
Copyright

by

Tianyang Bai

2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211339773?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The Dissertation Committee for Tianyang Bai
certifies that this is the approved version of the following dissertation:

Analysis of Millimeter Wave and Massive MIMO

Cellular Networks

Committee:

Robert W. Heath, Jr., Supervisor

Jeffrey G. Andrews

François Baccelli

Lili Qiu

Sujay Sanghavi



Analysis of Millimeter Wave and Massive MIMO

Cellular Networks

by

Tianyang Bai, B.E., M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2016



Dedicated to my parents,

Hong and Shizhen.



Acknowledgments

I can only start with my deepest gratitude to my Ph.D. supervisor Prof.

Robert W. Heath, Jr. for offering me an opportunity five years ago, and having

faith in me ever since. Without his support and technical guidance, I would

have never completed my dissertation. While all Ph.D. students may have

their own definitions of the best supervisor, I consider myself the luckiest, as I

have worked with my own for five years. I would like to thank Dr. Heath for

tolerating my shortcomings but never losing patience in helping me overcome

them. In addition, I always regard Dr. Heath as the role model of my career

for his great passion and technical excellence. Having a high self-expectation,

I would still consider my career a great success if I could accomplish half of

his achievements so far.

I would like to express my sincere gratitude to Prof. François Baccelli

for his great series of lectures on stochastic geometry as well as his wise advice

and comments on my research. Many of my research ideas originated from

what I learned in his classes. He also taught me the beauty of mathematics in

generality. I also owe a great debt of gratitude to Prof. Jeffrey Andrews for

his great pioneering papers on stochastic geometry that I have closely followed

during my PhD study. I would like to thank Prof. Lili Qiu and Prof. Sujay

Sanghavi for their intellectually stimulating classes and their comments on my

v



dissertation.

It was a great pleasure to work with my gifted labmates and visitors at

the WSIL: Omar El Ayach, Salam Akoum, Kien Trung Truong, Amin Abdel

Khalek, Nachiappan Valliappan, Chao Chen, Rahul Vaze, Ken Pesyna, An-

drew Thornburg, Preeti Kumari, Talha Ahmed Khan, Jianhua Mo, Vutha Va,

Kiran Venugopal, Yueping Wu, Marios Kountouris, Martin Taranetz, Xiao Li,

and Christopher Mollen. A special mention is due to Namyoon Li, as I always

learnt from chatting with him both in research and life. I would like to thank

the postdoc fellows Xinchen Zhang and Junil Choi for their valuable comments

and discussions on my research.

I am also very lucky to meet with my WNCG friends: Yuhuan Du,

Yicong Wang, Zheng Lu, Jiaoxiao Zheng, Hongbo Si, Qiaoyang Ye, Sarabjot

Singh, Xingqin Lin, Yingzhe Li, and Mandar Kulkarni, who have made all my

days at UT much fun. As all the WNCG students, I want to thank Melanie

Gulick and Karen Little for their help in the administrative work.

I would like to thank Dr. Sundar Subramanian for the opportunity to

work with the talented mmWave team at Qualcomm during my internships. I

really enjoyed the productive and fun summers in New Jersey.

Last, but definitely not least, I am forever grateful to my family for their

unconditional support and constant encouragement. I dedicate everything that

I have accomplished to them. Words fail me in expressing my love to them .

vi



Analysis of Millimeter Wave and Massive MIMO

Cellular Networks

Publication No.

Tianyang Bai, Ph.D.

The University of Texas at Austin, 2016

Supervisor: Robert W. Heath, Jr.

Millimeter wave (mmWave) communication and massive multiple-input

multiple-output (MIMO) are promising techniques to increase system capacity

in 5G cellular networks. The prior frameworks for conventional cellular sys-

tems do not directly apply to analyze mmWave or massive MIMO networks,

as (i) mmWave cellular networks differ in the different propagation conditions

and hardware constraints; and (ii) with a order of magnitude more antennas

than conventional multi-user MIMO systems, massive MIMO systems will be

operated in time-division duplex (TDD) mode, which renders pilot contami-

nation a primary limiting factor.

In this dissertation, I develop stochastic geometry frameworks to ana-

lyze the system-level performance of mmWave, sub-6 GHz massive MIMO, and

mmWave massive MIMO cellular networks. The proposed models capture the

key features of each technique, and allow for tractable signal-to-interference-

plus-noise ratio (SINR) and rate analyses. In the first contribution, I develop
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an mmWave cellular network model that incorporates the blockage effect and

directional beamforming, and analyze the SINR and rate distributions as func-

tions of the base station density, blockage parameters, and antenna geometry.

The analytical results demonstrate that with a sufficiently dense base station

deployment, mmWave cellular networks are capable to achieve comparable

SINR coverage and much higher rates than conventional networks. In my sec-

ond contribution, I analyze the uplink SINR and rate in sub-6 GHz massive

MIMO networks with the incorporation of pilot contamination and fractional

power control. Based on the analysis, I show scaling laws between the number

of antennas and scheduled users per cell that maintain the uplink signal-to-

interference ratio (SIR) distributions are different for maximum ratio combin-

ing (MRC) and zero-forcing (ZF) receivers. In my third contribution, I extend

the sub-6 GHz massive MIMO model to mmWave frequencies, by incorporat-

ing key mmWave features. I leverage the proposed model to investigate the

asymptotic SINR performance, when the number of antennas goes to infinity.

Numerical results show that mmWave massive MIMO outperforms its sub-6

GHz counterpart in cell throughput with a dense base station deployment,

while the reverse can be true with a low base station density.
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Chapter 1

Introduction

1.1 Overview

The coming 5G cellular networks will apply novel communication tech-

niques, including millimeter wave (mmWave) communications and massive

multiple-input and multiple-output (MIMO), to increase system capacity [42].

The mmWave frequency refers to the spectrum ranging from 30 GHz to 300

GHz, while conventionally the spectrum above 20 GHz, e.g. the local multi-

point distribution service (LMDS) band at 28 GHz, is categorized into mmWave

as well. Operating wireless systems at mmWave frequencies is by no means

a new topic, as the study of mmWave goes back to 1890s [54]. In consumer

radios, the mmWave spectrum has been applied in personal area network-

ing (WirelessHD and IEEE 802.15.3c)[48, 35], local area networking (IEEE

802.11ad) [152], and fixed-point backhaul links in cellular networks [69].

Recently, mmWave has drawn great interest as a new carrier frequency

for access channels in 5G cellular networks [112, 120, 17, 42]. Compared with

the bandwidth-limited conventional spectrum below 6 GHz, mmWave can po-

tentially provide several gigahertz bandwidths to solve the spectrum gridlock

in cellular networks [112, 120]. For example, the Federal Communications
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Commission (FCC) in the USA has been considering making rules to autho-

rize mobile operations in the LMDS band at 27.5-28.35 GHz and the 39 GHz

band at 38.6- 40 GHz with county-size licenses [47]. Besides, the unlicensed

band at 57- 64 GHz and E-band at 71-76 GHz and 81-86 GHz are also likely

to be used for future cellular networks, due to the large continuous bandwidth

[112, 120, 92].

MmWave cellular networks will operate in a different manner from con-

ventional cellular systems below 6 GHz. To begin with, measurements reveal

different channel statistics at mmWave from those at sub-6 GHz frequencies

[120, 121]: the path loss between single dipole antennas increases quadratically

with the carrier frequency, due to the smaller aperture size; high sensitivity to

blockages is found at mmWave, due to high penetration loss through certain

materials and weak diffraction [113, 120]. Moreover, mmWave cellular net-

works will apply different transceiver architectures for signal processing, due

to the hardware and power constraints [122, 10]. For one thing, large antenna

arrays will be deployed for direction beamforming at both base stations and

mobile stations, to increase the effective aperture size and meet the link budget

[112, 42, 122]. For another, with large antenna arrays and wide bandwidths,

more energy-efficient transceiver architectures will be applied in mmWave, to

meet the constraints from the circuity power consumption [122]. For instance,

mmWave cellular networks may apply analog or hybrid beamforming to reduce

the number of RF chains, and use low-resolution ADCs at receivers to reduce

the sampling power [122, 10].
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Massive MIMO is another promising physical layer technology to in-

crease cell throughput in fifth generation cellular systems [90, 76, 87, 124, 42].

Compared with the conventional MU-MIMO systems, massive MIMO systems

deploy a order of magnitude more antennas, e.g. 64 or more antennas, at base

stations to simultaneously serve a dozen of users in their cells [90]. Besides

the gain in cell throughout, theoretical analyses have also shown the follow-

ing advantages when the number of antennas goes large: (a) the effects of

small-scaling fading vanish with infinite antennas, as the SINR converges to a

deterministic equivalence [90, 64]; the impacts of interference and noise become

minor, as under certain assumptions, e.g. IID Rayleigh fading channel, the de-

sired signal channel becomes asymptotically orthogonal to noise and inference

channels [90, 64, 105]; simple linear signal processing provides near-optimal

performance with large antenna arrays [124]; compared with the single-input

single-output (SISO) case, less transmit power is needed to achieve the same

spectrum efficiency, as it scales down with the number of antennas [104].

The exact spectrum for deploying massive MIMO, however, is still

not clear: the conventional spectrum below 6 GHz, e.g. the ultra high fre-

quency (UHF) frequency, has been the defacto operation band for massive

MIMO, but has a limited bandwidth; the mmWave band may potentially of-

fer a larger bandwidth, but the performance will differ from the conventional

massive MIMO, due to different propagation conditions and hardware designs

[120].

In this dissertation, I propose to analyze the SINR coverage and rate

3



in mmWave and massive MIMO cellular networks using the tool of stochastic

geometry. In the rest of this chapter, before presenting the main technical

results, I will introduce basic concepts and research surveys for massive MIMO

and mmWave communications in Section 1.2- Section1.5; then I summarize the

contributions in Section 1.6. In Chapter 2, I introduce the system model and

key results on analyzing downlink mmWave cellular networks. The analysis of

uplink massive MIMO networks in the sub-6 GHz bands is provided in Chapter

3. Then I extend the framework in Chapter 3 to analyze mmWave massive

MIMO cellular networks in Chapter 4. Finally, I conclude the dissertation,

and discuss directions for future work in Chapter 5.

M antennas at base station 

Desired link 
Interfering link 

Figure 1.1: Massive MIMO network with L = 2 cells and K = 5 users per cell.
I denote the location of the `-th base station as X`, k-th user in the `-th cell
as Y

(k)
` , and the channel vector from Y

(k)
` to X ′` as h

(k)
`′` .
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1.2 The Massive MIMO Concept

In this section, I first illustrate the concept of massive MIMO systems

using a basic example system in Section 1.2.1. Then, I introduce three opera-

tion stages of a time-division duplex (TDD) massive MIMO networks: uplink

channel training, uplink data transmission, and downlink data transmission

in Section 1.2.2-1.2.4. Finally, in Section 1.2.5, I introduce initial results on

the asymptotic performance of massive MIMO, when the number of antennas

goes to infinity, based on [90].

1.2.1 Massive MIMO System

Now I consider a MU-MIMO cellular system consisting of L cells, where

in each cell, the base station has M antennas to serve K single-antenna mobile

stations in a resource block. In a massive MIMO system, I generally assume

M � K, e.g., M = 128 antennas serve K = 10 users in a cell. I show an

example of L = 2 and K = 5 as an example in Fig. 1.1. For ` ∈ [0, L − 1],

and k ∈ [1, K], let X` be the location of the `-th base station, and Y
(k)
` be the

location of the k-th scheduled user in the `-th cell. To model the prorogation

channel, I use a M -dimension vector h
(k)
`′` to represent the channel from Y

(k)
` to

X`′ . In this section, to illustrate the basic concepts of massive MIMO systems,

I assume the IID Rayleigh fading channel model: the channel vector h
(k)
`′` can

be computed as

h
(k)
`′` = β

(k)
`′` w

(k)
`′` , (1.1)
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where β
(k)
`′` is a complex constant accoutring for effects including large-scale

path loss and shadowing, w
(k)
`′` is an M -dimensional random Gaussian vector

of the distribution CN(0, IM), and IM represents an M -dimensional identity

matrix. For ease of notation, I define an channel matrix H`′` ∈ CM×K as

H`′` =
[
h

(1)
`′` , ..., h

(K)
`′`

]
, (1.2)

where its k-th column is the channel vector h
(k)
`′` . Note that H`′` represents the

uplink channels from all users in `′-th cell to base station X`.

In order to design the combining and precoding vectors for the uplink

and downlink data transmission, the channel state information (CSI) of the

desired signal link is obtained through channel training. In this monograph, I

focus on the massive MIMO systems operated in the TDD mode [90], where the

reciprocity between the uplink and downlink channels is exploited to reduce the

training overhead. In a TDD system, the amount of channel training overhead

is proportional to the number of scheduled users K, while in a frequency-

division duplex (FDD) system, if no special structure of the channel covariance

is assumed, the downlink training overhead is in general proportional to the

number of the base station antennas M [90]. Moreover, in a FDD system,

it requires additional feedback of the downlink CSI from users to their base

stations, as the downlink channel can only be estimated at mobile stations.

The complexity and overhead of the CSI feedback can also be high, when M

grows large. Typically, a TDD massive MIMO system is operated in three

stages: uplink channel training, downlink data transmission, and uplink data

transmission [90], as described in the following sections.
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1.2.2 Uplink channel training

In a TDD massive MIMO system, channel training is performed in the

uplink: pilot sequences are transmitted by scheduled users to base stations to

estimate channels [90]. Here I consider a simple case as in [90]: all scheduled

users in a cell are assigned with orthogonal pilots t(k) of length τ ; the same

set of pilot sequences T is reused in every cell, where the matrix

T =
[
t(1), ..., t(K)

]
, (1.3)

and satisfies THT = τIK ; perfect synchronization of pilot transmission is as-

sumed across the network. More complicated designs to reduce the estimation

error are discussed in Section 1.3.2.

In the channel training stage, all scheduled users transmit their assigned

pilots, and base station X` receives

Y` =
√
PT

L∑
`′=1

H``TT′ + N`, (1.4)

where PT is the transmit power for channel training, N` represents the ther-

mal noise at base station X`, and each entry of N` follows the distribution

CN(0, σ2).

Next, base station X` correlates the received signal Y` with the pilots

as

U` =
1

τ
Y`T

′ (1.5)

=
L∑

`′=1

√
PTH``′ +

1

τ
N`T

′ (1.6)
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=
L∑

`′=1

√
PTH``′ + N̄`, (1.7)

where N̄` = 1
τ
N`T

′, and each entry of N̄` follows the distribution CN(0, σ
2

τ
).

For ease of illustration, denote the k-th column of U` as u
(k)
` , and it

follows that

u
(k)
` =

√
PTh

(k)
`` +

L∑
`′ 6=`

√
PTh

(k)
``′ + n̄

(k)
` . (1.8)

The vector u
(k)
` can be viewed as the observation of the channel h

(k)
``

at base station X`. Note that besides the contribution from the desired signal

channel h
(k)
`` , the observation u

(k)
` also includes the thermal noise term, and

more importantly, the interference term
∑L

`′ 6=`
√
PTh

(k)
``′ coming from other-cell

users using the same pilot t(k).

Next, I assume the large-scale path loss information β
(k)
``′ is known at

base stations. Then base station X` applies an MMSE estimator to estimate

the channel h
(k)
`` as

h̄
(k)
`` = Ptβ

(k)
`` IM

[
σ2

τ
IM +

(
L∑

`′=1

Ptβ
(k)
``′

)
IM

]−1

u
(k)
` (1.9)

=
β

(k)
``

σ2

Ptτ
+
∑L

`′=1 β
(k)
``′

u
(k)
` , (1.10)

where h̄
(k)
`` is the estimate of h

(k)
`` ; By the orthogonal principle of the MMSE

estimation, the estimation error ĥ
(k)
`` = h

(k)
`` − h̄

(k)
`` is uncorrelated with ĥ

(k)
`` ,

and follows the distribution CN

(
0, β

(k)
``

(
1− β

(k)
``

σ2

τPt
+
∑L
`′=1 β

(k)

``′

)
IM

)
.
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Note that in the IID Rayleigh fading case, the channel estimate h̄
(k)
``

is a scaled version of the vector u
(k)
` . Therefore, by (1.8), even if ignoring

the thermal noise, the channel estimator still contains errors due to the inter-

ference from the co-pilot users in the other cells— a phenomenon that I call

pilot contamination. In TDD massive MIMO systems, pilot contamination is

a limiting factor for the asymptotic SINR and rate performance, when the

number of antennas goes to infinity [90]. I are going to discuss the techniques

to reduce or mitigate the impact of pilot contamination in Section 1.3.2.

1.2.3 Uplink Data Transmission

Now I continue to investigate the uplink SINR and ergodic rate perfor-

mance. In the uplink data transmission, the received signal at base station X`

is

y` =
√
Pu

∑
`′,n

h
(n)
``′ s

(n)
`′ + n`, (1.11)

where Pu is the uplink transmit power; s
(n)
`′ is the symbol from user X

(n)
` ,

and satisfies the unit power constraint E
[
|s(n)
`′ |2

]
= 0; n` is the noise vector

following the distribution CN(0, σ2IM).

To illustrate the basic concepts, in this section, I focus on the per-

formance of MRC receivers, while I summarize the results for more compli-

cated receivers in Section 1.3.1. With MRC receivers, base station X` treats

the channel estimate h̄
(k)
`` as the true channel, and uses the combining vector

9



g
(k)
` = h̄

(k)
`` to decode symbol s

(k)
` as

s̄
(k)
` =

√
Pug

(k)∗
` h̄

(k)
`` s

(k)
`︸ ︷︷ ︸

signal

+

√
Pug

(k)∗
` ĥ

(k)
`` s

(k)
`︸ ︷︷ ︸

channel estimation error

+
√
Pu

∑
`′ 6=`,n6=k

g
(k)∗
` h

(n)
``′ s

(n)
`′︸ ︷︷ ︸

interference

+ g
(k)∗
` n`︸ ︷︷ ︸
noise

. (1.12)

Note that the terms due to channel estimation error, interference, and noise

are unknown to base station X`. Therefore, the uplink SINR for user Y
(k)
` is

expressed as

SINRu =
|g(k)∗
` h̄

(k)
`` |2

E|g(k)∗
` ĥ

(k)
`` |2 +

∑
`′ 6=`,n 6=k |g

(k)∗
` h

(n)
``′ |2 + |g(k)

` |2 σ
2

Pu

, (1.13)

where the second term in the denominator is due to the error of the MMSE

channel estimator, and the expectation is taken with respect to the error h̃
(k)
`` .

Further, by treating the interference and noise terms in (1.13) as additive Gaus-

sian noise independent of s
(k)
` , I can obtain a lower bound on the achievable

ergodic rate [104, 70] as

ξu = E[log2(1 + SINRu)], (1.14)

where the expectation is taken with respect to different realizations of channels

and noise.

1.2.4 Downlink Data Transmission

To transmit downlink data, base stations apply certain precoding based

on the channel estimate. In this section, I focus on the match-filtering precod-

ing: the precoder for the k-th user in the `-th cell is f
(k)
` =

ĥ
(k)
`

|ĥ(k)
` |2

. Since the
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channel estimation is performed in the uplink, I assume the user X
(k)
` has no

instantaneous channel state information, but only know the average effective

channel gain E
[
h

(k)∗
`` f

(k)
`

]
. Let s

(k)
` be the symbol for user X

(k)
` . Then the

received signal at user X
(k)
` is

s̄
(k)
` =

√
PdE

[
h

(k)∗
`` f

(k)
`

]
s

(k)
` + (1.15)√

Pd

(
h

(k)∗
`` f

(k)
` − E

[
h

(k)∗
`` f

(k)
`

])
s

(k)
` +

√
Pd

∑
(n,`′)6=(k,`)

h
(n)∗
``′ f

(n)
`′ s

(n)
`′ + nd︸ ︷︷ ︸

unknown to user Y
(k)
`

,

where nd is the noise vector for downlink transmission. Then the downlink

SINR for user Y
(k)
` can be expressed as

SINRd =

∣∣∣E [h(k)∗
`` f

(k)
`

]∣∣∣2
Var

[
h

(k)∗
`` f

(k)
`

]
+
∑

(n,`′)6=(k,`)

∣∣∣h(n)∗
`′` f

(n)
`′

∣∣∣2 + σ2

Pd

, (1.16)

By [64, 70], similar to the uplink case, a lower bound of the downlink

achievable ergodic rate is

ξd = E[log2(1 + SINRd)]. (1.17)

Last, I compute the average cell throughput ξcell as the sum rate of all

users in a cell as follows. Let Tu and Td be the lengths of uplink and downlink

data transmission in a frame, in terms of the number of symbols. To account

for the training overhead, recall that the length of the uplink training equals

the length of the pilots τ . Define the length of the frame Tf as

Tf = Tu + Td + τ. (1.18)
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Note that Tf should be smaller than the coherent time Tc. Then the average

cell throughput ξcell can be computed as

ξcell =
K

Tf

(Tuξu + Tdξd) . (1.19)

1.2.5 Asymptotic Performance Analysis

Next, based on the system model, I present analytical results on the

asymptotic performance of massive MIMO, when the number of antennas

grows to infinity [90]. Key concepts in the performance analysis of massive

MIMO, e.g. the asymptotic orthogonality of channel vectors, and the limiting

factor as pilot contamination will be illustrated in this section.

To begin with, I present results on the asymptotic orthogonality of

independent Gaussian vectors in the following lemma.

Lemma 1.2.1 (From [90]). Let x, x ∈ CM×1 be independent random vectors

following the distribution CN(0, IM). Then the two vectors are asymptotic

orthogonal to each other in the limit of vector dimension, as

lim
M→∞

x∗y

M
a.s.
= 0. (1.20)

In addition, the square norm of the vector x converges as

lim
M→∞

x∗x

M
a.s.
= 1. (1.21)

Proof. The proof directly follows from the strong law of large numbers.

12



Note that results in Lemma 1.2.1 show that assuming independent

Rayleigh fading, the channel vector for the desired link becomes orthogonal

to both the noise vector and channel vector for interfering links, when the

number of antennas goes to infinity. Based on Lemma 1.2.1, I can derive the

asymptotic limit for the uplink SINR, when M →∞.

Theorem 1.2.1 (From [90]). When the number of base station antennas goes

to infinity, the uplink SINR in (1.13) converges to its asymptotic equivalence

as

lim
M→∞

SINRu =
β

(k)2
``∑

`′ 6=` β
(k)2
``′

. (1.22)

Theorem 1.2.1 shows that even with infinite antennas, the uplink SINR

will not goes to infinity, as certain interference terms will not vanish, due to the

impact from pilot contamination. Similarly, the asymptotic downlink SINR

result is presented as follows.

Theorem 1.2.2 (From [90]). When the number of base station antennas goes

to infinity, the downlink SINR in (1.16) converges to its asymptotic equivalence

as

lim
M→∞

SINRd =
β

(k)2
`` /a

(k)
`∑

`′ 6=` β
(k)2
`′` /a

(k)
`′

. (1.23)

The residue interference terms in the asymptotic equivalence in (1.23)

are also resulted from pilot contamination.

By now, I have introduced basic concepts of massive MIMO networks

using the IID Rayleigh fading case as an example. Through the derivation of
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asymptotic analysis, I have also illustrated the impact of pilot contamination

and asymptotic orthogonality on the SINR and rate performance. In the

next section, I are going to provide research surveys on several key aspects of

massive MIMO.

1.3 Key Aspects of Massive MIMO

Now I present literature on several key directions of research on massive

MIMO. I first summarize results on more complicated designs of precoder and

combiner in Section 1.3.1. Then I focus on the issue of pilot contamination,

and introduce methods de-contamination methods in Section 1.3.2. In Section

1.3.3, I show that massive MIMO is a promising technique for green commu-

nication by improving energy efficiency. In the end, I will briefly introduce

field measurements and channel models for massive MIMO in Sections 1.3.4

and 1.3.5.

1.3.1 Precoding and Combining Techniques

In this section, I focus on linear precoding and combining techniques

for massive MIMO, as linear techniques has less complexity to implement than

the non-linear techniques, such as dirty paper precoding, especially when the

number of antennas is large. Simulations also shows that with a large number

of antennas, the achievable rate of linear precoding approaches the channel

capacity bound [124].
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Single-cell precoding I start with the single-cell precoding design,

when there is no cooperation between base stations. Namely, base station

X` designs the precoders and combiners to its users, based on the channel

estimate matrix H̄``, whose k-th column h̄
(k)
`` is the estimate of channel h

(k)
`` .

For the uplink combining, let G` be the combing matrix for base sta-

tion X`, where its k-th column g
(k)
` is the combining vector for user Y

(k)
` . A

regularized zero-forcing (RZF) combiner can be computed as

G` =
(
H̄``H̄

∗
`` + ρIN

)−1
H̄``, (1.24)

where the regularization constant ρ can be optimized based on performance

requirements. When δ →∞, the RZF combiner becomes match-filtering com-

biner as I used in Section 1.2.4 as

G` = H̄``; (1.25)

when δ → 0, and H̄`` has a full column rank, the combiner becomes zero-

forcing combiner as

G` =
(
H̄``H̄

∗
``

)−1
H̄``, (1.26)

which is the pseudo-inverse of H̄``.

For the downlink precoder, let F` be the precoder matrix for base sta-

tion X`, where its k-th column f
(k)
` is the percoder for user Y

(k)
` . A RZF

beamformer can be computed as

F` =
(
H̄``H̄

∗
`` + ρIN

)−1
H̄``D`, (1.27)
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where D` ∈ RK×K is a diagonal matrix, and its diagonal element D`[k, k]

is the power normalization term for user Y
(k)
` to account for the constraint

on power constraint. Similar to the uplink case, when δ → ∞, the RZF

precoder F` = H̄``D` becomes conjugate precoder, also known as maximum

ratio transmission; when δ → 0, and H̄`` has full column rank, the RZF

precoder F` =
(
H̄``H̄

∗
``

)−1
H̄``D` is called zero-forcing precoder.

Common methods to compute D are vector normalization and matrix

normalization. For vector normalization, D` is determined such that each col-

umn of F` has a unit norm as ‖f (k)
` ‖2 = 1; for matrix normalization, D` = d`IK ,

where the constant d` ensures that ‖F`‖2
F = K. In [83], the analysis showed

that vector normalization provides a better achievable rate in the low signal-

to-noise ratio (SNR) regime, while matrix normalization provides a marginal

gain in the high SNR regime.

In [147], the performance of RZF precoder was analyzed in a single-cell

massive MIMO network with IID Rayleigh fading, where the impact of pilot

contamination was not explicitly taken account. Low bounds for the channel

capacity were derived for both conjugate and ZF precoders. In terms of the

achievable rate, the analysis showed that ZF precoder outperforms in the high

SNR regime, while the reverse is true in the low SNR regime; an (approximate)

boundary SNR to switch from conjugate to ZF precoder was provided in [83].

The uplink and downlink rate performance was examined in a multi-

cell setup in [64], which incorporated the impacts of pilot contamination and

spatial correlations at base station antennas. Based on random matrix theory,
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the uplink and downlink achievable rates for RZF combiner and precoder were

expressed as functions of the number of antennas and scheduled user. The

asymptotic analysis showed that when the same covariance matrix is assumed

for both signal and interference links, the conjugate and RZF beamforming

have the same asymptotic SINR, limited by pilot contamination. The anal-

yses for the case of finite base station antennas, however, indicates that ZF

beamforming converges fast to the asymptotic limit than conjugate beamform-

ing.

Multi-cell precoding Multi-cell coordinated transmission and recep-

tion have been considered in massive MIMO networks. While mainly aimed

to managing interference in conventional cellular networks[125], coordinated

transmission in massive MIMO networks is applied to overcome the form fac-

tor constraint by reducing the number of antennas on a single base station.

In [65], a network MIMO architecture was proposed to achieve the through-

put of massive MIMO with a order of magnitude fewer antennas at each base

station. In [137, 88], the concept of distributed massive MIMO was proposed,

where the antennas are distributed over multiple remote radio heads (RRHs)

in a cell, and jointly perform channel estimation and data transmission. Dis-

tributed massive MIMO can achieve even better throughput than conventional

systems, e.g. simulations in [137] showed that with the same total number of

antennas, distributed massive MIMO achieves a higher average uplink rate

than the case of collocated antenna array. Besides overcoming the form fac-

tor constraint, multi-cell coordinated precoding have also been considered to
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mitigate pilot contamination [21, 78] (see Section 1.3.2), and reduce the sum

transmission power [74].

To enable multi-cell coordinated transmission in massive MIMO sys-

tems, the CSI needs to be jointly acquired and shared between base stations,

which requires a larger amount of overhead compared with conventional sys-

tems [44]. One promising approach to reduce the overhead due to CSI sharing

is to design coordinated beamforming algorithms based on long-term chan-

nel statistics instead of instantaneous CSI [74, 21, 78]. Besides, decentralized

beamforming algorithms have been proposed to reduce the overhead of dis-

tributed massive MIMO systems [88]. For example, in [137], an RRH selec-

tion method was proposed for distributed MRC receivers by grouping users

locally, and shown to approach the performance of minimum mean square

error (MMSE) receivers.

Non-ideal hardware constraints In practice, large-scale arrays are

likely to be built with low-cost components that are prone to hardware im-

perfection. Therefore, constraints due to non-ideal hardware should be taken

account in the designs of massive MIMO networks. To analyze the performance

of massive MIMO systems with non-ideal hardware, a general framework was

proposed to model the additive distortions in [37], and extended to incorporate

multiplicative phase-drifts and noise amplification in [38]. The analysis in [37]

showed that hardware impairments degrade the CSI accuracy, and create a

finite ceiling on the achievable rate; the hardware at the mobile station side

is the main limiting factor of the capacity, while the impact of base station
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hardware impairments vanishes asymptotically. Moreover, results in [37, 38]

also proved that with excessive degrees of freedom offered by the large an-

tenna arrays, massive MIMO systems become more tolerable with hardware

impairments, which motivates the use of low-cost antenna elements at the base

station arrays.

To improve the efficiency of the power amplifier, low peak-to-average-

power-ratio (PAPR) precoding designs were proposed in [98, 132] for massive

MIMO systems. For example, a per-antenna constant envelope precoding was

developed in [98] to minimize the PAPR of transmit signal and allow for less

power back-off at the power amplifiers.

Massive MIMO networks exploits the reciprocity between downlink and

uplink links to estimation channels. In practice, however, the end-to-end chan-

nel reciprocity breaks down, as the transmitting and receiving branches at

one transceiver may have different circuit gains. Based on the analysis in

[154], such hardware mismatch has a larger impact on RZF beamforming than

conjugate beamforming on the ergodic achievable rate. In addition, to re-

store the channel reciprocity, calibration methods have been proposed, e.g. in

[154, 123, 139], to compensate for the mismatch in the circuit gains.

1.3.2 Pilot Contamination

Pilot contamination results from the reuse of pilot sequences from one

cell to another. In a massive MIMO system, when a base station correlates its

received pilot signal with the corresponding pilot sequence, it obtains a chan-
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nel estimate that is contaminated by a linear combination of the interfering

channels from the users sharing the same pilot [76]. Pilot contamination is not

specific to massive MIMO systems, but its impact becomes more phenomenal

in massive MIMO, as it becomes an limiting factor for the SINR performance

with infinity antennas [90] (also see the discussion in Section 1.2.3). There-

fore, several methods have been proposed to reduce or mitigate the impact of

pilot contamination in massive MIMO networks. I introduce main methods

by category as follows.

1. Reducing pilot reuse in a resource block One way to reduce

the impact of pilot contamination is to decrease the number of users sharing

the same pilot in a particular resource block. One direct thought is to increase

the number of orthogonal pilot sequences in the network, such that users in the

neighbouring cells need not share pilots. Increasing the number of orthogonal

pilot sequences, however, results in longer sequences, and a larger amount of

training overhead. More importantly, the maximum number of the orthogonal

pilots is fundamentally limited by the coherence time in the system.

Similar to the idea of fraction frequency reuse to reduce interference

in the cell-edge area, a fractional pilot reuse scheme was proposed to reduce

pilot contamination in [22]. The fraction frequency reuse method was shown

to have higher cell throughput than the full pilot reuse in [90], as the cell-edge

users become less affected by pilot contamination.

Frequency reuse, i.e., assigning different bands for neighbouring cells,

also reduces pilot contamination by mitigating interference from neighbouring
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cells. Splitting spectrum, however, need not help improve the sum throughput,

as fewer users are served in a unit spectrum [87].

Prior work showed that synchronous pilot transmission, as I assumed

in Section 1.2, maximizes the effect of pilot contamination [90]. Therefore,

a shifted-frame protocol was proposed in [19] to enable asynchronous pilot

transmission in adjacent cells, where base stations are divided into different

groups, and uplink channel training stages for cells in different groups are

performed in disjoint and shifted time periods within a frame. In [19], the

shifted-frame protocol was shown to achieve a better asymptotic SINR and

rate performance, as pilot contamination only affects the users within the

same group of cells.

2. Coordinating between multiple cells Multi-cell coordination is

an effective way to reduce the impact of pilot contamination. In [150], a coor-

dinated scheduling algorithm was proposed to minimize the estimation error

due to pilot contamination from adjacent cells. The theoretical basis of the

algorithm is that given the eigenvectors of the covariance matrices for the sig-

nal link and interference links span in orthogonal spaces, an interference-free

channel estimate of the signal link can be obtained through certain MMSE

estimator [150]. One example satisfying the orthogonal eigenvector space con-

dition is that a uniform linear array receives the desired signal and interference

in disjoint intervals of arrival angles [149, 150]. Therefore, the scheduling algo-

rithm requires base stations share channel covariance information, and jointly

pick up the users, to guarantee the users with the same pilots have minimal
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overlapping in the space of covariance matrices [150].

Besides coordinated scheduling, a coordinated precoding method called

pilot contamination precoding (PCP) was proposed in [21, 78] to mitigate pilot

contamination. To limit the overhead of information exchange, only large-

scale path losses and information symbols are shared between base stations. I

explain the basic idea using the uplink ZF-PCP [21] as an example. I consider

the massive MIMO network model of L cells in Section 1.2. When the number

of antennas M � 1, the detected symbol ŝ
(k)
` at base station X` can be

approximated by its asymptotic equivalence as

ŝ
(k)
` ≈M

√
Pu

L∑
`′=1

c
(k)
``′ s

(k)
`′ , (1.28)

where the approximation becomes exact when M → ∞, and the coefficient

c
(k)
``′ = β

(k)
`` β

(k)
``′ /a

(k)
` only depends on large-scale path losses. By sharing the

detected signals ŝ
(k)
` and coefficients c

(k)
``′ among all L base stations, I obtain L

independent (approximate) linear combination of
{
s

(k)
`

}
0≤`≤L−1

as

 ŝ
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0
...

ŝ
(k)
L−1

 ≈M
√
Pu

 c
(k)
00 . . . c
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0(L−1)

...
. . .

...

c
(k)
(L−1)0 . . . c

(k)
(L−1)(L−1)


 s

(k)
0
...

s
(k)
L−1

 . (1.29)

The contamination-free symbols can be approximated by solving (1.29), which

returns the true uplink symbol asymptotically. The downlink ZF-PCP design

follows from a similar idea as in the uplink [21]. In [78], more complicated

PCP precoder designs were proposed to optimize the minimal achievable rate

with finite antennas. Simulations in [78] showed that the proposed method
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provides an order of magnitude increase in rate with 100 antennas at 10%

SINR outage .

3. Developing blind estimation algorithm Blind algorithms have

been proposed to estimate the channels without using (user-specific) pilot se-

quences [100, 103] in the training. In general, based on subspace separation

techniques, blind channel estimation algorithms rely on the assumptions that

the signal subspace is asymptotically orthogonal to the subspace of interfer-

ence, when the number of antennas grows without limit [100, 103]. In [103],

the channel matrix is estimated through eigenvalue decomposition of the co-

variance matrix of the received signal. In practice, the covariance matrix of

the received signal is approximated by the empirical matrix covariance from

uplink data samples, as the exact covariance matrix is not unknown at base

stations. Therefore, as simulation results showed in [103], the performance of

the proposed blind algorithm largely depends on the accuracy in estimating

the covariance matrix; with a sufficiently large number of uplink data symbols

to estimate the covariance matrix, blind channel estimation outperforms the

original pilot-aided channel estimation in symbol error probability.

In [100], the received signal is projected to the signal subspace, which is

asymptotically orthogonal to the interference space, to minimize interference.

To identify the signal subspace of interests, a certain power margin between

the desired signal and interference at cell-edge users is required, which can be

created by power control and frequency reuse.
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1.3.3 Energy efficiency

Massive MIMO is a promising technique to improve energy efficiency,

an key performance metric in green communication [148]. Energy efficiency

is defined as the ratio of the spectrum efficiency to the total power, including

the transmit power and consumption power by the circuit.

Energy efficiency for massive MIMO systems was examined in [104,

147], where only the transmit power was considered. In [104], the (asymptotic)

power scaling laws for uplink massive MIMO systems were derived as follows.

In a single-cell network, assuming IID Rayleigh fading, perfect CSI, and infinite

antennas at base station, the asymptotic achievable spectrum efficiency ξu for

a user is

lim
M→∞

ξu = log2

(
1 + β

PuM

σ2

)
, (1.30)

where β is the large-scale path loss, Pu is the uplink transmit power, M is

the number of antennas at base station, and σ2 is the noise power. By 1.30,

the transmit power Pu scales with 1
M

to maintain the asymptotic uplink spec-

trum efficiency ξu unchanged. With imperfect CSI due to thermal noise, the

asymptotic achievable spectrum efficiency ξu in a single-cell network is

lim
M→∞

ξu ≈ log2

(
1 + τβ2P

2
uM

σ2

)
, (1.31)

where τ is the length of pilot sequences used in the channel estimation. The

error in the CSI results in a different power scaling law from the perfect CSI

case: the transmit power Pu scales with 1√
M

to maintain the asymptotic uplink
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rate ξu. The power scaling law for the imperfect CSI case also applies to multi-

cell massive MIMO systems, where the estimation error also comes from pilot

contamination.

Based on the power scaling law results, the trade-off between spectrum

efficiency and energy efficiency was derived in [104]. For the perfect CSI case,

it is straightforward to show that the energy efficiency increases, when the

spectrum efficiency decreases, as the energy efficiency is a decreasing function

of Pu. For the imperfect CSI case, however, a non-monotonic trend was found:

for small Pu, i.e., the low SNR regime, the energy efficiency Eu is

Eu =
ξu

Pu

(1.32)

≈
log2

(
1 + τβ2 P

2
uM
σ2

)
Pu

(1.33)

≈ τβ2PuM

σ2
, (1.34)

which increases with Pu and thus ξu; for large Pu, i.e., the high SNR regime,

the energy efficiency Eu is

Eu ≈
log2

(
τβ2 P

2
uM
σ2

)
Pu

(1.35)

∼ log2 Pu

Pu

, (1.36)

which decreases with Pu and ξu. A similar non-monotonic trade-off trend was

found in the multi-cell systems, where pilot contamination was also shown to

significantly degrade performance.
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In [147], the downlink energy efficiency was analyzed in a single-cell

setup: conjugate beamforming outperforms ZF beamforming in the operation

point of high spectrum efficiency and low energy efficiency, while the converse

is true for high energy efficiency and low spectral efficiency.

In terms of circuit power consumption, full digital beamforming, which

requires one RF chain per antenna, can be power consuming when the num-

ber of antennas is large [110, 81, 46]. Therefore, to reduce the circuit power

consumption, more energy-efficient hardware design has been proposed in

[110, 23, 81, 107, 99, 46, 142]. One approach is to use fewer RF chains than

the antennas, and apply hybrid beamforming at massive MIMO base stations

[23, 81, 107, 110]. Another approach is to apply low resolution analog-to-

digital convertor (ADC), e.g. one-bit ADC [99, 46, 142], at receivers in the

uplink to save the power due to analog-to-digital sampling.

1.3.4 Field Measurement

The performance of massive MIMO systems has been examined by pro-

totypes and measurements in real environments [56, 57, 63, 109, 127]. In [127],

a massive MIMO base station prototype called Argos was equipped with 64

antennas and capable of serving 15 users simultaneously. Experiments showed

that Argos prototype can achieve up to 6.7 fold capacity gain using 1
64

-th

of transmission power, compared with the system with a single antenna at

base stations. In [57], 2.6 GHz measurement campaigns were performed using

a uniform circular array and a uniform linear array, each with 128 antenna
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ports, at base station side on the campus of Lund University, Sweden. The

measurement showed better orthogonality between channels can be achieved

using larger antenna arrays, when the users are NLOS or LOS with sufficient

spatial separations. LOS channels with closed located users, however, were

shown to have the worst orthogonality. This indicates that minimum separa-

tion between users in angle space should be guaranteed when scheduling LOS

users. In [109], spatial correlation between base station antennas was mea-

sured using a 128 virtual uniform linear array with half-wavelength spacing at

2.6 GHz. While high correlations were observed between neighbouring anten-

nas in both LOS and NLOS links, NLOS links generally have less variance in

the correlation level.

Despite the difference between the measured channels and IID Rayleigh

channels, prior work confirmed that measured channels achieve a large faction

of the theoretical performance gains [56, 57, 109, 63]. For example, in [57],

with 128 antennas, measured channels achieve roughly 90% of the channel

capacity in IID fading channels in the NLOS links, and about half of the

channel capacity in the worst case when users are LOS and closely located.

1.3.5 Channel Model

Based on the measurement results, channel modeling compromises trade-

offs between the tractability and accuracy. In this section, I will focus on the

analytical channel models that emphasize more on the tractability in analysis,

while potential channel models for industrial massive MIMO simulations can
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be found, e.g. in [49] for the WINNER+ model, [84] for the COST 2000 model,

[2] for the 3GPP 3D MIMO channel model, and [156] for a survey.

One property that most analytical massive MIMO models assume is

asymptotic orthogonality, which I define mathematically as follows.

Definition 1.3.1. Channel vectors h1 and h2 are asymptotically orthogonal

to each other, in terms of their dimension M , if the following limit holds in

certain senses, e.g. in probability or almost surely, as

lim
M→∞

h∗1h2

|h1||h2|
= 0. (1.37)

IID fading channel model One simple yet commonly used model in

the analysis is the IID Rayleigh fading model [90], where the channel vector h`

follows the distribution CN(0, β`IM), and the constant β` is the large-scale path

loss in the `-th link. As shown in Lemma 1.2.1, the IID Rayleigh fading model

satisfies the property of asymptotic orthogonality. The IID fading channel

models an ideal propagation environment, where the correlations in small-

scaling fading is ignored.

Correlated fading channel model To model the correlated fading

case, due to spatial correlations and mutual coupling, a Kronecker channel

model has been used in the analysis [64], where the channel vector h` is mod-

eled as

h` = (β`)
1/2 Φ

1/2
` w`, (1.38)
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where β` is for large-scale path loss, Φ` ∈ CM×M is the covariance matrix

of small-scale fading, and w` is a random vector following the distribution

CN(0, IM). In this section, for ease of illustration, I denote the singular value

decomposition of the Φ` as

Φ` = U∗`Λ`U`, (1.39)

where the matrix Λ` ∈ RM×M is a real diagonal matrix containing the singular

values, and the m-th singular value is denoted as λ`[m] ≥ 0. In addition, I

assume the matrix Φ` is normalized such that its trace

Tr (Φ`) =
M∑
m=1

λ`[m] = M. (1.40)

One example for the covariance matrix Φ` is the exponential correlation

model [85]. In the exponential correlation model, for m, ` ∈ [1,M ], the (m, k)-

th of the matrix Φ` is defined as

Φ`[m, k] = ρ
|m−k|
` , (1.41)

where ρ` ∈ C represents the correlation coefficient of fading between neigh-

bouring antennas, and |ρ`| ∈ [0, 1).

In [150, 4], another model based on angular spread was used to char-

acterize the the covariance matrix as

Φ` = Eθ` [α(θ`)α
∗(θ`)] , (1.42)

where α(·) ∈ CM×1 is the steering vector of the base station antenna array, θ`

represents the angle of arrival for the `-th link, and the expectation is taken
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over the angular power spectrum to account for the angle spread. Specifically,

in [150, 4] considers the case of uniform linear arrays with a single path: the

steering vector α(·) is assumed to be

α(θ) =
[
1, e−j2π

d sin(θ)
dc , e−j4π

d sin(θ)
dc , ...e−j2(M−1)π

d sin(θ)
dc

]′
, (1.43)

where dc is the wavelength at the carrier frequency, and d is the antenna

spacing; the angular power spectrum is assumed to have a uniform distribution

over a finite support [θc − δ, θc + δ] ⊂ [0, π], where δ is the maximum angle

spread. In addition, with uniform planar arrays, the 3D covariance matrix

was shown to be well approximated by a Kronecker production of azimuth

and elevation correlations in [151].

Depending on the structure of the covariance, correlated fading chan-

nels in 1.39 need not satisfy the asymptotic orthogonality property. One suf-

ficient condition to guarantee the asymptotic orthogonality is given in the

following theorem.

Theorem 1.3.1. For ` = 1, 2, if channel vector ` is modelled in 1.39, and the

mean square of the eigenvalues of Φ` is uniformly bounded:

lim sup
M

∑M

m=1
λ2
` [m]/M <∞, (1.44)

then the asymptotic orthogonality property in (1.37) is satisfied; as

lim
M→∞

h∗1h2/M
p.
= 0, (1.45)

and

lim
M→∞

h∗`h`/M
p.
= β`. (1.46)
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The constraint in (1.44) is satisfied by the exponential correlation model

in (1.41)[34], and the angle spread model in (1.42) with certain conditions on

the angle spread range δ [4].

LOS channel model To model the extreme case with strong corre-

lations, e.g. in a LOS link with no reflected paths, a LOS channel model

has been proposed in [105, 91], where the channel vector h` is modelled by a

determinist steering vector as

h` = β`α`, (1.47)

where α` is often assumed to be the steering vector of a uniform linear array as

defined in (1.43) [105, 91]. For LOS channel models with uniform linear arrays,

one sufficient condition to achieve the asymptotic orthogonality is provided in

the following theorem.

Theorem 1.3.2. [From [105]] Let α(·) be the steering vector of a uniform

linear array, and for ` = 1, 2, θ` is the angle of arrival in the `-th link. If

sin(θ`) is IID uniformly distributed in [−1, 1], then the asymptotic orthogonality

is achieved as

lim
M→∞

α(θ1)∗α(θ2)

M

p.
= 0. (1.48)

Note that the asymptotic orthogonality is not always achieved in LOS

channels. In [105], one counter example was provided: when | sin(θ1)−sin(θ2)| =

1/M ,

lim
M→∞

α(θ1)∗α(θ2)

M
=

2j

π
. (1.49)
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Intuitively, the asymptotic orthogonality can be achieved only when two LOS

channels are not aligned in the angular space.

Non-stationary channel models In massive MIMO systems, the

dimension of the antenna array can be non-negligible compared with the link

length, and such near-field effect are captured by the non-stationary channel

models [143, 144, 79]. In [143, 144], the spherical wavefront at the large-scale

array was modelled by an ellipse model, and the dynamics of the clusters is

modelled by a birth and death process. In [79], the concept of visible region was

applied to model the phenomenon that certain clusters are observed only by a

fraction of the antennas in a large-scale array. Besides, the impact of channal

aging, i.e., the non-stationarity in the time domain, was examined in [136],

where the dynamics are modelled by an autoregressive series, and algorithms

for channel prediction were also proposed to overcome channel aging.
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1.4 MmWave channel statistics

The mmWave frequency ranging from 30 GHz to 300 GHz, has recently

drawn great interest as a new carrier frequency for access channels in 5G

cellular networks [112, 120, 17, 42]. Compared with the bandwidth-limited

conventional spectrum below 6 GHz, mmWave can potentially provide several

gigahertz bandwidths to solve the spectrum gridlock in cellular networks [112,

120]. Extensive measurements were conducted to have a better understanding

of mmWave, e.g. see [113, 119, 120, 121] and the references therein. Though

mmWave channels are dependent on site-specific environment features [119,

120], important statistics of mmWave access channels, such as the path loss

laws, penetration loss, and multi-path statistics, have been derived from the

measurements. In this section, we summarize the measurement results and

highlight observations that we believe are important for developing analytical

models to predict performance in mmWave cellular systems.

1.4.1 Penetration Loss

The penetration losses for mmWave signals through common materials

were tested at 28 GHz [113], 40 GHz [113, 8], and 60 GHz [15, 75]. The mea-

surements indicate that the penetration loss depends much on the materials:

a substantial penetration loss is observed through common materials for outer

walls of buildings, e.g. ¿170 dB loss through 10 cm thick brick or concrete

walls [8], which indicates separate systems for indoor and outdoor coverage in

mmWave bands; for the typical materials for inner walls, the penetration loss
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at mmWave frequencies is similar to that in sub-6 GHz, e.g. the penetration

loss through a 2.5 cm dry wall goes 5.4 dB at 2.5 GHz to 6.0 dB at 60 GHz

[112], which motivates the deployment of indoor mmWave WLAN systems.

Besides buildings, mmWave signals are also attenuated by human body

and trees. At mmWave frequencies, the penetration loss through human body

is as high as 20-40 dB [86, 113], which increases the outage probability in

mmWave cellular systems [32]. Measurements show that the foliage blocking

the direct link can adds an attenuation loss of several dB [117, 102], which can

be an important issue in the link budget.

1.4.2 Large-scale Path Loss

The path loss (in dB scale) in a link of length d can be modeled by the

log-distance model with a close-in free space path loss as:

PL(d) = PL(d0) + 10α log10

(
d

d0

)
+Xσ, (1.50)

where PL(d0) is the close-in free space path loss, α is the path loss exponent,

and Xσ is a random variable for log-normal shadowing. The close-in path loss

PL(d0) can be computed by the Friis’s equation as

PL(d0) = 10 log10

(
4πd0fc
vc

)
, (1.51)

where fc is the carrier frequency, vc is the speed of light, and the close-in

distance is taken as d0 = 1 meter in [121]. Note that the close-in path loss

PL(d0) increases with the carrier frequency. When isotropic dipole antennas
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are applied at both the transmitter and receiver, a mmWave signal at 30 GHz

suffers a 20 dB free space path loss than that in the 3 GHz. Such difference

in the path loss between mmWave and lower frequency is made up from the

directivity gain of large antenna arrays. [112, 120].

Due to the existence of blockages in the direct path, measurements

reveals different path loss laws for the LOS and NLOS links. In a LOS link,

the path loss exponent αL is found to be αL = 2 in extensive measurements

using directional antennas[121, 119, 113]. The LOS mmWave signals transmit

as in the free space, as the direct path is less likely to be affected by the

nearby obstacles, due to the smaller size of the Fresnel zone at mmWave. In

the NLOS links, the path loss exponent depends on the environments, but is

consistently larger than the LOS. In [121], based on measurements in the New

York and Austin city, the NLOS path loss exponent was found to be αN = 4.5

in Manhattan at 28 GHz, αN = 3.3 in Manhattan at 38 GHz, and αN = 4.7 in

Manhattan at 73 GHz. Note that the exponent αN depends on the scattering

environment and the antenna beam width [118, 119, 120]. The reason is that

the strength of the reflected signals depends on how much energy impinges on

the scatterer and the type of scatterer. For example, when the antenna beam

width varies from 7.8◦ to 49.4◦, the NLOS path loss exponent decreases from

3.88 to 3.18 at 38 GHz [119], as more reflected signal power is expected to be

received with an antenna with wider beam width. In addition, the shadowing

variance also differs in the LOS and NLOS links, e.g. the variance is 1.1 dB

for LOS, and 10.0 dB for NLOS in the 28 GHz Manhattan measurement [121].
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1.4.3 Multi-path Effect and Small-scale Fading

Measurements show that a mmWave channel has fewer multi-path com-

ponents than a sub-6 GHz channel, which is often called as the channel sparsity.

For instance, the average number of multi-path components was found to be

approximately 5 at 28 GHz and 3 at 73 GHz in the Manhattan area [121],

while 15 clusters of components are assumed for sub-6 GHz channel in urban

areas in the 3GPP and WINNER model [49]. Thanks to the sparsity in the

multi-paths, compressed sensing based algorithms have been applied to esti-

mate the channels and design beamforming, e.g. [36, 12]. Besides, due to the

channel sparsity, small-scale fading has a minor impact on mmWave signals,

compared with the Rayleigh fading in the sub-6 GHz channel. The results also

indicate high spatial correlation in the mmWave channel and little change in

received power due to small-scale fading when highly directional antennas at

both the receiver and transmitter are pointing towards the boresight direction

[120].

The multi-path components come with different time delays and arrival

angles. We introduce the temporal and spatial statistics of the multi-path

components as follows.

Delay spread Delay spread measures the difference in the arrival time of

multi-paths. One commonly used metric for delay spread is the root-mean-

square (RMS) delay spread, which is the empirical standard deviation of the

delays for the measured multi-path components. Due to the high path loss at
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higher frequencies, mmWave signals generally have smaller delay spread than

the sub-6 GHz signals. Of course, the symbol period is much smaller due to

the larger bandwidth in mmWave systems, so the smaller delay spread may

still create intersymbol interference that requires equalization at the receiver.

The delay spread is revealed to be much dependent on the scattering

environment. For instance, the delay spread was found to be larger in the

New York city than in Austin, due to the more reflective environment [121].

The use of directional beamforming at the transmitter and receiver further

reduces the effect of delay spread by focusing on fewer paths which arrives

within the narrow beamwidth. In a LOS link, the delay spread is negligible

with beam alignment on the boresight direction, and around 50 ns in the case

of misalignment [119, 121]. The delay spread can be larger in the NLOS case,

e.g. an average of around 10 ns at 73 GHz, even when the beams are aligned to

the strongest signal direction. In additional, the results in [119] also illustrate

that the delay spread may decrease with the distance between the transmitter

and receiver, as fewer dominant paths arrive due to the high path loss as the

transmitter-receiver separation increases.

Angle spread Measurements show that the energy of mmWave signals gen-

erally concentrates in a few principle angles of arrival (AoAs) and angles of

departure (AoDs) directions [121]. Due to the scattering at the surface of the

reflectors, the energy also spreads around those principle angles with certain

spread, which is measured by the RMS angle spread [75]. Therefore, in the
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angular space, the energy arrives and departs in a few spatial lobes as plotted

in [120, 121]. For instance, the average angle spread (width) for a spatial lobe

was 6.8◦ at 28 GHz and 3.7◦ at 73 GHz in the New York city measurements

[121].

The angle spread increases and becomes more variable as the height of

the receiver decreases [119, 120]. The smaller angle spread at the BSs indi-

cates that future mmWave base stations may benefit from an adaptive array

composed of a large number of antennas with somewhat narrow beamwidths

[119]. Because of the larger angle spread at the receiver, it was suggested in

[113] that a relatively wider beam antenna be deployed at the mobile station

to capture more power.

1.4.4 Implications on MmWave System Design

Based on the channel statistics from measurements, we conclude with

the following implications on the design and analysis of mmWave cellular sys-

tems.

• Indoor-outdoor penetration: With more than 170 dB penetration losses,

the outer walls of certain buildings seems impenetrable for mmWave

signals. Therefore, fast handover techniques between indoor and outdoor

base stations are essential to guarantee the seamless coverage.

• Body and foliage blocking: One potential solution to overcome them is

by exploiting macro-diversity, e.g. connecting to multiple base stations
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to allow fast switch to unblocked links.

• Path loss: Different path loss laws should be applied to LOS and NLOS

paths. The parameters of the models should be selected based on the

specific environment, the carrier frequency, and the antenna beamwidth

deployed in the system.

• Channel sparsity: MmWave channels are sparse in terms of multi-paths.

Such sparsity should be leveraged to design channel estimation and

beamforming algorithms. Analytical tools, e.g. the virtual channel rep-

resentation model as introduced below, have been also developed to an-

alyze the performance in mmWave systems.

• Small-scale fading: The Rayleigh fading model does not apply to mmWave

systems using directional beamforming. In mmWave analysis, it is rea-

sonable to neglect the small-scale fading when the directional antennas at

both base stations and mobile station are appropriately steered. Another

popular approach is to assume a general Nakagami small-scale fading,

with parameters determined from the environment.

• Angle spread: As angle spread tends to be larger at the mobile stations

than the base stations, a wider beam antenna array should be deployed

at the mobile stations.
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1.5 MmWave Signal Processing

Deploying large antenna arrays at the base stations and mobile stations

is a key feature of mmWave cellular systems. Due to the use of large numbers of

antennas and the constraints on hardware and power consumption, mmWave

systems will deploy different transceiver architectures from the conventional

MIMO transceivers at sub-6 GHz frequencies. Therefore, new MIMO signal

processing techniques are required to enable mmWave commutations. In this

section, we first explain how the hardware and power constraints renders differ-

ent MIMO transceiver architectures in mmWave bands in Section 1.5.1. Then,

we briefly introduce the signal processing techniques related to two types of

potential architectures for mmWave: analog beamforming in Section 1.5.2,

hybrid precoding in Section 1.5.3, and receivers with low resolution analog-to-

digital converters (ADCs) in Section 1.5.4, based on the survey paper [122].

Finally, we summarize the implication of those signal process techniques to

mmWave system performance in Section 1.5.5.

1.5.1 Constraints for MmWave Architectures

In conventional cellular systems below 6 GHz, the MIMO precessing is

mostly considered to be performed in the digital baseband, e.g. the massive

MIMO system introduced in Section 1.3. Compared with signal processing in

the analog domain, digital signal processing enables a full control over both

the amplitudes and phases of the entries in the precoding/combining matri-

ces, which facilitates the implementation of sophisticated signal processing
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Figure 1.2: Transceiver architecture using digital precoding/combining. We
illustrate the downlink transmission case as an example. Fully digital signal
processing requires dedicating one RF chain per antennas.

algorithms. As shown in Fig. 1.2, however, fully digital MIMO processing

requires that the transceiver dedicates an radio-frequency (RF) chain per an-

tenna. Besides, in the Sub-6 GHz systems, the analog-to-digital quantization

error tends to be a minor issue, as high-resolutions ADCs are generally as-

sumed. With large numbers of antennas, mmWave cellular systems will not

afford to deploy the transceiver architecture with full digital processing, due

to the high cost and power consumption of mixed-signal components in the

RF chains [52, 131, 101]. Therefore, alternative transceiver architectures have

been proposed for mmWave systems [131, 52, 95, 11, 93].

One solution to address the hardware and power constraints in mmWave

systems is to apply an analog/hybrid architecture that requires fewer RF

chains than the antennas, and perform (part) of MIMO processing using low-

cost and power-saving analog components [52, 11, 93]. Another approach is
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to apply low-resolution ADCs, e.g. the ADCs with one-bit output, instead of

the high-resolution ones that constitute as a main source of power consump-

tion due to the high sampling rate required by the large mmWave bandwidth

[131, 95]. We will introduce these mmWave transceiver architectures in the

subsequent sections.

1.5.2 Analog Beamforming

+

+

+

RF Chain

+

+

+

Analog

M

Figure 1.3: Analog transceiver architecture. Only one RF chain is required,
as signal processing is performed entirely in the analog domain.

Analog beamforming is performed entirely in the analog domain, which

requires only one RF chain. Due to its simplicity, it is the defacto approach

in the IEEE 802.11ad standard [68]. As shown in Fig. 1.3, one common con-

figuration to implement analog beamforming is using a network of connected

phase shifters [122]. According to the channel state information, the weights
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of the phase shifters can be tuned to shape and steer the beams and maximize

certain performance metrics, e.g. the SNR of the received signal. With ana-

log architecture, channel state information can be obtained via beam training

with pre-designed codebooks [68, 141, 67].

Compared with digital beamforming, the performance of analog beam-

forming is limited, as the amplitudes of the phase shifts are constrained to be

constant, and their phases can only take values from certain quantized val-

ues. More importantly, with only one RF chain, analog beamforming does

not extend to transmit multiple streams or serve multiple users simultane-

ously. Therefore, the hybrid precoding/combining solution that use multiple

RF chains (but fewer than antennas) has been proposed to overcome the limit

of analog beamforming, as discussed in the next section.

1.5.3 Hybrid Analog/digital Architecture
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Figure 1.4: Hybrid architecture for mmWave transceivers. The number of the
RF chains L should be no smaller than the number of data stream Ns, but
smaller than the number of antennas M .
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Hybrid analog/digital architectures divide the MIMO processing be-

tween analog and digital domain as illustrated in Fig. 1.4 [155, 52, 61, 93].

The number of RF chains L ranges between the number of data streams Ns

and the number of antennas M , as a tradeoff between the hardware complex-

ity and system performance. With L > 1 RF chains, the hybrid architecture

allows the implementation of spatial multiplexing and multi-user MIMO.

In the hybrid architecture, the analog processing can be implemented

using a network of analog components like phase shifts [52, 9], switches [93],

or lens [43]. The phase shifters can be digitally controlled to provide out-

puts of quantized phase shifts, which can be applied to improve the preci-

sion in the analog processing. With a network of phase shifters, the RF

precoder/combiner can be designed to approach the unconstrained (digital)

solution [52, 9]. Using a network of switchers, antenna selection algorithms

can be realized that have an even lower hardware complexity and power con-

sumption than the phase shifters [93]. The analog processing can also be

realized using lens that equivalent act as beamforming vectors with a DFT

structure by performing the spatial Fourier transform [43].

There are two types of hybrid structures: (i) full connection structure

[52, 9, 93] and (ii) sub-array structure [93]. In the full connection structure,

a RF chain is connected to all the antennas through the network of analog

components. In the second structure, the array are divided into sub-arrays,

and each sub-array is fed by its own RF chain. In brief, the sub-array structure

achieves a lower hardware complexity at the expense of less flexibility in the
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precoder/ combiner design [61].

The design of hybrid precoder/ combiner is more challenging than in

the digital domain. For one thing, the analog and digital precoding/ combining

matrices need to be jointly optimized under different conditions; for another,

similar to the analog beamforming case, the entries in the analog precoding/

combining matrices are subject to hardware constraints, e.g. having constant

magnitudes and quantized phases [52, 9, 13, 61, 107, 153]. Thanks to the

sparsity in the multi-path components, matching-pursuit based hybrid precod-

ing designs were proposed to minimize the difference from the unconstrained

(optimal) precoder [52, 9]. Other hybrid design approaches can be found in

[13, 93, 107, 153]. The hybrid architectures have been shown to perform close

to the constrained solutions with fully digital processing in mmWave systems

with less complexity and power [52, 9, 122, 93, 61, 107, 153].

Channel estimation using hybrid architectures will be much different

from the conventional approaches with fully digital processing, as training

data is sent through the analog precoder/ combiner, and the entries of the

channel vectors can not be accessed directly [122]. In mmWave systems, given

the sparsity in the multi-paths, one promising approach is to formulate channel

estimation as a sparse recovery problem that can be solved by the compressed

sensing algorithms [114, 9]. For instance, in [9], an adaptive compressed sens-

ing based approach was proposed for hybrid architectures: with multiple RF

chains, the beams in the channel estimation can be shaped to approximate

certain sector patterns to detect signals in the desired angular ranges, and
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the angular resolution of the codebooks in each step is adaptively adjusted to

reduce training overhead [9, 10].

1.5.4 Receivers With Low Resolution ADCs

Baseband 
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RF 
chain 

RF 
chain 

M 
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ADC 

One-bit 
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M Ns 

Figure 1.5: Receivers with low-resolution ADCs. Low-resolution ADCs, e.g.
those with one bit output, are applied to reduce power consumption.

Due to the large system bandwidth, mmWave receivers require a high

sampling rate for the ADCs. The high-rate high-resolution ADCs, however,

can be power-hungry, as the power consumption of ADCs increases with the

sampling rate and (exponentially) with the output bits [140]. To address

the power constraints, an alternative approach to reducing the number of RF

chains is to apply low-resolution ADCs at the receivers. For instance, one-bit
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ADCs have drawn great interests recently, due to their low cost and power

consumption [128, 96, 95].

With one-bit ADCs, channel capacity and the optimum constellation

become different from those assuming infinite-bit ADCs. For instance, channel

capacity will saturate to a constant at high SNR [96], while at low SNR, a

1.96 dB gap between one-bit and infinite bit ADCs was shown in [94, 95].

Moreover, channel estimation becomes even challenging with low-resolution

ADCs, as the information obtained from each measurement is limited by the

number of output bits. In [97], it showed that the number of measurements

can be effectively reduced by applying one-bit compressed sensing algorithms,

e.g. the GAMP algorithms [115], that leverage mmWave channel sparsity.

The extension from one-bit ADCs to few-bit ADCs that achieve better

performance at the expense of consuming more power is still an open problem.

Another interesting topic is to combine the hybrid precoding architecture with

low-resolution ADCs.

1.5.5 Implications on MmWave System Design

Now based on the discussion on mmWave signal processing, we sum-

marize some of their key implications on the system design and performance.

1. Deploying large antenna arrays at the transmitter and receiver is one key

feature of mmWave cellular systems. Due to the hardware and power

constraints, the MIMO transceiver architecture will be different from the

conventional systems that perform fully digital processing.
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2. Analog/ hybrid analog-digital precoding/ combining that uses (much)

fewer RF chains than the antennas are promising for mmWave cellular

systems. Due to the different transceiver architectures, the precoding/

combining and channel estimation in mmWave systems will differ from

those discussed in Section 1.3 for sub-6 GHz systems.

3. Leveraging the channel sparsity in multi-path components is essential to

reduce the complexity in the precoder/ combining design and overhead

in channel estimation in mmWave systems.

4. Due to the high sampling rate required by the large bandwidth, mmWave

receivers will likely to use ADCs with low resolutions. The impacts of

quantization errors on precoding, channel estimation, and system capac-

ity are yet to be fully understood.
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1.6 Summary of Contributions

In this dissertation, I analyze the SINR and rate performance in (single-

user) mmWave, sub-6 GHz massive MIMO, and mmWave massive MIMO

networks. Leveraging concepts from stochastic geometry, I establish analytical

frameworks that incorporate key features of these cellular networks. Analytical

expressions for the SINR and rate distributions are derived in each case. Key

design insights for 5G cellular networks are obtained based on the analytical

results. The main contributions in each chapter are summarized as follows.

1. Chapter 2: Analysis of MmWave Cellular Networks

In this chapter, I extend the sub-6 GHz stochastic geometry model to

mmWave cellular networks by incorporating key mmWave features: the

sensitivity to blockages and the use of large antenna arrays. Based on the

model, the SINR and rate distributions are analyzed as a function of the

beamforming parameters, base station density, and blockage parameters.

(a) I develop a stochastic geometry framework that incorporates mmWave

features. I use the concept of the LOS probability function, deter-

mined by the blockage parameters, to stochastically differentiate

LOS and NLOS links; I apply different path loss laws to LOS/

NLOS links to incorporate the blockage effect. I approximate the

beamforming pattern as a sectored antenna pattern to incorporate

directional beamforming into system-level analysis.
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(b) I derive analytical expressions for the SINR and rate in a downlink

mmWave cellular network. I show that the SINR coverage prob-

ability in mmWave networks is much sensitive to the base station

density, due to the blockage effects. In urban environments with

dense buildings, a high base station density is required to avoid

major coverage holes due to building blockages, and achieve an

comparable SINR coverage with the conventional networks. Due

to the large bandwidth at mmWave frequencies, the comparable

SINR translate into a large gain in rate over the sub-6 GHz cellular

networks.

(c) I demonstrate that with an increasing base station density, mmWave

networks will transit from power-limited regime into interference-

limited regime, where the boundary of the transition depends on

the bandwidth, building distributions, and beamforming parame-

ters (mainly beamwidth).

(d) I develop a LOS ball model to analyze the performance in dense

networks. I prove that over-densification of base stations need not

improve SINR, as increasing base station density also increases the

likelihood to be interfered by strong LOS interferers.

2. Chapter 3: Analysis of Uplink Massive MIMO Networks

In this chapter, I apply stochastic geometry to analyze the uplink SINR

and rate in a sub-6 GHz massive MIMO network. I incorporate pilot
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contamination, a limiting factor of massive MIMO, and fractional powre

control into the analysis. I consider the MRC and ZF receivers, and

derive the uplink SINR and rate distributions as a function of the number

of antennas and users per cell.

(a) I develop a tractable system model for uplink massive MIMO net-

works. To model the uplink topology, I incorporate the location

correlations between the scheduled users and base stations, which

make the exact analysis intractable, with a simple exclusion ball

model. I use numerical simulations to show that the proposed model

has a good characterization of the scheduled user process.

(b) I characterize the SINR distribution as a function of system pa-

rameters, mainly the number of antennas, the number of scheduled

users per cell, base station density, and noise power. I show in sim-

ulations that with large antenna arrays at base stations, the uplink

in the typical urban micro-cell case tends to be interference-limited.

(c) I study the scaling law between number of antennas and scheduled

users per cell to maintain the uplink SIR distribution. I show that

for MRC receivers, the SIR distribution is unchanged, when the

number of antennas super-linearly scales with the number of users,

unless with full channel inversion in the power control; a linear scal-

ing law maintains the SIR distribution for ZF receivers, regardless

of the power control parameters.
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3. Chapter 4: Analysis of MmWave Massive MIMO Networks

In this chapter, I extend the system model in Chapter 3 to mmWave

frequencies, and analyze the performance of mmWave massive MIMO

networks. I study the SINR in the asymptotic regime, when the number

of antennas goes to infinity. I show that the asymptotic performance is

a good approximation of certain practical deployments, e.g. with more

than 256 antennas, when the base stations is densely deployed.

(a) I extend the sub-6 GHz massive MIMO to model mmWave massive

MIMO networks by incorporating the following features of mmWave

massive MIMO: (i) the low rank and deterministic LOS channel,

and (ii) directional beamforming at mobile stations.

(b) I compute the expressions in both the downlink and uplink, when

the number of antennas goes to infinity, and derive their distri-

butions. I use numerical simulations to show that when the base

station density is sufficiently dense, the SINR distribution approach

the derived asymptotic limit only with 256 antennas in certain cases.

(c) I show that in terms of cell throughput, the optimum choice of

carrier frequency for massive MIMO depends on the base station

density, where mmWave outperforms sub-6 GHz massive MIMO

with dense base station deployments; the reverse may be true, due

to blockage effect at mmWave, when the base stations are sparsely

located.
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1.7 Notation

I use the following notation throughout this dissertation: Bold lower-

case letters x are used to denote vectors, and bold upper-case letters X are

used to denote matrices. I use X[:, k] to denote the k-th row of matrix X, and

X† the pseudo-inverse of X. I use E to denote expectation, and P to denote

probability. CM×N is the M ×N -dimensional complex space. Other notation

will be defined where needed.
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Chapter 2

Analysis of MmWave Cellular Networks

2.1 Motivation and Related work

The large available bandwidth at mmWave frequencies makes them at-

tractive for fifth generation cellular networks [116, 112, 120]. The mmWave

band ranging from 30 GHz to 300 GHz has already been considered in various

commercial wireless systems including IEEE 802.15.3c for personal area net-

working [35], IEEE 802.11ad for local area networking [68], and IEEE 802.16.1

for fixed-point access links [69]. Recent field measurements reveal the promise

of mmWave signals for the access link (between the mobile station and base

station) in cellular systems [119, 120].

One differentiating feature of mmWave cellular communication is the

use of antenna arrays at the transmitter and receiver to provide array gain. As

the wavelength decreases, antenna sizes also decrease, reducing the antenna

aperture. For example, from the Friis free-space equation [59], a mmWave

signal at 30 GHz will experience 20 dB larger path loss than a signal at 3

GHz. Thanks to the small wavelength, however, it is possible to pack multiple

antenna elements into the limited space at mmWave transceivers [116]. With

large antenna arrays, mmWave cellular systems can implement beamforming
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at the transmitter and receiver to provide array gain that compensates for

the frequency-dependent path loss, overcomes additional noise power, and as

a bonus also reduces out-of-cell interference [112].

Another distinguishing feature of mmWave cellular communication is

the propagation environment. MmWave signals are more sensitive to blockage

effects than signals in lower-frequency bands, as certain materials like concrete

walls found on building exteriors cause severe penetration loss [8]. This indi-

cates that indoor users are unlikely to be covered by outdoor mmWave base

stations. Channel measurements using directional antennas [113, 119, 120]

have revealed another interesting behavior at mmWave: blockages cause sub-

stantial differences in the LOS paths and NLOS path loss characteristics. Such

differences have also been observed in prior propagation studies at ultra high

frequency bands (UHF) from 300 MHz to 3 GHz, e.g. see [1]. The differences,

however, become more significant for mmWave since diffraction effects are neg-

ligible [112], and there are only a few scattering clusters [6]. Measurements in

[113, 119, 120] showed that mmWave signals propagate as in free space with

a path loss exponent of 2. The situation was different for NLOS paths where

a log distance model was fit with a higher path loss exponent and additional

shadowing [119, 120]. The NLOS path loss laws tend to be more dependent

on the scattering environment. For example, an exponent as large as 5.76 was

found in downtown New York City [120], while only 3.86 was found on the UT

Austin campus [119]. The distinguishing features of the propagation environ-

ment need to be incorporated into the any comprehensive system analysis of
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mmWave networks.

The performance of mmWave cellular networks was simulated in prior

work [6, 5] using insights from propagation channel measurements [120]. In

[5], using the NLOS path loss law measured in the New York City, lower

bounds of the SINR distribution and the achievable rate were simulated in a 28

GHz pico-cellular system. In [6], a mmWave channel model that incorporated

blockage effects and angle spread was proposed and further applied to simulate

the mmWave network capacity. Both results in [6, 5] show that the achievable

rate in mmWave networks can outperform conventional cellular networks in the

ultra high frequency (UHF) band by an order-of-magnitude. The simulation-

based approach [5, 6] does not lead to elegant system analysis as in [18], which

can be broadly applied to different deployment scenarios.

Stochastic geometry is a useful tool to analyze system performance in

conventional cellular networks [18]. In [18], by modeling base station locations

in a conventional cellular network as a Poisson point process (PPP) on the

plane, the aggregate coverage probability was derived in a simple form, e.g.

a closed-form expression when the path loss exponent is 4. Moreover, the

stochastic model was shown to provide a lower bound of the performance in

a real cellular system [18]. There have been several extensions of the results

in [18], such as analyzing a multi-tier network in [50] and predicting the site-

specific performance in heterogeneous networks in [62]. It is not possible to

directly apply results from conventional networks to mmWave networks due

to the different propagation characteristics and the use of directional beam-
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forming. There has been limited application of stochastic geometry to study

mmWave cellular networks. The primary related work was in [7], where di-

rectional beamforming was incorporated for single and multiple user configu-

rations, but a simplified path loss model was used that did not take mmWave

propagation features into account.

A systematic study of mmWave network performance should incorpo-

rate the impact of blockages such as buildings in urban areas. One approach is

to model the blockages explicitly in terms of their sizes, locations, and shapes

using data from a geographic information system. This approach is well suited

for site-specific simulations [126] using electromagnetic simulation tools like

ray tracing [135]. An alternative is to employ a stochastic blockage model,

e.g. [55, 30], where the blockage parameters are drawn randomly according

to some distribution. The stochastic approach lends itself better to system

analysis and can be applied to study system deployments under a variety of

blockage parameters such as size and density.

2.2 Contributions

The main contribution of this chapter is to propose a stochastic ge-

ometry framework for analyzing the coverage and rate in mmWave cellular

networks. As a byproduct, the framework also applies to analyze heteroge-

nous networks in which the base stations are distributed as certain non-

homogeneous PPPs. We incorporate directional beamforming by modeling

the beamforming gains as marks of the base station PPPs. For tractability
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of the analysis, the actual beamforming patterns are also approximated by a

sectored model, which characterizes key features of an antenna pattern: di-

rectivity gain, half-power beamwidth, and front-back ratio. A similar model

was also employed in work on ad hoc networks [66]. To incorporate blockage

effects, we model the probability that a communication link is LOS as a func-

tion of the link length, and provide a stochastic characterization of the region

where a user does not experience any blockage, which we define as the LOS

region. Applying the distance-dependent LOS probability function, the base

stations are equivalently divided into two independent non-homogenous point

processes on the plane: the LOS and the NLOS base station processes. Dif-

ferent path loss laws and fading are applied separably to the LOS and NLOS

case. Based on the system model, expressions for the SINR and rate coverage

probability are derived in general mmWave networks. To simplify the analy-

sis, we also propose a systematic approach to approximate a complicated LOS

function as its equivalent step function. Our analysis indicates that the cover-

age and rate are sensitive to the density of base stations and the distribution of

blockages in mmWave networks. It also shows that dense mmWave networks

can generally achieve good coverage and significantly higher achievable rate

than conventional cellular networks.

A simplified system model is proposed to analyze dense mmWave net-

works, where the infrastructure density is comparable to the blockage density.

For a general LOS function, the LOS region observed by a user has an irregular

and random shape. Coverage analysis requires integrating the SINR over this
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region [26]. We propose to simplify the analysis by approximating the actual

LOS region as a fixed-sized ball called the equivalent LOS ball. The radius

of the equivalent LOS ball is chosen so that the ball has the same average

number of LOS base stations in the network. With the simplified network

model, we find that in a dense mmWave network, the cell radius should scale

with the size of LOS region to maintain the same coverage probability. We

find that continuing to increase base station density (leading to what we call

ultra-dense networks) does not always improve SINR, and the optimal base

station density should be finite.

Compared with our prior work in [26], this chapter provides a general-

ized mathematical framework and includes the detailed mathematical deriva-

tions. The system model applies for a general LOS probability function and

includes the impact of general small-scale fading. We also provide a new ap-

proach to compute coverage probability, which avoids inverting the Fourier

transform numerically and is more efficient than prior expressions in [26].

Compared with our prior work in [31], we also remove the constraint that

the LOS path loss exponent is 2, and extend the results in [31] to general path

loss exponents, in addition to providing derivations for all results, and new

simulation results.

This chapter is organized as follows. We introduce the system model in

Section 2.3. We derive expressions for the SINR and rate coverage in a general

mmWave network in Section 2.4. A systematic approach is also proposed to

approximate general LOS probability functions as a step function to further
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simplify analysis. In Section 2.5, we apply the simplified system model to

analyze performance and examine asymptotic trends in dense mmWave net-

works, where outdoor users observe more than one LOS base stations with

high probability. Finally, conclusions are provided in Section 2.7.

2.3 System Model

(a) System model for mmWave cellu-
lar networks

Mm
θ

(b) Sectored model to approximate
beamforming patterns.

Figure 2.1: In (a), we illustrate the proposed system model for mmWave
cellular networks. Blockages are modeled as a random process of rectangles,
while base stations are assumed to be distributed as a Poisson point process on
the plane. An outdoor typical user is fixed at the origin. The base stations are
categorized into three groups: indoor base stations, outdoor base stations that
are LOS to the typical user, and outdoor base stations that are NLOS to the
user. Directional beamforming is performed at both base stations and mobile
stations to exploit directivity gains. In (b), we illustrate the sectored antenna
model GM,m,θ(φ), which is used to approximate the beamforming patterns.

In this section, we introduce our system model for evaluating the per-

formance of a mmWave network. We focus on downlink coverage and rate

experienced by an outdoor user, as illustrated in Fig. 2.1(a). We make the

following assumptions in our mathematical formulation.
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Assumption 2.3.1 (Blockage process). The blockages, typically buildings in

urban areas, form a process of random shapes, e.g. a Boolean scheme of rect-

angles [30], on the plane. We assume the distribution of the blockage process

to be stationary and isotropic - in other words - invariant to the motions of

translation and rotation [24, Chapter 10].

Assumption 2.3.2 (PPP BS). The base stations form a homogeneous PPP

Φ̃ with density λ̃ on the plane. Note that a base station can be located either

inside a blockage or outside a blockage. In this chapter, however, we will focus

on the SINR and rate provided by the outdoor base stations as the blockages are

assumed to be impenetrable. Let Φ = {X`} be the point process of outdoor base

stations, X` the `-th outdoor base station, and R` = |OX`| denote the distance

from `-th base station to the origin O. Define τ as the average fraction of

the land covered by blockages, i.e., the average fraction of indoor area in the

network. Further, we assume the base station process Φ̃ is independent of the

blockage process. Therefore, each base station has an i.i.d. probability 1 − τ

to be located outdoor. By the thinning theorem of PPP [24], the outdoor base

station process Φ is a PPP of density λ = (1− τ)λ̃ on the plane. In addition,

all base stations are assumed to have a constant transmit power Pt.

Assumption 2.3.3 (Outdoor user). The users are distributed as a stationary

point process independent of the base stations and blockages on the plane. A

typical user is assumed to be located at the origin O, which is a standard ap-

proach in the analysis using stochastic geometry [18, 24]. By the stationarity

and independence of the user process, the downlink SINR and rate experienced
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by the typical user have the same distributions as the aggregate ones in the

network. The typical user is assumed to be outdoors. The indoor-to-outdoor

penetration loss is assumed to be high enough such that an outdoor user can

not receive any signal or interference from an indoor base station. Therefore,

the focus in this chapter is on investigating the conditional SINR and rate dis-

tribution of the outdoor typical user served by outdoor infrastructure. Indoor

users can be served by either indoor base stations or by outdoor base stations

operated at UHF frequencies, which have smaller indoor-to-outdoor penetra-

tion losses in many common building materials. We defer the extension to

incorporate indoor users to future work.

We say that a base station at X is LOS to the typical user at the origin

O if and only if there is no blockage intersecting the link OX. Due to the

presence of blockages, only a subset of the outdoor base stations Φ are LOS

to the typical user.

Assumption 2.3.4 (LOS and NLOS BS). An outdoor base station can be

either LOS or NLOS to the typical user. Let ΦL be the point process of LOS

base stations, and ΦN = Φ/ΦL be the process of NLOS base stations. Define

the LOS probability function p(R) as the probability that a link of length R is

LOS. Noting the fact that the distribution of the blockage process is stationary

and isotropic, the LOS probability function depends only on the length of the

link R. Also, p(R) is a non-increasing function of R; as the longer the link,

the more likely it will be intersected by one or more blockages. The NLOS

probability of a link is 1− p(R).
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The LOS probability function in a network can be derived from field

measurements [6] or stochastic blockage models [30, 55], where the blockage

parameters are characterized by some random distributions. For instance,

when the blockages are modeled as a rectangle boolean scheme in [30], it

follows that p(R) = e−βR, where β is a parameter determined by the density

and the average size of the blockages, and 1/β is what we called the average

LOS range of the network in [30].

For the tractability of analysis, we further make the following indepen-

dent assumption on the LOS probability; taking account of the correlations in

blockage effects generally makes the exact analysis difficult.

Assumption 2.3.5 (Independent LOS probability). The LOS probabilities

are assumed to be independent between different links, i.e., we ignore potential

correlations of blockage effects between links.

Note that the LOS probabilities for different links are not independent

in reality. For instance, neighboring base stations might be blocked by a

large building simultaneously. Numerical results in [30], however, indicated

that ignoring such correlations cause a minor loss of accuracy in the SINR

evaluation. Assumption 2.3.5 also indicates that the LOS base station process

ΦL and the NLOS process ΦN form two independent non-homogeneous PPP

with the density functions p(R)λ and (1−p(R))λ, respectively, where R is the

radius in polar coordinates.

Assumption 2.3.6 (Path loss model). Different path loss laws are applied to
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LOS and NLOS links. Given a link has length R, its path loss gain L(R) is

computed as

L(R) = I(p(R))CLR
−αL + (1− I(p(R))CNR

−αN , (2.1)

where I(x) is a Bernoulli random variable with parameter x, αL, αN are the

LOS and NLOS path loss exponents, and CL, CN are the intercepts of the LOS

and NLOS path loss formulas. Typical values of mmWave path loss exponents

and intercept constants are available in prior work, see e.g. [119, 120]. The

model could be further enhanced by including log-normal shadowing, but this

is deferred in our chapter to simplify the analysis.

Assumption 2.3.7 (Directional beamforming). Antenna arrays are deployed

at both base stations and mobile stations to perform directional beamforming.

For tractability of the analysis, the actual array patterns are approximated by a

sectored antenna model, which was used in prior ad hoc network analysis [66].

Let GM,m,θ(φ) denote the sectored antenna pattern in Fig. 1(b), where M is

the main lobe directivity gain, m is the back lobe gain, θ is the beamwidth of the

main lobe, and φ is the angle off the boresight direction. In the sectored antenna

model, the array gains are assumed to be constant M for all angles in the main

lobe, and another constant m in the side lobe in the sectored model. We let Mt,

mt, and θt be the main lobe gain, side lobe gain, and half power beamwidth of

the base station antenna, and Mr, mr, and θr the corresponding parameters for

the mobile station. Without loss of generality, we denote the boresight direction

of the antennas as 0◦. Further, let D` = GMt,mt,θt(φ
`
t)GMr,mr,θr(φ

`
r) be the total
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Table 2.1: Probability Mass Function of D` and D̄`

k 1 2 3 4

ak MrMt Mrmt mrMt mrmt

bk crct cr(1− ct) (1− cr)ct (1− cr)(1− ct)

ek Mr Mr/ξt mr mr/ξt

directivity gain in the link from the `-th base station to the typical user, where

φ`r and φ`t are the angle of arrival and the angle of departure of the signal.

Assumption 2.3.8 (User association). The typical user is associated with the

base station, either LOS or NLOS, that has the smallest path loss L(R`). The

serving base station is denoted as X0. Both the mobile station and its serving

base station will estimate channels including angles of arrivals and fading,

and then adjust their antenna steering orientations accordingly to exploit the

maximum directivity gain. Errors in channel estimation are neglected, and so

are errors in time and carrier frequency synchronizations in our work. Thus,

the directivity gain for the desired signal link is D0 = MrMt. For the `-th

interfering link, the angles φ`r and φ`t are assumed to be independently and

uniformly distributed in (0, 2π], which gives a random directivity gain D`.

By Assumption 2.3.7 and Assumption 2.3.8, the directivity gain in an

interference link D` is a discrete random variable with the probability distri-

bution as D` = ak with probability bk (k ∈ {1, 2, 3, 4}), where ak and bk are

constants defined in Table 2.1, cr = θr
2π

, and ct = θt
2π

.

Assumption 2.3.9 (Small-scale fading). We assume independent Nakagami

fading for each link. Different parameters of Nakagami fading NL and NN are

65



assumed for LOS and NLOS links. Let h` be the small-scale fading term on

the `-th link. Then |h`|2 is a normalized Gamma random variable. Further,

for simplicity, we assume NL and NN are positive integers. We also ignore

the frequency selectivity in fading, as measurements show that the delay spread

is generally small [120], and the impact of frequency-selective fading can be

minimized by techniques like orthogonal frequency-division multiplexing or fre-

quency domain equalization [59].

Measurement results indicated that small-scale fading at mmWave is

less severe than that in conventional systems when narrow beam antennas are

used [120]. Thus, we can use a large Nakagami parameter NL to approximate

the small-variance fading as found in the LOS case. Let σ2 be the thermal

noise power normalized by Pt. Based on the assumptions thus far, the SINR

received by the typical user can be expressed as

SINR =
|h0|2MrMtL(R0)

σ2 +
∑

`>0:X`∈Φ |h`|
2D`L(R`)

. (2.2)

Note that the SINR in (2) is a random variable, due to the randomness in the

base station locations R`, small-scale fading h`, and the directivity gain D`.

Using the proposed system model, we will evaluate the mmWave SINR and

rate coverage in the following section.

2.4 Coverage and Rate Analysis in General Networks

In this section, we analyze the coverage and rate in the proposed model

of a general mmWave network. First, we provide some SINR ordering results
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regarding different parameters of the antenna pattern. Then we derive ex-

pressions for the SINR and rate coverage probability in mmWave networks

with general LOS probability function p(R). To simplify subsequent analysis,

we then introduce a systematic approach to approximate p(R) by a moment

matched equivalent step function.

2.4.1 Stochastic Ordering of SINR With Different Antenna Ge-
ometries

One differentiating feature of mmWave cellular networks is the de-

ployment of directional antenna arrays. Consequently, the performance of

mmWave networks will depend on the adaptive array pattern through the

beamwidth, the directivity gain, and the back lobe gain. In this section, we

establish some results on stochastic ordering of the SINRs in the systems with

different antenna geometries. While we will focus on the array geometry at

the transmitter, the same results, however, also apply to the receiver array

geometry. The concept of stochastic ordering has been applied in analysis of

wireless systems [134, 51]. Mathematically, the ordering of random variables

can be defined as follows [134, 51].

Definition 2.4.1. Let X and Y be two random variables. X stochastically

dominates Y , i.e., X has a better distribution than Y , if P(X > t) > P(Y > t)

for all t ∈ R.

Next, define the front-to-back ratio (FBR) at the transmitter ξt as the

ratio between the main lobe directivity gain Mt and the back lobe gain mt,
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i.e., ξt = Mt/mt. We introduce the key result on stochastic ordering of the

SINR with respect to the directivity gains as follows.

Proposition 2.4.1 (Stochastic ordering w.r.t. directivity gains). Given a fixed

beamwidth θt and FBR ξt at the transmitter, the mmWave network with the

larger main lobe directivity gain Mt has a better SINR distribution. Similarly,

with fixed beamwidth θt and main lobe gain Mt, a larger FBR ξt provides a

better SINR distribution.

Proof. From Definition 2.4.1, we need to show that for each realization of base

station locations R`, small-scale fading h`, and angles φ`r and φ`t, the value of

the SINR increases with Mt and ξt. Given R`, h`, φ
`
r, and φ`r (` ∈ N), we can

normalize both the numerator and denominator of (2.2) by Mt, and then write

SINR = |h0|2MrL(R0)

σ2/Mt+
∑
`>0:X`∈Φ D̄`(ξt)|h`|

2L(R`)
, where D̄`(ξt) = ek with probability bk,

and bk, ek are constants defined in Table 2.1. Note that D̄`(ξt) is independent

of Mt, and is a non-increasing function of ξt. Hence, when ξt is fixed, larger

Mt provides larger SINR; when Mt is fixed, larger ξt provides larger SINR.

Next, we provide the stochastic ordering result regarding beamwidth

as follows.

Proposition 2.4.2 (Stochastic ordering w.r.t. beamwidth). Given a fixed

main lobe gain Mt and FBR ξt at the transmitter, a smaller beamwidth θt

provides a better SINR distribution.
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The proposition can be rigorously proved using coupling techniques.

We omit the proof here and instead provide an intuitive explanation as be-

low. Intuitively, with narrower main lobes, fewer base stations will transmit

interference to the typical user via their main lobes, which gives a smaller

interference power. The desired signal term in (2.2) is independent of the

beamwidth, as we ignore the channel estimation errors and potential angle

spread. Hence, based on our model assumptions, smaller beamwidths provide

a better SINR performance.

We note that the ordering result in Proposition 2.4.2 assumes that there

is no angle spread in the channel. With angle spread, a narrow-beam antenna

may capture only the signal energy arriving inside its main lobe, missing the

energy spread outside, which causes a gain reduction in the signal power [60].

Consequently, the results in Proposition 2.4.2 should be interpreted as applying

to the case where beamwidths are larger than the angle spread, e.g. if the

beamwidth is more than 55◦ per the measurements in [113]. We defer more

detailed treatment of angle spread to future work.

2.4.2 SINR Coverage Analysis

The SINR coverage probability Pc(T ) is defined as the probability that

the received SINR is larger than some threshold T > 0, i.e., Pc(T ) = P(SINR >

T ). We present the following lemmas before introducing the main results on

SINR coverage. By Assumption 2.3.4, the outdoor base station process Φ

can be divided into two independent non-homogeneous PPPs: the LOS base
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station process ΦL and NLOS process ΦN. We will equivalently consider ΦL

and ΦN as two independent tiers of base stations. As the user is assumed

to connect to the base station with the smallest path loss, the serving base

station can only be either the nearest base station in ΦL or the nearest one

in ΦN. The following lemma provides the distribution of the distance to the

nearest base station in ΦL and ΦN.

Lemma 2.4.1. Given the typical user observes at least one LOS base station,

the conditional probability density function of its distance to the nearest LOS

base station is

fL(x) = 2πλxp(x)e−2πλ
∫ x
0 rp(r)dr/BL, (2.3)

where x > 0, BL = 1 − e−2πλ
∫∞
0 rp(r)dr is the probability that a user has at

least one LOS base station, and p(r) is the LOS probability function defined in

Section 2.3. Similarly, given the user observes at least one NLOS base station,

the conditional probability density function of the distance to the nearest NLOS

base station is

fN(x) = 2πλx(1− p(x))e−2πλ
∫ x
0 r(1−p(r))dr/BN, (2.4)

where x > 0, and BN = 1− e−2πλ
∫∞
0 r(1−p(r))dr is the probability that a user has

at least one NLOS base station.

Proof. The proof follows [30, Theorem 10] and is omitted here.

Next, we compute the probability that the typical user is associated

with either a LOS or a NLOS base station.
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Lemma 2.4.2. The probability that the user is associated with a LOS base

station is

AL = BL

∫ ∞
0

e−2πλ
∫ ψL(x)
0 (1−p(t))tdtfL(x)dx, (2.5)

where ψL(x) = (CN/CL)1/αN xαL/αN. The probability that the user is associated

with a NLOS base station is AN = 1− AL.

Proof. See Section 2.8.2.

Further, conditioning on that the serving base station is LOS (or NLOS),

the distance from the user to its serving base station follows the distribution

given in the following lemma.

Lemma 2.4.3. Given that a user is associated with a LOS base station, the

probability density function of the distance to its serving base station is

f̂L(x) =
BLfL(x)

AL

e−2πλ
∫ ψL(x)
0 (1−p(t))tdt, (2.6)

when x > 0. Given the user is served by a NLOS base station, the probability

density function of the distance to its serving base station is

f̂N(x) =
BNfN(x)

AN

e−2πλ
∫ ψN(x)
0 p(t)tdt, (2.7)

where x > 0, and ψN(x) = (CL/CN)1/αL xαN/αL.

Proof. The proof follows a similar method as that of Lemma 2.4.2, and is

omitted here.
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Now, based on Lemma 2.4.2 and Lemma 2.4.3, we present the main

theorem on the SINR coverage probability as follows

Theorem 2.4.1. The SINR coverage probability Pc(T ) can be computed as

Pc(T ) = ALPc,L(T ) + ANPc,N(T ), (2.8)

where for s ∈ {L,N}, Pc,s(T ) is the conditional coverage probability given

that the user is associated with a base station in Φs. Further, Pc,s(T ) can be

evaluated as

Pc,L(T ) ≈
NL∑
n=1

(−1)n+1

(
NL

n

)
×
∫ ∞

0

e
−nηLx

αLTσ2

CLMrMt
−Qn(T,x)−Vn(T,x)

f̂L(x)dx, (2.9)

and

Pc,N(T ) ≈
NN∑
n=1

(−1)n+1

(
NN

n

)
×
∫ ∞

0

e
−nηNx

αNTσ2

CNMrMt
−Wn(T,x)−Zn(T,x)

f̂N(x)dx. (2.10)

where

Qn(T, x) = 2πλ
4∑

k=1

bk

∫ ∞
x

F

(
NL,

nηLākTx
αL

NLtαL

)
p(t)tdt, (2.11)

Vn(T, x) =2πλ
4∑

k=1

bk

∫ ∞
ψL(x)

F

(
NN,

nCNηLākTx
αL

CLNNtαN

)
(1− p(t))tdt, (2.12)
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Wn(T, x) =2πλ
4∑

k=1

bk

∫ ∞
ψN(x)

F

(
NL,

nCLηNākTx
αN

CNNLtαL

)
p(t)tdt, (2.13)

Zn(T, x) =2πλ
4∑

k=1

bk

∫ ∞
x

F

(
NN,

nηNākTx
αN

NNtαN

)
(1− p(t))tdt, (2.14)

and F (N, x) = 1− 1/(1 + x)N . For s ∈ {L,N}, ηs = Ns(Ns!)
− 1
Ns , Ns are the

parameters of the Nakagami small-scale fading; for k ∈ {1, 2, 3, 4}, āk = ak
MtMr

,

ak and bk are constants defined in Table 2.1.

Proof. See Section 2.8.3.

Though as an approximation of the SINR coverage probability, we find

that the expressions in Theorem 2.4.1 compare favorably with the simulations

in Section 2.6.1. In addition, the expressions in Theorem 2.4.1 compute much

more efficiently than prior results in [26], which required a numerical inverse

of a Fourier transform. Last, the LOS probability function p(t) may itself have

a very complicated form, e.g. the empirical function for small cell simulations

in [1], which will make the numerical evaluation difficult. Hence, we propose

simplifying the system model by using a step function to approximate p(t)

in Section 2.4.4. Before that, we introduce our rate analysis results in the

following section.
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2.4.3 Rate Analysis

In this section, we analyze the distribution of the achievable rate Γ in

mmWave networks. We use the following definition for the achievable rate

Γ = W log2(1 + min{SINR, Tmax}), (2.15)

where W is the bandwidth assigned to the typical user, and Tmax is a SINR

threshold determined by the order of the constellation and the limiting dis-

tortions from the RF circuit. The use of a distortion threshold Tmax is needed

because of the potential for very high SINRs in mmWave that may not be

exploited due to other limiting factors like linearity in the radio frequency

front-end.

The average achievable rate E[Γ] can be computed using the following

Lemma from the SINR coverage probability Pc(T ).

Lemma 2.4.4. Given the SINR coverage probability Pc(T ), the average achiev-

able rate in the network is E [Γ] = W
ln 2

∫ Tmax

0
Pc(T )
1+T

dT.

Proof. See [18, Theorem 3] and [7, Section V].

Lemma 2.4.4 provides a first order characterization of the rate distri-

bution. We can also derive the exact rate distribution using the rate coverage

probability PR(γ), which is the probability that the achievable rate of the typi-

cal user is larger than some threshold γ: PR(γ) = P[Γ > γ]. The rate coverage

probability PR(γ) can be evaluated through a change of variables as in the

following lemma.
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Lemma 2.4.5. Given the SINR coverage probability Pc(T ), for γ < W logN(1+

Tmax), the rate coverage probability can be computed as PR(γ) = Pc(2
γ/W − 1).

Proof. The proof is similar to that of [129, Theorem 1]. For γ < W logN(1 +

Tmax), it directly follows that PR(γ) = P
[
SINR > 2γ/W − 1

]
= Pc(2

γ/W −

1).

Lemma 2.4.5 will allow comparisons to be made between mmWave and

conventional systems that use different bandwidths, as presented in Section

2.6.1.

2.4.4 Simplification of LOS Probability Function

Actual LOS region

(a) Irregular shape of an acutal LOS
region.

RB

(b) Approximation using the equiva-
lent LOS ball.

Figure 2.2: Simplification of the random LOS region as a fixed equivalent
LOS ball. In (a), we illustrate one realization of randomly located buildings
corresponding to a general LOS function p(x). The LOS region observed by
the typical user has an irregular shape. In (b), we approximate p(x) by a step
function. Equivalently, the LOS region is also approximated by a fixed ball.
Only base stations inside the ball are considered LOS to the user.
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The expressions in Theorem 2.4.1 generally require numerical evalua-

tion of multiple integrals, and may become difficult to analyze. In this section,

we propose to simplify the analysis by approximating a general LOS probabil-

ity function p(t) by a step function. We denote the step function as SRB
(x),

where SRB
(x) = 1 when 0 < x < RB, and SRB

(x) = 0 otherwise. Essentially,

the LOS probability of the link is taken to be one within a certain fixed ra-

dius RB and zero outside the radius. An interpretation of the simplification

is that the irregular geometry of the LOS region in Fig. 2.2 (a) is replaced

with its equivalent LOS ball in Fig. 2.2 (b). Such simplification not only

provides efficient expressions to compute SINR, but enables simpler analysis

of the network performance when the network is dense.

We will propose two criterions to determine the RB given LOS proba-

bility function p(t). Before that, we first review some useful facts.

Theorem 2.4.2. Given the LOS probability function p(x), the average number

of LOS base stations that a typical user observes is ρ = 2πλ
∫∞

0
p(t)tdt.

Proof. The average number of LOS base stations can be computed as

ρ = E

[∑
X`∈Φ

I(X` ∈ ΦL)

]
(a)
= 2πλ

∫ ∞
0

p(t)tdt,

where (a) follows directly from Campbell’s formula of PPP [24].

A direct corollary of Theorem 2.4.2 follows as below.

Corollary 2.4.2.1. When p(x) = SR(x), the average number of LOS base

stations is ρ = πλR2.
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Note that Theorem 2.4.2 also indicates that a typical user will observe

a finite number of LOS base stations almost surely when
∫∞

0
p(t)tdt < ∞.

Hence, if p(x) satisfies
∫∞

0
p(t)tdt < ∞, the parameter RB in SRB

(x) can be

determined by matching the average number of LOS base stations a user may

observe.

Criterion 2.4.1 (Mean LOS BS Number). When
∫∞

0
p(t)tdt < ∞, the pa-

rameter RB of the equivalent step function SRB
(x) is determined to match the

first moment of ρ. By Theorem 2.4.2, it follows that RB =
(
2
∫∞

0
p(t)tdt

)0.5
.

In the case where
∫∞

0
p(t)tdt <∞ is not satisfied, another criterion to

determine RB is needed. Note that even if the first moment is infinite, the

probability that the user is associated with a LOS base station exists and is

naturally finite for all p(t). Hence, we propose the second criterion regarding

the LOS association probability as follows.

Criterion 2.4.2 (LOS Association Probability). Given a LOS probability

function p(t), the parameter RB of its equivalent step function SRB
(x) is de-

termined such that the LOS association probability AL is unchanged after ap-

proximation.

From Lemma 2.4.2, the LOS association probability for a step function

SRB
(x) equals 1− e−λπR

2
B . Hence, by Criterion 2.4.2, RB can be determined as

RB =
(
− ln(1−AL)

λπ

)0.5

.

Last, we explain the physical meaning of the step function approxi-

mation as follows. As shown in Fig. 2.2(a), with a general LOS probability
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function p(x), the buildings are randomly located, and thus the actual LOS

region observed by the typical user may have an unusual shape. Although it is

possible to incorporate such randomness of the size and shape by integrating

over p(t), the expressions with multiple integrals can make the analysis and

numerical evaluation difficult [26]. In Fig. 2.2(b), by approximating the LOS

probability function as a step function SRB
(x), we equivalently approximate

the LOS region by a fixed ball B(0, RB), which we define as the equivalent

LOS ball. As will be shown in Section 2.5, approximating p(x) as a step func-

tion enables fast numerical computation, simplifies the analysis, and provides

design insights for dense network. Besides, we will show in simulations in Sec-

tion 2.6.1 that the error due to such approximation is generally small in dense

mmWave networks, which also motivates us to use this first-order approxima-

tion of the LOS probability function to simplify the dense network analysis in

the following section.

2.5 Analysis of Dense mmWave Networks

In this section we specialize our results to dense networks. This ap-

proach is motivated by subsequent numerical results in Section 2.6.1 that show

mmWave deployments will be dense if they are expected to achieve significant

coverage. We derive simplified expressions for the SINR and provide further

insights into system performance in this important asymptotic regime.
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2.5.1 Dense Network Model

In this section, we build the dense network model by modifying the

system model in Section 2.3 with a few additional assumptions. We say that a

mmWave cellular network is dense if the average number of LOS base stations

observed by the typical user ρ is larger than K, or if its LOS association

probability AL is larger than 1 − ε, where K and ε are pre-defined positive

thresholds. In this chapter, for illustration purpose, we will let K = 1 and

ε = 5%. Further, we say that a network is ultra-dense when ρ > 10. Note that

ρ also equals the relative base station density normalized by the average LOS

area, in this special case, as we will explain below.

Now we make some additional assumptions that will allow us to further

simplify the network model.

Assumption 2.5.1 (LOS equivalent ball). The LOS region of the typical user

is approximated by its equivalent LOS ball B(0, RB) as defined in Section 2.4.4.

By Assumption 2.5.1, the LOS probability function p(t) is approxi-

mated by its equivalent step function SRB
(x), and the LOS base station pro-

cess ΦL is made up of the outdoor base stations that are located inside the

LOS ball B(0, RB). Noting that the outdoor base station process Φ is a ho-

mogeneous PPP with density λ, the average number of LOS base stations is

ρ = λπR2
B, which is the outdoor base station density times the area of the LOS

region. For ease of illustration, we call ρ the the relative density of a mmWave

network. The relative density ρ is equivalently: (i) the average number of LOS
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base stations that a user will observe, (ii) the ratio of the average LOS area

πR2
B to the size of a typical cell 1/λ [24], and (iii) the normalized base station

density by the size of the LOS ball. We will show in the next section that the

SINR coverage in dense networks is largely determined by the relative density

ρ.

Assumption 2.5.2 (No NLOS and noise). Both NLOS base stations and ther-

mal noise are ignored in the analysis since in the dense regime, the performance

is limited by other LOS interferers.

We show later in the simulations that ignoring NLOS base stations and

the thermal noise introduces a negligible error in the performance evaluation.

Assumption 2.5.3 (No Small-scale fading). Small-scale fading is ignored in

the dense network analysis, as the signal power from a nearby mmWave LOS

transmitter is found to be almost deterministic in measurements [120].

Based on the dense network model, the signal-to-interference ratio

(SIR) can be expressed as

SIR =
MtMrR

−αL
0∑

`:X`∈Φ∩B(0,RB) D`R
−αL
`

. (2.16)

Now we compute the SIR distribution in the dense network model.

2.5.2 Coverage Analysis in Dense Networks

Now we present an approximation of the SINR distribution in a mmWave

dense network. Our main result is summarized in the following theorem.
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Theorem 2.5.1. The SINR coverage probability in a dense network can be

approximated as

Pc(T ) ≈ ρe−ρ
N∑
`=1

(−1)`+1

(
N

`

)∫ 1

0

4∏
k=1

exp

(
− 2

αL

bkρt

× (`ηT āk)
2
αL Γ

(
− 2

αL

; `ηT āk, `ηT ākt
αL
2

))
dt, (2.17)

where Γ(s; a, b) =
∫ b
a
xs−1e−xdx is the incomplete gamma function, āk =

ak/(MtMr), ak and bk are defined in Table 2.1, η = N(N !)
1
N , and N is the

number of terms used in the approximation.

Proof. See 2.8.4.

When αL = 2, the expression in Theorem 2.5.1 can be further simplified

as follows.

Corollary 2.5.1.1. When αL = 2, the SINR coverage probability approxi-

mately equals

Pc(T ) ≈ ρe−ρ
N∑
`=1

(−1)`+1

(
N

`

)∫ 1

0

4∏
k=1

exp (ρbk×

(
e−`ηT ākt − te−`ηT āk

))(1− e−`µηT ākt

1− e−`µηT āk

)`ηTbkākρt
dt, (2.18)

where µ = e0.577.

The results in Theorem 2.5.1 generally provide a close approximation of

the SINR distribution when enough terms are used, e.g. when N ≥ 5, as will

be shown in Section 2.6.2. More importantly, we note that the expressions in
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Theorem 2.5.2 are very efficient to compute, as most numerical tools support

fast evaluation of the gamma function in (2.17), and (2.18) only requires a

simple integral over a finite interval. Besides, given the path loss exponent αL

and the antenna geometry ak, bk, Theorem 2.5.1 shows that the approximated

SINR is only a function of the relative density ρ, which indicates the SIR

distribution in a dense network is mostly determined on the average number

of LOS base station to a user.

2.5.3 Asymptotic Analysis in Ultra-Dense Networks

To obtain further insights into coverage in dense networks, we provide

results on the asymptotic SIR distribution when the relative density ρ becomes

large. We use this distribution to answer the following questions: (i) What is

the asymptotic SIR distribution when the network becomes extremely dense?

(ii) Does increasing base station density always improve SIR in a mmWave

network?

First, we present the main asymptotic results as follows.

Theorem 2.5.2. In a dense network, when the LOS path loss exponent αL ≤

2, the SIR converges to zero in probability, as ρ → ∞. When αL > 2, the

SIR converges to a nonzero random variable SIR0 in distribution, as ρ→∞;

Based on [41, Proposition 10], a lower bound of the coverage probability for

the asymptotic SIR0 is that for T > 1,

P(SIR0 > T ) ≥ αLT
−2/αL

2π sin(2π/αL)
.
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Proof. The proof is available in a longer version online [28, Appendix E].

Note that Theorem 2.5.2 indicates that increasing base station density

above some threshold will hurt the system performance, and that the SINR

optimal base station density is finite.

Now we provide an intuitive explanation of the asymptotic results as

follows. When increasing the base station density, the distances between the

user and base stations become smaller, and the user becomes more likely to

be associated with a LOS base station. When the density is very high, how-

ever, a user sees several LOS base stations and thus experiences significant

interference.

We note that the asymptotic trends in Theorem 2.5.2 are valid when

base stations are all assumed to be active in the network. A simple way to

avoid “over-densification” is to simply turn off a fraction of the base stations.

This is a simple kind of interference management; study of more advanced

interference management concepts is an interesting topic for future work.

2.6 Numerical Simulations

In this section, we first present some numerical results based on our

analyses in Section 2.4 and Section 2.5. We conclude with some simulations

using real building distributions to validate our proposed mmWave network

model.
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2.6.1 General Network Simulations

In this section, we provide numerical simulations to validate our ana-

lytical results in Section 2.4, and further discuss their implications on system

design. We assume the mmWave network is operated at 28 GHz, and the

bandwidth assigned to each user is W = 100 MHz. The LOS and NLOS path

loss exponents are αL = 2 and αN = 4. The parameters of the Nakagami

fading are NL = 3 and NN = 2. We assume the LOS probability function

is p(x) = e−βx, where 1/β = 141.4 meters. For the ease of illustration, we

define the notion of the average cell radius of a network as follows. Note that

if the base station density is λ, the average cell size in the network is 1/λ [24].

Therefore, the average cell radius rc in a network is defined as the radius of

a ball that has the size of an average cell, i.e., rc =
√

1/πλ. The average

cell radius not only directly relates to the inter-site distance that is used by

industry in base station planning, but also equivalently characterizes the base

station density in a network; as a large average cell size indicates a low base

station density in the network.

First, we compare the SINR coverage probabilities with different trans-

mit antenna parameters in Fig. 2.3 using Monte Carlos simulations. As shown

in Fig. 2.3, when the side lobe gain mt is fixed, better SINR performance is

achieved by increasing main lobe gain Mt and by decreasing the main lobe

beamwidth θt, as indicated by the analysis in Section 2.4.1.

Next, we compare the LOS association probabilities AL with different

average cell radii in Fig. 2.4. The results show that the probability that a user
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Figure 2.3: SINR coverage probability with different antenna geometry. The
average cell radius is rc = 100 meters. The receiver beam pattern is fixed as
G

10dB,−10dB,90◦
.
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Figure 2.4: LOS association probability with different average cell radii. The
lines are drawn from Monte Carlos simulations, and the marks are drawn based
on Lemma 2.4.2.
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(a) Analytical bounds using Theorem 2.4.1.
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(b) Comparison between SINR and SIR.

Figure 2.5: SINR coverage probability with different average cell sizes. The
transmit antenna pattern is assumed to be G

100dB,0dB,30◦
. In (a), analytical

results from Theorem 2.4.1 are shown to provide a tight approximation. In (b),
it shows that SIR converges to SINR when the base station density becomes
high, which implies that mmWave networks can be interference-limited.
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Figure 2.6: Comparison of the SINR coverage between using p(x) and its
equivalent step function SRB

(x). The transmit antenna pattern is assumed to
be G

20dB,−10dB,30◦
. It shows that the step function tends to provide a more

pessimistic SINR coverage probability, but the gap becomes smaller as the
network becomes more dense.

is associated with a LOS base station increases as the cell radius decreases.

The results in Fig. 2.4 also indicate that the received signal power will be

mostly determined by the distribution of LOS base stations in a sufficiently

dense network, e.g. when the average cell size is smaller than 100 meters in

the simulation.

We also compare the SINR coverage probability with different cell radii

in Fig. 2.5. The numerical results in Fig. 2.5 (a) show that our analytical

results in Theorem 2.4.1 match the simulations well with negligible errors.

Unlike in a interference-limited conventional cellular network, where SINR is

almost invariant with the base station density [18], the mmWave SINR cov-

erage probability is also shown to be sensitive to the base station density in
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Fig. 2.5. The results in Fig. 2.5 (a) also shows that mmWave networks

generally require a small cell radius (equivalently a high base station den-

sity) to achieve acceptable SINR coverage. Moreover, the results in Fig. 2.5

(b) show that when decreasing average cell radius (i.e., increasing base sta-

tion density), mmWave networks will transit from power-limited regime into

interference-limited regime; as the SIR curves will converge to the SINR curve

when densifying the network.

Specifically, comparing the curves for rc = 200 meters and rc = 300

meters in Fig. 2.5 (a), we find that increasing base station density generally

improve the SINR in a sparse network; as increasing base station density will

increase the LOS association probability and avoid the presence of coverage

holes, i.e. the cases that a user observes no LOS base stations. A comparison

of the curves for rc = 100 meters and rc = 50 meters, however, also indicates

that increasing base station density need not improve SINR, especially when

the network is already sufficiently dense. Intuitively, increasing base station

density also increases the likelihood to be interfered by strong LOS interferers.

In a sufficiently dense network, increasing base station will harm the SINR by

adding more strong interferers.

Now we apply Theorem 3 to compare the SINR coverage with differ-

ent LOS probability functions p(x). We approximate the negative exponential

function p(x) = e−βx by its equivalent step function SRB
(x). Applying either

of the criteria in Section 2.4.4, the radius of the equivalent LOS ball RB equals

200 meters. As shown in Fig. 2.6, the step function approximation generally
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Figure 2.7: Rate coverage comparison between mmWave and conventional
cellular networks. The mmWave transmit antenna pattern is assumed to be
G

10dB,−10dB,30◦
. We assume the conventional system is operated at 2 GHz

with a cell radius of 500 m, and the transmit power of the conventional base
station is 46 dBm.

provides a lower bound of the actual SINR distribution, and the errors due

to the approximation become smaller when the base station density increases.

The approximation of step function also enables faster evaluations of the cov-

erage probability, as it simplifies expressions for the numerical integrals.

We provide rate results in Fig. 2.7, where the lines are drawn from

Monte Carlos simulations, and the marks are drawn based on Lemma 2.4.5.

In the rate simulation, we assume that 64 QAM is the highest constellation

supported in the networks, and thus the maximum spectrum efficiency per

data stream is 6 bps/Hz. In Fig. 2.7, we compare the rate coverage prob-

ability between the mmWave network and a conventional network operated
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at 2 GHz. The mmWave bandwidth is 100 MHz (which conceivably could

be much larger, e.g. 500 MHz [112, 5]), while we assume the conventional

system has a basic bandwidth of 20 MHz, which can be potentially extended

to 100 MHz by enabling carrier aggregation [58]. Rayleigh fading is assumed

in the UHF network simulations. We further assume that conventional base

stations have perfect channel state information, and apply spatial multiplex-

ing (4×4 single user MIMO with zero-forcing precoder) to transmit multiple

data streams. More comparison results with other techniques can be found in

[25]. Results in Fig. 2.7 shows that, due to the favorable SINR distribution

and larger available bandwidth at mmWave frequencies, the mmWave system

with a sufficiently small average cell size outperforms the conventional system

in terms of providing high data rate coverage.

2.6.2 Dense Network Simulations

Now we show the simulation results based on the dense network anal-

ysis in Section 2.5. First, we illustrate the results in Theorem 2.5.1 with the

simulations in Fig. 2.8. In the simulations, we include the NLOS base sta-

tions and thermal noise, which were ignored in the theoretical derivation. The

expression derived in Theorem 2.5.1 generally provides a lower bound of the

coverage probability. The approximation becomes more accurate when more

terms are used in the approximation, especially when N ≥ 5. We find that

the error due to ignoring NLOS base stations and thermal noise is minor in

terms of the SINR coverage probability, primarily impacting low SINRs.
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Figure 2.8: Coverage probability in a dense mmWave network. The mmWave
transmit antenna pattern is assumed to be G

10dB,−10dB,30◦
. We assume RB =

200 m, and the relative base station density ρ = 4. N is the number of terms
we used to approximate the coverage probability in Theorem 2.5.1.

Next, we compare the SINR coverage probability with different relative

base station density when T = 20 dB. Recall that ρ = λπR2
B is the base

station density normalized by the size of the LOS region. In 2.9(a), the path

loss exponent is assumed to be α = 2. We compute the coverage probability

from ρ = −20 dB meters to ρ = 20 dB with a step of 1 dB. The analytical

expressions in Theorem 2.5.1 are much more efficient than simulations: the plot

takes seconds to finish using the analytical expression, while it approximately

takes an hour to simulate 10,000 realizations at each step. As shown in Fig.

2.9 (a), although there is some gap between the simulation and the analytical

results in the ultra-dense network regime, both curves achieve their maxima

at approximately ρ = 5, i.e., when the average cell radius rc is approximately
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Table 2.2: Achievable Rate with Different BS Densities

Carrier frequency 28 GHz 28 GHz 28 GHz 2 GHz
Base station density Ultra dense Dense Sparse -
Relative density ρ 16 4 0.45 -

Spectrum efficiency (bps/Hz) 5.5 5.8 2.7 4.6
Signal bandwith (MHz) 100 100 100 20
Achievable rate (Mpbs) 550 580 270 92

1/2 of the LOS range RB. Moreover, when the base station density grows

very large, the coverage probability begins to decrease, which matches the

asymptotic results in Theorem 2.5.2. The results also indicate that networks

in the environments with dense blockages, e.g. the downtown areas of large

cities where the LOS range RB is small, will benefit from network densification;

as they are mostly operated in the region where the relative density is (much)

smaller than the optimal value ρ ≈ 5, and thus increasing ρ by densifying

networks will improve SINR coverage.

We also simulate with other LOS path loss exponents in Fig. 2.9 (b).

The results show that the optimal base station density is generally insensitive

to the change of the path loss exponent. When the LOS path loss exponent

increases from 1.5 to 2.5, the optimal cell size is almost the same. The results

also illustrate that the networks with larger path loss exponent αL have better

SINR coverage in the ultra-dense regime when ρ > 10. Intuitively, signals

attenuate faster with a larger path loss exponent, and thus the inter-cell inter-

ference becomes weaker, which motivates a denser deployment of base stations

in the network with higher path loss.
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Finally, we compare the spectral efficiency and average achievable rates

as a function of the relative density ρ in Table 2.2. We find with a reason-

able amount of density, e.g. when the relative density ρ is approximately 1,

the mmWave system can provide comparable spectrum efficiency as the con-

ventional system at UHF frequencies. With high density, rates that can be

achieved are an order of magnitude better than that in the conventional net-

works, due to the favourable SINR distribution and larger available bandwidth

at mmWave frequencies.

2.6.3 Comparison with Real-scenario Simulations

Now we compare our proposed network models with the simulations

using real data. In the real-scenario simulations, we use the building distri-

bution on the campus at The University of Texas at Austin. We also apply

a modified version of the base station antenna pattern in [3] with a smaller

beam width of 30◦. The directivity gain at the base station is Mt = 20 dB.

The mobile station is assumed to use uniform linear array with 4 antennas.

When applying our analytical models, we fit the parameters of the LOS prob-

ability functions to match the building statistics [30], and use the sectored

model for beamforming pattern. We also assume the mmWave base stations

are distributed as a PPP with rc = 50 m. As shown in Fig. 2.10, though some

deviations in the high SINR regime, our analytical models generally show a

close characterization of the reality. The deviation is explained as follows: the

proposed analytical model computes the aggregated SINR coverage probabil-
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ity, averaging over all realizations of building distributions over the infinite

plane, while the real-scenario curve only considers a specific realization of

buildings in a finite snapshot window. In this case, our model overestimates

the coverage probability in the low SINR regime, and underestimates in the

high SINR regime, as both signals and interference become more likely to be

blocked in the real scenario simulation. We have found in other simulation

examples that the reverse can also be true. Our model should be viewed as a

characterization of the average distribution and does not necessarily lower or

upper bound the distribution for a given realization.

2.7 Conclusion

In this chapter, I proposed a stochastic geometry framework to ana-

lyze coverage and rate in mmWave networks for outdoor users and outdoor

infrastructure. Our model took blockage effects into account by applying a

distance-dependent LOS probability function, and modeling the base stations

as independent inhomogeneous LOS and NLOS point processes. Based on the

proposed framework, I derived expressions for the downlink SINR and rate

coverage probability in mmWave cellular networks, which were shown to be

efficient in computation and also a good fit with the simulations. We further

simplified the blockage model by approximating the random LOS region as a

fixed-size equivalent LOS ball. Applying the simplified framework, I analyzed

the performance and asymptotic trends in dense networks.

We used numerical results to draw several important conclusions about
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coverage and rate in mmWave networks.

• SINR coverage can be comparable to conventional networks at UHF

frequency when the base station density is sufficiently high.

• Achievable rates can be significantly higher than in conventional net-

works, thanks to the larger available bandwidth.

• The SINR and rate performance is largely determined by the relative

base station density, which is the ratio of the base station density to the

blockage density.

• A transition from a power-limited regime to an interference-limited regime

is also observed in mmWave networks, when increasing base station den-

sity.

• The optimal SINR and rate coverage can be achieved with a finite base

station density; as increasing base station density need not improve SINR

in a (ultra) dense mmWave network.

2.8 Appendix

2.8.1 Alzer’s Lemma

We provide two useful inequalities in the following lemmas. The first

lemma approximates the tail probability of a gamma random variable.

Lemma 2.8.1 (From [14]). Let g be a normalized gamma random variable

with parameter N . For a constant γ > 0, the probability P(g < γ) can be
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tightly upper bounded by

P(g < γ) <
[
1− e−aγ

]N
,

where a = N(N !)−
1
N .

The following inequality will be used in the dense network analysis.

Lemma 2.8.2 (From [14]). For x > 0, it holds that

− log(1− e−ax) ≤
∫ ∞
x

e−t

t
dt ≤ − log(1− e−bx),

where a = e0.5772 and b = 1. Further, the lower bound generally provides a

close approximation.

2.8.2 Proof of Lemma 2.4.2

For s = {L,N}, let ds be the distance from the typical user to its

nearest base station in Φs. Note that it is possible that the user observes no

base stations in Φs. The user is associated with a base station in ΦL if and

only if it has a LOS base station, and its nearest base station in ΦL has smaller

path loss than that of the nearest base station in ΦN. Hence, it follows that

AL = BLP
(
CLd

−αL
L > CNd

−αN
N

)
(a)
= BL

∫ ∞
0

P (dN > ψL(x)) fL(x)dx, (2.19)

where BL is the probability that the user has at least one LOS base stations,

(a) follows that by Lemma 2.4.1, and fL(x) is the probability density function

of dL. Next, note that

P (dN > ψ(x)) = P (ΦN ∩B(0, ψL(x)) = ∅)
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= e−2πλ
∫ ψL(x)
0 (1−p(t))tdt, (2.20)

where B(0, x) denotes the ball centered at the origin of radius x. Substituting

(2.20) for (2.19) gives Lemma 2.4.2.

2.8.3 Proof of Theorem 2.4.1

Given that the user is associated with a base station in ΦL, by Slivnyak’s

Theorem [24], the conditional coverage probability can be computed as

Pc,L(T ) =

∫ ∞
0

P
[
h0 > xαLT

(
σ2 + IL + IN

)
/(CLMrMt)

]
f̂L(x)dx, (2.21)

where IL and IN defined as

IL =
∑

`:X`∈ΦL∩B̄(0,x)

CL |h`|2D`R
−αL
` ,

IN =
∑

`:X`∈ΦN∩B̄(0,ψL(x))

CN |h`|2D`R
−αN
`

are the interference strength from the tiers of LOS and NLOS base stations,

respectively. Next, noting that |h0|2 is a normalized gamma random variable

with parameter NL, I have the following approximation

P
[
h0 > xαLT

(
σ2 + IL + IN

)
/(CLMrMt)

]
(a)
≈ 1− EΦ

(1− e
−
ηLx

αLT(σ2+IL+IN)
CLMrMt

)NL


(b)
=

NL∑
n=1

(−1)n+1

(
NL

n

)
EΦ

[
e
−
nηLx

αLT(σ2+IL+IN)
CLMrMt

]
(c)
=

NL∑
n=1

(−1)n+1

(
NL

n

)
e
−nηLx

αLTσ2

CLMrMt EΦL

[
e
−nηLx

αLTIL
CLMrMt

]
EΦN

[
e
−nηLx

αLTIN
CLMrMt

]
, (2.22)
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where ηL = NL(NL!)
− 1
NL , (a) is from Lemma 2.8.1 [14] in Section 2.8.1, (b)

follows from Binomial theorem and the assumption that NL is an integer,

and (c) follows from the fact that ΦL and ΦN are independent. Now I apply

concepts from stochastic geometry to compute the term for LOS interfering

links EΦL

[
e
−nηLx

αLTIL
CLMrMt

]
in (2.22) as

EΦL

[
e
−nηLx

αLTIL
CLMrMt

]
= E

[
e
−
nηLx

αLT
∑
`:X`∈ΦL∩B̄(0,x)|h`|

2
D`R

−αL
`

MrMt

]
(c)
= e(−2πλ

∑4
k=1 bk

∫∞
x (1−Eg[e−nTηLgāk(x/t)αL ])p(t)tdt)

(d)
=

4∏
k=1

e−2πλbk
∫∞
x (1−1/(1+ηLāknT (x/t)αL/NL)NL)p(t)tdt

= e−Qn(T,x),

where g in (c) is a normalized gamma random variable with parameter NL,

āk = ak
MtMr

, and for 1 ≤ k ≤ 4, ak and bk are defined previously in Table 2.1;

(c) is from computing the Laplace functional of the PPP ΦL [24]; (d) is by

computing the moment generating function of a gamma random variable g.

Similarly, for the NLOS interfering links, the small-scale fading term

|h`|2 is a normalized gamma variable with parameter NN. Thus, I can compute

EΦN

[
e
−nηLx

αLTIN
CLMrMt

]
as

EΦN

[
e
−nηLx

αLTIN
CLMrMt

]
= E

[
e
−
nηLx

αLTCN
∑
`:X`∈ΦN∩B̄(0,ψ(x))|h`|

2
D`R

−αN
`

CLMrMt

]
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=
4∏

k=1

e
−2πλbk

∫∞
ψL(x)

(
1−1/

(
1+

ηLāknTCNx
αL

CLt
αNNN

)NN
)

(1−p(t))tdt

= e−Vn(T,x).

Then, I obtain (2.9) from (2.22) by the linearity of integrals.

Given the user is associated with a NLOS base station, I can also derive

the conditional coverage probability Pc,N(T ) following same approach as that

of Pc,L(T ). Thus, I omit the detailed proof of (2.10) here.

Finally, by the law of total probability, it follows that Pc(T ) = ALPc,L(T )+

ANPc,N(T ).

2.8.4 Proof of Theorem 2.5.1

For a general αL, the coverage probability can be computed as

Pc(T ) = ALPc,L(T ) = ALP(SIR > T )

= AL

∫ RB

0

P(CLMrMtr
−αL > TIr)

2πλr

AL

e−λπr
2

dr,

where Ir =
∑

X`∈Φ∩(B(0,RB)/B(0,RB))D`CLR
−αL
` is the interference power given

that the distance to the user’s serving base station is R0 = r. Next, the

probability P(CLMrMtr
−αL > TIr) can be approximated as

P(CLMrMtr
−αL > TIr)

(a)
≈ P(g > TrαLIr/(CLMrMt))

(b)
≈ 1− EΦL

[(
1− e−ηTr

αLIr/(CLMrMt)
)N]

=
N∑
`=1

(
N

`

)
(−1)`EΦL

[
e−`ηTr

αLIr/(CLMrMt)
]
. (2.23)
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In (a), the dummy variable g is a normalized gamma variable with parame-

ter N , and the approximation in (a) follows from the fact that a normalized

Gamma distribution converges to identity when its parameter goes to infinity,

i.e., limn→∞
nnxn−1e−nx

Γ(n)
= δ(x− 1) [20], where δ(x) is the Dirac delta function.

In (b), it directly follows from Lemma 2.8.1 by taking η = N(N !)1/N .

Next, I can compute EΦL

[
e−`ηTr

αLIr/(CLMrMt)
]

as

EΦL

[
e−`ηTr

αLIr/(CLMrMt)
]

(c)
= exp

(
4∑

k=1

−2πλbk

∫ RB

r

1− e−`ηākT (r/t)αL tdt

)
(d)
=e−πλ(R2

B−r
2)×

e
∑4
k=1

2
αL
πλr2bk(T`ηāk)2/αL

∫ `ηT āk
`ηT āk(r/RB)αL

e−s

s1+2/αL
ds

(2.24)

=e−πλ(R2
B−r

2)×

e
∑4
k=1

2
αL
πλr2bk(T`ηāk)2/αLΓ

(
−2
αL

;`ηT āk(r/RB)αL ,`ηT āk

)
, (2.25)

where (c) follows from computing the Laplace functional of the PPP ΦL [24],

and (d) follows from changing variable as s = `ηākT (r/t)αL . Hence, (2.17)

directly follows from substituting (2.25) for (2.23) and letting ρ = πλR2
B.

When αL = 2, the steps above hold true till (2.24), which can be further

simplified as

EΦL

[
e−`ηTr

αLIr/(CLMrMt)
]

= e−πλ(R2
B−r

2)e
∑4
k=1

(
πλr2bkT`ηāk

∫ `ηT āk
`ηT āk(r/RB)2

e−s
s2

ds

)

(e)
= e−πλ(R2

B−r
2)×
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e
∑4
k=1 πλr

2bk

(
e−(r/RB)2`T`ηāk

(r/RB)2
−e−`T`ηāk+

∫ `T`ηāk
`T`ηāk(r/RB)2

e−s
s

ds

)

(f)
≈ e−πλ(R2

B−r
2) exp

(
4∑

k=1

πλr2bk

(
e−(r/RB)2`T `ηāk

(r/RB)2

−e−`T `ηāk − log
1− eµ`T`ηāk(r/RB)2

1− eµ`T`ηāk

))
, (2.26)

where (e) is from computing integration by part, (f) follows from Lemma 2.8.2

by letting µ = e0.5772. Lastly, (2.18) follows from substituting (2.26) for (2.23)

and letting ρ = πλR2
B.
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LOS path loss exponent: α
L
=2.5

LOS path loss exponent: α
L
=2

LOS path loss exponent: α
L
=1.5

(b) Optimal density with different path loss exponents.

Figure 2.9: SINR coverage probability with different relative base station den-
sity when the target SINR=20 dB. In the simulations, we include the NLOS
base stations outside the LOS region and the thermal noise. We also fix the
radius of the LOS ball as RB =200 meters, and change the base station density
λ at each step according to the value of the relative base station density ρ.
In (a), it shows that ignoring NLOS base stations and the noise power causes
minor errors in terms of the optimal cell radius. In (b), we search for the
optimal relative density with different LOS path loss exponents. It shows that
the optimal cell radius is generally insensitive to the path loss exponent.
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(a) Snapshot of the simulated area
from Google map.
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Real building distribution

Proposed general network model: p(r)=e −β r

Equivalent LOS ball model: R
B

=225 m

(b) Comparison of SINR distribution

Figure 2.10: Comparison of SINR coverage results with real-scenario simu-
lations. The snapshot of The University of Texas at Austin campus is from
Google map. We use the actual building distribution of the area in the real-
scenario simulation. In the simulations of our proposed analytical models, we
let β = 0.0063 m−1 in the LOS probability function p(r) = e−βr, and RB = 225
m in the simplified equivalent LOS ball model, to match the building statistics
in the area [30].
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Chapter 3

Analysis of Uplink Massive MIMO Networks

3.1 Motivation and Related Work

Massive MIMO is an approach to increase the area spectrum efficiency

in 5G cellular systems [90, 76, 87, 42]. By deploying large-scale antenna arrays,

base stations can use multi-user MIMO to serve a large number of users and

provide high cell throughput [90, 76, 87, 42]. In this chapter, I focus on

the defacto massive MIMO systems operated below 6 GHz, where pilot-aided

channel estimation is performed in the uplink, and pilots are reused across cells

to reduce the training overhead [90, 76, 87, 42]. Prior work showed that when

the number of base station antennas grows large, high throughput is achieved

through simple signal processing, and that the asymptotic performance of

massive MIMO (in the limit of the number of base station antennas) is limited

by pilot contamination [90].

In this chapter, I derive the signal-to-interference ratio (SIR) distribu-

tion for the uplink of a massive MIMO network with MRC and ZF receivers,

for a random base station topology. The performance with MRC and ZF

beamforming in terms of SINR, spectrum efficiency, and energy efficiency was

examined in a simple network topology, e.g. in [147, 90, 73, 64, 80, 106],
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where the SIR and rate expressions were conditioned on specific user loca-

tions or equivalently the received power for each user. The conclusions drawn

from the conditional expression, however, need not apply to the spatial aver-

age system-level performance due to the difference in users’ path losses. For

example, the linear scaling between the number of users and antennas exam-

ined in [64] does not maintain the uplink SIR distribution, as will be shown in

our analysis. This motivates the analysis of the spatial average performance

over different base station and user distributions in large-scale massive MIMO

networks, which was mainly studied using Monte Carlo simulations in prior

work [39, 22].

Stochastic geometry provides a powerful tool to analyze system-level

performance in a large-scale network with randomly distributed base stations

and users. Assuming a single antenna at each base station, the spatial average

downlink SIR and rate distributions were derived for a network with Poisson

point process (PPP) distributed base stations, and were shown a reasonable

fit with simulations using real base station data [16]. The stochastic geometry

framework in [16] was further extended to analyze the performance of MIMO

networks: the downlink SIR and rate of multi-user MIMO cellular system

were analyzed, e.g. in [51, 45, 145, 77] assuming perfect CSI, and in [72] with

quantized CSI from limited feedback. For uplink analysis, prior work [108, 53,

130] showed that the uplink and downlink SIR follows different distributions,

due to the difference in network topology. In [130], a stochastic geometry

uplink model was proposed to take account the pairwise correlations in the

105



user locations, where the SIR distributions derived based on the analytical

model were shown a good fit with the simulations. The prior results in [16,

51, 45, 72, 145, 77, 108, 53, 130], however, do not directly apply to analyze

uplink massive MIMO networks, as (i) they did not take account for the effects

of pilot contamination, which becomes a limiting factor with large numbers

of antennas [90]; (ii) the analysis in [16, 51, 45, 72, 145, 77] was intended for

downlink performance, which follows different distributions from the uplink

network; and (iii) the results in [51, 45, 145, 77] were intended for MIMO

networks with a few antennas, where the computational complexity for the

analytical expressions grows with the number of antennas, and hinders the

direct application to the massive MIMO scenarios.

Stochastic geometry was also applied to study the asymptotic SIR and

rate in a massive MIMO networks in [89, 27], where the asymptotic SIR is

shown to be approached with impractically large number of antennas, e.g.

104 antennas. Related work in [82] applied stochastic geometry to study the

uplink interference in a massive MIMO network. A linear scaling between the

numbers of base station antennas and scheduled users was found to maintain

the mean interference, which need not preserve the SIR distribution.

3.2 Contributions

In this chapter, I propose a stochastic geometry framework to derive

the uplink SINR and rate distributions in a large-scale cellular network using

multi-user MIMO. To model the uplink topology, I propose an exclusion ball
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model based on prior work [130], which simplifies the computation. Channel

estimation error due to pilot contamination is also considered in the system

model. The proposed framework also incorporates the fractional power control

by compensating for a fraction of the path loss as in long term evolution (LTE)

systems [146]. Based on the framework, I derive analytical expressions for the

uplink SINR distribution for both MRC and ZF receivers in the massive MIMO

regime. Unlike prior work analyzing asymptotic performance with infinity

antennas [89, 27], the SINR coverage is examined as a function of the number

of base station antennas and scheduled users per cell.

I apply the SINR results to investigate the interference-limited case, as

numerical results show that the impact of noise becomes minor in the rban

macro-cell scenario with certain typical system parameters. I derive scaling

laws between the number of base station antennas and scheduled users per cell

to maintain the same uplink SIR distributions. Unlike the linear scaling law

examined in prior work [82, 64], I find that a super-linear scaling is generally

required for MRC receivers to maintain the uplink SIR distributions, due to

the near-far effect from intra-cell interference. For ZF receivers, I show that a

linear scaling law still holds, as the intra-cell interference is negligible. I use

the scaling law results to quantify the performance gap between ZF and MRC

receivers, in terms of the difference in the number of antennas to provide the

same SIR distribution. The results show that ZF receivers provides better SIR

coverage than MRC receivers; the performance gap increases with the number

of scheduled users in a cell, and is reduced with the fractional power control, as
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it mitigates the near-far effect from intra-cell interference. Simulations verify

our analysis, and indicate that the scaling laws derived from the stochastic

geometry framework also apply to the hexagonal model. Numerical results on

rate also show that the average per user rate can be maximized by adjusting

the compensation fraction, where the optimal fraction is around 0.5 for MRC

receivers, and 0.2 for ZF receivers.

Our prior work in [34] focused on the performance of MRC receivers,

and provided an expression for the SIR distribution assuming no power control.

In this chapter, I incorporate thermal noise in the analysis, extend the results

to the case of general fractional power control for MRC receivers, and analyze

the performance of ZF receivers.

This chapter is organized as follows. I present the system model for

network topology and channel assumptions in Section 3.3. I analyze the per-

formance of MRC receivers in Section 3.4, and that of ZF receivers in Section

3.5.1, followed by a performance comparison of two receivers in Section 3.5.2.

I present numerical results to verify the analysis in Section 3.6, and conclude

the chapter in Section 3.7.

3.3 System Model

In this section, I introduce the system model for an uplink massive

MIMO cellular network. I focus on the networks operated in the sub-6 GHz

band; the proposed model can be extended for massive MIMO at mmWave

frequencies by incorporating key differences in propagation and hardware con-
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straints [33]. Each base station is assumed to have M antennas. In each

time-frequency resource block, a base station can simultaneously schedule K

users in its cell. Let X` be the location of the `-th base station, Y
(k)
` be the

location of the k-th scheduled user in the cell of `-th base station, and h
(k)
``′ the

channel vector from X` to Y
(k)
`′ .

I consider a cellular network with perfect synchronization, and assume

the following pilot-aided channel estimation in the uplink. In the uplink chan-

nel training stage, the scheduled users Y
(k)
` send their assigned pilots tk, and

base stations X` estimate the channels by correlating the corresponding pilots

and using an MMSE estimator; in the uplink data transmission, the base sta-

tions will apply either MRC or ZF receivers, based on the channel estimates

derived from uplink pilots. Further, I assume the pilots {tk}1≤k≤K are orthog-

onal and fully reused in the network. Note that the system model assumption

applies to general uplink multi-user MIMO networks with pilot-aided channel

estimation in the uplink, including but not limited to the TDD massive MIMO

[90].

Now, I introduce the channel model assumptions. The channel is as-

sumed to be constant during one resource block and fades independently from

block to block. Moreover, I apply a narrowband channel model, as frequency

selectivity in fading can be minimized by techniques like orthogonal frequency-

division multiplexing (OFDM) and frequency domain equalization [59]. I ex-

press the channel vector h
(k)
`n ∈ CM×1 as

h
(k)
`n =

(
β

(k)
`n

)1/2

Φ
(k)1/2
`n w

(k)
`n , (3.1)
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where β
(k)
`n is the large-scale path loss, w

(k)
`n ∈ CM×1 is a Gaussian vector

with the distribution CN(0, IM) for Rayleigh fading, and Φ
(k)
`n ∈ CM×M is the

covariance matrix to account for potential correlations in small-scale fading. In

this chapter, I focus on the case of IID channel fading channels, i.e., Φ
(k)
`n = IM .

The incorporation of spatial correlations in fading is deferred to future work.

The large-scale path loss gain β
(k)
`n is computed as

β
(k)
`n = C

(
R

(k)
`n

)−α
, (3.2)

where C is a constant determined by the carrier frequency and reference dis-

tance, α > 2 is the path loss exponent.

Next, I introduce the network topology assumptions based on stochastic

geometry. I assume the base stations are distributed as a PPP with a density

λb. A user is assumed to be associated with the base station that provides the

minimum path loss signal. In this chapter, each base station is assumed to

serve K scheduled users that are independently and uniformly distributed in

its Voronoi cell [40]. The assumption is equivalent to that in prior work [130],

where the scheduled user process is obtained by (i) generating an overall user

process as a PPP, and (ii) randomly selecting K out of associated users in each

cell as its scheduled users, under the full buffer assumption that the overall

user process is sufficiently dense, such that each base station has at least K

candidate users in the cell. Without loss of generality, a typical scheduled

user Y
(1)

0 is fixed at the origin, and its serving base station X0 is denoted as

the tagged base station in this chapter. I will investigate the SINR and rate

110



performance at this typical user.

Now I focus on modeling the distribution of scheduled user process in

a resource block. For 1 ≤ k ≤ K, the k-th scheduled user Y
(k)
` in each cell

is assigned with the same pilot tk. Let N
(k)
u be the point process formed

by the locations of the k-th scheduled users Y
(k)
` from each cell. Note that

the scheduled user process N
(k)
u is non-stationary (also non-PPP), as their

locations are correlated with the base station process, and the presence of

one scheduled user using tk prohibits the others’ in the same cell [108, 130,

53]. Unfortunately, the correlations in the scheduled users’ locations make the

exact analysis intractable. In [130], the authors proposed an uplink model to

account for the pairwise correlations, where the other-cell scheduled users for

base station X0 in N
(k)
u is modelled as an inhomogeneous PPP with a density

function of

λu(r) = λb

(
1− e−λbr

2
)
, (3.3)

where r is the distance to base station X0. To further simplify the analysis,

e.g., the computation in (3.23) and (3.26), I propose an exclusion ball approxi-

mation, as a first-order approximation of the model in [130], on the distribution

of the scheduled user process N
(k)
u as follows.

Assumption 3.3.1. The following assumptions are made to approximate the

exact scheduled users’ process N
(k)
u .

1. The distances R
(k)
`` from a user to their associated base stations are as-

sumed to be IID Rayleigh random variables with mean 0.5
√

1/λb [108].
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2. The other-cell scheduled user process N
(k)
u is modeled by a homogenous

PPP of density λb outside an exclusion ball centered at the tagged base

station X0 with a radius Re.

3. The scheduled users processes using different pilots N
(k)
u and N

(k′)
u are

assumed to be independent for k 6= k′.

Note that in the exclusion ball model, I equivalently use a step function

λb (1− I(r < Re)) to approximate the density function in (3.3), where I(·) is

the indicator function.

In this chapter, I let Re =
√

1/ (πλb) by matching the average number

of the excluded points from a homogenous PPP of density λb in the step

function and in (3.3), i.e., by letting λbπR
2
e = 2πλb

∫∞
0

e−λbπr
2
rdr = 1. An

alternative explanation for our choice of Re is to let the size of the exclusion

ball πR2
e equal the average cell size 1/λb [24]. In Section 3.6, I show that the

SINR distributions derived based on the exclusion ball assumption, as well as

the approximations made in our subsequent derivation, match well with the

simulation using the exact user distribution.

Fractional power control, as used in the LTE systems [146], is assumed

in both the uplink training and uplink data stages: the user Y
(k)
` transmits

with power

P
(k)
` = Pt

(
β

(k)
``

)−ε
, (3.4)

where β
(k)
`` is the path loss in the corresponding signal link, ε ∈ [0, 1] is the

fraction of the path loss compensation, and Pt is the open loop transmit power
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with no power control. I omit the constraint on the maximum uplink transmit

power for simplicity; the constraint can be incorporated by applying the trun-

cated channel inversion power control model [53] to determine the transmit

power. I note that ignoring the maximum transmit power constraint increases

the average transmit power, and reduces the impact of noise. The incorpora-

tion of more complicated power control algorithms is deferred to future work.

The noise power is denoted as σ2.

In the uplink training stage, after correlating the received training sig-

nal with the corresponding pilot, base station X0 has an observation of the

channel h
(1)
00 as

u
(1)
00 =

√
P

(1)
0 h

(1)
00 +

∑
`>0

√
P

(1)
` h

(1)
`0 + nt,

where nt is the noise vector in the training stage following the distribution

CN
(
0, σ

2

K
IM

)
.

I assume for ` > 0, the large-scale path losses β
(1)
0` are perfectly known

to base station X0. Since the channels are assumed to be IID Rayleigh fading,

the channel h
(1)
00 is estimated by an MMSE estimator as

h̄
(1)
00 =

√
P

(1)
0 β

(1)
00∑

` P
(1)
` β

(1)
0` + σ2

K

u
(1)
00 , (3.5)

where h̄
(1)
00 is the estimation of h

(1)
00 . Due to the orthogonality principle, the

channel vector h
(1)
00 can be decomposed as

h
(1)
00 = h̄

(1)
00 + ĥ

(1)
00 , (3.6)
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where ĥ
(1)
00 is the estimation error following CN

(
0, β

(1)
00

(
1− P

(1)
0 β

(1)
00∑

` P
(1)
` β

(1)
0` +σ2

K

)
I

)
.

Let s
(k)
` be the uplink data symbol for user Y

(k)
` with E

[
|s(k)
` |2

]
= P

(k)
` .

In uplink data transmission, base station X` is assumed to use the combiner

vector g
(k)
`` to decode s

(k)
` from Y

(k)
` , based on the channel estimate h̄

(k)
`` . Then,

at base station X0, the decoded symbol ŝ
(1)
0 for the typical user X

(1)
0 is

ŝ
(1)
0 = g

(1)∗
00 h̄

(1)
00 s

(k)
` + g

(1)∗
00 ĥ

(1)
00 s

(k)
` +

∑
(`,k) 6=(0,1)

g
(1)∗
00 h

(k)
0` s

(k)
` + g

(1)∗
00 nu︸ ︷︷ ︸

unknown at base station

, (3.7)

where nu ∈ CM×1 is the thermal noise vector in the uplink data transmission.

Treating the unknown terms at base station X0 as uncorrelated additive noise,

the uplink SINR for the typical user Y
(1)

0 is

SINR =
P

(1)
0 |g

(1)∗
00 h̄

(1)
00 |2

P
(1)
0 E|g(1)∗

00 ĥ
(1)
00 |2 +

∑
(`,k) 6=(0,1) P

(k)
` E|g(1)∗

00 h
(k)
0` |2 + |g(1)

00 |2σ2
, (3.8)

where the expectation operator is taken over the channel estimation error

and small-scale fading in the interference links. I will investigate the SINR

distributions for MRC and ZF receivers in the following sections.

The proposed system model represents a simple multi-user MIMO sys-

tems in which the SINR expression can be analyzed using stochastic geometry.

In the following sections, I will study the uplink SINR and rate distributions

for MRC and ZF receivers, when the number of base station antennas is large.
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3.4 Performance Analysis for MRC Receivers

In this section, I derive an approximate SINR distribution in an uplink

multi-user MIMO network, where the approximation becomes tight in the

massive MIMO regime, e.g. when M > 64. Then, I focus on the interference

limited case, as numerical results show that the uplink SINR is dominated

by the interference in certain urban macro-cell scenarios. I derive a scaling

law between the number of users and antennas that maintains the uplink SIR

distribution at the typical user. Finally, I present a method to compute the

per-user achievable rate and cell throughput, based on the SINR distribution.

3.4.1 SIR Coverage Analysis

Now I investigate the uplink SINR coverage based on the system model.

With MRC receivers, I assume that base station X0 applies the combining

vector g
(k)
00 as a scaled version of the channel estimate h̄

(1)
00 to decode the signal

from Y
(1)

00 :

g
(1)
00 =

∑
` P

(1)
` β

(1)
0` + σ2

K√
P

(1)
0 β

(1)
00

h̄
(1)
00 = u

(1)
00 . (3.9)

Note the scaling on the combining vector is intended to simplify expressions,
and will not change the SINR distribution. Then, using the combining vector
in (3.9), the SINR expression can be simplified in (3.10) as

(M + 1)
(
β

(1)
00

)2(1−ε)

M∆
(1)
2 +

(
β

(1)
00

)1−ε
∆

(1)
1 +

(∑K
k=2

(
β

(k)
00

)1−ε
+
∑K

k=1 ∆
(k)
1

)((
β

(1)
00

)1−ε
+ ∆

(1)
1

)
(3.10)
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where ∆
(k)
1 =

∑
`>0

(
β

(k)
``

)−ε
β

(k)
0` + σ2

KPt
, and ∆

(k)
2 =

∑
`>0

(
β

(k)
``

)−2ε (
β

(k)
0`

)2

.

The derivation to obtain (3.10) is given in Section 3.8.1. Note that ∆
(k)
1 and

∆
(k)
2 correspond to the sum of certain interference terms from other-cell users.

Next, I denote the exact SINR distribution for (3.10) (using the exact

scheduled user distribution defined in Section 3.3 but not the exclusion ball as-

sumption) as P(SINR > T ). Due to pilot contamination, the combining vector

g
(k)
00 is correlated with certain interference channel vectors as shown in (3.9). As

a result, the denominator in (3.10) contains cross-products of the path losses

from different interferers. Moreover, different cross-product terms in the de-

nominator of (3.10) can be correlated, as they may contains common path

loss terms, which renders the exact derivation of P(SINR > T ) intractable.

Therefore, I compute an approximate SINR distribution P̄(SINR > T ), which

I argue in Section 3.6 is a good match for P(SINR > T ), in Theorem 3.4.1.

Theorem 3.4.1 (MRC SINR). In the proposed massive MIMO networks, an

approximate uplink SINR distribution with MRC receivers can be computed as

P̄(SINR > T ) =
N∑
n=1

(
N

n

)
(−1)n+1

∫ ∞
0

e−t−`TηC1tα(1−ε)−`TηC2t
α
2 (1−ε)

C3(t)dt,

(3.11)

where N is the number of terms used in the calculation, η = N(N !)−
1
N ,

Cσ2 = σ2

KPtC1−ε(λbπ)
α(1−ε)

2

, C1 = K+1
M+1

(
2Γα( ε

2
+1)

(α−2)
+ Cσ2

)
, C2 = MΓα(ε+1)

(M+1)(α−1)
+

K
M+1

(
2Γα( ε

2
+1)

(α−2)
+ Cσ2

)2

,

C3(t) =

(∫ ∞
0

e−u−u
−α2 (1−ε)`TηC4(t)du

)K−1
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≈
(

1− `ηTC4(t)

∫ ∞
0

e−u

`TηC4(t) + u−
α
2

(1−ε) du

)K−1

,

C4(t) = 1
M+1

((
2Γα( ε

2
+1)

α−2
+ Cσ2

)
tα(1−ε) + t

α
2

(1−ε)
)

, and Γ(α) =
∫∞

0
e−ttα−1dt is

the gamma function.

Proof. See Section 3.8.2.

Besides the exclusion ball approximation, the main approximation in

Theorem 3.4.1 is to replace certain out-of-cell interference terms by their means

in (3.23) and (3.26). The approximation results in a minor error in the SINR

distribution, as (i) with K users in a cell, the intra-cell interference dominates

the out-of-cell interference with high probability; (ii) with large antenna arrays,

the ratio of the signal power to certain out-of-cell interference power terms,

e.g. the terms in ∆
(k)
1 , decays as 1

M
. In Section 3.6, using N ≥ 5 terms, the

distribution P̄(SINR > T ) computed in Theorem 3.4.1 is shown to be a good

match with the SINR distribution P(SINR > T ) from Monte Carlo simulations.

In addition, the error of the approximation becomes more prominent with a

smaller noise power, as all the approximations are made with respect to the

interference distribution. The expression is intended for the massive MIMO

regime when M � 1, as the error of the approximations decays with 1
M

. In

simulations, I find that the results in the theorem generally applies to the multi-

user MIMO networks with not-so-large M , e.g. the case of (M,K) = (10, 2).

In Theorem 3.4.1, the noise power is taken account by the parameter

Cσ2 = σ2

KPtC1−ε(λbπ)
α(1−ε)

2

, which shows that the impact of noise on the SINR
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is reduced with a larger number of scheduled users per cell K, a higher base

station density λb, a smaller path loss α, and a larger power control parameter

ε. Besides, the impact of noise goes down with larger M , as in the expressions

for C1 and C2, the noise parameter Cσ2 is divided by (M + 1).

Next, I focus on the performance of interference-limited networks. I

will show in Section 3.6 that the impact of noise is negligible in certain urban

macro-cell cases with M = 64 antennas at base stations. Then, the general

expression in Theorem 3.4.1 can be further simplified in the following special

cases.

Case 1 (Full power control, ε = 1): In this case, the transmitting

power at scheduled user Y
(k)
` is adjusted to compensate for the full path loss,

i.e., P
(k)
` = Ptβ

(k)
`` , such that a base station receives equal signal powers from

all of its associated users. When ε = 1, the SIR distribution can be simplified

as in the following corollary.

Corollary 3.4.1.1. With ε = 1 and σ2 = 0, the approximate SIR distribution

can be computed as

P̄(SIR > T ) =
N∑
n=1

(
N

n

)
(−1)n+1e

−Tη`
(
C5K+Γα(1.5)

M+1
+ 1
α−1

)
, (3.12)

where C5 = 4Γ2α(1.5)+(α2−4)Γα(1.5)
(α−2)2 .

Based on Corollary 3.4.1.1, a linear scaling law between the number of

users and antennas is observed as follows.
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Corollary 3.4.1.2. With ε = 1 and σ2 = 0, to maintain the uplink SIR

distribution unchanged, the scaling law between the number of base station

antennas M and users per cell K is approximately

(M + 1) ∼
(
K +

Γα(1.5)

C5

)
≈ K. (3.13)

Note that when ε = 1, the linear scaling law matches prior results in

[64, Sec. IV], where the path loss to all associated users in the typical cell was

assumed to be identical. The linear scaling law, however, does not apply to

other cases with ε < 1, e.g. in the following case without power control.

Case 2 (No power control, ε = 0): In this case, the fraction of the

path loss compensation is ε = 0. Then, the uplink SIR can be evaluated as

follows.

Theorem 3.4.2. With ε = 0 and σ2 = 0, an approximate uplink SIR distri-

bution can be calculated as

P̄(SIR > T ) =
N∑
n=1

(
N

n

)
(−1)n+1

∫ ∞
0

e−(µΓ(1−2/α)(nηT )2/α+1)t−nηT
α−1

tαdt, (3.14)

where N is the number of terms used in the computation, and µ = K
(M+1)2/α .

Proof. The proof is similar to that in [34, Appendix A].

I will show in Section 3.6 that Theorem 3.4.2 provides a tight approxi-

mation of the exact SIR distribution P(SIR > T ), when N ≥ 5 terms are used.

Moreover, note that in (3.14), the number of antennas M and the number of
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scheduled users per cell K only affect the value of µ. Therefore, by Theo-

rem 3.4.2, in the no power control case, I observe the following scaling law to

maintain SIR.

Corollary 3.4.2.1. Assuming no power control, the approximate scaling law

to maintain the same uplink SIR distribution is (M + 1) ∼ Kα/2, which is a

superlinear polynomial scaling when α > 2.

In the case of no power control, the difference in the path losses between

the typical user and the intra-cell interferers affect the SIR distribution, and

thus the scaling law to maintain the SIR becomes a function of the path loss ex-

ponent. The super-linearity in the scaling law can be explained by the near-far

effect of the intra-cell interference from multiple users in a cell. With no power

control, the cell edge users will receive weaker signals than the cell center user.

With a uniform user distribution in a cell, the typical user will be more likely

to be located at the cell edge. When increasing the number of scheduled users

K in a cell, the probability that the interference from a cell-center interferer

dominates the signal from the typical user increases. Therefore, compared

with the linear scaling law with full power control (ε = 1) where such near-far

effect is mitigated, more antennas will be needed in the no power control case

to reduce the intra-cell interference, and preserve the SIR distribution, when

increasing K.

Next, I focus on the scaling law in the general fractional power control

case with ε ∈ (0, 1). It is difficult to derive the exact scaling law directly from
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the expression (3.11), due to the integral form. Since with the fractional power

control, the equivalent path loss exponent in the signal link linearly scales

with ε, I propose the following approximate scaling law by linearly fitting the

exponent s of the scaling law (M + 1) ∼ Ks, based on two special cases of ε:

by Corollary 3.4.1.2, when ε = 1, s = 1; and by Theorem 3.4.2, when ε = 0,

s = α
2
. Therefore, for general 0 < ε < 1, the linearly fitted exponent of the

scaling law s is given as follows.

Scaling law 3.4.1. With fractional power control, the scaling law between M

and K is approximately (M + 1) ∼ Ks, where the exponent of the scaling law

is s = α
2
(1− ε) + ε.

Scaling law 3.4.1 reveals that a (superlinear) polynomial scaling law

between K and M is required to maintain uplink SIR distribution, for a general

ε < 1. The results in Scaling law 3.4.1 are verified by numerical simulations

in Section 3.6.

3.4.2 Rate Analysis

In this section, I apply the SINR results to compute the achievable rate.

First, I define the average achievable spectrum efficiency at a typical user as

τ0 = E [log2 (1 + min{SINR, Tmax})] , (3.15)

where Tmax is a SINR distortion threshold determined by limiting factors like

distortion in the radio frequency front-end. By [29, Section III-C], given the

SINR distribution P(SINR > T ), the average achievable spectrum efficiency
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can be computed as τ0 = 1
ln(2)

∫ Tmax

0
P(SINR>x)

1+x
dx. To take account for the over-

head, let ψ be the fraction time for overhead. In this chapter, for simplicity,

I only consider the overhead due to uplink channel training, and compute the

overhead fraction ψ as ψ = Tt

Tc
= K

Tc
, where Tt and Tc are the length of channel

training period and coherent time, in terms of the number of symbol time.

The length of channel training is assumed to be equal to the number of sched-

uled users in a cell, as I assumed full reuse of orthogonal pilots throughout

the network. Then the average achievable rate with the overhead penalty τ̄0

equals

τ̄0 = K(1− ψ)τ0, (3.16)

Note that when ignoring thermal noise, the scaling law to maintain SINR dis-

tribution also maintains the average achievable rate τ0. When taking account

for the training overhead penalty ψ, however, the scaling law will not keep

τ̄0 unchanged, as 1 − ψ linearly decreases with K, unless ψ is negligible, e.g.

when the coherence time Tc � K. Next, I define the average cell throughput

τcell, in terms of spectrum efficiency, as

τcell = K(1− ψ)τ0. (3.17)

I will examine the average cell throughput as a function of M and K in Section

3.6. Before that, I continue to present the results for ZF receivers in the next

section.
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3.5 Performance Analysis with ZF Receivers

In this section, I will investigate the performance of ZF receivers in

IID fading channels. First, I derive the SINR and rate distributions with ZF

receivers. Then, I apply the analytical results to compare the performance of

MRC and ZF receivers in an interference-limited network. In particular, I aim

to answer the question: compared with MRC receivers, how many antennas

can be saved by applying ZF receivers, while keeping the same uplink SIR

distribution.

3.5.1 SINR Analysis of ZF Receivers

Now I begin to investigate the performance of ZF receivers in an uplink

massive MIMO network. For ZF receivers, I still focus on the case of IID

fading. To cancel the intra-cell interference, base station X` will apply the

combining vector g
(k)
`` for user Y

(k)
` as

g
(k)
`` = H†`[:, k], (3.18)

where H` =
[
u

(1)
`` ,u

(2)
`` , . . . ,u

(K)
``

]
∈ CM×K is the matrix of all estimated chan-

nels to the associated users in cell X`, and u
(k)
`` =

∑
`′ P

(1)

`′ β
(1)

``′+
σ2

K√
P

(k)
` β

(k)
``

h̄
(k)
`` is a scaled

version of the channel estimate. The scaling in the channel estimates will not

change the uplink SINR distribution, as it will only cause certain scaling in

the corresponding combining vector. Similar to the case of MRC receivers, the

exact uplink SINR distribution is difficult to derive, as due to pilot contam-

ination, the combining vector is correlated with certain interference channel
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vectors. Therefore, applying the same approximations in (3.23) and (3.26), I

derive an approximate distribution for the uplink SINR expression in (3.8) for

the typical user X
(1)
0 in the following theorem.

Theorem 3.5.1. With M � K and ZF receivers, an approximate uplink

SINR distribution for the typical user can be calculated by

P̄(SINR > T ) =
N∑
n=1

(
N

n

)
(−1)n+1

∫ ∞
0

e−nηT(C6t
α
2 (1−ε)+C7tα(1−ε))−tdt, (3.19)

where the constant C6 = C9

(
1

M−K+1
+ 1

M+1
+ M(K−1)

(M−K+1)2

)
+ M(K−1)C8

(M−K+1)2 ,

C7 =
M

M + 1

Γα(ε+ 1)

α− 1
+

(
1

M + 1
+

(K − 1)M

(M −K + 1)2

)
C2

9 +
(K − 1)M

(M −K + 1)2
C8C9,

C8 =
2Γα( ε

2
+1)+(α−2)Cσ2

(α−2)(1+Cσ2 )+2Γα( ε
2

+1)
, C9 =

2Γα( ε
2

+1)

α−2
+ Cσ2, Cσ2 = σ2

KPtC1−ε(λbπ)
α(1−ε)

2

, N

is the number of terms used in the computation, and η = N(N !)−
1
N .

Proof. See Section 3.8.3.

Note that when K = 1, the SINR distribution in (3.19) for ZF receivers

is the same as that for MRC receivers in (3.12). I will verify the tightness of

the approximation P(SINR > T ) ≈ P̄(SINR > T ) by numerical simulation in

Section 3.6. I have the following remark on the applicable regime for Theorem

3.5.1.

Remark 3.5.1. I need the condition M � K in the proof, as the error in

the approximation in (3.27) decays as 1
M−K+1

. In numerical simulations, I

find that the approximate SINR distribution in Theorem 3.5.1 shows a good
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match with the simulations when M
K
≥ 3 with M ≥ 10. The same comment

applies to Scaling law 3.5.1 below.

Next, I focus on the interference-limited case. Based on Theorem 3.5.1,

I can derive an approximate scaling law between M and K to maintain the

SIR distribution in the region of M � K as follows.

Scaling law 3.5.1. With ZF receivers and σ2 = 0, the uplink SIR distribution

of the typical user remains approximately unchanged when the number of an-

tennas M linearly scales with the number of users per cell K as (M + 1) ∼ K.

Proof. Note that when σ2 = 0, Cσ = 0. The dependence on M and K in

(3.19) only occurs in the constants C6 and C7. Therefore, it is sufficient to

show that a linear scaling between M and K (approximately) maintains the

values of C6 and C7. Note that when M → ∞, and M � K, the following

limits hold: 1
M+1

→ 0, 1
M−K+1

→ 0, and M
M+1

→ 1. Therefore, it follows that

when keeping K
M+1

= t, limM→∞C6 = (C8+C9)t
1−t , and limM→∞C7 = Γα(ε+1)

α−1
+

t
1−t

(
4Γ2α( ε

2
+1)

(α−2)2 +
2C8Γα( ε

2
+1)

α−2

)
, which are invariant when (M + 1) linearly scales

with K.

Compared with MRC receivers, the near-far effect for users in a cell

becomes minor with ZF receivers, as the intra-cell interference is largely sup-

pressed. Therefore, a linear scaling law applies for ZF receivers even without

power control. Based on the SINR coverage results, the achievable rate per

user and sum throughput can be computed following the same line as in Sec-

tion 3.4.2. In the next section, I will use the derived results to compare the
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SIR coverage performance between MRC and ZF receivers in an interference-

limited network.

3.5.2 Comparison of SIR Coverage Performance

Now assuming the network is interference-limited, I compare the SIR

coverage between ZF and MRC receivers. Prior work [64] showed that ZF and

MRC receivers have the same asymptotic performance, both which are limited

by the pilot contamination. The analysis in [82] showed that by suppressing

intra-cell interference, which turns to be more dominant than the out-of-cell

interference, the ZF receivers suffers from less interference than MRC receivers.

In this section, I make a quantitative comparison by answering the following

question: in IID fading channels, how many base station antennas MZF is

needed for ZF receivers to provide the same uplink SIR distribution as MRC

receivers with MMRC antennas?

Based on Scaling law 3.4.1 and Scaling law 3.5.1, I have the following

proposition to determine MZF to match the SIR coverage with MRC receivers.

Proposition 3.5.1. Assuming MZF � K, ZF receivers with (MZF + 1) =

ξ(MMRC +1) antennas approximately provide the same uplink SIR distribution

as MRC receivers with MMRC antennas in a massive MIMO networks, where

the scaling factor ξ = K−(α
2
−1)(1−ε), and K is the number of scheduled users in

a cell.

Proof. For the ease of notation, let ZF(M,K) and MRC(M,K) denote the
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uplink SIR distributions with ZF and MRC receivers of M antennas, when

serving K users in a cell. By Scaling law 3.5.1, when MZF � K, ZF(MZF, K) ≈

ZF(MZF+1
K

, 1). Next, note that when K = 1, i.e., with a single scheduled user

in a cell, MRC and ZF receivers provide the same SIR coverage. Thus, it

follows that ZF(MZF, K) = ZF(MZF+1
K

, 1) = MRC(MZF+1
K

, 1). Last, by Scaling

law 3.4.1, ZF(MZF, K) ≈ MRC(MZF+1
K

, 1) ≈ MRC((MZF + 1)K(α
2
−1)(1−ε) −

1, K).

The condition MZF � K in the proposition is required to ensure the

applicability of Scaling law 3.5.1. In numerical simulations, the result is found

to be a good approximation with MZF

K
> 3. Note that the exponent of the

scaling factor −(α
2
− 1)(1− ε) is non-positive, which indicates I need MMRC ≥

MZF to provide the same SIR coverage. Further, the scaling factor ξ increases

with the number of the scheduled user K, which reveals that the performance

gap between MRC and ZF receivers grows with K. When K increases, the

mitigation of the intra-cell interference from (K − 1) users by ZF receivers

becomes more prominent to improve SIR coverage. In addition, Proposition

3.5.1 also shows that in terms of the SIR distribution, the performance gap

reduces with larger ε in the power control scheme, as the scaling factor ξ is a

decreasing function of ε. Simulations show that with ε = 1, only a minor gap

exists between the SIR coverage curves for ZF and MRC receivers.

Last, I note that Proposition 3.5.1, which is drawn based on the SIR

distribution, need not extend to a general SINR distribution that is not dom-

inated by interference; prior work [147] showed that when the noise is not
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negligible, MRC receivers would provide a comparable or even better SINR,

compared with the ZF receivers. In the following section, I will present nu-

merical results to validate our analytical results.

3.6 Numerical Results

In this section, I verify our analytical results with numerical simula-

tions, which follow the procedure as: (1) generating the base station process

as a PPP of density λb; (2) generating the overall user process as a PPP of

density λu,o, where I use λu,o = 60λb, unless otherwise specified; (3) asso-

ciating the points in the overall user process to base stations, based on the

minimal path loss rule, and then randomly scheduling K out of the associated

users in each cell as their scheduled users; (4) picking the base station closest

to the origin as the tagged base station X0, and its first scheduled user Y
(1)

0

as the typical user; (5) generating channel vectors as IID Gaussian vectors,

and computing the SINR for the iteration; (6) repeating the step (1)-(5) for

10,000 iterations, and computing the empirical distribution of the SINR at

Y
(1)

0 . For the simulations using hexagonal grids, I follow the same procedure

except that the base station process is generated as a 19-cell hexagonal grid,

and the tagged base station is the center cell. In addition, I will use N = 5

terms when evaluating the analytical expressions.

Impact of the noise: To begin with, I examine the impact of noise

by comparing the SINR and SIR distributions for both MRC and ZF receivers

in different scenarios in Fig. 3.1. In the simulations, I assume Pt=23 dBm,
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(a) ISD=500 meters.
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MRC: M=64
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(b) ISD=1000 meters.

Figure 3.1: Comparison of SINR and SIR distributions. In the figures, I use
markers to represent SINR curves, solid lines for SIR. I assume K = 10 users
per cell, ε = 0, and α = 4 in all cases. The gap between the SIR and SINR
distributions becomes minor when ISD=500 meters, which is the typical size
for the urban macro cells [1].

and the bandwidth is 20 MHz as in the current LTE standards [1]. I examine

the case of ε = 0, which maximizes the impact of the noise. I simulate with

two inter-site distances (ISDs): an average ISD of 500 meters in Fig. 3.1(a),
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Analy: (M,K, ε)=(64,10,0)
Simu: (M,K, ε)=(64,10,0)
Analy: (M,K, ε)=(64,10,0.5)
Simu: (M,K, ε)=(64,10,0.5)
Analy: (M,K, ε)=(64,10,1)
Simu: (M,K, ε)=(64,10,1)
Analy: (M,K, ε)=(128,20,0)
Simu: (M,K, ε)=(128,20,0)

Figure 3.2: SIR coverage for MRC receivers. In the simulations, I assume
α = 4. The analytical curves are drawn based on Theorem 3.4.1, which are
shown a good fit with simulation. The difference in the curves for (M,K, ε) =
(64, 10, 0) and (M,K, ε) = (128, 20, 0) indicates that linear scaling between M
and K does not generally preserve SIR for MRC receivers.

and 1000 meters in Fig. 3.1(b). Note that a typical ISD of 500 meters is

assumed for urban macro-cells in the 3GPP standards [1]. In Fig. 3.1(a), the

network with ISD=500 meters is shown to be interference-limited with M = 64

antennas for both MRC and ZF receivers, as the SIR curves almost coincide

with the SINR curves, which justifies the interference-limited assumption in

urban marco cells. In the sparse network with ISD=1000 meters, however,

simulations show that even with M=64 antennas, notable gaps exist between

the SINR and SIR distributions, especially for ZF receivers. In addition, the

results in Fig. 3.1(b) shows that when the noise power is high, even with no

power control, ZF and MRC receivers have a similar SINR coverage perfor-

mance, which indicates that the SIR comparison results in Proposition 3.5.1
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Figure 3.3: SIR distributions with ZF receivers. I assume α = 4, and IID
fading channel. The analytical curves are plotted based on Theorem 3.5.1.
Simulations verify the analytical results, and show that when both M and K
double, the SIR curves remain almost unchanged.

need not extends to general SINR comparisons.

SIR coverage for MRC receivers: In Fig. 3.2, I verify the analyt-

ical results for the SIR distribution with MRC receivers. Numerical results

show that the SIR coverage is sensitive to the compensation fraction ε in the

fractional power control: a large compensation fraction ε improves the SIR

coverage in the low SIR regime at the expense of sacrificing the coverage in

the high SIR regime. Besides, a comparison of the curves for (M,K) = (64, 10)

and (M,K) = (128, 20) shows that the linear scaling law does not maintain

the SIR distribution when ε = 0.

SIR coverage for ZF receivers: I verify the analysis for ZF re-

ceivers in Fig. 3.3. The analytical curves generally match well with numer-

131



−10 −5 0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SIR threshold in dB

S
IR

 C
C

D
F

 

 

ZF: (M,K,ε)=(64,4,0)
MRC: (M,K,ε)=(64,4,0)
ZF: (M,K,ε)=(64,20,0)
MRC: (M,K,ε)=(64,20,0)
ZF: (M,K,ε)=(64,20,1)
MRC:(M,K,ε)=(64,20,1)

Figure 3.4: Comparison of SIR coverage with MRC and ZF receivers. I assume
α = 4. As the double arrays display, when fixing ε = 0, the performance gap
in SIR coverage is shown to increase with K; when fixing K = 20, the gap
diminishes when ε→ 1.

ical simulations. A comparison of the curves for (M,K, ε) = (64, 10, 0) and

(M,K, ε) = (128, 20, 0) shows that unlike the case of MRC receivers, a linear

scaling law between M and K maintains the SIR distribution, even when there

is no fractional power control implemented.

SIR comparison between MRC and ZF receivers: I compare the

uplink SIR distributions for MRC and ZF receivers in Fig. 3.4. Simulations

show that ZF receivers provide better SIR coverage, due to the suppression of

intra-cell interference. Moreover, for the same ε, the performance gap between

MRC and ZF receivers increases with the number of scheduled users K, as the

strength of total intra-cell interference also increases with K. When fixing M

and K, the performance gap decreases with ε; when ε = 1, the SIR coverage
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MRC: (M,K,ε)=(64,5,0)
ZF: (M,K,ε)=(13,5,0)
MRC: (M,K,ε)=(64,5,0.5)
ZF: (M,K,ε)=(28,5,0.5)
MRC: (M,K,ε)=(64,5,0.8)
ZF: (M,K,ε)=(46,5,0.8)

Figure 3.5: Verification of Proposition 3.5.1. In the simulation, α = 4. In the
simulation, I use the SIR curve of MRC(64, 5) as a baseline for comparison.
I use Proposition 3.5.1 to compute the required number of antennas for ZF
receivers, to have the SIR distribution of the baseline curve.

gap becomes minimal between MRC and ZF receivers. With full compensation

of path loss in power control, linear scaling laws between M and K apply

to both MRC and ZF receivers, as the near-far effect for users in a cell is

mitigated. When M � K, the difference in the average (residue) intra-cell

interference between MRC and ZF receivers becomes minor, as it decays with

1
M

.

In Fig. 3.5, I verify our theoretical results in Proposition 3.5.1. In

the simulation, I fix the number of antennas for the MRC receivers to be

MMRC = 64, and use Proposition 3.5.1 to calculate the required MZF, to

maintain the same SIR distribution. Numerical results show a good match

with our analysis; the minor mismatch in the case ε = 0 is because Proposition
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(a) SIR for MRC receivers in the hexagonal
grid model.
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(b) SIR for ZF receivers in the hexagonal grid
model.

Figure 3.6: Verification of the scaling laws in the hexagonal model. I use
(M,K) = (32, 5) as the baseline curves. When increasing the number of users
to K=10, I compute the required M to preserve the SIR distribution as base-
line curves, according to Scaling law 3.4.1 and Scaling law 3.5.1. Simulations
indicates that the scaling law results apply to the hexagonal model.

3.5.1 theoretically requires MZF

K
� 1, while I use MZF

K
= 13

5
in the simulation.

Verification with hexagonal grid model: I verify the scaling laws
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Figure 3.7: Comparison of different scaling laws. I plot the required number
of antennas to provide the same SIR as that of the case (M,K) = (16, 5) as a
function of K with different system parameters.
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Figure 3.8: Average spectrum efficiency per user in an interference-limited
network. In the simulation, I assume Tmax = 21 dB, which sets the maximum
spectrum efficiency per data stream as 7 bps/Hz. Training overhead is not
taken account in this figure.
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(a) Cell throughput when Tc=40 symbols.
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(b) Cell throughput when Tc=200 symbols.

Figure 3.9: Uplink cell throughput as a function of K. The overhead due to
channel training is taken account in the simulations. I simulate an interference-
limited network with ISD=500 meters. I use ε = 0.5 for MRC receivers, and
ε = 0.2 for ZF receivers, which are shown to optimize the per user rate.

derived from stochastic geometry with the hexagonal grid model in Fig. 3.6.

In the simulations, I use a layout of 19 hexagonal cells with inter-site distance

of 300 meters; only the scheduled users in the central cell are counted for the

SIR statistics, to avoid edge effect. In Fig. 3.6(a), for MRC receivers, I use
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Table 3.1: Coherence time Tc in the examples

Mobility Max. velocity Max. Doppler fD Coherence time Tc

High 50 Km/h 92.6 Hz 40 Symbols
Low 10 Km/h 18.5 Hz 200 Symbols

a (M,K) = (32, 5) as the baseline curve for comparison. When doubling the

number of scheduled users to K = 10, I use Scaling law 3.4.1 to compute

the required M to maintain the same SIR distribution, which is shown to be

almost accurate with extensive combinations of the system parameters in the

hexagonal grid model. Similarly, results in Fig. 3.6(b) verifies the linear scaling

law for ZF receivers in Scaling law 3.5.1. This indicates that the stochastic

geometry model provides reasonable predictions even for the hexagonal model.

Comparison of scaling laws: I compare scaling laws to maintain the

uplink SIR distribution in different scenarios in Fig. 3.7. I plot the required

number of antennas to maintain the same SIR distribution as that in the case of

(M,K) = (16, 5), as a function of K. As shown in the plot, for MRC receivers,

given the path loss exponent α, the slope of the scaling law is determined by

the fraction of path loss compensation ε: the linear scaling law proposed in

prior work [82, 64] is only achieved when ε = 1. Although the choice of ε = 1

makes the system with MRC receivers linearly scalable, it need not maximize

the per-user rate, as will be shown in Fig. 3.8. On the contrary, for ZF

receivers, the linear scaling applies for all ε ∈ [0, 1].

Rate performance: I illustrate the results on the average spectrum

efficiency per user in Fig. 3.8. In the simulation, the average ISD is 500

137



meters, and K = 10, which is shown to be interference-limited in Fig. 3.1.

Consistent with the SIR results, in a interference-limited network, ZF receivers

provide a higher spectrum efficiency per user. Numerical results also show

that the average spectrum efficiency is sensitive to the fraction of the path

loss compensation ε; the optimum ε for per user rate is generally around 0.5

for MRC receiver, and 0.2 for ZF receivers. In addition, I also observe that

there is a minor performance gap in rate between ZF and MRC receivers under

full channel compensation power control, as predicted by Proposition 3.5.1.

Last, I examine the cell throughput in a system operated at 2 GHz in

Fig. 3.9. As an example, I consider an OFDM system, where the symbol time

is 66.7 µs. I consider two cases with different mobilities as listed in Table 3.1;

the coherence time Tc is computed as Tc = 1
4fD

[138], where fD is the maximum

doppler frequency. In this simulation, I assume the density of overall users to

be 100 times the base station density, to simulate the case with large K. In

Fig. 3.9(a), in the high mobility case, when Tc < M , the optimal K∗ for cell

throughput is limited by the duration of Tc, and the optimal value generally is

K∗ ≤ Tc

2
. In the example of low mobility case, when Tc > M , the results in Fig.

3.9(b) show that the optimal K∗ depends much on M : for ZF receivers, the cell

throughput drops fast when K
M

approaches to 1, and the optimal K∗ is around

M
2

for maximum throughput; for MRC receivers, the cell throughput becomes

saturated approximately when K > M
3

. In addition, ZF receivers generally

achieve better cell throughput than MRC receivers; the only exception is the

case of M
K
≈ 1, where the cell throughput of ZF receivers drops below that of
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MRC. In addition, compared with the single user per cell case (K = 1), the

results confirm that massive MIMO improves the cell throughput by serving

multiple users simultaneously.

3.7 Conclusion

In this chapter, I proposed a stochastic geometry framework to analyze

the spatial average SINR coverage and rate in massive MIMO networks. I

applied the analysis and numerical results to draw several important system

design insights about the SINR coverage and rate in uplink massive MIMO

networks.

• The uplink massive MIMO networks can be interference-limited in urban

marco cells (ISD=500 meters) with M = 64 antennas at base stations.

• With MRC receivers, the number of antennas M should scale super-

linearly with the number of scheduled users per cell K as (M + 1) ∼

K
α
2

(1−ε)+ε, to maintain the uplink SIR distribution; a linear scaling law

only applies to the case of full path loss compensation in the power

control, i.e., when ε = 1.

• With ZF receivers, a linear scaling between the number of antennas M

and users per cell K maintains the uplink SIR distribution in massive

MIMO.

• When noise is negligible, ZF receivers provide better SIR coverage rate
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than MRC receivers. The performance gap increases with K, and de-

creases with path loss compensation faction ε. The gap becomes minor

when ε = 1.

• The SIR coverage and rate are sensitive to the fraction ε of path loss

compensation in power control. Larger ε improves coverage in the low

SIR regime while reducing coverage probability at high SIR. Numerical

results show that the optimal ε for rate is around 0.5 for MRC, and 0.2

for ZF receivers in certain cases.

3.8 Appendix

3.8.1 Derivation of (3.10)

With the combining vector in (3.9), the SINR expression equals (3.20)
as

P
(1)
0

∣∣∣u(1)∗
00 h̄

(1)
00

∣∣∣2
P

(1)
0 E

∣∣∣u(1)∗
00 ĥ

(1)
00

∣∣∣2 +
∑

(`,k)6=(0,1) P
(k)
` E

∣∣∣∣n∗th(k)
0` +

∑
`′≥0

√
P

(1)
`′ h

(1)∗
0`′ h

(k)
0`

∣∣∣∣2 + |u(1)
00 |2σ2

.

(3.20)

In the numerator, the signal power can be computed as

P
(1)
0 |u

(1)∗
00 h̄

(1)
00 |2

(a)
=

(
P

(1)
0 β

(1)
00

)2

(∑
` P

(1)
` β

(1)
0` + σ2

K

)2 |u
(1)
00 |4

(b)
≈

(
P

(1)
0 β

(1)
00

)2

(∑
` P

(1)
` β

(1)
0` + σ2

K

)2E|u
(1)
00 |4

(c)
=
(
P

(1)
0 β

(1)
00

)2

(M2 +M) = P 2
t

(
β

(1)
00

)2(1−ε)
(M2 +M),

where (a) follows from the MMSE estimator in (3.5), (b) follows from the fact

that |u(1)
00 |4

M→∞→ E|u(1)
00 |4, and the approximation error decays as 1

M2 [105], and
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(c) follows from the fact that E|u(1)
00 |4 = (M2 +M)

(∑
` P

(1)
` β

(1)
0` + σ2

K

)2

. Next,

I compute the first term in the denominator of (3.20) as
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where (a) follows from the fact that the channel estimation error ĥ
(1)
00 follows

the distribution CN

(
0, β

(1)
00

(
1− P

(1)
0 β

(1)
00∑

` P
(1)
` β

(1)
0` +σ2

K

)
IM
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.

Next, I simplify the second term in the denominator. Note that unless

(`, `′, k) = (n, n′,m), h
(1)∗
`′0 h

(k)
`0 and h

(1)∗
n′0 h

(m)
n0 are uncorrelated zero-mean ran-

dom variables. Therefore, I can simplify the second term in the denominator

of (3.20) as

∑
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Note that for k = 1,`′ = ` 6= 0, the expression is simplified as
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;
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for k > 1 or k = 1, `′ 6= ` > 0, it follows that
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Therefore, I can express (3.22) as
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Last, the thermal noise term in the denominator can be simplified as

|u(1)
00 |2σ2 = PtMσ2
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``
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β
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σ2
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)
.

Then the expression in (3.10) is obtained through algebraic manipula-

tion in the denominator.

3.8.2 Proof of Theorem 3.4.1

To allow for tractable computation and decouple the correlated terms

in the denominator of (3.10), I propose the following approximations on the

out-of-cell interference terms: for k ∈ [1, K],

∆
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where in (a), I approximate ∆
(k)
1 by its mean; step (b) follows from

E
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; (3.24)

and step (c) follows from the exclusion ball model in Approximation 3.3.1 and

the Campbell’s theorem [24] as
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Similarly, I can approximate ∆
(1)
2 by its mean as:

∆
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Next, applying the approximation in (3.23) and (3.26) and conditioning

on R
(1)
00 = x, I simplify the approximate conditional uplink SINR as
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where in (a) C1, C2 and C4(x) are defined in Theorem 3.4.1; in (b) I use

a “dummy” gamma variable g with unit mean and shape parameter N to

approximate the constant number one, and the approximation follows from the

fact that g converges to one when N goes to infinity, i.e., limn→∞
nnxn−1e−nx

Γ(n)
=

δ(x− 1) [20], where δ(x) is the Dirac delta function; in (c), the approximation

follows from Alzer’s inequality [14, 29, Appendix A], where η = N(N !)−
1
N ; (d)

follows from the fact that R
(k)
00 is assumed to be IID Rayleigh random variable;

in (e) I change variable as u = λbπs
2; in (f), I apply the approximation
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exp(−x) ≈ 1
1+x

inside the integral, to allow for faster numerical evaluations.

Last, I obtain the uplink SIR distribution by de-conditioning on R
(1)
00 = x,

which is assumed to be a Rayleigh random variable with mean 0.5
√

1/λb, and

changing the variable as t = πλbx
2.

3.8.3 Proof of Theorem 3.5.1

Before proving the theorem, I present a useful lemma on the distribution

of the combining vector g
(1)
00 as follows.

Lemma 3.8.1 (From [71]). The square norm of the combining vector |g(1)
00 |2

follows the distribution of
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represents a Chi-square random variables with 2(K−M+1) degrees of freedom.

Note that when (MK + 1)→∞,
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→ 1. Therefore, by Lemma

3.8.1, when M � K, the following approximation holds as
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where for ease of notation, I define S(k) =
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and the approximation error decays as 1
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. Noting that |g(1)
00 u

(1)
00 |2 = 1,

the nominator of the SINR expression in (3.8) can be computed as
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Applying the results in (3.27), the first term in the denominator of (3.8)
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is computed as
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Now I simplify the second sum in the denominator of (3.8): for k = 1,

and ` > 0, it follows
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For k > 1, it follows that
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Then, in the case of k > 1, for ` = 0, I approximate the residue intra-cell

interference of ZF receivers as

E|g(1)∗
00 h

(k)
00 |2 ≈
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which follows from P
(k)
0 β

(k)
00 ≈
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E
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(k)2
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2

= (λbπ)
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2 ; for ` > 0, the

out-of-cell interference is upper bounded (and approximated) as
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The noise term in the denominator is

|g(1)
00 |2σ2 =

σ2

(M −K + 1)S(1)
. (3.33)

Next, substituting (3.23), (3.26) and (3.29)-(3.33) for (3.8), conditioning on

R
(1)
00 = x, and after some algebraic manipulation, the SINR expression is sim-

plified as

SINR =
(
C6(λbπx

2)
α
2

(1−ε) + C7(λbπx
2)α(1−ε))−1

.

The rest of the proof follows the same line as in Section 3.8.2.
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Chapter 4

Analysis of Millimeter Wave Massive MIMO

Networks

4.1 Motivation and Related Work

Massive MIMO is a promising candidate technology for 5G cellular net-

works [76, 42, 87]. It deploys more antennas than in conventional systems to

serve a large number of users and provides high throughput [90, 42, 76, 87].

With large bandwidth channels, the mmWave spectrum constitutes a promis-

ing candidate frequency for access channels in 5G cellular networks [112, 120].

The small wavelength also makes it natural to consider massive MIMO at

mmWave frequencies [133], which I call mmWave massive MIMO in this chap-

ter. MmWave cellular networks will be different from the system at lower fre-

quencies. One key difference is the sensitivity to blockages: different path loss

laws are found in the LOS and NLOS mmWave links in measurements [120].

Besides the differences in propagation, mmWave base stations will probably

have fewer RF chains than conventional systems, due to power constraints.

Consequently, a mmWave base station will support fewer users, and probably

use analog or hybrid beamforming [11].

Stochastic geometry provides useful tools to analyze the system-level
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performance in large-scale networks [18]. In [89, 27], the asymptotic perfor-

mance in a conventional massive MIMO network was examined using stochas-

tic geometry, where key features of mmWave systems, e.g. the blockages and

directional beamforming, were not incorporated. Stochastic geometric cellu-

lar models [18] were also extended to analyze mmWave network performance

[29, 25]. An innovation of the analysis in [29, 25] was to incorporate building

blockage into the analytical framework by using different path-loss laws for

LOS and NLOS links. Unfortunately, the framework in [25, 29] cannot be

directly applied to study mmWave massive MIMO networks, as intra-cell in-

terference was not treated by assuming a single user per cell, and the channel

training stage was not included by assuming perfect channel knowledge.

4.2 Contributions

In this chapter, I propose to study the asymptotic SINR and rate per-

formance in a TDD mmWave massive MIMO system. I extend the mmWave

cellular model in [29, 25] to the mmWave massive MIMO case by characterizing

the distributions of the multiple scheduled users per cell and incorporating the

difference in spatial correlations between LOS and NLOS links. Based on the

system model, I derive expressions to evaluate the asymptotic SINR distribu-

tions in both uplink and downlink, when the number of base station antennas

goes to infinity. Compared with prior asymptotic analysis of massive MIMO

in [90], I incorporate key features in mmWave networks, including blockage

effects and directional beamforming, and consider a different large-scale net-
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work topology with infinite randomly distributed base stations. Numerical

results show that the SINR performance in massive MIMO networks is de-

pendent on the base station density, where a good SINR coverage and high

convergence rate to the asymptotic equivalence are achieved with a dense base

station deployment. Moreover, a comparison with massive MIMO system at

2 GHz shows that mmWave massive MIMO achieves a higher cell throughput

when densely deployed.

4.3 System Model

In this section, I introduce the system model for a mmWave massive

MIMO network. I consider a mmWave massive MIMO cellular network with

perfect synchronization. Each base station is assumed to have M antennas.

In each time-frequency resource block, a base station can schedule K users

simultaneously in its cell. Let X` be the location of the `-th base station, Y
(k)
`

be the location of the k-th scheduled user in the cell of `-th base station, and

h
(k)
``′ the channel vector from X` to Y

(k)
`′ .

The network is assumed to be operated in the following TDD mode as

proposed in [90]: channel training is performed in the uplink, where the users

send their assigned pilots Tk, and base stations estimate the channels using

the orthogonality of the pilots; based on the channel estimates derived from

uplink pilots, the base stations apply maximum ratio combining to receive

the uplink data, and match-filter beamforming to transmit the downlink data.

Further, I assume full reuse of the orthogonal pilots {Tk}1≤k≤K in the network.
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Due to the power and hardware constraints [11], mmWave base stations will

have fewer RF chains than the antennas. To address the limitation on the

number of RF chains, I restrict the number of simultaneously scheduled users

in a cell to be smaller than 4. Though mmWave systems will probably apply

analog or hybrid beamforming, for simplicity, I assume digital beamforming

and combining in this chapter.

Now, I introduce the mmWave channel assumptions. One key feature

of mmWave channels is the sensitivity to blockages: the presence of building

blockages in urban areas makes the large-scale path loss laws much different

in the LOS and NLOS links [120]. To distinguish the LOS and NLOS links,

let pL(R) be the probability that a link of length R is LOS, and pN(R) the

probability that the link is NLOS. The LOS probability function pL(R) is

assumed to have finite first moment, i.e.,
∫∞

0
pL(r)rdr <∞, which is satisfied

by most LOS probability functions in literatures, e.g. the ones in [30, 1]. The

path loss L(R) for a link of length R is

L(R) = 1 [ψ < pL(R)]CL(max(δ, R))−αL (4.1)

+ 1 [pL(R) ≤ ψ < (pL(R) + pN(R))]CN(max(δ, R))−αN ,

where 1[·] is the indicator function, ψ is a uniform random variable in [0, 1],

δ = 1 meter is the reference distance, αL, αN are the LOS and NLOS path loss

exponents, and CL, CN are the intercepts in the LOS and NLOS path loss.

Typical values of mmWave path loss parameters are available in measurement

chapters [6, 120]. In addition, I assume for different links, the random variable
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ψ, which decides whether the link is LOS or not, are independent.

For small-scale fading, I consider narrowband channels, as the effect

of frequency selective fading can be minimized by techniques like orthogo-

nal frequency-division multiplexing (OFDM) or frequency domain equaliza-

tion [59]. Measurements show that small-scale fading has minor effects on

LOS mmWave signals [120]. Consequently, for LOS links, I model the channel

vector h
(k)
``′ by a deterministic vector as

h
(k)
``′ =

√
Mβ

(k)1/2
``′ u

(k)
``′ , (4.2)

where β
(k)
``′ is the path loss computed from (4.1), assuming the link is LOS,

i.e., ψ < pL(R); u
(k)
``′ is a unit vector. Furthermore, I assume asymptotic

orthogonality between any two LOS channels as for (s, t, k) 6= (s′, t′, k′),

lim
M→∞

u
(k)∗
st u

(k′)
s′t′ = 0. (4.3)

One example satisfying (4.3) is the LOS channels using uniform linear arrays

with non-overlapping angles of arrival [105].

For the NLOS channel, I apply a correlated fading model to account for

the potentially larger number of scatters. I express the NLOS channel vector

as

h
(k)
`n =

(
β

(k)
`n

)1/2

Φ
(k)1/2
`n w

(k)
`n , (4.4)

where β
(k)
`n is the large-scale path loss, w

(k)
`n is the fading vector consisting

of IID random variables with zero mean and unit variance, and Φ
(k)
`n is the
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covariance matrix to account for correlations in small-scale fading. Let λ
(k)
`n [m]

be the eigenvalues of the covariance matrix Φ
(k)
`n . I assume the traces of the

covariance matrices for all channels are normalized to M , i.e., Trace
[
Φ

(k)
`n

]
=∑M

m=1 λ
(k)
`n [m] = M , and the average squares of the eigenvalues are upper

bounded by a constant γ: 1
M

∑M
m=1 λ

(k)2
`n [m] ≤ γ, which is satisfied by many

common channel models, including the case of uniform linear arrays with half-

wavelength spacing and continuous angular spread [4].

Next, I describe the stochastic geometric network model. I assume the

base stations are distributed as a PPP with density λb. The users, either

scheduled or not, are distributed as an independent PPP on the plane with

sufficiently high density, such that each base station is associated with at

least K users. A user is assumed to be associated with the base station that

provides the minimum path loss signal. Without loss of generality, a typical

scheduled user Y
(1)

0 is fixed at the origin. I will investigate the SINR and rate

performance at this typical user.

Now I focus on the distribution of scheduled users. In a resource block,

let N
(k)
u be the point process formed by the locations of the scheduled users

Y
(k)
` , i.e., all the scheduled users assigned with the k-th pilot sequence. Note

that though the users are distributed as a PPP on the plane, the scheduled

users do not form a PPP, as their locations are correlated. For instance, in

each cell, the number of scheduled users is fixed to be K, while for a PPP, the

number of points in the same region is randomly distributed. The correlations

in the scheduled users’ location make the exact analysis intractable. Therefore,
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I make the following approximation on the distribution of N
(k)
u .

Approximation 4.3.1. The path losses β
(k)
`` from the users to their associated

base stations are assumed to be IID. Moreover, the tagged base station X0 is

assumed to observe the other-cell scheduled users in N
(k)
u as a thinned Poisson

point process with intensity function

λu(|X0 − x|) = λb1(L(|X0 − x|) > βx), (4.5)

where L(|X0 − x|) represents the path loss from x to X0, βx is an IID ran-

dom variable with the same distribution as β
(1)
00 , and the indicator function

1(L(|X0 − x|) > βx) ensures that any user outside the tagged cell X0 has

smaller path loss to its own base station than to X0. Besides, the scheduled

users assigned with different pilots are assumed to be independently distributed,

i.e., for k 6= k′, N
(k)
u and N

(k′)
u are independent.

It can be shown in simulations that the proposed approximation pro-

vides a close characterization of the actual scheduled users in a network with

PPP distributed base stations [33].

MmWave handsets will use antenna arrays to perform directional beam-

forming [112]. To simplify the analysis, the antenna array at the mobile station

is modeled as a single directional antenna with a gain pattern approximated

by the sectored antenna pattern. In the sectored antenna model, the direc-

tivity gain within the main lobe θ is assumed to be a constant Q, while all

angles outside the main lobe θ have the constant side lobe gain q. Let D
(k)
``′
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be the directivity gain of the mobile station Y
(k)
`′ to base station X`. I assume

the directions of the mobile station antennas are adjusted to maximize the

desired signal power without alignment errors. Moreover, for the interfering

links, I assume the antenna directions are independently and uniformly dis-

tributed. Consequently, the directivity gain D
(k)
`` = Q in the desired link; for

other interfering links, D
(k)
``′ is a Bernoulli random variable, where D

(k)
``′ = Q

with probability θ
2π

, and D
(k)
``′ = q otherwise.

Last, I assume that the base stations estimate the channels by corre-

lating the received signals with the pilots, and do not use MMSE estimation.

Hence, the channel estimate of h
(k)
`` at base station X` is

h̄
(k)
`` =

√
Qh

(k)
`` +

∑
`′ 6=`

D
(k)1/2
``′ h

(k)
``′ + nT,

where nT is a Gaussian noise vector of the distribution CN
(
0, 1

KρT
I
)

, and ρT

is the SNR in the channel training.

Based on the proposed system model, I will analyze the SINR and rate

performance in both uplink and downlink in the subsequent sections.

4.4 SINR Coverage Analysis

In this section, I derive analytical expressions to approximate the dis-

tributions of the asymptotic SINR, when the number of base station antennas

goes to infinity.
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4.4.1 Uplink Analysis

In this section, I analyze the uplink SINR performance in mmWave

massive MIMO networks. First, I compute the density function of scheduled

users in (4.5) explicitly as follows.

Lemma 4.4.1. The density function λu(r) of the other-cell scheduled users in

N
(k)
u can be computed as

λu(r) = λu,L(r) + λu,N(r),

where for s ∈ {L,N}, λu,s(r) = Aλbps(r)
(
1− e−Ξ(rαs/Cs)

)
,

A = 1− e−2πλb

∫∞
0 (pL(x)+pN(x))xdx,

and

Ξ(t) = 2πλb

(∫ (tCN)1/αN

0
rpN(r)dr +

∫ (tCL)1/αL

0
rpL(r)dr

)
.

Proof. See Section 4.7.1

To decode the uplink symbol s
(1)
0 sent by Y

(1)
0 , the base station X0

applies maximum ratio combining, based on the channel h̄
(1)
00 . Then, the uplink

SINR for the user Y
(1)

0 is

|h̄(1)∗
00 h

(1)
00 |2∑

6̀=0 |h̄
(1)∗
00 h

(1)
0` |2 +

∑K
k=2

∑
`>0 |h̄

(1)∗
00 h

(k)
0` |2 + |h̄(1)∗

00 nu|2
,

where nU is the noise vector of the distribution CN(0, ρ−1
U I), and ρU is the

SNR in uplink data transmission. When the number of antennas M goes to

infinity, the uplink SINR converges to its asymptotic equivalence as follows.
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Theorem 4.4.1. When M →∞, the uplink SINR converges in probability to

SINRUL
p.→ Q2β

(1)2
00∑

`6=0 D
(1)2
0` β

(1)2
0`

. (4.6)

The result in Theorem 4.4.1 is different from prior work in [90] in that

(i) I consider a large-scale network with infinite randomly located base stations,

in which case the analysis based on a network topology with finite base stations

in [90] does not directly apply; (ii) I consider different spatial correlations in

fading for the LOS and NLOS channels, while IID fading was assumed in

[90]. Consequently, mathematical tools from stochastic geometry, including

the factorial moment and Campbell’s formula, are required to prove Theorem

4.4.1 [33]. The same comment also applies to Theorem 4.4.2 in the downlink

analysis.

Next, I derive a tight approximation for the asymptotic SINR distribu-

tion in the following corollary.

Corollary 4.4.1.1. The distribution of the asymptotic SINR in (4.6) can be
approximated as

P (SINRUL > T ) ≈ A
N∑
n=1

(
N

n

)
(−1)n+1×∫ ∞

0
e−Wn(T,t)−Vn(T,t)−Ξ(t)Ξ(dt),

where

Wk(T, t) =
2∑
`=1

2πB`

∫ ∞
0

(
1− e−kηTCLξ`t

2x−2αL
)
λu,L(x)xdx,

Vk(T, t) =
2∑
`=1

2πB`

∫ ∞
0

(
1− e−kηTCNξ`t

2x−2αN
)
λu,N(x)xdx,
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A is as defined in Lemma 4.4.1, N is the number of truncated terms used

in the approximation, η = N(N !)−
1
N ; for ` = 1, 2, B` =

{
θ

2π
, 1− θ

2π

}
, and

ξ` = {1, q2/Q2}.

Proof. See Section 4.7.2.

Note that the expression in Corollary 4.4.1.1 can be further simplified

when provided the explicit forms of pL(r) and pN(r), e.g. the step functions

in [29, Section III-D]. Moreover, the expression becomes more accurate when

more truncated terms (a larger N) is used; simulations indicate that using

N ≥ 5 terms is sufficient to provides a tight approximation.

4.4.2 Downlink SINR Analysis

In this section, I investigate the downlink asymptotic SINR in mmWave

massive MIMO networks. Let f
(k)
` be the beamforming precoder that base

station X` applies for its user Y
(k)
` . When applying match-filter beamforming,

it follows that f
(k)
` =

h̄
(k)
``

||h̄(k)
`` ||

. Then the downlink SINR at the typical user Y
(1)

0

is

|h(1)∗
00 f

(1)
0 |2∑

` 6=0 |h
(1)∗
`0 f

(1)
` |2 +

∑K
k 6=1

∑
`≥0 |h

(1)∗
`0 f

(k)
` |2 + ρ−1

D

,

where ρD is the SNR in the downlink transmission. I have the following con-

vergence result on the downlink SINR.
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Theorem 4.4.2. With match-filter beamforming, the downlink SINR will con-

verge in probability to its asymptotic equivalence as

lim
M→∞

SINRDL
p.→ Q2β

(1)2
00 /a

(1)
0∑

`6=0 D
(1)2
`0 β

(1)2
`0 /a

(1)
`

,

where a
(k)
` = 1

KρT
+
∑

`′ D
(k)
``′ β

(k)
``′ .

The exact distribution of the asymptotic SINR in Theorem 4.4.2 is

generally difficult to derive, as the normalization constants a
(k)
` introduce cor-

relations among all the terms. In a dense mmWave network, however, the

asymptotic SINR can be approximated by the following corollary.

Corollary 4.4.2.1. In a dense mmWave network, the asymptotic downlink
SINR distribution can be approximated as

P (SINR > T ) ≈ A
N∑
n=1

(
N

n

)
(−1)n+1

∫ ∞
0

e−Zn(T,t)−Ξ(t)Ξ(dt),

where Zk(T, t) =
∑2

`=1B`

∫∞
t

(
1− e−kηTξ`t

2x−2
)

Ξ(dx), A, η, B`, and ξ` are

the same as defined in Corollary 4.4.1.1, and N is the number of terms used

in the approximation.

Proof. The proof is omitted here, as it is similar to that in the uplink in Section

4.7.2.

Last, I define the average achievable rate at a typical user as Γ =

W (1− µ) log2 (1 + min{SINR, Tmax}) , where W is the bandwidth assigned to

a user, µ is the fraction of overhead, and Tmax is a SINR distortion threshold. In

an OFDM massive MIMO system, the fraction of overhead µ can be computed
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based on [90, Section III-A], which accounts for the inefficiency from cyclic

prefix and uplink training. The use of a distortion threshold Tmax is needed

because of the potential for very high SINRs in massive MIMO networks that

may not be exploited due to other limiting factors like linearity in the radio

frequency front-end. By [18], given the SINR distribution P(SINR > T ), the

average achievable rate can be computed as E [Γ] = W
ln 2

∫ Tmax

0
P(SINR>t)

1+t
dt.

4.5 Numerical Results

In this section, I consider a 28 GHz massive MIMO network with a

system bandwidth of 500 MHz. I assume the transmitting power is 30 dBm

in the downlink, and 20 dBm in the uplink. In the Monte Carlo simulations,

the density of the user process is assumed to be 60 times the base station

density, and a mmWave base station randomly serves K = 4 users in its

cell in a resource block. Based on the New York city measurement in [6], I

assume pL(r) = e−ξr1(r < RO) and pN(r) =
(
1− e−ξr

)
1(r < RO), where

ξ = 70 meters, and RO = 200 meters. In addition, I assume the LOS path

loss exponent is αL = 2, and the NLOS path loss exponent is αN = 4. For

the channel models, I use the steering vectors of uniform linear array with

half-wavelength spacing as LOS channel vectors; for NLOS channels, I assume

IID Rayleigh fading for simplicity.

First, I show the convergence of uplink SINR in a dense mmWave net-

work in Fig. 4.1. In the simulations, I assume each base station schedule

K = 4 users, and mobile stations use omni-directional antennas. As shown in
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Figure 4.1: Uplink SINR distributions in dense mmWave networks. In the
simulations, I assume ISD = 100 meters. The analytical curve is drawn based
on Corollary 4.4.1.1.

Fig. 4.1(a), in a dense mmWave network with ISD = 100 meters, the asymp-

totic SINR distribution provides a close characterization of the SINR curve

with M = 1024 antennas. Besides, the simulation shows that the analytical

expression in Corollary 4.4.1.1 provides a tight approximation.

Next, I present the numerical results for the downlink SINR. In Fig.

4.2, a comparison between the performance in dense and sparse mmWave

networks shows that due to the presence of blockages and high noise power, the

SINR performance is much sensitive to the base station density, and mmWave

massive MIMO networks require dense base station deployments to achieve

good coverage. Moreover, the downlink SINR in dense mmWave networks is

shown to converge much faster than that in the sparse network. In addition,

in Fig. 4.2 (a), I show that Corollary 4.4.2.1 provides a tight approximation
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(a) Downlink SINR in dense networks.
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(b) Downlink SINR in sparse networks.

Figure 4.2: Downlink mmWave SINR distributions with different base station
densities. I assume ISD = 100 m in (a), and ISD = 400 m in (b). The
analytical curve in (a) is drawn based on Corollary 4.4.2.1.

of the asymptotic SINR distribution in dense mmWave networks.

Last, I compare the average rate of massive MIMO systems at 2 GHz
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Table 4.1: Comparison of Achievable Rates

Carrier 2 GHz 28 GHz 28 GHz
Avg. ISD (m) 500 100 400

Training overhead 20% 14% 14%
Bandwidth (MHz) 100 500 500

Rate per user (Mbps) 52.8 1791.0 436.5
Users per cell 14 4 4

Cell throughput (Mbps) 740.0 7164.0 1745.8

and 28 GHz in Table 4.1. In the rate comparison, I assume the 2 GHz base

stations have M = 64 antennas, and W = 100 MHz bandwidth, while in

mmWave systemsM = 128, andW = 500 MHz. Both the uplink and downlink

are assumed to take up 50% transmission time. The OFDM technique is

assumed to be used in both systems: the parameters for the 2 GHz system

are taken from the LTE standard [1], and those for mmWave systems are

from [111]. Besides, the training overhead is computed based on [90]. Further

details for the rate comparison can be found in [33]. The results show that

though serving fewer users per cell, mmWave massive MIMO still outperforms

conventional massive MIMO systems in cell throughput, due to the larger

bandwidth.

4.6 Conclusion

In this chapter, I analyzed the asymptotic SINR distribution in mmWave

massive MIMO networks by incorporated key features of mmWave systems,

including the blockage effects and directional beamforming at mobile stations,
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into the analytical framework. I provided the asymptotic equivalences for

both the uplink and downlink SINR in a large-scale network with Poisson

distributed base stations, and derived approximation expressions to compute

their distributions. The accuracy of the analytical expressions were verified by

numerical simulations. The numerical results showed that mmWave massive

MIMO requires a high base station density to achieve good SINR coverage.

Moreover, the comparison with massive MIMO systems at lower frequencies

showed the promising gain of mmWave massive MIMO over conventional mas-

sive MIMO in cell throughput. For future work, it would be interesting to

incorporate mmWave hardware constraints, such as hybrid beamforming and

one-bit A/D converter, as discussed in Section 1.5.1.

4.7 Appendix

4.7.1 Proof of Corollary 4.4.1

By [26, Lemma 7], conditioning on β
(1)
`0 > 0, the non-zero path loss

process
{

1/β
(1)
`0

}
`>0

is a non-homogenous PPP on R+ with intensity measure

Ξ(t). Moreover, noting that β
(1)
00 = 0 if and only if the typical user has no LOS

nor NLOS base stations, it follows that

pI = P
(
β

(1)
00 > 0

)
= 1− e−2πλb

∫∞
0 (pL(x)+pN(x))xdx. (4.7)

Therefore, for T > 0, the distribution of 1/β
(1)
00 , i.e., the smallest non-zero path

loss to the origin, is

P
(
β

(1)
00 > T

)
= P

(
β

(1)
00 > T |β(1)

00 > 0
)
P
(
β

(1)
00 > 0

)
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= P
(

1/β
(1)
00 < 1/T |β(1)

00 > 0
)
P
(
β

(1)
00 > 0

)
=
(
1− e−Ξ(1/T )

)
pI,

where the last step follows from computing the null probability of the PPP

formed by the non-zero path loss process
{

1/β
(1)
`0 > 0

}
`>0

.

4.7.2 Proof Sketch of Corollary 4.4.1.1

First, for x > 0, conditioning on 1/β
(1)
00 = x, I compute the asymptotic

uplink SINR distribution as

P
(

SINRUL > T |1/β(1)
00 = x

)
= P

(
1 >

Tx2

Q2

(∑
`6=0

D
(1)2
0` β

(1)2
0`

))
(a)
≈ P

[
γ >

Tx2

Q2

(∑
`6=0

D
(1)2
0` β

(1)2
0`

)]
(b)
≈ 1− E

N
(1)
u

[(
1− e

−η Tx
2

Q2

(∑
` 6=0D

(1)2
0` β

(1)2
0`

))N]

=
N∑
n=1

(
N

n

)
(−1)n+1E

N
(1)
u

[
e
−nη Tx

2

Q2

(∑
` 6=0D

(1)2
0` β

(1)2
0`

)]
(b)
=

N∑
n=1

(
N

n

)
(−1)n+1e−Wn(T,x)−Vn(T,x)

where in (a) γ is a Gamma random variable with unit mean and shape pa-

rameter N , and the approximation follows from the fact limn→∞
nnxn−1e−nx

Γ(n)
=

δ(x−1) [20]; in (b), η = N(N !)1/N , and the step follows from Alzer’s inequality

[14]; (c) follows from computing the Laplace functional of the inhomogeneous

PPP N
(1)
u , whose intensity function is given in Approximation 4.3.1. Last,
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the proof is completed by deconditioning on 1/β
(1)
00 = x for x > 0, whose

distribution is given in Lemma 4.4.1.
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Chapter 5

Conclusion

5.1 Summary

In this dissertation, I developed mathematical frameworks for mmWave,

sub-6 GHz massive MIMO, and mmWave massive MIMO cellular networks,

using stochastic geometry. The proposed analytical results reveal quantitative

relationships between key system parameters in 5G cellular networks. In my

first contribution, I proposed a general system model for mmWave cellular

networks that incorporates blockage effect and directional beamforming, and

analyzed the downlink SINR and rate performance. In my second contribution,

I analyzed the uplink SINR and rate as a function of the number of antennas

and scheduled users per cell in massive MIMO networks. In my third contri-

bution, I extend the massive MIMO network model to mmWave frequencies,

and analyzed the asymptotic SINR and rate distributions, which are represen-

tative of the performance with finite large antenna arrays in certain massive

MIMO networks. The contributions presented in this dissertation demonstrate

key performance trends, and provide important system design insights in 5G

cellular networks.

To evaluate the coverage and rate performance in mmWave cellular
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networks, I proposed a general framework that incorporates blockage effect and

directional beamforming in a tractable manner. I applied a distance-dependent

line-of-site (LOS) probability function, and divided the locations of the LOS

and non-LOS base stations into two independent non-homogeneous Poisson

point processes, to which different path loss laws are applied. Based on the

proposed framework, I examined the mmWave coverage and rate distributions

as a function of the antenna geometry and base station density. I further

investigated the case of dense networks by applying a simplified system model,

in which the LOS region of a user is approximated as a fixed LOS ball. I showed

that dense mmWave networks can achieve comparable coverage and much

higher data rates than sub-6 GHz systems, despite the presence of blockages.

I also prove that increasing base station density beyond a critical point will

harm the SINR and rate performance, and that the cell size to achieve best

optimal SINR scales with the average size of the area unblocked by blockages

to a user.

To analyze the SINR and rate performance in a large-scale uplink mas-

sive MIMO network, I developed a stochastic geometry framework that in-

corporates the impacts of fractional power control and pilot contamination.

Based on the model, I derived expressions for the spatial average SINR distri-

butions over user and base station distributions with MRC and ZF receivers.

I show that using massive MIMO, the uplink SINR in certain urban marco-

cell scenarios is limited by interference. In the interference-limited regime,

the results reveal that for MRC receivers, a super-linear (polynomial) scal-
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ing law between the number of base station antennas and scheduled users per

cell preserves the uplink SIR distribution, while a linear scaling applies to ZF

receivers. Based on the scaling results, I show that ZF receivers outperform

MRC receivers in the SIR coverage, and quantified the performance gap in

terms of the difference in the number of antennas to achieve the same SIR dis-

tribution. In addition, I demonstrate that the optimal compensation fraction

in fractional power control to optimize rate is generally different for MRC and

ZF receivers. Besides, I show in simulations that the scaling results derived

from the proposed framework apply to the networks where base stations are

distributed according to a hexagonal lattice.

To compare the performance between sub-6 GHz and mmWave mas-

sive MIMO, I proposed a stochastic geometry framework for mmWave mas-

sive MIMO networks, where the differences in propagation and hardware con-

straints were considered. I focused on the asymptotic regime (in the limit of

the number of antennas), and derived analytical expressions for the asymptotic

SINR distributions in both uplink and downlink. I used numerical simulations

to show a fast convergence to its asymptotic SINR in mmWave massive MIMO

networks, when the base station density is sufficiently high. Finally, I com-

pared the cell throughput of mmWave massive MIMO and sub-6 GHz massive

MIMO, and concluded that the optimum choice of carrier frequency depends

on the base station density.
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5.2 Future Research Directions

In this section, I present some promising directions for future work

related to my contributions in this dissertation.

1. Uplink SINR and rate analysis in mmWave cellular networks

The contribution in Chapter 2 focus on the downlink SINR performance.

It is natural to consider to analyze the uplink SINR using a similar

framework. Prior analysis in sub-6 GHz cellular networks shows different

topologies of interferers between downlink and uplink [108, 130]. For

example, when the interfering base stations are assumed to be distributed

as a PPP, then the scheduled users, i.e. the interferers in the uplink,

in all cells do not form a PPP, due to the Voronoi cell structure [108,

130]. Therefoere, it is essential to incorporate such difference in the

uplink analysis in mmWave cellular networks. One promising approach

to compute the uplink SIR distribution is to extend the approach in [130]

that characterizes the pairwise correlations in the uplink interferers to

mmWave networks.

2. 3D system model for mmWave networks

In reality, the heights of blockages, base stations antennas, or even mobile

users may have non-negligible impacts on system performance. Thus, it

is of interest to incorporate the elevation height in analysis and extend

the proposed framework in Chapter 2 into 3D space. The 3D system
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model will also make it possible to analyze the performance of the tech-

niques that exploit the spatial degrees of freedom in elevation directions,

such as 3D beamforming and vertical secterization [2].

3. Performance analysis for indoor users

Prior analyses in Chapter 2 mainly focus on the coverage of outdoor

users. Due to the large penetration loss, outdoor mmWave base stations

will hardly serve an indoor user. The indoor users can be served by

mmWave small cells (distributed antennas) inside buildings, or by base

stations operating at lower carrier frequencies. It would be interesting

to examine the performance of mmWave systems with indoor infrastruc-

tures co-located with buildings.

4. Modeling and analysis of multi-band system

To overcome the mmWave coverage holes due to blockages, one promis-

ing design is to have a joint sub-6 GHz-mmWave system, where the

mmWave base stations act as hot spots to provide high data rates for

the users in the range, and the sub-6 GHz macro base stations provide

a robust coverage. Even though, the interference powers at two frequen-

cies are independent, the SINR distributions can be correlated in reality.

For one thing, some of the mmWave and sub-6 GHz base stations may

be co-located. Consequently, the gain of sub-6 GHz-mmWave joint cov-

erage can be overestimated by assuming independent BS locations. For

another, the load of mmWave and sub-6 GHz can be correlated, when
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serving the same group of users. Thus, if the load is balanced between

two systems, the number of active interfering nodes in each tier are also

correlated, which breaks the independence of the SINR coverage between

tiers. In future work, novel modeling approaches that take account for

the correlations in both base stations locations and load are essential to

understand the gain of such multi-band joint-coverage system.

5. Scaling law for downlink massive MIMO SIR

Only the uplink SIR was analyzed based on the system model in Chapter

3. The approach does not directly apply to analyze the downlink perfor-

mance, as the precoders in the downlink are normalized to address the

power constraint, while the normalization of combiner vector does not

change the uplink SIR distribution. The normalization factor makes the

downlink SIR distribution intractable to compute, as it brings in (high)

correlations between certain terms in the SIR expression. One potential

solution is to neglect the correlations between certain out-of-cell interfer-

ence terms, derive an approximate downlink SIR distribution that could

reasonable match the simulations, and derive the scaling law based on

the approximation.

6. System analysis of sparsity-based algorithms in mmWave net-

works

Due to the channel sparsity, mmWave systems will unavoidably apply

compressed-sensing based signal processing techniques to estimate chan-

172



nel and design precoder/ combiner [122]. The performance of the sparsity

algorithms, e.g. in [12, 93], have not yet been examined on a network

level. One promising approach is to formulate the signal and interference

power as random functions of the system parameter, e.g. the base station

and blockage densities, and then apply the signal and interference distri-

butions to compute the system-level performance for the sparsity-based

algorithms. For example, treating the interference as noise in channel

estimations, then it is possible to derive the equivalent SNR distribu-

tion in the sparsity-recovery problem in [93], and compute the channel

estimation error at a typical user, when taking accounts for the random

distributions of the serving and interfering base stations.
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