
Copyright

by

Yilin Zhang

2014

The Dissertation Committee for Yilin Zhang
certifies that this is the approved version of the following dissertation:

Interconnect Optimizations for Nanometer VLSI Design

Committee:

David Z. Pan, Supervisor

Andreas Gerstlauer

Nur A. Touba

Michael Orshansky

Salim Chowdhury

Interconnect Optimizations for Nanometer VLSI Design

by

Yilin Zhang, B.S.; M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2014

This dissertation is lovingly dedicated to my my mother Yanjun Huang and

my father Shijin Zhang who constantly provide all their love and all they

own to me in every single day of my life. It is also dedicated to friends who

earnestly help me on my paper writing and problem solving during my PhD.

Acknowledgments

I want to thank my adviser, Prof. David Z. Pan, first, for his guidance,

understanding and support during my Ph.D. studies at the University of Texas

at Austin. He could always find a clear path for me when I was confused or

trapped in certain problem. It was him that made me understand that staying

with big picture was way more important than optimizing some sub-problems.

Also, he had great understanding about my situations and feelings outside

research/study. He provided me long enough time to spend with my families

when my families and me preferred that. He also very kindly asked about

my families when he knew that my father was not in a good health condition.

Retrospectively, I was so lucky to meet Prof. Pan during his visit in my college,

Peking University, when I was considering to apply for PhD. It was a correct

decision to join UTDA and finished my PhD under the supervision of Prof.

Pan.

I would like to thank the current and former UTDA members for all

great days we spent together no matter for research discussions or ball sporting

together. They are Ashutosh Chakraborty, Kun Yuan, Anurag Kumar, Ou He,

Katrina Lu, Jae-Seok Yang, Xiaoqing Xu, Shuojing Wang, Jerrica Gao, Yibo

Lin, Duo Ding, Jiwoo Pak, Bei Yu, Subhendu Roy, Yongchan (James) Ban,

Wooyoung Jang, Samuel Ward, Wen Zhang, Yang Li, Boyang Zhang, Yen-

v

Hung Lin, Joydeep Mitra, Jiaojiao Ou, Abhishek Bhaduri and Che-Lun Hsu.

From their self-giving help, I learned lots of helpful skills, such as how to

properly arrange everything to boost overall efficiency, how to devote yourself

on one project for days and nights, etc. Also, the time we played tennis,

Pingpong or basketball together really make us good friends and I would miss

every moment we spent together.

I am also deeply thankful to Salim Chowdhury and Zhuo Li who were

my mentors during my interns at Oracle and IBM, respectively. Basically

I started my PhD project during the cooperation between UTDA and Ora-

cle. Dr. Chowdhury always had a lot of creative ideas so we can work on

together. We keep exchange our ideas during my whole PhD and honorably

he accepted my invitation to be one of my committee members. I would also

like to thank other co-workers during my intern at Oracle: Rajendran Panda,

Akshay Sharma, Duo Ding, Kevin Grant, Yong Li, Boyang Zhang, Zhen Liu,

et al. Dr. Li was my mentor when I spent six months doing intern at IBM.

His amazing working efficiency and problem solving ability was one of great

lessons I learned at IBM. I deeply thank him for many interesting projects he

provided me. I would deeply thank to my colleagues in IBM. They are Yuhan

Zhou, Chuck Alpert, Tiago Reimann, Ying (Nancy) Zhou, Yaoguang Zhou,

Cliff Sze, Gi-Joon Nam, Natarajan Viswanathan, Myung-Chul Kim, et al.

My sincere thanks also go to my three other Ph.D. committee members,

Prof. Nur A. Touba, Prof. Michael Orshansky and Prof. Andreas Gerstlauer.

Thank you for bring out various questions during my Ph.D. proposal exam

vi

which inspired me to explore more interesting problems that I could not find

by myself.

Last but not least, I would like to thank my parents. They always

give me maximum understanding when I studied PhD in another country and

could not well perform my responsibility as a son to take care of them when

they are growing old. I love you.

vii

Interconnect Optimizations for Nanometer VLSI Design

Publication No.

Yilin Zhang, Ph.D.

The University of Texas at Austin, 2014

Supervisor: David Z. Pan

As the semiconductor technology scales into deeper sub-micron do-

main, billions of transistors can be used on a single system-on-chip (SOC)

makes interconnection optimization more important roughly for two reasons.

First, congestion, power, timing in routing and buffering requirements make

interconnection optimization more and more challenging. Second, gate delay

getting shorter while the RC delay gets longer due to scaling.

Study of interconnection construction and optimization algorithms in

real industry flows and designs ends up with interesting findings. One used to

be overlooked but very important and practical problem is how to utilize over-

the-block routing resources intelligently. Routing over large IP blocks needs

special attention as there is almost no way to insert buffers inside hard IP

blocks, which can lead to unsolvable slew/timing violations. In current design

flows we have seen, the routing resources over the IP blocks were either dealt

as routing blockages leading to a significant waste, or simply treated in the

viii

same way as outside-the-block routing resources, which would violate the slew

constraints and thus fail buffering.

To handle that, this work proposes a novel buffering-aware over-the-

block rectilinear Steiner minimum tree (BOB-RSMT) algorithm which helps

reclaim the “wasted” over-the-block routing resources while meeting user-

specified slew constraints. Proposed algorithm incrementally and efficiently

migrates initial tree structures with buffering-awareness to meet slew con-

straints while minimizing wire-length.

Moreover, due to the fact that timing optimization is important for

the VLSI design, in this work, timing-driven over-the-block rectilinear Steiner

tree (TOB-RST) is also studied to optimize critical paths. This proposed

TOB-RST algorithm can be used in routing or post-routing stage to provide

high-quality topologies to help close timing.

Then a follow-up problem emerges: how to accomplish the whole rout-

ing with over-the-block routing resources used properly. Utilizing over-the-

block routing resources could dramatically improve the routing solution, yet

require special attention, since the slew, affected by different RC on different

metal layers, must be constrained by buffering and is easily violated. Moreover,

even of all nets are slew-legalized, the routing solution could still suffer from

heavy congestion problem. A new global router, BOB-Router, is to developed

solve the over-the-block global routing problem through minimizing overflows,

wire-length and via count simultaneously without violating slew constraints.

Based on my completed works, BOB-RSMT and BOB-Router tremendously

ix

improve the overall routing and buffering quality.

Experimental results show that proposed over-the-block rectilinear Steiner

tree construction and routing completely satisfies the slew constraints and sig-

nificantly outperforms the obstacle-avoiding rectilinear Steiner tree construc-

tion and routing in terms of wire-length, via count and overflows.

x

Table of Contents

Acknowledgments v

Abstract viii

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1

1.1 Challenges in Interconnection Optimization 1

1.2 How Interconnection Optimization Works 4

1.3 Critical Problems in Interconnection Optimization 9

1.4 Contributions . 13

1.5 Organization of the Dissertation 14

Chapter 2. Buffering-Aware RSMT Construction for Reclaim-
ing Over-the-IP-Block Routing Resources 16

2.1 Introduction . 16

2.2 Problem Formulation . 20

2.2.1 What is BOB-RSMT? 20

2.2.2 Basic Ideas and Optimization Primitives 21

2.3 BOB-RSMT Algorithms . 27

2.3.1 Generating Possible Point Set 28

2.3.2 Refinement of Possible Region Set 30

2.3.3 Primitive Choice Based on a Fast ILP 31

2.3.4 Block-aware Maze Routing Algorithm 34

2.3.5 Min-cost Slew Mode Buffer Insertion 36

2.4 Experimental Results . 37

2.5 Summary . 40

xi

Chapter 3. Timing-Driven, Over-the-Block RST Construction 44

3.1 Introduction . 44

3.2 Notations and Problem Formulation 49

3.3 Timing-driven Over-the-block RST 52

3.3.1 Initial Tree Generation with Pre-Buffering 53

3.3.2 Buffering-Aware Over-the-Block Routing 57

3.3.3 Timing-driven Buffer-location-based Tuning 60

3.3.3.1 Slew Margin . 60

3.3.3.2 Buffer-location-based Tuning 62

3.3.3.3 Algorithms . 66

3.4 Experimental Results . 66

3.4.1 Effectiveness of Pre-Buffering 68

3.4.2 Over-the-Block RST . 69

3.4.3 Post-buffering Topology Tuning 69

3.5 Summary . 71

Chapter 4. Buffering-Aware Global Router with Over-the-Block
Routing Resources Optimization 72

4.1 Introduction . 72

4.2 Preliminaries . 75

4.2.1 Basic Over-the-block Concepts 75

4.2.2 Problem Formulation 77

4.3 BOB-Router Algorithms . 77

4.3.1 Generate Legal Initial Topologies 79

4.3.2 Evolve More Legal Congestion-Aware Min-Cost Topologies 81

4.3.3 Outside-tree Routing 93

4.4 Experimental Results . 93

4.5 Summary . 99

Chapter 5. Conclusion 100

Bibliography 104

Vita 112

xii

List of Tables

2.1 Notation of variables . 24

2.2 Notation of variables in our formulation 33

2.3 CPU runtime . 41

2.4 Extra buffering cost comparison 42

2.5 Comparisons between our proposed BOB-RSMT and OA-RSMT 43

3.1 Notation of variables in our formulation 58

3.2 Comparisons between TOB-RST-1, TOB-RST-2 and TOB-RST 67

4.1 Slew distribution of inside trees 93

4.2 Comparisons between our proposed BOB-Router and OA-Router 94

xiii

List of Figures

1.1 (a) Transistor count and gate density continues to increase. [49]
(b) Moores Law history, future, limited factors, and Nano-
technology-enhance factors for Moores Law and compared with
Dow Jones industrial average in the same period of time (1971—2012).
[50] . 2

1.2 A simplified VLSI design and physical design flow. 3

1.3 Interconnect RC delay v.s. gate delay. 4

1.4 RSMT on hanan grid with black dots as pins. 6

1.5 (a) RSMT topology. (b) Rectilinear Steiner tree with better
source-to-critical-sink delay but worse wire-length. (c) Topol-
ogy with the best source-to-critical-sink delay but worst wire-
length. 7

1.6 One example of OA-RSMT [37]. 9

2.1 A motivational example compares [28] and our proposed BOB-
RSMT, which saves wire-length and buffers. 18

2.2 V moves to right in (b) compared to (a). This parallel sliding
is providing slew improvement for escaping points U and V . . 22

2.3 An example shows slew reduction from three primitives. (b)
shows escaping point A slides to A′ parallelly to improve slew
on A and B. (c) shows the vertical sliding of A from A′ to A′′.
(d) shows EP merging of escaping point A to E. 25

2.4 (a) is an inside tree with driver at D. It shows all possible points
for E. (b) exhibits the refined possible point set for E. 29

2.5 Restricted length, over-the-block maze routing find a shortest
path to reconnect pin A . 35

3.1 (a) estimates only sink E is critical. (b) groups sink E and D
as critical cluster. 46

3.2 (a) is an OA-RSMT with root S and two sinks A,B. (b) uses
part of the over-the-block routing resources. 47

3.3 (a) is a buffered RST with root S and two sinks A,B. (b)
exhibits the tuned topology and new buffering. 48

xiv

3.4 Flow of initial tree generation 54

3.5 (a) is the initial critical trunk based tree with root S and sinks
A,B,C,D. (b) reconstructs the tree according to the pre-buffering
and timing information from (a). The tree topology converges
in (c). 55

3.6 The root is S and three sinks are A,B,C. (a) is the initial
timing-driven RST with slew violations. (b) fixes the slew vi-
olations with minimum wire-length penalty. (c) fixes the slew
violations and considers the delay on critical path. 61

3.7 (a) bottom-up buffer solutions before merge at Steiner node O.
(b) slew margin after propagation through Steiner node O . . 62

3.8 (a) depicts the pattern of slew margin. (b) shows buffer-location-
based tuning if the input capacitance of buffers is negligible. (c)
illustrates buffer-location-based tuning without neglecting the
input capacitance of buffers. 64

4.1 3D grid-graph G of three metal layers with each one divided
into 3*3 global routing bins 76

4.2 Overall flow of BOB-Router 78

4.3 Best move selection (a) shows an illegal inside tree. (b), (c)
and (d) exhibit and evaluate the best single-unit move from the
driver, EP1 and EP2 respectively. 80

4.4 Slew calculation method in BOB-RSMT and BOB-RSMT-m.
(a) shows an illegal inside tree. (b), (c) and (d) exhibit and
evaluate the best single-unit move from the driver, EP1 and
EP2 respectively. 82

4.5 Progression of objective value and number of selected “to-be-
evolved” topologies over optimization rounds for one block on
ADAPTEC1 . 89

4.6 Impact of net ordering: (a) has overflows in shade area by se-
quencing orange, purple, green net. (b) has a different ordering
of orange, green, purple but with detour of green and purple
nets. (c) has the no overflow and detour by ordering green,
orange, purple. 92

4.7 Slew distribution of all inside trees in adpatec1 initially and
finally. Each y coordinates number of inside trees with slew in
the slot between current and previous x 96

4.8 Over-the-block overflow analysis of a) before EP-movement-
based legalization, b) after EP-movement-based legalization but
before evolving new topologies c) after evolving new topologies
and selecting new topology for each inside tree 97

xv

5.1 Number of routing related works which contains “VLSI routing”
or “global routing” in title . 101

xvi

Chapter 1

Introduction

1.1 Challenges in Interconnection Optimization

Due to technology scaling, the number of transistors on a single system-

on-chip (SOC) is expanding dramatically. According to ITRS [3], the combi-

nation of 3D device architecture and low power device will usher the (Third)

Era of Scaling. New device, such as spin wave device (SWD) is able to convert

input voltage signals into the spin waves, compute with spin waves and convert

the output spin waves into the voltage signals. Materials, such as III-V and

Ge can further improve device performance with higher mobility. Stacking

multiple layers of transistors continually compacts more transistors per unit

chip area. In brief, by these novel inventions, semiconductor technology will

keep in scaling continually which puts more gates in a chip and increases cell

density (Fig. 1.1). Thus, the emerging challenge is: modern VLSI designs

with hundred billions of gates will turn out to be extremely complicated to

design, which in turn places more demands on computer aided design (CAD),

especially physical design.

Physical design is the stage which turns RTL code into GDSII before

fabrication. Physical design consists of partitioning, floorplanning, placement,

1

(a)

(b)

Figure 1.1: (a) Transistor count and gate density continues to increase. [49]
(b) Moores Law history, future, limited factors, and Nano-technology-enhance
factors for Moores Law and compared with Dow Jones industrial average in
the same period of time (1971—2012). [50]

CTS, routing, etc (Fig. 1.2). This dissertation will focus on interconnection

optimization which includes routing, in particular global routing, buffering,

2

System	 Spec

Architecture

Logic	 Design

Physical	 Design

Verifica9on	 &	 Signoff

Fabrica9on

Package	 &	 Test

Chip

Circuit	 Design

Par99oning

Floorplanning

Placement

Clock	 Tree	 Synthesis	
(CTS)

Rou9ng
Global	 Rou9ng

Detail	 Rou9ng

Sta9c	 Timing	 Analysis	
(STA)

Figure 1.2: A simplified VLSI design and physical design flow.

tree construction, together with static timing analysis (STA). Interconnection

optimization plays an important role in the physical design flow. It will auto-

matically generate and optimize topologies for all nets in modern VLSI design

with both performance and power considerations. With technology scaling,

interconnection optimization is becoming more challenging for two reasons:

1. The portion of RC interconnection delay in the overall delay is dramati-

cally growing due to increasing RC interconnection delay and decreasing

3

Figure 1.3: Interconnect RC delay v.s. gate delay.

gate delay as CMOS scaling (Fig. 1.3 [54]).

2. Interconnection optimization becomes more challenging as increasing to-

tal wire-length and cell density amplifying the congestion and routability

problem.

1.2 How Interconnection Optimization Works

After placement is done, all functional blocks and gates are fixed with

location but not wiring between logic gates. As above mentioned, the process

of planning all wires is interconnection optimization which becomes more and

more challenging and crucial nowadays.

Routing, particularly global routing, is the main part of the intercon-

4

nection planning process. As shown in Fig. 1.2, routing consists of two parts:

global routing followed by detail routing. This division separates this ex-

tremely complex problem into two relatively easier sub-problems. Global rout-

ing is performed on a coarse-grain grid, which depicts the rough shape of each

net. With coarse-grain grid, it provides smaller solution space, which stands

for relatively less runtime for this NP-complete problem [33]. On the other

hand, detail routing is based on the global routing solution with a fine-grain

grid. Detail routing solves legalization issues with exact routes. Because de-

tail routing is to find the exact routes based on global routing, the quality

of final routes is primarily depend on the global routing solution. Therefore,

a powerful global routing needs to find route for each net with wire-length,

routability and timing co-optimization.

Other components in interconnection optimization is actually surround-

ing routing process. Rectilinear Steiner minimum tree (RSMT) construction

is one fundamental physical design problem to achieve routing and buffering

quality. RSMT is to connect all pins in a net in horizontal or vertical way.

Fig. 1.4 is one example of RSMT connecting twenty pins. During routing,

every net among all hundred billions nets requires RSMT construction or in-

cremental RSMT re-construction. This classical problem has long been proved

as NP-complete [41] and many works have been performed including recent

breakthrough, e.g. the well-known FLUTE [18].

Because RSMT is only targeting at minimize total wire-length, which

is not enough for high performance VLSI design. Timing driven RSMT (TD-

5

Figure 1.4: RSMT on hanan grid with black dots as pins.

RSMT), instead, forges better trade-off on timing and wire-length. With scal-

ing, interconnection delay has become the dominant factor in determining

circuit speed, contributing up to 50% ∼ 70% of the clock cycle in high per-

formance circuit [19]. Since STA is performed during placement and routing

stages, it is common that critical paths information is available during current

RST construction process. With these criticality information, TD-RSMT will

trade wire-length for shorter delay on critical paths. In Fig. 1.5, it shows

6

(a) (b)

(c)

Figure 1.5: (a) RSMT topology. (b) Rectilinear Steiner tree with better source-
to-critical-sink delay but worse wire-length. (c) Topology with the best source-
to-critical-sink delay but worst wire-length.

the trade-off of wire-length and delay to sinks (assume all sinks are critical).

RSMT will construct the net as Fig. 1.5(a) which consumes the least wire-

length, yet delay to certain sinks is very long. On the other hand, if sacrificing

some wire-length, a new topology as in Fig. 1.5(b) is generated with better

source-to-critical-sink delay but more wire-length. To be extremely on delay

7

optimization, topology in Fig. 1.5(c) is the worst at wire-length but the best

at timing optimization.

After RSMT construction, buffering will be performed over each tree to

linearize the interconnection delay on long interconnections and shield branch-

capacitance. Buffers can re-strengthen signals as well as reduce delays. Due to

dominance of interconnection delay, the critical length, i.e. minimum distance

beyond which inserting an optimal-sized buffer makes the interconnect delay

smaller, is decreasing, which requires more and more buffers inserted in a chip.

It is reported that in 32–nm technology, it reaches an alarming point that 70%

of cells are buffers [48]. Besides, it is reported that in reality, slew mode

buffering is more predominant than timing mode buffering [28, 44]. Only a

fraction (roughly 5% ∼ 10%) of nets needs to be buffered for delay optimization

while for the remaining (roughly 90% ∼ 95%) are sufficient with slew mode

buffering to meet the slew constraints. Hence, a fast and powerful slew mode

buffering algorithm is crucial during interconnection optimization.

In slew mode buffering, slew needs to be calculated over and over.

Moreover, slew calculation is repeatedly performed in STA, clock tree synthe-

sis, routing and sizing locally or globally. Because of these reason, this dis-

sertation adopts a simple but effective slew calculation model, i.e. PERI [34]

model, for slew calculation. It shows the error of PERI is within 1% [34],

which is indistinguishable from what is obtained using SPICE simulation.

8

Figure 1.6: One example of OA-RSMT [37].

1.3 Critical Problems in Interconnection Optimization

Because of extensively using IP-blocks to shorten turn around time,

SOC designs nowadays are packed with IP blocks or macros. Since it is forbid-

9

den to insert any buffer on those pre-designed IP blocks or macros, traditional

RSMT algorithm will result in impractical topology which is unfeasible for

buffering. Although there are studies of the so-called buffer planning [22] or

suggestions to even put unconnected buffers inside IP blocks [7], in practice,

most IP blocks still do not have pre-placed ”idle” buffers. RSMT construc-

tion avoiding these blockages is the most simple and straight way to handle

that. It is studied and well known as the OA-RSMT problem. OA-RSMT

problem has been studied actively in the last few years (e.g., [6, 30, 35, 36]).

Early approaches [35, 36] only deal with rectangular blockages, while a most

recent study [30] can tackle rectilinear blockages without dissecting rectilinear

blockages into rectangular ones. This approach can eliminate the unfeasible

solutions which put wires and buffers between adjoining blocks. However,

all these OA-RSMT algorithms simply treat IP blocks as routing blockages,

which would significantly waste routing resources over these IP blocks and

cause more congestion issues. Fig. 1.6 illustrates an example of OR-RSMT.

Indeed, most IP blocks such as SRAMs only use certain lower metal

layers. There are still considerable amount of routing resources available at

higher metal layers over these IP blocks, even if we take into consideration the

resources reserved for power/ground and clock routing. If we simply treat the

IP blocks as routing obstacles, these over-the-block routing resources will be

“wasted”, which leads to more routing demand elsewhere.

In order to use “wasted” routing resources while still enable feasible

buffering, this dissertation studies a new class of buffering-aware over-the-

10

block rectilinear Steiner minimum tree (BOB-RSMT) problem. This disser-

tation develops an effective algorithm which tries to intelligently reclaim the

“wasted”, over-the-IP-block routing resources by previous approaches while

ensuring slew constraints for high quality buffering. Proposed algorithm in-

crementally updates the initial RSMT structure obtained from FLUTE [18]

to satisfy slew constraints while minimizing wire-length (FLUTE is chosen to

be the initial RSMT generator because its low runtime and high quality). A

restricted length, over-the-block maze routing algorithm is developed to re-

connect any part of BOB-RSMT which is dissected during the optimization

process.

RSMT and related extensions produce good results regarding wire-

length minimization, which contributes to routability and power optimization.

However, there are certain amount of nets which are critical nets. These critical

nets are eager for timing optimization other than power and wire-length. Since

straight paths will give less delay compared with detoured paths, it is necessary

to place timing critical nets over-the-block than avoiding-the-block. Further-

more, using over-the-block routing resources could unburden the outside-the-

block congestion which in turn decreases power and delay. This dissertation

proposes a timing-Driven, over-the-block rectilinear Steiner tree (TOB-RST)

construction algorithm with pre-buffering and slew constraints in considera-

tion. TOB-RST intelligently utilizes over-the-block routing resources, and the

resulted tree is buffering-feasible and slew-violation-free.

With the algorithm of building over-the-block RSMT, the whole global

11

routing problem considering over-the-block routing resources is the next emer-

gent problem to solve. The CEDA-sponsored ISPD Global Routing Con-

tests [4] and [5] attract attention from dozens of academic and industrial par-

ticipants. Inspired by the competitions, many high-performance global routers

are published.

However, due to guidance from two ISPD Global Routing Contests

are similar, most published modern routers are aiming at the same problem:

minimizing wire-length and via count in addition to alleviating congestion.

However, the global routing problem has never been touched upon to not only

consider wire-length, vias and overflows, but also properly use over-the-block

routing resources. Studying this new problem is essential as to shorten the

design cycle and improve the chip quality. If over-the-block routing resources

are treated the same as that for out-the-block, long nets over the block will fail

buffering, leading to additional manual work; whereas over-the-block routing

resources are totally avoided, less remaining routing resources will significantly

deteriorate the quality of the routing solution.

This dissertation studies a new class of buffering-aware over-the-block

global router (BOB-ROUTER) which tries to intelligently reclaim the “wasted”

over-the-IP-block routing resources while minimizing overflows, wire-length

and via count as in “basic” routers. The generated topologies are aware of

slew constraints which guarantees feasible buffering.

12

1.4 Contributions

This dissertation has the following major contributions:

• This is the first work that proposes a practical formulation of buffering-

aware over-the-block RSMT. Quality of the Steiner tree and feasible

buffering are ensured as considering slew constraints with wire-length si-

multaneously. Our algorithm is able to integrate with a buffering tool to

generate a low buffering cost BOB-RSMT without violating maximum

slew constraint, which can be used in floorplanning, placement and rout-

ing stages. An incremental approach of fixing slew violation one by one

is used to satisfy slew constraints on over-the-block part of BOB-RSMT,

followed by a restricted length, over-the-block maze routing algorithm

which reconnects any dissected part of BOB-RSMT during the optimiza-

tion process.

• It is first time a comprehensive timing-driven RST is studied which in-

cludes: (1) pre-buffering algorithm pre-characterizes the tree topology

and buffer distribution to provide accurate timing information for final

TD-RST construction, (2) proposed TOB-RSMT reclaims the wasted

over-the-block routing resources while meeting user-specified timing (slack

and slew) constraints, and (3) before fixing topology, a topology-tuning

is performed based on location of buffers to improve timing without in-

creasing buffering cost.

13

• For the first time, a router tries to solve the over-the-block global rout-

ing problem through minimizing overflows, wire-length and via count

simultaneously without violating slew constraints. First, an integer lin-

ear programming (ILP) formulation is used to characterize the object

(wire-length and via) and constraints (overflow and slew). Second, the

ILP formulation is relaxed into a LP formulation. Third, solving the La-

grangian relaxation of the LP formulation provides the price of each edge

in the 3D routing model. Last, a RC-constrained A* search is applied

to help explore new buffering-aware topologies on all metal layers.

1.5 Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 formalizes

a practical and new problem in rectilinear Steiner construction: BOB-RSMT.

It demonstrates the importance of buffering-aware over-the-block RSMT and

lack of that in previous works. Chapter 3 presents a solution for timing-driven

pre-buffering rectilinear Steiner tree with over-the-block consideration. It illus-

trates the trade-off of timing and power for critical nets and non-critical nets.

Chapter 3 also exhibits a post-tree-construction tuning algorithm which can

further improves timing without more buffering cost. Chapter 4 characterizes

a new global routing problem which considers over-the-block routing tracks as

well as slew constraints in additional to traditional routing problem. It outlines

the relevant prior work in global routing first. Then it describes the impor-

tance of over-the-block router followed by a new problem formulation. Next,

14

Chapter 4 utilizes the physical meaning of Lagrangian multipliers to calculate

the real value of each edge in the 3D-routing framework. Finally, it introduces

how to use multi-level topology selection algorithm and A* search to discover

new topologies. Chapter 5 summarizes the dissertation, and discusses topics

for future research.

15

Chapter 2

Buffering-Aware RSMT Construction for

Reclaiming Over-the-IP-Block Routing

Resources

2.1 Introduction

As the semiconductor technology scales into deeper sub-micron domain,

trillions of transistors and nets can be designed on a single system-on-chip

(SOC). Routing becomes more and more challenging because of congestion,

power, timing and buffering requirements. Rectilinear Steiner minimum tree

(RSMT) construction is a fundamental physical design problem to achieve

routing and buffering quality. This classical problem has long been proved

as NP-complete [41] and many works have been performed including recent

breakthrough, e.g. [18].

Because of extensively using IP-blocks to shorten turn around time,

SOC designs nowadays are packed with IP blocks or macros. RSMT con-

struction avoiding these blockages is well known as the OA-RSMT prob-

lem. OA-RSMT problem has been studied actively in the last few years

(e.g., [6,30,35,36]). Early approaches [35,36] only deal with rectangular block-

ages, while a most recent study [30] can tackle rectilinear blockages without

16

dissecting rectilinear blockages into rectangular ones. This approach can elim-

inate the unfeasible solutions which put wires and buffers between adjoining

blocks. However, all these OA-RSMT algorithms simply treat IP blocks as

routing blockages, which would significantly waste routing resources over these

IP blocks and cause more congestion issues.

In practice, most IP blocks such as SRAMs only use certain lower

metal layers. Even if we take into consideration the resources reserved for

power/ground and clock routing, there are still considerable amount of rout-

ing resources available at higher metal layers over these IP blocks. It leads

to over-the-block routing resources waste if we simply treat the IP blocks as

routing obstacles, which results in more routing demand elsewhere.

Besides blockage avoidance, other layout constraints are considered

in [10, 11, 27, 28, 43, 57]. [10, 27, 43, 57] take timing, buffering, etc., into con-

sideration in their tree construction. But slew constraint is not fully touched

upon. It is reported that in reality, slew mode buffering is more predominant

than timing mode buffering [28, 44]. Only a fraction (roughly 5% ∼ 10%)

of nets needs to be buffered for delay optimization while for the remaining

(roughly 90% ∼ 95%) are sufficient with slew mode buffering to meet the slew

constraints. [11] extends the work in [10] with slew in consideration. However,

the slew constraints are translated as length constraints, which may not guar-

antee meeting strict slew tolerances. [28] considers slew mode buffering and

adopts the blockage avoidance algorithm in [8, 26] to benefit slew. But this

approach either puts a Steiner node stationary in block or completely moves it

17

out of block. This might bring unnecessary wiring detours and high buffering

cost.

The blockage avoidance approach in [28] is shown by a 3-pin net exam-

ple in Fig. 2.1(a). S is the source and A,B are the sinks; moving the Steiner

node to right leads to the minimum-cost solution. Fig. 2.1(b) shows the same

net if BOB-RSMT is adopted. In this case, BOB-RSMT saves two buffers as

well as some detour wire-length because it changes the structure of inside tree

more efficiently. Buffer-aware tree construction has advantage over methods

of tree construction which are independent of buffering.

SA

B

(a)

SA

B

(b)

Figure 2.1: A motivational example compares [28] and our proposed BOB-
RSMT, which saves wire-length and buffers.

In this chapter, we propose to study a new class of BOB-RSMT prob-

lem and develop an effective algorithm which tries to intelligently reclaim the

“wasted”, over-the-IP-block routing resources by previous approaches while

ensuring slew constraints for high quality buffering. Our algorithm incremen-

18

tally updates the initial RSMT structure obtained from FLUTE [18] to satisfy

slew constraints while minimizing wire-length (FLUTE is chosen to be the ini-

tial RSMT generator because its low runtime and high quality). A restricted

length, over-the-block maze routing algorithm is developed to reconnect any

part of BOB-RSMT which is dissected during the optimization process. This

chapter has the following major contributions:

1. This is the first work targeting this kind of BOB-RSMT problem. Our

algorithm is able to integrate with a buffering tool to generate a low

buffering cost BOB-RSMT without violating maximum slew constraint,

which can be used in floorplanning, placement and routing stages. An

incremental approach of fixing slew violation one by one is used to satisfy

slew constraints on over-the-block part of BOB-RSMT.

2. Wire-length outside blocks of our BOB-RSMT is remarkably less com-

paring with that in other algorithms which are not utilizing over-the-

block routing resources. This will result in better timing, less power

consumption and alleviate routing congestion. The total wire-length,

which includes the inside wire-length as well, is also shorter than the

results from OA-RSMT algorithms.

3. We formulate the incremental slew improvement problem into an integer

linear programming (ILP) problem, which can be solved very fast as the

number of variables are small.

19

4. A block-aware maze router is proposed to reconnect any part of BOB-

RSMT dissected during the tree structure optimization.

Our incremental approach of tree structures optimization will be presented in

Section 2.2, which includes five subsections. Section 2.3.1 discusses about how

to find possible point set. Section 2.3.2 gives a method of shrinking search

space. Section 2.3.3 formulates and solves the problem. Section 2.3.4 intro-

duces a block-aware maze router to reconnect any dissected part of the tree.

Section 2.3.5 describes a buffer insertion algorithm. Experimental results will

be shown in Section 2.4, followed by summary in Section 2.5.

2.2 Problem Formulation

2.2.1 What is BOB-RSMT?

BOB-RSMT which utilizes the routing resource over the IP-blocks to

improve wire-length and congestion. In a two-dimensional routing region, we

are given a net with a set of pins P = {p1, p2, . . . , pn}. Let B = {b1, b2, . . . , bm}

be a set of non-overlapping rectilinear blocks in the 2−dimensional space. For

∀ pr ∈ P , pr is not inside the 2−dimensional space occupied by B. Any area

with high-density placed logic cells is not allowed for buffering is also taken as

buffering blockage into B.

Our algorithm constructs BOB-RSMT to connect all the pins in P .

BOB-RSMT might intersect with blocks in B, which confine a set of trees

T = {T1, T2, . . . , Tl} inside blocks. We call trees in T inside trees. The outside-

the-block part of BOB-RSMT is defined as T0. For each inside tree Ti ∈ T , the

20

leaf nodes of Ti are on the boundaries of a block. Among all leaf nodes, one

must be driving the signal and others are receiving. We name these leaf nodes

which receive signals escaping points (EP), and the set of escaping points for Ti

is EP i = {EP i
1, EP

i
2, . . . , EP

i
|EP i|}, in which |EP i| is the number of escaping

points in EP i. We denote the driver by Di.

2.2.2 Basic Ideas and Optimization Primitives

For any inside tree Ti ∈ T , the worst slew part would occur at escaping

points because no buffer is allowed to be inserted over the block. The best that

a buffering tool can do to carry signal over the block to escaping points is to

put the strongest buffer at Di and a bunch of smallest buffers at EP i to shield

downstream capacitance. If for any j, slewij is still worse than slewispec, then

the slew from Di to EP i
j violates maximum slew constraint, which means that

no buffering solution can be generated anyway. Further, because we want to

leave more margin for buffering tool at critical timing path and buffer place-

ment aspects, we use a middle size hypothetical buffer at Di and middle size

hypothetical buffers at EP i to judge if thus the escaping points have slew vio-

lation. Using middle size hypothetical buffers instead of two extreme sizes will

weaken the capability of utilizing more over-the-block routing resources, but

the former will be a more practical assumption and leads to less buffering cost

because more solutions can propagate through this inside tree. If any escaping

point EP i
j driven by a hypothetical buffer has slewij worse than slewispec, then

this EP i
j is called illegal escaping point. Any inside tree with at least one

21

illegal escaping point is an illegal inside tree.

In order to legalize any illegal inside tree, we will change positions of

its escaping points as well as inside Steiner nodes. We move escaping points

closer to the driver and then update the positions of corresponding Steiner

nodes to improve slew. Fig. 2.2(a) is a three-pin net with source S and sinks

A and B. Fig. 2.2(b) is the updated tree after a parallel sliding of escaping

point V . Comparing Fig. 2.2(b) to Fig. 2.2(a), the downstream capacitance

from W is closer to driver point due to the parallel sliding of V . The less

capacitance burden to the driver reduces the slew on both escaping points U

and V .

V

UA

B

SDW

(a)

V

B

A U SDW

(b)

Figure 2.2: V moves to right in (b) compared to (a). This parallel sliding is
providing slew improvement for escaping points U and V .

We adopt the following PERI model for slew calculation at the escaping

points [34]:

S(vj) =
√
S(vi)2 + Sstep(vi, vj)2 (1)

22

S(vj) is slew at any node vj, which is the root-mean square of the step slew

from vi to vj and output slew at node vi. The experimental results in [34]

shows the error of PERI is within 1%, which is indistinguishable from what is

obtained using SPICE simulation. For simplicity we use Bakoglu’s metric [12]

for step slew calculation:

Sstep(vi, vj) = α ∗ Elmore(vi, vj), α = ln9 (2)

The combination of Bakoglu’s metric and the PERI model is shown to have

error within 4% [34]. It is, in general, accurate enough for RSMT construction

purpose.

We propose three slew optimization primitives including parallel slid-

ing, perpendicular sliding and EP merging to improve the slew. The proposed

primitives could guide illegal inside trees to migrate into legal ones with min-

imum wire-length increase. The analysis demonstrates that the capability of

using these three primitives can fix slew violations under any slewspec.

We first analyze parallel sliding which performs sliding to a new position

on one of the block boundaries. As the escaping point sliding on the boundary,

if its first upstream Steiner node ancestor can also slide to keep the wire

segment between escaping point and the ancestor Steiner node in translation,

then this sliding on the boundary is called parallel sliding. The requirement

of a meaningful parallel sliding is that the sliding should shorten the length of

path from the escaping point to Di, i.e., sliding the escaping point closer to

the driver.

23

The example in Fig. 2.3(a) provides an inside tree with the driver D and

escaping points A,B,C,E. Fig. 2.3(b) shows that escaping point A performs

a parallel sliding by a distance of ∆l to new position A′. There will be a

reduction of step slew on escaping point A and B. We adopt the following

notations in Table 2.1 to calculate the slew improvement of parallel sliding

in this example. The step slew reduction on A and B from Bakoglu’s metric

model will be:

δA = −α ∗ r∆l(Ct(U) + 0.5 ∗ c∆l)

δB = −α ∗ r ∗∆l ∗ (Cb + c ∗ l(A,U))

The output slew of the driver D remains unchanged since the total downstream

capacitance of the inside tree is the same. Then we can use (3.3) to calculate

the corresponding slew change on escaping point A and B. The changes in

slew of escaping point C and E are both zero because U is not on the path

from these two escaping points to the driver D.

Table 2.1: Notation of variables

r unit length wire resistance on chosen layer
c unit length wire capacitance on chosen layer
Rb chosen buffer output resistance
Cb chosen buffer input capacitance

l(U, V) length of edges between node U and V
Ct(V) total capacitance of the sub-tree rooted at node V

down to the nearest downstream buffer,
including the buffer input capacitance

With parallel sliding we can decrease slew at escaping points, but we

24

C

A

U

E

B D

(a)

C

A

U

E

B D

A'

U'

Δl

(b)

C

E

B D

A

U'

A'

A''

(c)

C

E(A)

B D

A

U

(d)

Figure 2.3: An example shows slew reduction from three primitives. (b)
shows escaping point A slides to A′ parallelly to improve slew on A and B.
(c) shows the vertical sliding of A from A′ to A′′. (d) shows EP merging of
escaping point A to E.

may have wire-length penalty because the position change of escaping points

may need some additional wire connection from outside-the-block sub-tree.

In the example shown in Fig. 2.3(a) to Fig. 2.3(b), escaping point A moves

a distance of ∆l to A′ by a parallel sliding. The penalty of wire-length is at

most ∆l because the outside connection to A′ can go through A along the edge

25

from A to A′ with ∆l more wire-length and there is no change in wire-length

of inside tree.

Besides parallel sliding, we perform perpendicular sliding on edges

which are not considered as parallel sliding edges. In Fig. 2.3(c), if A is

sliding on the segment between A′ to A′′, the wire-length penalty will be zero

during the whole sliding process because slide of A from A′ to A′′ is just slip-

ping wire from inside block to outside. It is observed that as A reaches A′′,

all escaping points will have the largest slew improvement due to the least

downstream capacitance from U ′. The calculation of slew reduction is similar

as of parallel sliding.

Complementary to parallel sliding and perpendicular sliding, EP merg-

ing removes one escaping point and all edges from this escaping point up to

the first Steiner point ancestor in the inside tree. This will also bring down

the slew of all escaping points based on the fact that this escaping point and

the upstreaming edges from it to next Steiner point in the inside tree will be

removed. The above process will reduce the total capacitance burden of the

driver and hence improve slew for all escaping points.

In tree Ti, if EP merging joins one EPi with another EPj, the outside

connection to EPi will be reconnected to EPj or other closer part of BOB-

RSMT by a restricted length, over-the-block maze routing algorithm, which

will be introduced in Section 2.3.4.

Considering the EP merging of escaping point A to E in Fig. 2.3(a)

26

Algorithm 1 The overall BOB-RSMT Algorithm

Require: Initial inside trees T , Slew required for the net: slewspec
Ensure: BOB-RSMT
1: for each Tt do
2: Sort EP t in descending order of slew
3: while slewt1 > slewspec do
4: Build possible point set for all unfixed EP in EP t

5: Formulate the problem by a ILP
6: Solve the ILP and update Tt
7: Remove EP t

1 from EP t

8: end while
9: end for
10: return BOB-RSMT

and Fig. 2.3(d), the wire-length penalty will be at most the distance between

A and E because the outside connection to A can go through original position

of A and then along the edge to E as shown in Fig. 2.3(d). Actually due to

the existence of tree outside this block, reconnecting to the outside part might

have less wire-length penalty. But here, we take the previous conservative

estimate as the wire-length penalty because it is guaranteed to be achieved.

The calculation of slew reduction is similar.

2.3 BOB-RSMT Algorithms

To construct a legal BOB-RSMT, we first generate an initial RSMT

by using FLUTE-3.1, and then we apply primitives to all illegal inside trees

to fix the slew of them. Finally a proposed restricted length, over-the-block

maze routing algorithm is used to reconnect all these parts to form the final

BOB-RSMT. The approach is described in Algorithm 1.

27

For each Tt ∈ T as an illegal inside tree, three primitives are applied

to decrease slew on illegal escaping points until Tt becomes a legal inside tree.

The procedure starts from calculating slew of each EP t
i . From the calculated

result, we first sort EP t in descending order of their slew violations as line 2

of Algorithm 1. Then we choose the first illegal escaping point, EP t
1, which

should have worst slew violation based on the sorting. To improve slew for

EP t
1, each escaping point from {EP t

1, EP
t
2, . . . EP

t
|EP t|} might slide to a differ-

ent position by taking a combination of primitives discussed in section 2.2.2.

Taking these optimization primitives guarantees slewt1 to be within slew re-

quirement. Because in the extreme situation where maximum slew constraint

is zero EP t
1 can still become legal escaping point by merging one escaping

point to another until only the driver is left. This slew fixing procedure is

elaborated through line 4 to 6 of Algorithm 1.

After slewt1 has decreased below the required slew, EP t
1 is fixed at

the current position and removed from EPt as in line 7. Next iteration will

start from the rest of EP t. The current iteration will not degrade the result of

previous iterations as we will remove solution space from current solution space

if it degrades slew of fixed escaping points. This solution space elimination

happens rarely because moving one escaping point closer to driver usually does

not degrade slew on other points. This slew improvement method will keep

being applied on EP t
1 at each iteration until all EP t are fixed.

28

C

A

U

E

B D

PP
2

PP
1

(a)

C

A

U

E

B D

(b)

Figure 2.4: (a) is an inside tree with driver at D. It shows all possible points
for E. (b) exhibits the refined possible point set for E.

2.3.1 Generating Possible Point Set

At every iteration we try to improve the slewt1 of inside tree Tt ∈ T, t ∈

{1, 2, . . . , l}. One important step in that is to generate possible point set for

each non-fixed escaping points. Possible point set is a set of all possible points

of one non-fixed escaping point. Each possible point in the set is a point

on a boundary edge where escaping point might end up. For any non-fixed

EP t
i ∈ {EP t}, the jth possible point associated with EP t

i is denoted as PPij.

PPij is stored in a 3-tuple format {Eij, Bij,Wij}. Eij and Bij denote the

step slew at EP t
1 and output slew reduction of the driver if EPi moves to

PPij. Wij is the corresponding estimated wire-length penalty. The possible

point set associating with EP t
i in the current iteration is denoted as PPSti .

PPSti = {PP t
i1, PP

t
i2, . . . , PP

t
ir}, where r is the number of possible points

inside.

29

For each EP t
i in current iteration, we generate the possible point for

EP merging first. Assume the target escaping point for EP t
i to merge with is

EP t
j . The estimated wire-length penalty is the outside-the-block distance from

EP t
i to EP t

j . Thus for EP merging, we always choose the EP t
j with minimum

outside-the-block distance from EP t
i . The slew reduction and the estimated

wire-length penalty of this choice will be added to the PPSti as the 3-tuple

{Eij, Bij,Wij}. For example in Fig.2.4(a), where EP t
1 is B and EP t

i is E, the

EP merging point for E is escaping point A.

Secondly, we consider the sliding for EP t
i . We first search all edges

on blockt for sliding by the criteria discussed in Section2.2.2. The blockt here

refers to the block confining Tt. Then for each parallel sliding edge, we chop

it at a number of points. Moving EP t
i to any one of these points can improve

slew on EP t
1. For each perpendicular sliding edge, we pick the possible point

at one end of it, as discussed in Section2.2.2. Each chop point is a possible

point, which will be added into possible point set. We set distance between

two chop points to be a fixed value depending on the scale of the chip. For

example in Fig.2.4(b), D is the driver and A,B,C,E are escaping points. The

possible point set for E are shown with red color dots.

2.3.2 Refinement of Possible Region Set

For any escaping point EP t
i , after collecting PPSti , we will do a refine-

ment on ∀PPij ∈ PPSti to reduce the potential solution space. The refinement

is based on Pareto efficiency [13].

30

The refined possible point set should form a Pareto frontier in the

sense of estimated wire-length penalty and slew reduction(both output slew

reduction at the driver and step slew reduction at EP t
1), which is restrict-

ing attention to the set of choices that either has less estimated wire-length

penalty or more slew reduction. After applying refinement on Fig.2.4(a), the

possible points turn into Fig.2.4(b). One example of a pruned possible point in

Fig.2.4(a) is: PP2 is pruned by PP1 as the latter has less estimated wire-length

penalty and more slew improvement.

2.3.3 Primitive Choice Based on a Fast ILP

In order to construct the inside tree under the slew constraint with

minimum wire-length as target, ∀EP t
i ∈ EP t we need to decide which possible

point to choose. We use an incremental way to update positions of all escaping

points at each iteration. In each iteration, in order to meet the slew constraint

for the worst violated escaping point, all escaping points in EP t will move and

the whole inside tree will be updated. Only through moving all EP t
i ∈ EP t at

the same time can we attain an optimal solution with minimum estimated wire-

length penalty. This stems from the reason that ∀PPSti , i ∈ {1, 2, . . . , |EP t
i |}

has a Pareto frontier to choose one point from. The choice depends on what

choices are made at other Pareto frontiers because the total slew reduction

summed up from all these choices has to diminish the slew violation of EP t
1.

31

The new slew has to satisfy the slew constraints,√√√√√(Ststep1 +
|EP t

i |∑
i=1

Et
i)

2 + (St(Dt) +
|EP t

i |∑
i=1

Bt
i)

2 < slewtspec

The simultaneous step slew reduction is same with calculating one by one, and

the simultaneous output slew reduction is close enough to be represented by

the summation of individuals.

This simultaneous selection problem is exact knapsack problem: Given

a set of possible points, each with a slew improvement and a wire-length

penalty, determine possible point to move to so that the total slew improve-

ment is more than or equal to a given limit and the total wire-length penalty

is as small as possible [2]. We use maximum number of possible points on one

edge to limit the maximum number of candidates from one EP. Then the total

number of candidates for inside-tree t is O(n) where n is the number of EPs.

Moreover, the number of EPs on one block for each net equals to the number

of interactions between one topology and one block. Since this decision prob-

lem is NP-complete and the problem size for each block is O(n), we can apply

ILP to solve it. The simultaneous point choice problem can be formulated in

an optimization problem as follows (notation in Table 2.2):

32

Table 2.2: Notation of variables in our formulation

Xij binary variable denoting the choice of PPStij,
Xij = 1 if it is chosen, otherwise Xij = 0

Eij step slew reduction at EP t
1 if EP t

i moves to PPSij
Bij output slew reduction on Dt if EP t

i moves to PPSij
Wij estimated wire-length penalty of EP t

1 if EP t
i moves to PPSij

Yrsij binary variable equals to one only if Xrs = 1 and Xij = 1

min.
|EP t|∑
i=1

|PPSt
i |∑

j=1

XijWij (3)

s.t.(Ststep1 +
|EP t|∑
i=1

|PPSt
i |∑

j=1

XijE
t
ij)

2+

(St(Dt) +
|EP t|∑
i=1

|PPSt
i |∑

j=1

XijB
t
ij)

2 <= slewtspec
2

(3a)

|PPSt
i |∑

j=1

Xij = 1 ∀i ∈ {1, 2, . . . , |EP t|} (3b)

The objective function (5) is to minimize the total estimated wire-

length penalty. Constraint (3a) restricts that the total slew reduction on EP t
1

has to be able to pull slewt1 down below requirement. Constraint (3b) is used

to limit only one position chosen for each escaping point.

This formulation is a non-linear integer programming formulation (NLIP).

33

We expand the step slew part in constraint (3a) as:

Ststep1
2

+ 2Ststep1

|EP t|∑
i=1

|PPSt
i |∑

j=1

(X t
ij)(E

t
ij)+

|EP t|∑
r=1

|PPSt
i |∑

s=1

|EP t|∑
i=1

|PPSt
i |∑

j=1

X t
rsE

t
rsX

t
ijE

t
ij

We observe that the only quadratic item is X t
rsX

t
ij. We can substitute

this item for a new binary variable Yrsij. We constrain Yrsij such that Yrsij

always behaves same as X t
rsX

t
ij. The constraint needed is (for output slew

part, it is similar):

Yrsij <= X t
rs ∀r, s, i, j ∈ {1, 2, . . . , |EP t|} (3c)

Yrsij <= X t
ij ∀r, s, i, j ∈ {1, 2, . . . , |EP t|} (3d)

Yrsij >= X t
rs +X t

ij − 1 ∀r, s, i, j ∈ {1, 2, . . . , |EP t|} (3e)

By adding constraint (3c) ∼ (3e) to (5), we turn the NLIP problem into integer

linear programming formulation (ILP), which can be solved by solver Gurobi

Optimizer [1] quickly. The formulation of ILP is shown as follows:

34

min.
|EP t|∑
i=1

|PPSt
i |∑

j=1

XijWij

s.t.Ststep1
2

+ St(Dt)
2

+ 2Ststep1

|EP t|∑
i=1

|PPSt
i |∑

j=1

(X t
ij)(E

t
ij)+

2St(Dt)
|EP t|∑
i=1

|PPSt
i |∑

j=1

(X t
ij)(B

t
ij)+

|EP t|∑
r=1

|PPSt
i |∑

s=1

|EP t|∑
i=1

|PPSt
i |∑

j=1

(Bt
rsB

t
ij + Et

rsE
t
ij)Yrsij <= slewtspec

2

|PPSt
i |∑

j=1

Xij = 1 ∀i ∈ {1, 2, . . . , |EP t|}

Yrsij <= X t
rs ∀r, s, i, j ∈ {1, 2, . . . , |EP t|}

Yrsij <= X t
ij ∀r, s, i, j ∈ {1, 2, . . . , |EP t|}

Yrsij >= X t
rs +X t

ij − 1 ∀r, s, i, j ∈ {1, 2, . . . , |EP t|}

Due to the number of choices for each escaping point is limited by the number

of possible sliding edges and their length, the total number of variables in our

formulation is very limited. The ILP solver can get the solution very fast.

2.3.4 Block-aware Maze Routing Algorithm

After final positions of all escaping points are fixed, a restricted length,

over-the-block maze routing will be applied. This maze routing features abil-

ity of routing over-the-blockage. The maximum length it can route over the

block is decided by the distance a middle size buffer could drive itself over

the block without slew problem. This restricted length, over-the-block maze

35

router requires less wire-length comparing with normal maze router because

of its ability to route over the block. In Fig. 2.5(a), U is an escaping point and

A is a sink of the tree. Escaping point U slides to U ′ to legalize the inside tree.

The restricted length, over-the-block maze is applied to reconnect A, and it

will choose connection from A to V instead of from A to U ′ because of shorter

wire-length, resulting in Fig. 2.5(b). Wire segment U ′ to W will be removed

if no other part connects to U ′.

D

A

U

(a)

D
U'

V

U

W

A

(b)

Figure 2.5: Restricted length, over-the-block maze routing find a shortest
path to reconnect pin A

The implementation of block-aware maze routing is based on the normal

maze routing. But its multiple points to multiple points search is from all

points of the tree rooted at the current escaping point to T0 or an escaping

point of any inside tree. Furthermore, the length of the over-the-block path is

checked every step in the search to make slew safe. The details of the algorithm

are skipped here due to page limit.

36

2.3.5 Min-cost Slew Mode Buffer Insertion

After BOB-RSMT is fully constructed, we insert buffers in a free-

location way, which allows buffers at any unblocked space. Comparing with

fixed-location buffer insertion algorithm, free-location buffering can freely choose

position for buffering, which will result in lower buffer cost. We assume the

input slew of each buffer is fixed at the slew constraint. Free-location buffering

with fixed input slew will give a shorter runtime but conservative result [28].

It uses a dynamic programming framework to propagate a set solutions from

bottom up to the source of the net. Each solution is characterized as a triple

(C,W, S), where C stands for downstream capacitance, W denotes the total

cost of the solution, and S is the worst downstream accumulated step slew

degradation calculated from (3.4). Consider to propagate a solution from a

node vj to its parent vi through edge e = (vi, vj). One solution γj at node

vj propagates to vi to become a solution γi as C(γi) = C(γj) + Ce,W (γi) =

W (γj), S(γi) = S(γj) + Sstep(vi, vj).

In addition to unbuffered propagation, a buffer can be placed at vi to

generate a buffered solution. If a buffer is placed, the buffered solution at vi

is becoming C(γi,buf) = Cb,W (γi,buf) = W (γi) +Wb, S(γi,buf) = 0.

When two sets of solutions propagated by both left and right children

reach a branching node, these two set of solutions are merged. The merge

is performed on each solution in left child with each solution in right child.

Assume γl is one solution from left side and γr is one solution from right side to

be merged. The merged solution γp will have C(γp) = C(γl) +C(γl),W (γp) =

37

W (γl) +W (γr), S(γp) = max{S(γl), S(γr)}.

It is beneficial to prune useless solution at each node. As two so-

lutions γi1 and γi2 are at same node, γi1 dominates γi2 only if C(γi1) <=

C(γi2),W (γi1) <= W (γi2), S(γi1) <= S(γi2).

2.4 Experimental Results

We have implemented our algorithm in the C++ programming lan-

guage. The experiments are conducted on an Intel Core 3.0GHz Linux ma-

chine with 32GB memory. We choose Gurobi Optimizer 4.60 as our solver for

the integer linear programming.

RT1-RT5 and RC01-RC11 are benchmarks in our experiments. IND1-

IND5 used in [6, 30] are not used in our experiments, because they require

routing/buffering between adjoining blocks, which might be unfeasible for real

designs. RT1-RT5 are randomly generated circuits used in [37]. RC01-RC11

are test cases used in [24]. Because these benchmarks are widely different

in scale and do not carry timing and physical information, we first apply

predetermined resistance and capacitance to all of them. We use different

resistance and capacitance for horizontal and vertical wires respectively. If a

congestion map is considered, we can assign each wire segment to a proper

layer by pruning possible points in congestion.

For each benchmark, after FLUTE-3.1 finishes generating inside trees,

we collect slew on every escaping point for all inside trees. The range of value

38

of collected slew is [slewmin, slewmax]. Then we test each benchmark under

three slew constraints:

1. 20% slew: slewmin + 20%(slewmax − slewmin)

2. 50% slew: slewmin + 50%(slewmax − slewmin)

3. 80% slew: slewmin + 80%(slewmax − slewmin).

These three tests of each benchmark can test the performance of our algorithm

under tight, medium and loose slew constraints, respectively.

Table 2.5 compares the performance of our algorithm with some re-

cently published OA-RSMT algorithms. Columns 4, 5, 6 list the over-the-

block wire-length, outside-the-block wire-length and total wire-length of our

algorithm under 20% slew constraint. Columns 7 to 12 are for same types of

wire-length under 50% and 80% slew constraints. The row at bottom illus-

trates the average performance from all benchmarks listed above. We normal-

ize the performance in such a way that the total wire-length of FLUTE-3.1

is 100. The outside-the-block wire-length from Huang [30] is 14.27% more

than our BOB-RSMT algorithm under 20% slew constraint and 17.29% un-

der 80% slew constraint. The free over-the-block routing resources reclaimed

by BOB-RSMT are between 10% to 12% of the total wire-length. Even for

the total wire-length, since BOB-RSMT can intelligently use over-the-block

wires, it can reduce about 5% of total wire-length compared with [30] and [6].

The runtime of our proposed algorithm BOB-RSMT is divided into two parts:

39

solving ILP and block-aware maze routing, which are listed in the columns 2,

3, 6, 7, 10, 11 in Table 2.3. Our runtime is much shorter than both reported

in [30] and [6].

Table 2.4 carries out the buffering results on FLUTE, approach in [28]

and BOB-RSMT. For simplicity we only use one type of buffer, and total

buffering cost is the number of buffers used. From the table we have minimum

buffering cost associated with 20%, 50%, 80% slew constraint respectively for

all benchmarks. We use buffering on FLUTE as the baseline for our com-

parison. Buffering on FLUTE is performed without considering any block in

the two-dimensional routing region. We implement the approach in [28] and

the results are in columns 3, 8, 13 in the Table 2.4. The penalty parameter

α for over-the-block routing wires in [8, 28] is set between 10 to 100, which

increases if no solution can propagate to the source. Columns 5, 10, 15 in

the Table 2.4 are the minimum buffering costs from BOB-RSMT. Columns

after the buffering cost are the percentages of extra buffers used to overcome

blocks by that approach. As we can see, buffering on BOB-RSMT only uses

around 3% more buffers than FLUTE to propagate through blocks, while the

approach in [28] uses more than 20%. The CPU runtime comparison between

buffering on BOB-RSMT and the approach in [28] is in Table 2.3. Columns

5, 9, 13 illustrate the runtime for buffering on BOB-RSMT under three slew

constraints while columns 4, 8, 12 are for approach in [28]. Buffering on BOB-

RSMT is much faster because during the buffering stage, the tree structure

of BOB-RSMT has no need to be changed to meet slew constraint, but in

40

contrast [28] needs to find LeastBlockedPath([8, 26]) during every step.

2.5 Summary

In this chapter, we study an important new class of RSMT problems,

i.e., buffering-aware over-the-IP-block rectilinear Steiner minimum tree. We

propose an effective and efficient algorithm which can reclaim the over-the-

IP-block routing resources and is beneficial to buffering. With our proposed

approach, we can reduce the outside-the-block wire-length for more than 14%

and use about 19% less buffer cost than the approach in [28] to ensure slew

correct RSMT with blocks. Our proposed algorithm BOB-RSMT can be used

in both pre-routing and global routing stage to provide high quality routing

solutions. One example is to pre-route certain persistent critical signals in large

complex chips, such as a microprocessor, using higher metal layers. Since this

is the first work of this kind, we expect more follow-up works to push the

state-of-the-art of BOB-RSMT, which is crucial for large SOC designs with

many IP-blocks.

41

T
ab

le
2.

3:
C

P
U

ru
n
ti

m
e

C
P

U
(s

)
B

en
ch

2
0
%

sl
ew

5
0
%

sl
ew

8
0
%

sl
ew

-m
a
rk

s
m

a
ze

C
-S

B
B

O
B

-R
S

M
T

m
a
ze

C
-S

B
B

O
B

-R
S

M
T

m
a
ze

C
-S

B
B

O
B

-R
S

M
T

IL
P

ro
u

ti
n

g
b

u
ff

er
in

g
b

u
ff

er
in

g
IL

P
ro

u
ti

n
g

b
u

ff
er

in
g

b
u

ff
er

in
g

IL
P

ro
u

ti
n

g
b

u
ff

er
in

g
b

u
ff

er
in

g
R

T
1

0
.0

2
0
.1

2
7
0
.0

9
0
.0

3
0

0
.0

4
2
8
1
.6

2
0
.0

2
0

0
.0

4
2
8
5
.0

3
0
.0

1
R

T
2

0
0
.1

3
1
0
4
1
.8

3
0
.0

3
0

0
.0

4
1
0
5
6
.2

7
0
.0

7
0
.0

1
0
.1

1
0
5
9
.6

0
.0

4
R

T
3

0
.0

2
0
.1

3
9
0
5
.0

5
0
.2

6
0

0
.0

7
1
0
2
3
.3

9
0
.1

9
0

0
.0

7
1
0
4
1
.0

1
0
.1

5
R

T
4

0
.0

2
0
.2

5
2
8
5
9
.0

6
0
.6

4
0

0
.0

7
2
8
8
0
.2

0
.4

7
0

0
.0

7
2
8
9
6
.4

8
0
.4

3
R

T
5

0
.0

3
2
.6

1
>

7
2
0
0

1
.2

5
0
.0

1
1
.4

3
>

7
2
0
0

1
.0

3
0
.0

1
0
.3

5
>

7
2
0
0

1
.0

3
R

C
1

0
0
.0

1
0
.0

5
0

0
0
.0

1
0
.0

5
0

0
0

0
.0

5
0

R
C

2
0

0
0
.4

5
0
.0

1
0

0
0
.5

3
0

0
0
.0

1
0
.6

3
0

R
C

3
0

0
.0

2
0
.5

0
0
.0

1
0

0
.0

3
0
.6

6
0
.0

1
0

0
.0

1
0
.6

3
0
.0

1
R

C
4

0
.0

1
0
.0

4
2
.7

2
0
.0

1
0

0
.0

1
2
.4

0
0
.0

1
0
.0

2
0

2
.4

0
0
.0

1
R

C
5

0
0
.0

1
4
.4

4
0
.0

2
0
.0

1
0
.0

1
4
.4

4
0
.0

2
0
.0

1
0
.0

1
4
.5

0
0
.0

2
R

C
6

0
.0

4
0
.9

1
1
6
5
2
.4

0
.2

0
.0

1
0
.0

8
1
6
4
3
.1

1
0
.1

2
0

0
.0

9
1
6
3
4
.0

5
0
.1

3
R

C
7

0
.0

4
3
.4

3
>

7
2
0
0

0
.3

6
0
.0

2
1
.5

1
>

7
2
0
0

0
.2

9
0

0
.5

6
>

7
2
0
0

0
.2

4
R

C
8

0
.0

5
2
.2

4
>

7
2
0
0

0
.0

5
0
.0

1
0
.7

6
>

7
2
0
0

0
.5

6
0
.0

1
0
.2

6
>

7
2
0
0

0
.5

5
R

C
9

0
.0

9
5
.0

8
>

7
2
0
0

0
.7

8
0
.0

3
1
.8

8
>

7
2
0
0

0
.5

5
0
.0

2
1
.0

2
>

7
2
0
0

0
.4

R
C

1
0

0
.0

2
0
.3

1
1
9
0
.1

0
.4

4
0

0
.0

6
1
9
1
.3

0
.3

9
0

0
.0

5
1
9
0
.3

9
0
.3

8
R

C
1
1

0
.0

4
0
.5

5
5
9
2
.3

5
1
.2

4
0
.0

1
0
.4

6
5
8
9
.8

7
1
.1

5
0
.0

1
0
.3

7
5
9
1
.7

1
1
.1

5

42

T
ab

le
2.

4:
E

x
tr

a
b
u
ff

er
in

g
co

st
co

m
p
ar

is
on

B
en

ch
2
0
%

sl
ew

5
0
%

sl
ew

8
0
%

sl
ew

F
L

U
[2

8
]

ex
tr

a
%

B
O

B
ex

tr
a

%
o
f

F
L

U
[2

8
]

ex
tr

a
%

B
O

B
ex

tr
a

%
o
f

F
L

U
[2

8
]

ex
tr

a
%

B
O

B
ex

tr
a

%
o
f

-m
a
rk

s
-T

E
o
f

[2
8
]

-R
S

M
T

B
O

B
-R

S
M

T
-T

E
o
f

[2
8
]

-R
S

M
T

B
O

B
-R

S
M

T
-T

E
o
f

[2
8
]

-R
S

M
T

B
O

B
-R

S
M

T
R

T
1

1
5
1

2
2
1

4
6
.3

6
1
5
8

4
.6

3
9
4

1
3
7

4
5
.7

4
9
8

4
.2

6
7
4

1
0
9

3
3
.7

8
7
7

4
.0

5
R

T
2

3
4
9

4
0
9

1
7
.1

9
3
5
2

0
.8

6
2
1
8

2
2
5

3
.2

1
2
1
8

0
.0

0
1
6

1
9

1
8
.7

5
1
6

0
.0

0
R

T
3

7
6
1

8
9
7

1
7
.8

7
7
6
7

0
.7

9
4
7
0

5
5
7

1
8
.5

1
4
7
3

0
.6

4
3
7
6

4
4
2

1
7
.5

5
3
7
6

0
.0

0
R

T
4

3
0
0

4
4
8

4
9
.3

3
3
0
6

2
.0

0
1
8
0

2
7
0

5
0
.0

0
1
8
4

2
.2

2
1
3
9

2
0
8

4
9
.6

4
1
4
4

3
.6

0
R

T
5

3
7
8

6
7
3

7
8
.0

4
3
8
6

2
.1

2
2
2
8

4
1
3

8
1
.1

4
2
3
7

3
.9

5
1
7
4

3
2
6

8
7
.3

6
1
8
3

5
.1

7
R

C
1

2
1

2
3

9
.5

2
2
2

4
.7

6
1
3

1
4

7
.7

0
1
4

7
.7

0
1
0

1
1

1
0
.0

0
1
0

0
.0

0
R

C
2

3
3

3
7

1
2
.1

2
3
3

0
.0

0
2
1

2
4

1
4
.2

9
2
1

0
.0

0
1
6

1
9

1
8
.7

5
1
6

0
.0

0
R

C
3

9
6

1
1
3

1
7
.7

1
9
9

3
.1

2
5
9

7
1

2
0
.3

4
6
0

1
.6

9
4
5

5
4

2
0
.0

0
4
7

4
.4

4
R

C
4

6
5

7
6

1
6
.9

2
6
7

3
.0

8
4
1

4
8

1
7
.0

7
4
1

0
.0

0
3
0

3
6

2
0
.0

0
3
2

6
.6

7
R

C
5

6
2

7
0

1
2
.9

0
6
2

0
.0

0
3
6

4
1

1
3
.8

9
3
9

8
.3

3
2
8

3
2

1
4
.2

9
2
9

3
.5

7
R

C
6

2
3
7

2
7
2

1
4
.7

7
2
4
8

4
.6

4
1
4
3

1
6
6

1
6
.0

8
1
5
1

5
.5

9
1
1
2

1
2
8

1
4
.2

9
1
1
8

5
.3

6
R

C
7

4
5
8

5
0
4

1
0
.0

4
4
6
5

1
.5

3
2
7
8

3
0
7

7
.6

7
2
8
7

3
.2

4
2
1
7

2
4
2

1
1
.5

2
2
2
4

3
.2

3
R

C
8

2
8
2

3
4
2

2
1
.2

8
3
0
4

7
.8

0
1
7
2

2
1
1

2
2
.6

7
1
8
7

8
.7

2
1
3
5

1
6
2

2
0
.0

0
1
4
3

5
.9

2
R

C
9

4
2
5

5
0
6

1
9
.0

6
4
5
1

6
.1

2
2
5
9

3
1
3

2
0
.8

5
2
7
8

7
.3

4
2
0
2

2
4
7

2
2
.2

8
2
1
3

5
.4

5
R

C
1
0

3
9
4

4
1
2

5
.0

8
3
9
5

0
.2

5
2
4
6

2
6
1

6
.1

0
2
4
8

0
.8

1
1
8
9

2
0
1

6
.3

5
1
9
1

1
.0

6
R

C
1
1

1
6
6
2

1
6
9
5

1
.9

9
1
6
7
0

0
.4

8
1
0
2
3

1
0
4
4

2
.0

5
1
0
2
5

0
.2

0
7
8
9

8
0
4

1
.9

0
7
9
2

0
.3

8
A

v
e.

2
1
.8

9
2
.6

4
2
1
.7

1
3
.4

2
2
2
.9

0
3
.0

6

43

T
ab

le
2.

5:
C

om
p
ar

is
on

s
b

et
w

ee
n

ou
r

p
ro

p
os

ed
B

O
B

-R
S
M

T
an

d
O

A
-R

S
M

T

B
en

ch
n

m
2
0
%

sl
ew

5
0
%

sl
ew

8
0
%

sl
ew

F
L

U
T

E
H

u
a
n

g
A

jw
a
n

i
-m

a
rk

s
W
L
i

W
L
o

W
L

W
L
i

W
L
o

W
L

W
L
i

W
L
o

W
L

-3
.1

[3
0
]

[6
]

R
T

1
1
0

5
0
0

3
8
5

1
4
4
9

1
8
3
4

2
9
6

1
5
2
2

1
8
1
8

2
9
6

1
5
2
2

1
8
1
8

1
8
1
7

2
1
4
6

2
1
9
1

R
T

2
5
0

5
0
0

1
2
1
6

4
3
4
6
9

4
4
6
8
5

1
2
1
6

4
3
4
6
9

4
4
6
8
5

1
1
8
6

4
3
5
0
7

4
4
6
9
3

4
4
6
8
5

4
5
8
5
2

4
8
1
5
6

R
T

3
1
0
0

5
0
0

2
6
3

7
4
2
0

7
6
8
3

2
7
6

7
3
9
0

7
6
6
6

2
8
2

7
3
7
9

7
6
6
1

7
6
5
2

7
9
6
4

8
2
8
2

R
T

4
1
0
0

1
0
0
0

1
1
9
6

6
6
4
7

7
8
4
3

8
7
2

6
9
5
7

7
8
2
9

8
8
2

6
9
4
7

7
8
2
9

7
8
2
7

9
6
9
3

1
0
3
3
0

R
T

5
2
0
0

2
0
0
0

6
7
0
2

3
6
4
7
4

4
3
1
7
6

7
2
7
7

3
5
7
2
0

4
2
9
9
7

7
4
9
1

3
5
4
5
8

4
2
9
4
9

4
2
9
4
3

5
1
3
1
3

5
4
5
9
8

R
C

1
1
0

1
0

7
4
0

2
4
5
5
0

2
5
2
9
0

7
4
0

2
4
5
5
0

2
5
2
9
0

7
4
0

2
4
5
5
0

2
5
2
9
0

2
5
2
9
0

2
5
9
8
0

2
5
9
8
0

R
C

2
3
0

1
0

5
2
2
0

3
6
9
9
8

4
2
2
1
8

8
1
9
0

3
4
5
2
0

4
2
7
1
0

8
1
9
0

3
3
0
2
0

4
1
2
1
0

3
9
9
2
0

4
1
3
5
0

4
2
1
1
0

R
C

3
5
0

1
0

5
3
0

5
3
9
5
0

5
4
4
8
0

1
1
9
0

5
3
2
9
0

5
4
4
8
0

4
4
8
0

4
8
4
3
0

5
2
9
1
0

5
2
8
8
0

5
4
1
6
0

5
6
0
3
0

R
C

4
7
0

1
0

3
0
3
0

5
2
4
2
0

5
5
4
5
0

4
4
9
0

5
0
9
6
0

5
5
4
5
0

5
4
2
0

5
0
0
2
7

5
5
4
4
7

5
5
3
0
0

5
9
0
7
0

5
9
7
2
0

R
C

5
1
0
0

1
0

3
5
9
0

6
9
8
1
0

7
3
4
0
0

3
5
9
0

6
9
8
1
0

7
3
4
0
0

4
7
5
0

6
8
9
8
0

7
3
7
3
0

7
3
2
2
0

7
4
0
7
0

7
5
0
0
0

R
C

6
1
0
0

5
0
0

1
2
9
8
3

6
5
6
6
7

7
8
6
5
0

1
4
6
1
3

6
1
9
8
0

7
6
5
9
3

1
5
0
4
9

6
2
4
3
2

7
7
4
8
1

7
7
1
7
1

7
9
7
1
4

8
1
2
2
9

R
C

7
2
0
0

5
0
0

1
3
1
4
1

9
7
1
0
9

1
1
0
2
5
0

1
3
7
8
5

9
5
1
6
2

1
0
8
9
4
7

1
4
2
4
4

9
3
5
6
5

1
0
7
8
0
9

1
0
6
7
4
3

1
0
8
7
4
0

1
1
0
7
6
4

R
C

8
2
0
0

8
0
0

2
3
6
7
4

8
8
1
3
6

1
1
1
8
1
0

2
5
5
1
5

8
4
0
4
9

1
0
9
5
6
4

2
5
1
8
4

8
3
3
8
5

1
0
8
5
6
9

1
0
8
4
9
5

1
1
2
5
6
4

1
1
6
0
4
7

R
C

9
2
0
0

1
0
0
0

2
5
6
8
9

8
3
9
7
2

1
0
9
6
6
1

2
5
6
8
9

8
3
9
7
2

1
0
9
6
6
1

2
6
0
2
6

8
2
1
9
2

1
0
8
2
1
8

1
0
7
7
2
9

1
1
1
0
0
5

1
1
5
5
9
3

R
C

1
0

5
0
0

1
0
0

8
3
7
2

1
5
6
3
4
8

1
6
4
7
2
0

9
4
0
0

1
5
5
3
7
0

1
6
4
7
7
0

9
4
0
0

1
5
5
3
7
0

1
6
4
7
7
0

1
6
3
9
8
0

1
6
4
1
5
0

1
6
8
2
8
0

R
C

1
1

1
0
0
0

1
0
0

3
0
1
6

2
2
9
5
1
9

2
3
2
5
3
5

3
4
9
8

2
2
8
2
3
2

2
3
1
7
3
0

3
4
9
8

2
2
8
2
8
2

2
3
1
7
8
0

2
3
1
7
3
0

2
3
0
8
3
7

2
3
4
4
1
6

A
v
e.

9
.9

5
9
1
.3

8
1
0
1
.3

3
1
0
.9

9
8
9
.9

8
1
0
0
.9

7
1
1
.6

9
8
8
.7

4
1
0
0
.4

3
1
0
0

1
0
6
.0

3
1
0
8
.1

7

44

Chapter 3

Timing-Driven, Over-the-Block RST

Construction

3.1 Introduction

Chapter 2 discusses RSMT and related extensions, which produces good

results regarding wire-length minimization, but they are not timing-optimal

in deep sub-micron high-speed ICs. To help meet timing on critical paths,

timing-driven RST is needed to optimize pin-to-pin delays on those paths.

Approaches such as [20,21,31,46,53,58], focus on the minimum delay routing

tree (MDRT) problem which minimizes a linear combination of delays at sinks.

Other approaches(e.g. [9,16,32]) are able to optimize the required arrival time

at the driver as a more practical target. Besides, timing optimization and ob-

stacle avoidance are simultaneously considered in [38], etc. However, most of

the above-mentioned timing-driven approaches have the following three prob-

lems:

1) In order to build an RST optimizing required arrival time at the

driver, it is necessary to know the criticality at all sinks. The first problem is

that most previous works (such as [9,38,42]) use simple estimation on arrival

time and criticality for each sink, which is not accurate enough. For example

45

in [9], an optimally buffered 2-pin direct connection from root to one node

is used to estimate the potential delay; similarly in [42], the require arrival

time is calculated based on distance from root to merging point, neglecting

the coupling from other part of the tree. Estimation cannot fully capture in-

terconnection delay, including delay on wires and buffers, decoupling effect by

buffers and load capacitance from un-buffered branch, which would result in

a sub-optimal timing-driven RST. One the other hand, a buffered tree with

topology close enough to the final constructed tree could provide criticality at

all sinks accurately. We propose a pre-buffering approach in place of estima-

tion so as to provide more accurate timing information. During pre-buffering,

a timing-driven RST is iteratively built and buffered to offer criticality infor-

mation for the next generation of timing-driven RST until the tree topology

converges.

As is shown in Fig.3.1, if only estimation is used, it would conclude

that sink E is critical, resulting in the topology in Fig.3.1(a). However, if we

insert buffers on the topology in Fig.3.1(a) and re-calculate criticality, we will

find that sink D is as critical as E. Based on that finding, the new topology

would re-clusters D with E with a direct connection to root S. Upon this new

topology, a new buffer insertion is applied to re-calculate criticality at each

sink. In this example, we find the set of critical sinks is not changed anymore

and thus the topology converges to Fig.3.1(b) which has a better WNS since

the slack on D is improved.

2) From [55] and [29], it has been demonstrated that over-the-block

46

E�

B�

S�

C�

A� D�

(a)

E�

B�

S�

C�

A� D�

(b)

Figure 3.1: (a) estimates only sink E is critical. (b) groups sink E and D as
critical cluster.

RSMT (OB-RSMT) outperforms OA-RSMT in terms of wire-length. Over-

the-block routing resources should be used in timing-driven RST construction

as well to replace obstacle-avoiding detours with shorter over-the-block con-

nection. In the meantime, certain slew constraints have to be satisfied for

over-the-block routing to ensure the solution will not fail buffering. Fig. 3.2

compares obstacle-avoiding tree construction with over-the-block algorithm, in

which the latter shifts part of the inside tree outside and keeps the remaining

inside the block. As is shown in Fig.3.2(b), the algorithm reduces two buffers,

some detouring wire-length and delay of paths in the tree.

3) Following topology generation and buffering, it has never been dis-

covered or discussed that a buffer-location-based tuning can achieve consid-

erable timing improvement without consuming additional buffering cost and

noticeable wire-length. During the buffering, in order to obtain a legal buffer-

47

S	
A	

B	

(a)

B	

S	
A	

(b)

Figure 3.2: (a) is an OA-RSMT with root S and two sinks A,B. (b) uses part
of the over-the-block routing resources.

ing solution, some buffers are placed at positions without fully using up their

power. The proposed post-buffering tuning algorithm could tune the locations

of Steiner points based on the buffering information to further improve slack.

In Fig. 3.3(a), we observe that buffer b2 is clamped under the Steiner point

D to shield part of the downstream capacitance of D. We can change the

position of the Steiner point (Fig. 3.3(b)) which makes the sequential buffers

b1 and b2 parallel. The delay of the path from root S to A is notably reduced

since the path becomes a decoupled direct connection and delay on buffer b1

is taken away. However in a traditional flow, it is hard to accurately predict

these better buffer locations via only topology generation and buffering.

This chapter makes the following major contributions:

1. We first propose a timing-driven, over-the-block RST construction al-

gorithm which utilizes over-the-block routing tracks to reduce delay to

48

B

A

S D
b1

b2

(a)

B�

A�

S�
b1�

b2�

D�

(b)

Figure 3.3: (a) is a buffered RST with root S and two sinks A,B. (b) exhibits
the tuned topology and new buffering.

critical sinks and shorten wire-length to non-critical sinks.

2. Our constructed RST satisfies the slew constraints everywhere with buffers

placed at empty space.

3. During the tree construction, we use pre-buffering scheme to provide

more accurate timing information, which helps explore better topologies

for timing-driven RST.

4. We analyze the final buffered tree and relocate certain Steiner points to

further improve the delay on paths to critical sinks.

5. We conduct our algorithm and observe significant improvements in WS,

wire-length and buffering cost compared with existing works.

The rest of chapter is organized as follow. We first introduce basic

concepts and our problem formulation in Section 3.2. Our timing-driven, over

49

the-block RST construction algorithm will be presented in Section 3.3, which

includes three subsections. Section 3.3.1 discusses how to use pre-buffering

to guide the tree construction. Section 3.3.2 discusses how to use over-the-

block routing resources to reduce delays on critical paths without violating

slew constraints. modify BOB-RSMT to ensure slew for over-the-block part.

Section 3.3.3 introduces the post-buffering topology tuning algorithm which

achieves considerable timing improvement without consuming noticeable wire-

length and buffering cost. Experimental results will be shown in Section 3.4,

followed by summary in Section 3.5.

3.2 Notations and Problem Formulation

In a two-dimensional routing region, we are given a net

N = {s0, s1, s2, . . . , sn} with n + 1 pins, where s0 is the unique source and

the rest are sinks. L = {b1, b2, . . . , bm} is a set of non-overlapping rectilinear

blocks in a two-dimensional space R. For ∀ si ∈ N , si is not inside the two-

dimensional space occupied by L. Any area with high-density logic cells not

allowed for buffering is also taken as buffering blockage into L.

Our algorithm constructs a timing-driven buffered tree T (V,E) to con-

nect all the pins in N , where V is the set of nodes and E is the set of horizontal

and vertical edges. T might intersect with blocks in L, which confines a set of

trees S = {T1, T2, . . . , Tl} inside blocks. We call trees in S inside trees. The

outside-the-block part of T is defined as T0. The buffered tree Tb(Vb, Eb) is

generated from T after we insert a set of nodes V ′ which corresponds to the

50

buffers chosen from buffer library B, and Vb = V ∪ V ′.

The Steiner tree has a unique path P (s0, si) from s0 to each sink si. The

presence of buffers along the path could separate the path into stages, each of

which consists of a driver, a set of driven nodes as well as edges connecting

the driver and the driven nodes. The total delay on a path is the summation

of the delay on each stage along that path, which can be computed in many

ways. As in this discussion, we adopt the Elmore model for wires and a switch-

level linear model for gates. The models we adopt are simple and informative

enough to guide our approach, yet our formulation is by no means restricted

to these models. The delay of each stage in the path is expressed as:

t(d(u), u) =
∑

e=(i,j)∈p(d(u),u)

rele(0.5cele + Cu(j))

+RbCd(d(u)) +Db (3.1)

Total delay of the path is the summation over all stages in the path:

d(s0, si) =
∑

u∈V ′∩p(s0,si)
t(d(u), u) (3.2)

The slack of sink si is defined as slack(si) = RAT (si) − d(s0, si). WS is

defined as WS(T) = min{slack(si)|1 ≤ i ≤ n}, and the worst negative slack is

determined by WNS(T) = min{0,WS}. Notations amongst the formulation

are as follows:

• le = length of edge e,

• re = unit length wire resistance on a chosen layer for edge e,

51

• ce = unit length wire capacitance on a chosen layer for edge e,

• Rb = chosen buffer or source output resistance,

• Cb = chosen buffer or source input capacitance,

• Db = internal buffer or source delay,

• d(u) = the driver of node u,

• t(u, v) = delay from node u to node v,

• Cd(v) = total capacitance of the sub-tree rooted at node v down to the

nearest downstream buffer or sinks, including the sink or buffer input

capacitance,

• Cu(v) = Cd(v) if v is not a buffer or source; Cb if v is a buffer or source

node,

For slew calculation, we adopt the PERI model [34]:

S(vj) =
√
S(vi)2 + Sstep(vi, vj)2 (3.3)

S(vj) is the slew at any node vj, calculated as the root-mean square of the

step slew from vi to vj and output slew at node vi. The output slew at vi

is described by a 2-D lookup table of input slew and load capacitance. The

experimental results in [34] show the error of PERI is within 1%, which is in-

distinguishable from what is obtained using SPICE simulation. For simplicity,

52

we use Bakoglu’s metric [12] for step slew calculation:

Sstep(vi, vj) = α ∗ Elmore(vi, vj), α = ln9 (3.4)

The combination of Bakoglu’s metric and the PERI model is shown to have er-

ror within 4% [34], which is, in general, accurate enough for RST construction

purpose.

Our algorithm will construct a buffered RST T to connect all sinks

and root while ensuring the slew rate on every point in the tree is within con-

straints. We use slew mode buffering as our buffering scheme as it is more pre-

dominantly used ([28,44]) and saves buffering cost. The slew mode buffering

satisfies the slew constraints on every point of the buffered tree with minimum

buffering cost. Our buffered tree will have edges over the blocks but no buffers

are allowed over the blocks. The object is to minimize the WNS of the tree

with the lowest buffering cost.

3.3 Timing-driven Over-the-block RST

Our approach constructs a timing-driven, over the-block RST with slew

constraints. First, the approach uses coupled buffering and topology genera-

tion to provide AT and criticality at each sink. Then, a timing-driven RST is

constructed based on pre-buffering. Second, the topologies of over-the-block

trees are optimized to meet the slew constraints while maintaining the delay to

critical sinks. Then, buffering is performed on the constructed tree structure.

Finally, the constructed tree is tuned based on buffering information followed

53

by buffering again. The overall algorithm of proposed approach is illustrated

in Algorithm2.

Algorithm 2 The overall algorithm

Require: Set of pins N and blocks L
Ensure: Timing-driven over-the-block RST T
1: Construct timing-driven initial RST T with pre-buffering
2: Change the topology of T to meet the slew constraints
3: Perform buffering on T
4: Tune the topology of T based on buffering information
5: Perform buffering on T
6: return T

3.3.1 Initial Tree Generation with Pre-Buffering

Timing-driven RST requires the calculation of AT on each sink and

might need RAT on internal nodes during the tree construction. Simple esti-

mation of timing is inaccurate since there is no way to calculate the delay of

un-constructed part of the tree or consider the final buffer distribution in the

tree construction phase. Instead of using estimation, we apply pre-buffering

to guide the tree construction.

Fig.3.4 depicts the proposed initial tree generation flow. We first gen-

erate a tree through any timing-driven RST algorithm. In this chapter, we

use state-of-the-art critical-trunk-based RST algorithm [38] to generate this

initial tree (not considering blockages in this stage). Then pre-buffering part

will buffer the RST and analyze timing. We save these topology and buffering

if they are best-so-far. We calculate the real AT based on the buffered tree to

54

OASG	 Construc.on

SD	 Subtree	 Growth	 with	 Post-‐Process

Buffering
Required	 Time	
Calcula.on	

Converge,	 Or	
Oscillates	 Or	 Reach	

Limits?

N

Done
Y

Compare	 Timing	
Analysis	 to	 Best

SD	 Cri.cal	 Trunk	 Growth

Save	 Tree	 and	 Best
BeJer Not	 BeJer

Figure 3.4: Flow of initial tree generation

substitute the pseudo time used in the tree topology generation algorithm as

feedback information.

In the next iteration, all real critical sinks and critical trunks are re-

determined because of the new timing information. In RST algorithm, we

re-fix the critical trunks while the other two-pin nets are ripped up and re-

routed by maze routing after the timing-driven critical trunk growth. Finally

a post-process including rectilinearization and redirection is applied, which

55

produces another RST. We will iterate the whole procedure until the tree

C�

S�

B�

D�

A�

(a)

C�

S�

A�

B�

D�

(b)

C	

S	

B	

D	

A	

(c)

Figure 3.5: (a) is the initial critical trunk based tree with root S and sinks
A,B,C,D. (b) reconstructs the tree according to the pre-buffering and timing
information from (a). The tree topology converges in (c).

topology converges, or oscillates between several states, or the time limit is

reached. Then we choose the best topology and WNS in our iterations as

our initial tree. The new part of pre-buffering is indicated by dashed lines in

Fig.3.4.

56

Example in Fig.3.5 shows that the topology and timing converge during

the iterations. Initial structure in Fig.3.5(a) directly connects sink A to root as

the RAT of A is small. In the next iteration, the topology generator decides to

directly connect A to the trunk as in Fig.3.5(b), since according to Fig.3.5(a)

the delay to A is small enough to meet the RAT, which in turn allows late

branch. The late branch in Fig.3.5(b) leads to larger delay to sink A and

eventually the topology converges to Fig.3.5(c) where the branch point of the

path from root to A sits in the middle trunk leading to a star-like RSMT

structure.

57

3.3.2 Buffering-Aware Over-the-Block Routing

We generate the initial tree without considering the blocks. The initial

tree could cross over the blocks and break slew constraints even after buffer in-

sertion. To prevent these violations, we change the topologies of over-the-block

inside trees by approach similar to [55]. The objective in [55] is to minimize

total wire-length only. Yet, in order to consider timing at the same time, we

integrate criticality and slack into the objective function which minimize the

wire-length of non-critical path as well as delay on critical path.

The initial tree confines a set of inside trees. For each inside tree, the

ports, excluding the driver, on the boundaries of the block are called escaping

points (EP). We use a mid-size hypothetical buffer at the driver and mid-size

hypothetical buffers at each EP to determine if the tree has slew violation.

Using mid-size hypothetical buffers instead of two extreme sizes will weaken

the capability of utilizing more over-the-block routing resources, but the former

turns out a more practical assumption and leads to less buffering cost as more

solutions can propagate through this inside tree. If any inside tree violates

the slew constraints, we apply three optimization primitives including parallel

sliding, perpendicular sliding and EP merging [55] to fix the slew violations.

Three optimization primitives are with different cost in our formulation since

we consider timing as well.

For each inside tree t with slew violations, we first sort the illegal EPs

per their slew violations. Next, in every iteration we choose the first illegal

escaping point EP t
1 with the worst slew violation based on sorting. To improve

58

Table 3.1: Notation of variables in our formulation

Xij binary variable denoting the choice of PPStij,
Xij = 1 if it is chosen, otherwise Xij = 0

Eij step slew reduction at EP t
1 if EP t

i moves to PPSij
Bij output slew reduction on Dt if EP t

i moves to PPSij
Wij estimated wire-length penalty of EP t

1 if EP t
i moves to PPSij

Ci estimated the timing criticality of EP t
1

slew for EP t
1, each escaping point from {EP t

1, EP
t
2, . . . EP

t
|EP t|} may slide to

a different position by taking a combination of primitives.

The combination of optimization primitives provides each escaping point

a set of possible points. Each possible point in the set is a point on the bound-

ary edge where escaping point may move to, which in turn improves the worst

slew. Moving every escaping point to certain possible point guarantees slewt1

to meet slew requirement. In the extreme situation where maximum slew

constraint is zero, EP t
1 can still become legal escaping point after we merge

one escaping point to another until only the driver is left. For any non-fixed

EP t
i ∈ {EP t}, the jth possible point associated with EP t

i is denoted as PPij.

PPij is stored in a 3-tuple format {Eij, Bij,Wij}. Eij and Bij represent the

step slew at EP t
1 and output slew reduction of the driver if EPi moves to

PPij. Wij stands for the correspondingly estimated wire-length penalty. The

possible point set associated with EP t
i in the current iteration is denoted as

PPSti . PPSti = {PP t
i1, PP

t
i2, . . . , PP

t
ir}, where r is the number of possible

points inside.

In order to construct the inside tree under the slew constraint as well

59

as meeting slack constraints, ∀EP t
i ∈ EP t we need to decide which possible

point to choose. The simultaneous point choice problem can be formulated in

an optimization problem as follows (notation in Table 3.1):

min.
|EP t|∑
i=1

|PPSt
i |∑

j=1

XijWij(Cd(EP
t
i)Ci + β) (5)

s.t.(Ststep1 +
|EP t|∑
i=1

|PPSt
i |∑

j=1

XijE
t
ij)

2+

(St(Dt) +
|EP t|∑
i=1

|PPSt
i |∑

j=1

XijB
t
ij)

2 <= slewtspec
2

(5a)

|PPSt
i |∑

j=1

Xij = 1 ∀i ∈ {1, 2, . . . , |EP t|} (5b)

The objective function (5) is to minimize the increase in delay on

the critical paths and wire-length on non-critical paths. WijCd(EP
t
i) is the

multiplication of resistance and total downstream capacitance, which esti-

mates the amount of increase in delay for every sink downstream from EP t
i .

Ci =
∑
sk |slack(sk)| is the weight for critical paths below EP t

i , summing all

absolute values of negative slacks of sinks downstream from EP t
i . The weight

β in the objective function selects solution with less estimated wire-length

penalty on non-critical paths. The value of β is set remarkably smaller than

Cd(EP
t
i)Ci to avoid affecting critical paths. This objective function prefers

less change on the critical paths while [55] can choose to increase the wire on

critical path and exacerbate the WNS. Through the change of formulation,

our new formulation considers the delay on critical paths and wire-length of

60

non-critical paths.One example is that Fig.3.6(c) is preferred to Fig.3.6(b) be-

cause the former reserves the timing for critical sink by moving escaping point

on non-critical path to satisfy slew constraints. Constraint (5a) restricts that

the total slew reduction on EP t
1 has to be able to pull slewt1 down below re-

quirement. Constraint (5b) is used to limit only one position chosen for each

escaping point.

3.3.3 Timing-driven Buffer-location-based Tuning

We apply the slew mode buffering to the timing-driven, over-the-block

RST, which satisfies slew constraints with minimum buffering cost. In the

slew mode buffering, each buffer is desired to drive to its limit, implying that

the worst slew rate among all receivers (buffers or sinks) should reach the slew

limit. Similar to the concept of slack in timing calculation, we define slew

margin which means the worst input slew rate among all receivers does not

reach the slew limit. The existence of slew margin is because the driver or

Steiner points in the tree topology may enforce the buffering solution to place

one buffer to shield capacitance from one side.

3.3.3.1 Slew Margin

In a RST, a Steiner point is the joint point for at least two sub-branches

to merge at. Before propagating buffer solutions through the Steiner point,

each sub-branch will have an unbuffered segment connected to the Steiner

point, such as OB,Ob1 in Fig.3.7(a). These segments do not require buffers

61

S�
B�

C�

A,(cri4cal),�

(a)

S�
B�

C�

A,(cri4cal),�

(b)

S�
B�

C�

A,(cri4cal),�

(c)

Figure 3.6: The root is S and three sinks are A,B,C. (a) is the initial timing-
driven RST with slew violations. (b) fixes the slew violations with minimum
wire-length penalty. (c) fixes the slew violations and considers the delay on
critical path.

individually, but as a whole they may exceed the amount one large buffer can

drive after propagating the Steiner point. The buffering tool has to place at

least one buffer right below the Steiner point to shield one remaining segment

to keep this solution legal. The buffering tool will place another buffer above

the Steiner point to drive the unshielded parts along with the wire segment

62

above the Steiner tree (this buffer can be saved if root is above the Steiner

point with ability to drive). For instance, in fig.3.7(b), S is driver and O is a

Steiner point. The segment OB is shielded by inserting a new buffer b2. The

shielding buffer b2 will not drive to its limit as we already know that the length

of driven segment is less than the optimal reach length. Therefore, the stage

below b2 ends up with slew margin. In Fig.3.7(a), the slew limit we adapt

is 70ps, and the stage driven by b2 exhibits slew margin with maximum slew

60ps at sink B. We also notice that the stage driven by driver S also has slew

margin since the maximum slew is 65ps at the input of buffer b1.

S

B A

b1

70ps

O

(a)

S

b2

B A

b1

70ps

65ps
10ps

60ps

O

(b)

Figure 3.7: (a) bottom-up buffer solutions before merge at Steiner node O.
(b) slew margin after propagation through Steiner node O

3.3.3.2 Buffer-location-based Tuning

Because the slew margin implies that the wire can be elongated to some

extent without violating the slew constraints, the elongation of wires allows

the change in topology without additional buffering cost. Per our approach,

63

there exists a way of changing topology to improve timing on critical path by

elongating the wire with slew margin. As the slew margin occurs below the

Steiner point, we extracts the simplified pattern with one Steiner point and

two buffers demonstrated in Fig.3.8(a). Buffer b1 sits right below the Steiner

point for shielding and buffer b2 stays above the Steiner point as in Fig.3.8(a).

We analyze this simplified pattern to generalize the way of changing topology

used in our topology-tuning algorithm. We annotate the stage driven by b1 as

stage1, that driven by b2 as stage2 and that above b2 as stage0. Since stage1

contains slew margin, we can calculate the elongation amount l to use up the

slew margin. We denote the distance between b2 and O as l(b2, O).

Observation 1 If l > l(b2, O) and the input capacitance of buffers is negligible

compared with wire capacitance, all slew constraints will be satisfied if we move

the Steiner point to the location of b2 and shift buffer b1 up to the location right

below the new location of the Steiner.

Fig.3.8(b) shows this buffer-location-based tuning. Under the assumption of

negligible input capacitance of buffer, the load and slew of stage0 are not

changed. The slew of the stage1 is still within constraints owing to l > l(b2, O).

Observation 2 If l > l(b2, O) +Cb/ce and the input capacitance of buffers is

not neglected, we can keep all slew constraints satisfied by moving the Steiner

point to Cb/ce above b2 and shifting buffer b1 up to the location right below the

new location of the Steiner node. (Cb is the input capacitance of buffer b1 and

ce is the unit capacitance for the wire segment above b2)

64

O

b2
b1

(a)

O’ b1

O

b2

(b)

O’�

O�

O’’�

b2�
b1�

Cb

ce

(c)

Figure 3.8: (a) depicts the pattern of slew margin. (b) shows buffer-location-
based tuning if the input capacitance of buffers is negligible. (c) illus-
trates buffer-location-based tuning without neglecting the input capacitance
of buffers.

Fig.3.8(c) illustrates the topology and buffering after the relocation of Steiner

point O to Cb/ce above b2 and buffer shifting. Because the wire-length above

b2 is curtailed by Cb/ce, the downstream capacitance for stage0 is reduced by

Cb/ce ∗ ce accordingly. Buffer b1 is attached to stage0 during buffer-location-

based tuning, including Cb into the downstream capacitance. Therefore the

65

total downstream capacitance remains the same for stage0. The amount of

the downstream capacitance of stage2 increases by Cb/ce ∗ ce as wire O′′O′ is

added below b2. The input capacitance of b1 is removed from stage2 where

the downstream capacitance is reduced by Cb. Hence the total downstream

capacitance below b2 stays the same. Under the assumption l > l(b2, O) +

Cb/ce, the slew of stage1 is still under slew constraints.

Algorithm 3 Buffer-location-based Tuning

Require: Buffered tree T
Ensure: Timing improved buffered tree T
1: Sort sinks in ascending order of slack
2: for each sink si with negative slack do
3: node n = si
4: while n! = s0 do
5: if n is Steiner point then
6: if find buffer buffers b1 right below n and b2 above n then
7: Calculate l based on slew margin
8: if l > l(b2, O) + Cb/ce then
9: Tcopy = T
10: Relocate n to Cb/ce above b2 and reconnect wires
11: Shift buffer b1 up to right below n
12: if WNS(T) <= WNS(Tcopy) then
13: T = Tcopy
14: end if
15: end if
16: end if
17: end if
18: n = Parent(n)
19: end while
20: end for
21: return T

66

3.3.3.3 Algorithms

Our proposed algorithm searches for the pattern which satisfies all the

above assumptions. The algorithm scans the buffered topology in a bottom-

up fashion. Once a pattern analyzed in Section3.3.3.2 is detected, we perform

the above-mentioned buffer-location-based tuning. The search starts from the

worst negative slack sink among the set of sorted negative slack sinks. We eval-

uate the newly generated topology and commit the potential improvements.

The algorithm is described in Algorithm3.

3.4 Experimental Results

We have implemented our algorithm in the C++ programming lan-

guage. The experiments are conducted on an Intel Core 3.0GHz Linux ma-

chine with 32GB memory. We choose Gurobi Optimizer 5.10 as our solver for

the integer linear programming.

RC01-RC12 are benchmarks in our experiments, same as those in [38].

We use two sizes of buffers in our experiment. The output resistances for two

buffers are 450 ohms and 850 ohms, and the input capacitance are 3.8 fF and

1.9 fF respectively. Environment settings for wire and slew are calculated based

on ITRS [3]. We use different resistance and capacitance for both horizontal

and vertical layers. Each Steiner tree is placed on pre-selected layers. The

slew constraint is set as 70 ps. Since the benchmarks do not comprise any

timing information, to test the effectiveness of the slack optimization in our

approach, we set RAT such that about 15% of the sinks are with negative

67

T
ab

le
3.

2:
C

om
p
ar

is
on

s
b

et
w

ee
n

T
O

B
-R

S
T

-1
,

T
O

B
-R

S
T

-2
an

d
T

O
B

-R
S
T

B
en

ch
L

in
[3

8
]

T
O

B
-R

S
T

-1
T

O
B

-R
S

T
-2

T
O

B
-R

S
T

-m
a
rk

s
W

N
S

(p
s)

B
u

ff
W

L
(u

m
)

W
N

S
(p

s)
B

u
ff

W
L

(u
m

)
W

N
S

(p
s)

B
u

ff
W

L
(u

m
)

W
N

S
(p

s)
B

u
ff

W
L

(u
m

)
C

P
U

(s
)

R
C

1
-8

6
3
2

3
0
2
2
0

-8
6

3
2

3
0
2
2
0

-3
4

3
1

2
9
3
7
0

-3
4

3
1

2
9
3
7
0

0
.5

2
R

C
2

-2
0
6

5
8

5
5
7
0
0

-1
5
7

5
4

5
0
8
8
0

0
5
2

4
8
7
5
0

0
5
2

4
8
7
5
0

0
.8

9
R

C
3

-1
6
0

7
7

7
5
7
3
0

-1
4
1

7
1

6
4
2
7
0

-9
2

6
3

5
9
5
3
0

-9
2

6
3

5
9
5
3
0

0
.8

2
R

C
4

-3
4
7

8
0

7
6
3
4
0

0
8
4

7
9
7
2
0

0
7
6

7
2
9
2
0

0
7
6

7
2
9
2
0

0
.8

5
R

C
5

-3
0
5

9
5

9
2
6
5
0

-1
7
7

1
0
2

9
7
4
7
0

-1
0
8

9
6

9
6
5
7
0

-1
0
8

9
6

9
6
5
7
0

1
.0

3
R

C
6

-7
2
2

1
3
4

1
3
0
0
5
5

-7
2
2

1
3
4

1
3
0
0
5
5

-5
2
1

1
2
3

1
1
8
3
4
2

-4
2
3

1
2
3

1
1
9
5
4
5

1
.2

6
R

C
7

-6
0
5

1
7
9

1
8
5
0
6
4

-5
7
4

1
7
4

1
8
2
1
8
8

-2
4
9

1
6
2

1
7
8
5
0
4

-1
6
2

1
6
2

1
7
9
0
5
1

3
.0

8
R

C
8

-4
1
8

1
8
9

1
8
5
3
2
0

-2
2
0

1
9
1

1
9
0
7
7
5

0
1
7
5

1
7
6
9
2
0

0
1
7
5

1
7
6
9
2
0

4
.5

1
R

C
9

-7
8
7

1
8
2

1
7
7
6
0
3

-5
1
7

1
8
6

1
8
0
0
8
9

-1
2
6

1
6
8

1
6
2
8
1
5

0
1
6
8

1
6
7
2
4
0

7
.7

0
R

C
1
0

-4
5
5

2
0
3

2
1
0
0
4
0

-2
7
2

2
0
6

2
1
1
9
1
0

-2
3

1
9
8

2
0
5
6
5
0

0
1
9
8

2
0
9
9
0
8

6
.8

5
R

C
1
1

-1
2
6
8

2
5
9

2
8
2
3
3
8

-1
1
4
2

2
6
5

2
8
7
3
1
2

-1
0
2
7

2
6
2

2
8
4
0
7
7

-9
6
5

2
6
2

2
8
5
2
9
0

1
1
.4

1
R

C
1
2

-1
2
2
1

8
8
5

1
1
0
7
5
3
8

-1
0
0
8

9
1
2

1
1
4
4
6
6
2

-6
8
7

8
8
1

1
1
0
1
5
2
1

-2
4
5

8
8
1

1
1
0
8
3
2
4

2
7
.3

8
A

v
er

a
g
e

-5
4
8

1
1

-4
1
8

1
.0

2
1
.0

2
-2

3
9

0
.9

6
0
.9

7
-1

6
9

0
.9

6
0
.9

8
5
.5

3

68

slack in a buffered minimum spanning tree interconnection.

We will evaluate pre-buffering, over-the-block routing and post-buffering

tuning individually. We use the algorithm in [38] as baseline for our compar-

ison since as far as we know it possesses state-of-the-art performance driven

RST construction with buffering while others (such as [55] and [29]) are not

timing-driven RST. We notate the timing-driven OA-RST constructed with

pre-buffering as TOB-RST-1, the timing-driven RST with both pre-buffering,

over-the-block routing as TOB-RST-2, and the final tree with pre-buffering,

over-the-block routing and post-buffering tuning as TOB-RST.

3.4.1 Effectiveness of Pre-Buffering

First, to solely evaluate pre-buffering, we compare the performance of

TOB-RST-1 with that of OA-RSMT generated by [38] in Table 3.2. Columns

5, 6, 7 in the table list the WNS, buffering cost and total wire-length of TOB-

RST-1, while columns 2 to 4 present those for [38]. Since the required time of

each sink is different in our experiments, the wire-length in column 2 is differ-

ent from that of SD-OARST in [38]. As we can see, WNS is improved for most

test cases, and the average improvement is 130 ps, while the change of buffer-

ing and wire-length is within 2%. The similarity of wire-length (buffering cost)

demonstrates that the different set of critical sinks selected by pre-buffering

benefits the slack with little impact on wire-length (buffering cost). In the ex-

periments, the topologies of most benchmarks converge while only the topology

of RC4 oscillates between two states and the better one of the two states is

69

returned. Also, all of the benchmarks converge or oscillate remarkably fast

within four iterations at most.

3.4.2 Over-the-Block RST

To evaluate the effectiveness of over-the-block routing in TOB-RST-2,

we compare TOB-RST-2 with TOB-RST-1. Columns 5 to 7 in Table 3.2 illus-

trate the WNS, buffering cost and total wire-length of TOB-RST-1 while the

columns 8 to 10 are for TOB-RST-2. As shown in the table, over-the-block

routing can improve WNS for all benchmarks. The average WNS improved

from over-the-block routing is 179 ps with buffering cost and wire-length re-

duced by 6% and 5% respectively.

3.4.3 Post-buffering Topology Tuning

We compare TOB-RST with TOB-RST-2 to evaluate the effectiveness

of post-buffering topology tuning. We only apply buffer-location-based tuning

on critical paths with negative slack. Columns 11 to 13 in Table 3.2 present the

WNS, buffering cost and total wire-length of TOB-RST. TOB-RST acquires

about 70 ps improvements in WNS on average with less than 1% more wire-

length. The buffering cost is the same since the post-buffering topology tuning

does not consume buffering resources. We include total CPU runtime for

TOB-RST algorithm in column 14 of Table 3.2, which contains total runtime

of pre-buffering, over-the-block routing and post-buffering topology tuning.

TOB-RST turns out to be fast since the maximum runtime is within one

70

minute.

71

3.5 Summary

In this chapter, we study a new class of RST problems, i.e., timing-

driven over-the-block rectilinear Steiner minimum tree. We propose an ef-

fective and efficient algorithm which applies pre-buffering, over-the-block op-

timization and post-buffering tuning to optimize the slack on critical paths

while saving wire-length on non-critical ones. Per our proposed approach, the

generated topologies significantly improve WNS for all benchmarks along with

2% less wire-length and 4% less buffering cost than SD-OARST approach. Our

proposed TOB-RST algorithm can be used in routing or post-routing stage to

provide high-quality topologies to help close timing. This is the first work to

solve timing-driven over-the-block RST problem crucial to high performance

IC designs with multiple IP-blocks.

72

Chapter 4

Buffering-Aware Global Router with

Over-the-Block Routing Resources

Optimization

4.1 Introduction

In Chapter 2 and Chapter 3, rectilinear Steiner trees with wire-length

and timing optimization are discussed separately. Tree construction is the

most fundamental and crucial part of global routing problem, and with good

tree construction algorithms, it could provide better routing solutions.

The CEDA-sponsored ISPD Global Routing Contests [4] and [5] attract

attention from dozens of academic and industrial participants. Inspired by the

competitions, many high-performance global routers are published, including

but not limited to, FastRoute 3.0 [56], FastRoute 4.0 [52], BoxRouter 2.0 [17],

NTUgr [15], NTHU-Route [25], NTHU-Route 2.0 [14], GRIP [51], FGR [47],

MaizeRouter [40], Archer [45] and NCTU-GR [23].

Those global routers can be roughly divided into two categories: se-

quential and concurrent algorithms. Sequential works [56], [52], [15], [25],

[14], [40], [45], [23] route the nets based on heuristic rip-up and reroute (RNR)

techniques, which tend to run 2D global routing followed by layer assignment.

73

On the other hand, works such as [51] and [47] directly address the problem

by running a full 3D global routing.

Meanwhile, extensively using IP-blocks to shorten turnaround time

nowadays packs SOC designs with IP blocks or macros. To avoid routing over

those blocks, obstacle-avoiding rectilinear Steiner minimum tree (OA-RSMT)

problem has been actively studied over the years (e.g. [6,30,35,36]). However,

completely avoiding those routing areas will result in significant underutiliza-

tion of high-level metal layers which is the key to save power and close timing.

To tackle that issue, new ideas of intelligently utilizing part of, instead of com-

pletely avoiding, the over-the-block routing resources with buffering awareness

are proposed by [55] and [29] as BOB-RSMT [55] problem, as well as studied

as scenic constraints in [39].

Since the guidance from two ISPD Global Routing Contests are similar,

most published modern routers are aiming at the same problem: minimizing

wire-length and via count in addition to alleviating congestion. However, the

global routing problem has never been touched upon to not only consider

wire-length, vias and overflows, but also properly use over-the-block routing

resources. Studying this new problem is essential as to shorten the design

cycle and improve the chip quality. If over-the-block routing resources are

treated the same as that for out-the-block, long nets over the block will fail

buffering, leading to additional manual work; whereas over-the-block routing

resources are totally avoided, less remaining routing resources will significantly

deteriorate the quality of the routing solution.

74

This chapter studies this new class of global router which tries to intel-

ligently reclaim the “wasted” over-the-IP-block routing resources while mini-

mizing overflows, wire-length and via count as in “basic” routers.

Our key contributions include:

1. We study the over-the-block global routing problem for the first time,

providing global routing solution with overflows, wire-length, via count

and buffering-awareness considered simultaneously.

2. We improve BOB-RSMT algorithm [55] by addressing its two limita-

tions. Then we apply modified BOB-RSMT algorithm for our initial

legal inside-tree generation.

3. For any block with overflow, in each iteration we evolve new topologies

from inside trees confined within that block, with less cost associated

with congestion, wire-length and via count,

4. We conduct Lagrangian-multipliers-based cost function to reflect the

weighted impact from all generated topologies. It turns out topologies

with less cost will have more impact on determining the cost of covered

edges.

5. An RC-constrained A* search is proposed to help incrementally evolve

new topologies with minimum cost while meeting slew constraints.

The rest of chapter is organized as follow. We first introduce basic

concepts of inside trees, slew model and problem formulation in Section 4.2.

75

Our over-the-block routing algorithm will be presented in Section 4.3, which

includes three subsections. Section 4.3.1 discusses how to modify BOB-RSMT

to generate initial legal inside topologies. Section 4.3.2 illustrates the process

of incrementally evolving new topologies according to Lagrangian-multiplier-

based cost function and RC-constrained A* search. Experimental results are

shown and analyzed in Section 4.4, followed by summary in Section 4.5.

4.2 Preliminaries

4.2.1 Basic Over-the-block Concepts

In global routing, the chip is partitioned into rectangular global routing

bins where a 3D grid-graph G = (V,E) is used to model the multi-layer design.

As depicted in Fig. 4.1(a) and Fig. 4.1(b), each global routing bin is a vertex

v ∈ V . The boundary between two adjacent global routing bins on the same

layer is modeled as an edge e ∈ E with a capacity ce reflecting the maximum

routing resources between the cells.

After placement, the chip is packed with IP blocks or macros which

occupy the low metal layers and forbid any buffer-insertion. In our formulation,

we set B = {b1, b2, . . . , bm} as the set of blocks. Each block is modeled by a

box in the 3D grid-graph G as the shadowed part in Fig. 4.1.

A set of multi-terminal nets N = {n1, n2, . . . , nk} is required to be

connected in the 3D graph G. The tree topology of each net ni will enter and

leave the blocks in the graph, which divides the whole tree topology into a set

of outside trees TOi and a set of inside trees TIi.

76

Block	

pins	
Net	

(a)

Via	

Ver'cal	 Edge	

Horizontal	 Edge	 Block	

Net	

(b)

Figure 4.1: 3D grid-graph G of three metal layers with each one divided into
3*3 global routing bins

For any inside tree t, the leaf nodes of t are on the boundaries of a

block. Among all leaf nodes, one must be driving the signal and others are

receiving. The leaf nodes that receive signals are escaping points, and the set

77

of escaping points for t is EP t = {EP t
1, EP

t
2, . . . , EP

t
|EP t|}.

We use the same model as in BOB-RSMT to check if any inside tree

satisfies slew constraints. In our formulation, every inside tree is forced to be

legal under this requirement to ensure signal integrity and buffering.

4.2.2 Problem Formulation

Matrices include wire-length, via cost and total overflow (TOF) are

used to evaluate our routing solution. TOF is preferred to be zero since

slightly overflowed global routing can still make detail routing considerably

more difficult.

Our proposed buffering-aware global router will connect each net in N

with the target of minimizing total wire-length in addition to reducing TOF.

Over-the-block trees have to satisfy the slew constraints which ensure that

every topology has feasible buffering solutions.

4.3 BOB-Router Algorithms

The overall flow of BOB-Router approach is depicted in Fig.4.2. The

procedures in the “Main loop” frame consists of routing algorithm for inside

trees while the rest part is composed of initial legal RSMT generation along

with routing for outside trees.

In the BOB-Router problem formulation, any inside tree has to satisfy

slew constraints to accommodate buffering. Due to this extra requirement,

78

	 	 	 	 	 	 	 	 	 -‐	 Legalized	 topology:	
	 	 	 	 	 	 	 	 buffering-‐aware;	 sa8sfy	 slew	 constraints	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 -‐	 Each	 topology-‐pool	 has	 1	 legal	 topology	

For	 each	 net	
	
	

Generate	
	 ini8al	 RSMT

Nets	 N	
Blocks	 B

Op8mized	 buffering-‐aware	 	
rou8ng	 solu8on

	 	 	 	 	 	 	 	 	 -‐	 Relax	 the	 ILP	 to	 LP	
	 	 	 	 	 	 	 	 -‐	 Solve	 the	 dual	 of	 LP	 to	 get	
	 	 	 	 	 	 	 	 sensi8vi8es	 (prices)	 of	 edge	 capaci8es	
	 	 	 	 	 	 	 	 -‐	 Select	 substandard	 inside	 topologies	

	
For	 each	 block	

	
	

Legalize	 inside	 trees

Any	 block	 leP?

	 	 	 	 	 	 	 	 	 -‐	 Derive	 new	 topologies	 by:	
	 	 	 	 	 	 	 	 1)	 Prices	 of	 edges	
	 	 	 	 	 	 	 	 2)	 Impact	 on	 outside	 trees	
	 	 	 	 	 	 	 	 3)	 RC	 constrained	 A*	 search	

No	 overflow	 or	 	
Criteria	 sa8sfied?

For	 each	 block	
	
	

Calculate	 the	 prices	 	
of	 edges

For	 each	 selected	 	
topology	 in	 the	 block	

	
 Evolve	 new	 topologies	

	
For	 each	 block	

	
	

Solve	 ILP

yes no

no yes

	
For	 each	 net	

	
	

Route	 outside	 trees	

Main	 loop	

Figure 4.2: Overall flow of BOB-Router

routing for inside trees becomes more challenging than that for outside trees.

Our BOB-Router will route inside trees ahead of outside trees, as we algorith-

mically emphasize on inside-tree routing which prefers topologies with least

downside or even betterment on the cost of outside-tree routing.

To avoid simultaneously coping with wire-length, via count, overflow

and slew constraints in inside-tree-routing problem, we decouple the slew con-

straints by legalizing all topologies first and making sure every following step

79

during the entire inside-tree routing will not violate the slew constraints. This

statements could guarantee that the resulted inside trees are free from slew

violation. The decoupling process includes two steps. First, since the initial

inside trees could violate slew constraints, we apply an EP-movement-based

legalization procedure modified from BOB-RSMT to legalize any illegal in-

side topology with minimum wire-length penalty. Second, the “evolve new

topologies” step (shown in Fig.4.2) is the only step, after EP-movement-based

legalization, that will change tree topologies. During this “evolve new topolo-

gies” step, in the inside-tree routing, we use an RC-constrained A* search to

ensure that each operation during new topology evolution will not break the

slew constraints.

4.3.1 Generate Legal Initial Topologies

We apply EP-movement-based legalization which is modified from BOB-

RSMT algorithm to generate legal initial inside trees. BOB-RSMT approach

efficiently generates a topology satisfying slew constraints, however, it has two

limitations. First, movement of the driver for an inside tree is not considered.

Second, when two branches at the opposite end of the driver move simultane-

ously, slew improvement may be underestimated.

To address those two limitations, we keep the optimization primitives

but replace ILP with a greedy approach. Instead of evaluating each possible

point and applying ILP to selection, we assess every single-unit move from

all EPs and the driver, and select the best move. For example Fig.4.3(a)

80

D

85.14

EP1

74.16 EP2

(a)

54.38 EP2

D

65.37

EP1

(b)

D

73.06

EP1

66.47 EP2

(c)

62.07 EP2

D

81.85

EP1

(d)

Figure 4.3: Best move selection (a) shows an illegal inside tree. (b), (c) and
(d) exhibit and evaluate the best single-unit move from the driver, EP1 and
EP2 respectively.

presents an illegal inside tree, while Fig.4.3(b), Fig.4.3(c) and Fig.4.3(d) give

the resulted topologies assuming the best moves from the driver, EP1 and EP2

are selected respectively. In order to directly show amount of slew improvement

in Fig.4.3, we set one for unit R and unit C, along with zero for buffer-output

resistance, buffer-input capacitance and output slew in our slew model. As

81

we can see, the best slew improvement occurs in Fig.4.3(b), where the driver

reduces worst slew by 19.88 slew units with single-unit move. However, in

BOB-RSMT, this solution cannot be found since the move of the driver is not

considered.

The other benefit from proposed BOB-RSMT-m is that it accurately

catches the slew difference when multiple branches at the opposite end of the

driver moving simultaneously. In this rare case, BOB-RSMT approach might

disregard slew improvement from antenna clearance and overestimate slew

improvement from branch sliding. As is shown in Fig.4.4, moving EP1 to the

right by one unit (Fig.4.4(b)) can improve the worst slew for 9.89 slew units

while moving EP2 in the same way (Fig.4.4(c)) will improve the worst slew for

3.30 slew units. If the ILP in BOB-RSMT is applied to choose both slides, the

total improvement will be summed up to 13.19 slew units in an incorrect way.

The actual improvement in Fig.4.4(e) is 11.98 slew units which consists of the

slew improvement from moving EP1 to the right by one unit and removing of

antenna segment circled in 4.4(d).

4.3.2 Evolve More Legal Congestion-Aware Min-Cost Topologies

The initial-inside-tree legalization guarantees one legalized topology for

each inside tree in any block. Placing these legal topologies simultaneously

within each associated block could cause congestion problem. To resolve this

issue, our approach uses the generated legalized topologies as seeds, giving

birth to more legal congestion-aware topologies with less cost than current

82

129.08

D

EP3 EP2

EP1 EP4

(a)

119.19

D

EP3 EP2

EP1 EP4

(b)

125.78

D

EP3 EP2

EP1 EP4

(c)

119.19

D

EP3 EP2

EP1 EP4

(d)

D

EP3 EP2

EP1 EP4 107.10

(e)

Figure 4.4: Slew calculation method in BOB-RSMT and BOB-RSMT-m. (a)
shows an illegal inside tree. (b), (c) and (d) exhibit and evaluate the best
single-unit move from the driver, EP1 and EP2 respectively.

83

topologies. Here, less cost means that the new generated topologies will have

less combination of overflow, wire-length and vias. Finally, one topology will

be chosen for each inside tree to achieve least overflow and cost.

Before introducing our method of evolving new topologies, we empha-

size that we keep our topologies in Steiner tree structures instead of decom-

posing them into 2-pin nets in that (1) Steiner tree structures have more

flexibility with unfixed Steiner points while 2-pin nets have to connect speci-

fied end points; (2) Steiner tree structure allows for tracking non-linear slew

calculation over the entire tree, which is improbable for decomposed 2-pin

nets. In normal global routing problem, it is non-trivial regarding how to

come up with congestion-aware Steiner tree topologies with minimum cost.

However, the Steiner tree topologies we demand for our inside trees have to

satisfy additional slew constraints.

How to come up with congestion-aware Steiner tree topologies with

minimum cost is always challenging in the global routing problem. More than

that, the Steiner tree topologies we demand for our inside trees have to satisfy

slew constraints. To solve all these problems, the flow of our proposed approach

is:

• Assuming we have a topology pool for each inside tree, we use an ILP

(same as [51]) to describe the topology-selection problem.

• We relax the ILP to a LP formulation. From the dual function of the

LP, Lagrange multipliers related with the edge capacity constraints are

84

calculated to price the cost of each edge. The edge price will help evolve

new topologies for selected topologies from high-congested areas to low-

congested ones.

• We keep evolving new topologies within each round until certain criteria

are met. In each round, we control the number of newly evolved topolo-

gies by a three-level topology-selection approach. Only topologies on

current level will be evolved with new topologies. We advance to next

level if current level stops optimizing our objective.

• An RC-constrained A* search is used to facilitate new topology genera-

tion without violating slew constraints, as well as minimize the cost of

new topology.

• An ILP will be used to choose one topology among the topology pool

for each inside tree to gain least overflow and cost.

Next, this chapter will talk about each step respectively.

Formulations First, we build an ILP formulation to describe the routing

problem in each block. The ILP formulation contains no slew constraints, as

85

every topology presented in the ILP formulation is legal.

min.
n∑
i=1

∑
t∈ζi

XitWit +
n∑
i=1

MSi (4)

s.t. Si +
n∑
i=1

Xij = 1 (4a)

n∑
i=1

QiXi <= C (4b)

Xit ∈ {0, 1} ∀i ∈ {1, 2, . . . , n} ∀t ∈ ζi

Si >= 0 ∀i ∈ {1, 2, . . . , n}

TI = {T1, T2, . . . , Tn} is the set of inside trees within block b, and ζi

in the formulation is the collection of all topologies for Ti. For each Steiner

tree topology t ∈ ζi, parameter Wit represents the overall cost of the topology,

including both wire-length and vias. Variable Si denotes the routability of Ti;

if Si is positive, the inside tree Ti cannot be routed with available Steiner tree

topologies. (Qi)et indicates whether topology t contains edge e.
∑n
i=1QiXi

contains the amount of routing resources demanded on every edge in b, which

is required to maintain under the edge capacity vector C.

In order to minimize overflow, MSi is used in the objective function

to penalize any unroutable inside tree Ti. Parameter M is a predefined large

number which is greater than the wire-length of any possible Steiner tree in

the chip. Solving ILP formulation (4) guarantees no overflow and minimizes

total cost with maximum number of routed inside trees.

The ILP formulation has the following two purposes in our approach:

i) to select one topology for each inside tree to check if overflow-free solution

86

could be achieved at the end of each iteration, ii) the dual problem of relaxed

LP could provide cost of each edge.

Pricing the Edges Before solving the ILP and fixing the topologies in cur-

rent iteration, more Steiner tree topologies, instead of the initial one solely, are

wanted to effectuate least TOF and cost routing solution. We use sensitivity

analysis on the edge capacity constraints to price each edge, which provides a

guidance for the evolution of new Steiner tree topologies from current topolo-

gies.

Different edges on different layers have various values in the routing

since some of them are in congested area while some are not. We calculate

price to describe the potential overflow on each edge. To obtain the prices

for edges, we first relax the ILP formulation (4) into an LP formulation by

relaxing binary variables {Xij}.

The relaxation on binary variables {Xij} splits the constraint of choos-

ing only one topology for each inside tree into a set of fractional numbers

indicating several potentially preferred topologies. A topology avoiding con-

gested area and costing less wire-length and vias will be preferred and assigned

positive Xij which depends on the quality of the topology.

The price of each edge comes from the dual of this LP formulation

exhibited in (6). The variable λi is the Lagrange multiplier associated with

relaxed topology-selection constraint (4a) for Ti and ρe is the Lagrange mul-

tiplier associated with relaxed capacity constraint (4b) for edge e. Accord-

87

ing to complementary slackness theorem, for optimal primal variables X∗i , i ∈

{1, 2, . . . , n} and optimal dual variable ρ∗e, there exists ρ∗e∗(
∑n
i=1(Qi)eX

∗
i −ce) =

0. When the ρ∗e is positive,
∑n
i=1(Qi)eX

∗
i − ce = 0 will be true, which means

corresponding edge e has no “leftovers” in capacity. If the primal optimal so-

lution exists, according to strong duality, the optimal dual variable ρ∗e reflects

how much improvement on the objective value we can make if the capacity

of edge e increases by one. Therefore, we use the optimal dual variable ρ∗e as

the price for edge e. Compared with history-based cost in other routers, our

price is more comprehensive because it considers all topologies we have and

weights them according to their worth optimally. On the other hand, history-

based cost may only consider certain recent topologies and do not have optimal

way to weight these topologies. Our method will automatically weight each

topology according to their quality which is represented by Xij.

max.
n∑
i=1

(−λi) +
∑
e≺b

(−ρe)ce (6)

s.t. λi +
∑
e≺t

ρe +Wit >= 0 (6a)

λi >= 0 ∀i ∈ {1, 2, . . . , n}

ρe >= 0 ∀e ≺ b

Three-level Topology Selection If we evolve new topologies for each exist-

ing topology, the size of our topology pools will dramatically increase without

corresponding speed of TOF mitigation. Therefore, we control the number of

new evolved topologies in each iteration by only considering the most costly

88

Algorithm 4 FindReroutes

Require: Topology pool ζ, level, formulation variables S,O, P
Ensure: Selected topologies R
1: R = {}
2: if level = Level-one then
3: for each Si ∈ S do
4: if Si > 0 then
5: R = R

⋃
ζi

6: end if
7: end for
8: else if level = Level-two then
9: for each edge e in the block do
10: if O(e) < 0 then
11: for each topology t ∈ ζ do
12: if t contains e then
13: R = R + t
14: end if
15: end for
16: end if
17: end for
18: else if level = Level-three then
19: for each edge e in the block do
20: if P (e) < 0 then
21: for each topology t ∈ ζ do
22: if t contains e then
23: R = R + t
24: end if
25: end for
26: end if
27: end for
28: end if
29: return R

topologies.

We use a dynamic three-level topology-selection approach to determine

89

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f S
el

ec
te

d
To

po
lo

gi
es

O
bj

ec
tiv

e
Va

lu
e

Iterations

LV-1 Value LV-2 Value LV-3 Value

LV-1 Number LV-2 Number LV-3 Number

Level-two Level-three Level-one

Figure 4.5: Progression of objective value and number of selected “to-be-
evolved” topologies over optimization rounds for one block on ADAPTEC1

certain topologies for evolution in each iteration as depicted in Algorithm 4.

Only if current stage fails to further improve TOF, will next stage be launched.

The following level selects topologies in a more broad way which enables further

TOF reduction.

• Level-one: After we find all inside trees with positive Si, all topologies

associated with these unroutable inside trees will be evolved.

90

• Level-two: If evolution of topologies from level-one is unable to keep op-

timizing the LP formulation, we assemble an inside-tree-routing solution

by selecting the topology with largest Xij for each inside tree. Then

the overflow of each edge could be counted. In addition to the topolo-

gies from level-one, any topology containing overflowed edge(s) will be

added.

• Level-three: If the topology evolution in level-two fails to keep optimizing

the LP formulation, we evolve topologies covering edges with positive

price in addition.

We gradually loosen our requirement for topology evolution, pushing

the optimization with control over the number of processed topologies. Fig.4.5

evaluates the three-level topology-selection during optimization iterations for

one single block on ADAPTEC1. It shows that the first iterations in level-

one increases the size of topologies slowly. As optimization halts during any

iteration, next level will be launched to reduce TOF.

RC-constrained A* Search After pricing and topology selection in every

optimization iteration, we evolve new topologies with slew-aware rip-up and

reroute. The pricey part will be ripped up and an RC-constrained A* search

algorithm is applied to reroute disconnected parts without violating the slew

constraints.

For any selected topology t, we find all wires with non-zero price, and

91

sort them by their prices in descending order. After sorting, we sequentially

rip-up and reroute each wire. For one wire w on t, signaling from U to V , we

remove w from t first. Then we calculate RCp and Cp for each point p ∈ t\w.

RCp and Cp are the maximum allowed RC and C connected to p without

violation to the slew constraints. The maximum possible RC and C for all

points on t\w will be:

RCmax = max{RCp, p ∈ {t\w}} (7)

Cmax = max{Cp, p ∈ {t\w}} (8)

Afterwards, an RC-constrained A* search is applied to reconnect V

to the remaining part t\w. We will only accept connections to point p with

RC and C less than RCp and Cp respectively. During RC-constrained A*

search, any search path with RC exceeding RCmax or C exceeding Cmax will

be pruned away. The cost of each edge e in our A* search is the price of e plus

one. The heuristic cost function we use is the 3-D Manhattan distance to the

nearest point in t\w, which clearly is a lower bound. This RC-constrained A*

search guarantees least cost solution under slew constraints.

Net Ordering In traditional sequential routing, such as [14] and [15], net

ordering plays important role because it will tremendously impact the quality

of final routing solution. As shown in Fig.4.3.2, different net ordering leads to

different overflow and wire-length.

92

1

2

3

(a)

1

3

2

(b)

2

3

1

(c)

Figure 4.6: Impact of net ordering: (a) has overflows in shade area by sequenc-
ing orange, purple, green net. (b) has a different ordering of orange, green,
purple but with detour of green and purple nets. (c) has the no overflow and
detour by ordering green, orange, purple.

However, in concurrent algorithms, such as in [51] and [47], net or-

dering is not considered because all topologies are generated by solving one

formulation. Our algorithm is not effected by net ordering in each iteration

either. In each iteration, our algorithm pre-computes the edge prices which

remains the same during the new topologies generation. Hence, each new

93

topology generated during the iteration is independent with net sequence in

the current iteration.

4.3.3 Outside-tree Routing

After topologies of inside trees are fixed, capacities of all edges within

blocks are set to zero before blockage-avoiding outside-tree routing, which will

be solved by existing academic routers. Notice that even the capacities of all

edges within blocks are set to zero, the existing router could still use them,

this can be prevented by putting extra heavy penalty on over-the-block area.

4.4 Experimental Results

Table 4.1: Slew distribution of inside trees

Benchmarks # nets # inside trees max slew average slew
adaptec1 219794 57852 1713.8 36.9
adaptec2 260159 34769 494.4 28.5
adaptec3 466295 105137 23785.5 141.6
adaptec4 515304 86199 3986.7 65.8
bigblue1 282974 18763 380.1 22.1
bigblue2 576816 117259 69.9 4.0
bigblue3 1122340 79659 2025.1 22.1
bigblue4 2228930 234692 631.1 5.0

BOB-Router has been implemented in the C++ programming lan-

guage. All experiments are conducted on an Intel Core 3.0GHz Linux machine

with 16GB memory. We use 3D global routing benchmarks adaptec1 ∼ 4 and

bigblue1 ∼ 4 from ISPD 2007 and 2008 Global Routing Contests for our ex-

94

T
ab

le
4.

2:
C

om
p
ar

is
on

s
b

et
w

ee
n

ou
r

p
ro

p
os

ed
B

O
B

-R
ou

te
r

an
d

O
A

-R
ou

te
r

B
en

ch
o
v
er

-t
h

e-
b

lo
ck

o
u

ts
id

e-
th

e-
b

lo
ck

o
v
er

a
ll

O
A

-R
o
u

te
r

-m
a
rk

s
W

L
V

ia
s

T
O

F
cp

u
(s

)
W

L
V

ia
s

T
O

F
cp

u
(s

)
W

L
V

ia
s

T
O

F
cp

u
(s

)
W

L
V

ia
s

T
O

F
cp

u
(s

)
a
d

a
p

te
c1

4
3
1
8
8
6

1
3
8
2
0
7

0
5
6
9
0

2
7
3
3
8
3
7

1
3
4
4
2
1
8

1
9
9
5
6
5

1
4
2
1

3
1
6
5
7
2
3

1
4
8
2
4
2
5

1
9
9
5
6
5

7
1
1
1

3
3
1
7
3
2
0

1
7
2
4
7
6
5

4
5
0
3
0
0

3
4
6
3

a
d

a
p

te
c2

2
6
1
9
5
7

5
7
8
3
8

2
6
5

4
5
2
3

2
6
1
5
0
6
8

1
2
5
8
1
3
1

2
8
8
4
7

1
0
3
8

2
8
7
7
0
2
5

1
3
1
5
9
6
9

2
9
1
1
2

5
5
6
1

3
3
7
1
4
5
3

1
8
3
6
8
5
3

1
0
7
4
9
8

4
5
7
7

a
d

a
p

te
c3

1
2
3
5
7
2
1

1
5
4
1
2
3

1
3
3
3

1
0
0
2
1
0

8
3
5
5
0
4
9

2
8
4
9
0
4
8

6
3
9
0
4
9

1
6
5
2
7

9
5
9
0
7
7
0

3
0
0
3
1
7
1

6
4
0
3
8
2

1
1
6
7
3
7

1
0
1
0
0
6
1
3

3
7
4
0
7
2
6

1
2
7
6
7
7
9

1
8
8
4
5

a
d

a
p

te
c4

8
3
6
8
4
0

1
0
5
9
5
3

0
3
2
7
1
8

8
8
3
1
3
7
0

2
5
8
0
4
8
4

3
2
9
2
2
1

1
3
2
0
2

9
6
6
8
2
1
0

2
6
8
6
4
3
7

3
2
9
2
2
1

4
5
9
2
0

1
1
3
2
6
8
7
1

3
4
9
8
2
6
2

4
3
8
9
5
4

1
3
4
5
5

b
ig

b
lu

e1
9
8
0
4
4

4
2
0
9
0

0
5
5

3
2
4
8
4
9
8

1
3
6
7
3
5
0

2
2
6
1
2

1
6
3
7

3
3
4
6
5
4
2

1
4
0
9
4
4
0

2
2
6
1
2

1
6
9
2

3
6
3
7
2
4
9

1
9
6
7
5
6
8

7
0
8
5
3

2
2
3
2

b
ig

b
lu

e2
2
5
8
6
9
9

3
5
0
3
8
5

0
5
2
0

3
7
3
0
4
9
7

2
9
8
5
3
6
5

3
7
9
5

1
1
3
1

3
9
8
9
1
9
6

3
3
3
5
7
5
0

3
7
9
5

1
6
5
1

4
7
9
9
7
7
3

3
8
0
0
3
9
8

5
1
4
5

1
3
4
6

b
ig

b
lu

e3
5
2
2
8
4
1

1
4
1
8
8
5

0
2
1
1
9

7
8
0
0
6
9
9

3
8
4
7
1
3
9

1
5
1
4
8

2
6
2
1

8
3
2
3
5
4
0

3
9
8
9
0
2
4

1
5
1
4
8

4
7
4
0

8
9
6
1
8
6
3

5
2
6
7
4
7
0

8
3
4
1
6

8
6
0
3

b
ig

b
lu

e4
5
7
5
6
3
9

7
3
1
8
3
6

0
3
0
3

9
3
5
8
5
2
1

7
4
8
9
9
6
8

5
2
6
6

2
2
6
6

9
9
3
4
1
6
0

8
2
2
1
8
0
4

5
2
6
6

2
5
6
9

1
2
3
6
3
1
6
7

1
0
4
4
4
3
9
8

2
7
9
3
9

5
7
8
4

a
v
er

a
g
e

0
.0

8
0
.0

6
0
.0

0
0
.5

1
0
.9

2
0
.9

4
1
.0

0
0
.4

9
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.1

3
1
.2

8
3
.0

7
1
.0

0

95

periments. Benchmarks from global routing contests are not annotated with

blockage information explicitly. As far as we know, the block porosity informa-

tion in the global routing benchmarks are derived from fixed macros in certain

placement benchmarks. Owing to abutting blocks, it is arduous to directly

retrieve geometric information of porosity areas from the routing benchmarks.

Instead, we find the corresponding placement benchmarks, from which we are

able to extract fixed macro geometric information. Besides, we remove nets

containing pins inside blocks, which is beyond our formulation.

The wire resistance and capacitance for each metal layer are derived

from ITRS [3], and we use 70ps as our maximal allowed slew.

We first evaluate the slew violation for each benchmark. Table 4.1

calibrates the slew numbers for all inside trees after RSMT topologies are

generated by FLUTE and applied with a simple-layer-assignment heuristic.

The heuristic will assign all inside trees on the lowest allowable pair of layers

first. Then for all inside trees with slew violation, we will bring them to higher

pair of metal layers according to extents of slew violations. From Table 4.1, we

can see that some benchmarks with no slew problem initially, such as bigblue2,

may encounter slew problem because it is possible that most of inside trees

have been promoted to the highest pair of metal layers.

Since we eliminate all slew violation during initialization and keep slew

under constraints, our final routing solution will not suffer from any slew prob-

lem. In Fig.4.7, we compare the slew distribution of inside trees from Table 4.1

with final routing solution for benchmark adpatec1. Initially, we observe the

96

0

5000

10000

15000

20000

25000

30000

of
 in

si
de

 tr
ee

s

Slew (ps)

Before legalization After legalization

Figure 4.7: Slew distribution of all inside trees in adpatec1 initially and finally.
Each y coordinates number of inside trees with slew in the slot between current
and previous x

existence of inside trees with worst slew up to 1714ps. But after the bench-

mark is processed by BOB-Router, no inside tree has slew more than 70ps

which is the maximum allowed slew rate in our slew constraints. The number

of inside trees with slew between 60ps to 70ps is dramatically increased as

most nets with slew violations originally are legalized to be just under 70ps.

Fig.4.8 analyzes the over-the-block overflow before EP-movement-based

97

(a) (b)

(c)

Figure 4.8: Over-the-block overflow analysis of a) before EP-movement-based
legalization, b) after EP-movement-based legalization but before evolving new
topologies c) after evolving new topologies and selecting new topology for each
inside tree

legalization; after EP-movement-based legalization but before evolving new

topologies; after evolving new topologies and selecting new topology for each

inside tree, respectively. It shows that after EP-movement-based legalization,

more overflows move to the edge of the blocks, which means some part of

over-the-block routing moves out to help slew violation. Also, overflow slightly

98

improved after applying EP-movement-based legalization which is not designed

to decrease overflow. 4.8(c) does not have overflow violation at all. This is

because evolving new topologies and selecting the best topology for each tree

eliminate the overflow violation completely.

If one router is not able to properly use the over-the-block routing

resources, the safest way without breaking slew constraints thus involving

manual work is to avoid the blocks completely by setting over-the-block routing

capacity as zero (or large penalty). We compare our proposed BOB-Router

with an obstacle-avoiding router (OA-Router) in terms of wire-length, via

count and TOF. We modify NTHU-Router 2.0 [14] to be the OA-Router and

the solver for outside-the-block routing for its good performance. The results

are shown in Table 4.2. From the last row in the table, we can see that

BOB-Router pushes about 8% of wire-length and 6% via count to the over-

the-block part on average. The TOF of over-the-block routing is zero for

most benchmarks. By using over-the-block routing resources, BOB-Router

achieves about only 33% TOF, 88% wire-length and 78% via count of the

OA-Router. We think more decrease of via count than wire-length is partially

because BOB-Router performs full 3D routing for over-the-block part without

layer assignment. Averagely, runtime of BOB-Router is same with OA-Router.

The runtime of initial tree generation and legalization is negligible compared

with solving LP and A* search. Solving LP and A* search divide the total

runtime in an approximately even way. However, we notice that BOB-Router

spends more time on bigger and tougher benchmarks, such as adaptec3. This

99

is because adaptec3 has non-zero overflow which requires maximum number

of iterations and topologies are generated.

4.5 Summary

In the past few years, traditional global routing has been extensively

studied, which in turn makes it hard even to improve performance by 1%. We

propose a new formulation of global routing problem from a different perspec-

tive. Solving this new BOB-Routing problem could keep shortening design

cycle and improving routing quality. With our proposed approach, we can

generate slew-violation-free solution with 66% less TOF, 12% less wire-length

and 22% less via count compared with the obstacle-avoiding approach.

To further explore this problem, it is worthwhile to fix the timing-

critical nets by TOB-RSMT first, then route the rest nets for best overflow

and wire-length.

100

Chapter 5

Conclusion

With technology keeps scaling into nanometer, interconnection opti-

mization in VLSI design becomes more and more important yet challenging.

Due to its importance, interconnection optimization, in particular global rout-

ing, has been studied for decades with many publications. Especially inspired

by CEDA-sponsored ISPD Global Routing Contests, more related works have

been done after 2008 as shown in Fig. 5.1. But, by looking into industrial

VLSI design and interconnection, one important yet never been well-studied

problem arouses excites and interests us. It is a huge waste as the over-the-

block routing resources are not fully used currently. Lack of previous efficient

methods will either cost huge manual work to use over-the-block routing re-

sources or waste the routing resources which degrades the routing quality. In

this dissertation, it studies this neglected yet important problem and provides

a full set of solution for it.

In Chapter 2, the BOB-RSMT construction problem, as a fundamental

part of global routing, has been studied. As we know, it is the first time slew

values at the boundary of IP-blocks are selected as constraints for the RSMT

construction. An effective and efficient algorithm which can reclaim the over-

101

0	

10	

20	

30	

40	

50	

60	

1998	 2000	 2002	 2004	 2006	 2008	 2010	 2012	 2014	

Year

Number	 of	 Related	 Works	 Every	 Year	

Count	

Figure 5.1: Number of routing related works which contains “VLSI routing”
or “global routing” in title

the-IP-block routing resources and is beneficial to buffering is proposed to solve

this new problem. With proposed approach, outside-the-block wire length and

buffer cost are largely reduced and the constructed tree is buffering-friendly.

This BOB-RSMT algorithm can be used in both pre-routing and global routing

stage to provide high quality routing solutions.

More than wire-length-driven BOB-RSMT, timing-driven TOB-RSMT

is studied in Chapter 3 for critical nets timing and wire-length co-optimization.

The proposed timing-driven, over-the-block RST construction algorithm uti-

lizes over-the-block routing tracks to reduce delay to critical sinks and shorten

wire-length to non-critical sinks. It solves three common problems in timing-

102

driven RST construction: 1) accurately calculate criticality with buffered in-

terconnect topology 2) timing-driven and over-the-block topology which saves

wire-length on non-critical nets and timing on critical nets, and 3) post-

buffering topology tuning further improves timing TOB-RST could provide

topologies for critical nets during routing or ECO stages.

As RSMT algorithm providing topology for one single net, it consists a

basis for the buffering-aware over-the-block routing problem. If one router is

not able to properly use the over-the-block routing resources, the safest way

without breaking slew constraints thus involving manual work is to avoid the

blocks completely. As we know, previous routers never consider how to use

over-the-block routing resources, not even consider obstacle-avoiding routing.

BOB-Router is proposed to solve buffering-aware and over-the-block routing

problem. It incrementally evolves new topologies for selected nets with min-

imum cost while meeting slew constraints. BOB-Router provides a solution

with overflows, wire-length, via count and buffering-awareness optimized si-

multaneously.

Throughout these studies, a set of interconnection optimization algo-

rithms are provided to optimize wire-length, via, timing, buffering cost to-

gether with over-the-block consideration. The future challenges of related

works can be 1) using more accurate slew and delay models 2) considering crit-

ical nets during routing, and 3) improve the algorithm such that less runtime

for routing problem. As interconnection optimization becomes more crucial

and challenging with technology scaling, this dissertation provides a solution

103

for this practical and challenging problem.

104

Bibliography

[1] Gurobi Optimizer 4.52. http://www.gurobi.com/.

[2] http://en.wikipedia.org/wiki/Knapsack problem.

[3] http://public.itrs.net/reports.html.

[4] ISPD 2007 Global Routing Contest and Benchmark Suite. http://

archive.sigda.org/ispd2007/contest.html.

[5] ISPD 2008 Global Routing Contest and Benchmark Suite. http://

archive.sigda.org/ispd2008/contests/ispd08rc.html.

[6] G. Ajwani, C. Chu, and W. Mak. FOARS: FLUTE Based Obstacle-

Avoiding Rectilinear Steiner Tree Construction. In Proc. ISPD, pages

194–204, 2010.

[7] C. Alpert, Jiang Hu, Sachin S. Sapatnekar, and Paul Villarrubia. A

practical methodology for early buffer and wire resource allocation. In

Proceedings of DAC, pages 189–194, 2001.

[8] C. J. Alpert, G. Gandham, J. Hu, J.L. Neves, S.T. Quay, and S.S. Sap-

atnekar. Steiner tree optimization for buffers, blockages. and bays. In

Proc. IEEE Int. Symp. on Circuits and Systems, pages 556–562, 2001.

105

http://archive.sigda.org/ispd2007/contest.html
http://archive.sigda.org/ispd2007/contest.html
http://archive.sigda.org/ispd2008/contests/ispd08rc.html
http://archive.sigda.org/ispd2008/contests/ispd08rc.html

[9] C. J. Alpert, M. Hrkic, J. Hu, A. B. Kahng, J. Lillis, B. Liu, S. T. Quay,

S. S. Sapatnekar, A. J. Sullivan, and P. Villarrubia. Buffered Steiner

Trees for Difficult Instances. In Proc. ISPD, pages 4–9, 2001.

[10] C.J. Alpert, G. Gandham, M. Hrkic, J. Hu, S. T. Quay, and C. N.

Sze. Porosity aware buffered steiner tree construction. IEEE TCAD,

23(4):517–526, 2003.

[11] C.J. Alpert, M. Hrkic, J. Hu, and S. T. Quay. Fast and flexible buffer

trees that navigate the physical layout environment. In Proc. DAC,

pages 24–29, 2004.

[12] H. B. Bakoglu. Circuits, Interconnections, and Packaging for VLSI.

Addison-Wesley, 1990.

[13] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge

University Press, 2004.

[14] Y. Chang, Y. Lee, J. Gao, W. Wu, and T. Wang. NTHU-Route 2.0:

A Robust Global Router for Modern Designs. In IEEE TCAD, volume

29(12), pages 1931–1944, 2010.

[15] H. Chen, C. Hsu, and Y. Chang. High-Performance Global Routing with

Fast Overflow Reduction. In Proc. ASPDAC, pages 582–587, 2009.

[16] Chung-Kuan Cheng, Ting-Ting Y. Lin, and Ching-Yen Ho. New per-

formance driven routing techniques with explicit area/delay tradeoff and

simultaneous wire sizing. In Proc. DAC, pages 395–400, 1996.

106

[17] M. Cho, K. Lu, K. Yuan, and D. Z. Pan. BoxRouter 2.0: Architecture and

implementation of a hybrid and robust global router. In Proc. ICCAD,

pages 503–508, 2007.

[18] C. Chu and Y. Wong. FLUTE: Fast Loopup Table Based Rectilin-

ear Steiner Minimal Tree Algorithm for VLSI Design. IEEE TCAD,

27(1):70–83, 2008.

[19] J. Cong, L. He, K. Khoo, C. K., and D. Z. Pan. Interconnect Design for

Deep Submicron ICs. In Proc. ICCAD, pages 478–485, 1997.

[20] J. Cong, K. Leung, and D. Zhou. Performance-Driven Interconnect De-

sign Based on Distributed RC Delay Model. In Proc. DAC, pages 606–

611, 1993.

[21] Jason Cong, Lei He, Cheng-Kok Koh, and Patrick H. Madden. Perfor-

mance optimization of VLSI interconnect layout. Integration, the VLSI

Journal, 21(1-2):1–94, 1996.

[22] Jason Cong, Tianming Kong, and David Zhigang Pan. Buffer block

planning for interconnect-driven floorplanning. In Proceedings of IEEE

ICCAD, pages 358–363, 1999.

[23] K. Dai, W. Liu, and Y. Li. Efficient Simulated Evolution Based Rerouting

and Congestion-Relaxed Layer Assignment on 3-D Global Routing. In

Proc. ASPDAC, pages 570–575, 2009.

107

[24] Z. Feng, Y. Hu, T. Jing, X. Hong, X. Hu, and G. Yan. An O(nlogn)

algorithm for obstacle-avoiding routing tree construction in the -geometry

plane. In Proc. ISPD, pages 48–55, 2006.

[25] J. Gao, P. Wu, and T. Wang. A New Global Router for Modern Designs.

In Proc. ASPDAC, pages 232–237, 2008.

[26] J. Hu, C.J. Alpert, S.T. Quay, and G. Gandham. Buffer insertion with

adaptive blockage avoidance. IEEE TCAD, 22(4):492–498, 2003.

[27] J. Hu and S. S. Sapatnekar. Simultaneous buffer insertion and non-Hanan

optimization for VLSI interconnect under a higher order AWE model. In

Proc. ISPD, pages 133–138, 1999.

[28] S. Hu, C.J. Alpert, J. Hu, S.K. Karandikar, Z. Li, W. Shi, and C.N.

Sze. Fast algorithms for slew-constrained minimum cost buffering. IEEE

TCAD, 26(11):2009–2022, 2007.

[29] T. Huang and E. F.Y. Young. Construction of rectilinear Steiner mini-

mum trees with slew constraints over obstacles. In Proc. ICCAD, pages

144–151, 2012.

[30] T. Huang and Evangeline F.Y. Young. An Exact Algorithm for the

construction of Rectilinear Steiner Minimum Trees among Complex Ob-

stacles. In Proc. DAC, pages 164–169, 2011.

108

[31] k. D. Boese, A. B. Kahng, B. A. McCoy, and G. Robins. Rectilinear

Steiner Trees with Minimum Elmore Delay. In Proc. DAC, pages 381–

386, 1994.

[32] A. B. Kahng and B. Liu. Q-Tree: A New Iterative Improvement Ap-

proach for Buffered Interconnect Optimization. In Proc. IEEE Annual

Symp. on VLSI, pages 183–188, 2003.

[33] Richard M. Karp. Reducibility among Combinatorial Problems. In

Complexity of Computer Computations, pages 85–103, 1972.

[34] C. V. Kashyap, Charles J. Alpert, F. Liu, and A. Devgan. Closed Form

Expressions for Extending Step Delay and Slew Metrics to Ramp Inputs.

In Proc. ISPD, pages 24–31, 2003.

[35] L. Li, Z. Qian, and Evangeline F.Y. Young. Generation of Optimal

Obstacle-avoiding Rectilinear Steiner Minimum Tree. In Proc. ICCAD,

pages 21–25, 2009.

[36] L. Li and Evangeline F.Y. Young. Obstacle-avoiding Rectilinear Steiner

Tree Construction. In Proc. ICCAD, pages 523–528, 2008.

[37] C. Lin, S. Chen, C. Li, Y. Chang, and C. Yang. Efficient obstacle-avoiding

rectilinear steiner tree construction. In Proc. ISPD, pages 127–134, 2007.

[38] Y. Lin, S. Chang, and Y. Li. Critical-trunk-based obstacle-avoiding

rectilinear Steiner tree routings and buffer insertion for delay and slack

optimization. IEEE TCAD, 30(9):1335–1348, 2011.

109

[39] W. Liu, Y. Wei, C. N. Sze, C. J. Alpert, Z. Li, Y. Li, and N. Viswanathan.

Routing Congestion Estimation with Real Design Constraints. In Proc.

DAC, pages 1–8, 2013.

[40] M. D. Moffitt. MaizeRouter: engineering an effective global router. In

Proc. ASPDAC, pages 226–231, 2008.

[41] M.R.Garey and D.S.Johnson. The Rectilinear Steiner Tree Problem

is NP-Complete. Proceedings SIAM Journal on Applied Mathematics,

32(4):826–834, 1977.

[42] T. Okamoto and J. Cong. Interconnect Layout Optimization by Simulta-

neous Steiner Tree Construction and Buffer Insertion. In Proc. ASPDAC,

pages 44–49, 1996.

[43] Takumi Okamoto and Jason Cong. Buffered Steiner tree construction

with wire sizing for interconnect layout optimization. In Proc. ICCAD,

pages 44–49, 1996.

[44] P.J. Osler. placement driven synthesis case studies on two sets of two

chips: hierarchical and flat. In Proc. ISPD, pages 190–197, 2004.

[45] M. Mustafa Ozdal and M. D. F. Wong. Archer: a history-driven global

routing algorithm. In Proc. ICCAD, pages 488–495, 2007.

[46] M. Pan, C. Chu, and P. Patra. A Novel Performance-Driven Topology

Design Algorithm. In Proc. ASPDAC, pages 244–249, 2007.

110

[47] J. A. Roy and I. L. Markov. High-Performance Routing at the Nanometer

Scale. In IEEE TCAD, volume 27(6), pages 1066–1077, 2008.

[48] Prashant Saxena, Noel Menezes, Pasquale Cocchini, and Desmond A.

Kirkpatrick. Repeater Scaling and Its Impact on CAD. IEEE TCAD,

23(4):451–463, 2004.

[49] Jack Y.-C. Sun. System Scaling and Collaborative Open Innovation. In

Symposium on VLSI Technology (VLSIT), pages T2 – T7, 2013.

[50] Jerry Wu, Yin-Lin Shen, Kitt Reinhardt, Harold Szu, and Boqun Dong.

A Nanotechnology Enhancement to Moores Law. In Applied Computa-

tional Intelligence and Soft Computing, volume 2013(2), 2013.

[51] T. Wu, A. Davoodi, and J. T. Linderoth. GRIP: Scalable 3D Global

Routing Using Integer Programming. In Proc. DAC, pages 320–325,

2009.

[52] Y. Xu, Y. Zhang, and C. Chu. FastRoute 4.0: Global Router with

Efficient Via Minimization. In Proc. ASPDAC, pages 576–581, 2009.

[53] Jingyu Xua, Xianlong Hong, Tong Jing, Yici Cai, and Jun Gu. An effi-

cient hierarchical timing-driven Steiner tree algorithm for global routing.

Integration, the VLSI Journal, 35(2):69–84, 2003.

[54] Geoffrey Yeap. Smart Mobile SoCs Driving the Semiconductor Industry:

Technology Trend, Challenges and Opportunities. In IEEE International

Electron Devices Meeting (IEDM), pages 1.3.1 – 1.3.8, 2013.

111

[55] Y. Zhang, A. Chakraborty, S. Chowdhury, and D. Z. Pan. Reclaiming

Over-the-IP-Block Routing Resources With Buffering-Aware Rectilinear

Steiner Minimum Tree Construction. In Proc. ICCAD, pages 137–143,

2012.

[56] Y. Zhang, Y. Xu, and C. Chu. FastRoute3.0: A Fast and High Quality

Global Router Based on Virtual Capacity. In Proc. ICCAD, pages 344–

349, 2008.

[57] Hai Zhou, D. F. Wong, I-Min Liu, and Adnan Aziz. Simultaneous routing

and buffer insertion with restrictions on buffer locations. In Proc. DAC,

pages 96–99, 1999.

[58] Qing Zhu, Mehrdad Parsa, and Wayne W. M. Dai. An Iterative Approach

for Delay-Bounded Minimum Steiner Tree Construction. Technical Re-

port.

112

Vita

Yilin Zhang was born in China in March 1986. He received a Bachelor of

Science degree in Department of Electrical Engineering and Computer Science

from Peking University (PKU) in China, 2008. He obtained Master degree in

Department of Electrical and Computer Engineering from University of Texas

at Austin (UT-Austin) in United States, 2010. He started his Ph.D. program

at the University of Texas at Austin in 2008, with one year absence from 2010

to 2011, under the supervision of Professor David Z. Pan.

His research during his doctoral program includes rectilinear Steiner

tree construction, buffering, static timing analysis (STA) and routing. He was

the owner of three first-author papers, titled as “Reclaiming Over-the-IP-Block

Routing Resources Using Slew Constrained Rectilinear Steiner Minimum Tree

Construction”, IEEE/ACM International Conference on Computer-Aided De-

sign (ICCAD) 2012, “Timing-Driven, Over-the-Block Rectilinear Steiner Tree

Construction with Pre-Buffering and Slew Constraints”, ACM International

Symposium on Physical Design (ISPD) 2014, “BOB-Router: A New Buffering-

Aware Global Router with Over-the-Block Routing Resources Optimization”,

ACM/IEEE Asia and Pacific Design Automation Conference (ASPDAC) 2014,

respectively. He also was the second-author in “O-Router: An Optical Rout-

ing Framework for Low-power on Chip Silicon Nano-Photonic Integration”,

113

ACM/IEEE Design Automation Conference (DAC) 2009. Besides, he had two

US patents as “An Efficient Ceff Model for gate output slew computation in

early synthesis” (AUS820130764) and “A method to quickly prune impossible-

to-win participants in a Tournament Pool” (AUS82013104) both in 2013.

He worked as a graduate research assistant of Prof. Pan from 2011 to

2014. Also, he worked as an intern in the Processor Design Tools group at

Oracle in 2012 (Austin, TX) and research intern in IBM Research Center in

2013 (Austin, TX). He worked as a design engineer in Marvell in 2010.

He has served as a reviewer for several technology journals and confer-

ences including IEEE Transactions on Computer Aided Design of Integrated

Circuits and Systems (TCAD), IEEE Transactions on Very Large Scale In-

tegration Systems (TVSLI), IEEE International Symposium on Circuits and

Systems (ISCAS), Optimization Theory & Applications in Engineering Sci-

ences (OPTE), IEEE/ACM International Conference on Computer-Aided De-

sign (ICCAD), ACM/IEEE Asia and Pacific Design Automation Conference

(ASPDAC), ACM International Symposium on Physical Design (ISPD) and

the IEEE/ACM Design Automation Conference (DAC).

Permanent address: zylime@gmail.com

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

114

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Challenges in Interconnection Optimization
	How Interconnection Optimization Works
	Critical Problems in Interconnection Optimization
	Contributions
	Organization of the Dissertation

	Chapter 2. Buffering-Aware RSMT Construction for Reclaiming Over-the-IP-Block Routing Resources
	Introduction
	Problem Formulation
	What is BOB-RSMT?
	Basic Ideas and Optimization Primitives

	BOB-RSMT Algorithms
	Generating Possible Point Set
	Refinement of Possible Region Set
	Primitive Choice Based on a Fast ILP
	Block-aware Maze Routing Algorithm
	Min-cost Slew Mode Buffer Insertion

	Experimental Results
	Summary

	Chapter 3. Timing-Driven, Over-the-Block RST Construction
	Introduction
	Notations and Problem Formulation
	Timing-driven Over-the-block RST
	Initial Tree Generation with Pre-Buffering
	Buffering-Aware Over-the-Block Routing
	Timing-driven Buffer-location-based Tuning

	Experimental Results
	Effectiveness of Pre-Buffering
	Over-the-Block RST
	Post-buffering Topology Tuning

	Summary

	Chapter 4. Buffering-Aware Global Router with Over-the-Block Routing Resources Optimization
	Introduction
	Preliminaries
	Basic Over-the-block Concepts
	Problem Formulation

	BOB-Router Algorithms
	Generate Legal Initial Topologies
	Evolve More Legal Congestion-Aware Min-Cost Topologies
	Outside-tree Routing

	Experimental Results
	Summary

	Chapter 5. Conclusion
	Bibliography
	Vita

