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Abstract 

Superior Longitudinal Fasciculus Microstructure and its 

Functional Triple-Network Mechanisms in Depressive Rumination 

Derek Alexander Pisner, M.A. 

The University of Texas at Austin, 2018 

Supervisor:  David Schnyer 

Depressive rumination, which involves a repetitive focus on one’s distress, is 

associated with function connectivity disturbances of Default-Mode, Salience, and 

Executive-Control networks, comprising the so-called “triple-network” of attention. 

Missing, however, is a multimodal account of rumination that neuroanatomically explains 

the perseveration of these dysfunctional networks as a stable human trait. Using diffusion 

and functional Magnetic Resonance Imaging, we explored multimodal relationships 

between rumination severity, white-matter microstructure, and resting-state functional 

connectivity in N=39 depressed adults, and then directly replicated our findings in a 

demographically-matched, independent sample (N=39). Among the fully-replicated 

results, three core findings emerged. First, rumination severity is associated with both 

disintegrated and desegregated functional connectivity of the triple-network. Second, 

global microstructural inefficiency of the right Superior Longitudinal Fasciculus (SLF) 

provides a neuroanatomical connectivity basis for rumination and accounts for anywhere 

between 25-37% of the variance in rumination (Discovery: pcorr<0.01; 

Replication: pcorr<0.01; MSE=0.05). Finally, microstructure of the right SLF and 

auxiliary white-matter is strongly associated with functional connectivity biomarkers of 

rumination, both within and between components of the triple-network (Discovery: 

R2=0.36, pcorr<0.05; Replication: R2=0.25, pcorr<0.05; MSE=0.04-0.06). By cross-

validating discovery with replication, our findings advance a reproducible 
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microstructural-functional brain connectivity model of depressive rumination that unifies 

neurodevelopmental and neurocognitive perspectives. 
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INTRODUCTION 

Cognitive models of depression posit that negatively biased self-referential 

processing plays a critical role in maintaining the disorder1. Depressive rumination is the 

perseverative form of this processing that involves a recursive focus on one’s symptoms 

to gain emotional insight that might alleviate those symptoms2. In practice, however, this 

strategy exacerbates depression3, yielding passive solutions to problems4, diminished 

social support5, and an increased likelihood of post-treatment relapse6. Given 

rumination’s toxic influence in depression among other mood disorders7, both its 

mechanisms and developmental antecedents have been studied across multiple levels of 

analysis7–9. In the context of neuroimaging, however, this effort has resulted in a 

heterogeneous set of structural and functional brain biomarkers10 whose reproducibility 

and intermodal affinity are mostly unknown11,12. The present study therefore aims to 

identify reproducible structural-functional brain biomarkers of rumination using 

multimodal neuroimaging with direct replication7.  

A Functional Connectivity Model of Rumination 

Although numerous cognitive theories of rumination have been proposed10,13, 

empirical evidence from functional neuroimaging has yet to definitively corroborate any 

one model over another14. Common to each of these models however, is a tension among 

three key mechanisms of rumination that can be summarized alongside their associated 

resting-state networks (RSN’s) as captured with functional Magnetic Resonance Imaging 

(fMRI)10,15–17. These include: (1) disrupted self-referential processing, which broadly 

encompasses poor metacognition, recursive inner mentation18,1910, and failures of the 

Default Mode Network (DMN); (2) negatively-biased thought appraisal, discrepancy 

detection between self-states and goal-states20, and poor vigilance21 titration of the

Salience Network (SN)10,16,22; and (3) impaired attentional disengagement, which refers to 

a top-down failure to disengage from negative-biased self-referential processing23, and is 

associated with the Executive Control Network (ECN). With this framework as a 

foundation, we can then use fMRI analysis to describe precise intrinsic alterations of 

RSN’s that relate to each respective rumination mechanism10,16. We call this dimension of
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analysis within-network functional connectivity10,16. One study, for instance, found that 

higher rumination severity is associated with alterations within a Parietal subnetwork of 

the DMN – the pDMN – that supports reflexive episodic memory refreshing24–26 and 

which is uniquely vulnerable to the effects of cognitive resource depletion15. Depressed 

ruminators also more actively engage a Cingulo-Opercular subnetwork of the SN – the 

coSN – critical for tonic alertness, as well as for maintaining ongoing emotional appraisal 

of internal cognitive and somatic states27,28. Finally, abnormal integration of a prefrontal 

subnetwork of the ECN – the fECN—might reflect deficits of top-down dysregulation29 

or attentional scope30 whereby emotionally biased information cannot be easily dispelled 

from working memory.  

Other research has shown, however, 

that these three mechanisms and their 

corresponding RSN’s do not operate as wholly 

segregated entities15,31–33. In depressed 

ruminators, for instance, impaired 

disengagement is thought to amplify and 

sustain negatively-biased thought 

appraisal23,34,35. When combined with 

perseveration11 and reflexive processing, this 

contaminated appraisal forms a ‘vicious cycle’ 

of self-criticism17,36 which recursively drains 

cognitive resources needed to disengage from 

the processing. Because these mechanisms can 

be mutually reinforcing in this way, their 

interactivity might further be construed as its 

own ‘metacognitive’ dimension of rumination 

etiology37,38. Wells39 and other theorists have 

accordingly emphasized a key role for metacognitive beliefs in rumination. Specifically 

they showed that with respect to treatment, for instance, the personal significance of 

Figure 1: The “triple-network” of attention 
is a mesoscale system of networks that 
includes the Salience Network (SN) 
(green), Executive Control Network (ECN) 
(red), and Default Mode Network (DMN) 
(blue), which correspond to three core 
mechanisms of rumination. Importantly, 
rumination is known to be correlated with 
functional connectivity disturbances within 
and between these networks. 
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negative thoughts about rumination and its coping implications may be especially useful 

targets40,41. Perhaps analogous to this metacognitive dimension, interactions among 

rumination’s three core RSN’s can also be described on a ‘meta-network’ basis, where 

the RSN’s themselves are interdependent entities15,42. We call this dimension of analysis 

between-network functional connectivity10,16. In fact, the DMN, SN, and ECN have been 

described as belonging to a so-called “triple network” of attention, which some believe to 

be globally compromised across depression psychopathology42–45 (See Figure 1). From 

this vantage point, Hamilton et al. (2011) showed that the brains of depressed ruminators 

exhibit greater between-network DMN dominance over the ECN, with a variable role for 

the SN depending on level of depression severity46. In another study, Wang et al. (2016) 

similarly argued that greater DMN dominance over the ECN, impaired SN–mediated 

switching between the DMN and ECN, and ineffective ECN modulation of the DMN, 

each constitute separate cognitive mechanisms of a host of depressive symptoms, 

including rumination15. 

A Microstructural Connectivity Model of Rumination 

In contrast to the cognitive models which describe rumination as a failure of 

information processing, another line of study has focused on identifying developmental 

antecedents of rumination; that is, the individual differences that might explain why, 

unlike other depressive symptoms, rumination uniquely persists as a stable trait. 

As Papageorgiou once phrased it39 – “who becomes a ruminator”47? According to Nolen-

Hoeksema’s response styles theory (RST), it is those who do not feel in control of their 

ability to cope and those are helpless to act47. By her lights, rumination is a maladaptive 

pattern of responding to distress3—a stable individual difference characteristic that she 

was able to verify over the course of two decades of longitudinal, community-based 

studies5. Although researchers had initially described early environmental risk factors 

such as dysfunctional parenting and abuse as childhood precursors to rumination11,39,48, 

later heritability studies also revealed a prominent role for genetic moderators that largely 

overlap with those relevant to depression more generally7. Nevertheless, the precise 

neural mechanisms whereby genetic and environmental risk factors contribute to 
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rumination as a stable cognitive trait remain an open question39. Not only has this been an 

impediment to progressing our basic scientific understanding of rumination’s underlying 

mechanisms, it has precluded us from developing more effective, personalized treatments 

for depression7,40,49.  Because of this unique developmental risk, moreover, a study that 

seeks to dually identify both cognitive developmental neural biomarkers of rumination in 

tandem may be uniquely positioned to address this foundational question50–53.  

And in the search for neurodevelopmental biomarkers of rumination, we need not 

start from scratch. To the extent that resource-intensive, triple-network operations 

characterize a vicious cycle of negative thoughts that persists repetitively8,29,54, we should 

likewise expect structural MRI to be sensitive to grey or white-matter biomarkers capable 

of scaffolding these operations over time10,55–57. Along these lines, some of the earliest 

voxel-based morphometric studies of depression looked to modular grey matter 

structures, like the Anterior Cingulate Cortex (ACC), whose thickness or volume 

explained some variance in rumination severity55,57,58. Research into the precise role of 

ACC volume in rumination has been largely inconsistent, however10,57,59, perhaps alluding 

to its dense interconnectivity with other cortical areas60 or the multiple specialized 

functions among sub-regions of the ACC itself61. Ultimately, appeals made to grey-matter 

modules alone have become increasingly problematic since they do not capture a 

commensurate level of complexity to rumination’s functional connectivity expression 

across distributed modules62,63.   

The structural analogue to functional connectivity – microstructural connectivity 

of white-matter64 – may therefore provide a more flexible framework for conceptualizing 

the multivariate developmental differences that likely characterize rumination7. Perhaps 

not coincidentally, BOLD signal clustering of resting-state networks produces patterns 

that spatially resemble white-matter tracts65. Microstructural connectivity is typically 

studied using methods like diffusion Magnetic Resonance Imaging (dMRI), which 

provides an in vivo method for measuring Fractional Anisotropy (FA) based on 

anisotropic properties of white-matter66. Unfortunately, only one study to date has 

explicitly investigated the microstructural basis for rumination. In 2012, Zuo et al. used 
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Tract-Based Spatial Statistics (TBSS) to show that FA of the Superior Longitudinal 

Fasciculus (SLF) and neighboring motor fibers are negatively associated with rumination 

severity. Due to its nongeneralizable sample size (N=15) and reliance on dMRI data 

alone, however, that study was not positioned to multimodally reconcile these biomarkers 

with measures of brain function.  

A Reproducible Microstructural-Functional Connectivity Model of Rumination 

As Schizophrenia studies have recently shown52,67,68, multimodal analysis can 

uniquely afford the ability to fuse disparate information across modalities to formulate 

new ideas that encompass multiple levels of analysis simultaneously. As these few 

studies have demonstrated, however, the benefits of this approach hinges largely on the 

experimenter knowing precisely which modalities to use and where, roughly, to look52. 

Although recent studies beyond rumination literature have shown that frontoparietal 

white-matter, such as the Cingulum (CCG) and the Uncinate Fasciculus (UF), may 

provide support for DMN 69 and ECN70, the precise nature of these multimodal 

associations remains largely unclear53,68,71. Hence, more thoroughly delineating these 

relationships in the context of rumination may be particularly fruitful by elucidating the 

neurodevelopmental vulnerabilities (i.e. expressed via microstructural connectivity) 

through which ruminative cognition (i.e. expressed via triple-network functional 

connectivity) might emerge when exposed to a depressogenic negative thought bias7,72–75.  

While multimodal analysis can greatly increase sensitivity and specificity to disease 

biomarkers52,68, this comes at a price. Its multivariate complexity can easily drain degrees 

of freedom and limit the generalizability of detected effects if not properly balanced by 

additional effort towards reproducibility52. To overcome this obstacle and maximize the 

translational value of any multimodal findings made76, our study had two choices; we 

could either use a massively large sample size (i.e. difficult to obtain in present-day 

neuroimaging77), else perform out-of-sample replication within the same study78. Until 

only recently, this latter possibility would have seemed entirely prohibitive, but the recent 

rise of open neuroimaging datasets and growth of high-throughput computational 

analytics79 has dramatically reduced the burden of labor required to accomplish such a 
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feat. In the present study, we take this leap. Following initial analysis of a dataset 

collected at the University of Texas at Austin, we conduct direct replication of our 

analysis using an independent sample obtained from an open-dataset made publicly 

available by the Nathaniel Kline Institute80. Although the datasets used for our analyses 

were acquired at different locations, we were able to obtain sub-samples that were 

coincidentally matched on demographic criteria, contained comparable fMRI and dMRI 

neuroimaging data, and included equivalent measures of rumination and depression. By 

exploiting this homogeneity, we were positioned to directly evaluate, regardless of 

sample size, whether large effects from our Discovery sample generalized to a 

Replication sample. Those findings that fully replicated would in turn provide a measure 

of reproducibility beyond statistical power and based on cross-validation81–86. 

We conduct our analyses over three phrases. First, we consider unimodal 

microstructural and functional connectivity biomarkers of rumination severity so as to 

replicate and extend findings from prior work. To assure parallel-forms reliability across 

analytic software and protect against false-positives due to computational error, we 

further analyze both rsfMRI and dMRI modalities using multiple methodologies77,87. The 

dMRI analyses, for instance, include dual investigations of white-matter microstructure 

using both Tract-Based Spatial Statistics (TBSS) and global probabilistic tractography 

methods66. Similarly, the rsfMRI analyses include investigations of resting-state 

functional connectivity, using Dual-Regression88 and hierarchical network modeling89 

based on Independent Components Analysis (ICA)16. For the second phase of analysis, 

we then assess whether the microstructural and functional connectivity biomarkers of 

rumination predict one another. Subsequently, we apply the same analytic pipeline used 

to conduct phases 1-2 of our Discovery analysis to the homogeneously preprocessed, 

demographically-similar Replication sample. Finally, we cross-validate each fully-

replicated regression model to directly quantify test-error and other measures of 

generalizability. 
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METHODS 

Participants – Discovery sample 

Thirty-nine treatment-seeking participants with DSM-IV Major Depressive 

Disorder (MDD) were recruited for this study from advertisements placed online, in 

newspapers, and on late night TV. Participants were screened for medical or physical 

conditions that would preclude participation in an MRI study. They also completed an 

abbreviated Mini International Neuropsychiatric Interview (MINI)90 to determine 

provisional MDD diagnosis, which were then confirmed using in-person Structured 

Clinical Interviews for the DSM-IV Disorders (SCID)91. administered by a trained 

research assistant. Participants were excluded if they met criteria for past year substance 

abuse or dependence, current or past psychotic disorder, bipolar disorder, and 

schizophrenia. Participants receiving pharmacological treatment were allowed into the 

study if there has been no medication change in the 12 weeks prior to study entry. To 

minimize brain changes associated with aging, participants were between ages 18-55. 

Ethics Statement 

The Institutional Review Board at the University of Texas at Austin approved all 

study procedures and materials and all participants provided signed informed consent. 

Depressive Rumination Measurement 

The RSQ (Response Styles Questionnaire)92 is a 10-item self-report measure of 

the tendency to ruminate. It consists of a total score and two sub-scales: reflection and 

brooding. The reflection subscale measures an individual’s tendency to turn inward to 

engage in problem-solving and thereby alleviate negative or depressed mood11, whereas 

brooding measures the maladaptive form of rumination believed to be a proxy for 

rumination11,46. Brooding specifically reflects the intensity of ruminative responses to 

expressions of negative emotion93. For each item, subjects indicate the frequency of each 

event on a scale ranging from 0 (“almost never”) to 3 (“almost always”), yielding a range 

of possible scores from 0-30. The brooding subscale has high reliability (a=0.77-0.92)92, 

is well-validated within depressed populations57, decontaminated of any explicitly 

depressive content94, and the sub-scale of choice for most studies of rumination in 
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depression10,16,23,24,46. For these reasons, we used the brooding subscale exclusively to 

measure rumination.  

Depression Severity Measurement 

The Beck Depression Inventory (BDI)95 is a 21-item self-reporting questionnaire 

for evaluating the severity of depression in normal and psychiatric populations. It 

contains 21 items on a 4-point scale from 0 (symptom absent) to 3 (severe symptoms), 

and instructs the participant to recall depression symptoms occurring over the previous 

two weeks. 

Imaging Acquisition 

MRI scans were acquired on a whole body 3T GE MRI with an 8-channel phase 

array head coil. The scanning protocol involved collection of a localizer followed by a 

high-resolution T1 structural scan, two resting state scans of 6 minutes each, a second 

high-resolution structural scan, and finally a 55-direction diffusion tensor (dMRI) scan. 

For the resting-state scan, instructions were presented utilizing a back-projection screen 

located in the MR bore and viewed through a mirror mounted on the top of the head coil. 

Participants were instructed to remain awake and alert and keep their gaze on a fixation 

cross (+) presented approximately at the center of their field of view for the 6-minute 

duration of the scan. (See Appendix, Methods: Section A). 

dMRI: Preprocessing 

Preprocessing of Diffusion Magnetic Resonance Imaging (dMRI) data was 

carried out using a custom preprocessing workflow that included eddy correction, brain 

extraction, denoising, and tensor/ball-and-stick model fitting tools adapted from the 

FMRIB Diffusion Toolbox96. To achieve maximal sensitivity and specificity from the 

dMRI data, preprocessing included rigorous automated and manual quality control steps 

(See Appendix, Methods: B). 
dMRI: Tract-Based Spatial Statistics (TBSS) and Global Probabilistic Tractography  

A number of approaches to dMRI analysis were implemented. To begin, the 

whole-brain data was interrogated using Tract-Based Spatial Statistics (TBSS)97 to 

identify microstructural characteristics that were associated with brooding severity (See 
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Appendix, Methods: Section C). We additionally employed the ‘crossing-fibers’ 

extension of TBSS98, which is less often used due to its computational expense, but can 

uniquely capture group differences in secondary (i.e. “crossing”) fibers, unlike TBSS 

based on the tensor model alone. For statistical testing, a permutation approach was 

employed using FSL’s “randomise” function with the TFCE Threshold-Free Cluster 

Enhancement option, generating 10,000 permutations and applying family-wise error 

(FWE)-correction to obtain cluster inferences. A two-tailed regression model was next 

generated using FSL’s GLM function, whereby RSQ brooding scores were used as the 

criterion variable with age and gender as nuisance covariates. Age was included due to a 

well-known confounding influence of age on microstructure 99, and gender was included 

due to some evidence of gender differences in rumination—namely, that females tend to 

be more severe ruminators than males100.  

Following TBSS, we sought to corroborate our initial group level, voxel-wise 

dMRI findings using individual-level tractography, which is an alternative dMRI 

methodology that attempts to reconstruct known white-matter pathways while retaining 

each subject's image in native space orientation. Since spatial information is not 

manipulated in tractography as it is with TBSS 101, tractography could confirm any TBSS 

findings in native space, while also disconfirming false-positives due to non-

physiological factors such as image misalignment, movement, and other factors resulting 

from the methodological limitations of TBSS102. For tractography, we chose to define 

microstructure as average weighted FA measures from the entire pathways of tracts of 

interest whose labels included >5 significant voxels from the earlier TBSS stage. These 

measures were then further analyzed across hemispheres to establish any significant 

laterality effects103. To perform tractography, we specifically used the TRActs 

Constrained by UnderLying Anatomy (TRACULA) tool in FreeSurfer (version 5.3.0)66, 

which delineates 18 known WM bundles in a fully-automated, unbiased manner using 

each participant's joint dMRI and T1-weighted MRI reconstruction (See Appendix, 
Methods: Section D). 
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rsfMRI Preprocessing 

Preprocessing of baseline rsfMRI data was carried out using FSL’s FEAT96, 

combined with AFNI and FREESURFER tools. Additional control for WM and 

ventricular CSF confounds was included, and denoising was carried out using FSL’s 

ICA-based Xnoisifier artifact removal tool (FIX) to control for motion and physiological 

artifact based on an unbiased classifier (See Appendix, Methods: Section E). 

rsfMRI: Dual-Regression and Hierarchical Network Modeling 

 Group-level Independent Components Analysis (ICA) was performed by 

employing “temporal concatenation” of the complete, preprocessed rsfMRI time-series 

from all of the participants and restricted to twenty-five independent component (IC) 

outputs104. Four IC’s were manually identified as noise and removed from further 

examination. Of the remaining twenty-one networks, all were identified using visual 

inspection by way of reference to the 17 RSN’s delineated by the Yeo et al. 2011 atlas105, 

thus allowing for identification of the three IC’s of the triple-network that were 

introduced above - the pDMN24,46, the coSN 43, and the fECN17,106.  
A dual-regression approach107 was next performed on the triple-network RSN’s, 

which were used as regressors for each individual subject’s 4D set of fMRI volumes in 

order to extract time-series that were both specific to each subject and to each of the three 

IC’s64. Design matrices and contrasts were then created to test for correlations between 

brooding severity and total average intrinsic connectivity within each of these RSN’s, 

controlling for age and gender. These regression models were tested separately for each 

RSN, using two-tailed contrasts in an identical manner to that used in TBSS, with FSL’s 

randomise (10,000 permutations) and TFCE cluster-thresholding with whole-brain FWE-

correction108.  To further correct for analysis-level multiple comparisons among the three 

triple-network RSN’s, we also Bonferroni-corrected our alpha significance level for these 

models to 0.05/3 or p=0.0167.  

To investigate interactions between the triple-network RSN’s, we utilized 

FSLNets38, a MATLAB-based tool that interfaces with FSL. FSLNets treats the group-

ICA outputs (generated from the earlier dual-regression stage) as RSN nodes for 



 11 

hierarchical network modeling38. This involved estimating a partial-correlation matrix for 

each RSN for each participant. To perform between-RSN general linear modeling, 

randomise was again employed with FWE-correction, but this time using the nets_glm 

function at 10,000 permutations. The design matrices and contrasts used in the earlier 

FSL GLM analyses, were used in this analysis as well.   

Participants – Replication Sample 

To formally test whether the findings would generalize beyond the discovery 

sample109, we directly replicated all stages of analysis using a phenotypically similar, 

independent sample obtained from the publicly-available, multi-site Nathaniel Kline 

Institute Rockland dataset80. By coincidence, that dataset contained a sub-sample of 

participants with equivalent demographics to those participants from our original sample; 

this included (N=39) participants who were between the ages of 18-55, had no history of 

drug abuse or severe comorbid psychopathology, had both useable dMRI data and 

rsfMRI data, and reported at least some depressive symptomatology. The participants had 

also been administered the 21-item Beck Depression Inventory (BDI-II) and the 22-item 

Rumination Response Scale (RRS)(See METHODS: Depressive Rumination 

Measurement), which contained identical brooding sub-scale items to those 

administered in the 10-item RSQ scale 94. As part of a larger battery of measures, many 

but not all participants also completed the Structured Clinical Interview for DSM-IV-TR 

Axis I Disorders (SCID)110. Specifically, 33% of the n=36 participants met full criteria for 

MDD (18% current/recurrent and 15% in remission), requiring that the remaining 

participants be included on the basis of broader depressive symptomology or a history of 

depression diagnosis. To maximize useable data, we therefore also included 66% with 

dysphoria as determined by dysphoric elevations (>4)111,112 in BDI-II scores.  

Cross-Validating Discovery 

Furthermore, to minimize the possibility of sample-variant effects due to 

incongruence of neuroimaging acquisition parameters across samples113, we spatially and 

temporally resampled the rsfMRI and dMRI data in the replication sample to match the 

voxel resolution of the rsfMRI and dMRI data and the sampling frequency (i.e. TR) of 
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the rsfMRI data in the discovery sample (See Appendix, Methods: Sections F & G). To 

ensure direct equivalence of neuroimaging data preprocessing in the replication87, we also 

applied an equivalent analytic pipeline to that applied to the discovery sample, but using 

the pDMN, fECN, and coSN group-ICA RSN definitions from the discovery dataset as 

the input to both dual-regression and FSLnets. Lastly, given the multiple scanner sites 

used to collect the neuroimaging data in the Replication sample, we employed mixed-

effects regression models (both with FSL’s GLM and in R 3.4.0), whereby scanner site 

was additionally modeled as a random effect. 

 Since generalizability was a core aim of our study, power analyses were also 

conducted for detecting a large effect size when using multiple regression with two 

covariates (age and gender)22,94,114 (See Appendix: Methods, Section H). Given our sub-

optimal sample-sizes, we also opted to filter significant findings by a large effect size 

cutoff of R2=0.25 for non-voxel-wise tests (i.e. tractography, multimodal analysis of beta-

coefficients) and p<0.01 FWE-corrected threshold for voxel-wise tests (TBSS, Dual-

Regression, FSLnets). This step would serve to more stringently identify those findings 

with the highest putative generalizability as well as those at greatest risk of replication 

failure. Further, we conservatively classified a finding as being a ‘full replication’ only if 

it replicated with respect to both equivalence in directionality of the effect and the RSN’s 

or anatomical location(s) implicated. Likewise, the fully-replicated findings needed to 

meet our effect-size cutoff in at least one of the two samples and survive a Family-Wise 

Error (FWE)/False Discovery Rate (FDR)-corrected significance level of a<0.05115 or 

a<0.001 uncorrected for ROI analyses116.  To directly quantify generalizability, we 

additionally created standardized regression models variations that could in turn be used 

to predict Mean Squared Error (MSE) across samples. Finally, to evaluate analysis-level 

false-discovery, we further used a meta-analytic null-distribution based on replication 

counts (See Appendix: Methods, Section I). 
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RESULTS I: DISCOVERY SAMPLE 

Descriptive Statistics and Behavioral Findings 

Depressive rumination severity (DR) as measured using the RSQ was normally 

distributed (M= 9.08, SD= 3.01, range: 17-48, IQR=5; Shapiro-Wilk = 0.976, p = 0.53). 

Depression severity was also normally distributed (M= 31.94, SD= 8.16, range: 1-15, 

IQR=10, Shapiro-Wilk = 0.976, p = 0.35) and was modestly associated with rumination 

severity (R2 = 0.13, F(1, 37) = 5.61, p=0.02). Age was positively skewed (M=27.51, SD = 

8.80, range: 18-52) due to an overrepresentation of young adults in our discovery sample. 

Although age was weakly correlated with RSQ brooding scores (R2 = 0.09, F(1, 37) = 

3.84, p<0.06) and interacted with several neuroimaging measures throughout our 

analyses, no significant interactions with gender were observed in either discovery or 

replication samples. Nevertheless, we retained both age and gender as nuisance 

covariates for each regression model to ensure maximal generalizability and consistency 

across our analyses.  

‘Within-Network’ Functional Connectivity and Depressive Rumination 

 We next tested whether rumination was associated with resting-state functional 

connectivity of the three triple-network RSN's as identified from the outputs of group-

ICA followed by dual-regression (METHODS: rsfMRI Group-ICA & Dual-
regression). Results revealed that rumination was highly correlated with functional 

connectivity in multiple clusters, some of which belonged to each respective triple-

Figure 2: Significant clusters that exhibited lower functional connectivity within the pDMN 
associated with DR are depicted in blue, and include the PCC, Precuneus, left Precentral Gyrus, 
left Somatosensory Cortex, and the left inferior Frontal Gyrus. Significant clusters exhibiting 
lower functional connectivity within the coSN are depicted in green and include the dorsal left 
Precentral Gyrus, right superior Postcentral gyrus, left inferior Frontal Gyrus, and Broca’s area 
bilaterally. Finally, significant clusters exhibiting greater functional connectivity within the fECN 
are depicted in red and include the left Amygdala and left Parahippocampal Gyrus. 

      L 
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network RSN (i.e. ‘intrinsic’ connectivity), but also others that were outside of the 

respective RSN’s (i.e. ‘extrinsic’ connectivity) (see Figure 2). With respect to the latter, 

we found that rumination was positively associated with extrinsic connectivity between 

the frontal Executive Control Network (fECN) and a small cluster (voxels=15) located at 

a juncture between the left Amygdala and Parahippocampal Gyrus (p<0.05 FWE; see red 

clusters in Figure 2). Additionally, the Precuneal Default Mode Network (pDMN) 

exhibited lower extrinsic connectivity with the left somatosensory areas, left Precentral 

Gyrus and left inferior Frontal Gyrus (p<0.01 FWE; see blue clusters in Figure 2), but 

also lower intrinsic functional connectivity between the Precuneus and PCC. Lastly, the 

Cingulo-Opercular Salience Network (coSN) exhibited lower intrinsic functional 

connectivity among the dorsal left Precentral Gyrus, left inferior Frontal Gyrus, right 

superior Postcentral Gyrus, and most prominently in Broca’s area bilaterally (p<0.01 

FWE ; see green clusters in Figure 2). 

‘Between-Network’ Functional Connectivity and Depressive Rumination 

Based on prior evidence for the role of 

the pDMN, coSN, and fECN in rumination, we 

next used FSLnets to explore whether between-

network functional connectivity of each pair 

combination of triple-network RSN’s correlated 

with rumination severity (see METHODS: 
Between-Network Functional Connectivity). 

That analysis revealed that rumination severity was positively associated with an inverse 

correlation between the fECN and pDMN (p<0.05 FDR) (See Figure 3), and between the 

coSN and the pDMN (p<0.01 FDR). The third ‘between-network’ correlation (fECN-

coSN) was not significantly associated with rumination in the Discovery sample. 

Microstructural Connectivity and Rumination 

Tract-Based Spatial Statistics (TBSS) 
Our next set of analyses sought to identify microstructural biomarkers of 

rumination. To achieve this, we first employed tensor and crossing-fiber variations of 

Figure 3: The above image depicts the 
fECN (left) and pDMN (right) whose 
inverse correlation was associated with 
DR severity (p <0.05 FDR). 
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TBSS (see METHODS: TBSS; Appendix, Methods: Section C). In association with 

higher rumination severity, our results first revealed significantly lower FA within large 

clusters covering the right Superior Longitudinal Fasciculus (SLF, parietal and temporal 

parts), Cingulum, and Corticospinal Tract (CST) (p<0.01 FWE; p<0.05 FWE; see blue 

FA and green F1 clusters in Figure 4). Some of these clusters also extended into the 

Anterior Thalamic Radiation (ATR), Uncinate Fasciculus (UF), and Splenium (p<0.05 

FWE; p<0.05 FWE; p<0.05 FWE). The crossing-fibers variation of TBSS analysis 

closely tracked these primary-fiber findings, but further revealed significant correlations 

with secondary-fibers in a small cluster of the right superior Corona Radiata where the 

SLFT intersects with the Corpus Callosum at the Centrum Semiovale (p<0.01 FWE; see 

red cluster in Figure 4).  

Global Probabilistic Tractography 

Although TBSS is sensitive to whole-brain white-matter associations, 

tractography offers greater specificity for labeling known white-matter pathways66,101. 

Because it can be performed in native diffusion space, it is therefore also mostly immune 

from artifact that might result from the geometric transformations involved in the 

normalization step in TBSS. Thus, we employed tractography alongside TBSS to ensure 

parallel-forms reliability. Towards that end, six pathways of interest were automatically 

P A 

Figure 4: Depressive rumination was associated WM integrity primarily within the temporal and 
parietal parts of the right SLF including the anterior and posterior Corona Radiata. Surrounding 
clusters of the right posterior and anterior Cingulum along with bilateral CST also emerged. 
Here, significant associations with FA (p<0.01) are depicted in blue, significant associations with 
the F1 partial volume (p<0.01) are depicted in green, and significant associations with the F2 
“crossing-fibers” volume in the superior at the Corona Radiata (p<0.01) are depicted in red-yellow. 
That the FA, F1, and F2 clusters are largely overlapping indicates convergence across 
deterministic and probabilistic diffusion models, and serves to confirm that detected effects are 
not the result of model artifact. 
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parcellated with tractography and included the SLF, CCG, CST, ATR, UF, and Splenium. 

As indicated from TBSS, we found a negative association between weighted average FA 

of the right SLFT and rumination severity (adj. R2 = 0.18, F(3, 36) = 3.85,  

pcorrected<0.005). This other tracts were not significantly associated with rumination 

severity. 

Tract Hemisphericity 

The aforementioned TBSS and tractography analyses indicated that the SLFT 

WM finding was distinctly right-lateralized. To test this formally, we treated hemisphere 

as a within-subjects measure and used Analysis of Variance (ANOVA) to compare two 

GLM’s predicting rumination for each tractography measure of global average FA. 

Specifically, the first GLM used left hemisphere as the predictor, whereas the second 

GLM used right hemisphere as the predictor, controlling for left hemisphere. From this 

analysis, we found supportive evidence for right lateralization of the SLFT 

(F(36,1)=8.71, p=0.005). 

Multimodal Connectivity (Microstructural-Functional) and Rumination 

Microstructure Supports ‘Within-Network’ Functional Connectivity in Rumination 

To test for any multimodal relationships 

between the within-network functional 

connectivity findings and the microstructural 

connectivity findings, we next extracted the beta 

coefficients representing average total 

connectivity intrinsic connectivity for each of the 

rumination-associated triple-network clusters 

discovered through dual-regression. This involved 

creating a matched subsample of N=32 subjects, 

since seven subjects did not have both useable 

rsfMRI and dMRI data. As an initial step, we extracted beta-coefficients of within-

network functional connectivity disruptions in rumination for each subject. Using TBSS, 

we then regressed these coefficients against whole-brain white-matter on an FWE-

R L R L 

Figure 5) The above slices depict 
correlations between functional 
connectivity disruptions of each 
triple-network component and 
microstructure of the right SLF. The 
top row of images depicts a negative 
correlation between the right medial 
SLF and the coSN (pink) and pDMN 
(blue), along with a positive 
correlation between the right 
posterior SLF and the fECN (yellow).  
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corrected voxel-wise basis. The results showed that pDMN and coSN within-network 

functional connectivity disruptions in rumination were associated with microstructure of 

both primary and secondary fibers in a right medial SLF cluster (p<0.05, FWE)(See light 

blue cluster Figure 5). In contrast, functional connectivity disruptions of the fECN in 

rumination were positively associated with a posterior cluster of the right SLF (see yellow 

cluster Figure 5). Using our tractography measure of the right SLFT further substantiated 

these findings, but only revealed an associated with pDMN within-network functional 

connectivity (adj. R2 = 0.21, F(3, 29) = 3.59,  p<0.05). 

Microstructure Supports ‘Between-Network’ Functional Connectivity in Rumination 

We next tested whether 

microstructural biomarkers of rumination 

predicted the between-network functional 

connectivity disruptions of the triple-

network in rumination. Echoing within-

network functional connectivity case, voxel-

wise TBSS revealed that a concentrated 

medial cluster of the right SLFT was 

positively associated with the between-

network inverse correlation of the coSN-

pDMN in rumination (p<0.05 FWE, see 

red/yellow cluster Figure 6). Diverging from the within-network case, however, TBSS 

also revealed a positive association between microstructure of the right posterior Corona 

Radiata (a termination junction of the right posterior SLF) and the coSN-pDMN inverse 

correlation in rumination (p<0.01 FWE)(see blue cluster Figure 6). Additionally, 

microstructure of the left anterior Corona Radiata (a contralateral termination juncture of 

the left anterior SLF) was negatively associated with the pDMN-fECN inverse 

correlation in rumination. (p<0.05, FWE) (see dark red cluster Figure 6). In summary, 

the between-network functional connectivity disruptions in rumination, as in the within-

network case, are consistently associated with SLFT microstructure, but further partially 

    

Figure 6): Lower FA of the right medial SLFT 
and the right posterior Corona Radiata (blue), 
as well as higher FA of right medial SLFT 
crossing fibers, was associated with greater 
pDMN-coSN inverse correlation (red/yellow). 
Similarly, greater FA of the left anterior 
Corona Radiata (red) was associated with 
greater pDMN-fECN inverse correlation. 

R L R L 
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implicate local microstructure of auxiliary Corona Radiata white-matter. Although the 

tractography measure of the right SLFT was not significantly associated with between-

network functional connectivity when using FA values in FSLnets, cumulative FA of the 

rumination-associated TBSS mask was positively associated with pDMN-fECN between-

network functional connectivity (p<0.05 FDR). 
Summary 

The initial Discovery sample revealed: 1) Rumination severity is associated with 

both within-network and between-network functional connectivity alterations of the 

triple-network; 2) Rumination severity is associated with primary-fiber and secondary-

fiber microstructure of the right SLFT, along with localized clusters of auxiliary CCG, 

CST, ATR, Splenium, and UF white-matter; 3) Microstructure of the right SLFT is 

multimodally associated with pDMN within-network functional connectivity alterations 

in rumination; 4) Microstructure of the medial SLFT and anterior/posterior Corona 

Radiata is associated with between-network functional connectivity of the triple-network. 

See Figure 7 for a visual summary of the findings. 

 

 

 

Figure 7): The above multimodal visualization summarizes key microstructural and functional connectivity 
biomarkers associated with rumination in the discovery sample. WM tracts revealed both by TBSS and 
tractography are represented in copper heatmap. Regions whose within-network functional connectivity 
patterns are disrupted in rumination are overlaid in purple. Finally, each of the pDMN, coSN, and fECN as a 
whole are here depicted as distinct networks with blue, green, and red edge connections, respectively. 
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RESULTS II: REPLICATION SAMPLE 

The Replication sample 

exhibited similar descriptive statistics 

to those found in the Discovery 

sample (See Table 1). Average 

rumination severity was similar across 

samples (M=11.00, SD=2.74, range: 7-

20, IQR=2). Age exhibited a slight 

positive skew (M=31.36, SD = 5.79, 

Range: 22- 44) as it did in the 

Discovery sample. Gender distribution 

was also similar (65% female). 

Although rumination severity showed 

a positive skew in the Replication 

sample, this was corrected using a 

simple log transformation (Shapiro-

Wilk = 0.948, p = 0.07). When 

applying the analytic methdology used 

for our Discovery sample to the Replication sample (See METHODS: Replication), we 

were able to cross-validate the Discovery findings across all three levels of analysis—1) 

Triple-network functional connectivity and rumination; 2) Microstructural connectivity 

and rumination; 3) Multimodal microstructural-functional connectivity and rumination. 
Triple-Network Functional Connectivity and Rumination (Replication) 

When using a small-volume ROI correction (i.e. MNI atlas-defined masks of 

significant regions from the discovery sample), the within-network functional 

connectivity clusters detected from the Discovery sample replicated for each of the 

pDMN and fECN triple-network components (p<0.001) (See correspondence of blue and 

Sample Characteristics Discovery Sample Replication Sample

Age M=27.51, SD  = 8.80, Range: 18-55 M=31.36, SD  = 5.79, Range: 22-44

Gender 22 females (56%) 24 females (65%)

DR Severity M= 9.08, SD = 3.01 M=11.00, SD =2.74

Depressive Episodes Moderate-severe MDD diagnosis only
Mild-severe MDD diagnosis, recurrent 

depression, dysphoria

Depression Severity M= 31.94, SD = 8.16 M=10.00, SD =6.18

Medication Useage Permitted if no medication change in the 
12 weeks prior to study entry

Permitted if medications were reported 
as routine. 12-week stability data 

unavailable.

Other Psychopathology No severe comorbidity No severe comorbidity

Scanner Type Siemens Skyra 3T Siemens Tim Trio 3T

Multi-site? No Yes, 4 separate sites

dMRI parameters
TR/TE=1200/71.1, B=1000, 128 x 128 

matrix, 3 mm slice thickness, anistropic 
voxels, 2 B0 + 53 DWI (55-directions)

TR/TE=2400/85, B=1500, 212 x 212 
matrix, 2 mm slice thickness, isotropic 

voxels, 9 B0 + 128 DWI (137-directions)

rsfMRI parameters
eyes open, TR = 2000 ms, TE = 30 ms, 31 
axial slices, voxel size = 3.125 x 3.125 x 3 

mm3 anisotropic

eyes open, TR = 2000 ms, TE = 30 ms, 40 

axial slices, voxel size = 3 x 3 x 3 mm3 

isotropic

Table 1: The table above compares key characteristics 
across Discovery and Replication samples. 
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red clusters in Figure 8). For 

the pDMN, lower within-

network functional connectivity 

with the right Precuneus fully 

replicated (p<0.001). Similarly, 

9 voxels of the fECN positive 

connectivity cluster in the left 

amygdala/ parahippocampal 

gyrus cluster were overlapping. 

With respect to between-

network functional connectivity, 

the association between 

rumination and the pDMN-

fECN inverse correlation also 

fully replicated (p<0.05, FWE). 

Finally, standardized cross-validated prediction across Discovery and Replication 

samples revealed an MSE=0.04 for both pDMN and fECN within-network functional 

connectivity and MSE=0.06 for pDMN-fECN between-network functional connectivity. 

Microstructural Connectivity and Rumination (Replication) 

The replication yielded a virtually identical set of dMRI findings when applying 

both TBSS and tractography methods from the Discovery sample to the Replication 

sample. Using TBSS, we again found that global microstructure of the right SLF, and 

localized clusters of auxiliary CCG, CST, ATR, Splenium, and UF white-matter were 

negatively correlated with rumination severity (p<0.05, FWE)(See Figure 9). At the 

p=0.05 FWE threshold, 98 voxels, located in the right SLF, CST, and Corpus Callosum 

(See top row Figure 9), overlapped in this TBSS analysis across samples. Additionally, 

replication of the tractography analyses revealed corresponding negative correlations 

between rumination severity and global microstructure of the right SLFT which, as in the 

      

Figure 8: Within-network connectivity findings from the 
Replication sample (bottom row) compared to those from 
the Discovery sample (top row). Significant clusters 
exhibiting lower functional connectivity within the pDMN 
associated with rumination are depicted in blue. Finally, 
significant clusters exhibiting greater functional 
connectivity within the fECN are depicted in red and 
include the left Amygdala/ parahippocampal Gyrus. 
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Discovery sample, was the only association to again survive Bonferroni Correction for 

the six tracts tested (cond. R2 = 0.37, F(3, 35) = 8.90,  pcorrected<0.005). As in the discovery 

sample, the effect of hemisphere was again significant with respect to the SLFT 

(F(36,1)=5.43, p=0.03), affirming that right lateralization of this particular white-matter 

pathway is a defining feature of rumination. Finally, standardized cross-validated 

prediction across Discovery and Replication samples revealed an MSE=0.05. 

Microstructural-Functional Connectivity (Replication) 

Finally, when exploring multimodal microstructural-functional relationships in 

the replication sample, we again found that global average FA of the right SLFT 

predicted within-network functional connectivity of the pDMN (see Table 2)(cond. R2 = 

0.25, p<0.05, MSE=0.04). Equivalently to the Discovery sample, the positive relationship 

between WM microstructure and pDMN-fECN between-network functional connectivity 

was ultimately non-specific to any single tract and implicated the cumulative rumination-

associated TBSS clusters, as revealed from FSLnets (p<0.05 FDR). 

In sum, our results ultimately showed that right SLFT microstructure alone 

predicted 25-37% of the variance in rumination across discovery and replication samples. 

Within-network functional connectivity of the pDMN alone also collectively predicted 

twice as much variance in rumination (52-58%) in both the discovery and replication 

Figure 9: The above mosaic depict TBSS findings from the original sample (blue) and the NKI Rockland 
replication sample (red). The top row depicts the negative correlations in both samples between rumination 
and FA (p=0.01 FWE in the discovery sample,  p=0.05 FWE in the replication sample). These findings 
overlapped closely (green) along the right SLF and along the splenium. In the replication sample, there was 
slightly greater coverage, however, of the genu of the Corpus Callosum. 
 

      

L A P R 
L R 



 22 

samples when controlling for WM microstructure. right SLFT microstructural deficits 

alone predicted 25-29% of the variance in the pDMN within-network functional 

connectivity biomarker. Finally, multivariate microstructural deficits across localized 

clusters of auxiliary tracts like the CCG, CST, ATR, UF, and Corpus Callosum may 

largely explain the remaining variance in rumination severity and triple-network 

dysfunction, but future graph analytic studies will be needed to confirm this and non-

circularly establish mediation. 

DISCUSSION 

Directly replicated across two independent samples, results converged across 

multiple levels of analysis, revealing reproducible unimodal and multimodal biomarkers 

of rumination. Apart from differences in depression severity, discovery and replication 

samples were matched on key behavioral characteristics: both comprised thirty-nine 

adults with equivalent measures of rumination, similar demographic and inclusion 

criteria, and comparable neuroimaging acquisition parameters.  Using a combination of 

exploratory regression analysis and cross-validated tests of generalizability, our results 

firstly showed that self-reported rumination can be explained on the basis of functional 

disintegration and desegregation among a trio of attentional subnetworks—the Precuneal 

Table 2: The above table depicts six key findings (left column) that directly replicated across the discovery sample 
(middle column) and replication sample (right column), along with Mean-Square Error (MSE) values revealed 
cross-validation across samples. Each of the middle and right columns states the R2 value from the respective 
regression models (adjusted in the discovery sample and conditional on both fixed and random effects in the 
replication sample), the methodology used to estimate that value (e.g. TBSS, tractography, dual-regression, 
FSLnets), and the directionality of the relationship (neg=negative,pos=positive).  

Summary of Fully-Replicated  Findings 

Regression Findings (Predictor and Outcome) Initial Sample Replication Sample

Right SLFT Microstructure and Rumination Severity (MSE=0.05)
TBSS (p<0.01 FWE, neg)

Tractography (R2=0.25, adj. R2=0.18, neg)
TBSS (p<0.01 FWE, neg)

Tractography (cond. R2=0.37, neg)

pDMN Within-Network Connectivity and Rumination Severity (MSE=0.04) Dual-regression (p<0.01, FWE, neg) Dual-regression (p<0.001, neg)

fECN Within-Network Connectivity and Rumination Severity (MSE=0.04) Dual-regression (p<0.01, FWE, neg) Dual-regression (p<0.001, neg)

pDMN-fECN Between-Network Connectivity and Rumination Severity (MSE=0.06) FSLnets (p<0.05, FDR, neg) FSLnets (p<0.01, FDR, neg)

Right SLFT Microstructure and Rumination-Associated pDMN Within-Network 
Connectivity (MSE=0.04)

Tractography (R2=0.36, adj. R2=0.30, p<0.05, pos)
TBSS (p<0.05 FWE, pos)

Tractography (cond. R2=0.25, p<0.05, pos)
TBSS (p<0.05 FWE, pos)

Rumination-Associated Cumulative WM microstructure and pDMN-fECN Between-
Network Connectivity (MSE=0.06) FSLnets (p<0.05 FDR, pos) FSLnets (p<0.05 FDR, pos)
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Default Mode (pDMN), the Cingulo-Opercular Salience (SN), and the frontal Executive 

Control (fECN) networks. This initial set of findings served to consolidate known 

functional connectivity biomarkers of rumination into a cohesive model of multiple 

neurocognitive mechanisms that echoes prior work15,31–33,46. Our findings secondly 

showed that microstructural differences of the Superior Longitudinal Fasciculus and 

auxiliary white-matter clusters are robust neurodevelopmental determinants of rumination 

severity. For the first time, we then unify these dimensions of analysis by demonstrating 

that rumination-associated functional connectivity alterations of the pDMN specifically 

(both its within-network and between-network profiles) are largely associated with white-

matter microstructure. In essence, our findings advance the notion that depressive 

rumination is a microstructural-functional connectivity neurophenotype8,29,54. 

A Replicated Triple-Network Functional Connectivity Model of Rumination 

Among the fully-replicated findings, we observed several defining within-

network functional connectivity features associated with heightened rumination severity. 

The first of these was disintegration of the right Precuneus within the DMN. This 

biomarker, which has also been observed in the context of the disorganized thinking 

characteristic of Schizophrenia117,118, may reflect uninhibited mind-wandering and 

autobiographical memory refreshing, along with faulty metacognition119,120. Rumination 

severity was also positively associated with fECN-Amygdala/Parahippocampal 

connectivity – a finding that may support several mechanisms in depressive 

rumination121. Aligned with existing cognitive models of rumination such as S-REF39, 

severe ruminators may perseverate on their own cognitions as a short-term attempt to 

ward off negative affect, but at the cost of maintaining dysphoric mood in the long 

term122. If rumination were to accordingly operate as though it were adaptive, we might 

therefore expect it to be accompanied by higher fECN-Amygdala functional connectivity; 

that is, such a self-regulatory measure might be employed to avoid negative affective 

states whose discomfort might otherwise serve to contradict the overarching 

metacognitive belief in rumination’s usefulness123. Supportively, greater fECN regulation 

of the Parahippocampal Gyrus could be construed as evidence for suppression of context 
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from emotionally-charged memories as a means of achieving a subjective sense of 

recollection during rumination, even if that recollection may in actuality be biased and 

incomplete124. 

Rumination severity was also consistently negatively associated with a between-

network inverse correlation of the pDMN and fECN. This finding in particular 

underscores a consistent pattern of antagonism between self-referential and cognitive 

control systems as a defining feature of rumination15,32,46, but may again reiterate a key 

role for memory dysfunction in depressive rumination. Since the pDMN is known to be 

functionally coupled with the hippocampus during memory retrieval125, greater pDMN-

fECN inverse correlation associated with higher rumination severity may reflect a failure 

to regulate the episodic memory refreshing which occurs naturally during self-referential 

processing119. Conversely, greater pDMN-fECN coupling has been observed during task-

related autobiographical planning32. Hence, lower pDMN-fECN coupling in the context 

of rumination might allude to detachment of self-reference from goal-directed cognition32 

or, more broadly, a lack of resting-state metacognition126. Our functional connectivity 

analyses lastly indicated that rumination is associated with between-network and within-

network alterations of the coSN, particularly with respect to opercular sections of Broca’s 

Area bilaterally. Echoing findings from prior depression studies46, however, the precise 

configuration and directionality of these coSN relationships varied across samples and 

implied a multivariate pattern of association with rumination that future graph analytic 

studies with larger sample sizes should be better suited to clarify.  

A Replicated Microstructural Connectivity Model of Rumination 

           Despite the insights into the cognitive mechanisms of depressive rumination 

afforded by the triple-network functional connectivity model, an exclusive focus on 

cognitive mechanisms neglects that rumination manifests as a trait-like disposition 

towards perseverative thinking. To address this dimension more substantially, we next 

investigated rumination’s microstructural biomarkers using dMRI. Those results revealed 

a diverse set of white-matter clusters distributed throughout the Superior Longitudinal 

Fasciculus, Cingulum, Corticospinal Tract, Splenium, Uncinate Fasciculus, Anterior 
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Thalamic Radiation, as well as the Anterior, Posterior, and Superior Corona Radiata. 

Although these biomarkers cumulatively replicated across samples, tractography revealed 

that the microstructure of one global white-matter pathway in particular – the Superior 

Longitudinal Fasciculus (SLF) – could uniquely explain ~31% of the variance in 

rumination severity on average across samples. Not only did this biomarker replicate with 

global coverage across the entire tract, it also replicated at Bonferroni corrected 

thresholds and with consistent right hemispheric lateralization. By employing both 

tractography and TBSS methodologies in tandem127, moreover, we were also well-

positioned to further explore relevant subdivisions of the SLF128. Using tractography, we 

learned that rumination was globally associated with a portion of the SLF connecting the 

middle/superior Temporal Gyrus with ipsilateral prefrontal/cingulo-opercular areas. This 

subdivision is the SLFT, which most closely corresponds to SLF III – also known as the 

Arcuate Fasciculus. Topographically, the SLFT supplies fiber connections between 

Wernicke’s area for speech production and Broca’s area for language comprehension. 

Compared to other white-matter tracts, SLF microstructure is >50% heritable with <10% 

variation due to environmental influences of the course of neurodevelopment129.  

            Deficits of the right SLFT in rumination may reflect abnormal language systems 

in the brain. Indeed, bilateral SLFT fibers are believed to broadly facilitate frontoparietal 

language communication and specifically maintain phonological awareness130,131. 

Research on the microstructural basis of conduction aphasia has accordingly shown that 

differences in SLFT microstructure may be related to disrupted awareness of speech 

repetition 132. As our findings confirmed, rumination-related deficits of the SLFT were 

distinctly right-lateralized. Although the precise role of the right SLFT is not yet 

definitive133, studies have shown that the right SLF in general provides compensatory 

support for increased demands on language and higher cognitive thought134,135. 

Accordingly, its consistent right lateralization in association with rumination might allude 

to a distinction between external speech and internal speech. In support of this theory, 

cortical areas connected by the right SLFT, such as the right Temporoparietal Junction 

and right superior Temporal Gyrus, have been implicated in internal speech 
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faculties10,136,137 and in rumination58. Accordingly, we might further speculate that 

rumination-related differences in right SLFT microstructure might allude to abnormal 

language repetition patterns of internal monologue138.  

One might also look to Martin’s Goal-Progress Theory139,140 to explain the 

cerebral lateralization of white-matter deficits associated with rumination severity. By 

this framework, when depressed individuals do not receive clear, consistent feedback that 

they are satisfactorily progressing toward their goals, they engage in maladaptive 

reflection – continuously reformulating poor alternative paths to their goals—over 

extended periods of time. Put another way, rumination might be construed as an 

abstraction of the Zeigarnik effect141 which is the phenomenon whereby incomplete goals 

tend to remain memory-activated longer than information related to completed goals. To 

progress towards a goal even in the face of frustrations, individuals need a balance of 

mental persistence and flexibility, both of which require a continuous supply of cognitive 

resources140. To maintain these activities even in the face of distraction, the left 

hemisphere broadly provides efficient internal representations consisting of well-

established schemas142. By comparison, the right hemisphere is largely guided by external 

contingencies that deviate from existing representations and so allows rumination to 

operate more flexibly to consider alternative paths to goals143. When frontoparietal white-

matter of the right hemisphere is therefore broadly deficient, as in the case of global right 

SLFT microstructural deficits in rumination, it may become more difficult to maintain the 

ongoing insight needed to reformulate alternative paths. As a result, cognitive flexibility 

may suffer in the face of the heightened self-goal state discrepancy experienced in 

depression140. Consequently, the problem-solving processes involved in rumination will 

become resource-depleted, but perseverate notwithstanding because the persistent drive 

towards goal achievement still remains intact. To our knowledge, our study is the first 

study to empirically support Martin et al.’s 1989 theory using measures of white-matter 

microstructure139. 
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A Replicated Microstructural-Functional Connectivity Model of Rumination 

 Although the triple-network functional connectivity model of rumination may 

provide some insight into how ruminative cognition unfolds (i.e. though dysregulated, 

negatively-biased self-referential processing), it does not offer an account of why it 

occurs recursively or persists as a stable trait. We therefore posit that individual 

differences in right SLFT microstructure is a robust neurodevelopmental determinant of 

rumination severity, through the medium of triple-network disorganization, provides the 

necessary ingredients for depressive rumination. Aligned with this interpretation, our 

findings showed that microstructure of the right SLFT alone predicted ~26% of the 

variance in pDMN within-network functional connectivity in both samples. This 

association in particular implies overlap of the modality-specific roles discussed earlier 

for the pDMN and right SLFT. Namely, the dysregulated mind-wandering and emotional 

memory refreshing that perseverates during rumination is closely related to individual 

differences in resource-availability for supporting cognitive flexibility along with 

monological language processing. With respect to neurogenetic research of the SLFT, we 

can infer that these neurodevelopmental differences are predominantly heritable, but 

likely not immutable129. 

 Since white-matter microstructure seemingly did not account for all of the 

variance in rumination-associated triple-network dysfunction, moreover, it is not clear 

whether this is merely the result of cumulative error variance across modalities or a 

genuine partial mediation effect. For now, therefore, we suggest that it is insufficient to 

rely on unimodal microstructural measures alone moving forward. Additionally, the 

cumulative WM deficits associated with rumination were associated with the between-

network pDMN-fECN inverse correlation on a voxel-wise basis in both samples. Still, 

this latter association was comparatively weaker with some indication of non-linearity 

that may warrant future studies of ‘multilayer’ network organization to thoroughly 

elucidate144. For now, however, our findings support the notion that the interface of right 

SLFT microstructural connectivity and pDMN within-network functional connectivity 
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captures a crucial and previously unknown feature that appears to support ruminative 

cognition in depression7,72–75 

Limitations and Generalizability 

By validating our findings with a replication sample, our study contributes the 

first verifiably generalizable brain model of rumination to the larger corpus of depression 

literature82,115. Likewise, we interpret the relative success of our replication attempt as 

largely indicative that neuroimaging results are not merely spurious; rather, under 

conditions of maximal sample homogeneity, reflect verifiably reproducible patterns of 

brain structure and function associated with behavior. Along these lines, our study 

informally promotes the idea that out-of-sample direct replication with open-datasets can 

serve as a powerful tool for cross-validating scientific discovery. Namely, we 

demonstrate through example that replication is not merely a compulsory and risky 

burden; rather, it is also a tool that can help to facilitate reproducible exploration of 

multimodal hypotheses, and do so with reasonable data economy77. 

One limitation of the present study may be that the neural biomarkers that it 

uncovered are not purely attributable rumination.  Given how closely the theoretical 

constructs of rumination and depression severity are intertwined, however, there are 

fundamental theoretical obstacles to establishing specificity of rumination biomarkers to 

depression92. Although the specificity of the Rumination Response Scale to depression is 

generally assumed13, it has been challenging to demonstrate, perhaps largely due to the 

restricted range of rumination severity among non-depressed individuals8,145. 

Nevertheless, participants included in our replication sample were dysphoric and/or 

depression-remitted, thereby enabling us to at least infer that the replicated rumination 

biomarkers are reproducibly observable across multiple depressive disorder subtypes and 

at varying levels of depression severity.  

 

CONCLUSION 

In the present study, we aimed to identify joint microstructural and functional 

connectivity biomarkers of Depressive Rumination, which we achieved in the form of six 
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fully-replicated multimodal findings across two independent samples. Results from both 

datasets first supported a functional account of rumination; that is, rumination severity is 

associated with disorganized patterns of within-network and between-network functional 

connectivity of the ‘triple-network’ consisting of the DMN, SN, and ECN. The trio of 

components that make up this network correspond to each of three distinct, yet 

interacting mechanisms of rumination pathology—recursive self-referential processing, 

negatively-biased thought appraisal, and impaired attentional disengagement. Converging 

across multiple methods of analysis applied to both datasets, our results showed that 

microstructural dysconnectivity of the right Superior Longitudinal Fasciculus in 

particular confers a clear vulnerability for rumination as a cognitive trait in the spirit of 

Nolen-Hoeksema’s original Response Styles Theory47. Lastly, our multimodal findings 

begin the process of unifying neurodevelopmental and neurocognitive perspectives of 

rumination by delineating key multimodal links between microstructural-functional 

connectivity biomarkers for the first time. It is through this simultaneous consideration of 

structure and function, moreover, that we might finally begin to answer that nagging 

question—“who becomes a ruminator?”. And to stop the rumination, we ask it twice. 
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Appendix 

Methods (Supplementary) 

Section A: Imaging Acquisition – Initial Sample 

Images were collected utilizing whole head coverage with slice orientation to 

ensure coverage of the whole brain and to reduce artifact (approximately 20 degrees off 

the AC-PC plane and oriented for best whole head coverage). Participant head motion 

was minimized by instruction and the use of foam inserts. Functional images were 

acquired using a GRAPPA parallel imaging EPI sequence that reduces typical EPI 

distortions and susceptibility artifacts. The T1 structural scans were 3D SPGR volume 

acquisitions with 1.4 mm sagittal slices for a total of 134 slices (Flip = 10 degrees, 

repetition time (TR) = 9.7 ms, echo time (TE) = 4 ms, inversion time (TI) = 20 ms, dwell 

time (TD) = 0 ms, field of view (FOV) = 25 cm, Matrix = 256 x 256, number of 

repetitions (NEX) = 1). The resting-state scans were acquired with TR = 2000 ms, 

GRAPPA acceleration factor of two, TE = 30 ms, 31 axial slices, voxel size = 3.125 x 

3.125 x 3 mm3 with a .6 mm inter-slice gap. The dMRI scan consisted of a HARDI (High 

Angular Resolution Diffusion Imaging) acquisition that was collected using single shot 

echo planar imaging, and a twice-refocused spin echo pulse sequence, optimized to 

minimize eddy current-induced distortions (GE 3T, TR/TE=12000/71.1, B=1000, 

128x128 matrix, 3 mm (0-mm gap) slice thickness, 2 T2 + 53 DWI). Thirty-seven slices 

were acquired in the approximate AC-PC plane. The 55 diffusion weighted directions 

resulted in a high signal-to-noise diffusion volume that took approximately 7 minutes to 

acquire. 

Section B: dMRI Preprocessing 

Standard eddy correction was performed using FSL’s eddy correction tool with its 

default options1. The b-vectors file was then rotated based on the output of eddy 

correction to account for the effects of head motion. To control for the potential influence 

of spurious group differences due to head motion, a motion detection script was 

employed that uses the output of eddy correction to calculate the mean translation, 
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rotation, and displacement of image volumes for each subject in x, y, and z dimensions as 

well as Euclidian space. Following suggestions in recent literature2, pre-established 

movement thresholds (0.2° for rotation and 2.0 mm for translation) and semi-automated 

detection of “venetian blind” signal dropout were used as a basis for rejecting outlier 

volumes (i.e. directions) within each subject’s 4D dataset or the entire subject’s dataset if 

more than 10% of volumes were flagged. Finally, visual quality control was used to 

ensure that the prior steps accurately captured all major artifacts without flagging false 

alarms. As a result of these checks, one volume was removed from two participants, two 

volumes from two participants, and five volumes from one participant. Following the 

rejection of flagged volumes, nine participants’ entire datasets were excluded in total. To 

additionally improve signal-to-noise ratio (SNR) resulting from prominent Rician and 

chi-distributed noise in dMRI, NLSAM (Non-Local Spatial and Angular Matching) was 

used to denoise each DWI dataset3. Finally, each of the participants’ images were skull-

stripped using FSL’s Brain Extraction Tool (BET)4. Following preprocessing, local "ball-

and-stick" modeling of diffusion parameters was performed using FSL's bedpostx tool, 

which employs Markov Chain Monte Carlo sampling to generate distributions on 

diffusion parameters at each image voxel in a manner that can also model the impact of 

crossing fibers5. 

Section C: dMRI Tract-Based Spatial Statistics (TBSS) 

In TBSS, all of the participants’ native space images are first individually aligned 

to an FMRIB58_FA standard template using nonlinear registration so as to facilitate 

voxel-wise estimations of Fractional Anisotropy (FA). Next, the average of the 

participants’ aligned FA maps are used to create a mean FA image, which was then 

thresholded for FA values ≥ 0.2 to generate a mean FA “skeleton,” which represents the 

centers (maximal FA) of the fiber tracts common amongst the included participants’ 

images. Since TBSS has been shown to be vulnerable to poor image registration6, a script 

for registration outlier detection was finally employed to quantitatively evaluate 

registration quality. This script measures the mean and maximum projection distances 

across all voxels along each participant’s FA skeleton to the mean FA skeleton to search 
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for any outliers with abnormally high projection distances, which could be indicative of 

low image quality or poor registration. This quality control step confirmed excellent 

registration with no FA skeleton outliers among the participants. Following registration, 

each subject’s aligned mean FA, are projected onto the mean FA skeleton for final input 

into FSL's randomise GLM. 

After using the standard tensor model for TBSS to uncover associations with FA 

of primary fibers, GLM analyses were then repeated using white matter skeleton images 

of the first and second partial volumes (i.e. “F1” and “F2”) generated from bedpostx5. 

This allowed for measurement of secondary fiber pathways such as the Corticospinal 

Tract and Corpus Callosum, which are known to contain a high density of crossing 

fibers7. The TBSS voxel skeleton approach restricts analysis to only those voxels with a 

high probability of lying within equivalent white matter pathways in each individual. 

Next, the mean partial and dyad maps (F1, F2, D1, and D2) from bedpostx were 

projected onto the mean FA skeleton using tbss_x8. 

Finally, FSL’s atlasquery tool was used to estimate white matter tract locations 

for the significant clusters based on the average probabilities of overlap between 

significant clusters and probabilistically parcellated white matter regions, as defined by 

the JHU White-Matter Atlas9. To perform exploratory ROI-analysis of white-matter 

clusters that were only weakly associated with brooding scores, separate masks were 

created for each JHU atlas label that contained only the DR-associated significant voxels 

(i.e. at the p=0.05 threshold) belonging to each respective label.  

Section D: dMRI Tractography 

TRACULA is an algorithm for automated global probabilistic tractography that 

estimates the posterior probability of 18 major white-matter pathways, given a 

combination of dMRI and T1-weighted MRI data10. In essence, posterior probability 

estimations are decomposed into a data likelihood function that uses 1) the outputs from 

bedpostx, along with 2) information about the shape of each pathway derived from prior 

anatomical knowledge on the pathways according to a set of training participants. The 

information extracted from these training participants is the probability of each pathway 
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passing through (or next to) each anatomical segmentation label generated by 

FreeSurfer10. Since this probability is calculated separately for every point along the 

trajectory of the pathway. Accordingly, there is no assumption that the pathways have the 

same shape in the study participants and default TRACULA training data, only that the 

pathways traverse the same regions relative to the surrounding anatomy. The anatomical 

segmentation labels required by TRACULA were obtained from the automated cortical 

parcellation and subcortical segmentation outputs from FreeSurfer. Specifically, all T1-

weighted anatomical scans from the baseline acquisition (during which the diffusion 

images we are also acquired) were first processed using recon-all from the FreeSurfer 

5.3.0 software package. This processing routine included automated motion correction, 

removal of non-brain tissue, Talairach transformation, intensity correction, volumetric 

segmentation, as well as cortical surface reconstruction and parcellation. All 

reconstructed anatomical images were then inspected for accuracy and minor manual 

edits were performed as necessary to remove obvious non-brain tissue included within 

cortical boundaries nearby each subject’s WM mask.  

Using the cleaned outputs from recon-all, pathway reconstruction was initiated 

using the trac-all pipeline for TRACULA, after which we further inspected each of the 18 

generated tracts for all participants to identify any signs of missing or incomplete tracts. 

For four participants for whom paths were missing or incomplete, reconstruction was 

reinitiated using a different random starting point and an additional ‘control point’ to 

constrain the tracking. Following this reinitiated tractography stage, data was counted as 

'missing' for two participants, for whom the splenium and right ATR tracts, respectively, 

still failed to reconstruct. Weighted Average Fractional Anisotropy (FA) was then 

extracted for each tract for each subject for further analysis in Rstudio 3.3.1. This 

"Weighted Average" measure weighs the average FA values at each voxel weighted by 

the probability of the tract going through that voxel, and thus provides a more robust, 

normalized estimate of the expected (mean) value of white-matter microstructure for each 

tract that is more meaningfully comparable across participants10.  
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Section E: rsfMRI Preprocessing 

This workflow included brain extraction4, motion correction11, spatial smoothing 

using a Gaussian kernel with a full-width at half maximum (FWHM) of 6 mm, and high-

pass temporal filtering with a 100 second cut-off. Functional scans were co-registered to 

each participant’s high-resolution MPRAGE scan using affine linear registration 

(FLIRT)11 with twelve degrees of freedom. Finally, conservative white-matter (WM) and 

ventricular Cerebrospinal Fluid (CSF) masks were generated for each subject using the 

FREESURFER reconstructions generated for the dMRI tractography analysis. These 

CSF/WM confound masks, along with motion-detected confounds, were then regressed 

out of each respective time-series12. Each individual rsfMRI dataset was subsequently 

denoised by performing single-session ICA, followed by hand-labeling of “bad” 

components” by visual inspection for twenty-five randomly selected participants’ 

datasets13. Those hand labeled datasets were then used to train a machine learning 

classifier. A parallelized version of FSL’s ICA-based Xnoiseifier artifact removal tool 

(FIX)14 was used with Leave-One-Out cross-validation to derive a study-specific 

classifier with 96.2% mean accuracy for classifying noise components. That classifier 

was then iteratively applied to all datasets in order to automatically identify “good” and 

“bad” independent components (IC’s).  After identifying all “bad” components, these 

IC’s were in turn stripped from each participant’s rsfMRI time-series using fsl_regfilt, 

which removes structured noise components through regression14. Finally, these denoised 

images were further normalized to an MNI standard space image using linear affine 

registration with twelve degrees of freedom, in preparation for dual-regression and 

analysis with FSLnets. 

Section F: Imaging Acquisition15 – Replication Sample 

Multimodal MRI data were acquired across four different scanning sites, but on 

identical scanners (3T Siemens TimTrio) with a 32-channel head coil. We selected 

rsfMRI data with the shortest TR of 645 ms in the NKI dataset because it yielded the 

largest analyzable depressed participant pool with RRS scores. The rsfMRI data were 

collected with an eyes open condition in a single run of about 10 min (900 time points). 
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Scanning parameters of rs-fMRI data were TE = 30 ms, flip angle = 60°, FOV = 222 × 

222 mm2 , 40 slices and voxel size = 3 mm isotropic. DWI data were collected with TR = 

2,400 ms, TE = 85 ms, flip angle = 90°, FOV = 212 × 212 mm2, 64 slices and voxel size 

= 2 mm isotropic. The total number of DWI volumes was 137, which included 128 

volumes with a b-value of 1,500 s/mm2 with different gradient directions and 9 

interleaved b0 images. Scanning parameters of a T1-weighted structural image were TR 

= 1,900 ms, TE = 2.52 ms, flip angle= 9°, FOV = 250 × 250 mm2, 176 slices and voxel 

size = 1 mm isotropic. 

Section G: NKI Rockland Replication 

After preprocessing the dMRI data using an equivalent automated workflow to 

that used in the present study. Unlike the original dMRI data which was a 55-direction 

HARDI sequence in 1 x 1 x 2 anisotropic voxel resolution, the NKI Rockland dMRI data 

was acquired using a higher-resolution 137-direction scheme with 2 mm isotropic voxels 

(See Section F). In analysis, we proceeded to replicate the TBSS methods, using similar 

design matrices and contrasts to those used previously albeit with additional columns to 

control for scanner site as a random effect. FSL’s randomise was again used with whole-

brain FWE-correction. Finally, we again performed FREESURFER reconstructions of all 

subjects’ T1-weighted anatomical images followed by the fully-automated TRACULA 

tractography pipeline. 

We then proceeded to replicate the rsfMRI methods by preprocessing the rfMRI 

data using an equivalent semi-automated workflow to that used in the present study. 

There were some notable modification that needed to be made to facilitate this, however. 

First, the MRI data from several participants from one of the four scanner sites was 

acquired in the opposite sagittal direction; for these participants, the images had to be 

manually flipped (using FSL’s fslswapdim) to match the LAS orientation of the other 

scans in both datasets. Additionally, unlike the original rsfMRI data, the rsfMRI data 

from the NKI Rockland sample was acquired with 1 mm isotropic voxels at a sub-second 

TR=0.645 sec (See Section F), These differences presented several obstacles; first, we 

could not apply our trained FIX classifier from the original analysis to perform denoising 
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on the rsfMRI data due to the different acquisition parameters used; second, the different 

voxel dimensions prevented the re-use of the initial group-ICA triple-network definitions; 

and third, the sub-second sampling frequency of the Rockland rsfMRI acquisition was 

three times faster than that used for acquiring the initial rsfMRI data. The latter difference 

could easily confound any replication attempt since, for example, the SN in particular has 

been shown to have a different temporal metastability than the ECN and DMN16. To 

remedy these issues, rsfMRI data was temporally-resampled for each participant’s time-

series by retaining every third volume in each subject’s time-series and discarding sub-

second volumes so as to yield a TR=1.94 seconds. The resulting datasets were then 

preprocessed, denoised using their own unique FIX classifier, and normalized to standard 

space while spatially resampling to 2mm voxels. Regression analyses were performed 

using corresponding design matrices and contrasts to those used in the original analysis, 

but as in TBSS, additionally included scanner site with additional columns to control for 

scanner site as a random effect.  Further, dual-regression was performed using a small-

volume correction, to only test voxels within each respective triple-network IC and the 

extrinsic clusters identified from the initial results. Finally, FSLnets analyses were carried 

out using FWE-correction across only the three ‘triple network’ group-ICA outputs from 

the initial dataset. 

Section H: Power Analysis 

With the available n=39 subjects from the discovery and replications samples, and 

assuming a minimal large effect size of R2 > 0.25 (i.e. r=0.5), then with two covariates for 

age and gender, power would be 82.7% at a=0.05, and 60.2% at a=0.01.  Thus, large 

effects observed at a=0.05 would yield power >80% for replication to consider as 

evidence for or against the null hypotheses.  

Section I: Assessing False-Positive Replication Error 

Given that our approach uses more researcher degrees of freedom in determining 

what qualifies as a replication, we sought to disprove the notion that our analytic strategy 

would enable us to find replication effects in any sample of comparable size. This 

involved generating a meta-analytic null distribution involved performing 1000 iterations 
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of the multimodal replication analyses, where each iteration consisted of random 

permutations of the response values for forty regression models. Upon each permutation, 

null replications were counted based on whether the replicated hypothesis test (e.g. a 

mixed-effects regression model) yielded a significant result (p<0.05) according to the 

power criteria described in METHODS: Replication and Statistical Power. Ultimately, 

this permutation approach yielded a null sampling distribution of replication counts that 

could be used to infer a 95% confidence interval of false discovery at the meta-analytic 

level. 
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