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Abstract. Beatwave excitation of plasma waves is analyzed in the regime where relativistic correc-
tions to the plasma frequency are important. It is shown that a long beatwave pulse can excite strong
plasma waves in its wake even when the beatwave frequency is detuned from the electron plasma
frequency. The wake is caused by the dynamic bi-stability of the nonlinear plasma wave if the beat-
wave amplitude exceeds the analytically calculated threshold. Two possible beatwave drivers are
considered: intensity-modulated laser pulse and density-modulated electron beam. It is found that,
due to the relativistic bi-stability, so portions of the driver may experience photon blue-shifting
(for the laser driver) or electron acceleration (for the beam driver). In the latter case a combined
accelerator/injector is envisioned.

INTRODUCTION

Although plasma beatwave accelerator (PBWA) is one of the original advanced acceler-
ation concepts utilizing plasma [1], it continues attracting significant experimental and
theoretical attention [2, 3][4] as a basic nonlinear plasma phenomenon, and as a vi-
able approach to plasma-based particle acceleration. Beatwave excitation of the electron
plasma waves is realized when the driver intensity (laser or particle beam) is modu-
lated at the frequencyωB close to that of the plasma wave. In the linear regime elec-
tron plasma wave behaves as a linear oscillator which is most effectively excited when
ωB = ωp where,ωp =

√
4πe2n0/m is the electron plasma frequency,−e andm are the

electron charge and mass, andn0 is the plasma density. Plasma wave can be driven off-
resonance withωB 6= ωp, but higher beatwave intensity is required [3]. A finite-duration
beatwave can excite a plasma wave in its wake only if its durationτL < π/|∆ω |, where
∆ω ≡ ωB−ωp is the frequency detuning.

Plasma wave becomes nonlinear when the plasma velocity becomes relativistic. The
plasma wave frequency becomes dependent on its amplitude through the relativis-
tic mass increased:ωp → ωp/γ , where γ is the relativistic factor. Rosenbluth and
Liu [5] demonstrated that this dependency results in the relativistic saturation of the
plasma wave amplitude. A number of authors have proposed ways of circumventing the
Rosenbluth-Liu limit by detuning [6, 7] or chirping [8] the beatwave frequency of long
drivers.

The focus of this paper is the plasma response to a finite-duration detuned beatwave
pulse in the regime where relativistic corrections are important. Specifically, it is shown
that a strong plasma wave can be excited in the wake of a relatively long beatwave pulse
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of durationtL À 1/∆ω due to the nonlinear phenomenon of dynamic relativistic bi-
stability (RB) [9]. Another manifestation of the RB is that, at a certain critical strength
of the beatwave driver, a weak driven plasma wave becomes unstable, and a much
higher amplitude wave is excited. Linear estimates of the plasma wave amplitude fail
when the beatwave amplitude exceeds this detuning-dependent critical strength. As the
time-dependent beatwave strength increases and exceeds the critical value, significant
pulsations of the plasma wave amplitude occur. These pulsations indicate that significant
energy exchange takes place between the plasma wave and the driver. This effect can
be exploited when the beatwave is a microbunched electron beam [10] which can be
produced, for example, by an inverse free-electron laser. Plasma wave is then driven by
the bunches in the head of the beam, while those in the back deplete plasma the plasma
wave, thereby gaining energy.

Relativistic bi-stability was originally described [9] for a magnetized electron sub-
jected to cyclotron heating. Applications of RB to electron cyclotron heating of fusion
plasmas [11, 12] have been later suggested. But the RB of the beatwave-driven plasma
wave has never been explored, either as a basic phenomenon or in the context of plasma-
based accelerators.

DERIVATION OF THE BASIC EQUATIONS AND STEADY STATE
ANALYSIS

The one-dimensional relativistic dynamics of the cold plasma driven by a beatwave can
be described using the Lagrangian displacement of the plasma element originally located
at z0: z(t) = z0 + ζ (t,z0). It is assumed that the beatwave generated by either a pair of
frequency-detuned laser beams, or a modulated electron beam, is moving with the speed
close to the speed of lightc, and, therefore, all beatwave quantities are functions of
the co-moving coordinateτ ′ = ωp(t − z/c) ≡ τ −ωpζ/c. Introducing the normalized
displacement̃ζ = ωpζ/c and longitudinal relativistic momentum̃p = γdζ̃/dτ, where
γ =

√
1−~v2/c2, equations of motion take on the form

dζ̃
dτ

=
p̃√

1+ p̃2
,

dp̃
dτ

=−ζ̃ +a(τ ′)cosωτ ′. (1)

Assuming that|∆ω| ¿ ωp (near-resonance excitation), transverse momentum of the
plasma has been neglected and the relativisticγ-factor simplified toγ =

√
1+ p̃2.

The first term in the force equation is the restoring force of the ions, and the sec-
ond term signifies the beatwave with the frequencyωB ≡ ωωp. The nonlinear inζ
modification of the beatwave in the rhs of Eqs. (1) is neglected in what follows. For
a pair of linearly polarized laser pulses with electric field amplitudesE1 and E2 and
the corresponding frequenciesω1 andω2 = ω1−ωB the normalized beatwave ampli-
tudea = (e/mc)2E1E2/2ω1ω2 [5]. For a driving electron bunch with the density profile
nb = nb0 + δnbsinωτ it can be shown thata = δnb/n0. Although arbitrary profiles of
a(τ) are allowed, it is assumed that|da/dτ|¿ |a|. The total energy density of the plasma
waveUp/n0mc2 =

√
1+ p̃2+ ζ̃ 2/2 is changed via the interaction with the beatwave. The
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effect of the plasma wave on the beatwave is neglected for the moment and addressed in
Section .

Although Eqs. (1) can be solved numerically at this point, further simplification is
made by assuming̃p= ucos(ωτ +φ), whereu andφ are slowly varying functions ofτ.
In the weakly relativistic approximatioñp2¿ 1 obtain:

du
dτ

=
a
2

cosφ (2)

u
dφ
dτ

=−a
2

sinφ − u
2ω

(ω2−1+3u2/8). (3)

We can now find the equilibrium points of Eq. (2),du/dτ = 0 (steady amplitude),
and Eq. (3),dφ/dτ = 0 (phase-locking to the beatwave). Their number (one or three)
depends on the beatwave frequencyω and the amplitudea. For any ω there is a
stable equilibrium point:φ0 = −π/2 and u0 > 0 found as the root of the third-order
polynomial equationP(u0) = u0(ω2−1+3/8u2

0) = ωa. For the most interestingω < 1
regime additional solutionsφ0 = π/2 andu0 > 0, whereu0 is the positive root ofP
(u0) = −ωa, may be found, depending on the beatwave amplitude. Specifically, there
are no additional positive roots fora> acrit , whereacrit = 4

√
2(1−ω2)3/2/9ω, and two

positive rootsu1,2 for a < acrit (one of them unstable). Stable equilibrium amplitudes
u0 with φ0 = π/2 (Branch 1) andφ0 = −π/2 (Branch 3), as well as the unstable one
(Branch 2) are plotted in Fig. 1 as a function of the beatwave strengtha for ω = 0.95
(acrit = 0.02).

Equilibrium bi-stability corresponding to Branches 1 and 3 is universal for any nonlin-
ear pendulum [13, 9], including a weakly damped one. Equilibrium solutions are mean-
ingful only if the plasma wave is phase-locked to the beatwave:dφ/dτ ≈ 0. As shown
below, this is not the case when the peak beatwave amplitude exceedsacrit . Nonetheless,
adynamicRB described below occurs even in the absence of phase-locking.

Remarkably, there are two solutions fora = 0 – the trivial oneu1 = 0, and the
nontrivial u2 = 2

√
2(1−ω2)/3 corresponding to the plasma wave left in the wake of a

detuned beatwave pulse. In the non-impulsive regime of long pulses withτ > 1/|1−ω2|
the only way of exciting a non-vanishing wake is through the relativistic bi-stability
effect described in this Letter.

Equilibrium solutions described above and plotted in Fig. 1 are useful guidelines in
determining the evolution of(u,φ) in response to a slowly-changing beatwave amplitude
a(τ). For example, the dot-dashed line in Fig. 1 shows steady-state plasma response
for zero detuning(ω = 1). In that case plasma wave amplitude responds to a smooth
Gaussian beatwave pulse by increasing first, reaching the maximum, and then decreasing
to zero after the pulse. Plasma wave remains phase-locked to the beatwave, and therefore
the equilibrium solution is meaningful. Because there is only one equilibrium solution
for ω ≥ 1, no relativistic bi-stability is expected. The situation is very different for
ω < 1. The solid-line branches1 and2 correspond to the stable steady-state response for
ω = 0.95, the dashed-line branch2 is unstable. Nonlinear bi-stability fora< acrit = 0.02
is apparent: there are two stable equilibria available to the system. Which one of the two
is physically accessible depends on the total time history of the system.
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FIGURE 1. Steady-state solutions of a driven plasma wave as a function of the beatwave amplitudea.
Solid lines1, 2: stable equilibria forω = 0.95; dashed line: unstable equilibrium forω = 0.95; dot-dashed
line: resonant excitation withω = 1.

Wake excitation by a Gaussian beatwave pulse

Consider plasma response to a Gaussian beatwave pulsea(τ) = a0exp(−τ2/τ2
L),

whereτL À 1/|1−ω| is the normalized pulse duration. Although the presented above
steady-state analysis is strictly applicable only fora(τ) = const, we’ll find that the equi-
librium solutions are followed when the beatwave amplitude is small, and its rate of
change slow. Fora0 < acrit the plasma response is as follows: amplitudeu adiabati-
cally follows a(τ) by staying on the Branch1 and following the equilibrium trajectory
schematically shown by arrows in Fig. 1. The adiabaticity condition isΩBτL À 1, where
ΩB is the bounce frequency around the equilibrium pointu0 such thatP(u0) =−ωa(τ).
Linearizing Eqs. (2,3) aroundφ = π/2 and u = u0 yields Ω2

B = a(u2
crit − u2

0)/4ωu0,
whereucrit = 2

√
2(1−ω2)/3 is the critical plasma wave amplitude corresponding to

the merging point between Branches1 and2 in Fig. 1. Fora0 < acrit plasma oscillation
is indeed phase-locked to the beatwave atφ0≈ π/2 during the ramp-up and most of the
ramp-down of the laser pulse (although phase-locking is lost when the pulse amplitude
becomes very small on the down-ramp). As the result, plasma wave amplitude returns
to a very small value in the wake of the beatwave, as shown by a dot-dashed line in
Fig. 2. The longer is the beatwave pulse durationτL, the smaller is the wake because its
non-vanishing amplitude is due to the adiabaticity violation for finiteτL.

For example, for example, fora = 0.01, u0 = 0.1, andω = 0.95 obtainΩB ≈ 0.04,
and the adiabaticity requirement isτL > 25.

Situation changes fora0 > acrit : asa(τ) approachesacrit , the adiabatic condition is
violated (noted in the context of electron cyclotron heating [11, 12]), and phase-locking
at φ0 = π/2 is no longer possible. Thus, the transfer to Branch3 schematically shown
by a vertical arrow in Fig. 1 becomes feasible, and the plasma wave amplitude can
dramatically increase. In the presence of a finite plasma wave damping this indeed
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FIGURE 2. Excitation of a plasma wave by a Gaussian beatwave pulse (dotted line),a(τ) =
a0exp[−τ2/τ2

L ], τL = 150. Solid line:ω = 0.95, above-threshold excitation witha0 = 0.023> acrit = 0.02;
dashed line: resonant excitation withω = 1 anda0 = 0.023; dot-dashed line:ω = 0.95, below-threshold
excitation witha0 = 0.018< acrit .

happens: the subsequent decrease of the beatwave amplitude results in phase-locking
at φ0 = −π/2, with u following along the Branch3. Without damping, there is no
mechanism for the plasma wave to reach the equilibrium amplitude given by the upper
Branch3. As shown below, a conservation law prohibits the jump between Branches1
and3.

Nevertheless, even without damping, a significant plasma wave is left behind the
finite-duration beatwave pulse (Fig. 2, solid line). The previously unaccessible finite-
amplitude solution has been reached due to the effect of the dynamic RB which is best
understood through the conservation of the effective Hamiltonian of the driven plasma
wave. The effective Hamiltonian

H =
1
2

ausinφ +
(ω2−1)u2

4ω
+

3u4

64ω
(4)

can be used to express Eqs. (2,3) in the form ofu̇ = (1/u)dH/dφ , φ̇ = −(1/u)dH/du.
For a slowly changing beatwave amplitudea(τ) the Hamiltonian is almost conserved:
dH/dτ = 0.5usinφda/dτ ≈ 0. This constitutes the conservation law preventing the
jump between Branches1and3. For the initially quiescent plasmaa= 0andu= 0before
the arrival of the beatwave. Therefore,H ≈ 0 after its passage, as confirmed by numerical
simulations of various pulse durations and amplitudes. Remarkably, in addition to the
trivial quiescent plasma solutionu = 0, there is a secondu∞ = 4

√
(1−ω2)/3 solution

satisfyingH(u∞) = 0. Thus, a plasma wave withH = 0 is dynamically bi-stable: after
the passage of the beatwave it can be either quiescent, or have the finite amplitudeu∞. It
is conjectured that, by using a beatwave pulse witha0 > acrit , the latter solution can be
accessed, thereby leaving a wake of a substantial plasma wave with amplitudeu∞.
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This conjecture is verified by numerically integrating Eqs. (2,3) for two different
detunings (resonant, withω = 1, and non-resonant, withω = 0.95) and two beatwave
amplitudes (sub-threshold, witha0 = 0.018, and above-threshold, witha0 = 0.023). In
all cases the Gaussian pulse duration was chosenτL = 150. In physical units, for the
plasma density ofn0 = 1019cm−3 the corresponding pulse duration istL ≡ τL/ωp≈ 750
fs. Simulation results are shown in Fig. 2, where the solid line corresponds to the most
interesting of the three cases:ω = 0.95 anda0 = 0.023. The plasma wave amplitude of
u≈ 0.75in the wake of the laser pulse is in a good agreement withu∞ = 0.72. This wake
owes its existence to the dynamic RB: upon interacting with the above-threshold laser
beatwave, plasma wave is transferred from the quiescent state ofu = 0 to the excited
state ofu = u∞. The sub-threshold excitation (dot-dashed line) with the same detuning
fails to transfer the plasma into the excited state, yielding a negligible wake that is an
order of magnitude smaller than in the above-threshold regime.

Linear theory also fails to describe the strong wake in this example because the de-
tuning and the pulse duration are chosen such that the linear predictionulin = a0/(1−
ω2)× exp[−τ2

L(ω−1)2/4] ≈ 0 is negligibly small. Resonant excitation (dashed line)
also yields a much smaller wave. Moreover, the resonantly and the sub-threshold ex-
cited plasma waves would have been even smaller had the adiabatic assumption been
fully satisfied. Indeed, it is numerically confirmed that the wake amplitudes for the res-
onant and the sub-threshold excitations rapidly decline for longer pulses, whereas the
amplitude of the non-resonant above-threshold excitation is insensitive to the beatwave
pulse lengthτL.

Driver Deceleration

So far the effect of the plasma wave on the driver has been neglected. Of course,
the energy of the plasma wave is supplied by the beatwave. Since the plasma wave
energy changes non-monotonically, different portions of the beatwave either lose or gain
energy. In the weakly relativistic case, the plasma energy densityUp ≈ n0mc2u2/2. For
concreteness, I concentrate on the above-threshold case plotted in Fig. 2 (solid line). The
leading portion of the beatwave (−∞ < τ < 64) contributes energy to the beatwave and
is, therefore, depleted. If the beatwave is produced by a laser pulse, this depletion can
be described in the language of photon deceleration, or red-shifting Wilks et al.. In the
context of the laser beatwave the red-shifting corresponds to the scattering of the photons
from the higher frequency into the Stokes component. Assuming equal amplitude lasers,
E1 = E2, the rate of the frequency shifting (per unit of the propagation length) can be
found as−dω/dz≈ (ω3

p/4cω1a)× d(u2)/dτ. Therefore, the laser pulse is red (blue)
shifted ifdu/dτ > 0 (du/dτ < 0).

If the beatwave is produced by a microbunched electron beam, the sign ofdu/dτ can
be related to the acceleration or deceleration gradient of the drive electron bunchEz
through

Ez(τ)
EWB

=
δnb

nb0

(
1

2a(τ)
du2

dτ

)
, (5)

823



whereEWB = mcωp/e is the non-relativistic wavebreaking electric field. Again, the
sign of du/dτ determines whether the driving bunch is accelerated or decelerated.
For a microbunched electron driver consisting of femtosecond bunches with duration
δ t ¿ 1/ωp [10] produced by an inverse free-electron laserδnb ∼ nb0. It is estimated
that in the plasma wave decay region of the driving bunch (64< τ < 112) the beam is
decelerated at a rate ofEz≈ 30 GeV/m forn0 = 1019cm−3. Therefore, the marriage of
the microbunched plasma wakefield accelerator and the dynamic relativistic bi-stability
concepts yields a new advanced acceleration technique which takes advantage of the
temporal drive beam structure to produce high energy femtosecond electron beams.
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