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Bayesians Can Learn from Old Data
William H. Jefferys

University of Texas at Austin, and University of Vermont

Abstract. In a widely-cited paper, Glymour (Theory and Evidence, Princeton, N. J.: Princeton
University Press, 1980, pp. 63-93) claims to show that Bayesians cannot learn from old data. His
argument contains an elementary error. I explain exactly where Glymour went wrong, and how the
problem should be handled correctly. When the problem is fixed, it is seen that Bayesians, just like
logicians, can indeed learn from old data.
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GENERAL OVERVIEW

Outline of the Paper. I first review some aspects of standard logic that are relevant to this
paper. I then discuss the relationship between standard logic and standard probability
theory, and in particular point out the fact that standard probability theory contains
standard logic in the particular sense that for any argument that reaches a conclusion
using standard logic, there exists a parallel argument (calculation) in standard probability
theory that reaches the same conclusion, and furthermore, that any valid argument by any
method (whether logical or Bayesian) must arrive at the same conclusion.

I then introduce a simple “toy example” that is nonetheless sophisticated enough
to reveal the problem with Glymour’s claim. The toy example is an extension of the
example that Glymour used in his paper. I describe Glymour’s argument [1], and use the
toy example to show that his reasoning leads to a contradiction with ordinary logic, and
therefore must be invalid. I then explain, again in terms of the toy example, exactly where
Glymour’s argument goes wrong, and how to correct it. I conclude with a summary of
what we have learned.

Standard Logic

Standard logic tells us how to combine propositions A,B,C, . . . with logical operations
such as ∧,∨,¬,→, . . . to obtain new and valid propositions. The propositional calculus
allows us to calculate, using definite rules, the truth value of any proposition that has
been constructed from other propositions using these logical operations, given the truth
values of the propositions from which they are constructed.

For example, given propositions A,B, we can calculate the truth value of the proposi-
tion C = A∧B as follows: C is true if both A and B are true, otherwise it is false.
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Likewise, the truth value of the proposition D = A→ B is true if A is false, otherwise
it is equal to the truth value of B. That is, if A is true, then B must be true. If A is not true,
then it doesn’t matter what the truth value of B is, A→ B is true.

An important feature of standard logic is that it is time-independent (Jaynes [2], p. 89).
That is, it describes relationships between propositions that are independent of when we
may learn the truth or falsity of the propositions themselves. For example, the truth-
values of the expressions ¬A, A∧B, A∨B, and A → B depend only on the truth-values
of A and B, and not upon when we happen to learn their truth-values.

Probability and Logic

Probability theory extends the basic notions of standard logic to a regime where the
degree of plausibility of propositions is no longer just “true” or “false”, but may be
intermediate between the two. That is, to any proposition we can assign a number in
the unit interval [0,1] that corresponds to our assessment of how likely it is that the
proposition is true, where 1 means that we are certain the proposition is true and 0
means that we are certain that it is false. The larger the degree of plausibility, the more
likely it is that we would regard the proposition as true.

A theorem of Cox [3, 4] proves that, up to an isomorphism, standard probability theory
is the unique extension of ordinary logic to this regime that satisfies certain obvious
requirements necessary for the theory to yield consistent results. Jaynes ([2], p. 19) lists
a set of three such requirements, which he calls desiderata:

1 If a conclusion can be reasoned out in more than one way, then every possible
way must lead to the same result. An important aspect of this desideratum is
that if a conclusion can be obtained using ordinary logic, then a valid calcu-
lation using probability theory must arrive at the same result. If a purported
Bayesian calculation arrives at a result different from one that we can derive
using standard logic, it must ipso facto be invalid. We will see below that Gly-
mour’s calculation fails this test.

2 The calculation takes into account all of the evidence relevant to the question.
It does not arbitrarily ignore some of the information, basing its conclusions
only on what remains. It is, as Jaynes says, completely nonideological. Gly-
mour’s calculation fails this test in a subtle way, muddling the issue by failing
use standard probability notation to indicate all the information that was taken
into account in a calculation. Indeed, this results in a basic confusion of mod-
els that turns out to be at the root of the problem with Glymour’s calculation.

3 Equivalent states of knowledge are always represented by equivalent plausi-
bility assignments. That is, if in two situations the state of knowledge is the
same, then (except for possible relabeling of the propositions), the calculation
must assign the same plausibilities to both. Glymour’s calculation fails this
test as well.

It turns out that these three desiderata, together with the assumption that degrees of
plausibility are represented by real numbers on the unit interval [0,1], are sufficient to
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derive standard probability theory as the unique embodiment of these sensible require-
ments of plausible reasoning.

In particular it turns out, as a consequence of Jaynes’ desideratum #1 and Cox’s
theorem, that standard probability theory contains standard logic as a subset. This means
that for every calculation that can be made using standard logic, there is a corresponding
calculation in standard probability theory that will arrive at the same result, and no valid
calculation in standard probability theory can yield a different result.

A Toy Example

We consider a situation where there are precisely two theories under consideration,
say T and T = ¬T , and only two observations of evidence are possible, that is E and
E = ¬E. We furthermore presume that T → E and T → E. This means that if theory
T is true, we must observe evidence E, and if theory T is true, then we must observe
evidence E.

For example, let T be the theory of general relativity, and T be pure Newtonian
mechanics. Let E be the (in this case old) evidence that the motion of Mercury’s
perihelion is anomalous (cannot be explained under Newtonian mechanics). I assume
that we can be certain whether we have observed anomalous perihelion motion or not.
Then we see immediately that in this toy example T → E and T → E.

It is important to recognize that these relationships are defined by the theory, indepen-
dently of any data that may have been observed and independently of when those data
may have been observed. The relationships are therefore time-independent. Newtonian
theory always predicts that anomalous perihelion motion will not be observed, and gen-
eral relativity always predicts that anomalous perihelion motion will be observed. This
is a consequence of the theories and mathematics.

If we observe evidence E, then standard logic says T → E, so ¬T →¬E. It follows
that E → T and E →¬T . Hence observing E rules out T and confirms T .

Note that this result follows from standard logic. Since standard logic is just a calculus
on the truth-values of the propositions, and does not depend on when we observe
evidence E, it follows that we can certainly learn from old evidence if we use only
logic. But, as pointed out above, Jaynes’ desideratum #1, together with Cox’s theorem,
says that the same result must be obtainable by a valid application of probability theory.
If a calculation using probability theory obtains a different result, it is certainly not a
valid calculation.

Translated into the language of probability theory, the result E → ¬T is equivalent
to P(¬T | E) = P(T | E) = 1 and P(T | E) = 0. Any purported Bayesian calculation
that does not arrive at this result must be invalid. Note also that when we translate
the initial assumptions of this toy example into standard probability notation we can
calculate the likelihood as P(E | T ) = 1 and P(E | T ) = 0 for use when we observe E, and
P(E | T ) = 0 and P(E | T ) = 1 for use when we observe E. Since all of these probability
assignments are simply translations of statements of ordinary logic into the language
of probability theory, they are time-independent, that is, their values are independent of
when we happen to observe the evidence.
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GLYMOUR’S ARGUMENT

Glymour argues [1] that the Bayesian cannot learn from old evidence E. This article
has generated a lively discussion, e.g., [5, 6, 7, 8, 9, 10, 11, 12]. The argument goes as
follows1: Since we have observed the old evidence E, Glymour claims that

P(E) = 1 ??? (1)

I put question marks here because I believe this equation to be wrong. Nonetheless,
if we grant Eq. (1), Glymour’s argument goes through easily. Since P(E) = 1, it follows
from standard probability theory that P(E | X) = 1 for all propositions X that are not
absurd (tautologically false). In particular, P(E | T ) = 1. Therefore, by Bayes’ theorem,

P(T | E) =
P(E | T )

P(E)
P(T ) = P(T )

and since the posterior probability is equal to the prior probability, we haven’t learned
anything.

Counterexample to Glymour’s Argument

We see immediately that Glymour’s calculation fails to satisfy Jaynes’ desideratum
#1, for we have proved that for our toy problem, knowledge of E together with standard
logic leads to the conclusion that T is true and T is false, regardless of what we may
have thought before we did the calculation. But Glymour’s calculation allows for no
such conclusion: If for example we had adopted P(T ) = 1/2, Glymour’s calculation
tells us that P(T | E) = 1/2, in blatant contradiction to the calculation from ordinary
logic. The equation P(T | E) = 1/2 says that E does not entail T , whereas logic says
that E does entail T . Since Cox’s theorem guarantees that any valid calculation using
probability theory must arrive at the same conclusion that we got using standard logic,
this fact by itself demonstrates that Glymour’s argument cannot be valid.

It is not hard to pinpoint the source of the problem, again using the toy example as
a guide. If P(E) = 1, then it follows that P(E | X) = 1 for any non-absurd proposition
X ; in particular, P(E | T ) = 1, or translated into the language of logic, T → E. That
is, according to Glymour’s reasoning, if we have observed E, we must conclude that
Newtonian physics predicts that we will observe anomalous motion of the perihelion of
Mercury. But this is absurd. Newtonian physics predicts unambiguously that we will not
observe anomalous perihelion motion for Mercury, that is, T → E. This is a property of
the theory, which doesn’t depend in any way on what observations may or may not have
been made.

The absurdity of this situation is compounded when we realize that Glymour’s reason-
ing transforms every theory X into Jaynes’ dreaded “Sure Thing®” theory [13], which
predicts the observed data E perfectly.

1 I have altered Glymour’s notation to conform to standard probability theory
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We have thus arrived at a contradiction. Glymour’s reasoning would require us to
conclude that T → E, but we know from physics that T →¬E, independent of time or
what we may have observed. Therefore, Glymour’s reasoning must be erroneous.

The problem arises from Glymour’s assertion that P(E) = 1. Without that, the rest of
his alleged proof fails.

Glymour’s Friend

Physicists are familiar with “Wigner’s Friend,” a thought experiment named for the
late physicist Eugene Wigner, that is designed to help us think about when and under
what circumstances the “collapse” of states in quantum mechanics takes place. In this
thought experiment, Wigner and his “friend” have different states of knowledge, until
Wigner’s friend informs Wigner of certain facts, so that they end up with the same
state of knowledge, and thus should come to the same conclusions. The details of the
physics aren’t important here, but the idea that people who start out with different states
of knowledge will arrive at the same conclusions, once they have the same state of
knowledge, is the key idea that I want to carry over to the present problem.

Let me introduce Glymour’s friend Tom. Tom is ignorant of E. Therefore, when
Glymour explains the toy problem to Tom, Tom can decide on priors and even calculate
in advance what he will think when he learns whether E is true or false, using the usual
Bayesian machinery. After he has done this, Tom can tell Glymour what his priors are.
Suppose the priors are the same as the ones that Glymour has already adopted, and that
P(T ) 6= 1. Then both are starting with the same priors.

Now Glymour informs Tom that E is true. Tom, upon learning this “new” data,
recalls his previous calculations, and concludes that P(T | E) = 1. Glymour performs
the calculation that he advocates (since for him the data are “old”) and arrives at
P(T | E) = P(T ) 6= 1.

This violates Jaynes’ desideratum #3, since at this point both parties have the same
state of knowledge, yet they have assigned different plausibilities to T | E. Since the
axioms of probability theory, in virtue of Cox’s theorem, cannot violate Jaynes’ three
desiderata when used validly, we have again arrived at a contradiction. Since it is clear
that Tom does not view E as “old” data, and therefore is entitled to carry out the standard
Bayesian calculation (which gives the same result as the calculation using logic), his
conclusions must be correct and Glymour’s wrong.

Where Glymour Went Wrong

Jaynes ([2], pp. 473, 484) points out an important fact: A fruitful source of error
and even apparent paradoxes in probability theory is to fail to condition properly and
explicitly on all background information used. All probability is conditional on every
relevant piece of background information, and changing the background information
changes the probabilities. To make this crystal clear, let B represent all the relevant
background information at our disposal, except for any knowledge of E. This includes
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our assumptions about mathematics and physics; for example, B includes the fact that
T → E.

Viewed from this point of view, the source of Glymour’s error becomes embarrass-
ingly obvious. Recall that Eq. (1) was derived in the light of knowledge of the old evi-
dence E and actually used that information as background information, even though this
dependence was not explicitly noted in the equations. Following Jaynes’ advice above,
standard notational convention demands that we call out this fact explicitly. If we do
this, we obtain the correct Eq. (2):

P(E | E,B) = 1 !!! (2)

The rest of the proof translates as follows:

P(E | E,T,B) = 1 (3)

P(T | E,E,B) =
P(E | E,T,B)
P(E | E,B)

P(T | E,B) (4)

But of course, P(T | E,E,B) = P(T | E ∧E,B) = P(T | E,B) by standard logic.
Thus we see that when the conditioning that is implicit but unstated in Eq. (1) is explic-
itly recognized in Eq. (2), what Glymour has actually proved is the (well-known) fact
that the Bayesian machinery, quite sensibly, prevents us from using the same evidence
twice. He has not proved that a Bayesian cannot learn from old evidence, only that he
cannot validly manipulate the Bayesian machinery to get additional information out of
information that has already been used.

We now see that P(E | B) and P(E | E,B) are entirely different. P(E | E,B) has
already used evidence E, whereas according to the standard notational convention,
P(E |B)—Glymour’s P(E)—has never used evidence E, not even once. This is because
P(E |B) is just the sampling distribution of E in the mixture model defined by the priors
and the likelihood, given that we know B and nothing else. It is a function of the theory,
which is included in the background knowledge B. It is in fact entirely ignorant of our
knowledge of E. Thus, there is no reason to suppose that P(E | B) = 1, regardless of
our state of knowledge of E, and indeed, it usually is not.

Note that the right-hand side of Eq. (4) has its as prior P(T | E,B), not P(T | B).
In other words, the prior in Eq. (4) must be constructed from full knowledge of E; it
is not the same as P(T |B), which is (of course) ignorant of E. One cannot substitute
P(T | B) for P(T | E,B) in Eq. (4); the resulting equation is not a valid equation in
probability theory.

In order to calculate the value of P(T | E,B) for substitution into Eq. (4), we have
to start from P(T | B) and then apply Bayes’ theorem in the usual way, where in this
case the right hand side is calculated unconditioned on E (which is to say, the right-hand
side is ignorant of any knowledge we may have about E). In this case, P(E | B) does
not know that E has been observed, and is correctly calculated from the priors and the
time-independent likelihood from the identity:

P(E |B) = P(E | T,B)P(T |B)+P(E | T ,B)P(T |B) (5)

Thus, in the toy example, where P(E | T,B) = 1 and P(E | T ,B) = 0,
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P(E |B) = P(T |B), (6)

which is in general not equal to 1.
This tells us the correct way to do the Bayesian calculation, in the case where E has

been observed as old data. We still have to assign priors P(T | B) and P(T | B), and
this must be done without taking E into account. Although this step might pose some
problems of its own (assignation of priors in general requires careful thought), any such
problems are unrelated to Glymour’s argument, so I will pass over this issue. Suppose,
for example, we have assigned P(T |B) = α , P(T |B) = 1−α , where α ∈ (0,1). Then
the Bayesian calculation goes through in the usual way as follows:

P(T | E,B) =
P(E | T,B)
P(E |B)

P(T |B) = 1 (7)

since in the toy example example P(E |B) = P(T |B) and—from the theory, not from
Glymour’s reasoning—P(E | T,B) = 1. Thus, independent of α , we obtain the same
result as we did using ordinary logic. Thus, Jaynes’ desideratum #1 is satisfied: No
matter how we do the calculation, whether by ordinary logic or by a valid application of
probability theory, Cox’s theorem guarantees that we must arrive at the same result.

Note in particular that Glymour’s argument does not use, and in fact denies, the one
key fact that allows us to calculate the correct result using logic: that P(E | T ,B) = 0.
From this fact, we first derive P(E | T ,B) = 1, which in turn implies T ∧B → E and
then (since B is true) T → E and E → T . But the correct Bayesian calculation makes
full use of that information by using the time-independent likelihood in the calculation
of P(E |B) to arrive at the same result that we got using logic. Glymour’s calculation
thus violates Jaynes’ desideratum #2.

SUMMARY AND CONCLUSIONS

As Jaynes ([2], p. 89) points out, probability theory, like logic, is time-independent. All
of the relationships in probability theory are logical relationships and have nothing to
do with the order in which we happen to learn about the evidence or recognize it in the
Bayesian equations. When we calculate P(T | E,B) from P(T |B), it does not matter
when we have actually observed E; the relationship between the two is purely a logical
relationship, and the quantities that go into the calculation (likelihoods, priors) are time-
independent and will be the same, regardless of when E happens to have been observed.
As Tom Loredo observed when I showed him Glymour’s argument, “Time plays the
same role in probability theory as it does in logic: That is to say, no role whatsoever.”
[14]

A valid Bayesian calculation takes ones knowledge of a particular piece of data
into account in just one uniform way, by conditioning on the data. It is essential that
this conditioning be called out explicitly in the notation, as Jaynes advises. Using data
without explicitly calling it out in the notation, as Glymour did, is a reliable route to
disaster.
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Glymour’s error resulted from a failure to follow these basic principles. Using the
principles of his argument I was able to derive a contradiction with logic that seems
not to have been noticed up to this point, but which is sufficient to demonstrate that
Glymour’s argument is invalid. The bottom line is that Bayesians can and do learn from
old data, when they do the calculation carefully and correctly.
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