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Structured RNAs are pervasive in biology with ubiquitous roles in gene 

expression and regulation. RNAs must fold from a linear chain of nucleotide sequence to 

attain three-dimensional structure. RNA folding can be described as modular and 

hierarchical with tiers of structure that form independently: secondary structure forms 

first and defines the helices followed by formation of tertiary structure. The separation 

between secondary and tertiary structure is not absolute. Many biological RNAs couple 

secondary structure changes to RNA tertiary structure formation and link these changes 

to downstream functional consequences. To predict how these biological RNAs fold 

requires a deep understanding of the structural intermediates, folding pathways, and 

mechanisms of cooperativity that promote folding. To test the modularity and 

predictability of secondary and tertiary RNA folding and assembly, we have investigated 

the folding and assembly of the P5abc subdomain from the Tetrahymena thermophila 

Group I intron ribozyme. P5abc folds cooperatively in isolation, binding Mg
2+

 ions and 

adopting tertiary structure. Mg
2+

 binding is linked to a shift in the secondary structure of 

seventeen nucleotides and prior work concluded that there is a high degree of 

cooperativity for this seemingly concerted transition. With the already established 

principles of RNA modularity in mind, we develop a reconstitution hypothesis to test if 
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cooperative secondary and tertiary folding and assembly of P5abc can be understood 

from the component pieces. By using rational mutagenesis, we find that higher order 

folding of P5abc is modular, and we elucidate the physical origins of cooperativity 

(Chapter 2). With our knowledge of isolated P5abc folding, we demonstrate that the local 

folding transition within P5abc controls the rate and pathway of assembly with the 

P5abc-deleted ribozyme core (E
ΔP5abc

), further highlighting the modularity of RNA 

structure (Chapter 3). Lastly, we show that the kinetics of assembly can be attributed to 

specific tertiary contacts that form in the assembly transition state such that the rate of a 

particular folding pathway is dictated by the properties of an individual tertiary contact 

(Chapter 4). The modularity of RNA structure makes it a reasonable molecule for the 

origins of life and an adaptable tool for bioengineering applications.
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Chapter 1: Versatility and modularity of RNA structure 

INTRODUCTION 

Structured RNAs have been ubiquitous dating back to the earliest stages of life on 

Earth, and since the discovery that RNA can act as an enzyme catalyst, or ribozyme, our 

knowledge of structured RNAs has greatly expanded (1). Nearly half a century of 

research has uncovered the intimate connection between RNA structure and cellular 

metabolism and developed a new world of RNA bioengineering. Clearly, RNAs are 

versatile biomolecules with endless applications, necessitating a clear understanding of 

how it forms functional structures. 

In this chapter, I outline a body of prior work that leads to a testable quantitative 

folding model to further establish that RNA structure is modular, and more importantly, 

can be rationally controlled. First, I recall the fundamental principles of RNA structure 

formation that led to a hierarchical RNA folding model. Then, I explore previous 

observations that reinforced the independence of structure formation within each tier of 

the hierarchy. I then discuss complexities that arise for a class of biological RNAs that 

violate the RNA folding hierarchy, riboswitches, as well as non-canonical designer 

structured RNAs currently used in research laboratories and clinics. There is evidence 

that RNA structure is built from smaller modules of structure, exemplified by the 

reoccurrence of a common tetraloop tetraloop-receptor tertiary contact (TL/TLR) in 

almost all kingdoms of life. To further test this concept, I utilized the P5abc subdomain 

from Tetrahymena thermophila, a strong model system to study RNA folding thanks to 

the large body of preexisting biochemical and biophysical measurements. Central to my 

studies is the cooperative folding behavior observed for tertiary structure formation in 

P5abc and other RNAs. To quantitatively predict cooperative RNA structure formation, I 

develop and test a reconstitution hypothesis that hinges on the notion that RNA structure 
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can be rationally separated into smaller energetically independent components or 

modules of structure. 

Fundamental studies of structured RNAs 

RNAs fold from a negatively charged linear chain of nucleotides to structured 

RNAs with three-dimensional architecture. The energetics of folding suggest that folding 

proceeds through discrete steps, or tiers, of structure formation. The independence of 

structure formation has been further exemplified by in-depth investigations of each 

energetic tier (secondary and tertiary structure). 

The RNA folding hierarchy 

The RNA folding hierarchy can be separated into three energetic tiers of structure 

(Figure 1.1). The primary structure is the nucleic acid sequence contained within a given 

RNA. In the presence of positively charged cations, RNA folds to secondary structure in 

the form of helical segments, and these helices can form when separated from the full 

length RNA (2). These results suggest that the RNA secondary structure tier is made of 

helical elements that are independent modules of structure. As the concentration of 

positively charged cations is further increased, long range interactions form at the tertiary 

structure level and the three-dimensional architecture is attained (3). The independence of 

energetic tiers afforded by the RNA folding hierarchy has led to astounding discoveries at 

the level of secondary and tertiary structure alone. 

RNA secondary structure and covariation 

An RNA secondary structure can be represented as a two-dimensional map of the 

helices and base-pairs. From thermodynamic measurements of different RNA helices, the 

stability of individual RNA base pairs has been determined (4, 5). These results 

suggested that the energetic contribution of an RNA base pair can be calculated from the 
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identity of the base pairs immediately flanking. This ‘nearest neighbor’ rule has led to 

energetic parameters that can predict, with relatively high confidence, the secondary 

structure of an RNA (5-8). Indeed, when the ribosome crystal structures were solved, it 

was found that much of the secondary structure of the 16S and 23S rRNAs was 

accurately predicted (9-11). 

Before elucidation of the ribosome structures, secondary structure models for the 

16S and 23S ribosomal RNAs were proposed using comparative methods of RNA 

sequences from many different species (12, 13). Covariation analysis, a particularly 

powerful subset of comparative analysis, infers the participation of individual bases in a 

helix by analyzing pairs of sequence changes between organisms that would serve to 

maintain Watson-Crick base pairing, e.g. if a C->A mutation is observed near a G->U 

mutation, then it is likely that these two nucleotides pair as part of an RNA helix. Thus, a 

mutation that disrupts a Watson-Crick base pair is often counterbalanced by a 

compensatory mutation in the opposite strand that restores the base pair. It would appear 

that some RNA helices are critical for function and selective pressures are present to 

maintain helical elements. This novel finding further suggests that helical elements may 

act as independent structure modules. 

RNA tertiary structure and isolated folding motifs 

Considering the pre-formation of secondary structure in the RNA folding 

hierarchy, an initial inspection of RNA tertiary structure begins with nucleotides that do 

not participate in helices. RNA hairpins are capped by loops of unpaired nucleotides, and 

unpaired nucleotides can be present within an otherwise continuous helix when 

nucleotides that cannot form Watson-Crick base pairs are inserted on one strand (bulges) 

or on both strands (internal loop) (14). Helices can also converge at one junction, e.g. a 



 4 

three-way junction connects three helices by linking them together with unpaired 

nucleotides at the junction (Figure 1.1B). The structured RNA studied herein adopts a 

three-way junction topology and has a bulge that is critical for folding. 

Bulges in an RNA helix create junctions that serve to bend and orient helices at 

angles relative to each other. A bend in the 5’ UTR of the Hepatitis C viral RNA is 

critical for hijacking the host translation machinery through an internal ribosome entry 

site (15, 16). The sequence conservation of the 5’ UTR has led to the development of 

various strategies for targeting this structure to treat the virus (17). Comparative sequence 

analysis and biophysical characterization has revealed a widespread bulge motif that 

tightly bends the helix at a 50° angle introducing a kink-turn in the RNA helix (18-20). 

Bends in the helix are critical to promote long-range interactions between distant regions 

of the RNA. 

The unpaired loops of two helices can ‘kiss’ to form long-range base pairs (21) 

(Figure 1.2A). A detailed analysis of assembly rates and equilibria of different kissing 

loop structures showed that kissing loop stability is determined primarily by the 

dissociation rate constant (off rate) with similar on rates observed for different kissing 

loop sequences (22). From these results, one could speculate that the kinetics of assembly 

for kissing loops are dictated primarily by the probability of a successful collision, 

resulting in formation of the Watson-Crick base pairs within the contact. This notion is 

quite powerful because it raises the possibility that the folding kinetics of structured 

RNAs can be predicted from the properties of the individual tertiary contacts, at least 

those structured RNAs that involve kissing loops. 

Another common long-range interaction is the tetraloop-tetraloop receptor 

(TL/TLR) motif, in which the loop of one helix docks into the minor groove of the 

receptor helix (Figure 1.2B). By comparing the solution structure of the tetraloop 
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obtained by NMR with RNA crystal structures containing a TL/TLR motif, it’s clear that 

the tetraloop is a preformed structure module while the receptor undergoes significant 

conformational changes upon binding (23-25). NMR measurements using a trans 

TL/TLR assembly system and smFRET measurements using a cis assembly system 

showed that, despite some conformational heterogeneity, the tertiary contact is able to 

form in isolation (26). This result further implies modularity to the structural connections 

in RNA. 

A-minor tertiary contacts are long-range interactions involving docking of a 

distant helix. These contacts involve the docking of an adenosine residue into the minor 

groove of a Watson-Crick base pair and are critical for biological functions such as 

decoding in the ribosome (27). One type of a-minor motif discussed in more detail below 

is the metal core metal core-receptor (MC/MCR) tertiary interaction, where a 5 

nucleotide bulge docks into the minor groove of an adjacent helix. Only within the last 

few years was it found that this complex element of tertiary structure could also readily 

fold in an isolated context, as observed with smFRET (Figure 1.2C) (28). These results 

strongly suggest that RNA tertiary structure is defined by modules of structure that form 

readily in isolation in support of the hierarchical folding model. A comparison of the 

measured rates for different modules of RNA structure is shown in Table 1.1. However, 

the energetic independence between secondary and tertiary structures hardly holds for 

larger more complex structured RNAs that may undergo subtle or even dramatic changes 

in base pairing when tertiary structure forms. 

Structured RNAs in biology and bioengineering 

RNAs begin to fold during transcription in the cell, so regulatory mechanisms that 

are linked to RNA folding begin with the biogenesis of the RNA in the nucleus. Because 
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secondary structure forms first during folding, non-native base pairs can form and persist 

for biological RNAs. Nature has harnessed the switch between alternative and native 

RNA base pair conformations to regulate cellular processes. These switches violate the 

energetic independence between structured tiers in the RNA folding hierarchy, making it 

critical to understand how regulatory RNA switches fold. Additionally, selection 

techniques have uncovered RNA structures that are used as experimental tools (spinach 

RNA) and in the treatment of disease (pegaptanib). 

RNA secondary structure switches 

It has become clear that RNAs are quite dynamic (29). The most prevalent 

example of secondary structure switches in both bacteria and eukaryotes are riboswitches 

(30). These RNAs bind to metabolite ligands, resulting in conformational changes at the 

tertiary structure level that are linked to changes in the base pairing of the riboswitch 

(Figure 1.3A). Regulation through RNA structure is achieved by the change in secondary 

structure that results from ligand binding. The well characterized S-adenosylmethionine 

(SAM) riboswitch is co-transcriptionally regulated by SAM binding, resulting in the 

formation of a terminator hairpin and RNA degradation (‘off’ state) (31). In contrast, in 

the absence of SAM, an alternative secondary structure forms that sequesters nucleotides 

that would participate in the terminator hairpin structure, thus forming an anti-terminator 

hairpin and allowing RNA transcription to proceed (‘on’ state) (32-35).  

Regulation can also be achieved at the translational level. The cobalamine B12 

forms a complex with metabolite ligand that directly sequesters the Shine-Dalgarno 

sequence used for ribosome binding and translation initiation (36, 37). In eukaryotes, 

regulation is achieved at the level of alternative splicing, resulting in mRNA products 

containing internal stop codons (38, 39). Understanding the fundamental principles that 
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define the relative abundance of structured intermediates and folding pathway followed 

for linked secondary and tertiary folding transitions is critical for understanding RNA 

gene regulation. 

Structured RNAs as bioengineering tools and therapeutics 

The well-known green fluorescent protein (GFP) is commonly used for various 

molecular biology applications including, but not limited to, in cell imaging to 

fluorescent activated cell sorting (FACS) techniques. GFP is a practical tool for studying 

proteins that are fused to a GFP reporter and then translated in cell, but tracking RNAs in 

cell is not easily achieved with this approach. 

To overcome this barrier, a green fluorescent RNA was developed using a 

SELEX approach that selects for RNA apatamers that bind tightly to a particular ligand 

(40-43). The ligands designed for these experiments were derivatives of 4-hydroxy-

benzylidene-imidazolinone (HBI), the fluorophore at the center of GFP. The ligand (Z)-

4-(3,5-difluoro-4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one (DFHBI) 

binds to the spinach RNA aptamer (Kd~500 nM) and is fluorescent upon radiation with 

UV light (365 nm) (44). Interestingly, when the sequence of the spinach RNA was 

determined, it was unclear how the DFHBI ligand might bind to the RNA based the 

predicted secondary structure (Figure 1.3B). These results suggest that ligand binding 

changes the tertiary structure of the spinach RNA in a way that completely reformats the 

secondary structure, a feature discussed previously for riboswitches. Indeed, crystal 

structures of the spinach RNA aptamer in complex with DFHBI show that the DFHBI 

stacks in the center of a G-quartet, stacking within a G-quadruplex structure at the heart 

of the spinach RNA (45-47). 
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I would like to briefly mention the RNA drug ‘Pegaptanib’ which is actively used 

for the treatment of neovascular age-related macular degeneration (AMD) (48-50). This 

RNA aptamer binds to the vascular endothelial growth factor (VEGF) and inhibits VEGF 

activity. The manipulability and adaptability to high throughput approaches makes RNA 

an attractive molecule for developing aptamers that can target disease at the molecular 

level. 

Convergent evolution of RNA modules 

After it was discovered that RNAs can possess catalytic activity similar to protein 

enzymes, there was a realization in the field that RNA could serve as both genetic 

material and catalyst. The proposal of an ‘RNA World’ preexisting DNA and proteins, 

which had come into existence decades earlier, was dramatically increased in momentum 

as a result of this discovery (51). Group I introns and other self-splicing autocatalytic 

RNAs with reversible chemistry were particularly important for this idea because they 

could drive evolution by mobilizing themselves out of and into different RNA sequences 

(52). Consistent with this model, group I introns are found in rRNA, tRNA, protein 

coding RNAs, mtRNAs, plant chloroplast DNA, and bacteriophages (53). Below, I 

compare and illustrate the similarities in structural architecture observed for three 

different introns from a bacteriophage (Staphylococcus aureus), a bacterium (Azoarcus), 

and a lower eukaryote (Tetrahymena thermophila). The common structural architecture 

of these group I introns from distantly related organisms and the ubiquitous distribution 

of the TL/TLR motif in RNA suggest that structured RNAs have propagated through 

horizontal gene transfer, and at the level of structural modules have evolved through 

convergent evolution. 



 9 

A common architecture for Group I intron catalytic cores 

A comparison between secondary and high-resolution tertiary structures of Group 

I introns from Azoarcus, Tetrahymena thermophila, and bacteriophage Twort illustrates 

the structural conservation of the Group I intron catalytic core (54-57). The conserved 

catalytic core is comprised of two coaxially stacked helices, P4-P6 and P3-P9, which 

surround the ribozyme active site (Figure 1.4A and B). There are structural differences 

between introns in the peripheral domains that flank the catalytic core (Figure 1.4C), but 

removal of these domains does not fully eliminate catalytic activity (58, 59), suggesting 

that only the core is required for catalysis. Indeed, ribozyme catalytic activity can be 

reconstituted from a two-piece trans assembly system with the P4-P6 and P3-P9 helices 

of the Tet ribozyme (60). 

Additionally, the same tertiary contact motif is present in all three Group I 

introns, Group II introns, and RNase P, the previously mentioned TL/TLR (25). These 

long range tertiary contacts, and others, stabilize the ring of tertiary contacts that form 

around the intron active site (61-63). Even though the architecture of the folded group I 

introns are largely conserved and the content of tertiary contacts are similar, there are no 

direct correlations between observed folding rate and intron size or the order of tertiary 

contact formation, suggesting that introns fold through unique folding pathways to the 

folded structure (64). It’s possible that the different peripheral elements substantially 

contribute to the folding pathway followed. A greater understanding of the fundamental 

factors that determine RNA folding flux through alternative assembly pathways is needed 

to address these models. 

The Tetrahymena thermophila Group I intron as a model RNA 

The Tetrahymena thermophila ribozyme is an attractive model system for 

investigating questions in RNA structure and RNA folding because of the wealth of 
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preexisting structural and biochemical data (55, 65, 66). While early folding studies 

followed folding of the entire intron or ribozyme to the native state, it was shown that the 

measurable steps in this process represent escape from misfolded kinetic traps that 

accumulate during folding (67). Thus, to directly probe folding steps that involve 

accumulation of structure during RNA folding and assembly, smaller, more tractable 

structured RNAs are valuable tools. Within the P4-P6 domain of the ribozyme is the 

P5abc subdomain, which can functionally separated from the Tetrahymena thermophila 

ribozyme core, folds in isolation, and can be reconstituted to form an active P5abc-

ribozyme core complex. In my work, I have quantitatively dissected the folding and 

assembly of the P5abc subdomain with the ribozyme core and demystified literature 

confounding our understanding of cooperative RNA folding and assembly processes. 

P5abc Folding: the P5c switch and metal core (MC) 

The P5abc subdomain has three helices (P5a/P5b/P5c) that are connected by 

single stranded linkers that converge at a three-way junction (Figure 1.5A). From analysis 

of RNAs with three-way junction topology in the protein data bank, a classification 

system was developed based on the number of linking nucleotides connected the three 

helices (68). The P5abc subdomain was classified as ‘Family C’ because the 3’ most 

junction has more nucleotides than the other junctions (Figure 1.5B). It is not known how 

the nucleotides in the junction contribute to folding. 

P5abc folds in isolation when separated from the ribozyme (69). In the presence 

of modest concentration of monovalent cations, an alternative secondary structure is 

adopted and the three helices extend into solution (Figure 1.5A). Upon addition of Mg
2+

, 

tertiary structure forms in the metal core (MC) of P5a and there is a shift in the base 

pairing of seventeen nucleotides primarily in the P5c helix (70, 71) (Figure 1.5C). The 
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secondary structure rearrangement in P5c reorganizes the nucleotides in the junction 

region and reformats the P5c loop (L5c) to include an additional uracil 

(GCAAUGCAA). By making point mutants in P5c that stabilize the alternative 

secondary structure over the native secondary structure, it was demonstrated that tertiary 

structure formation is dependent on switching to the native P5c secondary structure, 

inconsistent with the separability of secondary and tertiary structure tiers in the RNA 

folding hierarchy (72). A more recent study in 2012 obtained confounding results when 

they found that mutations in P5c that stabilize either the alternative or native secondary 

structure had no effect on MC folding equilibrium or kinetics (73). The authors 

concluded that the transition state for folding did not depend on P5c and made no 

interpretation about the lack of an effect on equilibrium, and they did nothing to test if 

their mutants indeed had the anticipated effects. To develop a predictive and quantitative 

understanding of the RNA folding landscape requires a physical description of how 

tertiary structure formation in the MC is directly coupled to P5c switching. 

Assembly of P5abc and the ribozyme core 

When P5abc is removed from the full length Tetrahymena ribozyme, the P5abc-

deleted ribozyme core (E
ΔP5abc

) can fold and still carry out activity (Figure 1.6). E
ΔP5abc

 

folds in isolation and can robustly assemble with P5abc to form an ‘exceptionally stable’ 

complex (74, 75). To gain structural insight into the assembled complex, footprinting 

approaches were used, such as hydroxyl radical footprinting, an approach that 

preferentially cleaves the RNA phosphate backbone in regions that are exposed to solvent 

(76, 77). Cleaved RNA products can be resolved on a sequencing gel to determine with 

reasonable precision the regions that are protected from the solution probe. When P5abc 

was mixed with E
ΔP5abc

, protections were observed at the interface of the ribozyme core 
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and at tertiary contact locations within P5abc (Figure 1.6) (74). Additional measurements 

analyzing the onset of catalytic activity for the assembled E
ΔP5abc

-P5abc complex 

demonstrated that the two structures are preformed, and when P5abc assembles with the 

natively folded E
ΔP5abc

, neither partner must undergo extensive refolding rearrangements 

during assembly (78). (As a separate observation, approximately half of the E
ΔP5abc

 is 

misfolded at equilibrium, and the complex with P5abc remains misfolded before slowly 

refolding to the more stable, tighter binding native complex (75)). 

The data strongly suggest that the two RNAs are structural modules that are 

preformed and rapidly assemble under conditions that support folding of P5abc and 

E
ΔP5abc

. As mentioned above, P5abc also undergoes a cooperative secondary and tertiary 

folding transition. It is not known how this cooperative folding transition contributes to 

the rate of folding or to the pathway followed during RNA assembly. What are the 

features of tertiary structure formation that dictate how RNAs assemble? I strive to 

answer these questions in my studies here. 

Cooperativity in RNA tertiary structure formation 

When this project was first started, there were few fundamental studies that 

directly probed cooperativity in RNA tertiary structure formation, and the 

aforementioned results on P5abc folding were confounding. Still, one study in particular 

probing the cooperativity between two tertiary contacts in P4-P6 provided a framework 

for quantitative predictions necessary to establish cooperativity in RNA folding. So, a 

reconstitution model is developed to test if a linked secondary and tertiary folding and 

assembly process can be understood from the properties of the individual structural 

modules. 
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Cooperativity of two tertiary contacts in the P4-P6 domain 

The P4-P6 domain folds in isolation from the ribozyme and adopts a sharp 180° 

bend that accompanies the formation of two long-range tertiary contacts with the adjacent 

P5abc subdomain. The folding over of the P4-P6 domain is well suited to single molecule 

fluorescence resonance energy transfer (smFRET) measurements because the folding 

transition brings two helices into close proximity (79). The two tertiary contacts that form 

during P4-P6 folding can be knocked out directly by mutagenesis. P4-P6 variant RNAs 

were made with each of the two tertiary contacts knocked out and the folding equilibria 

were measured (80, 81). The authors observed that folding of both tertiary contacts was 

better than either one alone, amounting to 3.2 kcal/mol of cooperativity between the 

formation of these two tertiary contacts. It was proposed that the cooperativity might 

arise from paying an electrostatic penalty associated with bringing the two helices 

together, or by better orienting the second forming tertiary contact for more successful 

collision probability. 

A reconstitution model to predict cooperative secondary and tertiary RNA folding 

thermodynamics and kinetics 

From the reductionist measurements conducted on smaller domains and 

subdomains of RNA structure, it appears that RNA structure is composed of smaller units 

of structure that can fold in isolation (modular). It is less clear how secondary and tertiary 

structure change impacts RNA-RNA assembly. 

To address these questions, a conformational search and capture model for 

assembly through one pathway was generated (Figure 1.7). If the conformational search 

step is in rapid equilibrium relative to the capture step, then the folding rate through this 

pathway can be predicted if the rate constant for capture is known (k2) and the pre-

equilibrium is measured (K1). The predicted rate constants can then be directly tested 
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against measurements of the assembly kinetics through this folding pathway. In these 

studies (Chapter 2), the limits of predictability for the reconstitution hypothesis are tested, 

leading to a greater understanding of RNA folding and assembly and interpretation of 

kinetics data. 
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Figure 1.1: The energetic tiers of RNA structure. 

(A) Simple free energy diagram of RNA structure formation and hierarchy. (B) RNA 

secondary structural motifs. Unpaired nucleotides are highlighted in green. RNA 

structures were generated using RNAComposer (82). 

 

 

 

 



 16 

 

Figure 1.2: Isolated modules of tertiary structure. 

(A-C) Structures shown are from the Tetrahymena thermophila ribozyme (63, 65). 
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Figure 1.3: Examples of RNA secondary structure switches. 

(A) Co-transcriptional folding of the SAM-I riboswitch. The aptamer domain is 

highlighted in teal, SAM ligand is red, the expression platform is yellow, and the relevant 

nucleotides in the base pair switch are magenta. (B) The predicted and ligand bound 

secondary structure of the Spinach RNA aptamer. The ligand DFHBI is highlighted in a 

green box. Figures are adapted from (83) and (47) with permissions from the publisher. 
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Figure 1.4: Structural similarities between group I introns. 

(A) Superimposition of ribbon structures from three different group I introns. Azoarcus is 

blue (84), Tetrahymena is green (55), and Twort is yellow (57). (B) The conserved 

catalytic core of group I introns. (C) Peripheral domains that flank the conserved catalytic 

core. Figure is adapted from (54) with permissions from the publisher. 
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Figure 1.5: The P5abc subdomain changes secondary and tertiary structure during 

folding. 

(A) Secondary structure diagrams of the alternative and native P5abc. The calculated 

stability of each structure was calculated with ViennaRNA (85). (B) Classification of 

different family types in folded RNAs with three-way junction topologies. P5abc is part 

of Family C. Figure is adapted from (68). (C) NMR structure of a truncated version of 

P5abc (tP5abc) in the absence of Mg
2+

 (70) and X-ray structure of P5abc within the P4-

P6 domain (65). 
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Figure 1.6: P5abc assembles with E
ΔP5abc

 (P5abc-deleted ribozyme core). 

The secondary structure and a model three dimensional structure of E
ΔP5abc

 (63). 

Protections observed by hydroxyl radical footprinting in the presence of P5abc relative to 

the absence of P5abc are indicated with light blue lines (74). 
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Figure 1.7: A reconstitution model to quantitatively predict RNA folding. 
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Structural 

Element 
kf (M

-1
 s

-1
) ku (s

-1
) 

RNA Duplex 10
5
 – 10

7
 10

-6
 – 10

-8
 

Kissing loop (22) 3 × 10
6
 0.17 

Tetraloop / 

tetraloop-receptor 

(26, 86) 

1.7 × 10
3
 3.3 

Metal core / metal 

core receptor (a-

minor) (28) 

1 × 104
 37 

Table 1.1: Kinetics measured for isolated RNA structural motifs. 
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Chapter 2: Dissection of a cooperative RNA secondary and tertiary 

conformational switch 

INTRODUCTION 

Structured RNAs function in a myriad of cellular processes that include protein 

production and RNA expression, and these RNAs are currently under active investigation 

as therapeutic targets (49, 50, 87-90). As structural information about functional RNAs 

has grown it has become apparent that complex RNA/protein complexes such as the 

spliceosome, the ribosome, and telomerase undergo orchestrated conformational 

transitions that enable them to switch between functional states as they carry out complex 

functions (29, 91-94). 

A general feature of these RNA conformational steps is a coupling of structural 

changes in multiple regions of the complex, allowing transmission of information 

between these regions. For example, translocation by the ribosome involves coordinated 

movements that propagate to the interface of the large and small subunits and potential 

restructuring of the tertiary contacts between subunits (95, 96). Similarly, coupled 

rearrangements are observed in riboswitch signaling, where binding of a ligand results in 

an alternative structure being favored and a biological outcome through changes in 

transcription, translation, or splicing (30, 31, 97-99). 

While in-depth functional and structural studies have allowed us to describe many 

of the conformational steps involved with function of RNA complexes (with still more to 

be uncovered), we know much less about the underlying energetics that drive these 

processes. An illustrative example comes from the P5abc subdomain of the Tetrahymena 

group I intron, which was identified as undergoing a conformational switch upon the 

addition of divalent cations (Figure 2.1A). Initial studies demonstrated a coupled 

rearrangement involving changes in the secondary and tertiary structure of the RNA, and 
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subsequent work and discussions implied an extremely high degree of cooperativity in 

this transition (70-73). 

These observations raise the question of how these complex transitions are carried 

out. Despite the observation of a concerted transition, there is presumably a need for a 

kinetic pathway with a series of intermediates to provide a viable route to formation of 

the final state, as well as an evolutionary route through which the complex structure 

would have arisen. Indeed, recently we uncovered a ‘partial’ switch in P5abc, with a 

transient change to native secondary structure in the absence of the full native tertiary 

structure (100) and formation of a native tertiary structure element in the absence of the 

native secondary structure (101). A deep understanding of RNA structure and function 

requires knowledge of the physical and energetic basis of coupling between RNA 

structural elements. 

Here, we built on the substantial prior work on P5abc to dissect the 

conformational steps in its concerted folding transition. Our results demystify the 

molecular events in this cooperative transition, quantify the underlying energetics, and 

unravel the structural connections. We find that this transition is multiple steps and 

modular, with modest levels of coupling between native secondary and tertiary structure 

formation at each step. The progressive increase in cooperativity likely functions to 

specify the native, functional state of the RNA, while the modular, independent folding of 

each element enables a kinetically accessible path to the native state. 

Results 

Structure and folding of P5abc 

P5abc is composed of three helical elements (P5a/P5b/P5c) that converge at a 

three-way junction (3WJ) (Figure 2.1A) (68). In P5abc folding, two Mg
2+

 ions bind 
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specifically to sites in P5a at an A-rich bulge termed the metal core (MC), resulting in the 

formation of a 270° corkscrew in the RNA backbone built upon these two site-bound 

Mg
2+

 ions (Figure 2.1A, bottom right structure) (65, 69, 102-104). The formation of 

tertiary structure in the MC is accompanied by a change in the base pairing of 17 

nucleotides, including a shift in the register of P5c and the formation of non-canonical 

base pairs in the 3WJ (Figure 2.1A). 

Mg
2+

 concentration dependence of P5abc folding reveals multiple transitions 

To monitor equilibrium folding, we incubated P5abc with various concentrations 

of Mg
2+

 (0.02-200 mM) and performed SHAPE and DMS footprinting (Figure 2.1B). In 

contrast to the simplest expectation from early results, the Mg
2+

 dependences were 

complex, with a range of Mg
2+

 midpoints and some nucleotides with multiple phases 

(Figure 2.3A and B, Table 2.1, and Table 2.2; see also Figure 2.1D for corresponding 

pseudo-gel image). These data indicate that P5abc folding is not a two-state process. To 

derive a minimal model, we fit all of the footprinting data with a global model using 

KinTek Global Kinetic Explorer (see Methods section: Global modeling of SHAPE and 

DMS footprinting data). The global fitting gave a minimal model with four discrete states 

and three Mg
2+

-dependent transitions between them (Figure 2.4 and Table 2.3). 

At sub-millimolar concentrations of Mg
2+

, several nucleotides in the 3WJ and the 

MC display modest enhancements of reactivity with increasing Mg
2+

 concentration 

(Figure 2.5A, B, and C; U to U*). These enhancements are also observed when Mg
2+

 is 

replaced with Ba
2+

, which does not support MC formation (Figure 2.5D) (105). Further, 

when divalent cations are added in the presence of 1 M NaCl, the enhancement is not 

observed (Figure 2.5E) (106). These results suggest that this transition reflects alleviation 

of electrostatic repulsion (107, 108), and it is not associated with secondary or tertiary 
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structure changes in P5c or the MC. Therefore, it is not discussed further and U and U* 

are collectively referred to as ‘Alt’. 

As the Mg
2+

 concentration is further increased, a second transition is observed, 

with protections in several regions of P5abc. Nucleotides within the MC and the 3WJ 

become protected from the SHAPE reagent (Figure 2.3C and D), indicating structure 

formation, and enhancements at key positions within P5c indicate the formation of native 

secondary structure (Figure 2.3E). These changes occur with near overlapping Mg
2+

 

dependences and are cooperative with Mg
2+

 concentration (n = 2.1 ± 0.1), as expected for 

a transition linked to cooperative binding of two Mg
2+

 ions in the MC (73). Thus, we 

conclude that in the second transition Mg
2+

 binds specifically to the MC and the MC 

forms tertiary structure, P5c forms the native secondary structure, and the 3WJ forms 

tertiary structure. 

At even higher Mg
2+

 concentrations, a third transition is observed by SHAPE 

(Figure 2.3B, dashed boxes, Figure 2.3E and F, Table 2.1, and Table 2.2). These 

nucleotides are within loop L5c, the 3WJ, and the MC. The distributed nature of these 

changes and their positions suggest native tertiary packing of P5c into a groove formed 

by the MC and 3WJ to give the conformation observed in crystal structures of P4-P6 

(Figure 2.1A, bottom right structure) (65, 66) and the ribozyme core (55). 

Quantitating cooperativity between the P5c switch and the MC 

The coincident formation of native P5c secondary structure and MC tertiary 

structure in the transition from Alt to IF provided support for the previous conclusion that 

these structural elements fold cooperatively (70-73). To test this model further and to 

measure the cooperativity, we used mutagenesis to block one of these structural elements 

from folding, and then we measured folding of the other element by SHAPE footprinting. 
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A P5abc variant that stabilizes the alternative secondary structure of P5c (U167C) (72, 

100, 101) displayed clear protections that indicated formation of the MC, but with an 

increased [Mg
2+

]1/2 value of 9.8 mM (Figure 2.6A and B, Table 2.1, Figure 2.7). The 

increased Mg
2+

 requirement indicates cooperativity between the P5c secondary structure 

change and MC formation. 

Two additional results show that for this mutant, when MC forms at the higher 

Mg
2+

 concentration, P5c remains in the alternative secondary structure, and thus that this 

measurement reveals the full extent of cooperativity. First, there was no visible Mg
2+

-

dependent transition in P5c up to 50 mM Mg
2+

 (Figure 2.7C). Second, a double mutant in 

P5c (U167C/U177C) that further stabilizes the alternative P5c secondary structure (101) 

gave the same Mg
2+

 dependence for MC nucleotides as the single mutant (Figure 2.6A 

and B). Together, these results show that MC formation and P5c secondary structure 

switching are thermodynamically coupled, but that this coupling is sufficiently modest 

for folding of the MC to be readily observed when P5c is prevented from switching to its 

native secondary structure. 

We also carried out the converse experiment, blocking MC formation by 

replacing A186 with U or the entire A-rich bulge with uridines (80, 106, 109) and 

monitoring the secondary structure transition of P5c by SHAPE (Figure 2.6C). We 

observed enhancements within P5c indicating native secondary structure formation 

(Figure 2.6D and Figure 2.8). Again, the Mg
2+

 requirement was increased, and the lack of 

a signal at MC nucleotides in these mutants showed that MC structure formation was 

indeed disrupted (Figure 2.8C). Thus, the P5c secondary structure rearrangement can 

occur without MC formation. 

To evaluate the cooperativity quantitatively, we focused on a Mg
2+

 concentration 

in the transition range for both the wild-type P5abc and the mutants. At 3 mM Mg
2+

, the 
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equilibrium values could be determined directly from the Mg
2+

 dependences without 

extrapolation. Comparison of these values shows that the coupling between P5c and the 

MC in this transition is modest, with a value of 1.3 kcal/mol (Figure 2.6E). 

A strong prediction of our results is that a mutant P5abc that favors the native P5c 

secondary structure would decrease the Mg
2+

 requirement for MC formation, because the 

wild type must ‘pay’ to switch the P5c secondary structure, whereas the mutants would 

already have native P5c formed (Figure 2.6E, bottom right equilibrium K´MC). Indeed, a 

mutant that stabilizes native P5c by inserting three additional Watson-Crick base pairs 

(Nat+3) displayed a reduced Mg
2+

 requirement for folding the MC (Figure 2.6A and B 

and Figure 2.9A). The equilibrium value at 3 mM Mg
2+

 was 7 ± 1, even a bit larger than 

the predicted value of 3 ± 1. Interestingly, protections in the 3WJ were also responsive to 

the stability of native P5c, as well as the MC, suggesting cooperativity between the MC 

and the 3WJ (Figure 2.6F). 

Together, these results indicate that P5c switching and MC tertiary structure 

formation are modular and cooperative. Each transition occurs readily in the absence of 

the other, and the two transitions are energetically linked, such that each transition is 

more favorable in the presence of the other, with modest cooperativity comparable to the 

formation of 1-2 hydrogen bonds in many systems (110). 

Structural origin of cooperativity in P5abc 

P5c and the MC are connected by the 3WJ, making it a leading candidate for how 

‘information’ on the folding of P5c could be transmitted to the MC and vice versa (see 

Appendix A: Structural connections in the 3WJ of P5abc). Further, three nucleotides that 

are liberated in the transition to native P5c form contacts in the 3WJ (Figure 2.1A, green 

nucleotides in Alt P5c). To test the role of the 3WJ in cooperative folding of P5c and the 
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MC, we followed folding of a construct in which equivalents of these three nucleotides 

were inserted and available for contacts in the 3WJ without the need for P5c native 

secondary structure (Figure 2.10A). In the background of mutations to ensure that P5c 

remained in the alternative secondary structure (U167C/U177C), we found that the Mg
2+

 

requirement for MC formation was reduced for this 3WJ restoration mutant, giving 

approximately the same dependence as the wild-type P5abc (Figure 2.9B and Figure 

2.10B). Thus, cooperativity between P5c secondary structure switching and MC tertiary 

structure formation is mediated through the intervening 3WJ. 

In the fully folded structure, P5c packs against the MC, forming long-range 

contacts that provide another possible source of cooperativity (Figure 2.11). Indeed, this 

packing transition would be expected to be cooperative with native structure because a 

long-range base pair between P5c and the MC (U168-G188, Figure 2.10C) is not possible 

without native structure, as both nucleotides form alternative local contacts (Figure 

2.1A). We first tested the role of this base pair by mutating U168 (73) and measuring 

P5abc folding (Figure 2.10C). As expected, the P5c packing transition was absent (Figure 

2.10D), while the lower Mg
2+

 transition that results in MC formation and P5c secondary 

structure remained intact (Figure 2.10D, A186 in open symbols). The high Mg
2+

 

transition was also absent for the Nat+3 mutant, which blocks the U168-G188 base pair 

by extending the P5c helix (Figure 2.10D, A184 in closed symbols). Thus, this tertiary 

folding transition depends on native structure in P5c and involves the folded MC, 

providing experimental support for additional cooperativity between these two structural 

elements. 

We next quantitated the cooperativity by ablating MC folding with the A186U 

substitution and following the P5c packing transition. To separate effects of MC 

formation on P5c secondary structure switching and to ensure that U168 is available to 
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interact with the MC, we used a variant that locks P5c into the native secondary structure 

(Figure 2.10E). We found that when MC formation was ablated, signals for P5c packing 

were also perturbed, indicating cooperativity between MC formation and P5c packing 

(Figure 2.10F). From the partial transition observed at high Mg
2+

 concentrations, we 

calculated a coupling value of 2.6 kcal/mol between P5c packing and MC formation 

(Figure 2.12). 

Discussion 

Cooperativity is a hallmark of biological macromolecules as it enables the 

population of a specific functional structure or structures in preference to the enormous 

number of alternative structures (111, 112). Here we used quantitative, high-throughput 

footprinting to dissect a complex RNA folding transition to two separable transitions, and 

we measured the cooperativity in each step and elucidated its origins (Figure 2.13A). In 

one transition, tertiary folding in the MC is linked to a secondary structure change in P5c 

by structure formed in the intervening 3WJ. In the second transition, the folded MC and 

P5c are mutually stabilized by tertiary packing of P5c against the folded MC. Overall, 

this cooperativity amounts to approximately 4 kcal/mol of stabilization. 

The multi-step, cooperative folding of P5abc 

Although cooperativity is present in each step of P5abc folding and the total is 

substantial, the values generated at each step are modest. Previously, this process had 

been described as being strictly concerted, but we find that P5abc folding is highly 

modular (Figure 2.13B). P5c can switch to the native secondary structure without the 

folded MC and the MC can form its tertiary structure without P5c. This latter result is 

consistent with earlier single molecule studies showing that the isolated MC can form 

tertiary contacts with its receptor in the P4 helix (80). Our results underscore that even a 
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modest amount of cooperativity is enough to make structural rearrangements appear to be 

strictly concerted. 

General properties of cooperativity in RNA folding 

The incremental, step-wise cooperativity we observe here may be a general 

feature of structured RNAs. Overall, tertiary packing of structured RNAs is relatively 

sparse, with extensive penetration by water, such that the RNA structural elements 

engage in discrete tertiary contacts with each other. Cooperativity can arise between local 

elements of native structure and long-range contacts, as we have observed here, or 

between tertiary contacts that are distant from each other due to effects on positioning 

and overcoming electrostatic repulsion (80). Thus, there are multiple mechanisms for 

generating cooperativity in structured RNAs, and it may be a general property of RNA 

that cooperativity increases in increments as native secondary structure and tertiary 

structure form progressively. 

Limited cooperativity as a virtue for RNA folding kinetics 

The modularity and limited cooperativity in P5abc could be important in biology 

by allowing a facile kinetic route to the fully folded state (113). While cooperativity 

serves a critical role for the thermodynamics of the folded state by ensuring that partially 

structured intermediates do not dominate the population, high cooperativity presents a 

potential problem for the kinetics of the folding process (Figure 2.13B and C). A 

corollary of high cooperativity is that the individual structural modules are unstable 

individually. During folding, the two contacts are unlikely to form simultaneously by 

chance, necessitating formation of one or even both contacts individually, followed by 

their collision and mutual stabilization. If each contact is highly unstable alone, the 

probability of its individual formation will be so low that the kinetics of global structure 
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formation may be too slow to permit biological function. In contrast, the presence of 

structural modules with significant independent stability provides a viable path through 

these steps to produce a functional RNA. 

Methods 

RNA preparation 

DNA templates were prepared by assembly PCR with four partially overlapping 

oligonucleotides (Integrated DNA Technologies). Primer extension reactions were 

carried out using Phusion High-Fidelity DNA Polymerase (New England Bio-labs) 

followed by purification of full-length, double-stranded DNA templates by Magnetic 

Bead PCR Clean-up (Axygen). PCR-amplified DNA template (0.2 μM) was used in 

transcription reactions with T7 RNA polymerase as previously described (114). RNA 

transcripts were isolated by affinity column (Qiagen). We used RNA constructs in which 

P5abc is flanked on both sides by a reference sequence that was used for internal 

normalization (Figure 2.1C and D). The RNA also includes a 3´ primer site. The labeled 

FAM primer used for reverse transcription includes a 5´ poly-A tail and a 3´ RNA 

binding site that bridges the RNA to an oligo-dT magnetic bead for purification. After 

correcting for signal saturation, overmodification correction, background, and 

normalization to the internal control (115), the 5´ and 3´ hairpin loops were comparably 

reactive at all Mg
2+

 concentrations probed (Figure 2.2A) and independent data sets were 

highly reproducible (Figure 2.2B), supporting the accuracy of the quantitative analysis. 

Signals were normalized to the single stranded linkers such that a reactivity value of ‘1’ 

indicates that a given nucleotide has the same reactivity as nucleotides within the 3´ 

single-stranded linker. The results were unchanged when the data were normalized to the 

3´ hairpin loop or the loop L5b within P5abc. 
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SHAPE and DMS footprinting 

200 nM RNA was pre-folded in 19 μL at the desired concentration of Mg
2+

 for 15 

min at 37 °C in a background of 100 mM KCl and 50 mM K-MOPS, pH 8.0, and then 

equilibrated at 25 °C for 10 min. Longer incubation times up to 120 min did not change 

the results, suggesting that the incubation time is sufficient to reach equilibrium. RNA 

was chemically modified by adding 1 μL of 1m7 SHAPE reagent (0.42 μg / μL, 5% 

DMSO final) or DMS (10 mM DMS, 5% DMSO, 0.45% ethanol final) and incubating for 

15 min. DMSO was included in DMS footprinting reactions because we found that 

DMSO decreased the Mg
2+

 requirement for P5c switching (116). The presence of 0.45% 

ethanol has no effect on the SHAPE footprinting profile of wild-type P5abc. A 

fluorescently labeled DNA primer (FAM) with a 5´ poly-A tail was annealed to oligo-dT 

magnetic beads (Poly-A Purist kit, Life Technologies), resulting in a 3´ overhang on the 

DNA primer that is fully complementary to the 3´ end of the RNA (Figure 2.1C). To 

purify modified RNA, 10 μL of the primer-bead mixture was incubated with RNAs for 

10 min, washed twice with 200 μL of 70% ethanol, and left to dry at room temperature 

for 20 min. RNAs were reverse transcribed with 5 μL of Superscript III reverse 

transcriptase mix (Life Technologies) at 42 °C for 60 min, followed by RNA degradation 

with 0.2 M NaOH at 90 °C for 3 min. The solution was neutralized with 0.3 M HCl, 0.4 

M Na-acetate, pH 4.5, and 700 mM NaCl. cDNAs were purified by oligo-dT magnetic 

beads and ethanol washed, as described above, for analysis by capillary electrophoresis 

(ABI 3730). Electrophoretic traces were aligned using HiTRACE and then quantified as 

described (115, 117). 

Data Processing and Analysis 

The presence of a transition in Mg
2+

 titrations was assessed by two criterions. 

First, only nucleotides that undergo a change in reactivity of at least 0.15 reactivity units 
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were considered significant. Second, only changes in reactivity that exceed the average of 

the error bars within the change were considered. Positions that result in significant 

blockage to reverse transcription in the absence of footprinting were not interpreted due 

to the high background. Changes in reactivity were fit to a sigmoidal binding equation to 

extract midpoints, amplitudes, and hill coefficients. 

Global modeling of SHAPE and DMS footprinting data 

We imported the quantified SHAPE and DMS footprinting data from 29 

nucleotides into Kintek Kinetic Explorer and fit all the data using one global model. We 

globally fit the data to a four state model, as described in Results. A clear feature of the 

data was steeper folding transitions than would be expected for a non-cooperative two-

state model. To enable one of the transitions to be cooperative with respect to Mg
2+

 

binding, which is not explicitly allowed in the Kinetic Explorer software, we incorporated 

an additional state into the model, making a total of five states (Scheme 1) (one of these 

states would never be populated significantly but allows a single transition to involve 

binding of two Mg
2+

 ions). The observed reactivity for each nucleotide is defined as a 

linear combination of parameter scaling factors associated with each state in the model 

(Equation 1). 

A ↔ B ↔ C ↔ D ↔ E    (Scheme 1) 

Reactivity = sa1*A + sb1*B + sc1*C + sd1*D + se1*E (Equation 1) 

In the model of Scheme 1, there are three possibilities for a single cooperative 

folding step: the transition from A to C, from B to D, or C to E. We enforced these three 

possibilities by systematically locking the scaling factors for states A and B (sa1=sb1), 

for states B and C (sb1=sc1), or for states C and D (sc1=sd1). These constraints ensure 

that during global fitting the corresponding folding intermediate does not substantially 
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populate and thus forms cooperatively. After global fitting under each constraint, the 

condition where state C does not significantly populate (five state B-C coop) produced a 

global fit that agreed best with all the data and included a cooperative transition (118) 

(Figure 2.4 and Table 2.3). 

We contracted the four state model to only have three states, and then we 

systematically constrained each species as the cooperative folding intermediate. 

A ↔ B ↔ C ↔ D (Scheme 2) 

React = sa1*A + sb1*B + sc1*C + sd1*D (Equation 2) 

Global fitting under constraints of B not significantly populating converged on a 

model where the first two transitions were non-cooperative, i.e. K1 < K2. When state C 

was constrained to be the cooperative folding intermediate, global fitting did converge on 

a cooperative model, but the χ2 value was 2-fold higher because parts of the data deviated 

from the model (30.1 vs. 63.7, Table 2.3). Taken together, global fitting of a model with 

four states including a cooperative folding transition did not account for all the 

footprinting data. 
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Figure 2.1: SHAPE and DMS footprinting approach. 
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Figure 2.1: continued., 

(A) Alternative and native structures of P5abc (left and right, respectively) (65, 70). 

Nucleotides that change base pairing during folding are marked by a ‘^’ and colored 

(P5c, blue; 3WJ, green; MC, orange). Two site-bound Mg
2+

 ions are yellow in the native 

tertiary structure model (26, 31). Base pairs are shown here and elsewhere using 

Leontis/Westhof nomenclature (119). (B) Steps in the high-throughput footprinting 

approach. The FAM indicates that the primer is fluorescently labeled with fluorescein. 

(C) P5abc footprinting cassette. The RNA includes flanking hairpins linked by single-

stranded segments used for internal normalization (red dashed lines). (D) Electrophoretic 

traces of reverse transcription products aligned and quantified by HiTRACE (117). The 

area under each peak is converted to gray scale and represented as a band (117). The red 

box indicates the nucleotides used for internal normalization. Eight control reactions 

without SHAPE reagent are shown at the left (No Mod) and span the Mg
2+

 concentrations 

used (0-200 mM Mg
2+

). The nucleotide number (nt #) in the P5abc region is shown on 

the left edge. 
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Figure 2.2: Quantitative analysis of footprinting data is reproducible. 

(A) Reactivity values are calculated by dividing the reactivity of nucleotides within the 5’ 

loop by the 3’ loop. Two of the five loop nucleotides are shown in the plot (GAGUA). 

(B) Normalized reactivity values of L5b loop nucleotides measured on two different days. 

Error bars are propagated from the error associated with fitting peaks in the 

chromatogram. 
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Figure 2.3: SHAPE  and DMS footprinting of wild-type P5abc. 
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Figure 2.3: continued., 

(A) Mg
2+

 dependences of SHAPE reactivity for representative residues to illustrate the 

three transitions. Labels for each transition are displayed near the corresponding Mg
2+

 

midpoint. The coloring is the same as in Figure 2.1. A minimal model is shown beneath 

the plot, with U to U* in parenthesis because this transition does not depend on the P5c 

switch or MC formation (Figure 2.5, below). (B) Normalized SHAPE reactivity values in 

the absence of Mg
2+

 and the presence of saturating Mg
2+

. Mg
2+

 midpoints are indicated in 

boxes, with dashed boxes indicating higher Mg
2+

 concentrations required to fold. Not all 

measured midpoints are shown and two midpoints are shown for transitions measured by 

DMS (Table 2.2). (C-E) Mg
2+

 dependences of nucleotides that undergo changes in the 

U*IF transition within the MC (C), the three-way junction (3WJ, D), and P5c (E). (F) 

Mg
2+

 dependences of nucleotides that undergo changes in the IFF transition. In all 

panels, error bars reflect the residual values associated with peak fitting of the raw 

chromatograms. 
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Figure 2.4: Global fitting of SHAPE and DMS footprinting data in Kintek Global 

Kinetic Explorer. 

Red dots indicate the footprinting data and the curve shows the best fit by a global model, 

which included four states and three transitions. See Methods section: Global modeling of 

SHAPE and DMS footprinting data above for further details. 
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Figure 2.5: The first folding transition depends on electrostatic environment. 
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Figure 2.5: continued., 

 (A) Nucleotides that underwent enhancements are in linking segments of the 3WJ (B) 

and in the MC (C). (D) SHAPE footprinting of mutants in Ba
2+

, a divalent ion that does 

not support tertiary structure formation of the MC (105). (E) SHAPE footprinting of the 

MC in the presence of 1M NaCl (black) (106) eliminates the observed enhancement at 

sub-millimolar Mg
2+

 concentrations (shown in orange for comparison). 
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Figure 2.6: Cooperativity between P5c and the MC folding. 
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Figure 2.6: continued., 

(A, B) SHAPE footprinting of the MC at nucleotide A186 for mutants that shift P5c to the 

alternative or native secondary structure. Predicted effects of the mutations on P5c were 

calculated using ViennaRNA (85). (C, D) SHAPE footprinting of the P5c secondary 

structure switch at nucleotide U168 for mutants that block MC formation. Effects of the 

mutations on the MC are shown as a lower limit from the absence of a detectable 

transition herein. (E) Quantitative analysis of cooperativity between P5c switching and 

MC formation. Calculated values are labeled with an asterisk (*). The coupling constant 

of 9, equivalent to 1.3 kcal/mol, is obtained from completion of the thermodynamic 

cycles top and bottom, and the value of 23 in parenthesis is obtained from comparison of 

measurements for MC formation with altP5c and natP5c (B). (F) SHAPE footprinting of 

A139 in the 3WJ for mutants that affect P5abc folding. 
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Figure 2.7: SHAPE reactivity for P5c variant U167C. 

(A) SHAPE reactivity heat maps in the absence and presence of saturating Mg
2+

 is 

shown. Nucleotides that have values between 0.3-1.0 are colored purple and those with 

higher values are red. Here and below, an asterisk (*) is shown at position G169 for 

certain mutants because this position has high reverse transcription stopping precluding 

confident interpretation of the signal at this position for mutants. (B) The MC can still 

form at position U135 when P5c is maintained in the alternative secondary structure. The 

double mutant U167C/A186U is shown in magenta. (C) The P5c secondary structure 

rearrangement is effectively blocked by the U167C substitution. 
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Figure 2.8: SHAPE reactivity for MC variant A186U. 

(A) SHAPE reactivity heat maps in the absence and presence of saturating Mg
2+

 is 

shown. (B) The P5c switch can still occur when tertiary structure formation in the MC is 

knocked out by the A186U substitution. (C) Tertiary structure formation in the MC is 

effectively blocked by the A186U substitution. The double mutant U167C/A186U is 

shown in magenta. 
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Figure 2.9: SHAPE reactivity for variants that impact the 3-way junction. 

Mutations are indicated by bold black nucleotides with arrows, inserted nucleotides are 

underlined, long range interactions are shown as dashed lines. 
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Figure 2.10: Dissecting the sources of folding cooperativity. 
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Figure 2.10: continued., 

(A) Gins-GUins mutant in the background of alternative P5c shown in red. (B) SHAPE 

footprinting of the MC at A186 for mutants that block P5c switching and restore native 

3WJ nucleotides. (C) Perturbation of the U168-G188 base pair to knock out the P5c 

packing transition. (D) SHAPE footprinting of mutants that knock out the P5c packing 

transition. MC formation (A186) is shown in open symbols, and P5c packing (A184) is 

shown in closed symbols. (E) Construct designed to enforce the native P5c secondary 

structure (C165A/G175U, designated A:U) and knock out the MC (A186U). (F) DMS 

footprinting of mutants that knock out the MC. 
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Figure 2.11: The packed P5abc conformation. 
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Figure 2.11: continued., 

(A) Structure alignment of the P5abc subdomain with front, top, and bottom views. The 

backbone of the P5c helix (blue) and MC (orange) are highlighted. P5abc regions where 

aligned from PDB files 1GID (green), 1L8V (cyan), 2R8S (black), 1GRZ (yellow), and 

1HR2 (red). (B) Nucleotides with an observed Mg
2+

 midpoint higher than 5 mM are 

highlighted in red. (C) Labeled structure illustrating the long-range U168-G188 base pair. 

D. A non-canonical k-junction motif between P5c and P5a* orients P5c toward the MC 

(120). 
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Figure 2.12: Quantitative analysis of cooperativity during folding. 

(A) Partial 3WJ formation in the P5c packing mutant. (B) Thermodynamic framework for 

MC folding, P5c switching, and P5c packing. Values are measured at 3 mM MgCl2. 

Calculated values are indicated with an asterisk (*). 
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Figure 2.13: P5abc folding model and free energy landscapes. 

(A) Compiled SHAPE and DMS footprinting signals associated with each transition are 

indicated with colored letters. The secondary structures illustrate the base pairs formed 

when the corresponding transition is completed. Cartoon RNA structures are shown as 

cylinders. Equilibria and cooperativities are calculated under conditions of 3 mM Mg
2+

. 

(B) Free energy surface for folding P5abc illustrating a modular folding landscape at 3 

mM Mg
2+

. (C) A cartoon illustrating the increase in the transition state (T.S.) barrier for 

folding in a high cooperativity surface. 
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Nucleotide Region Change [Mg
2+

]1/2 Hill, n Amp, A 

G134 MC Protection 1.8 ± 0.2 1.7 ± 0.1 0.18 ± 0.02 

U135 MC Protection 2.5 ± 0.1 2.1 ± 0.2 0.68 ± 0.07 

A136 MC Protection 3.1 ± 0.4 2.2 ± 0.3 0.14 ± 0.01 

A139 3HJ Enhance-Protect 0.11-3.9 7.1-1.8 0.71-3.2 

A140 3HJ Protection 2.6 ± 0.2 1.5 ± 0.3 3.7 ± 0.7 

G141 3HJ Protection 4.4 ± 1.0 2.3 ± 0.6 0.42 ± 0.17 

G163 3HJ Protection 3.3 ± 0.1 2.1 ± 0.2 2.4 ± 0.3 

G164 3HJ Protection NC NC NC 

U168 P5c Enhance-Protect 2.1-35 2.4-2.1 1.2-0.60 

G169 P5c Enhance-Protect 1.6-20 2.3-1.8 1.6-1.8 

C170 P5c Protection 17 ± 3 0.78 ± 0.14 1.3 ± 0.1 

A171 P5c Protection 4.5 ± 0.1 0.92 ± 0.14 1.1 ± 0.2 

A172 P5c Protection 9.2 ± 1.9 1.6 ± 0.1 0.76 ± 0.11 

A173 P5c Enhance-Protect 0.13-3.9 2.9-1.8 0.16-0.38 

G176 P5c Protection 3.7 ± 0.7 1.9 ± 0.4 0.20 ± 0.05 

U177 P5c Enhance-Protect 0.23-7.7 1.8-1.2 0.14-0.51 

U182 MC Enhance-Protect 0.12-4.0 1.1-2.2 0.17-0.36 

A183 MC Enhance-Protect 0.24-4.6 1.9-1.9 0.57-1.6 

A184 MC Enhance-Protect 0.27-4.8 2.4-1.9 0.70-2.6 

U185 MC Enhance-Protect 0.28-5.3 2.3-1.7 0.56-2.3 

A186 MC Protection 2.8 ± 0.1 1.9 ± 0.1 2.7 ± 0.5 

A187 MC Protection 6.2 ± 0.4 2.7 ± 0.3 1.7 ± 0.4 

G188 MC Protection 7.2 ± 1.4 2.4 ± 0.3 0.52 ± 0.04 

Table 2.1: Mg
2+

 induced folding parameters from SHAPE footprinting. Nucleotides 

with biphasic changes in reactivity have two parameters shown separated by 

a hyphen. For these positions, the parameters are apparent midpoints 

because the first transition will influence the magnitude of subsequent 

transitions. Nucleotides that do not change are labeled as NC. 
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Nucleotide Region Change [Mg
2+

]1/2 Hill, n Amp, A 

A173 P5c Enhancement 15 ± 1 0.78 ± 0.10 1.4 ± 0.21 

A183 MC Protection 12 ± 5 0.96 ± 0.22 1.3 ± 0.3 

A184 MC Protection 9.6 ± 2.8 1.0 ± 0.2 0.80 ± 0.08 

A186 MC Protection 2.9 ± 0.3 1.6 ± 0.4 1.1 ± 0.2 

A187 MC Protection 3.9 ± 0.5 1.4 ± 0.1 0.78 ± 0.06 

Table 2.2: Mg
2+

 induced folding parameters from DMS footprinting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 57 

Model K1 K2 K3 K4 χ2 

4 state, A-B coop 0.042 11.3 0.98 NA 30.1 ± 0.2 

4 state, B-C coop 0.28 2.7 1.99 NA 63.7 ± 0.2 

5 state, A-B coop 0.04 1.22 2.1 11.7 16.0 ± 0.1 

5 state, B-C coop 0.5 2.37 1.89 9.1 15.3 ± 0.1 

5 state, C-D coop 2.8 27.7 0.097 3.03 30.3 ± 0.2 

Table 2.3: Parameters from global modeling. See Methods section Global modeling of 

SHAPE and DMS footprinting data for the initial constraints of each global 

fit. NA means that the parameter is not applicable for the model. 
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Chapter 3: RNA structural modules control the rate and pathway of 

RNA folding and assembly1 

INTRODUCTION 

Structured RNAs are ubiquitous in biology and perform essential processes in all 

cells. They fold to functional forms by traversing complex energy landscapes along 

pathways that include multiple transitions and intermediates, and many RNAs must also 

assemble with proteins, other RNAs, or small molecules. While considerable progress has 

been made in predicting folded RNA structures (121), the complexity of RNA folding 

and assembly reactions and the myriad of potential pathways present formidable 

challenges to obtaining a deep and predictive understanding of these processes. 

Underscoring the need for such understanding, many RNAs are thought to function in the 

cell under kinetic control, with the RNA having a short period of time to respond to 

cellular cues before a commitment is made to a folding pathway and thereby to 

downstream signals (122, 123). Further, improper ribosome assembly and incorrect 

formation of splice junctions are linked to diseases, highlighting the essential nature of 

accurate and efficient RNA folding (124, 125). 

A feature of RNA that has greatly aided understanding is the largely hierarchical 

nature of its folding (126). Local RNA secondary structure typically forms prior to 

tertiary structure –isolated helices form in microseconds– and secondary structure 

formation can be highly favorable even in the absence of enforcing tertiary contacts (127, 

128). Typically, tertiary structure is thought to form as these pre-formed secondary 

structure elements are arranged relative to one another. Energetic separation of RNA 

secondary and tertiary structure formation is common, although not absolute, as limited 

                                                 
1Adapted and reproduced from Gracia B, et al. (2016) RNA Structural Modules Control the Rate and 

Pathway of RNA Folding and Assembly. J Mol Biol.; all co-authors contributed equally to the work. 
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changes in secondary structure occur in tandem with the formation of tertiary structure, 

including around the catalytic sites of group I introns (129, 130) and in riboswitches as a 

consequence of ligand binding (123, 131-133). Indeed, even when higher-order folding is 

intertwined with secondary structure changes, a general view has emerged in which local 

secondary elements fold first to native structure, with pre-formed native local structure 

then reinforced as it forms tertiary contacts with other structural elements. 

The prominence of local structure has led to the idea that RNA structures can be 

understood from the properties of its structural modules: RNA helices, junctions, and 

tertiary contacts (134). This idea can be traced back to observations that small 

components of large RNAs sometimes adopt essentially the same structures in isolation 

and in their corresponding biological RNAs (9, 55, 66, 135, 136), a clear indication that 

the structure is determined locally. Even for RNA elements that display structural 

differences in their biological RNAs relative to the same element in isolation, recent work 

indicates that the native structure can be present in the isolated element as a minor 

conformation among an ensemble –an excited state (137, 138)– that is then trapped by 

intra- or inter-molecular interactions in a process of conformational selection (33, 35, 

139-143). Thus, understanding the excited states and their relative populations will likely 

give profound insights into the possible final structures adopted by a given structural 

module and the relative energetics of different possible structures. 

Analogously, it is possible that the structural and dynamic properties of RNA 

modules can be used to understand and even predict the folding pathways and rates for 

complex RNAs. The Tetrahymena group I intron ribozyme and its component 

subdomains have been instrumental for studies of RNA folding, structure, and function. 

Rapid tertiary structure formation occurs in the peripheral subdomain P5abc in a 

transition that includes a secondary structure rearrangement from an alternative 
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conformation to the native conformation (70, 71, 144, 145). The pre-folded P5abc 

assembles with the rest of the intron by forming two long-range contacts with another 

helical subdomain to form the P4-P6 domain and a third long-range contact with another 

peripheral element of the intron. In light of the prior results, the simplest model for 

ribozyme folding is that P5abc forms its native local structure first and then forms the 

long-range tertiary contacts via conformational selection. However, it is not known 

whether this pathway is indeed followed, and if so, whether it is obligate, and it is not 

known whether properties of the structural modules within P5abc that form local and 

long-range contacts can be used to understand or predict the folding pathways and rates. 

Here we used a two-piece system of the P5abc subdomain and the Tetrahymena 

group I intron core to probe whether perturbing one such structural module within P5abc 

would give a predictable effect on the overall assembly process. The rationale is that if 

P5abc is required to fold locally first and then assemble with the intron core via 

conformational selection, it should be possible to ‘tune’ the assembly kinetics by 

generating point mutations that modulate the local folding transition of P5abc. Indeed, we 

find that modulating the stability of the alternative secondary structure in P5abc results in 

tuning across a ~100-fold range of assembly rate constants, supporting the 

conformational selection pathway. Nevertheless, there is a limit of ~100-fold for the rate 

decrease, and we show that this limit arises because a distinct, induced fit pathway 

becomes dominant upon further destabilization of native P5abc structure, with assembly 

preceding the local rearrangement and likely nucleated by a tertiary contact that does not 

require the native P5abc structure. The presence of this pathway allows assembly of 

highly destabilized P5abc mutants to proceed orders of magnitude faster than would be 

calculated along the conformational selection pathway, thereby smoothing the complex 

and rugged RNA folding landscape. Our results highlight the pliability of RNA folding 
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pathways and bolster the idea that RNA folding processes can be understood at a 

quantitative level from an understanding of the properties of component modules. 

Results 

We used a two-piece system consisting of P5abc and the P5abc-deleted ribozyme 

(E
ΔP5abc

) (58, 74). In the absence of Mg
2+

, P5abc forms an alternative conformation that 

lacks tertiary structure but has secondary structure, including a set of non-native base 

pairs in the helix P5c and one in P5a (Figure 3.1A). In the presence of millimolar Mg
2+

, 

the formation of tertiary structure is linked to a one-nucleotide shift in base pairing in 

P5c, a one-nucleotide shift in P5a with formation of a bulge, and the formation of 

additional non-canonical base pairs in P5b (Figure 3.1A and B) (70-72). Upon folding to 

the native state, P5abc can robustly assemble with the largely pre-folded E
ΔP5abc

 core by 

forming two tertiary contacts with the other helical stack of the P4-P6 domain, a metal 

core/metal core receptor (MC/MCR) and a tetraloop/tetraloop receptor (TL/TLR) 

interaction, and a kissing loop tertiary contact between the loop of P5c and loop L2 of the 

core (P14) (Figure 3.1C) (63, 69, 74). Two of the specific structures within P5abc that 

form these tertiary contacts, the MC and the native sequence in the loop of P5c, form 

their native structures in the local P5abc folding transition (Figure 3.1A and B), 

contributing to the expectation that this transition precedes assembly. The overall 

structure of P5abc is the same in isolation and within the intact intron or with the rest of 

the P4-P6 domain (55, 66, 146). The two-piece system also adopts a native conformation, 

as it retains full catalytic activity and gives the same overall protection pattern as the full, 

one-piece ribozyme in chemical footprinting experiments (59). 
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Mutations tune assembly kinetics of P5abc with the intron core 

If P5abc assembles with E
ΔP5abc

 via conformational selection, mutants for which 

the local native folding of P5abc is unfavorable would be predicted to assemble slower 

than wild-type P5abc because they would first have to undergo this unfavorable transition 

to the native state (Figure 3.2A). Further, if the secondary and tertiary transitions within 

P5abc are tightly coupled, mutations that stabilize the alternative secondary structure of 

P5abc relative to the native secondary structure are predicted to shift the equilibrium for 

the coupled transition. We tested three such point mutations (Figure 3.1A): U167C and 

G174A, which convert a G-U pair in the alternative P5abc structure to a Watson-Crick 

base pair and were shown previously to favor the alternative structure in the isolated 

P5abc (72), and U177C, which also changes a G-U to a G-C pair in the alternative 

structure and does not change the base pairing in the native structure. Notably, these three 

nucleotides do not form tertiary contacts in the native structure. 

We monitored the assembly kinetics of radiolabeled wild-type and mutant 

versions of P5abc with the E
ΔP5abc

 core by using an electrophoretic mobility gel shift 

assay (EMSA) with a ‘chase’ of excess unlabeled P5abc (Figure 3.2B). Each P5abc 

mutant bound E
ΔP5abc

 with a pseudo-first-order rate constant that was linearly dependent 

on E
ΔP5abc

 concentration (Figure 3.2C and D). The wild-type P5abc assembled with a 

second-order rate constant of 1.1 (± 0.1) × 10
7
 M

–1
 min

–1
 (Figure 3.2D and Table 3.1), as 

measured previously (75, 78). As predicted, all three mutants assembled slowly, giving 

rate constants similar to each other (~2 × 10
5
 M

–1
 min

–1
) and approximately 50-fold lower 

than that of the wild-type P5abc (Figure 3.2E). 

We also tested a point mutation predicted to stabilize the native P5abc secondary 

structure relative to the alternative structure. The G176A mutation disrupts a C-G base 

pair in the alternative structure without changing base pairing in the native structure 
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(Figure 3.1A). In the background of the otherwise wild-type P5abc, this mutation was not 

expected to impact the assembly rate significantly because wild-type P5abc adopts the 

native structure as the predominant ground state under our experimental conditions (10 

mM Mg
2+

; (70) and data herein). Thus, further stabilization of the native structure by 

G176A would not increase the fraction of native P5abc significantly. Indeed, we found 

that the G176A P5abc assembled with E
ΔP5abc

 with the same rate constant within error as 

the wild-type P5abc (Fig. 2(d), Fig. S2, and Table 1). 

A further prediction was that the G176A mutation would accelerate P5abc 

assembly in the background of the mutations that stabilize the alternative secondary 

structure – i.e., G176A would confer at least a partial rescue on these mutations. Indeed, 

in the background of each of the three mutations above, the rate constant for P5abc 

assembly with E
ΔP5abc

 was increased to within 10-fold of that for wild-type P5abc. We 

observed similar effects over a range of conditions, with rate decreases for the 

destabilizing mutations in the range of 100-fold and consistent rescue by G176A (data 

not shown). 

Together, these results show that the assembly rate of P5abc with the intron core 

can be tuned by mutations that are predicted to change the equilibrium for a local 

secondary structure transition within P5abc. Mutations designed to stabilize the 

alternative conformation slowed assembly by as much as 100-fold, and this decrease 

could be rescued by a second mutation (G176A) predicted to shift the equilibrium back 

toward the native conformation. Thus, these data are consistent with a simple two-step, 

conformational selection pathway in which P5abc rearranges locally to form native P5abc 

and then assembles with the core. 
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Direct measurement of the folding transition within P5abc 

To further test whether the changes in assembly kinetics reflect changes in the 

P5abc folding equilibrium, we used NMR to directly measure the equilibrium constant 

for the conformational transition for the isolated wild-type P5abc and mutants (70, 71). It 

was shown previously using a truncated, 56-nt version of P5abc (tP5abc) that the 

transition results in chemical shift changes for several imino protons (70). In particular, 

the Mg
2+

-induced change from the alternative to the native structure results in the 

disappearance of four imino peaks and the appearance of four new peaks, assigned to be 

G141, U142, G160 and U162 (70). A particularly prominent signal is for U142, near the 

‘top’ of P5b. This residue gives a sharp peak in the absence of Mg
2+

 with a chemical shift 

of 14.31 ppm and shifts to a new peak at 14.00 ppm in the presence of Mg
2+

 (70). The 

new peak is consistent with the X-ray crystal structure of native P4-P6 in which two G-A 

base pairs form above the U142-A161 pair and bind to a magnesium ion, presumably 

changing the environment of U142 to give the observed chemical shift change (70). 

For the wild-type tP5abc, incubation in the absence of Mg
2+

 resulted in a 

spectrum with sharp, well-resolved imino proton resonances (10-14 ppm), and Mg
2+

 

addition shifted the peaks as expected (Figure 3.3). We assigned the resonances both in 

the absence and presence of Mg
2+

 using 2D NMR experiments and 
15

N-labeled tP5abc, 

and the results were in excellent agreement with assignments reported previously (70) 

(Figure 3.3A). To monitor the Mg
2+

-dependence of the folding transition, we recorded 

1D NMR spectra of tP5abc RNA at various Mg
2+

 concentrations. With 2 mM free Mg
2+

 

the U142 peak (14.31 ppm) decreased in intensity and the 14.00 ppm peak, termed 

U142*, increased (Figure 3.3B). At higher Mg
2+

 concentrations substantial peak 

broadening and losses of signal were observed, as noted previously (70), likely due to 

RNA aggregation. 
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We performed analogous NMR measurements on tP5abc variants. U167C RNA 

gave a 
1
H imino spectrum similar to that of the wild-type tP5abc in the absence of Mg

2+
, 

but it did not give the characteristic shifts in peak positions even with 50 mM free Mg
2+

, 

as expected for a mutation that stabilizes the alternative P5c secondary structure (Figure 

3.3). In contrast, the G176A RNA, with its mutation that is expected to stabilize the 

native secondary structure, gave a prominent U142* peak in as little as 2 mM free Mg
2+

, 

indicating stabilization of the native tP5abc conformation (Figure 3.3B). 

A key test of predictions from assembly kinetics was the behavior of the double 

mutant, U167C/G176A. This mutant assembles more slowly than the wild-type P5abc, 

but the decrease is modest (Table 3.1), suggesting that the equilibrium between the 

alternative and native conformations is close to unity. Indeed, at 10 mM Mg
2+

 this RNA 

prominently displayed both the U142 and U142* peaks, indicating that both species are 

populated (Fig. 3(b)). We used the relative peak volumes of U142* and U142 to estimate 

the equilibrium value for the two conformations (Keq = [Native]/[Alt]). With 2 mM free 

Mg
2+

, Keq was 0.31, and its value increased with increasing Mg
2+

 concentration to 0.79 at 

10 mM Mg
2+

 (Table 3.2). 

To obtain an independent measure of the effects of the mutations on the 

equilibrium between the alternative and native structures, we used quantitative DMS 

footprinting (115). It was shown previously that the transition to native P5abc enhances 

reactivity at A173, which forms a protected Watson-Crick base pair in the alternative 

conformation but a reactive, non-canonical base pair in the native conformation (72). As 

expected, the G176A mutant gave a high level of reactivity at 5 mM Mg
2+

, consistent 

with the native structure, and U167C gave a low level of reactivity, consistent with the 

alternative structure (Table 3.3). Supporting the interpretations of the NMR results, the 
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wild-type P5abc and the U167C/G176A double mutant gave intermediate levels of 

reactivity, suggesting mixtures of the native and alternative structures at 5 mM Mg
2+

. 

While these results are in qualitative agreement with the model of a direct linkage 

between the conformational transition in P5abc and assembly with the ribozyme core, the 

assembly rate constant for the U167C/G176A and the U177C/G176A mutants were 

somewhat lower than would be predicted from the simplest model in which, upon 

rearrangement to the native state, the U167C/G176A mutant assembles with the same 

rate constant as the wild-type P5abc. Further work suggests that this deviation is an 

idiosyncratic effect of the G176A mutation in these backgrounds (see Appendix A: 

Structural connections in the 3WJ of P5abc). 

Mutations switch flux from conformational selection to induced fit 

The three point mutations, U167C, G174A, and U177C, were predicted to slow 

assembly relative to the wild-type P5abc and did so. However, the three mutations each 

slowed assembly by ~50-fold, despite much larger effects predicted for two of them from 

nearest neighbor rules (Table 3.1). To test the possibility that the predictions were 

incorrect, with the three mutations coincidentally giving the same effect on the P5abc 

equilibrium, we probed double mutants, noting that two independent substitutions would 

be expected to slow assembly by ~2,500-fold (50 × 50). The double mutants 

U167C/U177C and G174A/U177C have substitutions expected to produce independent 

effects on the secondary structure transition equilibrium as they alter non-adjacent base 

pairs in P5c (Figure 3.1A). In contrast to the empirically predicted 2,500-fold effect, and 

despite the nearest neighbor prediction of a shift in the equilibrium toward the alternative 

secondary structure by as much as 10
5
-fold (Table 3.1), these mutants assembled with 

rate constants within 2-fold of the values for the single mutants (Figure 3.2E and Table 
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3.1). DMS footprinting results indicated that the second mutation stabilized the 

alternative secondary structure, as expected (data not shown). Thus, further weakening 

the native structure of P5abc relative to the alternative structure does not slow assembly 

beyond the decrease of ~100-fold. 

The loss of dependence of the assembly rate on the equilibrium for P5abc 

structure in this regime suggested that, for the mutants that strongly stabilize the 

alternative structure, assembly with the intron core does not require rearrangement to the 

native state prior to the rate-limiting assembly step. Instead, the data strongly suggest that 

the rearrangement occurs after initial assembly in an induced fit process or, alternatively, 

not at all, with the alternative conformation remaining present in the complex. 

To test whether these P5abc mutants (U167C, G174A, and U177C, and mutants 

with two of these substitutions) rearranged in their complexes with the core, we measured 

catalytic activity and performed DMS footprinting. Upon complex formation, mutants 

tested from this group displayed wild-type catalytic activity for cleavage of the standard, 

all-ribose substrate and a modified substrate that destabilizes tertiary docking of the 

substrate and would therefore reveal docking differences between the wild type and 

mutants (see Methods Section, Ribozyme catalytic activity measurements and Table 3.4). 

Prior results demonstrated that loss of the P14 tertiary contact, which is formed by P5c 

and not expected for the alternative conformation (see below), resulted in weakened 

docking (62). Thus, the observation of intact docking indicates formation of the native 

P5abc structure. Further, the DMS reactivity at A173 was enhanced for all three point 

mutants (Figure 3.4), although the G174A variant gave smaller increases, perhaps 

because the G-to-A substitution at the adjacent position impacts the DMS reactivity of 

A173. These results provide strong support for native complex formation with the P5abc 

mutants. Thus, together the results indicate that there are two pathways to the native 
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complex –a conformational selection pathway and an induced fit pathway– and the 

relative flux through each pathway depends on the stability of the native P5abc structure. 

Probing the interactions formed along each pathway 

Having established the two folding pathways, we set out to learn about the 

interactions formed in the assembly transition states along them. A strong candidate for a 

difference between the two pathways was P14, the long-range ‘kissing loop’ interaction 

of loop L5c with the complementary sequence in L2 (U43 – A46, Figure 3.5A). 

Assembly of the native P5abc could involve the early formation of P14, but the 

alternative conformation has a shift in the register of L5c that would prevent formation of 

the native P14 base pairs. Thus, it was possible that P14 would be formed in the transition 

state for assembly of the wild-type P5abc but not for mutants that use the alternative 

folding pathway (U167C, G174A, U177C, Figure 3.5A). Although some P14 base pairs 

or non-native interactions might be possible, U168 of L5c should not be able to form a 

P14 base pair with A46 because U168 forms an internal base pair with A173 in the 

alternative P5abc structure. 

We tested for formation of the U168-A46 base pair by measuring P5abc assembly 

with a point mutant of E
ΔP5abc

 that eliminates the potential to form it (A46C; Figure 

3.5B). This mutation decreased the assembly rate constant of the wild-type P5abc by 6-

fold (Figure 3.5B, square vs. triangle), consistent with a base pair with A46 contributing 

to transition state stabilization. The double mutants that include the P5c rescuing 

mutation G176A (U167C/G176A, G174A/G176A, and U177C/G176A) also assembled 

slower with the A46C core than the wild-type core (2-5-fold). In striking contrast, the 

assembly rates of U167C and U177C were not affected and G174A was decreased less 

than 2-fold (Figure 3.5B and Table 3.1). These results suggest that the base pair between 
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A46 and U168 is formed in the transition state for assembly of the wild-type P5abc and 

the double rescue mutants, because eliminating the ability to form this base pair slowed 

assembly of these P5abc variants. Assembly rates of the P5abc mutants that strongly 

stabilize the alternative conformation and use the induced fit pathway were unaffected, as 

expected because U168 is base paired within the alternative P5c helix and unavailable to 

base pair (Figure 3.5A). We infer that the other three base pairs of P14 are also unlikely 

to be formed in the rate-limiting transition state along the induced fit pathway. Nucleation 

of complex assembly must involve formation of an alternative contact or contacts, likely 

including the TL/TLR interaction (see Chapter 4). 

These results also provide additional support for the existence of the two 

pathways, as one involves P14 formation in the transition state and one does not appear to 

do so. As elaborated in the Discussion, the wild-type P5abc and variants in which the 

native structure remains moderately stable use primarily the conformational selection 

pathway, and mutations that stabilize the alternative P5abc structure beyond a critical 

threshold switch the bulk of the flux to the induced fit pathway. 

Discussion 

Building on prior evidence for structured RNAs as collections of structural 

modules whose overall structure can be understood from the properties of the modules, 

we tested whether the assembly kinetics of the P5abc peripheral element with the intron 

core could be rationally tuned by manipulating the native stability of P5abc. P5abc was 

thought to fold first and use a conformational selection assembly process. 

We found that the rate of assembly of P5abc for the intron core can be tuned 

across a range of 100-fold in assembly rate constant. Further results indicated a second 

regime in which mutations that modulate the local structure in P5abc produce a switch to 
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an alternative assembly pathway that uses an induced fit mechanism instead of 

conformational selection. As described further below, these pathways involve the 

formation of distinct tertiary contacts in the assembly transition states and raise the 

possibility that the maximal rate constants are simple reflections of the type of tertiary 

contact that nucleates assembly along each pathway. This behavior suggests a high 

degree of modularity in folding and assembly, highlights the connections between the 

properties of RNA structural modules and the behaviors of complex folding processes, 

and demonstrates how manipulation of underlying structural modules can provide highly 

specific tests of folding pathways and models. 

Folding then assembly: the conformational selection pathway 

Figure 3.6 depicts the assembly pathway that dominates flux for a given 

equilibrium for folding P5abc. The wild-type P5abc and mutants that include the native-

stabilizing G176A substitution (U167C/G176A, G174A/G176A, and U177C/G176A as 

well as the single mutant G176A) follow the conformational selection pathway. In this 

pathway, P5abc first rearranges to the native conformation and then assembles with the 

intron core via a rate-limiting transition state in which P5abc remains in the native 

conformation and P14 is formed (Figure 3.7, blue pathway). The maximal rate constant 

for this pathway is ~10
7
 M

–1
 min

–1
, the observed rate constant for the wild-type P5abc 

and the G176A mutant. These two versions of P5abc populate the native state favorably 

in the absence of the intron core, so this value, ~10
7
 M

–1
 min

–1
, represents the second-

order rate constant for binding between native P5abc and the core. Most simply, this 

value may reflect formation of the P14 tertiary contact (cartoon along the blue pathway). 

Supporting this model, isolated kissing loops have been shown to associate with 

comparable rate constants (147, 148). The double mutants that include G176A display 
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overall rate constants that are 2-20-fold slower, yet are also affected by the A46C 

mutation within P14 and thus also appear to have P14 formed in the transition state. We 

conclude that these mutants use the same pathway as wild type and G176A. They must 

first rearrange unfavorably to the native P5abc conformation and then bind the core in a 

process of conformational selection. 

Assembly then folding: the induced fit pathway 

In contrast, U167C and other P5abc mutants that strongly stabilize the alternative 

conformation (G174A, U177C and combinations of these mutations) populate a distinct 

induced fit pathway (Figure 3.6). In this pathway, the assembly transition state that does 

not include P14 –at least not the U168-A46 base pair– and maintains P5c in the 

alternative structure (red pathway in Figure 3.7). To reach the native structure, P5abc 

must rearrange after forming an initial complex with the core. This rearrangement 

apparently permits formation of P14, as DMS footprinting revealed that P14 is formed in 

the final complex (Figure 3.5B). The re-ordering of events for this pathway, with the 

rearrangement occurring after binding to the core rather than before binding, requires a 

new pathway rather than a change in rate-limiting step along a common pathway. 

In the induced fit pathway, the initial binding step occurs with P5c in the 

alternative structure and unavailable to form native P14 (Figure 3.5A). Thus, the initial 

complex presumably requires one or more of the other long-range tertiary contacts or 

formation of a partial P14. Because the tetraloop L5b is separated from P5c by the 

intervening helix P5b, the TL/TLR tertiary contact formed by L5b and its partner J6a/6b 

is a good candidate (red contact in Figure 3.7). Remarkably, the second-order rate 

constant along this pathway, ~10
5
 M

–1
 min

–1
, is close to that for formation of the same 

tetraloop-receptor pair in an isolated system (5 × 10
5
 M

–1
 min

–1
) (26, 86, 149), consistent 
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with this model (see Methods section: Estimation of the rate constant for TL/TLR 

formation).  Further work will be necessary to test this hypothesis (see Chapter 4). 

Interestingly, a complex in which only the TL/TLR contact is formed would be 

expected to dissociate rapidly, with a rate constant of at least 200 min
-1

 (26, 149). Both of 

the additional tertiary contacts, the MC/MCR and P14, are most simply expected to 

require the P5c rearrangement and native structure formation in P5abc. Thus, these 

results imply that the P5c rearrangement and subsequent tertiary contact formation occur 

faster than this complex dissociates, on the timescale of milliseconds, defying the general 

notion of RNA folding landscapes as being rugged (Figure 3.7). This interpretation is 

supported by recent results indicating that the secondary structure in P5c fluctuates 

rapidly (100). 

The local P5abc folding transition controls the rate and pathway 

Together, the results indicate that there are two pathways for P5abc assembly with 

the intron core, and the relative stability of the native and alternative conformations of 

P5abc determines which pathway receives the greatest flux (Figure 3.6). Mutations that 

result in the alternative structure being favored by a small amount decrease the folding 

rate but they do not change the dominant pathway. The alternative structure rearranges to 

the native structure reversibly, and then P5abc assembles with the core along the pathway 

that dominates for the wild-type P5abc. In this regime, mutations that alter the relative 

stabilities of the native and misfolded structures tune the assembly rate constant up and 

down. On the other hand, mutations that result in the alternative P5abc structure being 

favored by more than 100-fold (e.g. U167C) change the dominant pathway, with P5abc 

remaining in the alternative conformation until after formation of an initial complex. As 

the relative stability of the alternative conformation of P5abc reaches a threshold, 
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mutations that further stabilize this conformation switch the flux from conformational 

selection to induced fit without further impacting the assembly rate. 

Methods 

RNA preparation for assembly kinetics and NMR 

RNAs were prepared by in vitro transcription essentially as described (114). The 

DNA template was plasmid DNA for E
ΔP5abc

 or a PCR product assembled from 

oligonucleotides for P5abc. P5abc constructs for DMS footprinting included 5´ and 3´ 

flanking hairpins for normalization and single-stranded regions to serve as markers or to 

anneal with a primer for reverse transcription and RNA isolation (115). E
ΔP5abc

 mutants 

were generated by a Quikchange mutagenesis protocol (Agilent). Oligonucleotides for 

PCR assembly and mutagenesis were from IDT (San Diego, CA). DNA templates and 

RNA were isolated by affinity column (Qiagen). P5abc RNA was 5’-end labeled by 

treating it with shrimp alkaline phosphatase (New England Biolabs) followed by 

polynucleotide kinase and [γ-
32

P]-ATP. Labeled RNA was purified by polyacrylamide 

gel electrophoresis, eluted into TE buffer (10 mM Tris-Cl, pH 8.0, 1 mM EDTA), and 

stored at –20 °C. 

Measuring assembly kinetics 

Reactions were performed in 50 mM Na-MOPS, pH 7.0, and 10 mM MgCl2 

unless indicated otherwise. The E
ΔP5abc

 ribozyme core (15 µL) was prefolded for 30 min 

at 50 °C in buffer containing the Mg
2+

 concentration of the measurement. Labeled P5abc 

was prefolded under the same solution conditions at the reaction temperature for at least 

15 min for reactions at 25 °C or at least 60 min for reactions at 10 °C and 4 °C. E
ΔP5abc

 

and radiolabeled P5abc (1 µL) were mixed and aliquots were quenched at various times 

thereafter by adding unlabeled P5abc (at least 5-fold excess over E
ΔP5abc

) and increasing 
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the Mg
2+

 concentration to 50 mM in a solution that also included 20% glycerol and 

0.04% xylene cyanol for gel loading. A zero time point was collected by pre-incubating 

labeled and unlabeled P5abc together and then adding the mixture to E
ΔP5abc

. Quenched 

samples were placed on ice and then run on a 12% native polyacrylamide gel for 30 min 

at 200 V to separate bound and unbound P5abc (75). Bands were quantitated by using a 

Phosphorimager (GE Healthcare). 

NMR measurements 

All RNA samples were prepared by in vitro transcription using 
13

C/
15

N labeled 

nucleotide triphosphates (Cambridge Isotope Laboratories), T7 RNA polymerase (Fisher 

Scientific), and chemically synthesized DNA templates containing T7 promoter at the 5´ 

end (Integrated DNA Technologies). These samples were subsequently purified by anion-

exchange chromatography (Protein-Pak Hi Res Q, Waters) using an HPLC (Alliance, 

Waters), and were exchanged into NMR buffer (50 mM MOPS, pH 7) using 3-kDa-

cutoff centrifugal concentrators (Millipore Corp.). Prior to the final round of buffer-

exchange, the samples were annealed by heating at 95 °C for 10 min and rapid cooling on 

ice. 

DMS footprinting 

Reactions were performed using a method developed previously (150) with 

extensive modifications to increase throughput (151). P5abc constructs including flanking 

regions (50 nM) were prefolded for 15 min at 37 °C and then equilibrated for at least 15 

min at 25 °C or 60 min for measurements at 10 °C. For footprinting P5abc in complex 

with E
ΔP5abc

, 50 nM P5abc was incubated with 1 µM E
ΔP5abc

 for 60 min at 37 °C to allow 

binding, followed by equilibration at the desired temperature. DMS (Sigma-Aldrich) was 

added to 10 mM (with 0.45% ethanol) and incubated for 15 min at 25 °C or 60 min at 10 
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°C. Reactions were quenched by adding 2.4 M 2-mercaptoethanol (Fisher), 500 mM 

NaCl, and 6.7 nM of an oligonucleotide used to isolate RNA and to prime reverse 

transcription (5´-FAM-A20-Tail2 primer, IDT). This oligonucleotide hybridizes to the 3´ 

end of the RNA and has a flanking poly-A tail at the 5´ end, allowing the RNA to be 

isolated by association with oligo dT magnetic beads (Poly-A Purist Kit, Life 

Technologies). RNA was incubated with beads for 10 min and then washed twice with 5 

volumes of 70% ethanol. Samples were left to dry at room temperature for ~20 min and 

then resuspended in 5 µL of superscript III reverse transcriptase mix as recommended by 

the manufacturer (Life Technologies). Reverse transcription was performed for 30 min at 

55 °C. RNA was degraded by incubation with 0.2 M NaOH at 90 °C for 3 min. The 

solution was neutralized with 0.3 M HCl and then 0.4 M Na-acetate, pH 4.5, with 700 

mM NaCl. cDNA was again isolated by magnetic beads, washed twice, as described 

above, and eluted from the oligo dT beads with Hi-Di Formamide. cDNA products were 

resolved by capillary electrophoresis (ABI 3730) and aligned and quantified using 

HiTRACE (117). Reactivity values were normalized to the average of the two adenines in 

the 3’ flanking hairpin GAGUA stem-loop. 

Estimation of rate constant for TL/TLR formation 

The value of 5 × 10
5
 M

–1
 min

–1
 for this association was estimated from 

measurements of the equilibrium constant for binding in a bi-molecular system (0.40 

mM) and the dissociation (undocking) rate of the same contact in a model, unimolecular 

system (3.3 s
–1

). The two measurements were performed under somewhat different 

conditions from each other and from the current work so the value obtained is an 

estimate. The equilibrium measurement was performed at ambient temperature, 50 mM 

Na-phosphate, pH 6.0, 125 mM MgCl2, 500 mM NaCl, 500 mM KCl (86). The kinetics 
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measurement was performed at 21 °C, 50 mM Na-HEPES, pH 7.5, 100 µM EDTA, 10 

mM Mg
2+

, 100 mM NaCl (26). The important differences are likely to be the Mg
2+

 

concentration, which was much higher for the equilibrium measurement, and the 

monovalent ion concentration, which is also much higher for the equilibrium 

measurement. The kinetics measurements were performed under conditions quite similar 

to ours, whereas the equilibrium experiments were under conditions much more different 

from our conditions. Additional equilibrium binding experiments in Qin et al. suggested 

that omitting the added monovalent ions did not have a large effect on the affinity in the 

presence of 125 mM Mg
2+

, but decreasing the Mg
2+

 concentration to 10 mM in the 

background of 100 mM NaCl gave weakened binding, which was not quantitated but 

appeared to an effect of 5-10-fold. If the binding is indeed weaker at lower Mg
2+

 

concentrations, which more closely approximate our experimental conditions, the rate 

constant for binding would be somewhat less than 5 × 10
5
 M

–1
 min

–1
. A 5-10-fold 

decrease would result in a rate constant of 0.5-1 × 10
5
 M

–1
 min

–1
, the same as our 

observed rate constant for the alternative structure-stabilizing mutants of P5abc. 

Ribozyme catalytic activity measurements 

 To probe whether mutant versions of P5abc rearrange to the native state when 

they are in complex with the E
∆P5abc

 ribozyme core, catalytic activity was measured for 

the complexes using the standard, all-ribose substrate (rSA5) and a substrate with an 

atomic-level substitution (–3m,rSA5, CCCmUCUA5) (Table S3). This latter substrate 

contains a 2´-methoxy substitution of the uridine at the –3 position, which destabilizes 

docking of the substrate-containing helix into tertiary contacts with the core (152). Thus, 

if the wild-type and mutant P5abc both rearrange to the native state in the complex, the 

decrease in activity from the –3m substitution is expected to be the same for both wild-
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type and mutant complexes. Additionally, the absence of stable docking eliminates the 

possibility that cooperative tertiary structure stabilization from substrate docking induces 

native state formation of P5abc and thereby produces a result not reflective of the 

conditions under which P5abc binding experiments were performed. A subsaturating 

guanosine concentration (55 µM) was used in the catalytic activity measurements for the 

same reason. Wild-type or mutant P5abc was 10 µM, sufficient to saturate binding of 

E
∆P5abc

 (200 nM) based on equilibrium values calculated from rate constants for binding 

and dissociation (Table 1). Reactions were performed as described previously with trace 

5´-
32

P-labeled substrate (59, 75). Solution conditions were 50 mM Na-MOPS, pH 7.0, 10 

mM Mg
2+

 at 25 °C. 
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Figure 3.1: Mutations in P5c to probe P5abc assembly. 
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Figure 3.1: continued., 

(A) Secondary structure changes in P5abc induced by Mg
2+

 binding (blue). Point 

mutations designed to shift the equilibrium between these two structures are indicated 

with arrows. Mutations indicated in red stabilize the non-native secondary structure and 

the mutation in purple (G176A) stabilizes the native secondary structure. (B) The overall 

Mg
2+

-induced folding transition depicted with structures of the alternative and native 

P5abc structures based on NMR and X-ray crystallography, respectively (66, 71). 

Nucleotides that change base pairing are colored blue as above, and site-bound Mg
2+

 ions 

are depicted as orange spheres [15, 65, 66]. (C) P5abc assembly with the EΔP5abc 

ribozyme core. The complex includes three long-range tertiary contacts: a tetraloop-

tetraloop receptor interaction (TL/TLR, red), a metal core-metal core receptor interaction 

(MC/MCR, magenta), and a kissing loop formed by base pairing between L5c and L2 

(P14, green). 
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Figure 3.2: The kinetics of P5abc assembly with E
ΔP5abc

 can be tuned. 
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Figure 3.2: continued., 

(A) Minimal model for coupled folding and assembly of P5abc with E
ΔP5abc

 by 

conformational selection. (B) Pulse-chase assay to measure assembly kinetics. E
ΔP5abc

 and 

32
P-labeled P5abc (P5abc*) were separately incubated in Mg

2+
 solution to permit folding, 

and then they were mixed together to initiate assembly. After various times t, further 

association of P5abc* was blocked by adding excess unlabeled P5abc. The concentration 

of Mg
2+

 was also increased to 50 mM to prevent dissociation of bound P5abc*. (C) 

Progress curves for assembly of wild-type P5abc (black) and U167C P5abc (red) at 25 

°C, 10 mM Mg
2+

. The E
ΔP5abc

 concentration was 10 nM (

() for reactions with wild-type P5abc, and 100 nM (), 250 nM (), and 1 uM () for 

reactions with U167C P5abc. (D) Dependence of the observed rate constant on E
ΔP5abc

 

concentration. P5abc variants were: wild type (), G176A (), U167C (), 

U167C/G176A (), G174A/G176A (), U177C/G176A (), and 

U167C/U177C/G176A (). All P5abc mutants that include the G176A mutation are 

shown in purple. (E) The slowly assembling mutants shown on a scale that allows 

visualization of the concentration dependences. Wild-type P5abc is shown in black () 

and mutants U167C (, reproduced from panel d for 

(), U167C/U177C (), and G174A/U177C () are red. The blue dashed line shows 

the behavior of U167C/U177C predicted from the conformational selection model in 

panel (A) with additive effects of the two mutations. 
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Figure 3.3: Equilibrium measurements of P5abc mutants by NMR. 
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Figure 3.3: continued., 

(A) 2D 
1
H-

15
N SOFAST-HMQC spectra measured in the absence of Mg

2+
 (upper panels) 

and in the presence of 5 mM Mg
2+

 (lower panels; 2 mM Mg
2+

 was used for G176A to 

avoid severe signal deterioration). The U142 and U142* peaks are highlighted by black 

circles. (B) 1D imino SOFAST-HMQC spectra measured under the specified Mg
2+

 

concentrations. The U142 and U142* peaks are highlighted by red labels. For all NMR 

experiments, RNA concentrations were 0.1 mM and spectra were collected at 10 °C. 

 

 

 

 

 

 



 84 

 

Figure 3.4: DMS footprinting of P5abc variants in complex with E
ΔP5abc

. 
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Figure 3.4: continued., 

DMS footprinting of P5abc within the assembled ribozyme complex. Measurements were 

performed at 25 °C (A) or 10 °C (B) for wild-type P5abc (blue), U167C (cyan), G174A 

(red), and U177C (yellow).  Solid bars show data in the absence of E
ΔP5abc

 and striped 

bars show data for the complex with 1 µM E
ΔP5abc

. A173 (enhanced in native) is boxed. 

5´ HP (Hairpin) represents the average reactivity of the adenines in the loop of this 

reference hairpin (loop sequence GAGUA). For 25 °C, error bars represent the standard 

error from two measurements, and for 10 °C error bars represent the standard error from 

three measurements. 
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Figure 3.5: Assembly kinetics with A46C E
ΔP5abc

 provides evidence for an alternative 

assembly pathway. 
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Figure 3.5: continued., 

(A) Model for core assembly by the alternative (left) and native (right) P5abc structures. 

The L2 mutation A46C is expected to disrupt a base pair in the transition state for the 

native P5abc and therefore slow assembly (right), whereas this mutation is not expected 

to slow assembly with alternative P5abc. Nucleotides A46 and U168, which form this 

P14 base pair in the native conformation, are red, and P5c nucleotides that change 

secondary structure between the alternative and native structures are blue. (B) Assembly 

rate constants for wild-type P5abc and the indicated P5abc mutants with the wild-type 

E
ΔP5abc

 core (squares) or the E
ΔP5abc

 mutant A46C (triangles) at 10 mM MgCl2 and 25 °C. 

Error bars representing the standard error from at least two determinations are present but 

not visible because they are smaller than the markers. 
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Figure 3.6: The local folding transition controls rate and assembly pathway. 

Dependence of the observed assembly rate constant and dominant pathway on the 

equilibrium for native P5abc formation. The dependences of rate constant on Keq for each 

pathway are shown as dashed lines with colors corresponding to the labels and the black 

dashed line shows the observed rate constant predicted by the observed rates. 
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Figure 3.7: Two pathways for RNA assembly. 

Rapid rearrangement of P5abc follows initial assembly along the induced fit pathway. 

The asterisk indicates that the value reflects the measured rate of dissociation for an 

isolated TL/TLR contact (26) (see Methods section: Estimation of rate constant for 

TL/TLR formation). 
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P5abc Variant ΔΔG°, 

kcal/

mol** 

kon P5abc,  

M
–1

 min
–1

 

krel P5abc
†
 kon A46C,  

M
–1

 min
–1

 

krel A46C
††

 

wild-type 0 1.1 ± 0.1  10
7
 (1) 1.9 ± 0.3  10

6
 0.17 ± 0.05 

G176A -6.7 1.4 ± 0.3  10
7
 1.2 ± 0.3 N.D. N.D. 

U177C/G176A -4.5 7.3 ± 1.0  10
6
 0.65 ± 0.10 1.4 ± 0.2  10

6
 0.18 ± 0.04 

U167C/G176A -2.3 2.6 ± 0.2  10
6
 0.23 ± 0.03 7.9 ± 0.1  10

5
 0.30 ± 0.06 

G174A/G176A 0.1 1.5 ± 0.2  10
6
 0.13 ± 0.02 6.3 ± 0.3  10

5
 0.42 ± 0.07 

U167C/U177C/

G176A 

-0.1 7.8 ± 0.3  10
5
 0.069 ± 0.007 N.D. N.D. 

U177C 2.4 2.5 ± 0.1  10
5
 0.022 ± 0.002 1.9 ± 0.2  10

5
 0.75 ± 0.10 

U167C 4.4 2.2 ± 0.3  10
5
 0.020 ± 0.003 1.5 ± 0.2  10

5
 0.68 ± 0.13 

G174A 6.8 2.1 ± 0.3  10
5
 0.018 ± 0.003 1.1 ± 0.1  10

5
 0.51 ± 0.10 

U167C/U177C 6.8 1.2 ± 0.2  10
5
 0.010 ± 0.002 N.D. N.D. 

G174A/U177C 9.2 1.2 x 10
5
 0.010 N.D. N.D. 

Table 3.1: Assembly rate constants measured for P5abc variants with E
ΔP5abc

 or A46C 

E
ΔP5abc

 ribozyme cores. *Conditions were 50 mM Na-MOPS, pH 7.0, 10 

mM MgCl2, 25 °C. **ΔΔG° values reflect the difference in predicted free 

energy between the alternative and native secondary structures for each 

variant relative to the corresponding free energy difference for the wild-type 

P5abc. Predicted free energies were generated using ViennaFold with 

solution conditions set to 37 °C and 1 M NaCl. †krel P5abc is the assembly 

rate constant of each P5abc variant divided by the assembly rate constant of 

wild-type P5abc. ††krel A46C is the assembly rate constant of each P5abc 

variant with the A46C E
ΔP5abc

 divided by the corresponding rate constant for 

assembly with the wild-type E
ΔP5abc

. Uncertainty values reflect the standard 

error of at least two measurements. The reported value for the 

G174A/U177C variant does not include an uncertainty estimate because 

assembly for this variant was measured only once under these conditions. 

N.D., not determined. 
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 Keq
 

P5abc variant 2 mM Mg2+ 5 mM Mg2+ 10 mM Mg2+ 

wild-type N.Q. 1.0 N.Q. 

G176A 2.2 N.Q. N.Q. 

U167C/G176A 0.31 0.71 0.79 

U167C <0.032† <0.032† <0.032† 

Table 3.2: P5abc folding equilibrium measured by NMR. Equilibrium values were 

calculated as the ratio of the peak volumes observed at U142 and U142*. 

†An upper limit on Keq was established from the absence of a detectable 

U142* peak. N.Q., not quantified. 
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P5abc Fraction Native P5abc* 

wild-type 0.60 

G176A 0.81 

U167C/G176A 0.35 

U167C 0.02 

Table 3.3: P5abc folding measured by quantitative DMS footprinting. Data were 

collected at 5 mM MgCl2, 50 mM Na-MOPS, pH 7.0, 10 °C. *The fraction 

of native P5abc was determined by normalizing the reactivity of A173 by 

the maximal reactivity of the G176A variant determined by Mg
2+

 titration. 
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P5abc●EΔP5abc k, rSA5 (min-1) k, -3m,rSA5 (min-1) 

wild-type 2.6 0.012 

U177C 4.1 0.0062 

G174A/U177C 3.9 0.017 

Table 3.4: Catalytic activity measurements of P5abc variants assembled with the 

ribozyme core. Data were collected at 200 nM E
ΔP5abc

, 10 μM P5abc, 10 

mM MgCl2, 55 μM guanosine, 50 mM Na-MOPS, pH 7.0, 25 °C using trace 
32

P-labeled substrate. 
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Chapter 4: RNA assembly pathways utilize different tertiary contacts in 

the assembly transition states 

INTRODUCTION 

Structured RNAs are ubiquitous in cellular metabolism. The exponential growth 

of high resolution RNA structures has led to a clear view of the cell where RNA-protein 

machines regulate higher order processes. Indeed the ribosome, spliceosome, and 

telomerase are all machines that include structured RNAs, and the dynamic movements 

of the structured RNA components are directly linked to catalytic function (10, 91, 93, 

153-156). It might not be naïve to think that RNPs are made up from a ‘skeleton’ of RNA 

structure required for function, while proteins are the decorative ‘additions’ that function 

in signaling and improve efficiency. 

Transient RNA structures are widespread in biology (29). At the start of 

biogenesis, RNAs fold in vivo during transcription. The lifetime of RNA secondary 

structure relative to mRNA degradation rate (157-160) suggests that the first secondary 

structure to form during transcription dictates the fate of the RNA. For example, during 

transcription a riboswitch RNA folds along a given folding pathway that leads to a 

particular structure and functional outcome (30, 32, 161). Under certain cellular 

conditions, the folding pathway can be switched leading to a different structure and 

outcome (162). In the case of a riboswitch, a metabolite ligand changes the structural 

state by physically binding to the RNA, stabilizing a secondary structure that is 

incompatible with alternative structural states. To fully understand the factors that 

determine RNA folding pathway followed requires a fundamental understanding of how 

tertiary structure and long range interactions impact RNA folding pathways. 

To more closely understand the determinants of RNA folding pathway followed 

during folding and assembly of an RNA secondary structure switch, we dissected the 
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assembly pathways of P5abc with the P5abc-deleted ribozyme core (E
ΔP5abc

). The P5abc 

subdomain can fold in isolation from an extended conformation with an alternative set of 

base pairs to the native structure with a switched base pairing register (69-71) (see Figure 

1.5, Chapter 1). The folded P5abc forms three distinct long range tertiary interactions 

with the ribozyme core (E
ΔP5abc

) to form a long lived complex with femtomolar affinity 

and a lifetime on the order of years (74, 75). We previously demonstrated that assembly 

of P5abc with E
ΔP5abc

 occurs through two pathways: assembly of the high affinity folded 

form of P5abc (conformational selection) or assembly of the slower binding of the 

alternative extended conformation (induced fit) (101). Because the P5c folding transition 

fundamentally changes the P5c helix that forms the P14 contact with the ribozyme core, 

we hypothesized that the failure to follow the faster conformational selection pathway 

was due to an inability to form P14 in the alternative P5abc conformation. We proposed 

that the rate of folding along each pathway might reflect the rate of tertiary contact 

formation for an individual tertiary contact nucleating in the assembly transition state, but 

no further dissection was carried out to address this hypothesis (101). 

Here, we use mutagenesis and pulse-chase assays to measure the contribution of 

each tertiary contact (P14, TL/TLR, or MC/MCR) to each folding pathway 

(conformational selection or induced fit). The results suggest that P14 forms early in the 

conformational selection pathway and the MC/MCR forms late in folding, after the rate-

limiting step. The slower assembling induced fit pathway utilizes the TL/TLR tertiary 

contact because P14 is unable to form with the alternative P5abc, followed by formation 

of P14 and MC/MCR. P14 deletion mutants switch the preference for assembly pathway 

from conformational selection to induced fit because the TL/TLR contact is now the rate 

limiting assembly step. These results suggest that the rate or tertiary contact formation 
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dictates the order of tertiary contact assembly and the folding pathway that receives the 

dominant flux. 

Results 

To measure the contribution of each tertiary contact to the transition state for 

assembly, we generated a two-piece version of the Tetrahymena thermophila ribozyme 

(Figure 4.1A). The rate constants for association and dissociation can be directly 

measured by a pulse-chase assay using radiolabeled P5abc (Figure 4.1B and C). Point 

mutations in the ribozyme core at each of the three tertiary contacts were previously 

shown to have an effect on folding or assembly (28, 63, 163). First, we test the 

contribution of each tertiary contact in the assembly transition state of the conformational 

selection pathway (pre-folded modules). Then, we carry out similar measurements for the 

assembly transition state of the induced fit pathway with P5abc mutants that lock P5c into 

the alternative conformation. 

Probing tertiary contacts in the transition state of the pre-folded modules 

Under the conditions of assembly, wild-type P5abc is fully folded (Figure 4.2A). 

We measured the rate constant for binding trace P5abc at various concentrations of 

E
ΔP5abc

 and determined the second order rate constant for binding (Figure 4.2B and C). 

Mutations in the TLR contact slowed the assembly rate by 5-fold, and mutations in P14 

slowed the assembly rate by 4-6 fold compared to wild-type. These results suggest that 

P14 and the TLR form before the assembly transition state, because mutations that 

destabilize these contacts decrease the rate constant for assembly. At high concentrations 

of E
ΔP5abc

 (>10 μM) there is observable precipitation consistent with previous reports 

(previous observations, R.R. unpublished). When we made mutations in the MCR, we 

observed no rate dependence on the concentration of E
ΔP5abc

 up to the concentrations 
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feasible for measurements of assembly, potentially owing to the large effect on koff for 

MCR mutants. 

To compare dissociation rate constants, we had to find solution conditions that 

would allow for measurement of wild-type and mutant dissociation kinetics on a feasible 

time scale. Previous measurements showed that the half-life of the wild-type P5abc 

complex is on the order of years under standard conditions (10 mM MgCl2 and 25 °C) 

(75), so we adopted solution conditions for association and dissociation measurements 

that accelerate the dissociation rate to a measurable time-scale (10 mM MgCl2, 100 mM 

KCl, 37 °C). We found that mutations in P14 had modest effects on the dissociation rate 

(up to 10-fold faster than wild-type P5abc), suggesting that P14 forms early in the folding 

pathway. Mutations in the TLR had larger effects (up to 50-100-fold faster than wild-

type) suggesting that the TL/TLR contact forms after the P14 contact. Consistent with our 

previous observations in kon measurements, mutations in the MCR contact substantially 

increased the rate constant for dissociation to close to 0.4 min
-1

, meaning that association 

rates can only be measured at concentrations of E
ΔP5abc

 where kon is much faster than 0.4 

min
-1

 (approaching the limit of reliable rate constants that can be measured by hand). 

Taken together, the assembly rate constant is equally affected by mutations in P14, TLR, 

and MCR with near equal contributions of each contact to the assembly rate (Figure 

4.2F). The dissociation rate constants show a preference for particular tertiary contacts, 

with P14 mutations contributing the smallest effect and MCR mutations contributing the 

largest effect (Figure 4.2F). 

Phi-value analysis (Φ-value) can be used to determine the contribution of the 

mutated contact to the transition state for assembly (164-166). By measuring the 

association and dissociation rate constants for wild-type and mutant complexes, the 

contribution of the effect from a given mutation to the transition state can be assessed by 
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comparing the total effect on the equilibrium for complex formation. Phi-values typically 

are expressed from ‘0’ to ‘1’ where lower values indicate that contact is not formed in the 

transition state and higher values suggest that the contact is fully formed in the transition 

state. This analysis showed that the P14 tertiary contact is more formed in the assembly 

transition state than the MCR contact, though the phi-values for the P14 contact are 

modest (about 0.4). The partial phi-value observed for the TLR contact suggests that this 

contact may also partially form before the transition state of the conformational selection 

pathway. 

Probing tertiary contacts in the transition state during induced fit assembly 

We utilized a similar approach to probe the assembly transition of the induced fit 

pathway, making mutations in each of the three tertiary contacts and measuring the 

second order rate constant for binding. Similar to what we observed when probing the 

conformational selection pathway, mutations in the MCR contact weakened binding to an 

immeasurable extent. Still, we observed that mutations in P14 had almost no effect on the 

assembly rate of alternative P5abc, while the TLR mutants slowed the assembly rate 

constant between 5-20 fold compared to assembly of alternative P5abc with wild-type 

E
ΔP5abc

 (Figure 4.3A). These results strongly suggest that assembly through the induced 

fit pathway nucleates the TL/TLR contact before the transition state, and forms P14 late 

in the folding pathway after assembly, in agreement with previous predictions (101). 

To further test this model, we conducted dissociation rate measurements with 

P5abc mutants that follow the induced fit assembly pathway. First principles of 

microscopic reversibility demand that the dominant pathway is the same in both 

directions. Our previous results showed that the induced fit pathway binds alternative 

P5abc and switches P5abc to the native conformation in the assembled ground state 
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complex after the assembly transition state (101). Thus, the measured dissociation rate 

through the induced fit pathway is expected to strongly depend on the stability of native 

P5c relative to the alternative conformation, because P5c must switch to the alternative 

conformation before reaching the transition state for disassembly (Figure 4.3B).  Indeed 

the dissociation rate of mutants that stabilize alternative P5c secondary structure over a 9 

kcal/mol range varied by 50 fold compared to each other (Figure 4.3C). We also observed 

an initial fast phase for most P5abc mutants, and further work demonstrated that this fast 

phase reflects dissociation from misfolded E
ΔP5abc

 or damaged RNA that rapidly 

dissociate. These results further confirm our previous model: the induced fit pathway 

assembled with P5abc in the alternative conformation and P5c switching and P14 

formation form after the transition state. 

We then probed the contribution of each tertiary contact to the transition state by 

utilizing the E
ΔP5abc

 variants shown above. Shown are progress curves for dissociation of 

P5abc mutant U167C/U177C. We observed that point mutations in the TLR increase the 

dissociation rate by no more than 3-fold, a much smaller effect than for mutants in P14, 

which gave 8-10-fold increases in dissociation rate. Overall, the TL/TLR contact makes a 

larger contribution than P14 for assembly through the induced fit pathway but a smaller 

contribution for dissociation (Figure 4.4A and B). We calculated phi-values for each of 

the mutants that follow the induced fit pathway, and indeed, for nearly all P5abc mutants, 

the TL/TLR contact contributes more to the transition state than P14 (for U167C/U177C: 

Φ-value of 0.7 for TL/TLR and about 0.2 for P14). Mutations in the MCR had a large 

effect on koff through the induced fit pathway (about 300-fold faster dissociation rate) 

which weakens the affinity so that kon was once again immeasurable. Thus, the 

contribution of the effect on koff relative to the total effect on the equilibrium cannot be 

determined for MCR mutants, precluding determination of a phi-value. Still, given the 
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threshold of observed effects on kon for mutants in the TLR contact and P14 (at most a 

10-fold effect), it is reasonable to assume that most of the observed effect on koff for MCR 

mutants (300-fold) is not due to weakening of kon to the same extent (10-fold for TLR). 

We conclude that in the induced fit assembly pathway the TL/TLR is formed in 

the transition state for assembly, in agreement with calculations of the assembly rate 

constant for an isolated TL/TLR (see Chapter 3 Methods section: Estimation of rate 

constant for TL/TLR formation). After the assembly transition state, P5c switches to the 

native conformation and P14 forms. We previously demonstrated that there is 

cooperativity between P5c switching and metal core (MC) folding in isolated P5abc (see 

Chapter 2), suggesting that after P14 forms and P5c switches, the MC forms. Thus, the 

last step in folding of induced fit is presumably formation of the MC/MCR contact. Full 

determination of the phi-value for the MC/MCR contact is required to confidently make 

this conclusion. 

Controlling the rate and pathway with rational mutagenesis of the structural modules 

With a model in hand for how P5abc assembles and the knowledge of the tertiary 

contacts formed in the assembly transition state along each pathway, we designed 

constructs that could specifically test predictions made by our model. If the faster 

conformational selection pathway is faster because kissing loop contacts (P14) form 100-

fold faster than TL/TLR contacts, then we predicted that in the absence of P14, the wild-

type P5abc would now assemble through the slower induced fit pathway with a rate 

constant in agreement with nucleation of a TL/TLR contact. We generated P14 knock out 

mutants by mutating loop L2 to UUCG in the ribozyme core or mutating the P5abc loop 

L5c to UUCG (Figure 4.5A). Unexpectedly, our initial P14 KO mutants had a 10,000-

fold effect on the binding rate constant of wild-type P5abc, 100 fold slower than what is 
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expected for assembly through the induced fit pathway (Figure 4.5B, black square vs. 

black diamond and circle). This result perplexed us because if a faster forming TL/TLR 

contact (kon near 1 × 10
5
 M

–1
 min

–1
) is available for contact formation, then that pathway 

should receive the greatest flux when P14 is deleted. This led us to propose the possibility 

that when P14 is unable to form, the P2 helix itself within the ribozyme core somehow 

occludes the TLR binding site, resulting in a pre-equilibrium for moving the P2 helix out 

of the way and a penalty for the rate of association. To test this model, we generated a 

construct where the P14 contact is knocked out by mutating L2 to UUCG and 

substantially truncating the P2 helix to three base pairs (Figure 4.5A, ΔP2). Truncation of 

P2 accelerated the rate constant of binding for wild-type P5abc 100-fold relative to 

L2UUCG and L5cUUCG to the level predicted for nucleation of the TL/TLR contact in 

the assembly transition state (Figure 4.5B, red diamond). 

We also tested double mutants containing the G176A mutation because these 

mutants were previously established to use the conformational selection pathway when 

assembling with the wild-type E
ΔP5abc

. When we measured the assembly rate constants 

with ΔP2 ribozyme core, all three G176A double mutants assembled with a rate constant 

almost equal to that observed for the wild-type P5abc with ΔP2 (Figure 4.5B, red dashed 

line). We observed that ΔP2 had a 10-fold slowing effect on the rate constant for binding 

mutants that stabilize alternative P5abc, possibly because these mutants do not have a 

properly formed MC within P5abc, resulting in a penalty for forming this contact and a 

slower association rate than that observed for TL/TLR. In agreement with this model, the 

G176A double mutant series and wild-type P5abc’s all properly form the MC in P5abc 

under the conditions of the association measurements and assemble with a rate constant 

equal to the TL/TLR contact and induced fit pathway. 
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Lastly, we hypothesized that the assembly rate observed for the induced fit 

pathway in the context of wild-type E
ΔP5abc

 could be rescued if the faster forming P14 

contact were re-established. To test this prediction, we measured the rate constant for 

association of mutant G174A with E
ΔP5abc

 and then generated a mutant that restores the 

A46-U168 base pair in P14 by inserting an additional ‘U’ nucleotide into loop L5c 

(Figure 4.5A, G174A+Uins). Assembly of the Uins mutant was accelerated 5-10-fold 

relative to G174A assembling with the E
ΔP5abc

 ribozyme core. Our results suggest that the 

faster forming P14 kissing loop is a kinetic highway for structure formation, and when 

the full P14 is unable to form, an alternative pathway is available through the slower 

forming TL/TLR contact. Following assembly through the TL/TLR contact, P14 is able 

to form and P5c switches to the native state and the MC forms in the assembled ground 

state complex (101). 

Discussion 

At a physical level, the presence of alternative pathways highlights the modularity 

in RNA folding. The conformational selection pathway relies on formation of native 

structure in P5abc and kissing loop P14 formation to nucleate assembly (Figure 4.6A, 

blue pathway). The induced fit pathway is an alternative assembly pathway that comes to 

dominate when P14 is unable to form (Figure 4.6B, red pathway). Instead, the TL/TLR 

contact, which is distant from P5c and not expected to be impacted by the local folding 

transition of P5abc, is formed in the transition state for assembly, and this assembly 

occurs with the same rate constant as that of an isolated TL/TLR (26). The commonality 

between rate constants suggests that the rate of RNA assembly even for multi tertiary 

contact forming RNA assembly may be determined simply by the probability of 
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productive collisions for a given tertiary contact structure module. This principle could 

prove powerful for engineering of precisely timed novel structured RNAs. 

The pre-folded modules assemble through multiple pathways 

Phi-value analysis of the assembly transition state in the conformational selection 

pathway suggests that no contact is fully formed in the transition state (highest Φ-value 

0.45). One model to account for this result is initial and partial nucleation of a particular 

tertiary contact followed by rapid downhill formation of all other contacts. Taking the 

phi-value analysis literally suggests that P14 is partially formed in the transition state, and 

after the transition state there is rapid and downhill formation of the TL/TLR and 

MC/MCR contacts. These results are in agreement with measurements of the affinity of 

the native complex (75), one of the tightest binders currently measured in biochemistry. 

The small phi-value for forming the MC/MCR contact suggests that it is the last contact 

formed during conformational selection and induced fit assembly, potentially owing to 

the instability of the a-minor interaction in isolation (28) (see Chapter 1 Table 1.1). 

Our measurements of kon suggest an alternate model where the TL/TLR contact is 

partially formed in the transition state (Figure 4.2C). We propose a second possible 

model where there is partial P14 formation, because it forms faster (22, 26), followed by 

partial formation of the TL/TLR (Figure 4.6A). This model requires that the TL/TLR 

form 100-fold faster in the context of P14 because the maximal rate constant for 

assembly in conformation selection is 100-fold faster than that of an isolated TL/TLR. In 

addition, both models could be correct, with multiple assembly pathways possible 

through a conformational selection process. A third possible model would be rapid 

formation of the TL/TLR, followed by rapid formation of P14, leading to the transition 
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state, but this is unlikely because the initial formation rate of TL/TLR is 100-fold slower 

than the maximal rate of the conformational selection pathway and the rate of P14. 

A TL/TLR alternative assembly pathway switches P5c and forms P14 late during 

folding 

When P5abc folding to the native conformation is perturbed with mutation, an 

alternative induced fit assembly and folding pathway is followed (101). The local folding 

transition within the P5abc structural modules controls the rate and pathway of RNA 

folding and assembly. Phi-value analysis of the assembly transition state in the induced 

fit pathway suggests that the TL/TLR contact is near fully formed in the transition state 

(highest Φ-value 0.85). After the assembly transition state, there is an intramolecular 

rearrangement within the complex where P14 forms and P5abc folds to its native 

conformation. Thus, substantial cooperativity arises from the tertiary contacts that form 

with the ribozyme core because the penalty for switching the destabilized P5abc mutants 

that assemble through induced fit is overcome in the ground state complex, a requirement 

of induced fit. We observe an upward trend in our measured phi-values for the TL/TLR 

with decreasing stability for P5abc folding (Figure 4.4C, A225U and A226U). One 

possibility is that the flux is not entirely dominated by the induced fit pathway under 

these conditions (10 mM MgCl2, 100 mM KCl, 37 °C) for mutants that only modestly 

destabilize P5c switching (Figure 4.4C, U177C in purple). 

In P5abc folding and assembly, individual tertiary contacts dictate the folding 

pathway followed. When P5abc is folded, the P14 contact is available to form resulting in 

a kinetic highway to the ground state complex. If P5abc is in the alternative conformation 

and P14 is unable to form, then the folding flux is shifted to a pathway that forms the 

TL/TLR contact in the transition state. Thus, the local folding transition switches the 

assembly pathway by changing the order of tertiary contact formation. 
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Methods 

RNA preparation 

The same protocol was used as described previously in Methods of Chapter 3. 
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Figure 4.1: Mutations in E
ΔP5abc

 to probe the assembly transition state. 

(A) P5abc forms three long range tertiary contacts with E
ΔP5abc

 and mutations in each of 

these contacts are used to probe the particular tertiary contact (P14 green, TL/TLR red, 

MC/MCR purple). Pulse-chase assay scheme used to measure the kinetics of association 

(B) and dissociation (C) are shown. 
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Figure 4.2: Probing assembly and dissociation of the pre-folded modules. 

(A-C) Association and dissociation (D, E) kinetics measured for WT P5abc with E
ΔP5abc

 

and mutants that destabilize P14 (green), the TLR (red), and MCR (magenta). (F) Rate 

constants are shown relative to the WT complex. krel is calculated by dividing the rate of 

the mutant by the rate of WT. (G) Phi-value analysis for the WT complex. Φ is calculated 

from ln(kon,mut / kon,WT) / ln((kon,mut × koff,WT) / (kon,WT × koff,mut)). A limit on the phi-value 

was determined for the MC/MCR contact because mutants of this contact result in 

binding that is too weak to measure kon. 
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Figure 4.3: Probing assembly and dissociation of the induced fit pathway. 
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Figure 4.3: continued., 

(A) Association kinetics measured for mutants that follow the induced fit pathway. 

Assembly with WT E
ΔP5abc

 is shown in black squares. U43C (green cirlces) targets P14 

and A225U (red triangles) targets the TLR. (B) Dissociation kinetics measured for 

mutants that stabilize the alternative P5c secondary structure. For space limitations, 

U167C and U167C/U177C are not shown. (C) Dissociation kinetics from WT E
ΔP5abc

. (D) 

Dissociation kinetics for mutant U167C/U177C with E
ΔP5abc

 mutants. 
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Figure 4.4: Phi-value analysis of the induced fit assembly pathway. 

Rate constants for U167C (A) and U167C/U177C (B) are shown relative to the WT 

complex. krel is calculated by dividing the rate of the mutant by the rate of WT. (C) Phi-

value analysis for the induced fit pathway. Φ is calculated from ln(kon,mut / kon,WT) / 

ln((kon,mut × koff,WT) / (kon,WT × koff,mut)). 
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Figure 4.5: Mutating the ribozyme core to control the assembly pathway. 

(A) Shown are mutants that target the P14 contact. For simplicity, only the relevant 

region is shown for E
ΔP5abc

 and P5abc variants. (B) Rate constants for binding of E
ΔP5abc

 

variants with P5abc mutants. The dashed red line shows the association rate constant 

calculated for a TL/TLR tertiary contact from isolated measurements (see Chapter 3 

Methods). Error bars from at least two measurements are not seen because they are 

smaller than the size of the marker. 
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Figure 4.6: The local folding transition controls the assembly pathway by switching the 

order of tertiary contact formation. 

Conformational selection (A) and induced fit (B) of P5abc with E
ΔP5abc

. The P2 helix is 

shown as a yellow cylinder, P5c and P14 formation are blue, and P5b and TL/TLR is 

shown in red. 
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E
ΔP5abc

 Variant E
ΔP5abc

 U43C G44A A46C A225U A226U G212C G212U 

P5abc Mutant 

wild-type (1) 0.16 0.15 0.29 0.21 0.20 0.24 0.24 

G176A (1) 0.38 0.17 0.39 0.26 0.24 N.D. N.D. 

U167C (1) 1.07 0.36 1.11 0.11 0.11 N.D. N.D. 

G174A (1) 0.73 0.55 0.76 0.05 0.11 N.D. N.D. 

U177C (1) 0.66 0.69 0.64 0.28 0.26 N.D. N.D. 

U167C/U177C (1) 0.60 0.40 0.74 0.17 0.10 N.D. N.D. 

G174A/U177C (1) 0.49 N.D. 0.96 0.18 0.11 N.D. N.D. 

Table 4.1: Relative association rate constants measured for P5abc mutants and E
ΔP5abc

 

variants. N.D. is not determined. 
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E
ΔP5abc

 Variant E
ΔP5abc

 U43C G44A A46C A225U A226U G212C G212U 

P5abc Mutant 

wild-type (1) 9.2 170 4.9 63 54 1200 930 

G176A (1) 12 67 6.2 22 36 N.D. N.D. 

U167C (1) 34 130 10 10 13 260 330 

G174A (1) 13 11 4.2 5.4 4.5 N.D. N.D. 

U177C (1) 67 100 5.3 53 44 N.D. N.D. 

U167C/U177C (1) 7.9 10 4.9 2.2 3.1 N.D. 18 

G174A/U177C (1) 2.3 3.6 3.1 1.4 1.5 N.D. N.D. 

Table 4.2: Relative dissociation rate constants measured for P5abc mutants and E
ΔP5abc

 

variants. N.D. is not determined. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 115 

Appendix A 

STRUCTURAL CONNECTIONS IN THE 3WJ OF P5ABC 

We tested a point mutation, G176A, which stabilizes the P5c native secondary 

structure to further affirm the connection between P5c switching and the MC (100, 101) 

(Figure A1.A). Surprisingly, we found that G176A does not stabilize formation of the 

MC (Figure A1.B). Further experiments in the background of the Nat+3 mutant showed 

that G176A destabilizes MC formation. These results indicated to us that the G176A 

substitution weakens tertiary structure formation in the 3WJ, coincidentally offsetting the 

G176A stabilization of native P5c. Two points arise from these results. First, there is an 

energetic connection between the 3WJ and native secondary structure in P5c. Second, 

care must be taken in designing and testing mutations to ensure that they do not have 

effects beyond the desired ones. 

In regards to the energetic connectivity, there is also a structural basis for the 

connection between the 3WJ and P5c switch. G164, which forms a G-A sheared pair 

within the folded 3WJ, is liberated in the transition to native P5c, as are G176 and U177 

(Figure 2.1A). We attempted to rescue structure formation by restoring the nucleotides 

present in the folded 3WJ (Figure A1.C). Insertion of only the G (a proxy for G164) or 

the GU (a proxy for G176 and U177) individually did not rescue folding relative to 

U167C (Figure A1.D). We found that both segments were required for proper structure 

formation in the 3WJ (Figure 2.10A, B, and Figure 2.9B). Taken together, these results 

suggest that nucleotides G164, G176, and U177 form tertiary contacts in the folded 3WJ. 

Investigation of the crystal structure shows non-covalent interactions between these 

nucleotides in the 3WJ and MC when folded (Figure A1.E). If these junction nucleotides 

were the only source of cooperativity, then the 3WJ restoration mutant would have 

formed structure in the MC and 3WJ with the same magnesium dependence as the Nat+3 
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mutants, which require less magnesium than wild-type P5abc (Figure 2.10B). The 

identity of the base pair proximal to the 3WJ may play a role, as this is a CG pair in the 

wild-type P5abc but a GC pair in the mutant used here. The absence of a protection at 

position U177 in the 3WJ restoration mutant compared to Nat+3 could explain the result 

if the G164-U177 junction interaction does not form for the 3WJ restoration mutant but 

does form in Nat+3 (Figure 2.9). 
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Figure A1: Three nucleotides in the junction are critical for P5abc folding. 
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Figure A1: continued., 

(A and B) Mutant G176A destabilizes tertiary structure. (C and D) GUins or Gins is not 

sufficient for proper MC and 3WJ formation. (E) Structural connectivity between the P5c 

(blue), 3WJ (green) and MC (orange). Hydrogen bonds are shown in magenta. Two site 

bound Mg
2+

 ions are shown in yellow (65). 
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Appendix B 

MOLECULAR CROWDERS SLOW THE FOLDING OF A LARGE MISFOLDED RNA 

Fundamental in vitro studies are typically carried out in dilute solutions 

mimicking physiological conditions. Recent studies have proposed that the cellular 

milieu is quite crowded, with estimates of up to 30% wt/vol cosolutes and 

macromolecules (167). How do biological macromolecules respond to a solution that is 

crowded? For RNA specifically, in vitro studies in the presence of molecular crowders 

(e.g. polyethylene glycol (PEG) or dextrans) demonstrated enhanced catalysis (168, 169). 

Additionally, molecular crowders enhance the stability of small structured RNAs and 

tertiary contacts, such as tRNA and TL/TLR, respectively (170, 171). Single molecule 

FRET measurements in presence of crowders were applied to folding of the isolated 

TL/TLR to determine the effects on the kinetics of folding. Molecular crowders 

predominantly enhance the folding rate without substantially effecting the unfolding rate 

(171). These results are initially attractive because one can propose that biochemistry 

works better in the crowded cellular environment, but for larger more complex structured 

RNAs within the cell we propose an alternative model. 

For a large structured RNA that accumulates stable intermediates or forms kinetic 

traps, molecular crowders are expected to enhance the stability of these intermediate 

structures to the same extent as the native structure (172-174). If the transition state for 

folding between structures is unchanged, then RNA folding kinetics are predicted to be 

substantially slower in the crowded cellular environment. To test this idea, we conducted 

refolding measurements on the near-native misfolded structure of the Tetrahymena 

thermophila group I intron ribozyme (67) (Figure B1A). Misfolded ribozymes were 

generated by briefly incubating RNA at 10 mM Mg
2+

 for 10 min at 25 °C. To accelerate 

refolding to a measurable time-scale in the presence of crowders, the concentration of 
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Mg
2+

 was lowered to 5 mM, and the temperature was raised to 50 °C (Figure B1B). At 

various times, a fraction of the solution was diluted to 50 mM MgCl2 to slow the 

refolding rate, essentially blocking any refolding of misfolded or native ribozymes (175, 

176). Guanosine and labeled substrate (rSA5*) were added to measure the fraction of 

native ribozyme by catalytic activity (175, 176). 

We observed a burst of product formed in the first turnover of cleavage that 

steadily increased from about 0.1 to 0.8 with a half-life of 2 minutes (Figure B1C). 

Strikingly, when we supplemented the solution with dextran70, the refolding rate was 

decreased with concentration (Figure B1D). At 21% wt/vol dextran70, the refolding rate 

was slowed by 30-fold in agreement with our prediction that molecular crowders might 

slow refolding of near native kinetic traps. We also tested PEG200 and PEG8000 

crowders and observed a similar slowing effect on the refolding rate from the misfolded 

state (Figure B2A). 

Our results suggest that misfolded structures are stabilized by molecular crowders 

relative to the transition state for unfolding. Thus, molecular crowders can deepen the 

valleys of the RNA folding landscape (Figure B2B). As mentioned before, single 

molecular crowders increased the rate constant for folding, but had little effect on the rate 

constant for unfolding (171). Refolding of the misfolded ribozyme is thought to involve 

breaking of all tertiary contacts and global unfolding because mutations that knock out 

any one tertiary contact substantially accelerate the rate of refolding (67). We propose 

that the misfolded ribozyme structure in molecular crowders reforms tertiary contacts 

rapidly after spontaneous dissociation of contacts required for unfolding. This would 

increase the stability of the misfolded and native structures relative to the unfolded 

transition state, generating a substantial penalty for refolding misfolded structures in the 

crowded cellular environment. Molecular crowders may serve to increase the ruggedness 
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of the RNA folding landscape, necessitating the requirement of general RNA chaperone 

proteins in vivo to non-specifically unfold RNA structures (177-179). 

 

 

 

 

 

 

 



 122 

 

Figure B1: Molecular crowders slow the re-folding rate of the misfolded ribozyme. 

(A) Secondary structure of the L-21 ribozyme from Tetrahymena thermophila used for 

folding studies herein. Long range tertiary contacts are indicated with arrows and labeled. 

(B) Catalytic assay for measuring the refolding rate from the misfolded ribozyme 

structure. (C) Cleavage time courses measured at different folding times (B), the burst of 

product formation observed reflects the fraction of ribozyme that has folded to the native 

state. (D) Folding time courses at 50 °C in the presence of the molecular crowder 

Dextran70 (167, 170). 
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Figure B2: Molecular crowders deepen valleys of the RNA folding landscape 

exaggerating folding transition state barriers. 

(A) The dependence on re-folding rate at different concentrations of crowding agents. (B) 

Free energy diagram illustrating the effect crowders have (red arrow) on the stability of 

the folded structures relative to the unfolded transition state ensemble. 
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