is a contradiction.

Theorem 26, If P is a point of a region R, there ex-

ists in R a simply connected domain D containing P,

Theorem 26 is a consequence of Theorems 24 and 25,

Definitions, If and Dg are domains sucn that

contains Dg and T is a segment lying in having one

end point of tne boundary of and tne otner on tne bounds

ary of Dg, then T is said to cross Di-Dg. Furtnermore,

if C is tne component of whicn contains T, tnen T is

said to cross C.

Definition, If and Dg are domains sucn tnat

contains Dg, C is a somponent of Di«Dg, and Ti, Tg, and T3
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are segments crossing C, then Tg is said to be between

and Tg in C if Tg separates from Tg in C.

Theorem 27. Suppose that and Dg are simply con-

nected domains such that contains Dg but no simple domain

lying in contains Dg, C is a component of and

?1> Tg, Tg are three mutually exclusive segments crossing

C. Then one and only one of these segments is between the

other two in C.

Proof. That not more than one of these segments lies

between the other two in C is an immediate consequence of

a well known theorem.

Suppose that no one of them is between the other two

in C. Then either (1) contains a component

W shlch has limit points in each of the three segments, or

(2) C-(TI +T'g+T.5 ) contains three mutually exclusive com-

ponents W 13 , and Wgg having limit points in the seg-

ments indicated by their subscripts.

Case I* Suppose (1)* Then there exist in W three

mutually exclusive segments AAg, and AA3 having a

common ehd point A in W such that A2, and Ag belong

to Tg, and $3 respectively* For each 1 (i*1,2,3) let

Oi and pi denote the end points of Ti which belong to the

boundaries of and Dg respectively. Since D 2 is connect-

ed, there exist in three mutual-

ly exclusive segments BBg, and 883 having a common
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end point B in Dg and having their other end points Bx,

Bg, and B 3 in the intervals AxPi of Tx, AgPg of Tg, and

A3P3 of T 3 respectively. If AB
n
B denotes AAn+Anß(of A

n
Pn )

+BB
n (n»1,2,3), then ABx§, ABgB, and AB3B are mutually ex-

elusive segments. By Theorem 5 of Chapter 111 of Founda-

tions two of these arcs, say and AB3B, form a simple

closed curve J whose interior I with respect to Ox con-

tains tne segment from Atoß of the remaining one. Since

Dx is simply connected, I Is a subset of Dx* But Tg con-

tains Bg and no point of J and is, therefore, a subset of

I. Hence, I contains Og. This is a contradiction.

Case 11. Suppose (2). Tnere exists segments AIB3,

82A3, and 83A2 lying in and respectively

and Having end points on tHe arcs Tg, and T 3 as in-

dicated by tne subscripts in tiie notation. THe point set

Aiß3+Aißl(of Tx)+BxAg+Agßg(of TgJ+B^A^+Agß^tpf T 3) is a

simple closed curve J lying in Dx-Dg. Since is simply

connected, one of tHe complementary domains I of J is a

subset of Since J contains no point of Dg, I either

contains Dg or is a subset of By Hypothesis Dx

contains no simple domain containing Dg. Hence, I is a

subset of and has limit points in each of the

three segments sx» T2> and which is Case I again.

Lemma* If the compact continuum K does not separate
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the point A from the point B and G is a finite collection

of compact contlnua such that (1) the common part of any

two elements of G is a subset of K and (2) if H is any ele-

ment of G, H does not separate A from B and H*K is connect-

ed, then K+G* does not separate A from B.

This lemma may be established by a finite number of

applications of Theorem 8.

Tneorem 28. If AXB is an arc and J is a simple closed

curve separating A from B, tnen J+AXB contains a simple

closed cur re C separating A from B sucn tnat C*AXB is con-

nected.

Proof. Let A 1 and B* denote tne first and last points

respectively tnat tne arc AXB has in common witn J. Let

AYB denote an arc from A to B sucn tnat AXB*AYB=A+B. Let

G denote tne collection of all simple closed curves C in

J+AXB sucn tnat C*AXB is connected and C-AYB is not vacuo-

us. Tne collection Gis finite. Let K denote A*B f +(J-J«G#)

Tne point set K is a continuum containing no point of AYB;

hence, K does not separate A from B. Since tne common part

of any two elements of G is a subset of K, and tne common

part of K witn an element of G is connected, tnerefore, if

no simple closed curve of tne collection G separates A from

B, tnen by tne preceding lemma K+G* does not separate A

from B. Tnerefore, some element C of G separates A from B.



Theorem 29. Suppose that Dg, and D 3 are simply

connected domains containing the point P such that (1) D3

contains Dg, (2) D 3 is surrounded minimally with respect

to and P by a finite collection, and (5) contains

no simple domain containing P. Then if C is a component

of f is an arc segment crossing C, and J is a sim-

ple closed curve separating T from P, J contains two seg-

ments Ta
and Tb which cross C sucn that T is between them

in C.

Proof. Let R denote a connected domain lying in J

and containing tne end point A of T wiiicn is on tne bounds

ary of D2. Now in R+Dg tnere exists an arc AP from Ato P,

such that J*AP is a subset of an interval A*P* of AB lying

in Dg. By Theorem 25 J+AP contains a simple closed curve

J* separating A from P such that J*+AP is connected. Jf «AP

is a subset of A*P’ and is, therefore a subset of Dg. Since

is simply connected but contains no simple domain con-

taining P, J 1 contains a point 0 not belonging to J 8
-

(J**AP+o) is tne sum of two mutually exclusive segments 6X

and OY where X and Y belong to AP (and Y belongs to the in-

terval XP of AP) and the arcs OX and OY abutt on AP from

different sides. Both OX and OY contain segments which

cross Di-Dg. Let Ta denote the first segment of OX in the

28
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order from X to 0 that crosses Di-Dg, and let Tb denote

the first segment of OY in the order from Y to 0 which

crosses Di-Dg. Now C contains an element of A and if U

denotes the component of which contains G, U has no

point in common with any other component of because

A is a minimal collection with respect to and P. Hence,

¥a and Tb cross C. Let X* and Y 9 denote the end points

of Ta and Tb respectively which are on the boundary of Dg.

The intervals XX* of OX and YY® of OY lie in D^.

Suppose that T is not between Ta and Tb in C, Tnen

there exists an aro in C irreducible from Ta to Tb not

intersecting $• Let W denote tne last point that OX nas

in common with and let Z denote the last point that OY

has in common with The intervals WX of OX and ZY of

OY are subsets of Ta+XX* and Tb+YY* respectively, and hence,

are subsets of The arcs WX and ZY abutt on AP from

different sides. Now ®AP+WX+WZ(of is a simple

closed curve lying in not containing P, or a point of

T, or a point of PY of AP* Since is simply connected,

one of tne complementary domains, I, of J lO is a subset of

But since does not contain a simple domain contain-

ing P, both P and T must be subsets of the other comple-

mentary domain E of J M
. Now AX contains an arc which



abutts on from the side opposite PY of AP, and since

both A and PY are in D, AX must intersect J BB
. Let Ax and

Ag denote the first and last points respectively that AX

has in common with J BB
. and AgX of AX lie in E and I

respectively. The segment AX does not intersect J 8; so

A)£*J 18 is a subset of Hence, AAx and AgX approach Tx

from different sides. Let R 8 denote a connected domain

lying in Dx and containing A but no point of TX+Ta+Tb.

Then, in R B +Dg there exists an arc FG- Irreducible from AAx

to AgX. The simple closed curve J3*FG+GAg(of AgX)+AxAg

(of Tx)+AxF(of lies in contains no point of Ta+Tfr,

but crosses Tx* Hence, Ta and Tfc lie in different com-

plementary domains of J3. This is Impossible, for since

Dx is simply connected, one complementary domain of J 3 is

a subset of Dx*

Theorem 30. In order that space be metric, it is

necessary and sufficient that space be completely separable.

Proof. That a space satisfying Axioms 0 and 1 is

metric if it is completely separable has been shown by R.L.

Hence, this space is metric if it is completely

separable.

It will now be shown that if space is metric, it is

completely separable. Let P denote an edge point and let

T3?See Foundations p. 459 and p. 464.

30
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R denote a region containing P but containing no simple

domain containing P. Since Ris not S, by Tneorems 24 and

25 tnere exists in R tnree simply connected domains Dx, Dg,

and D 3 such tnat (1) D 3 is surrounded minimally witn re-

spect to Dx and P by a of continua, and (2) D 3

contains Dg. Dx contains no simple comain containing P.

Let C denote a component of Dx~Dg.

Suppose that tnere are two mutually exclusive arcs Tx

and T«x crossing C. Let c*J denote a well ordered sequence

(wnose first element is Tx) of all arcs T wnicn cross C

such tnat eitner (1) T is Tx, or (2) lies between T_x

and T in C. Let oC denote a subsequence of dJ sucn tnat (1)

the first element of 06 is Tx, (2) if an element T of ob is

not Tx, tnen T is tne first element of wnicn neitner in-

tersects a preceding element of ot nor lies between two pre-

ceding elements of ct> and (3) every element of 00 eitner

intersects an element of 06 or lies between Tx and some ele-

ment of in C. Tnen, between any element of oc and tne

next following element in 06 tnere is no element of oc.

Tne sequence oc is countable. For suppose tnat &L is

uncountable. For each arc T of oC let dip denote tne dis-

tance from T to tne next element of oU Tnere exists a

number c and an uncountable subsequence of oi such tnat

if T belongs to 0C
C , dip>c+ Let T 2 denote tne first element

of st sucn tnat T is preceded in ocby Infinitely many ele-
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ments of 0%. Let L denote an arc from to Tg lying in

C• Infinitely many elements of are between and Tg

in C and tnerefore, intersects L. Consequently, tnere ex-

ists in G a connected domain D of diameter less tnan c/2

wnicn contains points of two different elements T and T 1

of suen tnat T precedes T* in oc. Tnen, tne first ele-

ment of oewnien follows T in oC is eitner T* or lies between

T and T* in C and intersects D* Tnis is a contradiction*

Tne same process may be followed for tne collection

of all arcs T suen tnat T_x lies between and T in C.

Hence, tnere exists a countable collection G of arcs cross-

ing C, suen tnat any arc wnicn crosses C witner intersects

an arc of G or lies between two arcs of G. Tnis was on tne

assumption tnat tnere exists two mutually exclusive arcs

crossing C. It is evident that G exists if tnis is not tne

case, for tnere exists at least one arc wnicn crosses G«

For eacn pair of arcs Or let L denote an arc in C wnicn

contains points of botn of tnem, and let Me denote tne sum

of all tnese arcs togetner wltn tne sum of tne elements of

<>♦ Tnen if T is any arc wnicn crosses G, T intersects MCo

Since eacn component C of contains an element of A,

tnere are only a finite number of tnenw Tbus, if tne above

construction is carried out in eacn one of tnem, M=HM
C le

a closed and completely separable subset of wnicn sep~
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arates P from tne boundary of Let Q denote tne com-

ponent of Di-M which contains P. Tnen Q contains P and lies

in R, and tne boundary of Qis completely separable. Thus,

if P is an edge point of a region R, tnere exists in R a

domain containing P wnose boundary is separable. Tnis is

also true if P is a simple point of a region R. Therefore,

13
space is locally peripherally separable. By a tneorem of

tne author*s sucn a connected, connected 1m kleinen metric

14
space is completely separable.

Tneorem 31* If space is completely separable and P is

a point, tnere exists a sequence of simple domains Qi, Qg,

Q3, ... bounded by simple closed ourves Ji, Jg, J3, ...

respectively, sucn tnat (1) for eacn n contains
n+i,

and (2) if M is a closed and compact point set not contain-

ing P, tnere exists an Integer n sucn tnat does not con-

tain a point of M.

Proofs For each point Xof S~P there exists a simple

domain D
x containing X sucn that D

x does not contain P.

Theorem 3* Let G denote tne collection of all sucn domains©

G- covers S-P, and since S is completely separable, G con-

tains a countable subcollection G*»Di, Dg, ... cover-

ing S-P. For eacn n let Cn denote tne boundary of D
n . Let

Jl denote tne boundary of a simple domain containing P,

For eacn n let Jn denote a simple closed curve separating
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P from the closed and compact point set Cx+Cg+. •+Cn~l+^X4‘

Jg+..+Jna=l (Theorem 5), and let denote the complementary

domain of J
n

which contains P. Then, Qx? Qg* Qg* is

the required sequence of simple domains. For if Mis any

closed and compact point set, there exists an integer k

such that covers M® Hence, if n>k, 5n con-

tains no point of M*

Theorem 32. If space is completely separable and R

is a region containing an edge point P but containing no

simple domain containing P, tnen R contains a connected

domain D whose boundary is a subset of the sum of the ele*

ments of a finite collection A of open curves wnicn sur-

rounds D minimally with respect to R and P, such that if J

is a simple closed curve lying in D+A #-P whose common part

with A# is connected then one of the complementary domains

of J is a subset of D.

Proof. Let Dx» Dg, and denote simply connected

doming lying in R and containing P sucii tnat (1) D 3 con-

tains Dg, (2) D 3 is surrounded minimally with, respect to

Dx and P by a finite collection of continua lying in

Dl-D3. By Theorem 31 tnere exists a sequence of simple

domains Qx> Qg? ••• bounded by simple closed curves

Jl* Jg, J3, •.. respectively, sucn tnat (1) for eacn n

Qn
contains Qn+x and (2) if Ml® a closed and compact sub-
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set of S-P, there exists an integer n such that Q,n contains

no point of M. Let C denote a component of Dx-Dg and let

G denote the collection of all arcs T such that T crosses

C and for some n is a subset of J
n . If T and T* are arcs

of G, T*T**o. Since Dx is simply connected but contains

no simple domain containing P, for each nJn contains a

point of S-Dx* Furthermore, let AP denote an arc lying in

Dg and in the component of which contains C; then

there exists an integer n such that Djj does not contain A;

so if n>n, contains a point of the segment AP and a point

of and therefore contains at least two arcs T of G#

However, for each nJn contains at most a finite number of

arcs of G. Hence, Gis countable. Furthermore, suppose

that L is an arc lying in C from one arc of G to another

arc of G, There exists an integer n such that if n>n,

contains no point of L. Hence, between any two arcs of G

there are only a finite number of arcs of G. Furthermore,

each arc of Gis between some two arcs of G. For, if T is

an arc of G, there exists an integer n such that Jn sep-

arates T from P. By Theorem 29 Jn contains two arcs which

cross C such that T is between them in C.

Let oC denote a well ordered sequence wnose elements

are the elements of G. Let Ni and N 0 denote the first two

elements of G. Let Ng denote the first element of G such
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that is between N 0 and Ng in C. Let N_i denote the ele-

ment of G- such that N 0 is between and Ni in C. This

process may be continued. The sequences Ng, ... , N^,.

• • and N
O , , N_g, ... , ... may or may not be

simple sequences, but since each is countable, the first

contains a simple countable sub-sequence Ti, Tg, T3, ...

running through it and the second contains a simple sub-

sequence T
O , T„g, ... running through it, such that

if T is any arc crossing C, there exists an integer n such

that T is between Tn and T_n
in C and such that the linear

order of these arcs in C is the same as the order in the

sequences.

Since space is metric (Theorem 30) and G contains

one and only one of the continua of A l
, tiiere exists in

C a connected domain C* sucn that (1) C* contains this el®

ement of A* and (2) S’* is a subset of C. For eaoh pair

of consecutive Integers (positive or negative), a and b

with a<b, let Ua
denote an arc irreducible from T

a
to

lying in 0* and let M
a

denote the interval of Ta between

the end points of Ua and U
a

in T
a . The point set EMa

is closed, since each M
a

is for some n a closed subset of

C*Jn, for each nJn contains only a finite number of the

arcs of G-, and the limiting set of Jg, ... is the

point P. Also £Ua is closed; for suppose that ois a
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limit point of the set EUa not belonging to it. 0 belongs

to and therefore, to C. There exists a connected domain

V which lies in C, contains 0, but does not intersect more

than one of the simple closed curves Jg, J 3, ...
•

and an infinite collection H of segments U
Q

such that if

U 8 is a segment of H, U
a

intersects V. Hence, V+H* is a

connected subset of C not Intersecting more than one of the

arcs T]_, Tg, T3, ... ,
T

O , T_i, T.g, ... but having limit

points in infinitely many of them. This is a contradic-

tion. So L«E(M
a

+U
a

) is closed and is, because of its

method of construction, an open curve.

Now suppose that T is any arc crossing C. There ex-

ists an integer n such that T lies between T
n

and T_n
in 0*

Hence, T intersects that interval of L which is erreduc-

ible from Tn to T_n . Since each component C of con-

tains an element of A l
, there are only a finite number of

them. Hence, if these components are Ci, Cg, .. , Cj and

for each denotes an open curve obtained from the

above method of construction and lying in then Li+Lg+.

*+Lj is closed and separates Dg from the boundary of

Since no component of Di»P contains more that one element

of A l
,

no such component contains more than one of the open

curves Lg, ... , Lj. Hence, the collection A-L^, Lg,

... Lj is minimal with respect to and P.
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Let D denote the component of S-A* which contains P.

D contains Dg, and a segment of each element of G- having

one and only one of its ends from some lin Li* There-

fore A surrounds D minimally with respect to and P.

Let AP denote an arc from P to a point A of lying

in D except for A, and let W denote any interval of Li

wliicn contains P, By Theorems 5 and 28 tnere exists a

simple closed curve J separating W from P such that J*AP

is connected. If J does not intersect by Theorem 25

one of the complementary domains I of J is a subset of D.

Since J separates A from P, I contains P, But this is im-

possible, since R contains no simple oomain containing P.

Hence, J contains a point 0 of S-D such that J-(O+J*AP)

is the sum of two segments OX and OY which abutt on AP

from different sides. Since the component of Di-P which

contains AP-P contains only one element of A*, this com-

ponent contains only one open curve of the collection A,

namely, Hence, both OX and OY intersects and con-

tains arcs XX* and YY* respectively which lie in D except

for the points X* and Y* which lie on Let J* denote

the simple closed curve XX*+X»Y i (of Ll )+YY*+XY(of AP), J«

crosses the segment AP, Let I 1 denote the complementary

domain of J* which lies in The domain I* contains no

point of A* except possibly points of But if I 9 con-
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tains a point of l® must contain a ray of points of

This is impossible because for each n Qn intersects every

ray of but since J* does not contain P, there exists

an integer n such that contains no point of J*+l*. There-

fore, I® is a subset of D. Furthermore, if J* does not con-

tain W, J® does not contain A. And since J* crosses AP, J®

separates A from P. Thus, I would be a simple domain lying

in R and containing P which is contrary to hypothesis.

Hence, J contains W and every point of W is on the boundary

of E. Therefore, the boundary of D is tne point set A#
.

This argument also shows that if J is a simple closed

curve lying in D+A #-P and J*A* is connected,one of tne com-

plementary domains of J is a subset of D.

Definition# A domain D of the type shown to exist in

Theorem 32 is said to be a pseudo-simple domain with re-

spect to R and P or simply, a pseudo-simple domain.

Theorem 33. A pseudo-simple domain is simply connect-

ed.

Theorem 33 is a consequence of Theorem 25.

Theorem 34. If D is a pseudo-simple domain with re-

spect to a region R and a point P, and J is a simple closed

curve lying in D such that the common part of J and jb, the

boundary of D, is connected, then one of the complementary

domains of J is a subset of D.
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Proof. If J does not contain P, by the definition of

a pseudo-simple domain one of its complementary domains is

a subset of D. Now suppose that J contains P and that

neitner of its complementary domains is a subset of D.

Since is connected, J-J*& is a segment APB. Some

open curve Lof contains J♦ p and since (VL does not

separate P from the boundary of R, L contains a limit point

0 of S-D. Let T denote an Interval of L containing 0 and

Let C denote a simple closed curve separating T from

P and whose common part with J is the sim of two connected

subsets of the intervals AP of APB and BP of APB respec-

tively (apply Theorem 28 twice). Let and EgFg denote

arcs of C, such that C»C♦A?+C»SP+ExFi+EgF9

Suppose tnat both and EgFg intersect Then

they must eacn intersect L, for if this were not the case

some open curve of p-L would be joined to L by a segment

lying in D-P. Both of them have end points in AP and BP

respectively. Let E£ and F;[ denote the first and last

points that has in common witn L and let E£ and F<?>

denote the first and last points that EgFg has in common

with L. Tne intervals EjFJ and E£F£ of L lie in different

complementary domains of J. Let C ? =C*AP+E^E^(of

EjFi(of L)+FjFi(of E1 E9F9)+E£F£(of L) +

F£F9(of E9Fg). C 8 separates T from P, because AP crosses
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C 9 witn respect to P. Now I is composed of an arc segment

of L which contains 0, together with the interiors and

Xc> of tne simple closed curves EjE£(of L)+E|E^Er>E^( of C®)

and L)+FjF^FgF£(of G1) respectively. But and Ip

are subsets of D since D is simply connected, and hence, 0

is not a limit point of S-D. This is a contratiction.

So one of tne segments, and E2Fg, say does

not Intersect

now I denotes the domplementary domain of J wnicn contains

simple domains known to lie in D. Tnus, I is a subset of

D.

Tneorem 35. If D is a pseudo-simple domain witn re-

spect to a region R and a point P and OX and O*X ? are arcs

lying in D except for tneir end points X and X* wnicn lie

in an open curve of jJ, tne boundary of D, tnen tne arcs

OX and C^X 1 abutt on L from tne same side.

Proof, Suppose the contrary, Then L contains an arc

AXX'B containing tne points X and X 1 as interior points

sucn tnat tne arcs OX and C^X 1 abutt on AXX*B from dif-

ferent sides. Let FF* denote an arc in D irreducible from

OX to o*X* • Tnen tne arcs AX and BX* of AXX®B approach

the simple closed curve J=FX(of OX)+XX*(of AXX B E}+F , X 9 (of

0 1 X I )+FF * from different sides. Hence* A lies in one eom-

41
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plementary domain of J, and B lies in the other* But this

is impossible, for since is connected and J is a sub-

set of D, one of the complementary domains of J is a subset

of D.

Theorem 36. If D is a pseudo-simple domain with re-

spect to a region R and a point P and OX and 0*X 8
are arcs

lying in S-D except for their end points X and X ! which

lie in an open curve L of p, the boundary of D, then tne

arcs OX and O^ 1 abutt on L from the same side.

Proof* Let FF* denote an arc lying in D except for

the end points F and F 1 which lie on L such that the int-

erval FF* of L contains X and X* as interior points* Then

JssFF’+FF* (of L) is a simple closed curve one of whose com-

plementary domains is a subset of D. The other comple-

mentary domain of J contains the arc segments OX and
.

Hence, the arcs approach FF' of L, and therefore L, from

the same side*

Theorem 37* If D le a pseudo-simple domain witn re-

spect to a region R and a point P and OX and o*X* are arcs

which Have tneir end points X and X 8 in an open curve L

of j£, the boundary of D, but have no other point in com-

mon with
,

and approach L from different sides, then one

of these arcs lies in D and the other lies in S-D, and

every point of p is accessable from D and some component

of S-D.
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Theorem 37 is a consequence of the two preceding

theorems and Theorem 15.

Theorem 38. If D is a connected domain and J is a

simple closed curve lying in S-D, then one of the comple-

mentary domains of J Is a subset of S-D.

Proof* Let I denote tne interior of J with respect

to a point tu of D* Suppose tnat X is a point of D and be-

longs to I. Tnen X+D is a connected point set contain-

ing uu and a point of I but no point of J. This is a con-

tradiction.

Theorem 39* If X is a point on tne open curve L of

tne boundary of a pseudo-simple domain D witn respect

to a region R and a point P, and M is a closed and compact

point set not containing X, tnen there exists a simple

closed curve lying in S-(D+M) whose common part witn ft
i

is an interval of L containing X as an interior point,

and whose interior witn respect to P contains no point

of M.

Proof. Let XP denote an are from Xto P lying ex-

cept for X in D and let J denote a simple closed curve

separating X from P sucn tnat J*XP is a connected subset

of D. J contains a point of S-D. Let 0 denote tne first

point tnat XP has in common witn J and let AOB denote the

interval of J containing 0 and lying in D except for its
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end points A and B wnicn lie on L. Tne interval AB of L

contains X because one of tne complementary domains of tne

simple closed curve AOB+AB is a subset of D and since it

can not contain P, it must contain OX of XP* Let AZB de-

note tne arc of J sucn tnat J*AXB+AZB. Let B 0 denote tne

first point tnat AZB nas in common witn tne ray XB of L;

let Ai denote tne next preceding point tnat AZB nas in

common witn jsifit is not in L; let denote tne open

curve of p containing and let Bx denote the first

point AZB nas in common witn Lx* Let Ag denote tne next

preceding point tnat AZB nas in common witn (b if it is not

in L; let Lg denote tne open curve of p containing Ag;

and let Bg denote tne first point AZB nas in common witn

Lg* Tnis process can be comtinued (for a finite number

of steps) until for some integer n tne next point tnat

AZB bas in common witn jp preceding B
n

is a point Aoof L.

Since A 0 precedes B 0 in AZB, A 0 belongs to tne ray XA of

L* Let denote tne simple closed curve A
O

XB 0 (of L)+

B
0
Ax(of AZB)+Axßx(of Lx)+BxAg(of AZB) +

. .+B n<E=lAn
(of AZB) +

An
ß

n(°f L
n )+Bn

A0 (of AZB). It is clear tnat if Ax exists,

lies in S-D, because any arc segment lying in D having

its end points in different open curves of 5 contains P

and Jx does not contain P. Now in case Jx=AoXß o (of L)
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+B
0

A
0 (of AZB) suppose tnat B 0A

0
lies in D. Tiien lies

in D and is connected; so one of tne complementary

domains, say I, of is a subset of D. Let P 9 X denote

an arc lying in I except for X wnicn is on tne boundary

of I. Now I does not contain P; nence, I does not con-

tain PX and tnerefore PX and P*X abutt on AXB from differ-

ent sides. But since botn PX and P*X lie in D, tnis con-

tradicts Tneorem 37. Tnus, in any case is a subset of

S-D. By Tneorem 38 one of tne complementary domains

of is a subset of S-D. Hence, Xx is tne interior of Jx

witn respect to P. Let X* denote a point of Jx-Jx*L and

let Jg denote a simple closed curve separating X from P+

M+X 9 (Tneorem 5), and let Ig denote tne interior of Jg

witn respect to P. By Tneorem 11 of Cnapter 111 of Found-

ations Jx+Jg contains a simple closed curve J 3 sucn tnat

(1) 13, tne interior of J 3 witn respect to P, is a subset

botn of lx and of Ig, and nence of S-(D+M), and (2) J3*L

is an arc containing Xas an interior point. Let A*X, B 0

denote an arc lying in I 3 except for points A* and B*

wnicn belong to J3*AOX and J3*BqX respectively. Tnen

A 9 XB(of L)+A*X 9 B 9 is a simple closed curve lying in S-(D+M)

wnose interior witn respect to P is a subset of I 3 and

nence, contains no point of M. Furtnermore, tne common

part of J 4 witn $ is tne arc A 9 XB 9 wnicn is an interval
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of L of which X is an interior point.

Theorem 40. If D is a pseudo-simple domain with re-

spect to a region R and a point P, then S-D is connected.

Proof. The boundary of D is the sum of the elements

of a finite collection A of open curves Li, Lg, ... , Lj.

For each point X of A* let J
x

denote a simple closed curve

such that J
x

is a subset of S-D and J
X

*A # is for some

an interval Tx of Ln containing X as an interior point.

Let I
x

denote tne component of J
x

which does not contain

P. I
x

is a subset of S-D. Now for each ngj let D
n=£lx

for X on L
n .

All the arc segments Jx-Tx for X on Ln lie

in S-D and abutt on Ln
from the same side. Hence, the do-

mains I
x overlap, so that Dn is a connected subset of S-D.

Furthermore, if T is any arc in S-D which abutts on L
n

at

a point X, it abutts on L
n

from the same side as J
x

-T
x,

and hence, contains points of I
x

and D
n .

So for each

only one component of S-D has boundary points on L
n .

Now suppose that S-D is not connected. Tnen there

exists two mutually exclusive domains H and K such that

S-D*H+K. Since space is connected, both H and K have

boundary points in A*, but for no does L
n

contain

boundary points of both H and K. Hence, H*A* and |C*A# are

mutually exclusive closed point sets. Let AB denote an

arc in S-P irreducible from H*A # to K*A #
. Now since each
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D
n , belongs either to H or to K, A#sH*A #+K*A#

; so AB

contains only the two points A and Bof A #
, and these points

belong to different open curves of the collection A. There-

fore, since AB does not contain P, tne arc segment AB lies

in S-D. Hence, AB contains a point of and a point of

Ig. But, since and Ig belong to H and K respectively,

this is a contradiction.

Theorem 41. If D is a pseudo-simple domain and J is

a simple closed curve lying in D, then one of the comple-

mentary domains of J is a subset of D.

This tneorem is a consequence of Tneorems 38 and 40.

Corollary. If D is a pseudo-simple domain with re-

spect to a region R and a point P whose boundary if the

sum of the elements of a finite collection A of open curves,

then the boundary of each component of D-P consists of P

and one of the open curves of A.

Definition. A domain D is said to be internally

simple provided that for each point X of D there exists a

simple domain Ix containing X and lying together with its

boundary in D.

Tneorem 42. If D is a pseudo-simple domain with re-

spect to a region R and a point P, taen each, component of

D-P is internally simple.

Proof* Let U denote a eomponent of D-P and let X de-
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note a point of U. Let XP denote an arc from A to P lying

except for P in U. By Theorems 3 and 28 there exists a

simple closed curve J crossing XP. If J intersects the

boundary of D, then J contains an arc AYB crossing XP and

lying except for the points A and B of L in D. Let

denote the simple closed curve AYB+AB(of L). One of the

complementary domains of Ji is a subset of D and contains

X. Let Jx denote a simple closed curve separating J2+P

from X. If J does not intersect the boundary of D, let

J
x

denote J. Then, one of the complementary domains Ix of

Jx contains X and I
x

+Jx
is a subset of U. Hence, U is in-

ternally simple.

Theorem 43. If D is a pseudo-simple domain with re-

spect to a region R and a point P, S-D is internally sim-

ple.

Proof, Let A denote the collection of mutually ex-

clusive open curves wnose sum is tne boundary of D, and

let L denote an element of A. Let X denote a point of

S-D, and let AX denote an arc irreducible from L to X and

containing no point of A*-L (Theorem 40). Suppose that

S-(D+AX) is the sum of two mutually exclusive domains H

and K. Because no arc separates space, both H and K have

boundary points in A*, Furthermore, because of Theorem 39

no element of A-L contains points of both H*A# and K»A#
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not so either of the rays of L from A contain points of

both I?* A* and K*A*. Let AP denote an arc in D+A from A

to P. Since AX+AP does not separate space, there exists

an arc T Irreducible from H*A # to K*A* in S-( AX+AP). Now

the arc segment T is a subset of S-D, for if T were a sub-

set of D it would have one end on one ray of L from A and

the other end on the other ray from A without intersecting

AP, which is Impossible (Theorem 34). But it is also im-

possible for T to lie in S-D, for in this case H and K

would have boundary points in the same open curve of A.

Hence, S-(D+AX) is connected.

Let EYF denote an arc lying except for Y in S-(D+AX)

and crossing AX at the point Y. Since S-(D+AX) is connect-

ed, there exists an arc EZF lying in it from E to F. EYF+

EZF contains a simple closed curve J crossing AX at the

point Y and the interior I of J with respect to P is a sim-

ple domain I containing X such that T is a subset of S-D.

Theorem 44. If (1) Dx is a pseudo-simple domain with

respect to a region Ri and a point P, (2) Dp is a pseudo-

simple domain with respect to a region Rp<Dx and the point

P, and (3) C is a component of then C is an Inter-

nally simple, simply connected domain.

Proof. G is simply connected; for it a simple closed

curve J is a subset of C, the interior I of J with respect
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to P is a subset of Dx (Theorem 33} and also of S-Dg

(Theorem 38), and therefore, I is a subset of C. If X

is a point of C, there exist a simple domain Ix contain-

ing X such that Ix is a subset of Dx~P (Theorem 42) and

a simple domain Ig containing X such that Ig is a subset

of S-Dr> (Theorem 43). By Theorem 12 of Chapter 111 of

Foundations li+lg contains a simple domain Ix
which con-

tains X and whose boundary is a subset of the sura of the

boundaries of Ix and Ir>. Therefore, T
x is a subset of C,

and C is internally simple.

Theorem 45. If D is an internally simple, simply

connected domain and AB is an arc lying in D except for

its end points which belong to the boundary of D, then

D-D»AB is the sum of two mutually exclusive, internally

simple, simply connected domains, each having AB on its

boundary.

Proof. For eaon point Xof AB let I
x

denote a sim-

ple domain containing X sucli that I
x+Jx( tn© boundary of

Ix ) is a subset of D. Let C denote a simple closed curve

separating X from A+B+Jx (Theorem s)* C+AB contains a

simple closed curve C® separating X from A+B+J
x

whose

common part with AB is the sum of two continua. Let A ®XB 5

denote the interval of AB containing X such that A , XB®*o®
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*A*+B*. One of the complementary domains I ? of C* is a

subset of D and contains the arc segment A f Xß®. 1 1 -A s XS" S

is the sum of two simple domains Ixx and I
xg, one on one

side of AB and the other on the other side of AB. How if

the subscripts 1 and 2 are so used so that all the domains

I
xX for Xon AB are on the same side of AB and all the do-

mains I
xg are on the other side of AB, Dx*2lxi and Dg»Elxg

are two connected domains which are subsets of D. Now

each point 0 of D-AB may be joined to a point of AB by an

arc OE lying in D-AB except for its one end point E, and

OE must Intersect either Dx or D2. If for each i (i=l,2)

Hx denotes the set of all points 0 such that the arc seg-

ment OE intersects then Hx and Hg are connected domains

and Hx+Hg=D-AB. But if D is simply connected, no arc seg-

ment lying in D can abutt on AB from different sides since

neither A nor B belongs to D. Hence, Hx and Hg are mutual-

ly exclusive.

Now suppose that J is a simple closed curve lying in

H]_• One of the complementary domains lofJ is a subset of

D. Therefore, I does not contain any point of AB. But I

nas limit points in Hx, namely, the points of J, and hence

contains points of Hx* Consequently, I is a subset of Hx,

and therefore, Hi is simply connected. Likewise, % is

simply connected.
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Let X denote a point of Hi. Since D is internally

simple, there exists a simple domain I£ containing X and

lying together with its boundary J£ in D. By Theorem 5

there exists a simple closed curve Jx separating X from

J
x

is a subset of Hi and contains X. Consequently,

Hi is internally simple and likewise, Hg is internally

simple. It is clear that AB is on the boundary of each

of them.

Theorem 46. If D is an internally simple, simply

connected domain, J is a simple closed curve lying in D,

and AB is an arc irreducible from J to the boundary of

D, then D~{J+AB) is the sum of two mutually exclusive, in-

ternally simple, simply connected domains one having J for

its boundary and the other having for its boundary, the

boundary of D plus J+AB.

This theorem may be established by methods similar

to those used in proving Theorem 44.

Theorem 47. If D is a pseudopslmple domain with re-

spect to a region R and a point P and Ah is an arc lying

in S-D except for tne points A and B which lie on the

boundary of D, then S-(D+AB) is the sum of two connected

domains whose boundaries have as their common part the

arc AB.

Proof. From Theorems 38, 40, 43, and 45 that S-(D+AB)
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is the sum of two connected domains whose boundaries con-

tain AB in their common part is easily seen. And it is

clear from Theorem 39 that this common part can not con-

tain a point of the boundary of D different from A and B.

Theorem 48. If under the hypothesis of Theorem 44,

AXB is an arc lying in C except for the points A and B

which lie on the boundary of C, then C-AXB is the sum of

two connected domains whose boundaries have as their com-

mon part the arc AXB.

This theorem may be proved by an argument similar to

that of the preceding theorem using Theorems 44 and 45 and

a theorem similar to Theorem 39 which may be established

in a manner similar to that used to prove Theorem 39.

Definition. Suppose tnat Xi, Xg, X3, and X 4 are

points of
, tne boundary of a pseudo-simple domain witn

respect to a region R and a point P. Tnen Xl+X3 is said

to ordinally separate Xg from X 4 on p if there exists a

simple closed curve J whose common part with p is Xl+X3

and which separates Xg from X4.

Theorem 49. If D is a pseudo-simple domain with re-

spect to a region R and a point P, is the boundary of D,

and Xg, X3, and X 4 are four distinct points of then

one pair of tiiem ordinally separates tne otner two on ft,

and if Xl+X3 ordinally separates Xg from X 4 on X2+X4
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ordinally separates from X 3 on f.% every simple closed

curve J containing a point of and a point of S-D, such

that J*S=X2+X3 separates Xg from X
4, but does not

ordinally separate X 3 from X 4 on 8.

Proof. Let XiAXg and XxßXg denote arcs lying except

for and Xg in D and S-D respectively. Suppose that J l *

does not separate X 3 from X 4. Now let AX3 and

BX3 denote arcs lying except for X 3 in S-D respectively,

such that AX3«J*=A and BX3*J*=B. With respect to X 4 as

the point at infinity the interior of one of the simple

closed curves formed by one pair of the three arcs

AXr»B, and AX3B contains the other arc segment. Hence, one

pair of the points Xg, X3, and X 4 ordinally separates

the other two on p.
Now suppose that ordinally separates Xg from X 4

on p. Then tnere exists by a construction similar to tnat

of tne above paragraph, two arcs XgAX4 and XgßX4 lying ex-

cept for Xg and X 4 in D and S-D respectively whose sum is

a simple closed curve separating from X3. Now suppose

that J is a simple closed curve containing a point of D

and a point of S-D whose common part with is Xl+X3.

Then J is the sum of two arcs and X^B B X3 lying ex-

cept for Xi and X 3 in D and S-D respectively. Let C de-

note the simple closed curve XgAX4+XgBX4. By a double
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application of Tneorem 28 C+X^A , X3+XiB , X3 contains a sim-

ple closed curve C* whose common part with XtA*X3 is con-

nected and whose common part with XtB B X3 is also connected

and which separates Xg from X4. It is clear now that J

separates Xg from X4.

Now suppose tnat ordinally separates X 3 from X4

on p. Tnen tnere would exist a simple closec curve J hav-

ing tne properties of J in tne preceding paragraph which

does not separate Xg from X 4. This is impossible if Xl+X3

ordinally separates Xg from X4.

Arguments of a similar nature snow tnat if order of p
is interputed by tne notion of ordinal separation, tnen

Tneorem 50. If p is tne boundary of a pseudo-simple

domain, tne points onp nave a cuclic order wnicn preserves

tne ordinary order on any open curve component of p.
Tneorem 51. Suppose that and Dg are pseudo-simple

domains with respect to regions R]_ and Rg and a point P

respectively, and Rp is a subset of and Xg, X3,

and X 4 and Yi, Yg, Y3, and Y 4 are tne end points of tiie

mutually exclusive arcs Tg, T3, and T 4 wliieh cross

Dg. Tnen if ordinally separates Xg from X 3 of pj, tne

boundary of tnen Yl+Y3 ordinally separates Yg from Y 4

on *32> the boundarY of DS> and conversely.

Proof. Let XIAX3 denote an arc lying except for the
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points X 1 and X 3 in S-D
1 and let YIBY3 denote an arc lying

except for tne points and Y 3 in Dg. Let H denote tne

simple closed curve Since XX+X3 ordi*»

nally separates Xg from X 4 on J separates Xg from X4.

But J does not intersect Tg or T 4 and hence, separates Yg

from Y4* Hence, Yl+Y3 ordinally separates Yg from Y 4 on

Likewise, the converse is true*



PART II

CONSEQUENCES OF AXIOMS 0-4, 5 1 AND 6

Axiom 6: S is completely separable.

About each edge point of space it is possible to con-

struct wnat will be called a radial web skeleton. Suppose

tnat P is an edge point. Then tnere exist a sequence of

regions Rg, R 3 ... closing down on P, a sequence of

domains Dg, D 3, ... sucn tnat for each nD
n

is a

pseudo-simple domain with respect to the region R
n and the

point P which contains R and a sequence of simple do-

mains Qr>, Q3, ... bounded by simple closed curves

Jl, Jg, J3, ... respectively, such that (1) for each n

Qn
contains Qn+1 ( g ) if Mis a closed and compact point

set not containing P, there exists an Integer n such that

Qn does not contain a point of M. For each n the boundary

of D
n

is the sum of a finite collection A
n of open curves,

L
ni, LnS> Ln3> •• > L

nqn
* For eacn pair of integers n and

q*qn ,
let C

nq
denote the component of D n-Dn+]_ which has L

nq

on its boundary. By the method of Theorem 32 there exists

a double sequence of arcs Tl>nq , Ts>nq ,
T3>nq) .. ,

T_I>nq ,

** * suon “that for each integer m, positive

or negative, T
m?nq

belongs to for some integer i, i>!m| e
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Thus i~»o© as lmi~* and tne double sequence has no se-

quential limit set. For each pair of integers n and q,

and dsn°is and

(m=1,2,3,... and -1,-2,-3,... respectively, and let

Znq denote a point of L
nq

between X
l>nq

and X„x ?nq
on Lnq®

Z
nq deternines two rays of Lnq . Let L^

q
denote tne one

containing X
l>nq , Xg>nq , X3 ?nq

... and L£q denote the one

containing X»x,nq> x-2,nq> x-3,nq> •••

Now if (1) certain arcs out of eacn sequence of tne

types Tl>nq , T g>nq , ... and T_I>nq , T_ g>nq , ... are

carded, (2) an arbitrary cyclic order on is cnosen and

from to pg ,
from to p3, etc., by tne arcs

of (1) using Theorem 51, and (3) tne subscript notation is

suitably cnanged in accordance witn enanges (1) and (2),

then (a) for eacn Integer n LJJg, .. .
L£o

n
>

Lnl>

xl,ni> x2,nl> ••• » ••• x-2,n2> x-l,n2> zn2> xl,n2»

x2,n2» •• > >
z

nqn’
xl,nqn *

X2,nqn > ••• > ••• x12,n1» x-l,nl

nave on jSn tne cyclic order indicated; (b) if m, n, and q

are Integers, n>o and CKqgqn ,
X

m?nq belongs to L^q
for eacn

positive integer m but to Ljjq for eacn negative integer m;

(c) if m, n, and q are integers, n>o and o<qgq n , for some

Integer r&q Y
m>nq

belongs to tne interval of L( n+ij r from

xra,(n+l)r to xm+l,(n+X)r if m>o and for some integer r*&q

"

X3Tne use of tne comma after m indicates tnat its range
is both positive and negative, but otnerwise only positive*
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Ym,nq t>elon6s to tne interval

°f L (n+l)r® from X
m> ( n+l )r 8 to

xm-l,(n+l)r* if m<o sucn tnat

if q=l, r f sl.

Let Ws=sp+£L
nq+ETm? nq

(n>o

and • Ws is a closed

subset of Rq and is called a radial web skeleton about P.

Ws will depend, of course, on tne above construction and

no attempt will be made to give it a definition indepen-

dent of its construction or to state any of its proper-

ties otner tnan tnose of tne following tneorems, wnicn in

most cases are evident.

Tneorem 52. If R is a region containing an edge point

P, R contains a radial web skeleton about P.

Proof. Let Rq of tne above construction be R.

Definition. Ws is said to connect Lnqto L|n+q)r if

Ti >nq
contains points of botn of tnem, and Ws is said to

connect L^q 8 to L^n+2jr i if contains points of botn

of tnem.

Tneorem 53. Suppose tnat Ws is a radial web skeleton

about an edge point P and Ws connects L^a
to L^ n+]jr and

Lnq » to Ljn+ijr* • Tnen if q»*q+l, r' =r+l and conversely.

Proof. For definiteness suppose tnat is connected
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to Tx >nx and tnat is connected to L^n+x)s

by T„x,n2* Since Ti )nl+T«i )ng+P does not separate space,

tnere exists an arc T from L( n+x)4 to &
n (tne boundary of

Dn ) lying except for its end points in Dn-Dn+x. Let T*tn

»X and T*L( n+i)2=Y. Since in tne cyclic order of (a) Y

is between Yx >nx and Y-1,n9
of Xis between xl,nl

and
np on jln (Tneorem 51). Hence, Xis on eitner tne

suoray of from Xx >nx or tne subray of LJJg. Suppose

tnat X belongs to Lni* A similar argument applies to tne

otner case. Since tne sequence of arcs Tx >nx,

nas no sequential limit set, tnere is some one of tnem,

say T
m>nx, having no point in common witn T sucn tnat Xm?nx

is between X and X_x
f
nP on n . But Ym>nx must belong to

and is not between Y and Y_x >np °n i~n+l» wnicn

contradicts Tneorem 51.

Since no use was made of tne fact tnat T*(Tx
? nl +

T-l,n£)“0 except for notational simplicity, a similar

argument will snow tnat tne converse nolds true, tnat is,

if r’=r+l, tnen q*»q+l.

Definition. Lnq and LH(q+l) (q£qn witn q+l interput-

ed as 1 wnen q=qn
) are said to be adjacent rays in

Tneorem 54. Suppose tnat Ws is a radial web skeleton

and tnat l£ and are adjacent rays in j^n of Ws; tnen

(1) tne two rays and LJJ+x wnicn are connected by Ws
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to IJJ and Ln respectively are adjacent rays in | n+i, (2)

if Ws connects either Ln or LJJ to a ray in Ws con-

nects LJ and L
n

to two adjacent rays in

This theorem is a consequence of the construction

and tne preceding theorem.

Theorem 55* If Ws is a radial web skeleton and piq 18

the boundary of C
nq , qgqn ,

then j^nq
# pn+i is the sum of a

finite collection Hnq of consecutive rays in pn+l between

two extreme rays LT and L* and all other rays in f*n+l be-

tween L" and L+ in the order of (a), and (2) L~ and L+
are

the only rays of H
nq

which are connected by Ws to a ray

in

Theorem 56. If Ws is a radial web skeleton and L+

and L~ are adjacent rays in of Ws neither of which

are connected by Ws to a ray in j&n , then there exists in-

tegers n and q such that of Cnq contains L
+

and L~,

and any point of L* may be Joined to any point of L" by

an arc lying except for its end points in C
nc?

.

Theorem 57* If Ws Is a radial web skeleton and

neither L|nq ) nor is connected to a ray of p n.i

by Ws, tnen there exists a sequence of mutually exclusive

14
arcs Ui(nq), U2(nq)> U3( nq), ... such tnat for eacJi

() notation is used to restrict n and q to

values for wnieii the hypothesis of Tneorem 5? is satisfied.
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m>o Um(nq) is an arc from X
m>nq

to X_
m)nq

lying except for

these two points in D n»i-D n (Do=S) such that the sequence

has no sequential limiting set.

Proof. Let C denote tne component of D
n„^-Dn whose

boundary contains L^nq)+Lj n £q+j), and let L denote C ♦

For eacn point X of C let Ix
denote a simple domain contain-

ing X and lying togetner witn its boundary J
x

in C. Since

space is completely separable, there exists a countable

sequence lp, 13, ••• of these covering C. For each

integer m>o let denote an arc irreducible from J
m, the

boundary of I
ra ,

to L lying except for one end point in C.

By Theorem 46 C-C(J
m

+M
m

) is the sum of two commected do-

mains, I
m

and Em ,
where the boundary of Em

consists of

J
m

+M
m together with the boundary of C. For each m let

en an arc from Xm>nq
to lying except

for these end points in E
m . By Theorem 48 U4( n sep-

arates G into two internally simple, simply connected do-

mains. One of these domains Vjj, has for its boundary UAfnq)

plus the ray of L(nq) from X
m>nq

and tne ray of L|'n^q+ij)

from X„m> (q+i), and contains no point of I
m

If the arcs

luii(nq)) are mutually exclusive, then they form the se-

quence Ug(nq) » u3(nq)» ••• *

“THwnen n*l C*fita~l is to be Interpreted as a point of

L (nq) *
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If tills is not the case, let and sup-

pose that Ul(nq) aU£(nq) is not vacuous. Let and Agß^,

denote intervals of Ui( nq) and respectively which

contain Ui( nq). Let J denote a simple closed curve

lying in C and separating from Xg^ nq+X_g?n (q+l)

such that J*A£>Bg >nq(of U£( nq)) is connected and J*BgX_g(n

gj+j|)(of is connected (Theorem 28 and 44 and Theo-

rem 13 of Chapter 111 of Foundations). Now since AgXg >nq

and BpX«2,n(q+l) are subsets of and AiXi >nq
and B]X_]^ n

(q+l) contain no points of V£, J contains an arc AB lying

in except for A and B irreducible from AgXg >nq
to

B
2

X-2,n(q+l) * Let u2(nq) asAß+AX2,nq( A2x2,nq^ +BX-2,n(q+l)

(of BgX_g >n(q+l)) and let Vg denote the component of V^-

Ug(nq) which has the ray of L^nq) from Xg >nq
and the ray

of from X_g >n (q+ij of its boundary. Vg is a sub-

set of This process may be continued and the re-

quired sequence of arcs constructed, for it is clear that

since Vl>Vg>V3> ••• and Vi*Vg*V3* ... =O, the sequence of

arcs has no sequential limit set. It is to be noted that

if K is any compact point set whatsoever, only a finite

number of the arcs of the sequence have points in common

with K.

Now on a radial web skeleton it is possible to con-

struct wnat will be called a radial web. Let Ws denote

a radial web skeleton about an edge point P. If X
m

is
**i

y ncj
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a point of a ray In » n of Ws wnicn is not connected to

a ray in by Ws, let N
m ( nq ) denote 2 T

ra r
+2 M

m r
+

\ ran J
1

P, where qi=q and for each r>n qr is such, so that L

contains Y
m> ( r_^)qr_p and M

m^r
denotes the interval of

Lrqr
between Ym,(r-l)qr-l and Xni

( rqr
* By of tlle 00n"

structlon of Ws no two of tnese sets (of tne type M
m>rq

)

nave a point in common. N
m? ( nqj is an arc from X

m>n q
to

P. For each integer triplet m (positive or negative), n>o

and (Xq£qn ,
there exists a continuous reversible trans-

formation of the point set into the number set

1/n fe t > l/(n+l)* Let xj^nq
denote the point of T

m>nq

whose transform is the number t, o<t<l. Then, of course,

Let "t 3> ••• denote a countable set

of numbers everywhere dense on o<t<l and which contains

all the reciprocals in this range. For each pair of pos-

itive integers n and q, qgqn ,
for each t, such that 1/n

t >l/(n+l) and for some i, let L^q
denote an open

curve lying in Cnq
such that (1) L£

q
=L

nq
if t»l/n, (2)

L„ q
intersects Tm(nq in tne point x| >nq , and (3) if t and

t‘ are different numbers of the set tg, t
3, ... ,

L,J[q*Lnq=o. This sequence can be constructed by the use

of Theorem 13 and repeated applications of Theorem 45 con-

structing the curves one at a time in the order of assend-

ing subscripts of t^.
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For example, suppose tnat and tnat 5

is the smallest value of i larger than 1 such tnat

l/(n+l). Applying Tneorem 45 twice, Tl ?n q+T_^,nq) con-

tains a domain C
o>nq naving botn an<i on i^ B

boundary; and since an arc is accessible from both sides,

Co ,nq contains an arc segment from X^nq
to X^J

>nc|
.

C
o>

contalns a domain containing an arc segment T
O 5

from to X^f >nq,
etc., for tne points, ty, tlg , ... ,

wnicn satisfy tne condition, 1/n d >l/(n+l). Tnen this

oO

is repeated in eacn of tne components of Cnq-I T
m>nq

and

hi- <aC?

tne arcs added together in tne obvious fashion to give the

open curves of tne type L&q.

Now for each pair of integers n and q, n>o and qgqn ,

such tnat Lnq is not connected by Ws to a ray in pn„x, let

Ul(nq)> u2(nq)> u3(nq)> ••• denote a sequence of mutually

exclusive arcs sucn tnat for eacn m>o Um( nq) is an arc from

x
m,nq

to x-m,n(q+l) lying except for tnese two points in

D
n> (Do=S), and Ui( nq)» ••• iaas no

sequential limit set (Tneorem 57)* Let and let

complete)ZUm(nq) •
W is called a^radial web

about P, and Ws is said to be the skeleton of W. Here agair*

W dependends not only on tne above construction, but also

on the construction of Ws. Consequently, no attempt will

be made to give it a definition Independent of its con-
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structlon. Many of tne obvious

properties of W will not be

stated, and in tne statement of

tne few tneorems to follow con-

cerning radial webs, tne above

construction will be implicitly

assumed as a part of tne Hypo-

tnesis.

For two valuse t 1 and t ,f of t<>, tg, ... (t’kt*)

let|sJ(Jq) denote tne point set consisting of tne inter-

val of N
m> ( nq) between X^J nq

and Xm**nq togetner witn tne

two positive or negative rays of and from tnese

points depending upon wnetner m is positive or negative.

It is clear tnat separates space into two mut-

ually exclusive domains, sucn tnat the one of>

tnese two not containing P, is tne sum of an infinite num-

ber of simple domains and has sn,fnq) for its complete

boundary. For m>o let R&(£q) = Imjfnq) + I Cq+fl) *

Let Pf’nq) (t here is any number between 0 and l) denote

the collection of all domains RjjJ(nq) wjiere

will be hereafter refered to as an ideal point.
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Definition. If E Pf na > Is denoted by N/
nq \, tnen

*>o
' 4

N(nqj will be called a spur and EN( nq) will be called a

cluster at P or about P.

Notation: For each (nq) and each m>o let J
m ( nq)

denote tne simple closed curve Nm> (nq)+tfm(nq) +*L
m> ( n tq+J)

and Im(nq) denote tne complementary domain of J
m ( r,q) which

contains Jm+l(nq)-P*

Tneorem 58. For each (nq) the sequence

ilas for tts sequential limit set and li( nq)*

I2(nq) # l3(nq) #
•••

Tneorem 59. For each m W-W«EI
m ( nq) is a closed and

compact point set.

Tneorem 60* If Pfnq) 16 an ideal point and Mis any

closed and compact point set, tnere exists a number 6 and

an integer M, such tnat CXt'-t m>m, and belongs

to Pfnq)* then Rm(nq) contains no point of M.

Tneorem 61* If M is a compact point set and (*!£>
i

contains no point of M, tnen tnere exists an integer m,

sucn tnat if m*>m, tnen tne arc of J
m i( nq) wnicn is ir-

reducible from tne positive naif of pm*(nq) to tne ne£~

ative naif of contains no point of M and is a

subset of Dn-l*
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Now by the use of these radial webs enough ideal points

will be added to the space S to make the new space S* sat-

isfy the axioms that S satisfies but which contains no edge

points. Since space is completely separable, let P2 ,

P3, ... denote the set of all edge points of Si. For each

integer j let R2 j , ..., D3 j, ...
and

Wi, W
2, W 3, ... denote sequences of point sets such that

for each n and j (1) is a region of G( of Axiom I

and the sequence closes down on P, (2) D
n j is a pseud-

do-simple domain with respect to R
n j and Pj containing

R (n+l)j •
< S > "j 18 a radial web about Pj whose skeleton

lies in R^^, and (4) if j *<j and R^j» contains a point of

then for some m and n (a) »is a subset of R-5^
and (b) contains no point of W^.

Since space is completely separable, there exists a

countable collection G of simple domains such that if P is

a simple point and R is a region containing P, some element

of G contains P and lies together with its boundary in R.

For each integer i let denote the collection of all the

domains D such that either (l) D is a simple domain of G

which is a subset of a region of of Axiom X, or (3) for

some pair of numbers n and j 9 (n+j*i), Dis the pseudo-

simple domain D
n j, or (3) for some triplet of integers m,

n, and q and some pair of numbers t* and t w
,

n£i and

o<t Wj for some j.



69

Definition: If for some i, Dis a domain of and

for some j, P| nq) 1* an ideal point defined from then

Dis said to inclose p|nq) if some domain of p| j to-

gether with its boundary is a subset of D.

Definition: Let S 1 be a space in which point is to be

interpreted as meaning either a point of S or one of the

ideal points defined by Wj for some j; and in which region

is to be interpaebed as meaning a point set D* consisting of

the points of some domain D of for some i, together with

the ideal points which D incloses. A point of S* which is

also a point of S will be called an "ordinary" point. Re-

gions in S* will be refered to as G*-regions.

Theorem 62. In S point and limit point are unchanged

by the above definition of point and region for S f
.

Theorem 63. Every poiht of S* is a limit point of

Theorem 64. If R' is a G'-region, then O'- G'*S-o'*S
.

Definition: For each i let denote the collection

of all regions g* of S’ such that is an element of

g* is said to be defined by D or obtained from D.

T heorem 65. If J is a simple closed curve of "ordi-

nary" points, then S*-J is the sum of two mutually exclu-

sive connected domains each having J for its boundary.

Proof: S-P is the Siam of two mutually exclusive point

sets H and K each having J on its boundary. Let

and K r»lC-Tr*7. Suppose that H 1 has a point A in common with

K* • A is an "ideal” point ?|nq)* Since J is compact, there
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exists a region containing P which was obtained from a

domain R
a(nq) Buch that ®m(nq)' S contalns no Polnt

But contains points of both H and K. Hence,

Im||nq)+ Pm’.fnq) 18 a subeet of H < or K) 811,1 I-m!(nrq+?)
+ is a K (or H )* By THeorem 57 there

exists a sequence of mutually exclusive arcs

lying in S irreducible from to P^( n j-q+ jj) “d hav“

ing no sequential limiting set in S. This is a contradiction,

since each of these arcs must intersect J. Hence H* and K*

are mutually exclusive connected domains each having J for

its complete boundary.

Theorem 66. For each i is a countable collection

of regions covering S 1 and containing

Theorem 67. If P( nq) is an ideal point defined by the

web Wj, there exists an integer k such that no region of

contains ?fnq) excePt those regions of G£ defined from

domains belonging to *( nq )*

Proof. There exists an integer k 0 such that if Ris

a region of which contains R is a subset of D
n j.

Now if g* is a region of G£
q

such that g**S is a simple do-

main in S and g 1 contains P( nq)> then g**B contains Pj and

hence, is a subset of a region Rof GrjCo
which contains

Therefore, g**S is a subset of and contains some domain

of This is impossible for since Pj is an edge point,

gi#3 does not contain Pj but does contain points of different
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components of D
n j-Pj, namely, points of the positive and

negative halves of the boundary of some domain of p|n^j.
So if g 1 is a region of which was obtained from a

simple domain of or from a pseudo-simple domain of W.,
+

**

g* does not contain Pj j.
Now by (4) if j*>j no region defined from either

of the pseudo-simple domain type or the type con-

DHnq)
tains P( nq). Now K » P,, + + ... + Pis a closed

and compact point set and by Theorem 58 there exists an

integer m such that *
m ( nq)+ coirba*ns no point

of K. Further, for each integer i*<j 9 there exists an ir>-

teger k , such that no region of j 1 which contains P^
contains any point of *

ffi ( nq) + J
m ( nq)

of and there ex*

ists another integer such that +

of Wjt contains no point of I
m ( nq) + Jm(nq) °* Now

let k denote the largest of the integers 1
~

k
Q , kg,

... , k
j-l> > ••• > ljJi# Then if g* is a region

of G£ but not a region of the type R*J*"v defined by W.,

then g 1 does not contain P(nq), and it is evident from the

t »t®
construction that if a region of the

j type defined

by contains ?(nq)> it belongs to
nq) since no two re-

gions of this type containing points of different spurs of

the same cluster have a point in common. Hence, every re-

gion G£ which contains ?| j was defined from some domain

Of
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Theorem 68. If A and B are two distinct points of S»,

there exists an integer k such that if g* is a region of G£
containing A, g* does not contain B.

Proof: Case I. Suppose both A and B are "ordinary"

points. Then there exists an integer k* such that if R is

a region of which contains A, R does not contain B.

Now if g* is a region of which contains A and g**B is a

subset of a region R of then g**S does not contain B

and hence, g 1 does not contain B. Now the only regions of

G£| which are not defined from domains which are possibly

not subsets of regions of G£ f
are those defined from domains

of the type of Wj where t"« l/k* and j<k*. By an ar-

gument similar to that of the last paragraph of the preced-

ing theorem there exists an integer k" such that none of

these regions contain A. Hence, if k is the larger of the

two integers k* and k", no region of G£ which contains A

contains B.

Case 11. Suppose that B is an "ideal” point said that

A is an "ordinary" point. Then A is a compact point set

and by Theorem 60 there exists a G l—region. R 1 containing B

such that R ,# S does not contain A. But S-R**S is a domain

of S containing A and there exists a number k 1 such that

if R is a region of containing A, then R is a subset

of S-R**S. Hence, by the argument of Case I there exists

an integer k such that if g* is a region of G£, g* does
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not contain B.

Case 111. Suppose that Ais an "ideal" point and that

B is an "ordinary" point. Interchange the A and B of Case

11.

Case IV. Suppose that both A and B are "ideal" points.

By Theorem 67 there exists a number k such that every re-

gion of which contains B was defined from an element of

B. Hence, if A and B belong to different spurs, no region

of G£ which contains A also contains B. Further, if A *

B “ then although A and B

both belong to the same spur no region of G£ which contains

A contains B.

Theorem 68. S* satisfies Axiom I.

Proof: It is clear that parts (l) and (2) are satis-

fied (Theorem 66), and slight changes in the above argument

will show that part (3) is also satisfied. Furthermore,

part (4) of Axiom I is satisfied. For suppose that Mg,

Mj, ... is a sequence of closed point sets such that for

each i contains and is a subset of a region g| of Gr|.
Case I. Suppose that for infinitely many values i s ,

ig, ... of i, is eithei a pseudo-simple domain of S

used in the definition of or is a domain of the type

defined by w 3i "here and W
f
if i^i*.

In either case gj.S is a subset of the pseudo-simple domain

of S. Hence, and therefore, con^a^n
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points of and by (4) contains Rij i4^* s
*

But since

S satisfies part (4) of Axiom I, S contains a point P which

is common to Rij1 , Rijg, Rlj3> ••• •
Therefore P belongs to

the sequential limit set of g{ 1# ••• and Mi> M#>,

M3, ... . Hence, since for each i is closed and contains

fe? -

M l+l , P is common to Mg, M3, ... •

Case 11. Suppose that for infinitely many values i^,

±2 > of i, there exists a web Wj such that for each

i is either a pseudo-simple domain of S used in the

definition of Wj or is a domain of the type defined

by Wj. If infinitely many of the regions g^? , gi? , ...

were defined from pseudo-simple domains of S, then it is

that Pj must belong to for each i. If this is not the

case, we shall assume for simplicity that for each i

is for some value of the superscripts and subscripts.

But since no two regions defined from domains of the type
i. ti»n

wkich contain points of different spurs of the same

cluster have a point in common, (nq) does not vary with i.

As i-*°°, m-*ao said ?t ,-t ,,)-»0. Now since for each i

contains points of there exists a number t, o<t<l,

such that as i-» , t'-»t and t*M*t. Hence ?(nq) is common

to , Mg, M 3, .•. .

Case 111. When neither Case I or II occurs, we may

assume for simplicity that for each i gj[*S is a simple do-

main of S. Then for each i gf*S is a subset of a region
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Rj of Gj. For each i, (g|»B)*(g|»S)* ... ‘(gpß) «Kj is

a point set closed with respect to S such that contains

K i+! and Ki is a subset of R^. Since S satisfies part (4)

of Axiom I, there is a point P of S which for each i be-

longs to Hence, P belongs to the sequential limit set

of M*>, Mg, ... and therefore, for each i P belongs to M^.

Theorem 70. If J is a simple closed curve of "ordinary"

points, I is one of its complementary domains, the points

A and B separate the points C and D on J and AXB is an arc

of "ordinary" points such that AXB is a subset of I, then

I-AXB is the sum of two simple domains and Ig, such that

the boundary of is the simple closed curve AXB+ACB(of J)

and the boundary of Ig is the simple closed curve AXB+ADB

(of J).

Since the theorem holds for S it can be shown to hold

for S* with the help of Theorem 65.

Theorem 71. Theorem 70 remains true if the arc AXB

contains only one "ideal" point.

Proof: Suppose that Xis the "ideal* 1 of AXB. Let Wj
denote the web used in the definition of the domains of X,

and let denote the spur of "ideal" points which con-

tains X.

Case I* Suppose that there exists a monotonic se-

quence R|, R£, ... of defined from domains

El, H3, ... belonging to X such that for each m both
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Ai and BX the same half of the boundary 0m
of in S. Now

for each m let AX
n
B denote an arc of "ordinary" points com-

posed of the arcs of AX and BB
m

of BX plus A
m

X
m

ß
m

of

Pm such that has only the two points and B
m

in

common with AXB. Now the sequential limiting set of

A 2 X282» A 3
••• lB x * So there exists integers n2 ,

n3> ... such that for each m (l) and BBmm+l contain

and BB
mn respectively, (2) - Ijj+Ejj with re-

spect to X as uu (Theorem 70), and (3) contains Ijg,,.
<3O oO

Let I
x

* 2 Ixm and E
x

* Then I
x

and are the

domains and Ip of the conclusion of the theorem.

Case 11. Suppose that there exists a monotonic se-

quence R£,

Eg, Eg, «•« belonging to X such that for each m AX and

BX intersect different halves of the boundary of in S.

The argument here is as that of Case I with a subset

of + J
m t(nq)(°f for 80me m,>m > instead of from

alone. Let the component of E( nq)-X which does not have

as a limit point be denoted by M. Then the sequential

limit set of ‘^3^'3R 3, ••• Let »

and E_ « XI Then I
T

and E_ are the domains

of the conclusion of the theorem.

Theorem 72. Theorem 70 remains true if the arc AXB

contains only a finite number of "ideal” points.

Proof: The method of proof will he that of mathemat-
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leal induction. Theorem 71 shows that this theorem holds

when the number of "ideal” points in AXB is only one. We

shall suppose that the theorem holds for j-1 or less points

and show that it holds for j points. Suppose that AXB*

(S»-S) = y 2 +Y3 + + Yj. Let N( nq ) denote a spur

containing one of these "ideal” points and let denote

that one of them on N( nq ) which is fartherest on N( nq )
from its end point. Now apply the argument of the preced-

ing theorem where X is now and the arcs contains

j-1 or less points for which Theorem 72 holds by supposition.

Theorem 73. Theorem 70 remains true regardless of the

composition of the arc ACB.

Proof: For each integer i let denote a finite col-

lection of G’-regions of_Gi covering AXB such that (l) if

g 1 is an element of g* does not contain C+D, (2) only-

one element of Kj contains A and only one element of

contains B and all other elements of are together with

their boundaries subsets of I, (3) each element of 1®

together with its boundary a subset of some element of

There exists a sequence of mutually exclusive arcs

AjXjßj, ... such that for each integer i (l)

is a subset of the sum of the boundaries of the elements of

K
l , (2) AjXjßj*J »At

* Bt , (3) Lim At =A and Lim B^«B, (4)

I-AXB contains (5) contains AlXl Bi+ AXB

if i’>i, and (6) Lim AXB. Now for each i, let
T&U
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T A f 'f*
with respect to Xas oj. Then Ix = x

*i

and * tl E are the two domains and I#> of the

theorem.

Theorem 74. If J is a simple closed curve containing

an arc T of "ordinary" points, then S*-J is the sum of two

mutually exclusive connected domains each having J for its

boundary.

Proof: T contains an "ordinary” simple point X. There

exists a simple domain containing X whose boundary 0 is com-

posed of "ordinary” points and which contains no point of

J-T. C contains an arc AYB having only its ends in common

with J such that AXB of J is a subset of T. The simple

closed curve C* =AXB+AYB is composed of "ordinary" points

and if I* denotes the complementary domain of C 1 that con-

tains J-AXB«AZB, I , -Az3k»=l+l^, where the boundary of I is J

and the boundary of is AYB+AZB. But is a

simple domain and contains no point of I. Thus S f-J=l+E.

Theorem 75. If Jis a simple closed curve, S*-J is

the sum of two mutually exclusive connected domains each

having J for its boundary.

Proof: J contains uncountably many "ordinary” points

and hence J contains a simple ”ordinary” point X and anoth-

er point Y. Let R|, R£, R£, ... denote a sequence of Cr 1 -

regions closing down on X such that for each i the boundary

of R| is a simple closed curve of "ordinary” points.
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There exists an infinite sequence of integers i*>,

•..ij, ... such that for each k (l) does not contain

Y, (2) contains an arc having the following

properties: (a) A
iXißi *J*Ai +B^, (b) Lim and (c)

Ci« AiXjßj+ AjXjß£(of J) is a simple closed curve one of

whose complementary domains E contains X and the other

Ixl contains
lx(i_!). Then I*= 2 Ixi and

E
x

= ,11 E
x ji-X are two mutually exclusive connected domains

each having J for its boundary.

Theorem 76. S* satisfies Axiom IV.

This is a restatement of Theorem 75.

Theorem 77. S is homeomorphic with a subset of a

completely separable space S 1 which satisfies Axioms 0,1,

2,3, 4, and Axiom 5*
16

This theorem may be established with the help of

Theorems 69 and 75. Axioms 2,3, and 5* follow from the

fact that every region is a simple domain.

Theorem 78. Sis homeomorphic with a subset of a

plane or a sphere.

Proof: J.H. Robertsl7 has shown that S» of Theorem

77 is horaeomorphic with a subset of a plane or a sphere.

s*: If P is a point of a region R, there

exists a simple domain containing P which lies together with

its boundary in R.
ITRoberts, J.H., Concerning compact continua in cer-

tain spaces of R.L. Moore,” Bull. Amer. Math. Soc., Vol. 39,
1933, pp. 615-621.
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Some of the preceding results will now be sumarized

for metric spaces.

Theorem 79. A locally connected, complete metric space

in which the Jordon Curve Theorem*8 is satisfied non-vacuo-

usly and in which Axiom 5| holds true, is a cyclicly con-

nected subset of a plane (if not compact) or a sphere (if

compact).

Proof: A locally connected complete metric space

satisfies Axioms 0,1, and 2; and such a space in which

Axiom 52* holds true satisfies Axioms 4 and 3 if the Jordon

Curve Theorem holds true non-vacuously (Theorem 2). Thus

the above theorem follows from Theorem 78.

Definition: A space is said to be locally peripherally

connected if it satisfies the following axiom: If P is a

point of a region R, there exists in R a domain D contain-

ing P such that the boundary of D ic connected.

Theorem 80. Any regular space which is locally per-

ipherally connected satisfies Aciora s|.
Theorem 81. A locally connected, locally peripherally

connected, complete metric space in which the Jordon Curve

Theorem is non-vacuously satisfied is a cyclicly connected

subset of a sphere.

4.
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