
Phase-field simulation and design of a ferroelectric
nano-generator

M. Kraußa, I. Müncha, C. M. Landisb and W. Wagnera

aInstitute for Structural Analysis, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12,
76133 Karlsruhe, Germany;

bAerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin,
United States

ABSTRACT

We study the behavior of ferroelectric material (BaTiO3) for the design of a nano-generator to convert mechanical
into electrical energy. The investigations consider an electro-mechanical phase-field model with polarization as
state variable. This widely accepted model has its origins in the work of1–3 and is fully developed by Landis and
coworkers.4, 5 We use a finite element model to simulate tetragonal regions of ferroelectric material sputtered on
substrate. Different geometries as well as various mechanical and electrical boundary conditions are considered.
The model parameters are normalized to achieve better computational conditions within the stiffness matrix.
The major objective of this contribution is the fundamental understanding of domain switching caused by a
cyclic electrical field. The corresponding hysteresis loops of the overall polarization cannot be achieved by using
a two-dimensional model because the domain topologies evolve in three dimensions. The three-dimensional
nature of the domain structure evolution is even true for flat regions or thin films.6 We show some examples of
three-dimensional domain topologies, which are able to break energetically unfavorable symmetries. Finally, the
computational model of a tetragonal nano-generator with dimensions 10 x 60 x 10 nm is presented. The specific
ratio of height to width and the mounting on substrate is essential for its performance and principle of energy
harvesting. We discuss the challenges and scopes of such a system.

Keywords: Phase-field modeling, ferroelectricity, nano-generator, epitaxial strain, finite element method,
energy-harvesting.

1. INTRODUCTION

Scientific research within the last two decades has given great interest to ferroelectric materials7–9 as a subset of
smart materials. Below the Curie temperature ferroelectrics consist of domains of aligned electric polarization
following electrical and mechanical conditions. The coupling between electrical and mechachical fields enables
the conversion of mechanical into electrical energy. The continual success in miniaturizing electronic devices
motivates our work for energy harvesting on the nano-scale. We simulate structured ultrathin layers of ferro-
electric material epitaxially sputtered onto a substrate. Experimental and theoretical results in10, 11 show that
ferroelectricity exists down to a thickness of 3 nm. Furthermore it is well known that the material properties of
epitaxially deposited films are affected by the crystal structure of the underlying substrate. Thin films conform
to the lattice parameters of the substrate which cause misfit strains at the interface between the ferroelectric
film and substrate. Experimental work, see e.g.12–15 as well as theoretical work, see e.g.16–22 discuss this effect
as a material design parameter. Epitaxial strain even controls the transition from paraelectric to ferroelectric
behavior. This feature is frequently investigated by using phase-field modeling which is in agreement with ex-
perimental data.23, 24 To determine intrinsic domain evolution mechanisms phase-field modeling is an effective
method since all necessary electrical and mechanical boundary conditions can be incorporated.
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The article is organized as follows. Section 2 presents the governing equations of the phase-field model and
discuss its normalization. In Section 3 computational results on nano-scaled cubes are presented. The examples
show the effect of altered geometries and interfacial strain. Additionally, the need for three-dimensional modeling
is illustrated. Next, a nano-scaled energy converter is discussed in Section 4. Finally, Section 5 gives conclusions
and an outlook on further research.

2. FOUNDATIONS OF THE MODEL
ABO3-type perovskites undergoing the phase transition from cubic into tetragonal crystal structure have six
variants: polarization along or opposite to the [100], [010], and [001] directions of the unit cell. Polarization
is accompanied with lattice distortion (electrostriction) resulting in spontaneous strain ε0 = c−a

a > 0, see
Fig. 1. Any insulator is electrostrictive but in ferroelectrics the quadratic coupling between polarization and
strain is exceptionally strong. Thus, the parameters bijkl in Eq. 10 are relatively large. Both, the material
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Figure 1. A schematic of the behavior of ABO3-type ferroelectrics undergoing a phase transition below the Curie tem-
perature. The letters A and B indicate metal ions with 2+ resp. 4+ valence electrons. In the ferroelectric phase the unit
cell becomes tetragonal with asymmetrically distributed electric charges causing spontaneous polarization P0. The six
variants of the ferroelectric phase are characterized by the polarization vectors.

polarization5, 16, 25 or the spontaneous polarization, see e.g.23, 26 are possible primary thermodynamic order
parameters leading to different phase-field models but similar results. Considering the material polarization P
the electric displacement reads

D := P + κ0 E (1)

with the electric field E and the permittivity of the free space κ0 = 8.854 · 10−12 Vm/C. Within the ferroelectric
body B the electrostatic field equations are fulfilled through

E := −Grad[ϕ] in B (2)
Div[D] = q in B (3)

where ϕ is the electric potential and q is the volume charge density. On the electroded surface ∂Be and on the
insulated surface ∂Bi it holds

D · n = ω on ∂B . (4)

The unit vector n is normal to the surface, and ω is the surface charge density. The mechanical part of the
model assumes linear kinematics. Thus, the mechanical strain is defined by

ε :=
1
2
(Grad[u] + GradT[u]) = Sym

[
∂u
∂x

]
, (5)
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and the standard equilibrium equations appear as

Div[σ] + b = 0 in B (6)

σ = σT in B (7)
σ · n = t̄ on ∂Bt (8)

u = ū on Bu . (9)

Herein, u is the displacement vector, σ the Cauchy stress tensor, b are body forces per unit volume, and t are
tractions applied on the surface. Following the Landau-Devonshire theory27 the Helmholtz free energy density
for ferroelectrics having centrosymmetric parent phase reads in indicial notation5, 16

ψ =
1
2
aijkl Pi,j Pk,l +

1
2
āij Pi Pj +

1
4

¯̄aijkl Pi Pj Pk Pl +
1
6

¯̄̄aijklmn Pi Pj Pk Pl Pm Pn

+
1
8

¯̄̄̄aijklmnrs Pi Pj Pk Pl Pm Pn Pr Ps − bijkl εij Pk Pl +
1
2
cijkl εij εkl

+ fijklmn εij εkl Pm Pn + gijklmn εij Pk Pl Pm Pn +
1

2 κ0
(Di − Pi)2 . (10)

The coefficients aijkl = a0 for ij = kl give an isotropic energy penalty for spatially inhomogeneous polarization.
The thickness of the domain walls is a characteristic material length scale and is connected to a0. The dielectric
stiffness āij together with higher order terms indicated by multiple bars provides an energy well structure
corresponding to the six stable domain states of the polar tetragonal crystal system. The piezoelectric and
elastic properties of monodomain single crystal BaTiO3 near the spontaneous polarization P0 = 0.26 C/m2 and
the spontaneous strain ε0 = 0.82% are given through the tensors bijkl, cijkl , fijklmn and gijklmn. The permittivity
κ0 accounts for the stored electric energy of the free space occupied by the material. For further details on the
specific form of the free energy with characteristic material parameters for BaTiO3 we refer to the work of Landis
and coworkers.16

The polarization is the state variable of the phase field model and evolves according to the Ginzburg-Landau
equations (

∂ ψ

∂Pi,j

)
,j

− ∂ ψ

∂Pi
= β Ṗi , β ≥ 0 , (11)

where β represents the polarization viscosity. Eqs. 1-11 are implemented using a finite element formulation. The
seven nodal degrees of freedom of the finite elements are the mechanical displacements, the material polarization
and the electric potential φ. The electric field enters the formulation by the electric enthalpy h, which is obtained
from the Helmholtz free energy density ψ via the Legendre transformation h = ψ − EiDi. Strain, polarization,
polarization gradient and electric field are interpolated within the finite element using isoparametric trilinear
shape functions. The Ginzburg-Landau equation as well as mechanical and electrical equilibrium equations can
be expressed in a virtual work statement

∫
V

(β Ṗi δPi + σij δεij +Di δEi + ηi δPi + ξij δPi,j)dV = 0 (12)

with σij = ∂h/∂εij = ∂ψ/∂εij , Di = −∂h/∂Ei, ηi = ∂h/∂Pi = ∂ψ/∂Pi and ξij = ∂h/∂Pi,j = ∂ψ/∂Pi,j . Eq. 12
is solved in the finite element formulation using a standard Newton-Raphson scheme. Additionally, a first-order
accurate backward Euler scheme is used to discretize the polarization rate within each time step.

2.1 Normalizations

Here we give some explanation to the normalization of the phase-field model we use. The aim is to transform the
Helmholtz free energy density, the length scale, and the mechanical strain such that they appear as dimensionless
quantities. The normalization factors are physical material parameters namely the coercive field for homogeneous
180◦ switching Ec, the spontaneous polarization P0, and the spontaneous strain ε0. Additionally, the length scale
l0 = 1 nm is employed and connected to the thickness of a 180◦ domain wall, see Sec. 2.2. The normalization
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factors are directly related to the electric field E, the material polarization P, the geometry of the structure
parameterized by coordinates x, and the mechanical strain ε as follows

E �→ Ē :=
E
Ec

x �→ x̄ :=
x
l0

P �→ P̄ :=
P
P0

ε �→ ε̄ :=
ε

ε0
. (13)

Defining

κ̄0 :=
κ0Ec

P0
(14)

the normalized electric displacement reads

D �→ D̄ := P̄ + κ̄0 Ē =
P
P0

+
κ0Ec

P0

E
Ec

=
(P + κ0 E)

P0
=

D
P0

. (15)

Considering the Helmholtz free energy density to be normalized via electric parameters results in

ψ �→ ψ̄ :=
ψ

EcP0
. (16)

The electric enthalpy transforms via

h := ψ − E · D �→ h̄ :=
h

EcP0
=
ψ − E · D
EcP0

=
ψ

EcP0
− E
Ec

· D
P0

= ψ̄ − Ē · D̄ . (17)

The normalization of length scale and mechanical strain yields

ε̄ :=
ε

ε0
= Sym

[
1
ε0

∂u
∂x

]
= Sym

[
∂

∂x̄

(
u
l0ε0

)]
= Sym

[
∂ū
∂x̄

]
(18)

leading to the definition of the normalized displacement as

u �→ ū :=
u
ε0l0

. (19)

A closer look at the electric field

Ē :=
E
Ec

=
1
Ec

∂φ

∂x
=

∂

∂x̄

(
φ

l0Ec

)
=
∂φ̄

∂x̄
(20)

gives the normalization for the electric potential

φ �→ φ̄ :=
φ

Ecl0
. (21)

Details on the transformation for the coefficients in Eq. 10 are given in the Appendix A. The normalizations
have great benefit for the finite element model. The mechanical and electrical parts within the stiffness matrix
become similar magnitudes. In our simulations we observe the minimum and maximum values of the diagonal
components within the stiffness matrix which produce a ratio of about ≈ 104. This ratio depends on the specific
example, the finite element mesh and the material parameters.

2.2 Association of domain wall thickness with the length scale

The normalized phase-field model allows for a direct connection of the internal length scale l0 to the thickness
of a domain wall. Without limiting the generality we sketch the assumptions for such a relation in Fig. 2 for a

Proc. of SPIE Vol. 7978  797821-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/15/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



180◦ domain wall. According to Eq. 10 the polarization gradient leads to a Helmholtz free energy density given
by

ψ∇P =
1
2
a0

(
∂P
∂x

)2

. (22)

The actual variation of P within the domain wall is sketched as nonlinear curve in Fig. 2. However, considering
the linearization of the curve in the center of the wall at x̄ = 0 results in a tangent ∂P̄

∂x̄ = 1 becoming P̄ = 1 at
x̄ = 1. With this assumption the normalized Helmholtz free energy density reads

ψ̄∇P :=
ψ∇P

P0Ec
=

1
2
a0
P0

Ec

(
∂ (P/P0)

∂x

)2

=
1
2
a0
P0

Ec

(
∂P̄
∂x̄ l0

)2

=
1
2
a0

P0

Ec l0
2 (1)2 . (23)

Enforcing the energy to fulfill
∫ 1

−1

ψ̄∇Pdx̄ = 1 yields the material parameter

a0 =
Ec l

2
0

P0
. (24)

In other words, considering Eq. 24 in the model leads to a 180◦ domain wall thickness of 2 l0.

x̄ = x
l0

P̄ = P
P0

1

1

−1

−1

Figure 2. Phase transition from P̄ = −1 to P̄ = 1 within a 180◦ domain wall.

3. ELECTRICAL HYSTERESIS OF FERROELECTRIC CUBES ON SUBSTRATE

In this section computational investigations are performed on ferroelectric nano-cubes unidirectionally strained at
the interface by an underlying substrate. We focus on the influence of that strain onto the polarization behavior
of the cube due to an applied electric field. However, the question arises, how can such a specific unidirectional
strain can be achieved. Our idea is to use MgAl2O3 as substrate offering a nearly perfect lattice match to BaTiO3.
Practically, the non-conductive MgAl2O3 substrate would be covered with a thin platinum layer. Experiments
have shown that thin films of Pt can grow epitaxially on MgAl2O3 retaining the lattice parameters of the
substrate. At the interface with the ferroelectric film the epitaxial strain (which would be biaxial) vanishes and
the sputtering process is more stable as compared to the case with lattice misfit. The unidirectional interfacial
strain εif can be enforced by adhering the substrate onto a base layer, which is initially prestressed. After the
drying time for the adhesive the prestress onto the base is released and a specific deformation results for the
substrate. This deformation can be designed such that an unidirectional strain at the interface to the ferroelectric
appears. For our investigations we use εif as design parameter and relate it to the materials spontaneous strain
value ε0. As sketched in Fig. 3 the cubes are electroded on the top and bottom surfaces. Their dimension is
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Figure 3. Configuration of the simulation model showing the finite element mesh and cuts along the cross sections 1-1
and 2-2.

a)
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z /P0

E/Ec

z/x = 1.0
z/x = 0.5
z/x = 0.3

b)

P av
z /P0

E/Ec

εif = −ε0
εif = ε0
εif = 2 ε0

Figure 4. a) Electric hysteresis-loops of ferroelectric nano-cubes underlying constant epitaxial strain εif = ε0 but different
aspect-ratios z/x. b) Electric hysteresis-loops of a ferroelectric nano-cube with dimensions 20 x 20 x 10 nm (aspect-rate
z/x=0.5) underlying different interfacial strains εif .

20 by 20 nm in the x-y-plane and the height in z-direction varies. Thus, the aspect ratio of height and width is
another design parameter in this study.

For the finite element simulation the nano-cubes are discretized with cubic elements of 1 nm edge length.
Compare that the unit cell of BaTiO3 is 0.4 nm and the thickness of a 90◦ domain wall is discussed in literature
between 2 to 25 nm.28 Our phase field model considers a 90◦ domain wall about 4 nm thickness and consequently
we use enough elements to avoid mesh pinning as numerical pre-studies have shown. The diagrams in Fig. 4
and Fig. 5 consider the averaged polarization in z-direction according to

P av
z =

∫
B Pz dV∫
B dV

. (25)

A cyclic electric field is applied between the top and bottom electrode. The normalized hysteresis loop for
Pav

z as a function of the normalized electrical field E/Ec is shown in Fig. 4. The calculations demonstrate
that the intrinsic ferroelectric material behavior represented by Pav

z can be designed and controlled by extrinsic
constraints. Interfacial strain as well as the geometry of the ferroelectric are effective parameters to design the
material response. The interfacial strain even controls the transition from paraelectric to ferroelectric behavior.
Compare Fig. 4 b) where the interfacial strain εif = 2 ε0 enforces the material to become paraelectric in
z-direction below the coercive field Ec.

Next, we demonstrate the deficiency of a 2D calculation by comparing its results to the 3D simulation. Focus
is given to a nano-cube with dimensions 20 by 20 nm and 10 nm height and unidirectional interfacial strain
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Figure 5. Comparison of the hysteresis loops in two and three dimensional simulations for the 20 x 20 x 10 nm cube under
a cyclic electric field. The characteristic values a = E3D

cz /Ec and b = E2D
cz /Ec are indicated by dotted lines.

x y

z

P av
z /P0

Figure 6. Domain switching sequence of a nano-cube with the height of 10 nm under a cyclic electric field. Polarization
is depicted by colors and the deformation is exaggerated.

εif = ε0 within a cyclic electric field. In the two-dimensional case the cube is modeled in the direction of the
interfacial strain and assumes plane strain εif = 0 in the third direction. The 3D cube is discretized with 20
by 20 by 10 elements, whereas the 2D simulation uses 200 by 100 elements. The resulting hysteresis loops can
be seen in Fig. 5. The graphs show significant differences, e.g. the normalized coercive field value E2D

cz /Ec and
E3D

cz /Ec. These discrepancies can be illuminated by comparing the domain mechanisms within the cubes. The
pictures in Fig. 6 show domain states due to a polarization shift from negative to positive z-direction caused
by an increasing electric field in positive z-direction. The domain topology during the switching process is quite
three-dimensional. Domains are asymmetrically arranged at the top of the structure and evolve mainly along
the diagonal axis. This feature is a-priori excluded in a 2D model.

In Fig. 7 the cross sections along the 1-1-plane for the 3D and the 2D simulation can be compared. The
domain state iv) illustrates the shortcomings in case of 2D investigations, since energetically unfavorable domain
topologies cannot be compensated via interactions in lateral direction. Fig. 8 shows the rotational behaviour
of the domain shifting process. Such behavior can not be described with 2D models since the domains evolve
three-dimensionally.
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y

z

i) ii) iii) iv)

Figure 7. a) Cross sections along the 1-1-plane due to a vertical cut of the three-dimensional nano-cube. b) Results of the
two-dimensional simulation. Polarization is depicted by colors and arrows and the deformation is exaggerated.

y

z

a) b) c) d)
Figure 8. a) - d) Transverse cross sections along the 2-2-plane due to a horizontal cut and formation of the domain
mechanisms. Polarization is depicted by colors and arrows.

4. ELECTRO-MECHANICAL HYSTERESIS OF AN ENERGY CONVERTER

This numerical example simulates a structured BaTiO3 thin film of 10 nm thickness deposited on an electrically
conductive substrate with perovskite structure. The assumed biaxial epitaxial strain of εif = 0.5 ε0 = 0.41 %
is provoked by distinct lattice parameters of the substrate and ferroelectric. It causes biaxial tensile stresses
in the ferroelectric material at the interface with the substrate. We consider a ferroelectric single crystal with
square dimensions of 10 nm in the lateral directions and 60 nm in the longitudinal direction, see Fig. 9. The
top electrode may be designed as a lithographically patterned platinum layer that covers 75% of the surface, as
depicted in Fig. 9. The finite element mesh for the simulation uses 16 elements in lateral direction, 96 elements
in longitudinal direction and 16 elements in thickness direction. Thus, each element is cubic with an edge length
of 0.625 nm. The simulation starts with an initial poling process by employing a potential difference between
the top and bottom electrode, compare Fig. 9. The result is an initial polarization arranged in three domains,
similar to the domain topology in Fig. 10 c). After the poling process the domain alignment evolves into a stable
topology as shown in Figure 10 a).

During the straining process the conductive substrate is strained by a homogeneous mechanical deformation.
A simple bending mechanism can be used to cause such a mechanical deformation of the substrate. We simulate
a first hysteresis loop εif ∈ [0, 0.5 εo] and a second loop εif ∈ [−0.3 εo, 0.5 εo]. In the first loop the cyclic
deformation process starts with the intrinsic strain of εif = 0.5 ε0 = 0.41 % and reaches the value of εif = 0.
Compressing the substrate periodically leads to a fully reversible domain shifting process; compare Fig. 10 a) - c).
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Figure 9. Design and dimensions of the nano-generator. The 2D-view shows the electric field E indicated by arrows within
the ferroelectric. It is approaching Ec in the homogeneous region.

The volume fractions of the separate domains modify during the deformation process but the basic three-domain
topology remains. In the case of compressing the substrate to εif = 0 the simulation shows complete positive
polarization in the thickness direction under the top electrode, see Fig. 10 c). During the second hysteresis
loop the nano-generator acquires an interfacial strain up to εif = −0.3 ε0. A realignment of domains can be
observed, depicted in Fig. 10 a) - h). This leads to a polarity reversal within the ferroelectric. The normalized
hysteresis loop according to Eq. 25 for Pav

z as a function of the interfacial strain εif can be seen in Fig. 11.
Correspondingly to the configurations in Fig. 10 a) - h) it exhibits an initial interfacial strain of εif = 0.5 ε0 and
a strain of εif = −0.3 ε0 under full compression.

x y

z

P av
z /P0

a)

b)

c)

d)

e)

f)

g)

h)

Figure 10. a) - h): Several states of domain switching under a cyclic deformation process in longitudinal direction of
the ferroelectric. The electrodes are grounded. Polarization is depicted by colors and arrows and the deformation is
exaggerated.
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Figure 11. Resulting hysteresis graph of the polarization under a cyclic strain in the longitudinal direction. Red Line in
case of strain εif = 0.5 ε0 to εif = 0. Blue line polarity reversal process due to strain from εif = 0.5 ε0 to εif = −0.3 ε0.
States a) - h) according to Fig. 10

5. SUMMARY AND OUTLOOK

In this work we use a well established phase-field model for the simulation of ferroelectric material on the nano-
scale. A normalization of the physical fields is presented, which has benefits for the numerical model. Using this
model we discuss the influence of interfacial strain and geometrical parameters onto the materials polarization
behavior. The results are in accordance to recent publications where even the transition from ferroelectric to
paraelectric behavior is reported. We demonstrated that three-dimensional simulations are quite different to the
solution of 2D simulations and conclude that 3D models are better suited for modeling realistic behavior. We
also presented the design of a nano-generator and its performance. The design of the top electrode is essential
for stabilization of interior domain mechanisms which can be utilized for electro-mechanical energy conversion.

APPENDIX A. MISCELLANEOUS

Normalized constants of the Helmholtz free energy density according to Sec. 2.1:

σ0 =
EcP0

ε0
, ā0 =

a0P0

l20Ec
, ā1 =

a1P0

Ec
, ā2 =

a2P
3
0

Ec
, ā3 =

a3P
3
0

Ec
, ā4 =

a4P
5
0

Ec
, ā5 =

a5P
7
0

Ec
, ā6 =

a6P
5
0

Ec
,

b̄1 =
b1P0ε0
Ec

, b̄2 =
b2P0ε0
Ec

, b̄3 =
b3P0ε0
Ec

, c̄1 =
c1ε

2
0

EcP0
=
c1ε0
σ0

, c̄1 =
c2ε

2
0

EcP0
=
c2ε0
σ0

, c̄1 =
c3ε

2
0

EcP0
=
c3ε0
σ0

,

f̄1 =
f1P0ε

2
0

Ec
, f̄2 =

f2P0ε
2
0

Ec
, f̄3 =

f3P0ε
2
0

Ec
, ḡ1 =

g1ε0P
3
0

Ec
, ḡ2 =

g2ε0P
3
0

Ec
, ḡ3 =

g3ε0P
3
0

Ec
.
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Explicit version of the normalized Helmholtz free energy equation, as suggested in Ref.4 :

ψ̄ =
ā0

2
(
P̄ 2

1,1 + P̄ 2
2,2 + P̄ 2

3,3 + P̄ 2
1,2 + P̄ 2

2,1 + P̄ 2
1,3 + P̄ 2

3,1 + P̄ 2
2,3 + P̄ 2

3,2

)
+
ā1

2
(
P̄ 2

1 + P̄ 2
2 + P̄ 2

3

)

+
ā2

4
(
P̄ 4

1 + P̄ 4
2 + P̄ 4

3

)
+
ā3

2
(
P̄ 2

1 P̄
2
2 + P̄ 2

2 P̄
2
3 + P̄ 2

1 P̄
2
3

)
+
ā4

6
(
P̄ 6

1 + P̄ 6
2 + P̄ 6

3

)
+ ā6

(
P̄ 4

1

(
P̄ 2

2 + P̄ 2
3

)

+ P̄ 4
2

(
P̄ 2

1 + P̄ 2
3

)
+ P̄ 4

3

(
P̄ 2

1 + P̄ 2
2

))
+
ā5

4
(
P̄ 4

1 P̄
4
2 + P̄ 4

2 P̄
4
3 + P̄ 4

1 P̄
4
3

) − b̄1
2

(
ε̄11P̄

2
1 + ε̄22P̄

2
2 + ε̄33P̄

2
3

)

− b̄2
2

(
(ε̄22 + ε̄33) P̄ 2

1 + (ε̄11 + ε̄33) P̄ 2
2 + (ε̄11 + ε̄22) P̄ 2

3

) − b̄3
(
(ε̄12 + ε̄21) P̄1P̄2 + (ε̄13 + ε̄31) P̄1P̄3

+ (ε̄23 + ε̄32) P̄2P̄3

)
+
c̄1
2

(
ε̄211 + ε̄222 + ε̄233

)
+ c̄2 (ε̄11ε̄22 + ε̄11ε̄33 + ε̄22ε̄33)

+
c̄3
2

(
ε̄212 + ε̄221 + ε̄213 + ε̄231 + ε̄223 + ε̄232

)
+

(
f1
2
ε̄211 +

f2
2

(
ε̄222 + ε̄233

)
+ f3 (ε̄11ε̄22 + ε̄11ε̄33)

+f4ε̄22ε̄33 +
f5
2

(
ε̄212 + ε̄221 + ε̄213 + ε̄231

)
+
f6
2

(
ε̄223 + ε̄232

))
P̄ 2

1 +
(
f1
2
ε̄222 +

f2
2

(
ε̄211 + ε̄233

)

+f3 (ε̄11ε̄22 + ε̄22ε̄33) + f4ε̄11ε̄33 +
f5
2

(
ε̄212 + ε̄221 + ε̄223 + ε̄232

)
+
f6
2

(
ε̄213 + ε̄231

))
P̄ 2

2

+
(
f1
2
ε̄233 +

f2
2

(
ε̄211 + ε̄222

)
+ f3 (ε̄11ε̄33 + ε̄22ε̄33) + f4ε̄11ε̄22 +

f5
2

(
ε̄213 + ε̄231 + ε̄223 + ε̄232

)

+
f6
2

(
ε̄212 + ε̄221

))
P̄ 2

3 +
(g1

4
ε̄11 +

g2
4

(ε̄22 + ε̄33)
)
P̄ 4

1 +
(g1

4
ε̄22 +

g2
4

(ε̄11 + ε̄33)
)
P̄ 4

2

+
(g1

4
ε̄33 +

g2
4

(ε̄11 + ε̄22)
)
P̄ 4

3 +
g3
4

(ε̄12 + ε̄21)
(
P̄1P̄

3
2 + P̄2P̄

3
1

)
+
g3
4

(ε̄13 + ε̄31)
(
P̄1P̄

3
3 + P̄3P̄

3
1

)

+
g3
4

(ε̄23 + ε̄32)
(
P̄2P̄

3
3 + P̄3P̄

3
2

)
+

1
2κ0

((
D̄1 − P̄1

)2 +
(
D̄2 − P̄2

)2 +
(
D̄3 − P̄3

)2
)

With the normalized constants

ā0 = 1 ā1 = −0.668325 ā2 = −3.80563 ā3 = 0.78922 ā4 = 12.4421 ā5 = 368 ā6 = 0.134226

b̄1 = 2.54138 b̄2 = 1.74267 b̄3 = 0.399353 c̄1 = 2.04999 c̄2 = 0.971673 c̄3 = 2.55952

f̄1 = 0.663581 f̄2 = 0.841326 f̄3 = −0.170635 f̄4 = 0.687281 f̄5 = 0.21328 f̄6 = 0.426588

ḡ1 = −3.66149 ḡ2 = 6.27423 ḡ3 = −1.21644 .
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