Copyright
by
Matthew Ryan Chin
2015

The Dissertation Committee for Matthew Ryan Chin Certifies that this is the approved version of the following dissertation:

Total Syntheses of the Regenerative Natural Products Vinaxanthone, Xanthofulvin, and Eupalinilide E

Committee:

Guangbin Dong, Supervisor

Dionicio R. Siegel, Co-Supervisor

Eric V. Anslyn

Hung-Wen Liu

Yan Zhang

Total Syntheses of the Regenerative Natural Products Vinaxanthone, Xanthofulvin, and Eupalinilide E

by

Matthew Ryan Chin, B. S.

Dissertation

Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

The University of Texas at Austin
May 2015

Dedication

For Mom and Dad

Acknowledgements

First and foremost I would like to express my sincere appreciation and gratitude for the guidance and wisdom bestowed by Professor Dionicio Siegel throughout my doctoral studies. The successes that have culminated in this body of work are a direct product of your unwavering support, encouragement, and consultation. I would like you to know that I have a great sense of pride having been a part of your group. I would also like to thank Professor Guangbin Dong and Professor Eric Anslyn for their enduring support and helpful conversations over the years. It was also an honor to have worked with the highly motivated, intelligent, and friendly bunch that was the Siegel group. Particular thanks goes out to Bram Axelrod, Tom Barton, Drew Camelio, Anders Eliasen, Trevor Johnson, Andrew Nelson, Changxia Yuan, and Katie Zlotkowski for their help, support, and friendship. I would like to acknowledge the talented undergraduates Michelle Han and Saagar Patel that I had the pleasure to work with as well. Additional thanks to Steve Sorey and Angela Spangenberg for generous donation of their time and tireless assistance with NMR spectroscopy. Of course none of my achievements would be possible without the unconditional love and support of my family. Mom and dad thanks for everything. You are the world to me and I will always love you.

Total Syntheses of the Regenerative Natural Products Vinaxanthone, Xanthofulvin, and Eupalinilide E

Matthew Ryan Chin, Ph. D.
The University of Texas at Austin, 2015

Supervisor: Guangbin Dong
Co-Supervisor: Dionicio R. Siegel

The fungal metabolites vinaxanthone and xanthofulvin possess the remarkable ability to restore motor function in animal models of complete spinal cord transection making them the most promising small molecules for the development of spinal cord injury (SCI) therapeutics. A concise nine-step total synthesis of vinaxanthone was accomplished utilizing a biomimetic dimerization of the putative precursor 5,6dehydropolivione and the first reported synthesis of xanthofulvin was achieved in 15steps highlighted by an unprecedented enaminone O-to-C carboxyl transfer to forge key carbon-carbon bonds. Both natural products were also identified as positive allosteric modulators of the G-protein coupled receptor (GPCR), GPR91, thus elucidating their modes of action accounting for their regenerative capabilities. Furthermore, a unique ynone coupling reaction was developed in order to access various vinaxanthone analogs for structure activity relationship (SAR) studies. This resulted in the preparation of a small molecule library of 25 vinaxanthone analogs that demonstrated pronounced neuronal regeneration within laser axotomy assays performed in vivo on C. elegans.

The plant derived natural product eupalinilide E has been found to promote the $e x$ vivo expansion of hematopoietic stem and progenitor cells (HSPCs) which have the potential to improve the success of medical procedures such as bone marrow transplants. In light of its promising applications, unknown mechanism of action, and scarcity in nature the total synthesis of eupalinilide E was undertaken. Efforts culminated in the first enantioselective total synthesis of the natural product in 20 -steps, which showcases a Favorskii rearrangement, borylative enyne cyclization, aldehyde-ene ring closure, and a dual allylic oxidation.

Table of Contents

List of Figures ix
List of Schemes xi
List of Abbreviations xv
Chapter 1: Total Syntheses and Biological Evaluation of Vinaxanthone, Xanthofulvin, and Analogs Thereof 1
Experimental Section 55
Chapter 2: Total Synthesis of Eupalinilide E 155
Experimental Section 187
Appendix A: Crystallographic Data for 394 208
Appendix B: Crystallographic Data for 401 234
Appendix C: Catalog of Spectra 244
References 471

List of Figures

Figure 1.1. Structures of vinaxanthone (1) and xanthofulvin (2)............................ 2
Figure 1.2. Barrier of rotation for chaetocyclinone C (3). 4
Figure 1.3. Equilibria of xanthofulvin (2) and 4 and 411 J (5) and 6. 5
Figure 1.4. Structures of chaetocyclinone A (7), B (8), and C (3).......................... 5
Figure 1.5. Structures of fulvate-type natural products. ... 6
Figure 1.6. Structures of polivione (24) and lapidosin (25).................................... 8
Figure 1.7. Dual reactivity of 5,6-dehydropolivione (38)..................................... 11
Figure 1.8. Ynone 93 as a surrogate for protected 5,6-dehydropolivione 72. 24
Figure 1.9. Efficacy of vinaxanthone (1) and xanthofulvin (2) compared to the lone reference agonist, sodium succinate in activating GPR91................ 33

Figure 1.10. Concentration dependent efficacy of vinaxanthone (1) (green) versus the lone reference agonist, sodium succinate (red) in activating GPR91.34

Figure 1.11. Outgrowth of GFP-labelled cholinergic neurons in vivo in C. elegans after treatment with dibutyryl cAMP, vinaxanthone (1), and xanthofulvin (2). Control: 0.2\% DMSO in M9 buffer. 36

Figure 1.12. 64 vinaxanthone derivatives containing serially deleted carboxyl and hydroxyl functionality... 38

Figure 1.13. Ynone precursors.. 41
Figure 1.14. Optimization of ynone 93 dimerization to protected vinaxanthone 184.

Figure 1.15. Vinaxanthone analogs (Yields represent total transformation from ynone precursors). Colors are provided for SAR comparison48

Figure 1.16. Representative images of in vivo laser axotomy. 51
Figure 1.17. Worms exposed to vinaxanthone analogs exhibiting varying levels of neuronal regrowth, represented as a percent change relative to controls. Colors are provided for SAR comparisons.52
Figure 1.18. Regrowth of PLM neurons 24 hours after laser axotomy. 53
Figure 2.1. Small-molecule modulators of HSC self-renewal. 157
Figure 2.2. Small-molecule modulators of HSC differentiation 157
Figure 2.3. Natural product modulators of HSCs. 158
Figure 2.4. Structure of eupalinilide E (256). 158
Figure 2.5. Sesquiterpene lactones included in imaged-based screen. 160
Figure 2.6. Guaianolide framework. 161

Figure 2.7. Representative guaianolide natural products achieved in total synthesis.

List of Schemes

Scheme 1.1. Putative biosynthetic pathway for chaetocyclinone A (7) and B (8).. 6
Scheme 1.2. Putative biosynthetic pathway for chaetocyclinone C (3). 7
Scheme 1.3. Transformation of polivione (24) into citromycetin (19).
Scheme 1.4. Tatsuta's Diels-Alder cycloaddition. 8
Scheme 1.5. Tatsuta's synthesis of vinaxanthone (1). 9
Scheme 1.6. Zeeck's insight into vinaxanthone (1) and xanthofulvin (2) formation.10
Scheme 1.7. Relationship between 5,6-dehydropolivione (38) and keto-aldehyde 3711
Scheme 1.8. Proposed non-enzymatic formation of vinaxanthone (1) and xanthofulvin (2). 13
Scheme 1.9. Diels-Alder cycloaddition strategy. 14
Scheme 1.10. Synthesis of furan 60 14
Scheme 1.11. Synthesis of keto-ester 63 15
Scheme 1.12. Alternative synthesis of keto-ester 63 15
Scheme 1.13. Diels-Alder regioisomers 66 and 67. 16
Scheme 1.14. Diels-Alder regioselectivity 16
Scheme 1.15. Synthesis of phenol 68. 17
Scheme 1.16. Synthesis of 5,6-dehydropolivione (38) 18
Scheme 1.17. Gammill's 3-substituted chromone synthesis. 18
Scheme 1.18. Byproduct formation from acetoacetylation. 20
Scheme 1.19. Putative biomimetic dimerization of 5,6-dehydropolivione (38) tovinaxanthone (1).20
Scheme 1.20. Possible intramolecular conjugate addition. 21
Scheme 1.21. Aromaticity-assisted hydrogen bonding. 22
Scheme 1.22. Proposed heterodimerization between polivione (24) and 5,6- dehydropolivione (38) 23
Scheme 1.23. Synthesis of polivione (24). 24
Scheme 1.24. Proposed coupling between ynone 93 and protected polivione/5,6- dehydropolivione 94. 25
Scheme 1.25. Synthesis of ynone 93 26
Scheme 1.26. Coupling of ynone 93 and methyl acetoacetate 109. 28
Scheme 1.27. Synthesis of xanthone 115. 29
Scheme 1.28. Synthesis of xanthofulvin (2) 31
Scheme 1.29. Previous approaches to the vinaxanthone core. 37
Scheme 1.30. Synthesis of protected vinaxanthone 184. 39
Scheme 1.31. Proposed ynone dimerization mechanism. 40
Scheme 1.32. Synthesis of non-symmetric vinaxanthone analogs. 41
Scheme 1.33. Synthesis of ynone 93. 42
Scheme 1.34. Synthesis of ynone 193 44
Scheme 1.35. Syntheses of ynones 195, 196, and 189. 45
Scheme 2.1. Guaianolide participation in Michael additions. 161
Scheme 2.2. MVA pathway for the biosynthesis of IPP 269 and DMAPP 270.. 162
Scheme 2.3. Biosynthesis of FPP 275. 162
Scheme 2.4. Biosynthesis of (+)-costunolide (281). 163
Scheme 2.5. Biosynthesis of guaianolides 284. 163
Scheme 2.6. Synthesis of key intermediate (\pm)-296. 165
Scheme 2.7. Synthesis of (\pm)-compressanolide (287) and (\pm)-estafiatin (302) 165
Scheme 2.8. Functionalization of tropone 303 166
Scheme 2.9. Synthesis of (\pm)-dehydrocostus lactone (310), (\pm)-estafiatin (302), and(\pm)-grosshemin (313). ... 166Scheme 2.10. Synthesis of (\pm)-geigerin (319)167
Scheme 2.11. Rearrangement of (-)- α-santonin (320) towards (+)-absinthin (290) and
(+)-ainsliadimer A (326). 168
Scheme 2.12. Synthesis of arglabin (328) from parthenolide (282) 169
Scheme 2.13. Synthesis of (+)-arglabin (328) 169
Scheme 2.14. Synthesis of cyclopentanecarboxylate 339 170
Scheme 2.15. Synthesis of (+)-clandantholide (288), (-)-estafiatin (302), and (+)- chinensiolide B (347) 171
Scheme 2.16. Synthesis of thapsigargin (289). 171
Scheme 2.17. Synthesis of (-)-8-epigrosheimin (291) 172
Scheme 2.18. Retrosynthetic analysis of eupalinilide E (256) 173
Scheme 2.19. Synthesis of (+)-8-epigrosheimin (291) 174
Scheme 2.20. Tribromide 364 Favorskii rearrangement. 175
Scheme 2.21. Synthesis of bicyclic lactone 368 175
Scheme 2.22. Synthesis of key aldehyde 374 176
Scheme 2.23. Failed Barbier coupling. 177
Scheme 2.24. Synthesis of guaianolide 386. 178
Scheme 2.25. Attempt to streamline synthetic route 179
Scheme 2.26. Synthesis of incorrect guaianolide diastereomer 394. 180
Scheme 2.27. Synthesis of enyne precursor 400 181
Scheme 2.28. Synthesis of allylic alcohol 405 182
Scheme 2.29. Bachi's desilylation strategy 183

Scheme 2.30. Vinyl TMS deprotection. .. 185
Scheme 2.31. Synthesis of eupalinilide E (256).. 186

List of Abbreviations

1D-NMR	one dimensional nuclear magnetic resonance
2D-NMR	two dimensional nuclear magnetic resonance
7TMR	seven transmembrane receptor
Å	angstrom
Ac	acetate
AcCl	acetyl chloride
$\mathrm{Ac}_{2} \mathrm{O}$	acetic anhydride
AcOH	acetic acid
AgNO_{3}	silver nitrate
AhR	aryl hydrocarbon receptor
AIBN	azobisisobutyronitrile
AlCl_{3}	aluminum trichloride
aq.	aqueous
ATP	adenosine triphosphate
$\mathrm{Ba}(\mathrm{OH})_{2}$	barium hydroxide
BBr_{3}	boron tribromide
BCl_{3}	boron trichloride
$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	boron trifluoride diethyl etherate
BINOL	1,1'-bi-2-naphthol
BHT	butylated hydroxytoluene
$\mathrm{Boc}_{2} \mathrm{O}$	di-tert-butyl carbonate
$\mathrm{B}_{2} \mathrm{pin}_{2}$	bis(pinacolato)diboron
Br_{2}	bromine

$\mathrm{Bu}_{4} \mathrm{NHSO}_{4}$	tetrabutylammonium bisulfate
$\mathrm{Bu}_{3} \mathrm{SnH}$	tributyltin hydride
${ }^{\circ} \mathrm{C}$	degrees Celsius
calc.	calculated
CAM	ceric ammonium molybdenate
cAMP	cyclic adenosine monophosphate
CD	circular dichroism
CD4	cluster of differentiation 4
$\mathrm{C}_{6} \mathrm{D}_{6}$	deuterated benzene
$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	deuterated methylene chloride
CDCl_{3}	deuterated chloroform
$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	deuterated dimethyl sulfoxide
C. elegans	Caenohabditis elegans
$\mathrm{CeCl}_{3} \bullet$ 7 $\mathrm{H}_{2} \mathrm{O}$	cerium(III) chloride heptahydrate
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	methylene chloride
CHCl_{3}	chloroform
$\mathrm{CH}_{2} \mathrm{~N}_{2}$	diazomethane
$\mathrm{CH}(\mathrm{OMe})_{3}$	trimethylorthoformate
cis	L. on the same side
$\mathrm{Cl}_{3} \mathrm{CCOCl}$	trichloroacetyl chloride
$\mathrm{ClCO}_{2} \mathrm{Me}$	methyl chloroformate
cm^{-1}	wavenumber
${ }^{13} \mathrm{C}-\mathrm{NMR}$	carbon nuclear magnetic resonance
CNS	central nervous system
CoA	coenzyme A xvi

$(\mathrm{CO})_{2} \mathrm{Cl}_{2}$	oxalyl chloride
CrO_{3}	chromium trioxide
(+)-CSA	camphor sulfonic acid
CSPG	chondroitin sulphate proteoglycans
Cu^{2+}	copper(II) ion
CuI	copper(I) iodide
$\mathrm{Cu}(\mathrm{OAc})_{2} \bullet \mathrm{H}_{2} \mathrm{O}$	copper(II) acetate monohydrate
CuSO_{4}	copper(II) sulfate
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCC	N,N'-dicyclohexylcarbodiimide
DDQ	2,3-dichloro-5,6-dicyano-1,4-benzoquinone
Δ	G. delta, heat
δ	G. delta, chemical shift
DHP	2,3-dihydropyran
DIBAL	diisobutylaluminum hydride
DMAP	dimethylaminopyridine
DMAPP	γ, γ-dimethylallyl pyrophosphate
DMDO	dimethyl dioxirane
DME	dimethoxyethane
DMF	N,N-dimethylformamide
DMM	dimethoxymethane
DMP	Dess-Martin periodinane
3,5-DMP	3,5-dimethylpyrazole
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid xvii

3,5-DNBC	3,5-dinitrobenzoyl chloride
E	Ger. entgegen
EC-CI	electron capture chemical ionization
EDC	1-ethyl-3-(3-
	dimethylaminopropyl)carbodiimide
EPO	erythropoietin
ESI	electronspray ionization
Et	ethyl
Et2AlCl	diethylaluminum chloride
Et ${ }_{3}$ N	diethyl ether
Et2O	ethyl acetate
EtOAc	ethanol
EtOH	equivalent
equiv.	ethyl vinyl ether
EVE	enoyl reductase
FabI	fluorescent imaging plate reader
FLIPR	farnesyl pyrophosphate
FPP	fourir transform infrared spectroscopy
FTIR	gram
G	granulocyte colony stimulating factor
GCSF	

GPP	geranyl pyrophosphate
HBr	hydrogen bromide
HBTU	N,N,N',N'-tetramethyl-O-(1H-benzotriazol-
	1-yl)uronium hexafluorophosphate
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHMgBr}$	vinyl magnesium bromide
$\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right) 4 \mathrm{Sn}$	tetravinyl tin
HCl	hydrochloric acid
$\mathrm{HCO}_{2} \mathrm{H}$	formic acid
HDAC	histone deacetylase
HF	hydrogen fluoride
HMG-CoA	β-hydroxy- β-methylglutaryl coenzyme A
HMPA	hexamethylphosphoramide
${ }^{1} \mathrm{H}-\mathrm{NMR}$	proton nuclear magnetic resonance
$\mathrm{H}_{2} \mathrm{O}$	water
$\mathrm{H}_{2} \mathrm{O}_{2}$	hydrogen peroxide
HRMS	high resolution mass spectroscopy
HSC	hematopoietic stem cell
HSCoA	coenzyme A
$\mathrm{H}_{2} \mathrm{SO}_{4}$	sulfuric acid
HSPC	hematopoietic stem and progenitor cell
$\mathrm{h} \nu$	light
Hz	hertz
I 2	iodine
IC_{50}	half maximal inhibitory concentration
IL3	interleukin-3 xix

in situ	L. on site
in vacuo	L. vacuum
in vitro	L. in glass
in vivo	L. within the living
IPP	isopentenyl pyrophosphate
$i-\mathrm{Pr}_{2} \mathrm{NEt}$	N,N-diisopropylethylamine
$i-\mathrm{PrNH}_{2}$	isopropylamine
$i-\mathrm{Pr}_{2} \mathrm{NH}$	diisopropylamine
i-PrOH	isopropanol
$(i-\mathrm{PrO})_{2} \mathrm{TiCl}_{2}$	dichlorotitanium diisopropoxide
IR	infrared spectroscopy
J	coupling constant
KBr	potassium bromide
$\mathrm{K}_{2} \mathrm{CO}_{3}$	potassium carbonate
kcal	kilocalorie
kD	kilodalton
$\mathrm{KH}_{2} \mathrm{PO}_{4}$	monopotassium phosphate
KMnO_{4}	potassium permanganate
KOH	potassium hydroxide
L	liter
LiAlH_{4}	lithium aluminum hydride
LiCl	lithium chloride
LiClO_{4}	lithium perchlorate
LT	long-term
M9 buffer	$\begin{aligned} & 3.0 \mathrm{~g} \mathrm{KH}_{2} \mathrm{PO}_{4}, 6.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{HPO}_{4}, 0.5 \mathrm{~g} \mathrm{NaCl} \text {, } \\ & \text {, } \end{aligned}$

	$1.0 \mathrm{~g}, \mathrm{NH}_{4} \mathrm{Cl}, 1 \mathrm{~L}, \mathrm{H}_{2} \mathrm{O}$
MAG	myelin-associated glycoprotein
m-CPBA	meta-chloroperoxybenzoic acid
M	molar
Me	methyl
MeCN	acetonitrile
$\mathrm{Me}_{2} \mathrm{CO}$	acetone
MeLi	methyllithium
MeNO_{2}	nitromethane
MeOAc	methyl acetate
MeOD	deuterated methanol
MeOH	methanol
NaOMe	sodium methoxide
MEM	2-methoxyethoxymethyl
MEMCl	2-methoxyethoxymethyl chloride
$\mathrm{Me}_{2} \mathrm{NCH}(\mathrm{OMe})_{2}$	dimethylformamide dimethyl acetal
MeNH_{2}	methylamine
$\mathrm{Me}_{2} \mathrm{SO}_{4}$	dimethyl sulfate
mg	milligram
MgSO_{4}	magnesium sulfate
MHz	megahertz
mL	milliliter
mmol	millimole
$\mathrm{Mn}(\mathrm{OAc})_{3} \bullet 2 \mathrm{H}_{2} \mathrm{O}$	manganese(III) acetate dihydrate
mol	mole
	xxi

MOM	methoxymethyl
MOMCl	methoxymethyl chloride
MVA	mevolonic acid
MVK	methyl vinyl ketone
n	normal
N_{2}	nitrogen
NaBH_{4}	sodium borohydride
$\mathrm{NaBH}_{3} \mathrm{CN}$	sodium cyanoborohydride
NaCl	sodium chloride
NADPH	nicotinamide adenine dinucleotide
	phosphate
NaH	sodium hydride
NaHCO_{3}	sodium bicarbonate
$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	sodium phosphate dibasic
NaIO_{4}	sodium periodate
NaOH	sodium hydroxide
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	sodium sulfate
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$	sodium thiosulfate
$n-\mathrm{BuLi}$	normal butyllithium
NF-kB	nuclear factor kappa-light-chain-enhancer of activated B cells
$\mathrm{NH}_{4} \mathrm{Cl}$	ammonium chloride
nM	nanomolar
NMR	nuclear magnetic resonance
Nogo	neurite outgrowth inhibitor xxii

NP-1	neuropilin-1
[o]	oxidation
O_{2}	oxygen
O_{3}	ozone
obs.	observed
OMgp	oligodendrocyte-myelin glycoprotein
p	para
$\mathrm{Pb}(\mathrm{OAc})_{4}$	lead(IV) acetate
PDC	pyridinium dichromate
$\mathrm{Pd}(\mathrm{OAc})_{2}$	palladium(II) acetate
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	bis(triphenylphosphine)palladium(II) dichloride
Ph	phenyl
PhMe	toluene
$\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$	methylene triphenylphosphine
pin	pinacolate
Piv	pivaloyl
PivCl	pivaloyl chloride
pKa	acid dissociation constant
PKC	protein kinase C
PKS	polyketide synthase
PLM	posterior lateral microtubule
PMB	para-methoxybenzyl
$\operatorname{PMBO}(\mathrm{C}=\mathrm{NH}) \mathrm{CCl}_{3}$	para-methoxybenzyl 2,2,2 trichloroacetamide xiii

PP	pyrophosphate
ppm	parts per million
PPTS	pyridinium para-toluenesulfonic acid
PyBOP	(benzotriazol-1-
	yloxy)tripyrrolidinophosphonium
	hexafluorophosphate
pyr $\cdot \mathrm{HCl}$	pyridinium hydrochloride
RCM	ring closing metathesis
R_{f}	retention factor
RNAi	ribonucleic acid interferance
SAR	structure activity relationship
sat.	saturated
Sema3A	semaphorin 3A
SCI	spinal cord injury
sp.	species
SR1	stremregenin 1
SUCNR1	succinate receptor 1
TBAF	tetrabutylammonium fluoride
TBDPS	tert-butyldiphenyl
TBSCl	tert-butyldimethylsilyl chloride
TBS	tert-butyldimethylsilyl
TBSOTf	tert-butyldimethylsilyl triflate
t-Bu	tert-butyl
2,4,6-TCBC	2,4,6-trichlorobenzoyl chloride
TEPA	tetra-ethylene-pentamine xiv

TES
TFA
THF
THP
TLC
TMS
TMSCl
trans
TsOH
$\mu \mathrm{g}$
$\mu \mathrm{M}$
$\mu \mathrm{m}$
$\mu \mathrm{mol}$
UV
VEGF
Z
triethylsilyl
trifluoroacetic acid
tetrahydrofuran
tetrahydropyran
thin-layer chromatography
trimethylsilyl
trimethylsilyl chloride
L. across
para-toluenesulfonic aicd
microgram
micromolar
micrometer
micromole
ultraviolet
vascular endothelial growth factor
Ger. zusammen

Chapter 1: Total Syntheses and Biological Evaluation of Vinaxanthone, Xanthofulvin, and Analogs Thereof

Spinal cord injury (SCI) is a debilitation that nearly a quarter of a million people around the world suffer each year. Such injuries are persistent and lack practical means of treatment due to the limited inherent ability of vital axons in the central nervous system (CNS) to regenerate after sustaining trauma. ${ }^{1,2}$ Previous studies have proposed that the minimal capacity for neuronal regeneration is influenced by both the accumulation of extrinsic inhibitory components as well as the insufficient performance of intrinsic growth factors. ${ }^{3-6}$ Myelin-associated proteins (Nogo, MAG, OMgp) ${ }^{7-15}$ and extracellular matrix molecules such as chondroitin sulphate proteoglycans (CSPGs) ${ }^{6,16-18}$ and semaphorin 3A (Sema3A) ${ }^{19-22}$ are among some of the noteworthy inhibitors of axonal growth investigated thus far. Research has also suggested that the suppression of these inhibiting growth factors may lead to the ability of axons to regenerate. ${ }^{16,20-34}$

Popular approaches to promote CNS regeneration involve gene therapy, growth factors, and stem cells, whereas the use of low-molecular-weight compounds has received considerably less attention. ${ }^{35}$ However, the use of small molecules in the context of SCI holds significant potential for the rapid advancement of new therapeutics. The delivery of drugs through direct spinal injection may benefit from the minimal metabolizing enzymes and neutral environment associated with the forgiving pharmacokinetics of cerebrospinal fluid. In addition, recent progress in hydrogel and polymer technology for continuous drug delivery specifically designed for spinal cord therapy would provide a unique and promising platform for therapeutic development when coupled with a validated small molecule. ${ }^{36-39}$

The natural products vinaxanthone (1, also named SM-345431) and xanthofulvin (2, also named SM-216289) represent two of the most promising small molecule leads for
the future development of SCI treatment (Figure 1.1). Both small molecules exhibit remarkable regenerative effects in animal models of complete spinal cord transection highlighted by the enhanced recovery of motor function. ${ }^{30,31}$ Additionally, vinaxanthone (1) has been observed to promote nerve growth following corneal transplant. ${ }^{40}$ The natural products were co-isolated from fungal extracts of Penicillium sp. SPF-3059 and were discovered through an extensive screen to identify inhibitors of Sema3A-mediated growth cone collapse. Vinaxanthone (1) and xanthofulvin (2) displayed potent in vitro inhibitory activity toward Sema3A with IC 50 values of 0.1 and $0.09 \mu \mathrm{~g} / \mathrm{mL}$, respectively. Furthermore, cytotoxicity and alterations in the cellular morphology were not observed at concentrations $>1,000$ times the effective dose providing a sizable window of opportunity for preclinical assessments. ${ }^{32-34}$

Figure 1.1. Structures of vinaxanthone (1) and xanthofulvin (2).
Nikolov and co-workers structurally elucidated Sema3A as a soluble 65 kDa extracellular matrix protein that accumulates in the resultant scar tissue surrounding the site of SCI. ${ }^{19-22,41}$ Sema3A-mediated growth cone collapse operates through the modulation of the actin cytoskeleton and microtubules resulting in the failure of injured neurons to regenerate. ${ }^{19-22,42-47}$ Typically, Sema3A binds with the transmembrane glycoprotein neuropilin-1 (NP-1) before interacting with its plexin receptor to signal downstream biological cues for neurite growth cone collapse. Vinaxanthone (1) and xanthofulvin (2) unhinge the binding between Sema3A and NP-1 by altering the steric
environment associated with the two proteins resulting in a disruption of the normal plexin interaction responsible for inhibition of neuronal outgrowth. ${ }^{31,48,49}$

While the regenerative effects of vinaxanthone (1) and xanthofulvin (2) have been attributed to their ability to strongly inhibit Sema3A following traumatic SCI, it is interesting that the same regenerative profile was not observed in an independent study that genetically eliminated Sema3A function altogether. ${ }^{50}$ This result suggests that the inhibitory effects of the compounds against Sema3A are not solely responsible for the pronounced regeneration and that a more complex mode of action likely exists. Nevertheless, sustained administration of either natural product through continual infusion or the use of a solid matrix drug delivery system in adult rats following complete spinal cord transection generated regenerative responses. These small molecule treatments profoundly increased the regeneration and survival of injured neurons, led to robust myelination, reduction of the number of apoptotic cells, and significantly enhanced angiogenesis all contributing to a notable recovery. ${ }^{30,31}$ In addition, treatment with vinaxanthone (1) in combination with treadmill training to promote proper axonal rewiring resulted in an even greater restoration of hindlimb motor function. ${ }^{30}$

The fermentation of Penicillium vinacaeum, the strain from which vinaxanthone (1) was originally isolated in 1991 by Yokose and Seto in a screen for phospholipase C inhibitors provided $30 \mathrm{mg} / \mathrm{L}$ of the natural product. ${ }^{51}$ Vinaxanthone (1) had also been isolated from other strains of penicillium and had been identified as an effective CD4binder and FabI inhibitor as well. ${ }^{52,53}$ The fermentation of Penicillium sp. SPF-3059 most notably yielded $11 \mathrm{mg} / \mathrm{L}$ of vinaxanthone (1) and $21 \mathrm{mg} / \mathrm{L}$ of xanthofulvin (2) as coisolates. ${ }^{33}$ Thus far, no significant advances toward an efficient fermentation process have been realized.

Structural elucidation of vinaxanthone (1) and xanthofulvin (2) was accomplished using mass spectroscopy and ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$-, and 2D-NMR experiments. Both natural products possess a xanthone and chromone core as well as a characteristic pattern of polyacidic functionality. ${ }^{33,51-53}$ Despite containing a biaryl linkage, computational chiroptical calculations performed by Řezanka and co-workers on the structurally similar compound chaetocyclinone $\mathrm{C}(\mathbf{3})$ revealed that vinaxanthone (1) does not exhibit axial chirality (Figure 1.2). Chaetocyclinone C (3) was calculated to possess a barrier of rotation of 20 $\mathrm{kcal} / \mathrm{mol}$ about the aryl-chromone bond under ambient conditions. ${ }^{54,55}$ This conclusion is in accord with the lack of optical rotation and inconclusive CD spectrum associated with chaetocyclinone C (3). ${ }^{56}$

Figure 1.2. Barrier of rotation for chaetocyclinone C (3).
Xanthofulvin (2) on the other hand does not contain a biaryl linkage but does possess an enol that exists as a $4: 1$ ratio with its keto form $\mathbf{4}$ in d_{6}-DMSO (Figure 1.3). Interestingly, the hemiketal natural product $411 \mathrm{~J}(\mathbf{5})$ also exists as a $4: 1$ ratio with its keto tautomer 6. ${ }^{52}$ Careful analysis revealed that xanthofulvin (2) and 411J (5) possessed identical spectral properties. Since both xanthofulvin (2) and 411J (5) were reported as co-isolated products with vinaxanthone (1) it is likely that they are the same. Total synthesis of xanthofulvin (2), the more likely structure would easily resolve this inconsistency.

Figure 1.3. Equilibria of xanthofulvin (2) and 4 and 411J (5) and 6.
Biosynthetic studies regarding vinaxanthone (1) and xanthofulvin (2) have yet to be reported, however research into the biosynthesis of the structurally similar polyketide metabolite, chaetocyclinone C (3) was performed by Zeeck (Figure 1.4). ${ }^{56}$ Chaetocyclinone $\mathrm{A}(7), \mathrm{B}(8)$, and $\mathrm{C}(3)$ were produced by the fermentation of Chaetomium sp. (strain Gö 100/2), which was isolated from marine algae.

chaetocyclinone $\mathrm{A}(7)(\mathrm{R}=\mathrm{OMe})$ chaetocyclinone $B(8)(R=H)$

chaetocycline C (3)

Figure 1.4. Structures of chaetocyclinone A (7), B (8), and C (3).
Through a series of ${ }^{13} \mathrm{C}$-labelled acetate feeding experiments Zeeck suggested that a single chain heptaketide undergoes a typical fungal polyketide-folding event to establish the core of the C_{14} polyketides (Scheme 1.1). The biosynthetic pathway involves an initial condensation of the single chain heptaketide 11 and oxygenation to form hydroxynaphthoquinone 12. Hydroxylation and oxidative ring cleavage follows to give benzoic acid derivative 13. Condensation then affords chromone intermediate 14 whose terminal polyketide carboxyl group is subsequently reduced to aldehyde 15. At this point
aldehyde 15 may cyclize and undergo methylation to provide chaetocyclinone A (7) or experience further reduction prior to methylation to generate chaetocyclinone $B(8)$.

Scheme 1.1. Putative biosynthetic pathway for chaetocyclinone A (7) and B (8).
Zeeck's conclusions are consistent with previous biosynthetic studies performed on related fulvate-type natural products $\mathbf{1 6 - 1 9}$ (Figure 1.5). ${ }^{57,58}$ It is important to note the structural similarity between these compounds and that of the chaetocyclinones, moreover their oxidation patterns also resemble that of vinaxanthone (1) and xanthofulvin (2).

Figure 1.5. Structures of fulvate-type natural products.
Zeeck also developed a biosynthetic proposal for the dimer species chaetocyclinone C (3) (Scheme 1.2). Originating from common intermediate $\mathbf{1 3}$ involved in the biosynthesis of chaetocyclinone A (7) and B(8), reactive precursors 21 and 22 could be obtained. A dual aldol condensation would consequently forge the xanthone core of chaetocyclinone C (3). Similar feeding experiments were conducted and
significant enrichment at the carbon atoms of the central rings was present, however diminishing and inconsistent yields of enriched chaetocyclinone C (3) failed to provide a complete labeling assignment. Although Zeeck had inconclusive data he asserts that chaetocyclinone $\mathrm{C}(\mathbf{3})$ arises from the dimerization of two highly reactive C_{14} polyketides, a hypothesis also put forth by Wrigley in his initial isolation work on vinaxanthone (1). ${ }^{52}$

Scheme 1.2. Putative biosynthetic pathway for chaetocyclinone C (3).
It is noteworthy to mention that Staunton's experiments with the metabolite polivione (24) which has the same oxygenation pattern as vinaxanthone (1) and xanthofulvin (2) revealed that polivione (24) could easily be transformed into citromycetin (19) (Scheme 1.3). ${ }^{59-62}$ This highlights the correlation between previously proposed intermediate structures and known natural products.

Scheme 1.3. Transformation of polivione (24) into citromycetin (19).

Interestingly, an unsaturated version of the polivione scaffold with an aromatic oxygenation pattern consistent with the chaetocyclinones, lapidosin (25) is also a known isolated natural product (Figure 1.6). ${ }^{59-62}$ Although it seems likely that vinaxanthone (1), xanthofulvin (2), and chaetocyclinone C (3) arise from non-enzymatic processes further studies are warranted to support such claims.

polivione (24)

lapidosin (25)

Figure 1.6. Structures of polivione (24) and lapidosin (25).
In 2007, Tatsuta disclosed the first total synthesis of vinaxanthone (1). ${ }^{63}$ Interested in the biogenesis of the natural product an intermolecular Diels-Alder cycloaddition between two molecules of unsaturated ketone 26 was hypothesized to afford the vinaxanthone core following oxidative aromatization (Scheme 1.4).

Scheme 1.4. Tatsuta's Diels-Alder cycloaddition.
Tatsuta's total synthesis of vinaxanthone (1) began with the regioselective bromination and O-methylation of readily available vanillin 28 to afford 3bromobenzaldehyde 29 (Scheme 1.5). ${ }^{64}$ Dakin reaction proceeded to convert benzaldehyde 29 directly to phenol $\mathbf{3 0} .{ }^{65}$ Michael addition of phenol $\mathbf{3 0}$ into acrylonitrile gave nitrile 31 that was subsequently hydrolyzed and cyclized via an intramolecular Friedel-Crafts type reaction with aluminum trichloride to produce chromanone 32. ${ }^{66}$ Protection of the resultant ketone $\mathbf{3 2}$ as its ethylene ketal $\mathbf{3 3}$ was necessary to avoid
complications in downstream chemistry. Lithium-halogen exchange followed by trapping of the metallated species with methyl chloroformate furnished, after hydrolysis of the ketal, elaborated chromanone 34. Vinyl iodide 35 was obtained by treating chromanone 34 with molecular iodine at elevated temperature in dimethyl sulfoxide. Palladium (II) acetate mediated Heck cross-coupling between vinyl iodide 35 and methyl vinyl ketone gave key dimerization precursor 26. ${ }^{67}$ Dimerization of vinyl ketone 26 via a Diels-Alder cycloaddition/oxidative aromatization process proceeded in toluene in a sealed tube at $200{ }^{\circ} \mathrm{C}$ in the presence of air to afford permethylated vinaxanthone 36. Tatsuta believed that such a dimerization accounts for the biosynthetic pathway that leads to vinaxanthone (1) in nature. A final deprotection of all oxygen bond methyl groups was realized with aluminum trichloride in refluxing toluene to afford vinaxanthone (1). ${ }^{68}$

Scheme 1.5. Tatsuta's synthesis of vinaxanthone (1).

Although Tatsuta's synthesis is concise and utilizes a unique dimerization strategy, it lacks the scalability needed to produce large quantities of vinaxanthone (1) or structurally similar pharmaceutical agents for subsequent analyses for potential SCI therapeutics. The likelihood of a biomimetic Diels-Alder cycloaddition being the operative pathway in nature is also unlikely. ${ }^{69-71}$

In light of their ability to promote axonal regeneration and scarcity in nature vinaxanthone (1) and xanthofulvin (2) are attractive targets for total synthesis. Wrigley hypothesized that a homodimerization of a C_{14} polyketide related to polivione (24) would afford vinaxanthone (1) and 411J (5) in nature. ${ }^{52}$ In concert with this notion Zeeck proposed that a structurally similar intermediate to polivione (24) might undergo a heterodimerization with another reactive C_{14} polyketide to produce chaetocyclinone C (3), a molecule that exhibits the same carbon framework as vinaxanthone (1) (Scheme 1.6). Zeeck also noted that the formation of xanthofulvin (2) may arise from the difference in regiochemistry between Knovenagel intermediates $\mathbf{3 9}$ and 40 precluding aldol condensation. ${ }^{56}$

Scheme 1.6. Zeeck's insight into vinaxanthone (1) and xanthofulvin (2) formation.
The putative natural product 5,6-dehydropolivione (38) seemed like a viable C_{14} polyketide precursor that could generate both vinaxanthone and xanthofulvin scaffolds
(Scheme 1.7). Further analysis revealed that the other reactive C_{14} polyketide intermediate set forth by Zeeck is simply the addition of water into 5,6-dehydropolivione (38). Presumably water can add in a conjugate fashion resulting in the expulsion of a free phenol. Unhindered bond rotation then allows for rearrangement prior to condensation to afford reactive keto-aldehyde 37. ${ }^{72}$

Scheme 1.7. Relationship between 5,6-dehydropolivione (38) and keto-aldehyde 37.
Interestingly, 5,6-dehydropolivione (38) possesses dual reactivity as both a Michael donor and Michael acceptor (Figure 1.7). Therefore the rearrangement to another reactive coupling partner is not necessary for dimerization to occur and it may be possible that 5,6-dehydropolivione (38) is the only precursor needed to furnish vinaxanthone (1) and xanthofulvin (2) directly by way of a non-enzymatic pathway.

Figure 1.7. Dual reactivity of 5,6-dehydropolivione (38).
Michael addition of 5,6-dehydropolivione (38) into the chromone of a second molecule of 5,6-dehydropolivione (38) provides adduct 44 (Scheme 1.8). β-elimination leads to the formation of enediones 45 and 46 that are in equilibrium due to the
delocalized carbonyl system. ${ }^{73}$ Chromone condensation of 45 and 46 results in the formation of chromones 47 and 48 . 74 These intermediates are also in equilibrium due to the highly delocalized tetracarbonyl system 49. At this point previous hypotheses would suggest that an aldol condensation would take place. However, it appears strange that an anion would attack a carbonyl that is responsible for its delocalized nature and stability. Since the pKa 's of $\mathbf{4 7}$ and $\mathbf{4 8}$ are probably quite low it is likely that they exist in their trienol forms $\mathbf{5 0}$ and $\mathbf{5 1}$ at biological pH . In this orientation a 6π electrocyclization may be responsible for the formation of the final ring closure to give $\mathbf{5 2}$ and $\mathbf{5 3}^{\text {. }}$. ${ }^{5,76}$ Elimination of water from 53 would furnish vinaxanthone (1) directly whereas 52 would require the elimination of water followed by reduction to afford xanthofulvin (2).

5,6-dehydropolivione (38)

44

45
chromone condensation

50 $\downarrow 6 \pi$ electrocyclization

$\left.\right|_{\text {2. reduction }} ^{52}$

Scheme 1.8. Proposed non-enzymatic formation of vinaxanthone (1) and xanthofulvin (2).

In order to examine the validity of our non-enzymatic hypothesis for the formation of vinaxanthone (1) and xanthofulvin (2) in nature, a concise synthesis of the putative precursor, 5,6-dehydropolivione (38) was developed. One of the retrosynthetic challenges in deconstructing this substrate included the ability to generate the polyoxygenated arene ring. A Diels-Alder cycloaddition between an appropriately functionalized furan 54 and an alkynyl ester 55 was envisioned to provide bicycle 56
(Scheme 1.9). Upon acid-mediated ring opening/aromatization the desired arene 57 was believed to be accessible. ${ }^{77}$

Scheme 1.9. Diels-Alder cycloaddition strategy.
Initial studies regarding functionalized 2-siloxyfurans revealed that furans possessing strong electron donating groups at their 4-position lead to rapid decomposition and poor results in experiments probing Diels-Alder reactivity. A pivaloyl group was utilized to help attenuate the electronics of the furan and eliminate such weaknesses. A reliable two-step sequence allowed the preparation of furan $\mathbf{6 0}$ in large quantities without the need for purification (Scheme 1.10). Acylation of tetronic acid 58 with pivaloyl chloride in the presence of catalytic 4-dimethylaminopyridine afforded pivaloyl tetronate 59 which was subsequently treated with triethylamine and freshly prepared tertbutyldimethylsilyl triflate ${ }^{78}$ to furnish furan $\mathbf{6 0}$ as a viscous amber oil. ${ }^{79}$

Scheme 1.10. Synthesis of furan $\mathbf{6 0}$.
Keto-ester 63 was also synthesized in as few as two steps (Scheme 1.11). The silver acetylide of tert-butyl propiolate $\mathbf{6 1}$ was discretely generated before being trapped with acetyl chloride. ${ }^{80,81}$ Despite delivering moderate yields this reaction sequence was far from ideal. Attempts to perform this sequence on a larger scale were unsuccessful due to diminishing yields. Significant quenching of silver acetylide $\mathbf{6 2}$ resulted in the presence of starting material that needed to be removed via column chromatography. The work-up
of silver acetylide 62 also required carbon tetrachloride to extract product from the aqueous layer, which became costly on scale. The use of chloroform or methylene chloride as substitutes or co-solvents was far less effective.

Scheme 1.11. Synthesis of keto-ester 63.
To circumvent these drawbacks an alternative synthesis of keto-ester 63 was adopted (Scheme 1.12). Commercially available 3-butyn-2-ol 64 was treated with ethyl vinyl ether in the presence of catalytic pyridinium p-toluenesulfonate prior to deprotonation with n-butyllithium and trapping with di-tert-butyl dicarbonate to afford ester 65. Removal of the ethoxyethyl ether group in refluxing ethanol followed by Jones oxidation once again furnish keto-ester 63. ${ }^{82}$ Although this sequence required an additional two steps, each transformation can be performed on >100 gram scale, does not require purification, and provides excellent yields.

Scheme 1.12. Alternative synthesis of keto-ester 63.
With a suitable diene and dienophile in hand the Diels-Alder cycloaddition between furan 60 and keto-ester 63 was investigated (Scheme 1.13). The Diels-Alder between a siloxy furan and symmetrical alkynoates such as dimethyl acetylenedicaboxylate are well documented in the literature, ${ }^{77,83}$ however the use of unsymmetrical alkynoates has garnered much less attention. ${ }^{84,85}$ In this scenario the cycloaddition may generate two possible regioisomeric bicyclic adducts.

Scheme 1.13. Diels-Alder regioisomers 66 and 67.
The desired cycloadduct 66 arises from the engagement of the most nucleophilic carbon of the furan at the β-position in respect to the ketone functionality of the ketoester 63 (Scheme 1.14). This outcome was anticipated to be the most favorable because a ketone typically possesses more of an electron withdrawing effect than does an ester and would therefore impart a greater directing ability on the system. The undesired cycloadduct 67 would consequently arise from the influence of the ester functionality in directing the reaction.

Scheme 1.14. Diels-Alder regioselectivity.
It seemed reasonable that the stronger electron withdrawing character of the ketone compared to that of the ester would work in concert with the polarization of the furan to influence the regioselective outcome in our favor. Despite being aided by an intramolecular tether similar transformations have been reported in the literature. ${ }^{86}$ However, the use of an unsymmetrical aldehyde-ester alkyne has also been reported to
primarily afford the regioisomer governed by the ester and not the aldehyde. ${ }^{87}$ Therefore the regioselective outcome of our intended furan, keto-ester Diels-Alder reaction appeared less predictable than first assumed.

A solution of furan 60 and keto-ester 63 in tetrahydrofuran at $23^{\circ} \mathrm{C}$ resulted in a viscous amber oil that upon concentration gave a single regioisomeric product by ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR analysis (Scheme 1.15). Both spectra revealed the presence of an enol ether and bridgehead methine, characteristic of the desired product 66 . Bicycle 66 was then treated under acidic conditions to initiate ring opening/aromatization to afford phenol 68. Initially, 0.1 N hydrochloric acid was used for this transformation. However, it became evident that the use of dry hydrochloric acid eliminated the need for an aqueous work-up resulting in superior yields. Comparison of spectral data for phenol 68 to an earlier variant of the substrate, which contained a methyl carbonate instead of the pivaloyl ester and its structure unambiguously assigned by x-ray crystallography revealed the desired regioselectivity as well as concomitant migration of the pivaloyl group.

Scheme 1.15. Synthesis of phenol 68.
With ample quantities of phenol $\mathbf{6 8}$ at our disposal the next synthetic challenge was to obtain the acetoacetylated chromone scaffold of 5,6-dehydropolivione (38) (Scheme 1.16). Protection of the free phenol as its methoxymethyl ether 69 was necessary to avoid complications arising from the incompatibility of the phenol with subsequent chemistry. ${ }^{88}$

Scheme 1.16. Synthesis of 5,6-dehydropolivione (38).
At this point the implementation of a vinylogous amide arose as a viable option for providing a synthetic handle for chromone formation (Scheme 1.17). In 1979, Gammill disclosed the homologation of 2'-hydroxyacetophenones 73 to enaminones 74 followed by cyclization and concomitant trapping of an electrophile to form 3-substituted chromones 75. ${ }^{89}$ In the context of this report halogens and acylating species were used as the electrophiles. Gratifyingly, when heated in toluene with excess N, N dimethylformamide dimethyl acetal acetophenone 69 furnished enaminone 70 in a moderate 42% yield. More importantly was the simultaneous cleavage of the tert-butyl dimethylsilyl protecting group to set the stage for chromone formation. Despite being the most utilized solvent for such transformations, toluene often gave inconsistent results. It seemed reasonable that a more polar solvent would have the ability to stabilize the ionization of N, N-dimethylformamide dimethyl acetal and lower the energy of the reactive intermediates. Consequently, by switching the solvent to dimethoxyethane a more consistent and higher yielding reaction was obtained.

Scheme 1.17. Gammill's 3-substituted chromone synthesis.

Although Gammill produced acylated chromones our objective was to invoke acetoacetylation (Scheme 1.16). Various reagents including diketene were used to generate acyl ketene before identifying acyl-Meldrum's acid 71 as the best option for acetoacetylation. ${ }^{90}$ Upon heating acyl-Meldrum's acid 71 to reflux in toluene a retrocyclization provided acyl ketene 77, which engaged enaminone 70 in the desired fashion to afford protected 5,6-dehydropolivione 72. Subsequent global deprotection with boron trichloride was uneventful providing a near quantitative yield of 5,6dehydropolivione (38). ${ }^{91}$

Unfortunately, extensive attempts to optimize the acetoacetylation failed to exceed 42% yield. Problems arise within the reaction itself as well as in the purification of the product (Scheme 1.18). At high temperatures, enaminone 70 has the potential to cyclize in the absence of an electrophile to produce unsubstituted chromone 76. Another transformation taking place in the reaction vessel is the cycloaddition between two molecules of acyl ketene 77 to give dehydroacetic acid 78. Silica gel column chromatography was minimally successful in purification. However, analysis of the original isolation paper of polivione (24) revealed that the use of phosphoric acid impregnated silica gel for purification was beneficial. ${ }^{59,60}$ Implementing this strategy made a significant improvement in our purification efforts. Despite trying a multitude of solvent systems, separation of the desired product from unwanted chromone 76 and dehydroacetic acid 78 was difficult due to similar R_{f} values and moderate solubility in the eluent of choice.

Scheme 1.18. Byproduct formation from acetoacetylation.
Finally, the penultimate biomimetic dimerization of the putative 5,6dehydropolivione (38) precursor could now be investigated (Scheme 1.19). To our delight, simply warming an aqueous solution of 5,6-dehydropolivione (38) to $55{ }^{\circ} \mathrm{C}$ furnished vinaxanthone (1) in a respectable 61% yield. ${ }^{92}$ Interestingly, neither xanthofulvin (2) nor any other species was detected from the reaction. This result lends credence to the hypothesized non-enzymatic formation of vinaxanthone (1) in nature.

Scheme 1.19. Putative biomimetic dimerization of 5,6-dehydropolivione (38) to vinaxanthone (1).

Further examination of our mechanistic proposal suggests a couple of reasons for the exclusive formation of vinaxanthone (1) (Scheme 1.20). Following the 6π electrocyclization of trienol $\mathbf{5 0}$ to give intermediate $\mathbf{5 2}$ it is possible for a reversible intramolecular conjugate addition to occur giving species 79. Such a pathway may suppress the dehydration needed to form the xanthofulvin core.

79
||, 1,4-addition

50

52
$\downarrow \begin{gathered}\text { 1. }-\mathrm{H}_{2} \mathrm{O} \\ \text { 2. reduction }\end{gathered}$

80

Scheme 1.20. Possible intramolecular conjugate addition.
A second possible account for the exclusive formation of vinaxanthone (1) over xanthofulvin (2) may be the steric encumbrance associated with the aromaticity-assisted hydrogen bonding found in intermediates 50 and 51 (Scheme 1.21). ${ }^{93-95}$ By way of resonance the chromone moiety has the ability to aromatize and stabilize the transition state for the 6π electrocyclization leading toward vinaxanthone (1). However, the orientation leading toward xanthofulvin (2) possesses a significant amount of steric hindrance thus making this pathway unfavorable.

Scheme 1.21. Aromaticity-assisted hydrogen bonding.
Following the completion of our concise 9 -step synthesis of vinaxanthone (1) efforts were concentrated on the amendment of our biomimetic strategy to access xanthofulvin (2) (Scheme 1.22). It was hypothesized that a heterodimerization between polivione (24) and 5,6-dehydropolivione (38) would mechanistically be devoid of the reversible intramolecular Michael addition and aromaticity-assisted hydrogen bonding thought to negatively impact our previous proposal for xanthofulvin (2) formation. With polivione (24) functioning as a discrete Michael donor, conjugate addition into 5,6dehydropolivione (38) followed by β-elimination would provide phenols 84 and 85. Subsequent chromone condensation and tautomerization to trienols $\mathbf{8 9}$ and $\mathbf{9 0}$ once again sets the stage for 6π electrocyclization. Due to the inherent saturation in polivione (24) loss of water would directly afford xanthofulvin (2) and 411J (5) without the need for terminal reduction steps following the cascade of bond forming events.

Scheme 1.22. Proposed heterodimerization between polivione (24) and 5,6dehydropolivione (38).

Polivione (24) was accessed from protected 5,6-dehydropolivione 72 following a conjugate reduction with sodium cyanoborohydride and global deprotection (Scheme 1.23). ${ }^{91,96,97}$ Unfortunately, despite several efforts the desired heterodimerization was never obtained. Reactions either yielded exclusive vinaxanthone (1) in poor yields or provided reaction mixtures that were inseparable and too difficult to analyze. It should be
noted that although our crude synthetic polivione (24) matched known spectral data, conditions for its explicit purification were never realized. ${ }^{59,60}$

Scheme 1.23. Synthesis of polivione (24).
In order to overcome the inability to access xanthofulvin (2) through a similar biomimetic approach to that utilized for vinaxanthone (1) an ynone surrogate 93 was envisioned to attenuate the reactivity associated with the acetoacetyl moiety of protected 5,6-dehydropolivione 72 (Figure 1.8). An ynone precursor was postulated to function solely as a Michael acceptor and would also benefit from possessing the proper oxidation state thus eliminating the need for further manipulation.

Figure 1.8. Ynone 93 as a surrogate for protected 5,6-dehydropolivione 72.
Analogous to our biomimetic proposal, the mechanistic pathway may begin with the addition of protected polivione or protected 5,6-dehydropolivione (represented as 94) in a Michael fashion to the chromone of ynone 93 (Scheme 1.24). β-elimination would liberate free phenols 96 or 97 that could then participate in intramolecular Michael additions with the requisite alkynone functionalities. At this point the mechanism mirrors our original proposal where isomerism leads to trienols $\mathbf{1 0 1}$ or 102, the intermediates geared toward 6π electrocyclization. Final elimination of water would generate the core structures of both vinaxanthone (1) and xanthofulvin (2).

94

95

96

98
$\|$

101 6π electrocyclization

103

$\mathrm{R}=t$-Bu
$\mathrm{R}^{\prime}=\mathrm{Piv}$
R" = MOM

Scheme 1.24. Proposed coupling between ynone 93 and protected polivione/5,6dehydropolivione 94.

The synthesis of ynone 93 was easily realized through Gammill's chemistry to provide iodochromone 107 as an excellent handle for cross-coupling transformations (Scheme 1.25). ${ }^{89}$ Upon concentration of a dimethoxyethane solution of acetophenone $\mathbf{6 9}$ and N'N'-dimethylformamide dimethyl acetal the resultant enaminone 70 was directly taken up in chloroform and treated with molecular iodine at $23{ }^{\circ} \mathrm{C}$ to afford
iodochromone 107. Sonogashira cross-coupling mediated by bis(triphenylphosphine) palladium(II) dichloride of 3-butyn-2-ol 64 (the same starting material used for keto-ester 63) to vinyl iodide $\mathbf{1 0 7}$ provided propargyl alcohol $108 .{ }^{98}$ It was extremely important to vigorously deoxygenate the tetrahydrofuran used in the Sonogashira reaction by way of iterative freeze-pump thawing. Failure to do so resulted in severely diminished yields. Subsequent pyridinium dichromate oxidation furnished gram quantities of the desired ynone 93 as a white solid. ${ }^{99}$

Scheme 1.25. Synthesis of ynone 93.
It is worthy to note that direct coupling of 3-butyn-2-one was unsuccessful and lead to complete decomposition. This result was not surprising having reviewed Neigishi's work that stated such a transformation is difficult and remains a synthetic challenge. ${ }^{100,101}$ Attempts to optimize the oxidation step via Swern, Dess-Martin periodinane, tetrapropylammonium perruthenate, manganese dioxide, and other chromium based oxidant conditions all failed to produce a superior yield. The propargyl alcohol/ynone moiety simply could not withstand the aforementioned reaction conditions.

To our disappointment extensive efforts to acquire the xanthofulvin core once again only gave exclusive formation of the vinaxanthone connectivity or an indeterminate
reaction mixture. At this juncture it was decided to focus on a stepwise approach in which a more simplistic xanthone would be synthesized en route toward xanthofulvin (2) (Scheme 1.26). Based on our previous mechanistic proposals we believed that the addition of methyl acetoacetate $\mathbf{1 0 9}$ to ynone 93 would provide the correct regioselectivity inherent to xanthofulvin (2). Furthermore, the resultant ester could function as a key synthetic handle to append the chromone core. Several reports by Hu and co-workers describing similar outcomes from the addition of 1,3-dicarbonyl species to 3-alkynyl chromones was encouraging. ${ }^{102-104}$ Exploitation of 3-alkynyl chromone reactivity is a useful extension of known reactivity displayed by 3-formyl and 3-ketonic chromones. ${ }^{74,105}$ Despite having an arene where an acetyl group was desired, Hu's substrates demonstrated the ability to forge the correct connectivity present in the xanthone core of xanthofulvin (2).

Scheme 1.26. Coupling of ynone 93 and methyl acetoacetate 109 .
The in situ generation of the sodium anion of methyl acetoacetate with sodium hydride at $23{ }^{\circ} \mathrm{C}$ led to a poor yielding mixture of the desired xanthone 115 and its deacetylated variant 116 (Scheme 1.27). The use of freshly prepared sodium enolate of methyl acetoacetate $\mathbf{1 0 9}$ rather than in situ generation was favorable. Furthermore, by running this reaction at colder temperatures the ratio of desired xanthone $\mathbf{1 1 5}$ to its deacetylated byproduct 116 could be amplified. By performing this reaction at $-78{ }^{\circ} \mathrm{C}$ in tetrahydrofuran a $5: 1$ ratio could be obtained with a respectable 83% isolated yield of xanthone 115.

Scheme 1.27. Synthesis of xanthone 115.
Selective saponification of methyl ester $\mathbf{1 1 5}$ was achieved with sodium hydroxide in a 3:1 tetrahydrofuran/water solution to yield carboxylic acid $\mathbf{1 1 7}$ (Scheme 1.28). Despite being extremely sluggish (3-4 days) this reaction was clean, high yielding, and didn't require purification. The next challenge was to couple carboxylic acid $\mathbf{1 1 7}$ to enaminone 70 in order to promote an O-to-C carboxyl transfer to forge the xanthofulvin core. Previous methods for coupling ortho-hydroxy aryl enaminones with carboxylic acids to initiate O-to-C carboxyl transfers utilized anhydrides and other activated carboxylic acid derivatives. ${ }^{106-108}$ The formation of the corresponding acid chloride prior to coupling with enaminone 70 in the presence of triethylamine was indeed successful, however it was low yielding. Direct coupling using standard peptide coupling reagents such as N'N'-dicyclohexylcarbodiimide (DCC), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), and (benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate (PyBOP) provided better yields but were plagued by difficulties in purification. $\quad \mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-tetramethyl-O-(1 H -benzotriazol-1-yl)uronium hexafluorophosphate (HBTU) on the other hand smoothly promoted the coupling of carboxylic acid $\mathbf{1 1 7}$ to enaminone $\mathbf{7 0}$ in the presence of Hunig's base to generate aminal 119 in a gratifying 88% yield. The use of coupling reagents was more direct and tolerant of sensitive functionality. ${ }^{109}$ Unfortunately, dimethylamine would not eliminate under
various O-to-C transfer conditions and required an independent step for removal. The dimethylamine was eliminated by heating an acetonitrile solution of aminal 119 in the presence of pyridinium hydrochloride. It was important to conduct this reaction under anhydrous conditions, as cleavage of the xanthone followed by chromone formation was a competing pathway. Finally, conjugate reduction with sodium cyanoborohydride was straightforward and as before the six oxygen-bound protecting groups were removed simultaneously with boron trichloride in methylene chloride at $23{ }^{\circ} \mathrm{C}$ to provide material that was in accord with the spectral values reported for xanthofulvin (2) and 411J (5) ${ }^{91,96,97}$ Therefore, we were able to appropriately reassign the hemiketal structure of 411J (5) to that of xanthofulvin (2). ${ }^{33,52,92}$ With adequate quantities of synthetic vinaxanthone (1) and xanthofulvin (2) in hand we were poised to study their biological profiles in the context of neuronal regeneration.

Scheme 1.28. Synthesis of xanthofulvin (2).
The neuroregenerative effects of vinaxanthone (1) and xanthofulvin (2) have previously been attributed to their abilities to prevent Sema3A-mediated growth cone collapse. ${ }^{48}$ However, genetic removal of Sema3A function does not lead to the same regeneration following injury. ${ }^{50}$ This result suggests that the inhibitory action of the compounds against Sema3A is not solely responsible for the pronounced regeneration and that other growth promoting pathways also exist. The potential polypharmacology of these natural products to block regrowth inhibition and actively promote growth provide a pharmacological solution that has thus far eluded SCI treatment. ${ }^{110}$ In light of these observations mode of action studies were pursued using synthetic vinaxanthone (1) and xanthofulvin (2) regarding G-protein-coupled receptors.

G-protein-coupled receptors (GPCRs) also referred to as seven transmembrane receptors (7TMRs), constitute over 800 of the most versatile and ubiquitous chemical
sensors found in nature. They are responsible for the regulation of nearly all known physiological processes in the human body including the senses of sight, smell, and taste. It is noteworthy that greater than half of all prescription drug sales worldwide can be attributed to pharmaceuticals targeting GPCRs. Furthermore, the 2012 Nobel Prize in chemistry awarded to Robert Lefkowtiz and Brian Kobilka highlights the importance of GPCRs in modern medicine and science. ${ }^{111}$

Cells throughout the body communicate with each other using chemical messengers such as hormones and neurotransmitters. GPCRs facilitate these communications by allowing cells to process information encoded in various chemical messengers such as photons, protons, small organic molecules, peptides, and glycoproteins among other chemical entities. ${ }^{112}$ Therefore the optimization of the ligand efficacy of GPCRs may lead to biological responses that can be fine-tuned to elicit desired therapeutic outcomes.

Vinaxanthone (1) and xanthofulvin (2) were subjected to EMD Millipore's Full GPCRProfiler ${ }^{\circledR}$ Panel, a screen of various GPCRs with the objective of identifying agonist and antagonist activity. Fluorescent imaging plate reader (FLIPR) assays were conducted to measure the receptor-induced mobilization of intracellular calcium. By monitoring the $\left[\mathrm{Ca}^{2+}\right]$ flux generated by the addition of test compounds, fluorescent data can be interpreted as biological activity. ${ }^{113}$ Neither natural product displayed agonist nor antagonist activity however both were identified as strong positive allosteric modulators of succinate receptor 1 (SUCNR1), also referred to as GPR91.

Succinate, an intermediate in the energy producing Krebs cycle is the endogenous ligand of SUCNR1 and has a half-maximal response concentration (EC50) of 28-56 $\mu \mathrm{M}$. Interestingly, other intermediates of the Krebs cycle, 800 pharmacologically active compounds and known GPCR ligands, and 200 carboxylic acids/succinate looking
molecules failed to increase agonist activity at the orthosteric site beyond that of the native succinate. ${ }^{114}$ Vinaxanthone (1) and xanthofulvin (2) on the other hand presumably bind to a topographically distinct allosteric site and in this case potentiate the signaling of the endogenous succinate ligand.

Both natural products markedly enhanced the affinity and efficacy of GPR91 towards succinate (Figure 1.9). At $0.2 \mu \mathrm{M}$ concentrations, identical concentrations to those used in the original Sema3A-mediated growth cone collapse assays, vinaxanthone (1) and xanthofulvin (2) displayed dose ratios of 0.33 and 0.32 with efficacy values of 230% and 222%, respectively, when compared to the reference agonist sodium succinate alone. ${ }^{33}$

Agonist(s)	Predicted EC 50 Potency $(\mu \mathrm{M})$	Predicted Dose Ratio	Efficacy
Sodium succinate	230	1	100%
Sodium succinate + $0.2 \mu \mathrm{M}$ vinaxanthone $(\mathbf{1})$	76	0.33	230%
Sodium succinate + $0.2 \mu \mathrm{M}$ xanthofulvin $(\mathbf{2})$	73	0.32	222%

Figure 1.9. Efficacy of vinaxanthone (1) and xanthofulvin (2) compared to the lone reference agonist, sodium succinate in activating GPR91.

Therefore in the presence of these positive allosteric modulators only about $1 / 3$ of the concentration of succinate is required to elicit the same response in their absence. Furthermore, the modulators also increase the efficacy of succinate more than two-fold. Concentration dependent data with respect to vinaxanthone (1) also demonstrates the ability of the compound to continually and effectively act as a positive allosteric modulator at concentrations as low as 1 nM (Figure 1.10).

Figure 1.10. Concentration dependent efficacy of vinaxanthone (1) (green) versus the lone reference agonist, sodium succinate (red) in activating GPR91.

Succinate accumulates under hypoxic conditions and functions through GPR91 to promote vessel growth. Following increased succinate levels, GPR91 leads to the production of numerous angiogenic factors, notably vascular endothelial growth factor (VEGF). ${ }^{115,116}$ GPR91 indirectly opposes the action of Sema3A by stimulating increased vascular proliferation and angiogenesis. ${ }^{117,118}$ By identifying vinaxanthone (1) and xanthofulvin (2) as positive allosteric modulators of GPR91 a mode of action has been discovered that accounts for the observed regenerative effects in the absence of Sema3A. The fact that allosteric ligands have already advanced to market, with many others in clinical trials and late preclinical development lends credence to the sound and tractable advantage of targeting allosteric modulators. ${ }^{113}$

Having identified a viable mode of action for the regenerative properties of vinaxanthone (1) and xanthofulvin (2), efforts were concentrated on the further elucidation of their biological profiles. Initial in vivo neuronal outgrowth assays in C. elegans revealed that vinaxanthone (1) and xanthofulvin (2) enhanced neuronal outgrowth by 31% and 32% at $2 \mu \mathrm{M}$, respectively (Figure 1.11). ${ }^{92}$ Comparable activity was demonstrated for the known neurotrophic compound dibutyryl cAMP, which promoted branching in 36% of animals at $2 \mu \mathrm{M} .{ }^{119}$ Encouraged by these results, plans were devised to study neuronal regeneration upon transected neurons in C. elegans. The synthesis of analogs for structure activity relationship (SAR) studies and the eventual biological optimization was also a priority.

Figure 1.11. Outgrowth of GFP-labelled cholinergic neurons in vivo in C. elegans after treatment with dibutyryl cAMP, vinaxanthone (1), and xanthofulvin (2). Control: 0.2\% DMSO in M9 buffer.

While performing neuronal outgrowth assays it became evident that there was a disparity between vinaxanthone (1) and xanthofulvin (2) in respect to their stability. As evidenced by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis xanthofulvin (2) showed significant decomposition when exposed to air as a solution in d_{6}-DMSO. Vinaxanthone (1) on the other hand revealed no discernable decomposition following a six month period under similar conditions. Furthermore, vinaxanthone (1) exhibited the same stability when subjected to $60^{\circ} \mathrm{C}$ heat in d_{6}-DMSO for two weeks. Vinaxanthone (1) appeared to be the superior molecule to proceed with biological testing due to its thermal and oxidative stability.

At this point the polypharmacology of vinaxanthone (1) was investigated for the purpose of SAR studies and biological optimization. The goal was to synthesize analogs of vinaxanthone that differed from the parent natural product by the omission of various carboxyl and hydroxyl functionality. In the previous two syntheses of vinaxanthone (1) a homodimerization of some sort was utilized to forge the vinaxanthone core. ${ }^{63,92}$ These methods would be applicable in the synthesis of vinaxanthone analogs that contained symmetrical functionality on both the xanthone and chromone cores of the molecule. However, if two different monomers were combined under either condition a statistical
mixture of products would be expected. These dimerizations lack electronic or steric information that could differentiate the two fragments and select for their positioning.

In Tatsuta's case, the unsaturated ketone monomer $\mathbf{2 6}$ possesses dual reactivity as either a diene or dienophile and in our initial report the putative 5,6-dehydropolivione (38) precursor may function as both a Michael acceptor and Michael donor (Scheme 1.29). ${ }^{63,92}$ The inability to efficiently produce edited analogs with distinct xanthone and chromone cores would significantly hinder the procurement of 56 of the 64 possible serially deleted analogs (Figure 1.12).

Tatsuta 2007

Scheme 1.29. Previous approaches to the vinaxanthone core.
 O20,
 (1445
 Mer Mer (18)

Figure 1.12. 64 vinaxanthone derivatives containing serially deleted carboxyl and hydroxyl functionality.

Serendipitously a solution to this challenge presented itself upon analysis of earlier investigations into the use of ynone 93 as a surrogate for protected 5,6dehydropolivione 72 (Scheme 1.30). When combined in a one-to-one ratio in acetonitrile with triethylamine at ambient temperature ynone $\mathbf{9 3}$ and protected 5,6-dehydropolivione 72 furnished protected vinaxanthone 184. Previous experiments revealed that under these reaction conditions protected 5,6-dehydropolivione 72 could not produce the desired compound on its own. Therefore the control experiment in which ynone 93 was treated with triethylamine in acetonitrile by itself was conducted. Surprisingly, protected vinaxanthone 184 was generated and it was discovered that ynone $\mathbf{9 3}$ could generate the xanthone core of the natural product on its own. Further control experiments revealed that triethylamine was necessary and that when ran under scrupulously anhydrous conditions neither product nor conversion of starting material in any fashion was observed.

Scheme 1.30. Synthesis of protected vinaxanthone 184.
With the knowledge that both water and base were required for this transformation and the fact that a small impurity in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the crude reaction
mixture of the ynone dimerization revealed an aldehydic species the following mechanism was proposed (Scheme 1.31). Water can add in a conjugate fashion to the chromone of ynone 93 resulting in the expulsion of free phenol 185. Michael addition of the free phenol into the alkynone would generate 3 -formyl chromone 186. Upon tautomerization diene 187 would be geared for a cycloaddition with the alkyne of another molecule of ynone $\mathbf{9 3}$ to afford the core of the natural product 188. Finally, elimination of water would forge the central aromatic ring of protected vinaxanthone 184.

Scheme 1.31. Proposed ynone dimerization mechanism.
In hopes of discerning more information about the ynone dimerization ynone 93 was treated with a large excess of water in the presence of triethylamine (Scheme 1.32). Gratifyingly, aldehyde 186 was isolated in near quantitative yield further supporting our proposed mechanism. More importantly was the realization that starting from a single ynone precursor a simple transformation was available in which we could potentially control which starting ynone would reside as the xanthone and chromone portions of the vinaxanthone scaffold in a coupling reaction. To this end ynone $\mathbf{9 3}$ was transformed into aldehyde 186 prior to the addition of ynone 189 (prepared in 4 -steps). Consequently, our hypothesis held true and upon deprotection vinaxanthone analog $\mathbf{1 2 7}$ was synthesized in a
terrific 70\% overall yield starting from ynone 93. To our delight transforming ynone $\mathbf{1 8 9}$ into aldehyde $\mathbf{1 9 0}$ prior to the addition of ynone $\mathbf{9 3}$ had the analogous affect providing vinaxanthone analog 176 in 50\% overall yield.

Scheme 1.32. Synthesis of non-symmetric vinaxanthone analogs.
With this new strategy for the facile synthesis of vinaxanthone derivatives in which n ynones allows access to n^{2} derivatives we sought to begin our preparation of a small chemical library. We envisioned that the serial deletion of the carboxyl and hydroxyl functional groups of vinaxanthone (1) would provide key information regarding the natural product's active pharmacophore. Consequently, 64 possible vinaxanthone analogs exist of which can be accessed through the synthesis of only eight ynone precursors (Figure 1.13).

193

194

195

196

189

Figure 1.13. Ynone precursors.

Thus far five ynone precursors were synthesized in order to provide a 25 vinaxanthone analog library for biological evaluation. Ynone 93 from the parent natural product synthesis was accompanied by four others exhibiting deletion of various acidic functionalities. The carboxylic acid moiety was removed from ynone 193. Similarly the carboxyl and a single hydroxyl group were deleted to afford ynones 195 and 196. Lastly, ynone 189 was constructed without acidic functionality to provide the most basic precursor scaffold. The syntheses of ynones 193, 195, 196, and 189 were quite straightforward and paralleled that of ynone 93.

The synthesis of ynone $\mathbf{9 3}$ demonstrated that a 2'-hydroxyacetophenone could be transformed into its corresponding 3-ynone chromone via a robust 4 -step sequence (Scheme 1.33). Use of Gammill's two-step preparation of iodochromones followed by Sonogashira cross-coupling with 3-butyn-2-ol 64 and subsequent pyridinium dichromate oxidation can furnish the desired ynone. ${ }^{89,98,99}$ Therefore if various 2^{\prime} 'hydroxyacetophenones can be accessed the ability to acquire the corresponding ynone precursors should follow.

Scheme 1.33. Synthesis of ynone 93.
Ynone 193 was synthesized starting from readily available 3,4dimethoxybenzaldehyde 197 (Scheme 1.34). Hydrogen peroxide mediated BaeyerVilliger oxidation followed by hydrolysis of the resulting formate otherwise known as the Dakin reaction generated the corresponding phenol 198. ${ }^{65}$ Subsequent Fries
rearrangement promoted by boron trifluoride diethyl etherate at $90^{\circ} \mathrm{C}$ in neat acetic anhydride provided pure dimethoxyacetophenone 199 as white needles following recrystallization from hot ethanol. ${ }^{120}$ Recrystallization of this intermediate was crucial for the success of iodochromone formation. Although crude dimethoxyacetophenone 199 could undergo enaminone formation, the formation of iodochromone was inoperable. Presumably, lingering boron species coordinate to the molecule and shut down its ability to cyclize. Recrystallized dimethoxyacetophenone 199 was then treated with N'N'dimethylformamide dimethyl acetal followed by molecular iodine to afford dimethoxyiodochromone 200. ${ }^{89}$

At this point the methoxy groups were transposed with methoxymethyl ether protecting groups. Dimethoxyiodochromone 200 was treated with boron tribromide prior to its protection with Hunig's base and methoxymethyl chloride to provide dimethoxymethyl ether iodochromone 201. ${ }^{88,90}$ It is important to note that the methoxy variant proceeds through the intended sequence to give the appropriate vinaxanthone analogs, however after extensive investigations a clean deprotection procedure to reveal the free phenols was never realized in any appreciable yield or purity. Interestingly, early introduction of the methoxymethyl ethers lead to failure of the Fries rearrangement and attempts to swap out the protecting groups in the presence of a free phenol were fraught with solubility problems. With dimethoxymethyl iodochromone 201 in hand the Sonogashira cross-coupling with 3-butyn-2-ol 64 and subsequent oxidation with pyridinium dichromate generated ynone 193 as a white solid. ${ }^{97,98}$ Once again it was imperative to use freshly freeze-pump thawed tetrahydrofuran devoid of oxygen to obtain good yields.

Scheme 1.34. Synthesis of ynone 193.
Commercially available $\quad 2^{\prime}, 5^{\prime}$-dihydroxyacetophenone 202, $2^{\prime}, 4^{\prime}$ dihydroxyacetophenone 204, and 2 '-hydroxyacetophenone 205 provided easy entry into the syntheses of ynones $\mathbf{1 9 5}, \mathbf{1 9 6}$, and 189 respectively (Scheme 1.35). For both of the dihydroxyacetophenone starting materials the appropriate auxiliary hydroxyl group was initially protected as its methoxymethyl ether. ${ }^{88}$ These reactions were straightforward and there was no evidence of methoxymethylation at the undesired hydroxyl sites. It makes sense that the hydroxyl group adjacent to the acetyl group is less reactive because it is involved in a hydrogen bond with the carbonyl, which is evident in the downfield ${ }^{1} \mathrm{H}$ NMR shift of the hydroxyl hydrogen. Following our reliable 4-step sequence toward ynones, precursors 195, 196, and 189 were obtained as white solids in good yields. Interestingly, the Sonogashira reaction for these three substrates did not require thoroughly deoxygenated solvent, as tetrahydrofuran acquired directly from the solvent purifier was sufficient to provide excellent yields.

204

1. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$

Scheme 1.35. Syntheses of ynones 195, 196, and 189.
With significant quantities of five unique ynones containing functional group subsets of the parent natural product 25 vinaxanthone analogs were synthesized. Since five of the 25 derivatives contain symmetric functionality on both the xanthone and chromone core the dimerization could be performed in a single operation. Treatment of an acetonitrile solution of the intended ynone with stoichiometric water and triethylamine at $23{ }^{\circ} \mathrm{C}$ provided the five symmetric vinaxanthone analogs in protected form. Further investigations pertaining to the number of equivalents of water used in this reaction lead to the optimization of the ynone 93 dimerization to protected vinaxanthone 184 (Figure 1.14). It was discovered that the implementation of 0.5 equivalents of water proceeds to give a satisfying 87% yield. Furthermore, this efficient transformation lead to the preparation of over a gram of vinaxanthone (1) in a single synthetic sequence. Presumably, the use of greater amounts of water would promote the formation of
aldehyde $\mathbf{1 8 6}$ at a rate faster than the dimerization could occur thus leading to a mismatch in coupling partners and diminishing yields. On the other hand, even though the reaction proceeds with catalytic amounts of water the reaction may be too slow to reach an optimal yield.

Entry	$\mathrm{H}_{2} \mathrm{O}$	Base	Solvent	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Time (hrs)	\% Yield
1	Bench Top MeCN	N / A	MeCN	23	16	0%
2	Bench Top MeCN	$\mathrm{Et}_{3} \mathrm{~N}$	MeCN	23	16	56%
3	0 eq.	$\mathrm{Et}_{3} \mathrm{~N}$	MeCN	23	16	0%
4	0.1 eq.	$\mathrm{Et}_{3} \mathrm{~N}$	MeCN	23	16	65%
5	0.5 eq.	$\mathrm{Et}_{3} \mathrm{~N}$	MeCN	23	16	87%
6	1.0 eq.	$\mathrm{Et}_{3} \mathrm{~N}$	MeCN	23	16	67%
7	2.0 eq.	$\mathrm{Et}_{3} \mathrm{~N}$	MeCN	23	16	59%

Figure 1.14. Optimization of ynone 93 dimerization to protected vinaxanthone 184.
Moving forward the remaining analogs were synthesized utilizing our proposed coupling strategy (Figure 1.15). ${ }^{121}$ The ynone intended to represent the xanthone core was treated with triethylamine in the presence of excess water to promote full conversion to the desired 3-formyl chromone. The aldehyde was then subjected to the desired ynone intended to represent the chromone core with additional triethylamine. The 25 protected
vinaxanthone analogs were alas generated in yields spanning 21% to 87% with a majority of reactions providing modest yields in the vicinity of 50%. Despite several low yields practically all reactions retained very good mass balance. In a majority of reactions both of the ynone homodimers were co-isolated (see supporting information for isolated yields). Therefore bonus material was obtained for subsequent deprotections and biological testing. It is noteworthy that the undesired heterodimer was never present within the reaction mixture. Although a general procedure has been developed to efficiently synthesize various vinaxanthone analogs significant optimization would be needed to acquire superior yields for each individual analog. The disparity between reaction yields was hypothesized to be due to the solubility differences amongst the different ynones, intermediates, and vinaxanthone derivatives.

Final liberation of oxygen bearing functionalities of protecting groups was done in one of two ways. Simple treatment of a given protected vinaxanthone analog with boron trichloride in methylene chloride rapidly removed all protecting groups. ${ }^{91}$ The only downside to this procedure was the need to remove boron impurities. This was accomplished by trituration with mixtures of methanol and pentane. Alternatively, a protected vinaxanthone analog could be taken up in methanol and treated with dry hydrochloric acid. This solution was heated to $65{ }^{\circ} \mathrm{C}$ and upon complete conversion (monitored by aliquot ${ }^{1} \mathrm{H}-\mathrm{NMR}$) the reaction mixture was purged with nitrogen gas to remove gaseous HCl and concentrated to reveal pure vinaxanthone analogs. This method unfortunately was unsuccessful on analogs bearing carboxylic acids because under these conditions transesterification to the methyl ester was prominent. With the preparation of our small library of 25 vinaxanthone analogs we were equipped with adequate material to study their regenerative capabilities within an animal model.

vinaxanthone (1) (85\%)

144 (49\%)

160 (64\%)

168 (44\%)

176 (50\%)

123 (22\%)

147 (50\%)

163 (32\%)

171 (44\%)

165 (55\%)

173 (43\%)

166 (41\%)

174 (24\%)

167 (38\%)

181 (49%)

182 (21\%)

Figure 1.15. Vinaxanthone analogs (Yields represent total transformation from ynone precursors). Colors are provided for SAR comparison

The nematode Caenorhabditis elegans (C. elegans) has emerged as an ideal animal model for the investigation of regenerative responses in the context of medicinal chemistry. Application of the C. elegans axotomy model can generate single compound results within hours and entire library screens within days compared to the substantial time required to produce such results using murine models. It is important to point out that the worm has played significant roles in the discovery of various human health related biological processes including apoptosis ${ }^{122}$ and RNAi. ${ }^{123-125}$ Its manageable size, well-documented neurobiology, and translucent nature allow monitoring of neurons in living organisms via fluorescent labeling and therefore make the worm very useful for chemical-neurobiological investigations. The striking similarity of numerous genes related to neuronal survival and axonal regeneration between vertebrates and C. elegans lends further credence to its use as a biologically relevant model organism. ${ }^{126}$ In addition, the utilization of C. elegans in high throughput organism-based screens has already proven effective in the identification of small molecules with phenotypic effects. ${ }^{127,128}$

Axonal injury can be induced in C. elegans using highly precise laser microsurgery to severe individual green fluorescent protein (GFP) labeled axons in live animals. ${ }^{128}$ Following the surgical transection, neuronal survival and growth are monitored. Numerous genetic determinants of neuronal regeneration have been identified in large part due to laser axotomy in C. elegans. ${ }^{130-132}$ Despite the fact that a majority of axonal regeneration studies in C. elegans have primarily focused on native promoters and suppressors, the worm offers a unique opportunity for small molecule development. The development of high throughput screens to identify compounds that can promote regeneration following laser axotomy have already been implemented to this end. ${ }^{133}$

Laser axotomy was utilized to transect the posterior lateral microtubule (PLM) cells of C. elegans. The PLM cells consist of two mechanosensory neurons that are responsible for the worm's reaction to light posterior touch. They are located in the tail and extend longitudinally toward the midbody with one along each side of the worm. Moreover, each of these neurons builds an individual synaptic branch with the ventral nerve cord. ${ }^{134,135}$ Due to their relatively large
size and distinct axonal morphology the mechanosensory neurons have been used extensively for laser axotomy experiments. ${ }^{136}$ Neurodegenerative diseases in humans have also been studied using mechanosensory neurons, establishing a relevant connection to the worm model. ${ }^{137,138}$

The synaptic branch of mechanosensory neurons has been implicated as a juncture in innate regenerative ability where PLM neurons only regrow when severed proximal to the synaptic branch and not when severed distally. ${ }^{138}$ Severing the axon beyond the branch point and limiting the intrinsic regrowth following injury established a standard location to initiate our microsurgeries. Furthermore, a model encompassing an inhibitory branching environment may parallel the collateral branches of spinal cord neurons that have been noted to influence growth potential. ${ }^{139,140}$

Laser axotomy was performed to sever a point approximately $15 \mu \mathrm{~m}$ distal to the synaptic branch point on the PLM of late L4-stage C. elegans (zdls5) (Figure 1.16A). There was a slight variance between worms in respect to the distance of the synaptic branch point from the cell body. It is noteworthy that regeneration was less likely to occur as the distance between the injury and cell body increased. ${ }^{138}$ Nematodes possessing a synaptic branch with a maximum distance of $100 \mu \mathrm{~m}$ between the cell body and the branch point were selected as having the desired PLM morphology. This provided a standardized location of axotomy to conduct experiments employing the vinaxanthone analog library.

Figure 1.16. Representative images of in vivo laser axotomy.
A) Laser axotomy is performed on the PLM about $15 \mu \mathrm{~m}$ distal to the synaptic branch point when the branch is $\leq 100 \mu \mathrm{~m}$ from the cell body. B) The injured neuron immediately following axotomy. C) No regrowth from the severed proximal axon of control worms at 24 hours postaxotomy. The distal fragment has begun to degenerate as seen by the faint, beaded appearance. D) Regrowth of the severed proximal axon at 24 hours post-axotomy. Arrows indicate the site of axotomy and arrowheads indicate the synaptic branch.

Following axotomy a characteristic series of events begins to unfold. As the laser ruptures the neuron plasma formation and the generation of cavitation bubbles at the injury site lead to a small break in the axon (Figure 1.16B). ${ }^{141}$ Within a few hours the ends of the severed axon retract, resulting in an increased distance between the fragments. A stump begins to from as the distal fragment begins to degenerate and the proximal axon no longer exhibits regrowth (Figure 1.16C). The beading and disappearance of GFP associated with distal fragment
degeneration is well documented and is comparable to Wallerian degeneration. ${ }^{142}$ In the event that a regenerative process is initiated, a growth cone forms on the proximal fragment and the axon will begin to extend as it regrows (Figure 1.16D). The regrowing axon occasionally finds its distal fragment leading to a fusion that consequently prevents distal degeneration. ${ }^{143}$

A small number of control worms (27\%) displayed the ability to regrow after their axon was severed distal to the synaptic branch. Interestingly, the potential for regrowth was enhanced in worms treated with vinaxanthone (1) (Figure 1.17). Laser surgery was performed and nematodes were exposed to an analog from the vinaxanthone library. Regeneration of the severed proximal axon was quantified by measuring the distance between the start of the new growth at the axonal injury site to the end of the longest regrowing process 24 hours following axotomy. The regrowing processes exhibited a wide variety of morphologies. Some extended in a virtually linear fashion across the injury site while others displayed arching around the axotomy scar. Branching in search of axon distal fragments was also noted with some growths reaching the ventral cord on occasion. A positive regrowth event was characterized by the regrowth and reconnection to the distal portion. However, if growth was not observed from the proximal portion of the cut axon it was labeled as negative for regrowth.

Figure 1.17. Worms exposed to vinaxanthone analogs exhibiting varying levels of neuronal regrowth, represented as a percent change relative to controls. Colors are provided for SAR comparisons.

When exposed to the vinaxanthone analogs worms displayed varying degrees of regeneration in respect to the number of worms exhibiting regrowth relative to controls as well as the lengths of the regrown neurons. ${ }^{121}$ Analog 167 which has a monohydroxylated xanthone core and a bare chromone core had the highest rate of regrowth, with a 130% increase from controls in the number of worms displaying regrowth morphologies (Figure 1.18). The parent compound vinaxanthone (1) comparatively only showed a 21% increase in regrowth rate. Interestingly, exposure to analog 163 resulted in virtually no change in regrowth potential and analog 165 even showed a 15% decrease in regrowth rate. A cursory examination of the SAR data reveals a striking correlation amongst the analogs $(\mathbf{1 6 7}, \mathbf{1 7 5}, \mathbf{1 8 3}, \mathbf{1 2 6}$, and 127) exhibiting high levels of regrowth (over 75% increase). Four of the five compounds possess the same abridged structure for their chromone core.

Figure 1.18. Regrowth of PLM neurons 24 hours after laser axotomy.
A) Branching regrowth following treatment with $2 \mu \mathrm{M}$ vinaxanthone (1). B) Arching regrowth following treatment with $2 \mu \mathrm{M}$ analog 167. C) Regrowth with branching to the ventral nerve cord. D) Branching regrowth following treatment with $2 \mu \mathrm{M}$ analog 167. E) Linear regrowth following treatment with $2 \mu \mathrm{M}$ analog 167. F) Regrowth with reconnection to the distal fragment. Arrows indicate the beginning of regrowth and arrowheads indicate the synaptic branch.

In the interest of investigating neuroregenerative natural products the concise total syntheses of vinaxanthone (1) and xanthofulvin (2) were accomplished. ${ }^{92}$ Subsequently, both
compounds were discovered to act as strong positive allosteric modulators of the G-proteincoupled receptor GPR91. This effectively provided a mode of action for the regenerative abilities observed within animal models associated with these natural products. A new ynone coupling reaction was also developed to provide a rapid method for the exponential syntheses of chemically edited analogs of vinaxanthone (1). Utilization of this method resulted in a 25 compound library of vinaxanthone analogs that demonstrated regrowth-inducing potentials in laser axotomy experiments in C. elegans. ${ }^{121}$ Based on structure activity relationship analysis that followed it was determined that the functional group free chromone core is an important chromophore for in vivo regrowth. Future directions of this work will entail the use of the ynone coupling reaction to prepare additional analogs of vinaxanthone (1) and subsequent additional optimization using C. elegans to transition regenerative compounds into higher organisms.

Experimental Section

General Information
All reactions were performed in flame dried round bottom or modified Schlenk (Kjedahl shape) flasks fitted with rubber septa under a positive pressure of argon or nitrogen, unless otherwise indicated. Air- and moisture-sensitive liquids and solutions were transferred via syringe or cannula. Organic solutions were concentrated by rotary evaporation at 20 torr in a water bath heated to $40^{\circ} \mathrm{C}$ unless otherwise noted. Diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$), methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, tetrahydrofuran (THF) and toluene (PhMe) were purified using a Pure-Solv MD-5 Solvent Purification System (Innovative Technology). Acetonitrile (MeCN) was purified using a Vac 103991 Solvent Purification System (Vacuum Atmospheres). Dimethoxyethane (DME) was purchased from Acros ($99+\%$, stabilized with BHT), N,N,-Dimethylformamide (DMF) was purchased from Acros (99.8\%, anhydrous), ethanol (EtOH) was purchased from Pharmco-Aaper (200 proof, absolute), and methanol (MeOH) was purchased from Sigma-Aldrich (99.8\%, anhydrous). Where necessary, solvents were deoxygenated by iterative freeze-pump thaw using liquid nitrogen three times. The molarity of n-butyllithium was determined by titration against diphenylacetic acid. All other reagents were used directly from the supplier without further purification unless otherwise noted. Analytical thin-layer chromatography (TLC) was carried out using 0.2 mm commercial silica gel plates (silica gel 60, F254, EMD chemical) and visualized using a UV lamp and/or aqueous ceric ammonium molybdate (CAM) or aqueous potassium permanganate (KMnO4) stain, or ethanolic vanillin. Infrared spectra were recorded on a Nicolet 380 FTIR using neat thin film or KBr pellet technique. High-resolution mass spectra (HRMS) were recorded on a Karatos MS9 and are reported as m / z (relative intensity). Accurate masses are reported for the molecular ion $[\mathrm{M}+\mathrm{Na}]^{+},[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}]$ or $[\mathrm{M}-\mathrm{H}]^{-}$. Nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}-\mathrm{NMR}$ and $\left.{ }^{13} \mathrm{C}-\mathrm{NMR}\right)$ were recorded with a Varian Gemini $\left[\left(400 \mathrm{MHz},{ }^{1} \mathrm{H}\right.\right.$ at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 100 MHz$),\left(500 \mathrm{MHz},{ }^{1} \mathrm{H}\right.$ at $500 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 125 MHz$),\left(600 \mathrm{MHz},{ }^{1} \mathrm{H}\right.$ at $600 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 150 MHz$\left.)\right]$. For CDCl_{3} solutions the chemical shifts are reported as parts per million (ppm) referenced to residual protium or carbon of the solvent; $\mathrm{CHCl}_{3} \delta \mathrm{H}(7.26 \mathrm{ppm})$ and
$\mathrm{CDCl}_{3} \delta \mathrm{D}(77.0 \mathrm{ppm})$. For $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ solutions the chemical shifts are reported as parts per million (ppm) referenced to residual protium or carbon of the solvents; $\left(\mathrm{CD}_{3}\right)\left(\mathrm{CHD}_{2}\right) \mathrm{SO} \delta \mathrm{H}$ (2.50 ppm) or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} \delta \mathrm{C}(39.5 \mathrm{ppm})$. For $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ solutions the chemical shifts are reported as parts per million (ppm) referenced to residual protium or carbon of the solvents; $\left(\mathrm{CD}_{3}\right)\left(\mathrm{CHD}_{2}\right) \mathrm{CO} \delta \mathrm{H}(2.50 \mathrm{ppm})$ or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO} \delta \mathrm{C}(29.8 \mathrm{ppm})$. For $\mathrm{C}_{6} \mathrm{D}_{6}$ solutions the chemical shifts are reported as parts per million (ppm) referenced to residual protium or carbon of the solvents; $\mathrm{C}_{6} \mathrm{HDD}_{5} \delta \mathrm{H}(7.16 \mathrm{ppm})$ or $\mathrm{C}_{6} \mathrm{D}_{6} \delta \mathrm{C}(128 \mathrm{ppm})$. For $\mathrm{CD}_{3} \mathrm{OD}$ solutions the chemical shifts are reported as parts per million (ppm) referenced to residual protium or carbon of the solvents; $\mathrm{CHD}_{2} \mathrm{OD} \delta \mathrm{H}(3.31 \mathrm{ppm})$ or $\mathrm{CD}_{3} \mathrm{OD} \delta \mathrm{C}(49.0 \mathrm{ppm})$. For $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solutions the chemical shifts are reported as parts per million (ppm) referenced to residual protium or carbon of the solvents; $\mathrm{CHDCl}_{2} \delta \mathrm{H}(5.32 \mathrm{ppm})$ or $\mathrm{CD}_{2} \mathrm{Cl}_{2} \delta \mathrm{C}(53.5 \mathrm{ppm})$. Coupling constants are reported in Hertz (Hz). Data for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra are reported as follows: chemical shift (ppm, referenced to protium; $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, td $=$ triplet of doublets, $\mathrm{ddd}=$ doublet of doublet of doublets, $\mathrm{ddq}=$ doublet of doublet of quartets, $\mathrm{bs}=$ broad singlet, $\mathrm{bd}=$ broad doublet, $\mathrm{m}=$ multiplet, coupling constant (Hz), and integration $)$. Melting points were measured on a MEL-TEMP device without corrections.

5-0x0-2,5-dihydrofuran-3yl pivalate (59)
To a stirred solution of tetronic acid $58(25.0 \mathrm{~g}, 250 \mathrm{mmol}, 1.0$ equiv. $)$, 4dimethylaminopyridine ($1.53 \mathrm{~g}, 12.5 \mathrm{mmol}, 0.05$ equiv.) and N, N-diisopropylethylamine (45.8 $\mathrm{mL}, 262 \mathrm{mmol}, 1.05$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL}, 0.5 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was added neat pivaloyl chloride ($25.9 \mathrm{~mL}, 262 \mathrm{mmol}$, 1.05 equiv.) dropwise over 40 minutes. Upon complete addition the reaction mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$. After 16 hours, the reaction mixture was concentrated in vacuo to give an amber oil. The oil was dissolved in $\mathrm{Et}_{2} \mathrm{O}(500 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 500 \mathrm{~mL})$ and the combined organic layers were dried over MgSO_{4} and concentrated in vacuo to give tetronate $59(41.0 \mathrm{~g}$, $223 \mathrm{mmol}, 89 \%$) as clear amber crystals (m.p. $46-47^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.60$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.00(\mathrm{t}, J=1.4 \mathrm{~Hz}$, 1H), 4.91 (d, $J=1.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.32 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.2,172.2,169.1$, 100.2, 68.2, 38.3, 26.4; IR (film, cm^{-1}): 1779, 1746, 1072.

5-((tert-butyldimethylsilyl)oxy)furan-3-yl pivalate (60)

To a stirred solution of tetronate $59(30.0 \mathrm{~g}, 163 \mathrm{mmol}, 1.0$ equiv.) and triethylamine ($29.8 \mathrm{~mL}, 212 \mathrm{mmol}, 1.3$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(230 \mathrm{~mL}, 0.72 \mathrm{M}\right.$) at $0{ }^{\circ} \mathrm{C}$ was added neat tertbutyldimethylsilyl triflate ($37.8 \mathrm{~mL}, 165 \mathrm{mmol}, 1.01$ equiv.) dropwise over 10 minutes. Upon complete addition the reaction mixture was allowed to warm to $23^{\circ} \mathrm{C}$. After 1 hour, the reaction mixture was concentrated in vacuo to give an amber oil. The oil was suspended in pentane (200 mL) and stirred for 1 hour at $23^{\circ} \mathrm{C}$. The organic layer was decanted and washed with sat. aq. $\mathrm{NaHCO}_{3}(3 \times 100 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, and brine $(100 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give furan $\mathbf{6 0}(37.9 \mathrm{~g}, 127 \mathrm{mmol}, 78 \%)$ as an amber oil.
$\mathbf{R}_{f}=0.55$ (silica gel, 20:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.10(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.15(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.24(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta 175.3,154.3,139.4,120.6,80.1,39.0,27.1,25.4,18.0,-4.85$; IR (film, cm^{-1}): 3202 , 3141, 1753, 1627; HRMS (ESI) calc. for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 299.20000$, obs. 299.20000.

3-(1-ethoxyethoxy)but-1-yne (208)

To a stirred solution of 3-butyn-2-ol $64(100 \mathrm{~g}, 1.43 \mathrm{~mol}, 1.0$ equiv.) and ethyl vinyl ether ($151 \mathrm{~mL}, 1.57 \mathrm{~mol}$, 1.1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~L}, 0.48 \mathrm{M})$ at $23{ }^{\circ} \mathrm{C}$ was added solid pyridinium p toluenesulfonate ($35.9 \mathrm{~g}, 143 \mathrm{mmol}, 0.1$ equiv.). After 1 hour, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~L})$ and washed with brine (2 L). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give a mixture of diastereomeric alkynes $208(201 \mathrm{~g}, 1.41 \mathrm{~mol}, 99 \%)$ as a clear amber oil.
$\mathbf{R}_{f}=0.40$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.96(\mathrm{q}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.85(\mathrm{q}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H})$, $3.62(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 1 \mathrm{H}), 1.46(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=3.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ (100 MHz, CDCl_{3}): $\delta 98.5,97.5,84.5,83.6,72.4,72.0,61.1,60.5,60.0,59.9,22.3,21.9,20.0$, 19.9, 15.2, 14.9; HRMS (EC-CI) calc. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 141.0916$, obs. 141.0918.

tert-butyl 4-(1-ethoxyethoxy)pent-2-ynoate (65)
To a stirred solution of diastereomeric alkynes $\mathbf{2 0 8}(110 \mathrm{~g}, 774 \mathrm{mmol}, 1.0$ equiv. $)$ in THF (4.5 L, 0.17 M) at $-78^{\circ} \mathrm{C}$ was added a 2.0 M solution of n-butyllithium in hexanes $(404 \mathrm{~mL}, 808$ mmol, 1.05 equiv.). After 15 minutes, neat di-tert-butyl dicarbonate ($186 \mathrm{~mL}, 808 \mathrm{mmol}, 1.05$ equiv.) was added over 10 minutes. Upon complete addition the reaction mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{~L})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~L})$ and brine (3 L). The organic layer was dried over MgSO_{4} and concentrated in vacuo to give a mixture of diastereomeric esters $\mathbf{6 5}(180 \mathrm{~g}, 743 \mathrm{mmol}, 96 \%)$ as an amber oil.
$\mathbf{R}_{f}=0.21$ (silica gel, 20:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.91(\mathrm{q}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.82(\mathrm{q}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H})$, $3.62(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 18 \mathrm{H}), 1.46(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.34(\mathrm{~d}, J=$ $1.4 \mathrm{~Hz}, 6 \mathrm{H}) 1.12(\mathrm{t}, J=8.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 152.6,152.5,99.3,98.3$, $86.1,85.2,82.9,82.7,78.3,77.9,61.0,60.4,60.3,60.2,27.8$ (2 signals), $21.8,21.5,20.1,20.0$, 15.5, 15.3; IR (film, cm^{-1}): 1710, 1274, 1160; HRMS (ESI) calc. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 265.14103, obs. 265.14100 .

tert-butyl 4-hydroxypent-2-ynoate (209)
To a stirred solution of diastereomeric esters $\mathbf{6 5}(117 \mathrm{~g}, 483 \mathrm{mmol}, 1.0$ equiv.) in EtOH $(4.8 \mathrm{~L}, 0.1 \mathrm{M})$ at $23{ }^{\circ} \mathrm{C}$ was added solid pyridinium p-toluenesulfonate $(12.1 \mathrm{~g}, 48.3 \mathrm{mmol}, 0.1$ equiv.). The reaction mixture was stirred at $78^{\circ} \mathrm{C}$ for 2 hours before being allowed to cool to 23 ${ }^{\circ} \mathrm{C}$. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(2.4 \mathrm{~L})$ and washed with brine $(4 \mathrm{~L})$. The organic layer was dried over MgSO_{4} and concentrated in vacuo to give alcohol 209 (73.1 g, 429 mmol , 89%) as an amber oil.
$\mathbf{R}_{f}=0.30$ (silica gel, 3:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.62(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~s}$, 1H), 1.51 (m, 12H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 152.8,86.8,82.9,77.5,57.8,27.8,23.1$; IR (film, cm^{-1}): 3400, 1709; HRMS (EC-CI) calc. for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 171.1021$, obs. 171.1019.

tert-butyl 4-oxopent-2-ynoate (63)
To a stirred solution of alcohol $209\left(73.0 \mathrm{~g}, 429 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{Me}_{2} \mathrm{CO}(1.2 \mathrm{~L}, 0.43$ M) at $0{ }^{\circ} \mathrm{C}$ was slowly added ice-cold $1.53 \mathrm{M}\left(67.0 \mathrm{~g} \mathrm{CrO}_{3}, 58.0 \mathrm{~mL}\right.$ conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 160 mL $\mathrm{H}_{2} \mathrm{O}$) Jones reagent ($280 \mathrm{~mL}, 429 \mathrm{mmol}, 1.0$ equiv.) over 15 minutes. After 30 minutes, $i-\mathrm{PrOH}$ $(40 \mathrm{~mL})$ was added to neutralize any excess Jones reagent and the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~L})$. The organic layer was decanted and washed with $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~L})$, sat. aq. NaHCO_{3} $(1 \mathrm{~L})$, and brine $(1 \mathrm{~L})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give keto-ester $\mathbf{6 3}(57.5 \mathrm{~g}, 342 \mathrm{mmol}, 80 \%)$ as a clear amber oil.
$\mathbf{R}_{f}=0.40$ (silica gel, $10: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}$, 9H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 182.8,151.0,85.4,79.2,79.0,32.3,27.9$; IR (film, cm^{-1}): 1716, 1689; HRMS (EC-CI) calc. for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 169.0865$, obs. 169.0866.

tert-butyl 3-acetyl-4-((tert-butyldimethlsilyl)oxy)-6-(pivaloyloxy)-7-oxabicyclo[2.2.1]hepta-2,5-diene-2-carboxylate (66)

To a stirred solution of furan $\mathbf{6 0}(70.4 \mathrm{~g}, 236 \mathrm{mmol}, 1.0$ equiv.) in THF ($210 \mathrm{~mL}, 1.1 \mathrm{M}$) at $0{ }^{\circ} \mathrm{C}$ was added keto-ester $63(39.7 \mathrm{~g}, 236 \mathrm{mmol}, 1.0$ equiv.). Upon complete addition the reaction mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$. After 1 hour, the reaction mixture was concentrated in vacuo to give bicycle $\mathbf{6 6}(110 \mathrm{~g}, 236 \mathrm{mmol}$, yield taken after subsequent step) in $>20: 1$ regioselectivity as a viscous burgundy oil.
$\mathbf{R}_{f}=0.35$ (silica gel, 10:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.38(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}$, $1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR (100 MHz, CDCl_{3}): $\delta 199.3,174.3,167.7,163.7,161.2,146.3,118.5,113.9,82.3,78.2,39.2$, 30.7, 27.9, 26.8, 25.4, 17.7, -3.5, -3.7; IR (film, cm^{-1}): 1769, 1712; HRMS (EC-CI) calc. for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{7} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 489.22790$, obs. 489.22801 .

tert-butyl 2-acetyl-3-((tert-butyldimethlsilyl)oxy)-5-hydroxy-6-(pivaloyloxy)benzoate (68)
To a stirred solution of bicycle $\mathbf{6 6}(110 \mathrm{~g}, 236 \mathrm{mmol}, 1.0$ equiv.) in THF ($470 \mathrm{~mL}, 0.5 \mathrm{M}$) at $0{ }^{\circ} \mathrm{C}$ was slowly added a 4.0 M solution of hydrochloric acid in dioxane $(47.1 \mathrm{~mL}, 47.1 \mathrm{mmol}$, 0.2 equiv.) over 5 minutes. Upon complete addition the reaction mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$. After 2 hours, the reaction mixture was concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography (20:1 hexanes:EtOAc) to give pure phenol 68 ($82.9 \mathrm{~g}, 178 \mathrm{mmol}, 75 \%$ over 2-steps) as a clear light-yellow oil.
$\mathbf{R}_{f}=0.38$ (silica gel, 10:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.91(\mathrm{~s}, 1 \mathrm{H}), 6.71$ $(\mathrm{s}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 202.3,176.3,168.4,148.7,142.5,139.7,131.9,119.9,111.0,85.7,39.2,32.5,27.8$, 27.2, 25.5, 18.0, -4.4; IR (film, cm^{-1}): 1763, 1716, 1673; HRMS (EC-CI) calc. for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{7} \mathrm{Si}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 489.22790$, obs. 489.22813.

tert-butyl 2-acetyl-3-((tert-butyldimethlsilyl)oxy)-5-(methoxymethoxy)-6(pivaloyloxy)benzoate (69)

To a stirred solution of phenol $68(82.9 \mathrm{~g}, 178 \mathrm{mmol}, 1.0$ equiv. $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{~L}, 0.1 \mathrm{M})$ at $0^{\circ} \mathrm{C}$ was added neat N, N-diisopropylethylamine ($63.4 \mathrm{~mL}, 355 \mathrm{mmol}, 1.5$ equiv.). A 2.1 M solution of chloromethyl methyl ether in $\mathrm{PhMe} / \mathrm{MeOAc}$ ($127 \mathrm{~mL}, 267 \mathrm{mmol}, 1.5$ equiv.) was then added slowly over 20 minutes. Upon complete addition the solution was allowed to warm to $23{ }^{\circ} \mathrm{C}$. After 1 hour, the reaction mixture was diluted with $0.1 \mathrm{~N} \mathrm{HCl}(500 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 500 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography (10:1 hexanes:EtOAc) to give acetophenone $\mathbf{6 9}(65.0 \mathrm{~g}, 127 \mathrm{mmol}, 72 \%)$ as a white solid (m.p. 60-62 ${ }^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.61$ (silica gel, 3:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.76(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~s}$, $2 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathbf{C}-\mathbf{N M R}$ (100 MHz, CDCl_{3}): $\delta 200.9,175.7,163.5,150.9,150.4,132.8,128.1,125.7,108.6,94.6,82.5$, 55.9, 38.9, 31.7, 27.7, 27.1, 25.6, 18.1, -4.4; IR (film, cm^{-1}): 1761, 1733, 1703; HRMS (ESI) calc. for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{NaO} 8{ }_{8} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 533.25412$, obs. 533.25387 .

tert-butyl (E)-2-(3-(dimethylamino)acryloyl)-3-hydroxy-5-(methoxymethoxy)-6(pivaloyloxy)benzoate (70)

To a stirred solution of acetophenone $69(15.4 \mathrm{~g}, 30.2 \mathrm{mmol}, 1.0$ equiv.) in DME (300 $\mathrm{mL}, 0.1 \mathrm{M})$ at $85^{\circ} \mathrm{C}$ was added N, N-dimethylformamide dimethyl acetal $(16.1 \mathrm{~mL}, 121 \mathrm{mmol}$, 4.0 equiv.) in one portion. After 3 hours, the reaction mixture was cooled to $23{ }^{\circ} \mathrm{C}$ and concentrated in vacuo to give a dark amber oil. The crude material was purified via silica gel column chromatography ($1: 1$ hexanes: EtOAc) to give pure enaminone $70(8.59 \mathrm{~g}, 19.0 \mathrm{mmol}$, 63%) as an orange solid (m.p. 118-119 ${ }^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.26$ (silica gel, 1:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 12.43$ (bs, 1H), 7.77 (d, $J=12 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H})$, $2.84(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 189.4,175.8,165.6$, $159.3,154.4,151.6,130.1,128.5,113.7,104.0,95.2,94.0,82.4,56.0,45.1,38.7,37.1,27.6$, 27.0; IR (film, cm^{-1}): 1751, 1716, 1632, 1111; HRMS (ESI) calc. for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NNaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+}$: 474.20984, obs. 474.21058.

To a stirred solution of enaminone $70(1.44 \mathrm{~g}, 3.19 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{PhMe}(32 \mathrm{~mL}$, 0.1 M) was added freshly ground acyl Meldrum's acid 71 ($1.78 \mathrm{~g}, 9.57 \mathrm{mmol}, 3.0$ equiv.). The reaction mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 45 minutes before being cooled to $23{ }^{\circ} \mathrm{C}$ and concentrated in vacuo to give a brown solid. The crude material was purified via acidified silica gel* column chromatography (7:1 hexanes:EtOAc) to give pure protected 5,6-dehydropolivione $72(650 \mathrm{mg}, 1.33 \mathrm{mmol}, 42 \%)$ as a yellow solid (m.p. $181-182^{\circ} \mathrm{C}$).
*To a vigorously stirred slurry of silica gel (400 g) and deionized water (2.5) was added 85% phosphoric acid $(6.50 \mathrm{~mL})$ to give a pH of 2 . After 20 minutes, the silica gel was filtered, washed with EtOAc (500 mL), and dried in an oven at $120^{\circ} \mathrm{C}$ overnight.
tert-butyl (Z)-3-(1-hydroxy-3-oxobut-1-en-1-yl)-7-(methoxymethoxy)-4-oxo-6-(pivaloyloxy)-4H-chromene-5-carboxylate (72)
$\mathbf{R}_{f}=0.24$ (silica gel, 3:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 15.87(\mathrm{~s}, 1 \mathrm{H}), 8.66(\mathrm{~s}$, $1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, The highly concentrated ${ }^{13} \mathrm{C}$ sample produced a mixture of keto and enol tautomers): $\delta 202.5,197.6,192.1,174.3,172.6,163.6,161.7,159.4,154.5,154.2$, $153.4,136.7,128.6,120.9,118.0,116.3,115.8,103.9,103.8,101.7,94.7,83.1,57.7,56.7,56.6$, 39.2, 30.7, 28.2, 27.2, 26.9; IR (film, cm^{-1}): 1762, 1734, 1663, 1621; HRMS (ESI) calc. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NaO}_{10}[\mathrm{M}+\mathrm{Na}]^{+}: 513.17312$, obs. 513.17341.
tert-butyl 7-(methoxymethoxy)-4-oxo-6-(pivaloyloxy)-4H-chromene-5-carboxylate (76)
$\mathbf{R}_{f}=0.52$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.75(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.25(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ (100 MHz, CDCl_{3}): $\delta 192.1,175.3,163.6,155.1,154.5,153.0,135.8,127.8,115.9,112.7,103.7$, 82.9, 56.5, 39.1, 28.0, 27.2; IR (film, cm^{-1}): 1657, 1460, 1280, 1155, 1095; HRMS (ESI) calc. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+}: 429.15199$, obs. 429.15240 ; m.p. $156-158{ }^{\circ} \mathrm{C}$.

(Z)-6,7-dihydroxy-3-(1-hydroxy-3-oxobut-1-en-1-yl)-4-0xo-4H-chromene-5-carboxylic acid (38)

To a stirred solution of protected 5,6-dehydropolivione $72(50.0 \mathrm{mg}, 0.102 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}, 0.1 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was added a 1.0 M solution of boron trichloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($1.22 \mathrm{~mL}, 1.22 \mathrm{mmol}, 12$ equiv.). Upon complete addition the reaction mixture was allowed to warm to $23^{\circ} \mathrm{C}$. After 1 hour, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched with $2.0 \mathrm{~N} \mathrm{HCl}(2 \mathrm{~mL})$ and stirred at $0^{\circ} \mathrm{C}$ for 5 minutes. The solution was diluted with EtOAc $(30 \mathrm{~mL})$ and the pH of the aqueous layer was adjusted to pH 7 using a 0.2 M phosphate $\mathrm{pH}=10$ buffer (40 mL). The organic layer was then extracted with 0.2 M phosphate $\mathrm{pH}=7.0$ buffer (3 x 30 mL). The combined aqueous extractions were re-acidified to a pH of 2 using 2.0 N HCl and extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic layers were washed with brine (50 mL), dried over MgSO_{4}, and concentrated in vacuo to yield 5,6-dehydropolivione (38) (20.1 mg, $0.098 \mathrm{mmol}, 96 \%$ yield) as a yellow solid (m.p. 231-232 ${ }^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.54$ (silica gel, 9:1 EtOAc:AcOH); ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta$ [enol] 16.10 (bs, 1H), 12.71 (bs, 1H), 11.55 (bs, 1H), 9.50 (bs, 1H), 8.84 (s, 1H), 6.98 (s, 1H), 6.96 (s, 1H), 2.19 (s, 3H). [keto] $12.71(\mathrm{bs}, 1 \mathrm{H}), 11.55(\mathrm{bs}, 1 \mathrm{H}), 9.50(\mathrm{bs}, 1 \mathrm{H}), 8.73(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{~s}$, 2H), $2.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta$ [enol] 196.7, 176.0, 172.3, 167.4, 160.2, $152.6,149.8,142.0,120.2,116.2,113.2,102.4,100.8,26.3$ [keto] 203.0, 192.7, 173.0, 161.7, 152.6, 150.1, 120.4, 120.2, 113.6, 102.5, 57.4, 30.6; IR (film, cm^{-1}): 3280, 1617, 1473; HRMS (ESI) calc. for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{O}_{8}[\mathrm{M}-\mathrm{H}]^{-}: 305.03029$, obs. 305.03013.

vinaxanthone (1)
A solution of 5,6 -dehydropolivione ($\mathbf{3 8}$) ($10.0 \mathrm{mg}, 0.033 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{H}_{2} \mathrm{O}(0.33$ $\mathrm{mL}, 0.1 \mathrm{M}$) was stirred at $55^{\circ} \mathrm{C}$ for 4 days. The reaction mixture was quenched with conc. ammonium hydroxide (2 mL). The solution was washed with EtOAc $(2 \times 20 \mathrm{~mL})$ and then reacidified to a pH of 1 using conc. HCl at $0^{\circ} \mathrm{C}$. The residue was extracted with EtOAc (3×20 mL), washed with aq. $0.2 \mathrm{M} \mathrm{pH}=2.0$ phosphate buffer $(20 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, and dried over MgSO_{4} to give a brown solid. The crude material was purified by trituration with MeOH (3 x 1 mL) to give pure vinaxanthone (1) $(5.7 \mathrm{mg}, 0.0099 \mathrm{mmol}, 61 \%)$ as a yellow solid (m.p. >280 ${ }^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.05$ (sílica gel, 95:5 EtOAc:AcOH); ${ }^{\mathbf{1}} \mathbf{H - N M R}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 12.89$ (bs, 1 H), 12.72 (bs, 1H), 11.69 (bs, 1H), $11.44(\mathrm{bs}, 1 \mathrm{H}), 9.42(\mathrm{bs} 2 \mathrm{H}), 9.42(\mathrm{bs}, 2 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~s}$, $1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta$ 201.1, 199.1, 172.9, 172.6, 167.4, 167.4, 154.1, 152.7, 152.5, 152.1, 150.7, 150.3, 141.7, 141.0, $136.2,133.4,132.6,126.3,120.8,120.5,119.8,119.6,112.4,110.0,102.4,102.3,32.1,29.1 ;$ IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3236,1683,1653,1472$, 1288; HRMS (ESI) calc. for $\mathrm{C}_{28} \mathrm{H}_{15} \mathrm{O}_{14}[\mathrm{M}-\mathrm{H}]-$: 575.04673, obs. 575.04679.

tert-butyl 3-iodo-7-(methoxymethoxy)-4-oxo-6-(pivaloyloxy)-4H-chromene-5-carboxylate (107)

To a stirred solution of crude enaminone $70\left(13.6 \mathrm{~g}, 30.2 \mathrm{mmol}, 1.0\right.$ equiv.) in CHCl_{3} ($300 \mathrm{~mL}, 0.1 \mathrm{M}$) at $23^{\circ} \mathrm{C}$ was added solid iodine ($15.3 \mathrm{~g}, 60.4 \mathrm{mmol}, 2.0$ equiv.) in one portion. After 40 minutes, the solution was diluted with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(300 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give a tan solid. The crude material was purified via silica gel column chromatography (1:1 hexanes:EtOAc) to give pure iodochromone $107(9.65 \mathrm{~g}, 18.1 \mathrm{mmol}, 60 \%$ over 2 -steps) as a white solid (m.p. 189-190 ${ }^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.32$ (silica gel, 3:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~s}$, $1 \mathrm{H}), 5.23,(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $175.4,170.9,163.2,156.8,154.9,153.3,136.5,128.3,112.8,103.5,94.7,86.7,83.3,56.6,39.2$, 28.2, 27.2; IR (film, cm^{-1}): 1764, 1731, 1650; HRMS (ESI) calc. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{INaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+}$: 555.04863, obs. 555.04881.

tert-butyl 3-(3-hydroxybut-1-yn-1-yl)-7-(methoxymethoxy)-4-0xo-6-(pivaloyloxy)-4H-chromene-5-carboxylate (108)

To a stirred solution of iodochromone $107(8.08 \mathrm{~g}, 15.2 \mathrm{mmol}, 1.0$ equiv.), bis(triphenylphosphine) palladium (II) dichloride ($213 \mathrm{mg}, 0.30 \mathrm{mmol}, 0.02$ equiv.) and copper iodide ($289 \mathrm{mg}, 1.54 \mathrm{mmol}, 0.1$ equiv.) in degassed THF ($51 \mathrm{~mL}, 0.3 \mathrm{M}$) at $23^{\circ} \mathrm{C}$ was added 3-butyn-2-ol 64 ($4.8 \mathrm{~mL}, 60.7 \mathrm{mmol}, 4.0$ equiv.) followed by neat diisopropylamine ($6.5 \mathrm{~mL}, 45.5$ mmol, 3.0 equiv.). After 1 hour, the reaction mixture was diluted with aq. $0.2 \mathrm{M} \mathrm{pH}=7.0$ phosphate buffer $(100 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography ($1: 1$ hexanes:EtOAc) to give pure propargyl alcohol $\mathbf{1 0 8}$ $(5.23 \mathrm{~g}, 11.0 \mathrm{mmol}, 73 \%)$ as a tan solid (m.p. $132-134^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.21$ (silica gel, 1:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~s}$, $1 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 4.75(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{bs}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 9 \mathrm{H}), 1.51(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, 3H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.5,173.3,163.3,157.5,154.6,153.2,136.3,128.1$, $114.5,110.5,103.8,97.5,94.6,83.2,73.8,58.6,56.6,39.2,28.2,27.2,23.8$; IR (film, cm^{-1}): 3435, 1763, 1735, 1731, 1461; HRMS (ESI) calc. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NaO}_{9}[\mathrm{M}+\mathrm{Na}]^{+}: 497.1782$, obs. 497.1785.

tert-butyl 3-(3-hydroxybut-1-yn-1-yl)-7-(methoxymethoxy)-4-0xo-6-(pivaloyloxy)-4H-chromene-5-carboxylate (93)

To a stirred solution of propargyl alcohol $108(5.23 \mathrm{~g}, 11.0 \mathrm{mmol}, 1.0$ equiv.) and activated $4.0 \AA$ molecular sieves ($2.6 \mathrm{~g}, 50 \%$ by weight) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(110 \mathrm{~mL}, 0.1 \mathrm{M})$ at $23{ }^{\circ} \mathrm{C}$ was added solid pyridinium dichromate ($19.9 \mathrm{~g}, 55.1 \mathrm{mmol}, 5.0$ equiv.) in one portion. After 2 hours the black solution was filtered through a pad of Celite and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography (1:1 hexanes:EtOAc) to give pure ynone 93 ($3.54 \mathrm{~g}, 7.50 \mathrm{mmol}, 68 \%$) as a white solid (m.p. 178-179 ${ }^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.41$ (silica gel, 1:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~s}$, 1H), $5.24(\mathrm{~s}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 184.2,175.4,172.1,163.1,160.4,154.6,153.7,136.8,128.3,114.6,108.7,104.0$, 94.7, $93.5,83.5,81.0,56.7,39.2,32.7,28.2,27.2$; IR (film, cm^{-1}): 1762, 1734, 1672, 1620, 1459, 1264, 1246, 1155, 1091; HRMS (ESI) calc. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NaO} 9{ }_{9}[\mathrm{M}+\mathrm{Na}]^{+}: 495.1626$, obs. 495.1632 .

To a stirred suspension of 60% sodium hydride ($556 \mathrm{mg}, 13.9 \mathrm{mmol}, 1.0$ equiv.) in THF ($55.7 \mathrm{~mL}, 0.25 \mathrm{M}$) was added methyl acetoacetate ($1.50 \mathrm{~mL}, 13.9 \mathrm{mmol}, 1.0$ equiv.) dropwise over 5 minutes to furnish a 0.25 M stock solution of the sodium enolate of methyl acetoacetate 109 (stored in a Schlenk flask under argon). To a stirred solution of ynone 93 ($500 \mathrm{mg}, 1.06$ mmol, 1.0 equiv.) in THF ($88 \mathrm{~mL}, 0.01 \mathrm{M}$) at $-78^{\circ} \mathrm{C}$ was added a 0.25 M solution of the sodium enolate of methyl acetoacetate in THF ($8.50 \mathrm{~mL}, 2.12 \mathrm{mmol}, 2.0$ equiv.) dropwise down the side of the flask over 10 minutes. Upon complete addition the red-amber solution was stirred at -78 ${ }^{\circ} \mathrm{C}$. After 5 hours, the excess sodium enolate of methyl acetoacetate was quenched with 1.0 N $\mathrm{HCl}(1.5 \mathrm{~mL})$. The resulting yellow solution was diluted with EtOAc (150 mL), washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give a yellow residue. The crude material was purified via silica gel column chromatography (3:1 hexanes:EtOAc) to give pure methyl ester 115 ($502 \mathrm{mg}, 0.88 \mathrm{mmol}, 83 \%$) as a tan solid (m.p. $199-201{ }^{\circ} \mathrm{C}$) and deacetylated byproduct $116(95 \mathrm{mg}, 0.18 \mathrm{mmol}, 17 \%)$ as a white solid (m.p. $\left.186-187^{\circ} \mathrm{C}\right)$.

1-(tert-butyl) 7-methyl 5-acetyl-3-(methoxymethoxy)-6-methyl-9-oxo-2-(pivaloyloxy)-9H-xanthene-1,7-dicarboxylate (115)
$\mathbf{R}_{f}=0.40$ (silica gel, $2: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.84(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~s}$, $1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 9 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H})$;
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 202.4,175.9,173.6,166.6,163.8,154.8,154.7,153.4,142.8$, $135.8,133.2,129.9,129.0,127.6,119.3,112.7,103.9,95.1,83.5,56.9,52.6,39.5,32.9,28.3$, 27.4, 18.2; IR (film, cm^{-1}): 1760, 1735, 1663, 1599; HRMS (ESI) calc. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{NaO}_{11}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 593.19933$, obs. 593.19976.

1-(tert-butyl) 7-methyl 3-(methoxymethoxy)-6-methyl-9-oxo-2-(pivaloyloxy)-9H-xanthene-
1,7-dicarboxylate (116)
$\mathbf{R}_{f}=0.54$ (silica gel, 2:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.88(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~s}$, $1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 9 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 176.1,147.3,166.8,164.1,157.5,155.2,154.5,148.3,135.5$, $130.2,129.0,126.6,120.4,119.4,113.0,104.0,95.1,83.4,56.9,52.3,39.5,28.3,27.4,22.4$; IR (film, cm^{-1}): 1727, 1460, 1095; HRMS (ESI) calc. for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{NaO}_{10}[\mathrm{M}+\mathrm{Na}]^{+}: 551.18877$, obs. 551.18915.

4-acetyl-8-(tert-butoxycarbonyl)-6-(methoxymethoxy)-3-methyl-9-oxo-7-(pivaloyloxy)-9H-xanthene-2-carboxylic acid (117)

To a stirred solution of methyl ester 115 ($920 \mathrm{mg}, 1.61 \mathrm{mmol}, 1.0$ equiv.) in THF (65 mL , 0.025 M) at $0{ }^{\circ} \mathrm{C}$ was added 0.1 N NaOH ($19.4 \mathrm{~mL}, 1.94 \mathrm{mmol}$, 1.2 equiv.) dropwise over 2 minutes. Upon complete addition the gold-orange solution was allowed to warm to $23{ }^{\circ} \mathrm{C}$. After 36 hours, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50$ mL). The aqueous layer was acidified using $0.1 \mathrm{~N} \mathrm{HCl}(20 \mathrm{~mL})$, extracted with EtOAc (3 x 250 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give pure carboxylic acid 117 (816 mg , $1.43 \mathrm{mmol}, 91 \%$) as a white solid (m.p. 203-204 ${ }^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.98(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~s}$, $3 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 9 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 202.3,175.6$, $173.2,168.9,163.5,154.5,154.4,153.6,143.1,135.8,133.0,131.4,129.0,125.7,119.2,112.8$, 103.7, $94.8,83.4,56.7,39.2,32.8,28.2,27.3,18.3$; IR (film, cm^{-1}): 1760, 1688, 1666, 1619, 1596; HRMS (ESI) calc. for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{NaO}_{11}[\mathrm{M}+\mathrm{Na}]^{+}: 579.18368$, obs. 579.18373 .

tert-butyl 5-acetyl-7-(5-(tert-butoxycarbonyl)-2-(dimethylamino)-7-(methoxymethoxy)-4-oxo-6-(pivaloyloxy)chromane-3-carbonyl)-3-(methoxymethoxy)-6-methyl-9-oxo-2-(pivaloyloxy)-9H-xanthene-1carboxylate (119)

To a stirred solution of carboxylic acid 117 ($373 \mathrm{mg}, 0.67 \mathrm{mmol}, 1.1$ equiv.) in DMF (3.0 $\mathrm{mL}, 0.2 \mathrm{M}$) at $23{ }^{\circ} \mathrm{C}$ was added solid $\mathrm{HBTU}(254 \mathrm{mg}, 0.67 \mathrm{mmol}, 1.1$ equiv.) in one portion followed by neat N, N-diisopropylethylamine ($0.27 \mathrm{~mL}, 1.52 \mathrm{mmol}, 2.5$ equiv.). The dark amber solution was stirred for 5 minutes before adding solid enaminone $70(275 \mathrm{mg}, 0.61 \mathrm{mmol}, 1.1$ equiv.) in one portion. After 6 hours, the reaction mixture was diluted with $1: 1$ hexanes/EtOAc $(100 \mathrm{~mL})$ and washed with sat. aq. $\mathrm{LiCl}(8 \times 30 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give a dark yellow solid. The crude material was purified via silica gel column chromatography ($1: 2$ hexanes:EtOAc, $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give pure aminal $119(528 \mathrm{mg}$, $5.33 \mathrm{mmol}, 88 \%$) as a dark yellow solid (m.p. $124-126^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.25$ (silica gel, $1: 1$ hexanes:EtOAc, $2 \% \mathrm{Et}_{3} \mathrm{~N}$); ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 8.87(\mathrm{~s}$, $1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 5.23(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H})$, $3.44(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 1.64$ (s, 9H), $1.44(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathbf{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 202.2,175.5$, $175.3,173.0,163.9,163.5,157.5,154.8,154.5,154.4,153.4,149.4,144.9,143.2,136.4,136.3$, 135.7, 132.9, 130.9, 128.9, 128.8, 126.1, 120.1, 119.1, 112.7, 111.6, 103.6, 94.8, 94.7, 83.2, 83.1, 82.5, 56.7, 56.3, 44.9, 39.2, 39.0, 36.9, 32.8, 28.1, 27.7, 27.2, 27.1, 18.1; IR (film, cm^{-1}): 1766, 1730, 1660, 1610; HRMS (ESI) calc. for $\mathrm{C}_{52} \mathrm{H}_{63} \mathrm{NNaO}_{18}[\mathrm{M}+\mathrm{Na}]^{+}: 1012.39374$, obs. 1012.39398.

tert-butyl 5-acetyl-7-(5-(tert-butoxycarbonyl)-7-(methoxymethoxy)-4-oxo-6-(pivaloyloxy)-4H-chromene-3-carbonyl)-3-(methoxymethoxy)-6-methyl-9-oxo-2-(pivaloyloxy)-9H-xanthene-1-carboxylate (120)

To a stirred solution of aminal 119 ($84 \mathrm{mg}, 0.084 \mathrm{mmol}, 1.0$ equiv.) in MeCN (5.6 mL , 0.015 M) at $23{ }^{\circ} \mathrm{C}$ was added solid pyridinium hydrochloride ($49 \mathrm{mg}, 0.42 \mathrm{mmol}, 5.0$ equiv.) in one portion. The yellow solution was then stirred to $65^{\circ} \mathrm{C}$. After 18 hours, the reaction mixture was concentrated to give a yellow residue. The crude material was purified via silica gel column chromatography ($3: 1$ to $2: 1$ hexanes:EtOAc) to give pure enedione $120(54 \mathrm{mg}, 0.057 \mathrm{mmol}$, 68%) as a clear-yellow solid (m.p. $185-188^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.21$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.43(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~s}$, $1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 4 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$, 1.61 (s, 9H), 1.42 (s, 9H), 1.38 ($\mathrm{s}, 9 \mathrm{H}$), 1.35 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 202.2$, $192.1,175.5,175.3,173.2,172.1,163.5,162.9,160.4,154.6,154.4,154.3,153.7,152.6,140.6$, $136.8,136.4,135.6,132.3,128.9,128.6,127.3,123.8,118.7,116.5,112.7,104.0,103.6,94.8$, 94.7, 83.2, 83.1, 56.7, 56.6, 39.2, 39.1, 32.7, 28.2, 27.9, 27.3, 27.2, 17.5; IR (film, cm^{-1}): 1760, 1732, 1663, 1607, 1591; HRMS (ESI) calc. for $\mathrm{C}_{50} \mathrm{H}_{56} \mathrm{NaO}_{18}[\mathrm{M}+\mathrm{Na}]^{+}: 967.33589$, obs. 967.33504 .

tert-butyl (Z)-5-acetyl-7-((5-(tert-butoxycarbonyl)-7-(methoxymethoxy)-4-oxo-6-(pivaloyloxy)chroman-3-ylidene)(hydroxy)methyl)-3-(methoxymethoxy)-6-methyl-9-oxo-2-(pivaloyloxy)-9H-xanthene-1-carboxylate (210)

To a stirred solution of endione $\mathbf{1 2 0}$ ($30 \mathrm{mg}, 0.032 \mathrm{mmol}, 1.0$ equiv.) in MeOH (0.64 mL , $0.5 \mathrm{M})$ at $23{ }^{\circ} \mathrm{C}$ was added solid $\mathrm{NaBH}_{3} \mathrm{CN}(4.0 \mathrm{mg}, 0.063 \mathrm{mmol}, 2.0$ equiv.) in one portion. After 20 minutes, the reaction mixture was diluted with aq. $0.2 \mathrm{M} \mathrm{pH}=7.0$ phosphate buffer $(0.25 \mathrm{~mL})$ before being diluted with EtOAc $(10 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($2 \times 10 \mathrm{~mL}$) and the combined organic layers were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give a yellow residue. The crude material was purified via silica gel column chromatography ($2: 1$ hexanes:EtOAc) to give pure protected xanthofulvin 210 ($27 \mathrm{mg}, 0.029 \mathrm{mmol}, 91 \%$) as a bright yellow solid (mp: 184-186 ${ }^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.5$ (silica gel, $1: 1$ hexanes/EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 15.43(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~s}$, $1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 4.74(\mathrm{bs}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}$, $3 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 9 \mathrm{H}), 1.62(\mathrm{~s}, 9 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.9,183.6,175.7,173.3,173.1,163.9,163.6,160.0,154.9,154.5,152.3$, 139.6, 135.7, 133.4, 132.4, 130.3, 129.3, 128.9, 126.9, 119.2, 112.7, 111.9, 103.9, 103.8, 103.5, 94.8, 94.4, 93.4. 83.3, 82.9, 66.7, 56.7, 56.5, 39.2, 39.1, 32.7, 29.7, 28.2, 28.1, 27.3, 27.2, 16.9; IR (film, cm^{-1}): 1765, 1730, 1666, 1602, 1458; HRMS (ESI) calc. for $\mathrm{C}_{50} \mathrm{H}_{58} \mathrm{NaO}_{18}[\mathrm{M}+\mathrm{Na}]^{+}$: 969.35154, obs. 969.35120 .

xanthofulvin (2)

To a stirred solution of protected xanthofulvin $\mathbf{2 1 0}$ ($20 \mathrm{mg}, 0.02 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.1 $\mathrm{mL}, 0.1 \mathrm{M})$ at $23{ }^{\circ} \mathrm{C}$ was added a 1.0 M solution of boron trichloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.25 \mathrm{~mL}, 0.25 \mathrm{mmol}, 12$ equiv.). After 45 minutes, the reaction mixture was treated with conc. $\mathrm{HCl}(0.09 \mathrm{~mL})$ and diluted with EtOAc (10 mL). The bright orange solution was stirred vigorously for 15 minutes and then concentrated in vacuo to give an organge residue. The orange residue was diluted with $\mathrm{MeOH}(15 \mathrm{~mL})$ and reconcentrated in vacuo give a yellow residue. The crude material was purified by trituration with CHCl_{3} $(10 \mathrm{~mL})$ to give pure xanthofulvin (2) $(11.8 \mathrm{mg}, 0.020 \mathrm{mmol}, 98 \%)$ as a $3.6: 1$ ratio of enol:keto tautomers as a bright yellow solid (m.p. $252-253^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.14$ (silica gel, 20:1 EtOAc/AcOH); ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta$ [enol] 15.61 (s, 1H), 12.75 $(\mathrm{s}, 1 \mathrm{H}), 11.62(\mathrm{~s}, 1 \mathrm{H}), 11.23(\mathrm{~s}, 1 \mathrm{H}), 9.33(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H})$, $4.66(\mathrm{~s}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})[\mathrm{keto}] 11.15(\mathrm{~s}, 1 \mathrm{H}), 8.88(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.42$ (s, 1H), $5.01(\mathrm{dd}, J=4.7 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=4.2 \mathrm{~Hz}, 11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H})$, 2.29 (s, 3H); ${ }^{13} \mathbf{C}$-NMR ($125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$): δ [enol] 202.6, 183.7, 172.7, 172.7, 167.5, 167.5, 156.3, $154.5,153.9,152.2,150.2,140.8,137.6,132.4,129.4,128.3,125.9,120.7,120.7,118.7,110.1,104.4$, 102.4, 102.4, 65.9, 32.4, 16.6 [keto] 202.9, 199.1, 186.3, 172.7, 167.7, 167.7, 156.3, 154.7, 153.9, 152.2, $150.1,140.9,139.2,137.6,134.9,132.4,127.7,122.2,120.8,118.3,110.1,108.8,102.4,68.0,56.3,32.4$, 17.1; IR (KBr, cm ${ }^{-1}$): 3419, 2926, 1607, 1468, 1288, 1021; HRMS (ESI) calc. for $\mathrm{C}_{28} \mathrm{H}_{17} \mathrm{O}_{14}[\mathrm{M}-\mathrm{H}]^{-}$: 577.06238, obs. 577.06186.

3,4-dimethoxyphenol (198)

To a stirred solution of 3,4-dimethoxybenzaldehyde 197 ($30.0 \mathrm{~g}, 181 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(360 \mathrm{~mL}, 0.5 \mathrm{M})$ at $23^{\circ} \mathrm{C}$ was added 30% aq. $\mathrm{H}_{2} \mathrm{O}_{2}(46.1 \mathrm{~mL}, 451 \mathrm{mmol}, 2.5$ equiv.) and formic acid ($27.7 \mathrm{~mL}, 722 \mathrm{mmol}, 4.0$ equiv.). The reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$. After 42.5 hours, the reaction mixture was cooled to $23^{\circ} \mathrm{C}$ and the organic layer was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to about $360 \mathrm{~mL}(0.5 \mathrm{M}) .5 .0 \mathrm{~N} \mathrm{NaOH}(251 \mathrm{~mL}$, $1.26 \mathrm{~mol}, 10$ equiv.) was then slowly added over 20 minutes and the reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for an additional 20 minutes. The organic layer was separated and the aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The aqueous layer was acidified to $\mathrm{pH}=1.0$ with conc. HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give pure 3,4-dimethoxyphenol $198(19.1 \mathrm{~g}, 124 \mathrm{mmol}, 68 \%)$ as an amber solid (m.p. $58-60^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.43$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.46(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=8.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{bs}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}$, 3H); ${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 150.2,149.7,142.8,112.5,105.9,100.6,56.5,55.6$; IR (film, cm^{-1}): 3382, 1513, 1223; HRMS (EC-CI) calc. for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 155.0708$, obs. 155.0700.

1-(2-hydroxy-4,5-dimethoxyphenyl)ethan-1-one (199)

To a stirred solution of 3,4-dimethoxyphenol $198(3.0 \mathrm{~g}, 19.5 \mathrm{mmol}, 1.0$ equiv.) in acetic anhydride ($9.75 \mathrm{~mL}, 103 \mathrm{mmol}, 5.3$ equiv.) at $0{ }^{\circ} \mathrm{C}$ was added neat boron trifluoride diethyl etherate ($4.80 \mathrm{~mL}, 38.9 \mathrm{mmol}, 2.0$ equiv.). The reaction mixture was stirred at $90{ }^{\circ} \mathrm{C}$ for 1 hour and then allowed to sit at $23{ }^{\circ} \mathrm{C}$ for 16 hours. The precipitate was collected and recrystallized from EtOH to give pure dimethoxy hydroxyacetophenone $199(3.38 \mathrm{~g}, 17.7 \mathrm{mmol}, 89 \%)$ as white needles (m.p. $104-105^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.58$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 12.65(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~s}$, $1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 202.0$, $160.0,156.7,141.8,111.6,111.5,100.5,56.6,56.1,26.3$; IR (film, cm^{-1}): 1632, 1511, 1265, 1160, 1063; HRMS (EC-CI) calc. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 197.0814$, obs. 197.0810.

(E)-3-(dimethylamino)-1-(2-hydroxy-4,5-(dimethoxyphenyl)prop-2-en-1-one (211)

To a stirred solution of dimethoxy hydroxyacetophenone $199(15.4 \mathrm{~g}, 30.2 \mathrm{mmol}, 1.0$ equiv.) in DME ($300 \mathrm{~mL}, 0.1 \mathrm{M}$) at $85^{\circ} \mathrm{C}$ was added N, N-dimethylformamide dimethyl acetal ($16.1 \mathrm{~mL}, 121 \mathrm{mmol}, 4.0$ equiv.) in one portion. After 4 hours, the reaction mixture was cooled to $23^{\circ} \mathrm{C}$ and concentrated in vacuo to give a dark amber oil. The crude material was purified via silica gel column chromatography (1:1 hexanes:EtOAc) to give dimethoxy enaminone 211 (8.59 $\mathrm{g}, 19.0 \mathrm{mmol}$, yield taken after subsequent step) as a yellow solid (m.p. $157-158^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.18$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.25(\mathrm{bs}, 1 \mathrm{H}), 7.84$ (d, $J=12 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 5.60(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, 3.16 (bs, 3H), 2.96 (bs, 3H); ${ }^{13} \mathbf{C}$-NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 190.3,160.1,155.0,154.1,141.2$, 111.7, 111.1, 100.8, 89.7, 57.1, 55.9, 45.3, 37.3; IR (film, cm^{-1}): 1630, 1543, 1376, 1228, 1113; HRMS (ESI) calc. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 252.12303$, obs. 252.12258.

3-iodo-6,7-dimethoxy-4H-chromen-4-one (200)
To a stirred solution of crude dimethoxy enaminone 211 ($11.8 \mathrm{~g}, 60.3 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CHCl}_{3}(600 \mathrm{~mL}, 0.1 \mathrm{M})$ at $23{ }^{\circ} \mathrm{C}$ was added solid iodine ($30.7 \mathrm{~g}, 121 \mathrm{mmol}, 2.0$ equiv.) in one portion. After 40 minutes, the solution was diluted with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(300 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give a tan solid. The crude material was purified via silica gel column chromatography ($2: 1$ hexanes:EtOAc) to give pure dimethoxy iodochromone $200(7.01 \mathrm{~g}, 21.1 \mathrm{mmol}, 35 \%$ over 2steps) as a white solid (m.p. 170-172 ${ }^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.32$ (silica gel, 2:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}$, 1H), $6.86(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.2,156.7$, $154.5,152.1,147.9,115.0,104.8,99.3,86.4,56.4,56.3$; IR (film, cm^{-1}): 1615, 1505, 1471, 1289, 1226; HRMS (ESI) calc. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{INaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 354.94377$, obs. 354.94418 .

6,7-dihydroxy-3-iodo-4H-chromen-4-one (212)

To a stirred solution of dimethoxy iodochromone $\mathbf{2 0 0}(500 \mathrm{mg}, 1.51 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL}, 0.1 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was slowly added neat boron tribromide $(0.86 \mathrm{~mL}, 9.03 \mathrm{mmol}$, 6.0 equiv.) over 5 minutes. The solution was allowed to warm to $23{ }^{\circ} \mathrm{C}$. After 1.5 hours, the reaction mixture was carefully quenched with 1.25 M methanolic $\mathrm{HCl}(1.20 \mathrm{~mL}, 2.08 \mathrm{mmol}, 1.0$ equiv.) at $0{ }^{\circ} \mathrm{C}$ over 5 minutes and stirred for an additional 5 minutes. The reaction mixture was purged with N_{2} in order to remove residual gaseous HCl and concentrated in vacuo to give pure catechol 212 ($458 \mathrm{mg}, 1.51 \mathrm{mmol}, 99 \%$) as a grey solid (m.p. $215^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.72$ (silica gel, 20:1 EtOAc:AcOH); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~s}$, 1H), 6.89 (s, 1H); ${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 174.8,159.6,154.5,153.4,146.6,115.6$, 108.9, 103.5, 85.4; IR (KBr, cm ${ }^{-1}$): 3218, 1616, 1471, 1308; HRMS (EC-CI) calc. for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 304.9311$, obs. 304.9308.

3-iodo-6,7-bis(methoxymethoxy)-4H-chromen-4-one (201)
To a stirred solution of catechol $200\left(454 \mathrm{mg}, 1.49 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.5 \mathrm{~mL}$, $0.2 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was added neat N, N-diisopropylethylamine ($0.78 \mathrm{~mL}, 4.47 \mathrm{mmol}, 3.0$ equiv.). A 2.1 M solution of chloromethyl methyl ether in $\mathrm{PhMe} / \mathrm{MeOAc}$ ($2.13 \mathrm{~mL}, 4.47 \mathrm{mmol}, 3.0$ equiv.) was then added slowly over 20 minutes. Upon complete addition the solution was allowed to warm to $23{ }^{\circ} \mathrm{C}$. After 1 hour, the reaction mixture was diluted with $0.1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography ($2: 1$ hexanes:EtOAc) to give pure dimethoxymethyl ether iodochromone 201 ($417 \mathrm{mg}, 1.06 \mathrm{mmol}, 71 \%$) as a white solid (m.p. $105-106^{\circ} \mathrm{C}$).
$\mathbf{R} \boldsymbol{f}=0.29$ (silica gel, $2: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~s}$, $1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 2 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta 172.2,157.0,152.7,152.4,145.5,116.0,110.8,103.5,95.4,95.1,86.3,56.5,56.3$; IR (film, cm^{-1}): 1617, 1453, 1284, 1152, 1041; HRMS (ESI) calc. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{INaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$: 414.96490, obs. 414.96555 .

3-(3-hydroxybut-1-yn-1-yl)-6,7-bis(methoxymethoxy)-4H-chromen-4-one (213)

To a stirred solution of dimethoxymethyl ether iodochromone $201(1.40 \mathrm{~g}, 3.58 \mathrm{mmol}$, 1.0 equiv.), bis(triphenylphosphine) palladium (II) dichloride ($50 \mathrm{mg}, 0.072 \mathrm{mmol}, 0.02$ equiv.), and copper iodide ($68 \mathrm{mg}, 0.358 \mathrm{mmol}, 0.1$ equiv.) in degassed THF ($36 \mathrm{~mL}, 0.1 \mathrm{M}$) at $23{ }^{\circ} \mathrm{C}$ was added 3-butyn-2-ol 64 ($1.12 \mathrm{~mL}, 14.3 \mathrm{mmol}, 4.0$ equiv.) followed by neat diisopropylamine ($1.52 \mathrm{~mL}, 10.7 \mathrm{mmol}, 3.0$ equiv.). After 1 hour, the reaction mixture was diluted with aq. 0.2 M $\mathrm{pH}=7.0$ phosphate buffer $(30 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography ($1: 1$ to $1: 2$ hexanes:EtOAc) to give pure dimethoxymethyl ether propargyl alcohol $213(970 \mathrm{mg}, 2.90 \mathrm{mmol}, 81 \%)$ as an amber oil.
$\mathbf{R}_{f}=0.12$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}$, $1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 2 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 4.79(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H})$, 3.30 (bs, 1 H), 1.54 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.7,157.6,152.7$, $152.3,145.5,117.8,110.4,109.9,103.9,97.2,95.5,95.1,74.2,58.6,56.6,56.5,24.0$; IR (film, cm^{-1}): 3397, 1621, 1494, 1460, 1266, 1227, 986; HRMS (ESI) calc. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+}$: 357.09447, obs. 357.09487 .

6,7-bis(methoxymethoxy)-3-(3-oxbut-1-yn-1-yl)-4H-chromen-4-one (193)

To a stirred solution of dimethoxymethyl ether propargyl alcohol 213 ($973 \mathrm{mg}, 2.91$ mmol, 1.0 equiv.) and activated $4.0 \AA$ molecular sieves ($500 \mathrm{mg}, 50 \%$ by weight) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (29 $\mathrm{mL}, 0.1 \mathrm{M}$) at $23{ }^{\circ} \mathrm{C}$ was added solid pyridinium dichromate ($5.47 \mathrm{~g}, 14.5 \mathrm{mmol}, 5.0$ equiv.) in one portion. After 5 hours, the black solution was filtered through a pad of Celite and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography ($5: 2: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$:EtOAc:hexanes) to give pure dimethoxymethyl ether ynone 193 ($540 \mathrm{mg}, 1.63 \mathrm{mmol}, 56 \%$) as a white solid (m.p. $119-120^{\circ} \mathrm{C}$).
$\mathbf{R} \boldsymbol{f}=0.51$ (silica gel, 5:2:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}:$ EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.23$ (s, $1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 2 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 184.3,173.5,160.7,153.0,152.2,146.0,117.8,110.4,108.1$, 104.1, $95.5,95.2,93.4,81.8,56.7,56.5,32.7$; IR (film, cm^{-1}): 1668, 1640, 1615, 1271, 970 ; HRMS (ESI) calc. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 333.09688$, obs. 333.09704.

1-(2-hydroxy-5-(methoxymethoxy)phenyl)ethan-1-one (214)

To a stirred solution of $2^{\prime}, 5^{\prime}$-dihydroxyacetophenone $202(23.9 \mathrm{~g}, 157 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(780 \mathrm{~mL}, 0.2 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was added neat N, N-diisopropylethylamine $(41.0 \mathrm{~mL}, 236$ mmol, 1.5 equiv.). A 2.1 M solution of chloromethyl methyl ether in $\mathrm{PhMe} / \mathrm{MeOAc}(112 \mathrm{~mL}$, 236 mmol, 1.5 equiv.) was then added slowly over 20 minutes. Upon complete addition the solution was allowed to warm to $23^{\circ} \mathrm{C}$. After 1 hour, the reaction mixture was diluted with 0.1 N $\mathrm{HCl}(500 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 500 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography ($10: 1$ hexanes:EtOAc) to give pure 5 '-methoxymethyl ether $214(19.4 \mathrm{~g}, 99.0 \mathrm{mmol}, 63 \%)$ as a clear yellow oil.
$\mathbf{R} \boldsymbol{f}=0.40$ (silica gel, 5:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 11.92(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}$, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=9.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~s}$, 3H), $2.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 204.1,157.6,149.3,126.5,119.3,119.2$, 117.1, 95.5, 56.0, 26.8; IR (film, cm^{-1}): 1646, 1491, 1150, 994; HRMS (ESI) calc. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 219.06278$, obs. 219.06255.

(E)-3-(dimethylamino)-1-(2-hydroxy-5-(methoxymethoxy)phenyl)prop-2-en-1-one (215)

To a stirred solution of 5'-methoxymethyl ether 214 ($17.0 \mathrm{~g}, 86.4 \mathrm{mmol}, 1.0$ equiv.) in DME ($860 \mathrm{~mL}, 0.1 \mathrm{M}$) at $85^{\circ} \mathrm{C}$ was added N, N-dimethylformamide dimethyl acetal (45.9 mL , $346 \mathrm{mmol}, 4.0$ equiv.) in one portion. After 4 hours, the reaction mixture was cooled to $23{ }^{\circ} \mathrm{C}$ and concentrated in vacuo to give a dark amber oil. The crude material was purified via silica gel column chromatography ($1: 1$ hexanes:EtOAc) to give 5'-methoxymethyl ether enaminone 215 $\left(21.7 \mathrm{~g}, 86.4 \mathrm{mmol}\right.$, yield taken after subsequent step) as a yellow solid (m.p. $94-95^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.25$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.89(\mathrm{~d}, J=12 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=8.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J$ $=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{bs}, 3 \mathrm{H}), 2.98(\mathrm{bs}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 191.0,158.1,154.9,148.8,123.4,120.2,118.7,115.7,95.7,90.0,55.9,45.4,37.5 ;$ IR (film, cm^{-1}): 3420, 1635, 1538, 1269; HRMS (ESI) calc. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 274.10498$, obs. 274.10491.

3-iodo-6-(methoxymethoxy)-4H-chromen-4-one (203)
To a stirred solution of crude 5'-methoxymethyl ether enaminone $215(21.7 \mathrm{~g}, 86.4$ mmol, 1.0 equiv.) in $\mathrm{CHCl}_{3}(860 \mathrm{~mL}, 0.1 \mathrm{M})$ at $23{ }^{\circ} \mathrm{C}$ was added solid iodine $(43.9 \mathrm{~g}, 173 \mathrm{mmol}$, 2.0 equiv.) in one portion. After 40 minutes, the solution was diluted with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (500 $\mathrm{mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give a tan solid. The crude material was purified via silica gel column chromatography (3:1 hexanes:EtOAc) to give pure 5'-methoxymethyl ether iodochromone 203 $\left(24.1 \mathrm{~g}, 72.6 \mathrm{mmol}, 84 \%\right.$ over 2 -steps) as an off-white solid (m.p. $122-123{ }^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.19$ (silica gel, 5:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=9.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{~s}$, 3H); ${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 172.6,161.7,157.6,157.3,128.1,116.4,116.2,102.9$, 94.3, 87.0, 56.5; IR (film, cm^{-1}): 1641, 1480, 1141; HRMS (ESI) calc. for $\mathrm{C}_{11} \mathrm{H}_{9}\left[\mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}\right.$: 354.94377, obs. 354.94380 .

3-(3-hydroxybut-1-yn-1-yl)-6-(methoxymethoxy)-4H-chromen-4-one (216)

To a stirred solution of 5'-methoxymethyl ether iodochromone $203(1.01 \mathrm{~g}, 3.04 \mathrm{mmol}$, 1.0 equiv.), bis(triphenylphosphine) palladium (II) dichloride ($43 \mathrm{mg}, 0.061 \mathrm{mmol}, 0.02$ equiv.), and copper iodide ($58 \mathrm{mg}, 0.304 \mathrm{mmol}, 0.1$ equiv.) in THF ($30 \mathrm{~mL}, 0.1 \mathrm{M}$) at $23^{\circ} \mathrm{C}$ was added 3-butyn-2-ol 64 ($0.95 \mathrm{~mL}, 12.2 \mathrm{mmol}, 4.0$ equiv.) followed by neat diisopropylamine (1.29 mL , $9.12 \mathrm{mmol}, 3.0$ equiv.). After 1 hour, the reaction mixture was diluted with aq. $0.2 \mathrm{M} \mathrm{pH}=7.0$ phosphate buffer $(30 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography (1:1 hexanes:EtOAc) to give pure 5'-methoxymethyl ether propargyl alcohol 216 ($826 \mathrm{mg}, 3.01 \mathrm{mmol}, 99 \%$) as an amber oil.
$\mathbf{R}_{f}=0.30$ (silica gel, 1:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}$, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=9.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 4.79(\mathrm{q}, J=$ $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{bs}, 1 \mathrm{H}), 1.56(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 175.5,157.9,154.6,151.2,124.4,124.0,119.5,109.7,109.7,97.6,94.6,73.9,58.4,56.2,23.9 ;$ IR (film, cm^{-1}): 3412, 1646, 1485, 1147; HRMS (ESI) calc. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$: 298.07674, obs. 298.07670.

6-(methoxymethoxy)-3-(3-oxbut-1-yn-1-yl)-4H-chromen-4-one (195)

To a stirred solution of 5'-methoxymethyl ether propargyl alcohol $216(650 \mathrm{mg}, 2.37$ mmol, 1.0 equiv.) and activated $4.0 \AA$ molecular sieves ($325 \mathrm{mg}, 50 \%$ by weight) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (24 $\mathrm{mL}, 0.1 \mathrm{M}$) at $23{ }^{\circ} \mathrm{C}$ was added solid pyridinium dichromate ($4.46 \mathrm{~g}, 11.9 \mathrm{mmol}, 5.0$ equiv.) in one portion. After 5 hours, the black solution was filtered through a pad of Celite and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography ($3: 1$ to $2: 1$ hexanes:EtOAc) to give pure 5 '-methoxymethyl ether ynone 195 ($330 \mathrm{mg}, 1.21 \mathrm{mmol}, 51 \%$) as a white solid (m.p. $145-146^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.65$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}$, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=9.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{~s}$, $3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 184.2,174.2,160.9,155.1,151.0,124.7$, $124.2,119.7,109.9,107.8,94.6,93.4,81.5,56.3,32.7$; IR (film, cm^{-1}): 1668, 1485, 1285, 1233;

HRMS (ESI) calc. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 295.05769$, obs. 295.05759.

1-(2-hydroxy-4-(methoxymethoxy)phenyl)ethan-1-one (217)

To a stirred solution of $2^{\prime}, 4^{\prime}$-dihydroxyacetophenone 204 ($9.95 \mathrm{~g}, 65.4 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(330 \mathrm{~mL}, 0.2 \mathrm{M})$ at $0^{\circ} \mathrm{C}$ was added neat N, N-diisopropylethylamine ($17.1 \mathrm{~mL}, 98.0$ mmol, 1.5 equiv.). A 2.1 M solution of chloromethyl methyl ether in $\mathrm{PhMe} / \mathrm{MeOAc}(46.7 \mathrm{~mL}$, $98.0 \mathrm{mmol}, 1.5$ equiv.) was then added slowly over 20 minutes. Upon complete addition the solution was allowed to warm to $23^{\circ} \mathrm{C}$. After 1 hour, the reaction mixture was diluted with 0.1 N $\mathrm{HCl}(300 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 300 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography (10:1 hexanes:EtOAc) to give pure 4'-methoxymethyl ether 217 ($8.84 \mathrm{~g}, 45.1 \mathrm{mmol}, 69 \%$) as a clear oil.
$\mathbf{R}_{f}=0.45$ (silica gel, 5:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 12.62(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 3.48(\mathrm{~s}$, 3H), 2.57 (s, 3H); ${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 202.7,164.7,163.5,132.4,114.6,108.1$, 103.6, 93.9, 56.3, 26.1; IR (film, cm^{-1}): 3406, 1635, 1244, 991; HRMS (EC-CI) calc. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 197.0814$, obs. 197.0814.

(E)-3-(dimethylamino)-1-(2-hydroxy-4-(methoxymethoxy)phenyl)prop-2-en-1-one (218)

To a stirred solution of 4'-methoxymethyl ether 217 ($8.85 \mathrm{~g}, 45.1 \mathrm{mmol}, 1.0$ equiv.) in DME ($450 \mathrm{~mL}, 0.1 \mathrm{M}$) at $85^{\circ} \mathrm{C}$ was added N, N-dimethylformamide dimethyl acetal (24.0 mL , $180 \mathrm{mmol}, 4.0$ equiv.) in one portion. After 4 hours, the reaction mixture was cooled to $23{ }^{\circ} \mathrm{C}$ and concentrated in vacuo to give a dark amber oil. The crude material was purified via silica gel column chromatography ($1: 1$ hexanes:EtOAc) to give 4'-methoxymethyl ether enaminone 218 $\left(11.3 \mathrm{~g}, 45.1 \mathrm{mmol}\right.$, yield taken after subsequent step) as a yellow solid (m.p. $95-96^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.25$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.85(\mathrm{~d}, J=12 \mathrm{~Hz}$, $1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J$ $=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{bs}, 3 \mathrm{H}), 2.96(\mathrm{bs}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(100 \mathrm{MHz}$, CDCl_{3}): $\delta 190.4,165.0,161.6,154.1,129.6,114.8,106.9,103.8,93.9,89.6,56.1,45.2,37.2 ;$ IR (film, cm^{-1}): 1627, 1535, 1235, 1108; HRMS (ESI) calc. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 274.10498$, obs. 274.10491.

3-iodo-7-(methoxymethoxy)-4H-chromen-4-one (205)
To a stirred solution of crude 4 '-methoxymethyl ether enaminone 218 (11.3 g, 45.1 mmol, 1.0 equiv.) in $\mathrm{CHCl}_{3}(450 \mathrm{~mL}, 0.1 \mathrm{M})$ at $23{ }^{\circ} \mathrm{C}$ was added solid iodine ($22.9 \mathrm{~g}, 90.0$ mmol, 2.0 equiv.) in one portion. After 40 minutes, the solution was diluted with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ $(300 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give a tan solid. The crude material was purified via silica gel column chromatography (3:1 hexanes:EtOAc) to give pure 4'-methoxymethyl ether iodochromone 205 $\left(11.69 \mathrm{~g}, 35.2 \mathrm{mmol}, 78 \%\right.$ over 2-steps) as a white solid (m.p. 101-102 $\left.{ }^{\circ} \mathrm{C}\right)$.
$\mathbf{R}_{f}=0.28$ (silica gel, 5:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~s}$, 3H); ${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.4,161.6,157.4,157.2,127.8,116.2,116.1,102.8$, 94.2, 86.9, 56.4; IR (film, cm^{-1}): 1646, 1624, 1149; HRMS (ESI) calc. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{INaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 354.94377, obs. 354.94436 .

3-(3-hydroxybut-1-yn-1-yl)-7-(methoxymethoxy)-4H-chromen-4-one (219)

To a stirred solution of 4'-methoxymethyl ether iodochromone $205(1.00 \mathrm{~g}, 3.02 \mathrm{mmol}$, 1.0 equiv.), bis(triphenylphosphine) palladium (II) dichloride ($42 \mathrm{mg}, 0.060 \mathrm{mmol}, 0.02$ equiv.), and copper iodide ($58 \mathrm{mg}, 0.302 \mathrm{mmol}, 0.1$ equiv.) in THF ($30 \mathrm{~mL}, 0.1 \mathrm{M}$) at $23^{\circ} \mathrm{C}$ was added 3-butyn-2-ol 64 ($0.95 \mathrm{~mL}, 12.1 \mathrm{mmol}, 4.0$ equiv.) followed by neat diisopropylamine (1.28 mL , $9.06 \mathrm{mmol}, 3.0$ equiv.). After 1 hour, the reaction mixture was diluted with aq. $0.2 \mathrm{M} \mathrm{pH}=7.0$ phosphate buffer $(30 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography (1:1 hexanes:EtOAc) to give pure 4'-methoxymethyl ether propargyl alcohol 219 ($696 \mathrm{mg}, 2.54 \mathrm{mmol}, 84 \%$) as an amber oil.
$\mathbf{R}_{f}=0.28$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.16$ (dd, $J=7.9,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 4.79(\mathrm{q}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{bs}, 1 \mathrm{H}), 1.56(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 175.0,161.7,157.8,157.3,127.5,117.8,115.9,110.6,103.1,97.6,94.3,73.9,58.4,56.4,23.9 ;$ IR (film, cm^{-1}): 3392, 1624, 1249, 1077; HRMS (ESI) calc. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$: 297.07334, obs. 297.07349.

7-(methoxymethoxy)-3-(3-oxbut-1-yn-1-yl)-4H-chromen-4-one (196)
To a stirred solution of 4'-methoxymethyl ether propargyl alcohol 219 ($647 \mathrm{mg}, 2.36$ mmol, 1.0 equiv.) and activated $4.0 \AA$ molecular sieves ($325 \mathrm{mg}, 50 \%$ by weight) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (24 $\mathrm{mL}, 0.1 \mathrm{M}$) at $23{ }^{\circ} \mathrm{C}$ was added solid pyridinium dichromate ($4.44 \mathrm{~g}, 11.8 \mathrm{mmol}, 5.0$ equiv.) in one portion. After 5 hours, the black solution was filtered through a pad of Celite and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography ($3: 1$ to $2: 1$ hexanes:EtOAc) to give pure 4'-methoxymethyl ether ynone 196 $(410 \mathrm{mg}, 1.51 \mathrm{mmol}, 64 \%)$ as a white solid (m.p. $139-141^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.65$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~s}$, 3H), $2.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 183.9,173.5,162.0,160.9,157.1,127.3$, 117.6, 116.3, 108.3, 103.3, 94.2, 93.2, 81.4, 56.3, 32.5; IR (film, cm^{-1}): 1669, 1632, 1255, 1158;

HRMS (ESI) calc. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 295.05769$, obs. 295.05778.

(E)-3-(dimethylamino)-1-(2-hydroxyphenyl)prop-2-en-1-one (220)

To a stirred solution of 2'-hydroxyacetophenone 206 ($2.26 \mathrm{~g}, 16.6 \mathrm{mmol}, 1.0$ equiv.) in DME ($170 \mathrm{~mL}, 0.1 \mathrm{M}$) at $85^{\circ} \mathrm{C}$ was added N, N-dimethylformamide dimethyl acetal (8.82 mL , 66.4 mmol, 4.0 equiv.) in one portion. After 4 hours, the reaction mixture was cooled to $23{ }^{\circ} \mathrm{C}$ and concentrated in vacuo to give a dark amber oil. The crude material was purified via silica gel column chromatography ($1: 1$ hexanes:EtOAc) to give 2^{\prime}-hydroxy enaminone $220(3.17 \mathrm{~g}, 16.6$ mmol , yield taken after subsequent step) as a yellow solid (m.p. $128-129^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.24$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.89(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.70$ (dd, $J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.35 (ddd, $J=8.6,6.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (dd, $J=8.2,1.0 \mathrm{~Hz}$, 1H), 6.82 (ddd, $J=8.2,6.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.98$ ($\mathrm{s}, 3 \mathrm{H})$; ${ }^{13}$ C-NMR (100 MHz, CDCl_{3}): $\delta 191.3,162.8,154.7,133.8,128.2,120.2,118.0,117.9,89.8$, 45.3, 37.3; IR (film, cm^{-1}): 3425, 1633, 1544, 1489, 1289; HRMS (ESI) calc. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 192.10191$, obs. 192.10219.

3-iodo-4H-chromen-4one (207)
To a stirred solution of crude 2'-hydroxy enaminone 220 ($3.17 \mathrm{~g}, 16.6 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CHCl}_{3}(170 \mathrm{~mL}, 0.1 \mathrm{M})$ at $23{ }^{\circ} \mathrm{C}$ was added solid iodine ($8.43 \mathrm{~g}, 33.2 \mathrm{mmol}, 2.0$ equiv.) in one portion. After 40 minutes, the solution was diluted with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(150 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give a tan solid. The crude material was purified via silica gel column chromatography (3:1 hexanes:EtOAc) to give pure unsubstituted iodochromone $207(3.61 \mathrm{~g}, 13.3 \mathrm{mmol}, 85 \%$ over 2steps) as a white solid (m.p. $89-90^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.63$ (silica gel, 1:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{dd}$, $J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ (ddd, $J=8.4,6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (ddd, $J=$ 8.4, 7.2, 1.2 Hz, 1H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.2,157.6,156.0,134.0,126.4,125.8$, 121.6, 117.9, 86.7; IR (film, cm^{-1}): 1610, 1462, 1311, 1067, 760; HRMS (CI) calc. for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{2} \mathrm{I}$ $[\mathrm{M}+\mathrm{H}]^{+}: 272.9413$, obs. 272.9411.

3-(3-hydroxybut-1-yn-1-yl)-4H-chromen-4-one (221)

To a stirred solution of unsubstituted iodochromone $207(503 \mathrm{mg}, 1.85 \mathrm{mmol}, 1.0$ equiv.), bis(triphenylphosphine) palladium (II) dichloride ($26 \mathrm{mg}, 0.037 \mathrm{mmol}, 0.02$ equiv.), and copper iodide ($35 \mathrm{mg}, 0.185 \mathrm{mmol}, 0.1$ equiv.) in THF ($19 \mathrm{~mL}, 0.1 \mathrm{M}$) at $23{ }^{\circ} \mathrm{C}$ was added 3-butyn-2-ol 64 ($0.58 \mathrm{~mL}, 7.40 \mathrm{mmol}, 4.0$ equiv.) followed by neat diisopropylamine (0.78 mL , $5.55 \mathrm{mmol}, 3.0$ equiv.). After 1 hour, the reaction mixture was diluted with aq. $0.2 \mathrm{M} \mathrm{pH}=7.0$ phosphate buffer $(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography ($1: 1$ hexanes:EtOAc) to give pure unsubstituted propargyl alcohol 221 ($387 \mathrm{mg}, 1.81 \mathrm{mmol}, 98 \%$) as an amber solid (m.p. $72-73^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.20$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.22$ (dd, $J=8.0,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.67$ (ddd, $J=8.4,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ (ddd, $J=8.0,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{bs}, 1 \mathrm{H}), 1.56(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.7,158.1,155.9,134.1,126.1,125.8,123.3,118.2,110.6$, 97.6, 73.9, 58.6, 24.0; IR (film, cm^{-1}): 3393, 1648, 1615, 1466; HRMS (ESI) calc. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 237.05222$, obs. 237.05219.

3-(3-oxobut-1-yn-1-yl)-4H-chromen-4-one (198)

To a stirred solution of unsubstituted propargyl alcohol $221(855 \mathrm{mg}, 3.99 \mathrm{mmol}, 1.0$ equiv.) and activated $4.0 \AA$ molecular sieves ($425 \mathrm{mg}, 50 \%$ by weight) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL}, 0.1 \mathrm{M}$) at $23{ }^{\circ} \mathrm{C}$ was added solid pyridinium dichromate ($7.51 \mathrm{~g}, 20.0 \mathrm{mmol}, 5.0$ equiv.) in one portion. After 5 hours, the black solution was filtered through a pad of Celite and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography (3:1 to $2: 1$ hexanes:EtOAc) to give pure unsubstituted ynone $189(610 \mathrm{mg}, 2.87 \mathrm{mmol}, 72 \%)$ as a white solid (m.p. $122-124^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.43$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{dd}$, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74$ (ddd, $J=8.4,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (ddd, $J=$ 8.0, 7.2, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 184.1,174.4,161.2,155.8$, 134.6, 126.4, 126.1, 123.4, 118.3, 108.7, 93.5, 81.2, 32.7; IR (film, cm^{-1}): 1683, 1651; HRMS (ESI) calc. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 213.05462$, obs. 213.05462.

tert-butyl 3-formyl-7-(methoxymethoxy)-4-oxo-2-(2-oxopropyl)-6-(pivaloyloxy)-4H-chromene-5-carboxylate (186)

To a stirred solution of ynone $93\left(100 \mathrm{mg}, 0.212 \mathrm{mmol}, 1.0\right.$ equiv.) and $\mathrm{H}_{2} \mathrm{O}(3.81 \mathrm{~mL}$, $212 \mathrm{mmol}, 1000$ equiv. $)$ in $\mathrm{MeCN}(21 \mathrm{~mL}, 0.01 \mathrm{M})$ at $23^{\circ} \mathrm{C}$ was added triethylamine $(0.30 \mathrm{~mL}$, $2.12 \mathrm{mmol}, 10$ equiv.). After 1 hour, the reaction mixture was diluted with EtOAc (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give aldehyde $186(104 \mathrm{mg}, 0.212 \mathrm{mmol}, 99 \%)$ as an amber solid (m.p. 178-179 ${ }^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.23$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.42(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~s}$, 1H), 5.23 (s, 2H), 4.26 (bs, 2H), 3.45 ($\mathrm{s}, 3 \mathrm{H}$), 2.38 ($\mathrm{s}, 3 \mathrm{H}$), 1.64 ($\mathrm{s}, 9 \mathrm{H}$), 1.39 ($\mathrm{s}, 9 \mathrm{H}$), ${ }^{13} \mathbf{C}$-NMR (125 MHz, CDCl_{3}): $\delta 200.0,190.7,175.4,175.0,168.5,163.3,154.5,153.9,136.7,128.2,117.4$, $115.5,104.1,94.8,83.4,56.6,47.5,39.2,30.4,28.2,27.2$; IR (film, cm^{-1}): 3420, 1762, 1730, 1653, 1595, 1458, 1265, 1157, 1095; HRMS (ESI) calc. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NaO}_{10}[\mathrm{M}+\mathrm{Na}]^{+}: 513.17312$, obs. 513.17312.

General Procedure A for Ynone Coupling

To a stirred solution of ynone XXX (100 mg, 1.0 equiv.) (Intended xanthone core) and $\mathrm{H}_{2} \mathrm{O}$ (1000 equiv.) in $\mathrm{MeCN}(0.01 \mathrm{M})$ at $23{ }^{\circ} \mathrm{C}$ was added triethylamine (10 equiv.). After 1 hour, the reaction mixture was diluted with EtOAc (20 mL), dried twice over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give crude aldehyde as an amber oil. The crude aldehyde was taken up in $\mathrm{MeCN}(0.1 \mathrm{M})$ before adding ynone $\mathbf{X X X}$ (1.0 equiv.) (Intended chromone core) and triethylamine (2 equiv.) at $23{ }^{\circ} \mathrm{C}$. After 16 hours, the reaction mixture was concentrated in vacuo to give a dark amber oil. The crude material was purified via silica gel column chromatography (5:2:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:EtOAc:hexanes) to give pure protected vinaxanthone analog $\mathbf{X X X}$.

General Procedure B for Ynone Coupling

To a stirred solution of ynone $\mathbf{X X X}$ (100 mg , 1.0 equiv.) in $\mathrm{MeCN}(0.1 \mathrm{M})$ at $23{ }^{\circ} \mathrm{C}$ was added a 1.0 M solution of $\mathrm{H}_{2} \mathrm{O}$ in MeCN (0.5 equiv.) and triethylamine (10 equiv.). After 16 hours, the reaction mixture was concentrated in vacuo to give a dark amber residue. The crude material was purified via silica gel column chromatography (5:2:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:EtOAc:hexanes) to give pure protected vinaxanthone analog $\mathbf{X X X}$.

tert-butyl 5,7-diacetyl-6-(5-(tert-butoxycarbonyl)-7-(methoxymethoxy)-4-oxo-6-(pivaloyloxy)-4H-chromen-3-yl)-3-(methoxymethoxy)-9-oxo-2-(pivaloyloxy)-9H-xanthene-1-carboxylate (184)

Following general procedure B for ynone coupling, ynone $93(100 \mathrm{mg}, 0.212 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone $184(87 \mathrm{mg}, 0.092 \mathrm{mmol}, 87 \%)$ as a white-tan solid (m.p. $224-225^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.68$ (silica gel, 5:2:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EtOAc}:$ hexanes); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 8.62$ (bs, $1 \mathrm{H}), 7.84(\mathrm{bs}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}$, $3 \mathrm{H}), 2.65(\mathrm{bs}, 3 \mathrm{H}), 2.41(\mathrm{bs}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 9 \mathrm{H}), 1.58(\mathrm{~s}, 9 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathbf{C}-\mathbf{N M R}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.3,198.8,175.4$ (2 signals), 173.3 (2 signals), 163.4, 163.3, 155.1, $154.6,154.5,154.0,153.5,152.6,136.4$ (2 signals), 135.9, 133.9, 132.3, 128.9, 128.2, 126.8, $121.2,120.7,115.0,112.7,103.9,103.6,94.7,94.6,83.3,82.8,56.7,56.5,39.2,39.1,32.5,29.6$, 28.1, 28.0, 27.2, 27.1; IR (film, cm^{-1}): 1763, 1735 1460, 1264, 1157; HRMS (ESI) calc. for $\mathrm{C}_{50} \mathrm{H}_{56} \mathrm{NaO}_{18}[\mathrm{M}+\mathrm{Na}]^{+}: 967.33589$, obs. 967.33632.

tert-butyl 5,7-diacetyl-6-(6,7-bis(methoxymethoxy)-4-oxo-4H-chromen-3-yl)-3-(methoxymethoxy)-9-oxo-2-(pivaloyloxy)-9H-xanthene-1-carboxylate (222)

Following general procedure A for ynone coupling, ynone $93(100 \mathrm{mg}, 0.212 \mathrm{mmol}, 1.0$ equiv.) and ynone 193 ($70 \mathrm{mg}, 0.212 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone analog 222 ($39 \mathrm{mg}, 0.049 \mathrm{mmol}, 23 \%$) as a yellow solid (m.p. $116-118{ }^{\circ} \mathrm{C}$). Protected vinaxanthone analogs $227(48 \mathrm{mg}, 0.051 \mathrm{mmol}, 46 \%)$ and $184(65 \mathrm{mg}, 0.097 \mathrm{mmol}, 24 \%)$ were also isolated.
$\mathbf{R}_{f}=0.51$ (silica gel, 5:2:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}:$ EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 8.67$ (bs, $1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{bs}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 2 \mathrm{H}), 5.35(\mathrm{~s}, 2 \mathrm{H}), 5.26(\mathrm{~s}$, $2 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{bs}, 3 \mathrm{H}), 2.42(\mathrm{bs}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{~s}$, 9H); ${ }^{13} \mathbf{C}-$ NMR (125 MHz, CDCl_{3}): $\delta 201.8,199.0,175.5,174.5,173.5,163.4,155.2,154.2$, $153.9,153.6,153.1,152.3,145.1,136.4,134.1,131.8,128.2,126.9,121.4,120.6,115.8,115.1$, $111.4,110.5,103.9,103.8,95.7,95.2,94.7,82.8,56.7,56.6,56.5,39.2,32.5,28.9,28.2,27.3 ;$ IR (film, cm^{-1}): 1654, 1459, 1268, 1156, 1092; HRMS (ESI) calc. for $\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{NaO}_{16}[\mathrm{M}+\mathrm{Na}]^{+}$: 827.25220, obs. 827.25320.

tert-butyl 5,7-diacetyl-3-(methoxymethoxy)-6-(6-(methoxymethoxy)-4-oxo-4H-chromen-3-yl)-9-oxo-2-(pivaloyloxy)-9H-xanthene-1-carboxylate (223)

Following general procedure A for ynone coupling, ynone 93 ($100 \mathrm{mg}, 0.212 \mathrm{mmol}, 1.0$ equiv.) and ynone 195 ($58 \mathrm{mg}, 0.212 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone analog 223 ($93 \mathrm{mg}, 0.069 \mathrm{mmol}, 44 \%$) as a yellow solid (m.p. $144-145{ }^{\circ} \mathrm{C}$). Protected vinaxanthone analogs $233(23 \mathrm{mg}, 0.042 \mathrm{mmol}, 20 \%)$ and $184(24 \mathrm{mg}, 0.025 \mathrm{mmol}, 12 \%)$ were also isolated.
$\mathbf{R}_{f}=0.64$ (silica gel, $5: 2: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}:$ EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.68$ (bs, $1 \mathrm{H}), 7.92(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{bs}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H})$, $5.29(\mathrm{~s}, 2 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{bs}, 3 \mathrm{H}), 2.42(\mathrm{bs}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 9 \mathrm{H})$, 1.37 (s, 9H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 201.7,198.8,175.5,174.8,173.4,163.4,163.2$, $157.3,155.2,154.0,153.5,153.2,136.4,136.2,134.1,132.1,128.4,128.2,127.0,121.4,121.1$, $116.2,115.3,115.0,103.9,103.2,94.7,94.4,82.8,56.6,56.5,39.2,32.5,28.8,28.1,27.2$; IR (film, cm^{-1}): $1651,1485,1455,1263,1156,1094$; HRMS (ESI) calc. for $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{NaO}_{14}[\mathrm{M}+\mathrm{Na}]^{+}$: 767.23103, obs. 767.23051.

tert-butyl 5,7-diacetyl-3-(methoxymethoxy)-6-(7-(methoxymethoxy)-4-oxo-4H-chromen-3-
yl)-9-oxo-2-(pivaloyloxy)-9H-xanthene-1-carboxylate (224) yl)-9-ox0-2-(pivaloyloxy)-9H-xanthene-1-carboxylate (224)

Following general procedure A for ynone coupling, ynone $93(100 \mathrm{mg}, 0.212 \mathrm{mmol}, 1.0$ equiv.) and ynone 196 ($58 \mathrm{mg}, 0.212 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone analog 224 ($88 \mathrm{mg}, 0.119 \mathrm{mmol}, 56 \%$) as a pale off-white solid (m.p. $138-139{ }^{\circ} \mathrm{C}$). Protected vinaxanthone analogs 239 ($45 \mathrm{mg}, 0.083 \mathrm{mmol}, 39 \%$) and $184(20 \mathrm{mg}, 0.021 \mathrm{mmol}, 10 \%)$ were also isolated.
$\mathbf{R}_{f}=0.65$ (silica gel, $5: 2: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}:$ EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 8.64$ (bs, $1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{bs}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=$ 8.8, 2.3 Hz, 1H), 5.28 (s, 2H), 5.24 (s, 2H), 3.50 (s, 3H), 3.45 (s, 3H), 2.65 (bs, 3H), 2.41 (bs, 3H), 1.56 ($\mathrm{s}, 9 \mathrm{H}$), 1.36 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathbf{C - N M R ~ (1 2 5 ~ M H z , ~} \mathrm{CDCl}_{3}$): δ 201.6, 198.8, 175.4, 174.7, $173.4,163.3,163.1,157.3,155.1,153.9,153.5,153.1,136.4,136.0,134.1,132.1,128.4,128.1$, $126.9,121.3,121.0,116.2,115.3,115.0,103.9,103.1,94.7,94.4,82.7,56.5$ (2 signals), 39.1, 32.4, 28.8, 28.1, 27.2; IR (film, cm^{-1}): 1620, 1460, 1262, 1158, 1096; HRMS (ESI) calc. for $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{NaO}_{14}[\mathrm{M}+\mathrm{Na}]^{+}: 767.23103$, obs. 767.23148.

tert-butyl 5,7-diacetyl-3-(methoxymethoxy)-9-oxo-6-(4-oxo-4H-chromen-3-yl)-2-(pivaloyloxy)-9H-xanthene-1-carboxylate (225)

Following general procedure A for ynone coupling, ynone $93(100 \mathrm{mg}, 0.212 \mathrm{mmol}, 1.0$ equiv.) and ynone 189 ($45 \mathrm{mg}, 0.212 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone analog 225 ($114 \mathrm{mg}, 0.167 \mathrm{mmol}, 79 \%$) as a pale off-white solid (m.p. $160-162{ }^{\circ} \mathrm{C}$). Protected vinaxanthone analogs 183 ($18 \mathrm{mg}, 0.042 \mathrm{mmol}, 20 \%$) and $184(6 \mathrm{mg}, 6.35 \mu \mathrm{~mol}, 3 \%)$ were also isolated.
$\mathbf{R}_{f}=0.73$ (silica gel, 5:2:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}:$ EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.69$ (bs, $1 \mathrm{H}), 8.36$ (dd, $J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$ (bs, 1H), 7.79 (ddd, $J=8.9,7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (dd, J $=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{ddd}, J=8.9,7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H})$, 2.68 (bs, 3H), 2.43 (bs, 3H), 1.58 (s, 9H), 1.37 (s, 9H); ${ }^{13} \mathbf{C}-\mathbf{N M R ~ (1 2 5 ~ M H z , ~ C D C l 3) : ~} \delta 201.5$, $198.8,175.7,175.5,173.4,163.4,155.7,155.2,154.0,153.6,153.2,136.4,136.1,135.6,134.3$, $132.6,128.2,127.0,126.9,125.1,121.7,121.3,121.0,118.1,115.0,103.9,94.7,82.8,56.6,39.2$, 32.4, 28.9, 28.1, 27.2; IR (film, cm^{-1}): 1654, 1460, 1262, 1157, 1093; HRMS (ESI) calc. for $\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{NaO}_{12}[\mathrm{M}+\mathrm{Na}]^{+}: 707.20990$, obs. 707.20993.

tert-butyl 3-(2,4-diacetyl-6,7-bis(methoxymethoxy)-9-oxo-9H-xanthen-3-yl)-7-(methoxymethoxy)-4-oxo-6-(pivaloyloxy)-4H-chromene-5-carboxylate (226)

Following general procedure A for ynone coupling, ynone $193(100 \mathrm{mg}, 0.301 \mathrm{mmol}, 1.0$ equiv.) and ynone 93 ($142 \mathrm{mg}, 0.301 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone analog $226(90 \mathrm{mg}, 0.166 \mathrm{mmol}, 55 \%)$ as a yellow solid (m.p. $152-154{ }^{\circ} \mathrm{C}$). Protected vinaxanthone 184 ($68 \mathrm{mg}, 0.072 \mathrm{mmol}, 24 \%$) was also isolated.
$\mathbf{R}_{f}=0.49$ (silica gel, 5:2:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}:$ EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.68(\mathrm{~s}$, $1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 2 \mathrm{H}), 5.32(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H})$, $5.30(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}$, 3H), 3.47 ($\mathrm{s}, 3 \mathrm{H}$), $2.64(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 9 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 201.3,199.3,175.5,174.6,173.4,163.5,154.7,154.6,153.9,152.9,152.7,145.6$, $136.3,135.9,133.9,133.3,129.0,127.4,122.1,120.7,118.1,112.8,110.6,104.1,103.9,103.8$, 103.7, 95.6, 95.1, 94.8, 83.3, 56.7, 56.5, 39.2, 32.4, 28.9, 28.2, 27.3; IR (film, cm^{-1}): 1458, 1155, 1090; HRMS (ESI) calc. for $\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{NaO}_{16}[\mathrm{M}+\mathrm{Na}]^{+}: 827.25220$, obs. 827.25350 .

1,1'-(3-(6,7-bis(methoxymethoxy)-4-oxo-4H-chromen-3-yl)-6,7-bis(methoxymethoxy)-9-oxo-
9H-xanthene-2,4-diyl)bis(ethan-1-one) (227)
Following general procedure B for ynone coupling, ynone $193(100 \mathrm{mg}, 0.301 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone analog $227(52 \mathrm{mg}, 0.078 \mathrm{mmol}, 52 \%)$ as a yellow solid (m.p. 144-146 ${ }^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.24$ (silica gel, 5:2:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}:$:EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.72(\mathrm{~s}$, $1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 2 \mathrm{H}), 5.37(\mathrm{~s}, 2 \mathrm{H})$, $5.35(\mathrm{~s}, 2 \mathrm{H}), 5.32(\mathrm{~d}, J=11 \mathrm{~Hz}, 2 \mathrm{H}), 5.31(\mathrm{~d}, J=11 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}$, 3H), 2.66 (s, 3H), 2.46 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}-\mathbf{N M R ~ (1 2 5 ~ M H z , ~} \mathrm{CDCl}_{3}$): δ 201.6, 199.2, 174.7, 174.5, $154.2,153.8,153.1,152.9$ (2 signals), 152.3, 145.6, 145.1, 135.8, 134.1, 132.8, 127.4, 121.2, $120.6,118.1,115.8,111.4,110.6,104.1,103.8,95.7,95.6,95.2,95.1,56.7,56.5$, (3 signals), 32.4, 28.9; IR (film, cm^{-1}): 1618, 1497, 1458, 1269, 1154; HRMS (ESI) calc. for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{NaO}_{14}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 687.16840$, obs. 687.16970.

1,1'-(6,7-bis(methoxymethoxy)-3-(6-(methoxymethoxy)-4-oxo-4H-chromen-3-yl)-9-oxo-9H-
xanthene-2,4-diyl)bis(ethan-1-one) (228)
Following general procedure A for ynone coupling, ynone $193(100 \mathrm{mg}, 0.301 \mathrm{mmol}, 1.0$ equiv.) and ynone 195 ($82 \mathrm{mg}, 0.301 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone analog 228 ($64 \mathrm{mg}, 0.105 \mathrm{mmol}, 35 \%$) as a yellow solid (m.p. $134-135^{\circ} \mathrm{C}$). Protected vinaxanthone analog 233 ($43 \mathrm{mg}, 0.078 \mathrm{mmol}, 26 \%$) was also isolated.
$\mathbf{R}_{f}=0.39$ (silica gel, $5: 2: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}:$ EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.73$ (s, $1 \mathrm{H}), 7.93(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=0.7$ Hz, 1H), 7.27 (s, 1H), $5.37(\mathrm{~s}, 2 \mathrm{H}), 5.33(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H})$, $3.55(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathbf{C}-\mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 201.5,199.2,175.5,174.6,154.3,153.9,153.2,152.9$ (2 signals), 151.0, 145.6, 135.9, 134.3, $133.4,127.5,125.9,122.3,121.1,120.3,119.5,118.2,110.8,110.6,104.1,95.6,95.2,94.9,56.6$ (2 signals), 56.3, 32.3, 28.9; IR (film, cm^{-1}): 1485, 1456, 1267, 1154; HRMS (ESI) calc. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{NaO}_{12}[\mathrm{M}+\mathrm{Na}]^{+}: 627.14730$, obs. 627.14810.

1,1'-(6,7-bis(methoxymethoxy)-3-(7-(methoxymethoxy)-4-oxo-4H-chromen-3-yl)-9-oxo-9H-xanthene-2,4-diyl)bis(ethan-1-one) (229)

Following general procedure A for ynone coupling, ynone $193(100 \mathrm{mg}, 0.301 \mathrm{mmol}, 1.0$ equiv.) and ynone 196 ($82 \mathrm{mg}, 0.301 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone analog 229 ($84 \mathrm{mg}, 0.138 \mathrm{mmol}, 46 \%$) as a yellow solid (m.p. $210-212{ }^{\circ} \mathrm{C}$). Protected vinaxanthone analog 239 ($44 \mathrm{mg}, 0.081 \mathrm{mmol}, 27 \%$) was also isolated.
$\mathbf{R}_{f}=0.35$ (silica gel, 5:2:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}:$:EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.72(\mathrm{~s}$, $1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 2 \mathrm{H}), 5.32(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 3.54(\mathrm{~s}$, 3H), 3.53 (s, 3H), 3.52 ($\mathrm{s}, 3 \mathrm{H}$), 2.65 ($\mathrm{s}, 3 \mathrm{H}$), $2.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 201.5$, 199.2, 174.8, 174.6, 163.2, 157.4, 153.9, 153.3, 152.9 (2 signals), 145.6, 136.0, 134.1, 133.1, $128.5,127.4,121.1$ (2 signals), 118.2, 116.3, 115.3, 110.6, 104.1, 103.2, 95.6, 95.1, 94.4, 56.5 (3 signals), 32.4, 28.9; IR (film, cm^{-1}): 1642, 1621, 1456, 1262, 1155; HRMS (ESI) calc. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{NaO}_{12}[\mathrm{M}+\mathrm{Na}]^{+}: 627.14730$, obs. 627.14770.

1,1'-(6,7-bis(methoxymethoxy)-9-oxo-3-(4-oxo-4H-chromen-3-yl)-9H-xanthene-2,4-diyl)bis(ethan-1-one) (230)

Following general procedure A for ynone coupling, ynone $193(100 \mathrm{mg}, 0.301 \mathrm{mmol}, 1.0$ equiv.) and ynone 189 ($64 \mathrm{mg}, 0.301 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone analog 230 ($82 \mathrm{mg}, 0.150 \mathrm{mmol}, 50 \%$) as a yellow solid (m.p. 230-232 ${ }^{\circ} \mathrm{C}$). Vinaxanthone analog 183 ($33 \mathrm{mg}, 0.078 \mathrm{mmol}, 26 \%$) was also isolated.
$\mathbf{R}_{f}=0.41$ (silica gel, $5: 2: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}:$ EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.73$ (s, $1 \mathrm{H}), 8.37$ (dd, $J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.79$ (ddd, $J=8.6,7.2,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{ddd}, J=8.6,7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 2 \mathrm{H}), 5.33$ (d, $J=11 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13}$ C-NMR (125 MHz, CDCl_{3}): δ 201.4, 199.1, 175.7, 174.6, 155.7, 153.9, 153.2, 152.9 (2 signals), 145.6, 136.1, 135.6, 134.3, 133.6, 127.4, 126.9, 125.1, 121.7, 121.1, 121.0, 118.1 (2 signals), 110.6, 104.1, 95.6, 95.1, 56.5 (2 signals), 32.3, 28.9; IR (film, cm^{-1}): 1642, 1605, 1461, 1266, 1154; HRMS (ESI) calc. for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{NaO}_{10}[\mathrm{M}+\mathrm{Na}]^{+}$: 567.12620, obs. 567.12720.

tert-butyl 3-(2,4-diacetyl-7-(methoxymethoxy)-9-oxo-9H-xanthen-3-yl)-7-(methoxymethoxy)-4-oxo-6-(pivaloyloxy)-4H-chromene-5-carboxylate (231)

Following general procedure A for ynone coupling, ynone $195(100 \mathrm{mg}, 0.367 \mathrm{mmol}, 1.0$ equiv.) and ynone 93 ($174 \mathrm{mg}, 0.367 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone analog 231 ($183 \mathrm{mg}, 0.246 \mathrm{mmol}, 67 \%$) as a yellow solid (m.p. $120-122^{\circ} \mathrm{C}$). Protected vinaxanthone analogs $184(42 \mathrm{mg}, 0.044 \mathrm{mmol}, 12 \%)$ and $233(30 \mathrm{mg}, 0.055 \mathrm{mmol}, 15 \%)$ were also isolated.
$\mathbf{R}_{f}=0.67$ (silica gel, 5:2:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}:$:EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.69(\mathrm{~s}$, $1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=9.2,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{bs}, 2 \mathrm{H}), 5.26(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H})$, $3.47(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 201.3,199.2,175.5,175.3,173.3,163.5,154.7,154.6,154.5,154.3,152.7,151.8,136.1$, $135.9,134.0,133.1,128.9,127.5,124.8,124.4,120.9,120.7,119.7,112.7,109.9, .103 .7,94.8$, 94.7, 83.4, 56.7, 56.3, 39.2, 32.4, 28.9, 28.2, 27.3; IR (film, cm^{-1}): 1483, 1369, 1267, 1155, 1098;

HRMS (ESI) calc. for $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{NaO}_{14}[\mathrm{M}+\mathrm{Na}]^{+}: 767.00000$, obs. 767.00000.

1,1'-(3-(6,7-bis(methoxymethoxy)-4-0xo-4H-chromen-3-yl)-7-(methoxymethoxy)-9-oxo-9H-xanthene-2,4-diyl)bis(ethan-1-one) (232)

Following general procedure A for ynone coupling, ynone $195(100 \mathrm{mg}, 0.367 \mathrm{mmol}, 1.0$ equiv.) and ynone 193 ($122 \mathrm{mg}, 0.367 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone analog 232 ($71 \mathrm{mg}, 0.118 \mathrm{mmol}, 32 \%$) as a yellow solid (m.p. $180-181{ }^{\circ} \mathrm{C}$). Protected vinaxanthone analogs 227 ($93 \mathrm{mg}, 0.140 \mathrm{mmol}, 38 \%$) and $233(52 \mathrm{mg}, 0.095 \mathrm{mmol}, 26 \%)$ were also isolated.
$\mathbf{R}_{f}=0.41$ (silica gel, $5: 2: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}:$ EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.74(\mathrm{~s}$, $1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=$ $8.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 2 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H}), 5.26(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=13$ $\mathrm{Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathbf{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 201.6,199.2,175.4,174.5,154.6,154.2,153.2,152.3,151.8,145.1,135.7,134.2$, 132.7, 127.5, 124.7, 124.4, 121.0, 120.6, 119.7, 119.4, 115.9, 111.4, 109.9, 103.8, 95.7, 95.2, 94.7, 56.7, 56.5, 56.3, 32.4, 28.9; IR (film, cm^{-1}): 1483, 1461, 1272, 1153; HRMS (ESI) calc. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{NaO}_{12}[\mathrm{M}+\mathrm{Na}]^{+}: 627.14730$, obs. 627.14630.

1,1 '-(7-(methoxymethoxy)-3-(6-(methoxymethoxy)-4-oxo-4H-chromen-3-yl)-9-oxo-9H-
xanthene-2,4-diyl)bis(ethan-1-one) (233)
Following general procedure B for ynone coupling, ynone $195(100 \mathrm{mg}, 0.367 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone analog 233 ($56 \mathrm{mg}, 0.103 \mathrm{mmol}, 56 \%$) as a pale yellow solid (m.p. $168-169^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.53$ (silica gel, $5: 2: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}:$ EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.75(\mathrm{~s}$, $1 \mathrm{H}), 7.94(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.47(\mathrm{dd}, J=8.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}$, $2 \mathrm{H}), 5.26(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H})$, 2.47 (s, 3H); ${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 201.5,199.1,175.5,175.4,154.6,154.2$ (2 signals), 153.2, 151.8, 150.9, 135.7, 134.3, 133.2, 127.6, 125.9, 124.8, 124.4, 122.2, 120.9, $120.3,119.7,119.5,110.7,109.8,94.8,94.7,56.3$ (2 signals), 32.3, 28.9; IR (film, cm^{-1}): 1652, 1620, 1439, 1254, 1155; HRMS (ESI) calc. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{NaO}_{12}[\mathrm{M}+\mathrm{Na}]^{+}: 627.14730$, obs. 627.14630.

1,1'-(7-(methoxymethoxy)-3-(7-(methoxymethoxy)-4-oxo-4H-chromen-3-yl)-9-oxo-9H-xanthene-2,4-diyl)bis(ethan-1-one) (234)

Following general procedure A for ynone coupling, ynone $195(100 \mathrm{mg}, 0.367 \mathrm{mmol}, 1.0$ equiv.) and ynone 196 ($100 \mathrm{mg}, 0.367 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone analog 234 ($90 \mathrm{mg}, 0.165 \mathrm{mmol}, 45 \%$) as a yellow solid (m.p. $190-192{ }^{\circ} \mathrm{C}$). Protected vinaxanthone analogs $\mathbf{2 3 9}$ ($8 \mathrm{mg}, 0.015 \mathrm{mmol}, 4 \%$) and $\mathbf{2 3 3}(8 \mathrm{mg}, 0.015 \mathrm{mmol}, 4 \%)$ were also isolated.
$\mathbf{R}_{f}=0.53$ (silica gel, 5:2:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}:$ EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.74$ (s, $1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 5.26(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.24$ (d, $J=$ $13 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 201.5,199.1,175.4,174.7,163.2,157.3,154.6,154.2,153.3,151.7,135.8,134.2,133.0$, $128.4,127.5,124.7,124.4,121.1,120.9,119.7,116.2,115.4,109.8,103.2,94.6,94.4,56.5,56.3$, 32.4, 28.9; IR (film, cm^{-1}): 16.53, 1643, 1619, 1483, 1153; HRMS (ESI) calc. for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{NaO}_{10}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 567.12617$, obs. 567.12662.

1,1'-(7-(methoxymethoxy)-9-oxo-3-(4-oxo-4H-chromen-3-yl)-9H-xanthene-2,4-diyl)bis(ethan-1-one) (235)

Following general procedure A for ynone coupling, ynone $195(100 \mathrm{mg}, 0.367 \mathrm{mmol}, 1.0$ equiv.) and ynone $\mathbf{1 8 9}$ ($78 \mathrm{mg}, 0.367 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone analog 235 ($71 \mathrm{mg}, 0.147 \mathrm{mmol}, 40 \%$) as a yellow solid (m.p. 269-270 ${ }^{\circ} \mathrm{C}$). Protected vinaxanthone analogs 183 ($31 \mathrm{mg}, 0.073 \mathrm{mmol}, 20 \%$) and $233(36 \mathrm{mg}, 0.066 \mathrm{mmol}, 18 \%)$ were also isolated.
$\mathbf{R}_{f}=0.54$ (silica gel, 5:2:1 CH2Cl2:EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.76$ (s, $1 \mathrm{H}), 8.38(\mathrm{dd}, J=9.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.26($, $J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 201.4,199.1,175.7,175.4,155.7,154.7,154.3,153.3,151.8,136.0,135.7$, $134.4,133.5,127.6,126.9,125.2,124.8,124.4,121.7,121.0,120.9,119.7,118.1,109.9,94.7$, $56.3,32.3,28.9$; IR (film, cm^{-1}): $1638,1485,1465$; HRMS (ESI) calc. for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{NaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+}$: 508.10840, obs. 508.10840 .

tert-butyl 3-(2,4-diacetyl-6-(methoxymethoxy)-9-oxo-9H-xanthen-3-yl)-7-(methoxymethoxy)-4-oxo-6-(pivaloyloxy)-4H-chromene-5-carboxylate (236)

Following general procedure A for ynone coupling, ynone $196(100 \mathrm{mg}, 0.367 \mathrm{mmol}, 1.0$ equiv.) and ynone 93 ($174 \mathrm{mg}, 0.367 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone analog 236 ($82 \mathrm{mg}, 0.169 \mathrm{mmol}, 46 \%$) as a pale yellow solid (m.p. $148-149^{\circ} \mathrm{C}$). Protected vinaxanthone analogs $\mathbf{1 8 4}$ ($153 \mathrm{mg}, 0.162 \mathrm{mmol}, 44 \%$) and $239(50 \mathrm{mg}, 0.092 \mathrm{mmol}, 25 \%)$ were also isolated.
$\mathbf{R}_{f}=0.51$ (silica gel, 5:2:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}:$:EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.68(\mathrm{~s}$, $1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=$ 8.7, 2.4 Hz, 1H), $5.29(\mathrm{~s}, 2 \mathrm{H}), 5.25(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.47$ (s, 3H), 2.64 (s, 3H), 2.45 (s, 3H), 1.69 (s, 9H), 1.39 (s, 9H); ${ }^{13} \mathbf{C}-N M R\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ $201.2,199.1,175.5,174.9,173.3,163.5,161.9,157.9,154.7,154.6,154.1,152.7,136.3,135.9$, $133.9,133.1,129.0,127.7,127.4,121.6,120.7,118.3,115.9,112.7,103.7,103.4,94.8,94.3$, 83.3, 56.7, 56.4, 39.2, 32.4, 28.9, 28.2, 27.3; IR (film, cm^{-1}): 1615, 1463, 1252, 1156, 1091; HRMS (ESI) calc. for $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{NaO}_{14}[\mathrm{M}+\mathrm{Na}]^{+}: 767.23103$, obs. 767.23034.

1,1'-(3-(6,7-bis(methoxymethoxy)-4-oxo-4H-chromen-3-yl)-6-(methoxymethoxy)-9-oxo-9H-xanthene-2,4-diyl)bis(ethan-1-one) (237)

Following general procedure A for ynone coupling, ynone $196(100 \mathrm{mg}, 0.367 \mathrm{mmol}, 1.0$ equiv.) and ynone 193 ($122 \mathrm{mg}, 0.367 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone analog 237 ($80 \mathrm{mg}, 0.165 \mathrm{mmol}, 45 \%$) as a yellow solid (m.p. $84-85^{\circ} \mathrm{C}$). Protected vinaxanthone analogs 227 ($127 \mathrm{mg}, 0.191 \mathrm{mmol}, 52 \%$) and 239 ($6 \mathrm{mg}, 0.011 \mathrm{mmol}, 3 \%$) were also isolated.
$\mathbf{R}_{f}=0.33$ (silica gel, $5: 2: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}:$ EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.73(\mathrm{~s}$, $1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.08(\mathrm{dd}, J=8.9,2.4,1 \mathrm{H}), 5.38(\mathrm{~s}, 2 \mathrm{H}), 5.35(\mathrm{~s}, 2 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H})$, $3.51(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C - N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 201.6,199.1,175.1$, $174.5,161.9$. 158.0, 154.2, 154.0, 153.2, 152.3, 145.1, 135.8, 134.1, 132.6, 127.8, 127.4, 121.7, $120.6,118.4,115.9$ (2 signals), 111.4, 103.8, 103.4, $95.7,95.2,94.3,56.7,56.5,56.5,32.4,28.9$; IR (film, cm^{-1}): 1619, 1440, 1270, 1254, 1155; HRMS (ESI) calc. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{NaO}_{12}[\mathrm{M}+\mathrm{Na}]^{+}$: 627.14730, obs. 627.14850.

1,1'-(6-(methoxymethoxy)-3-(6-(methoxymethoxy)-4-oxo-4H-chromen-3-yl)-9-oxo-9H-xanthene-2,4-diyl)bis(ethan-1-one) (238)

Following general procedure A for ynone coupling, ynone $196(100 \mathrm{mg}, 0.367 \mathrm{mmol}, 1.0$ equiv.) and ynone 195 ($100 \mathrm{mg}, 0.367 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone analog 238 ($88 \mathrm{mg}, 0.162 \mathrm{mmol}, 44 \%$) as a yellow solid (m.p. $107-109{ }^{\circ} \mathrm{C}$). Protected vinaxanthone analogs $233(12 \mathrm{mg}, 0.022 \mathrm{mmol}, 6 \%)$ and $239(8 \mathrm{mg}, 0.015 \mathrm{mmol}, 4 \%)$ were also isolated.
$\mathbf{R}_{f}=0.42$ (silica gel, 5:2:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}:$ EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.74$ (s, $1 \mathrm{H}), 8.13$ (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.45 (s, 1H), 7.12 ($\mathrm{s}, 1 \mathrm{H}$), 7.09 (dd, $J=8.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.29 ($\mathrm{s}, 2 \mathrm{H})$ (2 signals), 3.53 (s, 3H), $2.46(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 201.4,199.1,175.5$, $175.0,161.9,157.9,154.2,154.0,153.1,150.9,135.8,134.2,133.2,127.7,127.5,125.9,122.2$, $121.6,120.3,119.4,118.3,115.9,110.7,103.4,94.8,94.3,56.4,56.3,32.3,28.9 ;$ IR (film, cm^{-1}): 1647, 1620, 1441, 1254, 1155; HRMS (ESI) calc. for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{NaO}_{10}[\mathrm{M}+\mathrm{Na}]^{+}: 568.12620$, obs. 568.12660 .

1,1'-(6-(methoxymethoxy)-3-(7-(methoxymethoxy)-4-oxo-4H-chromen-3-yl)-9-oxo-9H-xanthene-2,4-diyl)bis(ethan-1-one) (239)

Following general procedure B for ynone coupling, ynone $196(100 \mathrm{mg}, 0.367 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone analog $239(24 \mathrm{mg}, 0.44 \mathrm{mmol}, 24 \%)$ as a pale yellow solid (m.p. 215-216 ${ }^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.50$ (silica gel, $5: 2: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}:$ EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.73(\mathrm{~s}$, $1 \mathrm{H}), 8.29(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.11(\mathrm{dd}, J=9.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~s}$, 2H), $5.29(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 210.5,199.1,175.0,174.7,163.1,161.9,157.9,157.3,154.0,153.2,135.8,134.1$, $132.9,128.4,127.7,127.4,121.6,121.0,118.3,116.2,115.8,115.3,103.3,103.2,94.4,94.3$, $56.5,56.4,32.4,28.9$; IR (film, cm^{-1}): 1684, 1636, 1483, 1153; HRMS (ESI) calc. for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{NaO}_{10}[\mathrm{M}+\mathrm{Na}]^{+}: 567.12617$, obs. 567.12611.

1,1'-(6-(methoxymethoxy)-9-oxo-3-(4-oxo-4H-chromen-3-yl)-9H-xanthene-2,4-diyl)bis(ethan-1-one) (240)

Following general procedure A for ynone coupling, ynone $196(100 \mathrm{mg}, 0.367 \mathrm{mmol}, 1.0$ equiv.) and ynone 189 ($78 \mathrm{mg}, 0.367 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone analog 240 ($77 \mathrm{mg}, 0.158 \mathrm{mmol}, 43 \%$) as a white solid (m.p. 269-270 ${ }^{\circ} \mathrm{C}$). Protected vinaxanthone analogs $\mathbf{1 8 3}(64 \mathrm{mg}, 0.151 \mathrm{mmol}, 41 \%)$ and $\mathbf{2 3 9}(44 \mathrm{mg}, 0.081 \mathrm{mmol}, 22 \%)$ were also isolated.
$\mathbf{R}_{f}=0.50$ (silica gel, $5: 2: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}:$ EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.75(\mathrm{~s}$, $1 \mathrm{H}), 8.39(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.29 (s, 2H), 3.52 (s, 3H), 2.66 (s, 3H), 2.48 (s, 3H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 201.5$, $199.1,175.7,175.4,155.7,154.6,154.3,153.3,151.8,135.9,135.7,134.4,133.5,127.6,126.9$, 125.2, 124.8, 124.4, 121.7, 121.0, 120.9, 119.7, 118.1, 109.8, 94.7, 56.3, 32.3, 28.9; IR (film, $\left.\mathrm{cm}^{-1}\right): 1670,1640,1484,1466,1272,1152 ;$ HRMS (ESI) calc. for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{NaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+}$: 507.10504, obs. 507.10564.

tert-butyl 3-(2,4-diacetyl-9-oxo-9H-xanthen-3-yl)-7-(methoxymethoxy)-4-oxo-6-(pivaloyloxy)-4H-chromene-5-carboxylate (241)

Following general procedure A for ynone coupling, ynone $189(100 \mathrm{mg}, 0.471 \mathrm{mmol}, 1.0$ equiv.) and ynone 93 ($223 \mathrm{mg}, 0.471 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone analog 241 ($177 \mathrm{mg}, 0.259 \mathrm{mmol}, 55 \%$) as a pale yellow solid (m.p. 191-192 ${ }^{\circ} \mathrm{C}$). Protected vinaxanthone analogs $184(134 \mathrm{mg}, 0.141 \mathrm{mmol}, 30 \%)$ and $183(66 \mathrm{mg}, 0.156 \mathrm{mmol}, 33 \%)$ were also isolated.
$\mathbf{R}_{f}=0.64$ (silica gel, 5:2:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}:$ EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.70(\mathrm{~s}$, $1 \mathrm{H}), 8.22$ (dd, $J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.73$ (ddd, $J=8.4,6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{ddd}, J=8.4,6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~s}$, $3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 9 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 201.2,199.0$, $175.6,175.5,173.3,163.5,156.4,154.7,154.6,154.5,152.8,136.1,135.9,134.2,134.0,133.0$, $129.0,127.5,126.3,125.6,123.7,121.7,120.8,118.3,112.8,103.7,94.8,83.4,56.7,39.2,32.4$, 28.8, 28.2, 27.3; IR (film, cm^{-1}): 1652, 1464, 1266, 1157, 1091; HRMS (ESI) calc. for $\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{NaO}_{12}[\mathrm{M}+\mathrm{Na}]^{+}: 707.20990$, obs. 707.20928.

1,1'-(3-(6,7-bis(methoxymethoxy)-4-ox0-4H-chromen-3-yl)-9-oxo-9H-xanthene-2,4-diyl)bis(ethan-1-one) (242)

Following general procedure A for ynone coupling, ynone $189(100 \mathrm{mg}, 0.471 \mathrm{mmol}, 1.0$ equiv.) and ynone 193 ($157 \mathrm{mg}, 0.471 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone analog 242 ($54 \mathrm{mg}, 0.099 \mathrm{mmol}, 21 \%$) as a yellow solid (m.p. $184-185{ }^{\circ} \mathrm{C}$). Protected vinaxanthone analogs $227(147 \mathrm{mg}, 0.221 \mathrm{mmol}, 47 \%)$ and $183(88 \mathrm{mg}, 0.207 \mathrm{mmol}, 44 \%)$ were also isolated.
$\mathbf{R}_{f}=0.43$ (silica gel, 5:2:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}:$ EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.77$ (s, $1 \mathrm{H}), 8.25$ (dd, $J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.75$ (ddd, $J=8.9,7.9,1.7 \mathrm{~Hz}$, 1 H), 7.54 (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.47 (ddd, $J=8.9,7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}$, 3H); ${ }^{13} \mathbf{C - N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 201.5,199.0,175.7,174.4,156.4,154.3,154.2,153.2$, $152.2,145.1,135.6,134.2,132.5,127.5,126.3,125.5,123.7,121.8,120.6,118.3$ (2 signals), $115.8,111.4,103.8,95.6,95.2,56.7,56.5,32.4,28.8$; IR (film, cm^{-1}): 1651, 1617, 1462, 1154; HRMS (ESI) calc. for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{NaO}_{10}[\mathrm{M}+\mathrm{Na}]^{+}: 567.12620$, obs. 567.12560.

1,1'-(3-(6-(methoxymethoxy)-4-oxo-4H-chromen-3-yl)-9-oxo-9H-xanthene-2,4-diyl)bis(ethan-1-one) (243)

Following general procedure A for ynone coupling, ynone $189(100 \mathrm{mg}, 0.471 \mathrm{mmol}, 1.0$ equiv.) and ynone 195 ($128 \mathrm{mg}, 0.471 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone analog 243 ($123 \mathrm{mg}, 0.254 \mathrm{mmol}, 54 \%$) as a pale yellow solid (m.p. $228-229^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.55$ (silica gel, 5:2:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}:$ EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.76$ (s, $1 \mathrm{H}), 8.23(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.73$ (ddd, $J=8.9,7.9$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ (dd, $J=3.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 201.5,199.1,175.7,175.5,156.4,154.4,154.3,153.2,150.9,135.6,134.3,134.2$, 133.1, 127.7, 126.3, 126.0, 125.6, 123.7, 122.2, 121.8, 120.4, 119.4, 118.4, 110.7, 94.8, 56.3, 32.3, 28.9; IR (film, cm^{-1}): 1652, 1616, 1483, 1464, 1354, 1270; HRMS (ESI) calc. for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{NaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+}: 507.10504$, obs. 507.10527.

$1,1 '$-(3-(7-(methoxymethoxy)-4-oxo-4H-chromen-3-yl)-9-oxo-9H-xanthene-2,4-
diyl)bis(ethan-1-one) (244)
Following general procedure A for ynone coupling, ynone $\mathbf{1 8 9}(100 \mathrm{mg}, 0.471 \mathrm{mmol}, 1.0$ equiv.) and ynone 196 ($123 \mathrm{mg}, 0.471 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone analog 244 ($48 \mathrm{mg}, 0.099 \mathrm{mmol}, 21 \%$) as a pale yellow solid (m.p. $198-199{ }^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.52$ (silica gel, $5: 2: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}:$ EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.75(\mathrm{~s}$, $1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.23$ (dd, $J=7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.73$ (ddd, $J=8.9,7.2$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{ddd}, J=8.9,7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.5,199.0,175.7,174.7,163.2,157.3,156.4,154.3,153.3,135.7$, 134.2 (2 signals), $132.8,128.4,127.6,126.3,125.5,123.6,121.7,121.1,118.3,116.2,115.4$, 103.1, 94.3, 56.5, 32.4, 28.8; IR (film, cm^{-1}): 1653, 1618, 1466, 1253; HRMS (ESI) calc. for $\mathrm{C}_{28} \mathrm{H}_{2} \mathrm{NaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+}: 507.10504$, obs. 507.10510 .

1,1'-(9-oxo-3-(4-oxo-4H-chromen-3-yl)-9H-xanthene-2,4-diyl)bis(ethan-1-one) (183)

Following general procedure B for ynone coupling, ynone $189(100 \mathrm{mg}, 0.471 \mathrm{mmol}, 1.0$ equiv.) gave pure protected vinaxanthone analog $183(40 \mathrm{mg}, 0.094 \mathrm{mmol}, 40 \%)$ as a white solid (m.p. $264{ }^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.58$ (silica gel, $5: 2: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}:$ EtOAc:hexanes); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.76(\mathrm{~s}$, $1 \mathrm{H}), 8.37(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{ddd}, J=$ 8.6, 7.1, 1.6 Hz, 1H), 7.73 (ddd, $J=8.6,7.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.53$ (m, 4H), 2.67 (s, 3H), 2.49 (s, 3H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ 201.4, 199.0, 175.7 (2 signals), 156.4, 155.7, 154.4, $153.3,135.8,135.7,134.4,134.2,133.3,127.6,126.9,126.3,125.6,125.2,123.7,121.7,121.6$, 121.0, 118.3, 118.1, 32.3, 28.9; IR (film, cm^{-1}): 1709, 1684, 1639, 1464; HRMS (ESI) calc. for $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 447.08391$, obs. 447.08391 .

General Procedure A for Deprotection

To a stirred solution of protected vinaxanthone analog XXX ($20 \mathrm{mg}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was added a 1.0 M solution of boron trichloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.0 equiv. per protecting group). After 1 hour, the reaction mixture was diluted with EtOAc and washed with brine (5x). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give a brown/black solid. The crude material was purified by trituration with pentane: MeOH (ratio varies depending on substrate solubility) to give pure vinaxanthone analog XXX.

General Procedure B for Deprotection

A solution of protected vinaxanthone analog XXX ($20 \mathrm{mg}, 1.0$ equiv.) in 1.25 M methanolic HCl (10 equiv. per protected group) was stirred at $65^{\circ} \mathrm{C}$. The reaction was followed by aliquot ${ }^{1} \mathrm{H}-\mathrm{NMR}$. After 8 hours, the reaction mixture was purged with N_{2} in order to remove residual gaseous HCl and concentrated in vacuo to give a white/magenta solid. The crude material was purified by trituration with pentane: MeOH (ratio varies depending on substrate solubility) to give pure vinaxanthone analog XXX.

vinaxanthone (1)
Following general procedure A for deprotection, protected vinaxanthone $\mathbf{1 8 4}(20 \mathrm{mg}$, $0.021 \mathrm{mmol}, 1.0$ equiv.) was treated with 1.0 M boron trichloride $(0.25 \mathrm{~mL}, 0.254 \mathrm{mmol}, 12$ equiv.) to give pure vinaxanthone (1) ($12 \mathrm{mg}, 0.021 \mathrm{mmol}, 98 \%$) as a yellow solid (m.p. $280^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.05$ (silica gel, 20:1 EtOAc:AcOH); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 12.89$ (bs, 1H), 12.72 (bs, 1H), 11.69 (bs, 1H), 11.44 (bs, 1H), 9.42 (bs, 2H), 8.53 (s, 1H), 8.18 (s, 1H), 6.96 (s, 1H), $6.94(\mathrm{~s}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 201.1,199.1$, $172.9,172.6,167.4,167.4,154.1,152.7,152.5,152.1,150.7,150.3,141.7,141.0,136.2,133.4$, $132.6,126.3,120.8,120.5,119.8,119.6,112.4,110.0,102.4,102.3,32.1,29.1$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3236, 1683, 1653, 1472, 1288; HRMS (ESI) calc. for $\mathrm{C}_{28} \mathrm{H}_{15} \mathrm{O}_{14}[\mathrm{M}-\mathrm{H}]^{-}: 575.04673$, obs. 575.04679.

5,7-diacetyl-6-(6,7-dihydroxy-4-oxo-4H-chromen-3-yl)-2,3-dihydroxy-9-oxo-9H-xanthene-1-carboxylic acid (123)

Following general procedure A for deprotection, protected vinaxanthone analog 222 (20 $\mathrm{mg}, 0.025 \mathrm{mmol}, 1.0$ equiv.) was treated with 1.0 M boron trichloride $(0.25 \mathrm{~mL}, 0.249 \mathrm{mmol}, 10$ equiv.) to give pure vinaxanthone analog 123 ($13 \mathrm{mg}, 0.024 \mathrm{mmol}, 97 \%$) as a tan solid (m.p. $248-250{ }^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.14$ (silica gel, 20:1 EtOAc:AcOH); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 12.73$ (bs, 1 H), 11.47 ($\mathrm{bs}, 1 \mathrm{H}$), $10.87(\mathrm{bs}, 1 \mathrm{H}), 9.98(\mathrm{bs}, 1 \mathrm{H}), 9.44(\mathrm{bs}, 1), 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H})$, $6.96(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 201.2$, 199.2, 173.4, 172.9, 167.4, 154.4, 152.7, 152.6, 152.5, 150.8, 150.7, 144.5, 144.7, 136.1, 133.6, $132.4,126.3,120.9,119.8,119.6,113.5,112.5,108.7,103.1,102.3,32.1,29.1 ;$ IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3219, 1470, 1196, 803; HRMS (ESI) calc. for $\mathrm{C}_{27} \mathrm{H}_{15} \mathrm{O}_{12}[\mathrm{M}-\mathrm{H}]^{-}$: 531.05690, obs. 531.05700.

5,7-diacetyl-2,3-dihydroxy-6-(6-hydroxy-4-oxo-4H-chromen-3-yl)-9-oxo-9H-xanthene-1carboxylic acid (125)

Following general procedure A for deprotection, protected vinaxanthone analog 223 (20 $\mathrm{mg}, 0.027 \mathrm{mmol}, 1.0$ equiv. $)$ was treated with 1.0 M boron trichloride $(0.22 \mathrm{~mL}, 0.215 \mathrm{mmol}, 8$ equiv.) to give pure vinaxanthone analog 125 ($14 \mathrm{mg}, 0.027 \mathrm{mmol}, 99 \%$) as a light brown solid (m.p. $258-260^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.24$ (silica gel, 20:1 EtOAc:AcOH); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 12.69$ (bs, 1 H), $11.42(\mathrm{~s}, 1 \mathrm{H}), 10.13(\mathrm{~s}, 1 \mathrm{H}), 9.42(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=8.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C - N M R}\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 201.1,199.1,174.9,172.8,167.3,154.6,152.8,152.6,152.5$, $150.7,148.9,141.7,136.3,133.8,133.2,126.4,124.9,121.7,120.8,119.8,199.6,199.5,112.4$, 108.6, 102.3, 32.1, 29.1; IR (KBr, cm^{-1}): 3403, 1653, 1464, 1230; HRMS (ESI) calc. for $\mathrm{C}_{27} \mathrm{H}_{15} \mathrm{O}_{11}[\mathrm{M}-\mathrm{H}]^{-}: 515.06200$, obs. 515.06180 .

5,7-diacetyl-2,3-dihydroxy-6-(7-hydroxy-4-oxo-4H-chromen-3-yl)-9-oxo-9H-xanthene-1-
carboxylic acid (126)
Following general procedure A for deprotection, protected vinaxanthone analog 224 (20 $\mathrm{mg}, 0.027 \mathrm{mmol}, 1.0$ equiv.) was treated with 1.0 M boron trichloride $(0.22 \mathrm{~mL}, 0.215 \mathrm{mmol}, 8$ equiv.) to give pure vinaxanthone analog 126 ($13 \mathrm{mg}, 0.026 \mathrm{mmol}, 96 \%$) as a tan solid (m.p. $254-255^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.31$ (silica gel, 20:1 EtOAc:AcOH); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 12.70$ (bs, 1 H), $11.42(\mathrm{bs}, 1 \mathrm{H}), 11.15(\mathrm{bs}, 1 \mathrm{H}), 9.42(\mathrm{bs}, 1 \mathrm{H}), 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.98(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(125$ $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 201.1,199.2,173.6,172.8,167.3,164.6,157.2,152.7,152.6,152.5,150.7$, $141.7,136.5,133.6,132.8,128.1,126.2,120.8,120.3,119.6,114.9,113.8,112.4,102.5,102.3$, 32.1, 29.2; IR (KBr, cm ${ }^{-1}$): 3381, 1618, 1466, 1274; HRMS (ESI) calc. for $\mathrm{C}_{27} \mathrm{H}_{15} \mathrm{O}_{11}[\mathrm{M}-\mathrm{H}]^{-}$: 515.06198, obs. 515.06245.

5,7-diacetyl-2,3-dihydroxy-9-oxo-6-(4-0xo-4H-chromen-3-yl)-9H-xanthene-1-carboxylic acid (127)

Following general procedure A for deprotection, protected vinaxanthone analog 225 (20 $\mathrm{mg}, 0.029 \mathrm{mmol}, 1.0$ equiv.) was treated with 1.0 M boron trichloride $(0.18 \mathrm{~mL}, 0.175 \mathrm{mmol}, 6$ equiv.) to give pure vinaxanthone analog $127(13 \mathrm{mg}, 0.026 \mathrm{mmol}, 89 \%)$ as a tan solid (m.p. 263-265 ${ }^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.45$ (silica gel, 20:1 EtOAc:AcOH); ${ }^{\mathbf{1}} \mathbf{H - N M R}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 8.61(\mathrm{~s}, 1 \mathrm{H}), 8.24$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=$ 8.2 Hz, 1H), $6.96(\mathrm{~s}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 201.0$, $199.2,175.1,172.8,167.3,155.3,152.8,152.7,152.6,150.7,151.7,136.7,136.1,133.8,133.5$, $126.3,126.0,125.3,121.1,120.7,120.2,119.6,118.5,112.4,102.3,32.1,29.2 ;$ IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3395, 1668, 1464, 1279, 1101; HRMS (ESI) calc. for $\mathrm{C}_{27} \mathrm{H}_{15} \mathrm{O}_{10}[\mathrm{M}-\mathrm{H}]^{-}: 499.06710$, obs. 499.06690.

3-(2,4-diacetyl-6,7-dihydroxy-9-0xo-9H-xanthen-3-yl)-6,7-dihydroxy-4-oxo-4H-chromene-5-carboxylic acid (144)

Following general procedure A for deprotection, protected vinaxanthone analog 226 (20 $\mathrm{mg}, 0.025 \mathrm{mmol}, 1.0$ equiv.) was treated with 1.0 M boron trichloride $(0.25 \mathrm{~mL}, 0.249 \mathrm{mmol}, 10$ equiv.) to give pure vinaxanthone analog 144 ($12 \mathrm{mg}, 0.022 \mathrm{mmol}, 89 \%$) as a tan solid (m.p. $225-226^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.13$ (silica gel, 20:1 EtOAc:AcOH); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 11.71$ (bs, 1 H), $10.59(\mathrm{bs}, 1), 9.92(\mathrm{bs}, 1 \mathrm{H}), 9.44(\mathrm{bs}, 1 \mathrm{H}), 8.55(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H})$, $6.94(\mathrm{~s}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 201.0,199.0,173.5$, $172.6,167.3,154.0,152.9,152.8,152.1,151.0,150.2,144.9,140.9,135.9,133.2,132.9,126.4$, $120.6,120.5,119.7,115.7,110.0,107.9,102.9,102.4,32.2,29.1$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3393, 1624, 1577, 1466, 1290; HRMS (ESI) calc. for $\mathrm{C}_{27} \mathrm{H}_{15} \mathrm{O}_{12}[\mathrm{M}-\mathrm{H}]^{-}: 531.05690$, obs. 531.05690.

1,1'-(3-(6,7-dihydroxy-4-oxo-4H-chromen-3-yl)-6,7-dihydroxy-9-oxo-9H-xanthene-2,4-diyl)bis(ethan-1-one) (147)

Following general procedure B for deprotection, protected vinaxanthone analog 227 (20 $\mathrm{mg}, 0.030 \mathrm{mmol}, 1.0$ equiv. $)$ was treated with 1.25 M methanolic $\mathrm{HCl}(0.96 \mathrm{~mL}, 1.20 \mathrm{mmol}, 40$ equiv.) to give pure vinaxanthone analog $147(14 \mathrm{mg}, 0.029 \mathrm{mmol}, 97 \%)$ as a magenta solid (m.p. $290^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.24$ (silica gel, 20:1 EtOAc:AcOH); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 10.83$ (bs, 1 H), $10.55(\mathrm{bs}, 1 \mathrm{H}), 9.93(\mathrm{bs}, 2 \mathrm{H}), 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H})$, $6.93(\mathrm{~s}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 201.1,199.0,173.6$, 173.3, 154.3, 152.8 (2 signals), 152.4, 151.0, 150.6, 144.9, 144.5, 139.8, 135.8, 133.5, 132.7, $162.3,120.7,119.7,115.7,113.4,108.6,107.9,102.9,32.2,29.1$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3382, 1617, 1473, 1292; HRMS (ESI) calc. for $\mathrm{C}_{26} \mathrm{H}_{15} \mathrm{O}_{10}[\mathrm{M}-\mathrm{H}]^{-}$: 487.06707, obs. 487.06709 .

1,1'-(6,7-dihydroxy-3-(6-hydroxy-4-oxo-4H-chromen-3-yl)-9-oxo-9H-xanthene-2,4-diyl)bis(ethan-1-one) (149)

Following general procedure B for deprotection, protected vinaxanthone analog 228 (20 $\mathrm{mg}, 0.033 \mathrm{mmol}, 1.0$ equiv.) was treated with 1.25 M methanolic $\mathrm{HCl}(0.79 \mathrm{~mL}, 0.992 \mathrm{mmol}, 30$ equiv.) to give pure vinaxanthone analog $149(15 \mathrm{mg}, 0.032 \mathrm{mmol}, 98 \%)$ as a magenta solid (m.p. $208-210^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.07$ (silica gel, 10:10:1 hexanes:EtOAc:AcOH); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 10.56$ (bs, 1H), $10.12(\mathrm{bs}, 1 \mathrm{H}), 9.89(\mathrm{bs}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=9.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.55$ (s, 3H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(150 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): ~ \delta 201.1,199.1,174.9,173.6,154.7,153.0,152.9$, $152.7,151.2,148.9,145.0,136.0,133.8,133.6,126.6,124.9,121.7,120.7,119.9,119.5,115.8$, 108.6, 107.9, 102.9, 32.3, 29.2; IR (KBr, cm ${ }^{-1}$): 3403, 1627, 1567, 1257, 1231; HRMS (ESI) calc. for $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{NaO}_{9}[\mathrm{M}+\mathrm{Na}]^{+}: 495.06865$, obs. 495.06958.

1,1'-(6,7-dihydroxy-3-(7-hydroxy-4-0xo-4H-chromen-3-yl)-9-oxo-9H-xanthene-2,4-diyl)bis(ethan-1-one) (150)

Following general procedure B for deprotection, protected vinaxanthone analog 229 (20 $\mathrm{mg}, 0.033 \mathrm{mmol}, 1.0$ equiv.) was treated with 1.25 M methanolic $\mathrm{HCl}(0.79 \mathrm{~mL}, 0.992 \mathrm{mmol}, 30$ equiv.) to give pure vinaxanthone analog $150(14 \mathrm{mg}, 0.030 \mathrm{mmol}, 91 \%)$ as a magenta solid (m.p. $218-220^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.09$ (silica gel, 10:10:1 hexanes:EtOAc:AcOH); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 11.17$ (bs, 1H), 10.59 (bs, 1H), 9.91 (bs, 1H), $8.58(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ $(\mathrm{s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ (125 MHz, (CD $\left.)_{2} \mathrm{SO}\right): ~ \delta ~ 201.0,199.0,173.5,164.5,157.2,152.9,152.8,152.6,151.1,144.9$, $136.2,133.5,133.2,128.0,126.3,120.6,120.3,115.7,114.9,113.8,107.9,102.9,102.5,100.0$, 32.2, 29.1; IR (KBr, cm ${ }^{-1}$): 3406, 1617, 1560, 1466, 1273; HRMS (ESI) calc. for $\mathrm{C}_{26} \mathrm{H}_{15} \mathrm{O}_{9}$ [M-H]-: 471.07216, obs. 471.07279.

1,1'-(6,7-dihydroxy-9-oxo-3-(4-oxo-4H-chromen-3-yl)-9H-xanthene-2,4-diyl)bis(ethan-1one) (151)

Following general procedure B for deprotection, protected vinaxanthone analog 230 (20 $\mathrm{mg}, 0.037 \mathrm{mmol}, 1.0$ equiv.) was treated with 1.25 M methanolic $\mathrm{HCl}(0.59 \mathrm{~mL}, 0.735 \mathrm{mmol}, 20$ equiv.) to give pure vinaxanthone analog $151(15 \mathrm{mg}, 0.033 \mathrm{mmol}, 91 \%)$ as a magenta solid (m.p. $204{ }^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.09$ (silica gel, 10:10:1 hexanes:EtOAc:AcOH); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 10.58$ (bs, 1H), $9.90(\mathrm{bs}, 1 \mathrm{H}), 8.63(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{t}, J=8.2 \mathrm{~Hz}$, 1H), $7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H})$, 2.57 (s, 3H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(150 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 201.0,199.1,175.1,173.6,155.3,153.0,152.9$, $152.8,151.1,145.0,136.5,136.1,133.9,133.8,126.4,126.0,125.3,121.1,120.6,120.2,118.5$, 115.7, 107.9, 102.9, 32.3, 29.2; IR (KBr, cm ${ }^{-1}$): 3371, 1654, 1617, 1467, 1288, 1221; HRMS (ESI) calc. for $\mathrm{C}_{26} \mathrm{H}_{15} \mathrm{O}_{8}[\mathrm{M}-\mathrm{H}]^{-}: 455.07724$, obs. 455.07791 .

3-(2,4-diacetyl-7-hydroxy-9-oxo-9H-xanthen-3-yl)-6,7-dihydroxy-4-oxo-4H-chromene-5carboxylic acid (160)

Following general procedure A for deprotection, protected vinaxanthone analog 231 (20 $\mathrm{mg}, 0.027 \mathrm{mmol}, 1.0$ equiv.) was treated with 1.0 M boron trichloride $(0.22 \mathrm{~mL}, 0.215 \mathrm{mmol}, 8$ equiv.) to give pure vinaxanthone analog $160(13 \mathrm{mg}, 0.026 \mathrm{mmol}, 96 \%)$ as a brick red solid (m.p. $278-280^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.08$ (silica gel, 20:1 EtOAc:AcOH); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 12.85$ (bs, 1 H), $11.68(\mathrm{bs}, 1 \mathrm{H}), 10.10(\mathrm{bs}, 1 \mathrm{H}), 9.42(\mathrm{bs}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ (125 MHz, ($\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$): $\delta 201.1,199.0,174.6,172.6,167.4,155.1,154.1,153.8,152.3,150.3$, $149.6,141.0,135.6,133.5,132.7,126.9,123.8,123.7,120.9,120.6,120.0,119.9,110.1,107.8$, 102.4, 32.3, 29.1; IR (KBr, cm^{-1}): 3221, 1634, 1505, 1471; HRMS (ESI) calc. for $\mathrm{C}_{27} \mathrm{H}_{15} \mathrm{O}_{11}$ [M-H]-: 515.06198, obs. 515.06275.

1,1'-(3-(6,7-dihydroxy-4-oxo-4H-chromen-3-yl)-7-hydroxy-9-oxo-9H-xanthene-2,4-
diyl)bis(ethan-1-one) (163)
Following general procedure B for deprotection, protected vinaxanthone analog 232 (20 $\mathrm{mg}, 0.033 \mathrm{mmol}, 1.0$ equiv.) was treated with 1.25 M methanolic $\mathrm{HCl}(0.79 \mathrm{~mL}, 0.992 \mathrm{mmol}, 30$ equiv.) to give pure vinaxanthone analog 163 ($15 \mathrm{mg}, 0.032 \mathrm{mmol}, 98 \%$) as a brown solid (m.p. $189-190^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.32$ (silica gel, 10:10:1 hexanes:EtOAc:AcOH); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 10.88$ (bs 1H), 10.14 (bs, 1H), 9.98 (bs, 1H), 8.63 (s, 1H), 8.28 (s, 1H), 7.59 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ $(\mathrm{s}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ (125 MHz, ($\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$): $\delta 201.2,198.8,175.6,173.3,155.1,154.4,153.7,152.6,150.7,149.6$, $144.6,135.5,133.7,132.5,126.8,125.0,123.8,123.6,120.9,119.9,113.5,108.7,107.8,103.1$, 32.3, 29.1; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3415, 1684, 1618, 1472; HRMS (ESI) calc. for $\mathrm{C}_{26} \mathrm{H}_{15} \mathrm{O} 9$ [M-H] ${ }^{-}$: 471.07216, obs. 471.07236 .

1,1'-(7-hydroxy-3-(6-hydroxy-4-oxo-4H-chromen-3-yl)-9-oxo-9H-xanthene-2,4-diyl)bis(ethan-1-one) (165)

Following general procedure B for deprotection, protected vinaxanthone analog 233 (20 $\mathrm{mg}, 0.037 \mathrm{mmol}, 1.0$ equiv.) was treated with 1.25 M methanolic $\mathrm{HCl}(0.59 \mathrm{~mL}, 0.735 \mathrm{mmol}, 20$ equiv.) to give pure vinaxanthone analog $165(17 \mathrm{mg}, 0.036 \mathrm{mmol}, 99 \%)$ as a yellow solid (m.p. $286{ }^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.13$ (silica gel, 10:10:1 hexanes:EtOAc:AcOH); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 11.15$ $(\mathrm{s}, 1 \mathrm{H}), 10.94(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97(\mathrm{dt}, J=9.6,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{t}, J=3.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ (150 MHz, (CD $)_{2}$ SO): $\delta 201.1,198.9,174.9,174.5,155.1,154.6,153.7,152.8,149.5,148.9$, $135.6,133.9,133.3,126.9,124.9,123.8,123.6,121.7,120.8,119.9,119.8,119.6,108.6,107.8$, 32.3, 29.1; IR (KBr, cm^{-1}): 3419, 1622, 1267; HRMS (ESI) calc. for $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{NaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+}$: 479.07374, obs. 479.07401.

1,1'-(7-hydroxy-3-(7-hydroxy-4-oxo-4H-chromen-3-yl)-9-oxo-9H-xanthene-2,4-diyl)bis(ethan-1-one) (166)

Following general procedure B for deprotection, protected vinaxanthone analog 234 (20 $\mathrm{mg}, 0.037 \mathrm{mmol}, 1.0$ equiv.) was treated with 1.25 M methanolic $\mathrm{HCl}(0.59 \mathrm{~mL}, 0.735 \mathrm{mmol}, 20$ equiv.) to give pure vinaxanthone analog $166(15 \mathrm{mg}, 0.033 \mathrm{mmol}, 90 \%)$ as a golden yellow solid (m.p. 262-264 ${ }^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.16$ (silica gel, 10:10:1 hexanes:EtOAc:AcOH); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 11.19$ (s, 1H), $10.14(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H})$, 2.57 (s, 3H); ${ }^{13} \mathbf{C}-$ NMR (125 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 201.1,199.1,174.6,173.6,164.6,157.3,155.1$, $153.8,152.8,149.6,135.9,133.7,133.0,128.1,126.8,123.9,123.7,120.9,120.5,119.9,115.0$, 113.9, 107.8, 102.6, 32.3, 29.2; IR (KBr, cm ${ }^{-1}$): 3393, 1617, 1469, 1270; HRMS (ESI) calc. for $\mathrm{C}_{26} \mathrm{H}_{15} \mathrm{O}_{8}[\mathrm{M}-\mathrm{H}]^{-}: 455.07720$, obs. 455.07670.

1,1'-(7-hydroxy-9-oxo-3-(4-oxo-4H-chromen-3-yl)-9H-xanthene-2,4-diyl)bis(ethan-1-one) (167)

Following general procedure B for deprotection, protected vinaxanthone analog 235 (20 $\mathrm{mg}, 0.041 \mathrm{mmol}, 1.0$ equiv.) was treated with 1.25 M methanolic $\mathrm{HCl}(0.33 \mathrm{~mL}, 0.413 \mathrm{mmol}, 10$ equiv.) to give pure vinaxanthone analog $167(17 \mathrm{mg}, 0.039 \mathrm{mmol}, 95 \%)$ as a brick red solid (m.p. $180^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.42$ (silica gel, 10:10:1 hexanes:EtOAc:AcOH); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 10.11$ $(\mathrm{s}, 1 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dt}, J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.75(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}$, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H})\left(2\right.$ signals); ${ }^{13} \mathbf{C}-\mathrm{NMR}\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 201.0,199.0,175.0$, $174.5,155.3,155.1,153.8,152.9,149.5,136.1$ (2 signals), 133.9, 133.6, 126.8, 126.0, 125.3, $123.8,123.7,121.1,120.7,120.4,119.9,118.5,107.8,32.3,29.1$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3393, 1685, 1654, 1617, 1466; HRMS (ESI) calc. for $\mathrm{C}_{26} \mathrm{H}_{15} \mathrm{O}_{7}[\mathrm{M}-\mathrm{H}]^{-}: 439.08233$, obs. 439.08235 .

3-(2,4-diacetyl-6-hydroxy-9-oxo-9H-xanthen-3-yl)-6,7-dihydroxy-4-oxo-4H-chromene-5carboxylic acid (168)

Following general procedure A for deprotection, protected vinaxanthone analog 236 (20 $\mathrm{mg}, 0.027 \mathrm{mmol}, 1.0$ equiv.) was treated with 1.0 M boron trichloride $(0.22 \mathrm{~mL}, 0.215 \mathrm{mmol}, 8$ equiv.) to give pure vinaxanthone analog $168(13 \mathrm{mg}, 0.026 \mathrm{mmol}, 96 \%)$ as a yellow solid (m.p. 208-210 ${ }^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.09$ (silica gel, 20:1 EtOAc:AcOH); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 11.72$ (bs, 1 H), $10.96(\mathrm{bs}, 1 \mathrm{H}), 9.42(\mathrm{bs}, 1 \mathrm{H}), 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=$ $8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}$ (125 MHz, ($\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$): $\delta 201.0,198.9,173.8,172.5,167.3,163.0,157.6,154.0,153.2,152.2$, $150.2,140.9,135.6,133.3,132.6,127.2,126.6,121.6,120.5,119.8,115.7,115.4,110.0,102.4$, 102.2, 32.2, 29.0; IR (KBr, cm^{-1}): 3385, 1624, 1459, 1290, 1101; HRMS (ESI) calc. for $\mathrm{C}_{27} \mathrm{H}_{15} \mathrm{O}_{11}[\mathrm{M}-\mathrm{H}]^{-}: 515.061989$, obs. 515.06236.

1,1'-(3-(6,7-dihydroxy-4-0xo-4H-chromen-3-yl)-6-hydroxy-9-oxo-9H-xanthene-2,4-diyl)bis(ethan-1-one) (171)

Following general procedure B for deprotection, protected vinaxanthone analog 237 (20 $\mathrm{mg}, 0.033 \mathrm{mmol}, 1.0$ equiv.) was treated with 1.25 M methanolic $\mathrm{HCl}(0.79 \mathrm{~mL}, 0.992 \mathrm{mmol}, 30$ equiv.) to give pure vinaxanthone analog $171(15 \mathrm{mg}, 0.032 \mathrm{mmol}, 98 \%)$ as a magenta solid (m.p. 208-210 ${ }^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.06$ (silica gel, 10:10:1 hexanes:EtOAc:AcOH); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 10.97$ bs, 1H), $10.86(\mathrm{bs}, 1 \mathrm{H}), 9.98(\mathrm{bs}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ $(\mathrm{s}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ (125 MHz, ($\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$): $\delta 201.2,199.0,173.9,173.3,163.1,157.7,154.4,153.2,152.5,150.7$, $144.5,135.6,133.6,132.4,127.3,126.6,121.7,119.9,115.8,115.4,113.5,108.7,103.1,102.3$, 32.3, 29.1; IR (KBr, cm^{-1}): 3299, 1624, 1470, 1295; HRMS (ESI) calc. for $\mathrm{C}_{26} \mathrm{H}_{15} \mathrm{O} 9$ [M-H] ${ }^{-}$: 471.07216, obs. 471.07231 .

1,1'-(6-hydroxy-3-(6-hydroxy-4-oxo-4H-chromen-3-yl)-9-oxo-9H-xanthene-2,4-diyl)bis(ethan-1-one) (173)

Following general procedure B for deprotection, protected vinaxanthone analog 238 (20 $\mathrm{mg}, 0.037 \mathrm{mmol}, 1.0$ equiv.) was treated with 1.25 M methanolic $\mathrm{HCl}(0.59 \mathrm{~mL}, 0.735 \mathrm{mmol}, 20$ equiv.) to give pure vinaxanthone analog $173(16 \mathrm{mg}, 0.036 \mathrm{mmol}, 97 \%)$ as a golden yellow solid (m.p. 318-320 ${ }^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.15$ (silica gel, 10:10:1 hexanes:EtOAc:AcOH); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 10.98$ (bs, 1H), 10.16 (bs, 1H), $8.64(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=8.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ (dd, $J=8.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 201.1,198.9$, $174.9,173.9,163.1,157.7,154.7,153.3,152.8,148.9,135.7,133.8,133.2,127.3,126.8,124.9$, $121.7,121.6,119.8,119.6,115.8,115.5,108.6,102.3,32.3,29.1$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3382, 1630, 1595, 1465, 1266, 1238; HRMS (ESI) calc. for $\mathrm{C}_{26} \mathrm{H}_{15} \mathrm{O}_{8}[\mathrm{M}-\mathrm{H}]^{-}: 455.07724$, obs. 455.07768.

1,1'-(6-hydroxy-3-(7-hydroxy-4-oxo-4H-chromen-3-yl)-9-oxo-9H-xanthene-2,4-diyl)bis(ethan-1-one) (174)

Following general procedure B for deprotection, protected vinaxanthone analog 239 (20 $\mathrm{mg}, 0.037 \mathrm{mmol}, 1.0$ equiv.) was treated with 1.25 M methanolic $\mathrm{HCl}(0.59 \mathrm{~mL}, 0.735 \mathrm{mmol}, 20$ equiv.) to give pure vinaxanthone analog 174 ($17 \mathrm{mg}, 0.036 \mathrm{mmol}, 99 \%$) as a tan solid (m.p. 340 ${ }^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.16$ (silica gel, 10:10:1 hexanes:EtOAc:AcOH); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 11.14$ $(\mathrm{s}, 1 \mathrm{H}), 10.93(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{ddd}, J=11,7.2,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathbf{C - N M R}\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 201.0,199.0,173.9,173.6,164.5,163.1,157.7,157.2,153.3$, $152.8,136.0,133.6,132.9,128.1,127.3,126.6,121.6,120.5,115.8,115.5,114.9,113.8,102.5$, 102.3, 32.3, 29.1; IR (KBr, cm ${ }^{-1}$): 3351, 1619, 1468, 1002; HRMS (ESI) calc. for $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{NaO}_{8}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 479.07374$, obs. 479.07433 .

1,1'-(6-hydroxy-9-oxo-3-(4-oxo-4H-chromen-3-yl)-9H-xanthene-2,4-diyl)bis(ethan-1-one) (175)

Following general procedure B for deprotection, protected vinaxanthone analog 240 (20 $\mathrm{mg}, 0.041 \mathrm{mmol}, 1.0$ equiv.) was treated with 1.25 M methanolic $\mathrm{HCl}(0.33 \mathrm{~mL}, 0.413 \mathrm{mmol}, 10$ equiv.) to give pure vinaxanthone analog $175(17 \mathrm{mg}, 0.040 \mathrm{mmol}, 96 \%)$ as a golden yellow solid (m.p. 180-182 ${ }^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.35$ (silica gel, 10:10:1 hexanes:EtOAc:AcOH); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 10.97$ (bs, 1H), $8.67(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}$, 1H), 2.60 (s, 3H) (2 signals); $\left.\left.{ }^{13} \mathbf{C - N M R ~ (1 2 5 ~ M H z , ~ (C D ~}\right)_{2} \mathrm{SO}\right): ~ \delta 201.0,199.0,175.0,173.9$, 163.1, 157.7, 155.3, 153.4, 152.8, 136.2, 136.1, 133.8, 133.5, 127.3, 126.7, 126.0, 125.3, 121.5, 121.1, 120.4, 118.5, 115.8, 115.5, 102.3, 32.3, 29.2; IR (KBr, cm ${ }^{-1}$): 3438, 1617, 1466, 1097; HRMS (ESI) calc. for $\mathrm{C}_{26} \mathrm{H}_{15} \mathrm{O}_{7}[\mathrm{M}-\mathrm{H}]^{-}: 439.08233$, obs. 439.08252 .

3-(2,4-diacetyl-9-oxo-9H-xanthen-3-yl)-6,7-dihydroxy-4-oxo-4H-chromene-5-carboxylic acid (176)

Following general procedure A for deprotection, protected vinaxanthone analog 241 (20 $\mathrm{mg}, 0.029 \mathrm{mmol}, 1.0$ equiv.) was treated with 1.0 M boron trichloride $(0.18 \mathrm{~mL}, 0.175 \mathrm{mmol}, 6$ equiv.) to give pure vinaxanthone analog 176 ($13 \mathrm{mg}, 0.026 \mathrm{mmol}, 90 \%$) as a brick red solid (m.p. $260^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.16$ (silica gel, 20:1 EtOAc:AcOH); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 12.88$ (bs, 1 H), $11.69(\mathrm{bs}, 1 \mathrm{H}), 9.42(\mathrm{bs}, 1 \mathrm{H}), 8.63(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{t}, J=6.8$ Hz, 1H), 7.73 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}$, 3H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): ~ \delta ~ 201.1,198.8,174.8,172.6,167.4,155.8,154.1,153.9$, $152.4,150.2,141.0,135.3,134.7,133.5,132.4,127.1,125.8,125.4,122.9,122.2,120.6,120.1$, $118.5,110.1,102.4,32.3,29.0$; IR (KBr, cm ${ }^{-1}$): 3415, 1617, 1577, 1560, 1465, 1290; HRMS (ESI) calc. for $\mathrm{C}_{27} \mathrm{H}_{15} \mathrm{NaO}_{10}[\mathrm{M}-\mathrm{H}]^{-}: 499.06707$, obs. 499.06808.

1,1'-(3-(6,7-dihydroxy-4-0xo-4H-chromen-3-yl)-9-0xo-9H-xanthene-2,4-diyl)bis(ethan-1one) (179)

Following general procedure B for deprotection, protected vinaxanthone analog 242 (20 $\mathrm{mg}, 0.037 \mathrm{mmol}, 1.0$ equiv.) was treated with 1.25 M methanolic $\mathrm{HCl}(0.59 \mathrm{~mL}, 0.735 \mathrm{mmol}, 20$ equiv.) to give pure vinaxanthone analog $179(15 \mathrm{mg}, 0.033 \mathrm{mmol}, 89 \%)$ as a magenta solid (m.p. $184-185^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.13$ (silica gel, 10:10:1 hexanes:EtOAc:AcOH); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 10.85$ (bs, 1H), 9.97 (bs, 1H), $8.66(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H})$, 2.57 (s, 3H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 201.2,198.9,174.8,173.3,155.8,154.4,153.9$, 152.7, 150.7, 144.6, 135.2, 134.7, 133.7, 132.2, 127.0, 125.8, 125.4, 122.9, 122.2, 120.0, 118.5, 113.5, 108.7, 103.1, 32.3, 29.1; IR (KBr, cm ${ }^{-1}$): 3159, 1618, 1467, 1294; HRMS (ESI) calc. for $\mathrm{C}_{26} \mathrm{H}_{15} \mathrm{O}_{8}[\mathrm{M}-\mathrm{H}]^{-}: 455.07724$, obs. 455.07746.

1,1'-(3-(6-hydroxy-4-oxo-4H-chromen-3-yl)-9-oxo-9H-xanthene-2,4-diyl)bis(ethan-1-one) (181)

Following general procedure B for deprotection, protected vinaxanthone analog 243 (20 $\mathrm{mg}, 0.041 \mathrm{mmol}, 1.0$ equiv.) was treated with 1.25 M methanolic $\mathrm{HCl}(0.33 \mathrm{~mL}, 0.413 \mathrm{mmol}, 10$ equiv.) to give pure vinaxanthone analog $181(17 \mathrm{mg}, 0.037 \mathrm{mmol}, 90 \%)$ as a tan solid (m.p. $317-318^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.17$ (silica gel, 10:10:1 hexanes:EtOAc:AcOH); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 10.14$ $(\mathrm{s}, 1 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (dd, $J=9.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 201.1,198.9$, $174.9,174.7,155.8,154.7,153.9,152.9,148.9,135.4,134.8,133.9,133.0,127.2,125.9,125.4$, $124.9,122.9,122.1,121.7,119.9,119.7,118.5,108.6,32.3,29.1$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3204, 1626, 1599, 1464; HRMS (ESI) calc. for $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+}$: 463.07882, obs. 463.07889.

1,1'-(3-(7-hydroxy-4-oxo-4H-chromen-3-yl)-9-oxo-9H-xanthene-2,4-diyl)bis(ethan-1-one) (182)

Following general procedure B for deprotection, protected vinaxanthone analog 244 (20 $\mathrm{mg}, 0.041 \mathrm{mmol}, 1.0$ equiv.) was treated with 1.25 M methanolic $\mathrm{HCl}(0.33 \mathrm{~mL}, 0.413 \mathrm{mmol}, 10$ equiv.) to give pure vinaxanthone analog $182(19 \mathrm{mg}, 0.041 \mathrm{mmol}, 99 \%)$ as a tan solid (m.p. 270 ${ }^{\circ} \mathrm{C}$ (decomp.)).
$\mathbf{R}_{f}=0.38$ (silica gel, 10:10:1 hexanes:EtOAc:AcOH); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 11.18$ (bs, 1H), $8.67(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{t}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.93 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathbf{C}-\mathrm{NMR}\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 201.1$, $198.9,174.7,173.6,164.6,157.3,155.8,153.9,152.9,135.6,134.8,133.7,132.7,128.1,127.0$, $125.9,125.4,122.9,122.1,120.6,118.5,115.0,113.8,102.6,32.3,29.1$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3391$, 1385, 1093; HRMS (ESI) calc. for $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+}: 463.07882$, obs. 463.07865 .

Chapter 2: Total Synthesis of Eupalinilide E

Within the field of regenerative medicine strategies to chemically control stem cell fate and developmental potential have emerged as promising treatments for a variety of human diseases. ${ }^{144-146}$ Stem cells are adaptable precursors with the capacity for self-renewal and differentiation toward various cell types in response to instructive cues. ${ }^{147,148}$ Pluripotent embryonic stem cells possess the ability to generate any of the more than 200 different cell types responsible for the make-up of an adult organism. ${ }^{149-151}$ Tissue-specific stem cells on the other hand are multipotent, giving rise to all cell types limited to a given lineage and are referred to as adult or somatic stem cells. Adult stem cells are also persistent throughout the lifetime of an organism and play a critical role in maintaining homeostasis by providing a physiological mechanism for tissue repair. ${ }^{147,152-156}$

Significant therapeutic research in this area hinges on the development of embryonic stem cell transplantation-based treatments. ${ }^{157}$ However, despite the reported efficacies of such therapies, the ability to manipulate embryonic stem cells ex vivo is plagued by issues of mutation, immune rejection, and ethical controversy. ${ }^{158-161}$ An alternative approach to circumvent such disadvantages is the utilization of small drug-like molecules to directly modulate endogenous adult stem cells in vivo or to expand somatic stem cell populations ex vivo for transplantation.

Since the success rate of bone marrow transplants is directly correlated to the number of available hematopoietic stem cells (HSCs), the ability to control HSC expansion and differentiation in this manner would be extremely beneficial. Due to a shortage of clinically available HSCs nearly 50% of allogeneic bone marrow transplant candidates fail to find a matched donor. ${ }^{162,163}$ HSCs are the only stem cells used routinely in cell-based therapies and are the most well characterized class of somatic stem cells. ${ }^{157}$ Residing in the bone marrow HSCs can self-renew and are responsible for the production of all blood lineages. ${ }^{164,165}$ Therefore the
ability to manipulate HSC fate has great potential in the development of therapies for various blood-related diseases such as leukemia and autoimmune diseases.

To this end several small molecules possessing the ability to promote HSC self-renewal in vitro have been identified (Figure 2.1). The histone deacetylase (HDAC) inhibitors chlamydocin 245 and trichostatin A 246 as well as 5-azacytidine 247, a DNA methyltransferase inhibitor are capable of expanding HSCs, however their clinical use is limited due to narrow concentration ranges devoid of cytotoxicity. ${ }^{166,167}$ A more promising approach using the Cu^{2+} chelator tetra-ethylene-pentamine (TEPA, 248) is already being tested in a Phase II/III clinical trial involving blood transplantation for hematological malignancies. ${ }^{168,169}$ Furthermore, the monoamine neurotransmitter, serotonin 249 has shown the ability to expand HSCs at near physiological concentration $(200 \mathrm{nM}) .{ }^{170}$ Despite their encouraging results, the modes of action by which chelated copper and serotonin 249 operate remain unclear. Schultz and co-workers have also identified the synthetic adenine derivative stremregenin1 (SR1) $\mathbf{2 5 0}$ as a promoter of HSC expansion and discovered that it functions through antagonism of the aryl hydrocarbon receptor (AhR). ${ }^{171}$ More recently, the pyrimidoindole derivative UM 171251 has shown similar HSC self-renewal capabilities by upregulating the genes associated with human LT-HSC selfrenewal. ${ }^{172}$

chlamydocin 245

TEPA 248

serotonin 249

trichostatin A 246

5-azacytidine 247

UM 171251

Figure 2.1. Small-molecule modulators of HSC self-renewal.
In regards to HSC differentiation, a class of naphthyridinones $\mathbf{2 5 2}$ have demonstrated the ability to dose-dependently increase megakaryocyte differentiation (Figure 2.2). ${ }^{173}$ This may help alleviate some of the problems associated with intensive high-dose chemotherapy by replenishing low platelet counts. The plant-derived natural product euphohelioscopin A (253) has also been reported to selectively differentiate $\mathrm{CD} 34^{+}$cells down the granulocyte/monocytic lineage by activating protein kinase $\mathrm{C}(\mathrm{PKC}) .{ }^{174}$ These insights may facilitate the application of stem cell therapies aimed at various myeloid dysfunctions. The ability to chemically control stem cell fate with small molecules is still in its infancy but seminal research has set the stage for the advancement of regenerative science and promising therapeutic endeavors.

naphthyridinones 252

euphohelioscopin A (253)

Figure 2.2. Small-molecule modulators of HSC differentiation.

Despite the widespread use of natural products in medicinal research their impact on stem cells has been relatively unexplored (Figure 2.3). The induction of macrophage differentiation by phorbol esters 254, the aforementioned use of euphohelioscopin A (253) to induce granulocyte differentiation, and the recent report describing the ex vivo expansion of HSCs with the histone acetyltransferase inhibitor, garcinol (255) lend credence to the usefulness of natural products as tools for stem cell biology. ${ }^{174-176}$

phorbol esters 254
garcinol (255)
Figure 2.3. Natural product modulators of HSCs.
Although limited success involving secreted factors ${ }^{177,178}$ and small drug-like molecules ${ }^{171,179}$ have been reported, the in vitro expansion of HSCs remains a long standing problem in regenerative medicine. In an attempt to find a solution to this exhaustion phenomenon Schultz and co-workers conducted an unbiased imaged-based screen using primary human CD34 ${ }^{+}$cells to identify leads that could maintain or selectively differentiate HSCs. After an extensive screen of a Novartis library containing 704 pure natural products from microbial and plant origin the compound eupalinilide E (256) was identified as a promising lead (Figure 2.4). ${ }^{180}$

Figure 2.4. Structure of eupalinilide E (256).

The plant-derived natural product was discovered to promote the ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs) as well as hinder the in vitro development of erythrocytes. Furthermore, this activity was additive in the presence of AhR antagonists, which have previously been shown to expand HSCs and are currently in clinical development. ${ }^{171,181}$ Therefore the utilization of eupalinilide E (256) may be a valid tool for probing the mechanisms of hematopoiesis and improving the ex vivo production of progenitors for therapeutic use.

These results were obtained from the flow cytometric analyses of various assays in which the resultant mixture of $\mathrm{CD} 34^{+}$and differentiated cells were quantified in terms of the numbers and percentages of HSCs, HSPCs, and lineage-committed cells based on their immunophenotypes. Long-term cultures incubated with 600 nM eupalinilide $\mathrm{E}(\mathbf{2 5 6})\left(\mathrm{EC}_{50}=210\right.$ $\mathrm{nM})$ revealed significant growth and higher maintained percentages of $\mathrm{CD} 34^{+}$cells, especially in cord blood experiments which demonstrated a 45 -fold increase over the course of 45 days. In addition, eupalinilide $\mathrm{E}(\mathbf{2 5 6})(600 \mathrm{nM})$ treated cells also showed slower proliferation in the presence of differentiation-inducing medium that contained erythropoietin (EPO), granulocytemacrophage colony stimulating factor (GMCSF), granulocyte colony stimulating factor (GCSF), and interleukin-3 (IL3). Based on their observations Schultz and co-workers concluded that eupalinilide E (256) may promote the expansion of an early hematopoietic progenitor and also inhibits differentiation down the erythrocyte lineage.

Schultz realized that the inhibition of NF-кB signaling by cysteine residue alkylation in the NF-кB DNA-binding domain by several sesquiterpenes was well documented and may explain the beneficial effects caused by eupalinilide E (256) (Figure 2.5). ${ }^{182,183}$ Unfortunately, the four other sesquiterpene lactones included in the Novartis library, some of which were previously characterized as NF-кB inhibitors did not yield similar results. This suggests that the activity of eupalinilide E (256) on HSPC differentiation is mediated by an alternative pathway.

angeloyl-cumambrin B analog 257

hyrcanin (259)

cumambrin A (258)

chlorojanerin (260)

Figure 2.5. Sesquiterpene lactones included in imaged-based screen.
Since AhR antagonism also promotes HSPC expansion, eupalinide E (256) was subjected to an AhR antagonism assay but failed to give a positive response. ${ }^{171,181}$ Interestingly, the combined treatment of eupalinilide E (256) and the AhR antagonist SR1 250 had an additive effect on CD34 ${ }^{+}$cell expansion. Thus supporting the notion that eupalinilide E (256) affects HSPC differentiation by a new distinct mechanism. ${ }^{180}$

Although the mode of action and biological target of eupalinilide E (256) remains unknown, this work highlights the ability of natural products to modulate stem cell biology. Importantly, Schultz comments that, "the lack of synthetic routes to eupalinilide E hinders the generation of affinity probes for target identification." Thus making eupalinilide E (256) an attractive target for total synthesis, a new chemical entity that possesses potential in regenerative medicine.

Eupalinilide E (256) was isolated from the plant Eupatorium lindleyanum DC. and identified as a potent cytotoxic compound against A-549 tumor cell lines. ${ }^{184}$ Following conventional NMR analysis, the natural product was characterized as a guaianolide sesquiterpene structurally highlighted by the inclusion of an allylic alcohol on the cyclopentane ring, a chlorohydrin functionality, and a C8 tigloyl ester. Guaianolides encompass a large subset of naturally occurring sesquiterpene lactones that are easily recognized by their 5,7,5-tricyclic framework and γ-butyrolactone moiety. The core structure and etymology of guaianolides is derived from the cis-fused 5,7-bicyclic hydroazulene natural product guaiane (261) (Figure 2.6).

The hydroazulene core for the most part is always cis-fused in the guaianolide skeleton 262, whereas approximately 85% of all known guaianolides contain a trans annulated γ-butyrolactone ring. ${ }^{185}$

guaiane (261)

Figure 2.6. Guaianolide framework.
The guaianolide class of natural products displays an array of biological activity, which is often attributed to their interaction with biological nucleophiles such as cysteine or thiolcontaining enzymes (Scheme 2.1). This is especially the case in the numerous guaianolides that possess an α-methylene γ-butyrolactone. The auxiliary substitution pattern of the guaianolide is consequently believed to determine the specificity of the resulting biological activity. ${ }^{186}$

Scheme 2.1. Guaianolide participation in Michael additions.
Guaianolide biosynthesis has been well documented and begins with the common terpene mevalonate (MVA) pathway to generate the quintessential isoprene building blocks isopentenyl pyrophosphate (IPP, 269) and γ, γ-dimethylallyl pyrophosphate (DMAPP, 270; Scheme 2.2). ${ }^{187-}$ ${ }^{190}$ The assembly of three acetyl-CoA 9 molecules takes place within the cytosol through a Claisen condensation and aldol reaction sequence to provide β-hydroxy- β-methylglutaryl-CoA (HMG-CoA, 266). Subsequent NADPH $+\mathrm{H}^{+}$reduction releases mevalonic acid (MVA, 267) for ATP activation to afford pyrophosphomevalonic acid 268. Decarboxylation and elimination leads to IPP 269, with further olefin isomerization giving rise to DMAPP 270.

Scheme 2.2. MVA pathway for the biosynthesis of IPP 269 and DMAPP 270.
Construction of the terpene backbone proceeds upon prenyl transferase mediated head-totail connection of IPP 269 and its isomer DMAPP 270 (Scheme 2.3). Initial ionization of DMAPP 270 provides allylic cation 271, to which regioselective olefin addition of IPP 269 can occur to form tertiary cation 272. Stereoselective loss of a proton installs a new trans olefin to furnish geranyl pyrophosphate (GPP, 273). A single iteration of the IPP 269 electrophilic addition provides farnesyl pyrophosphate (FPP, 275), the C_{15} guaianolide precursor.

Scheme 2.3. Biosynthesis of FPP 275.
Cyclization of FPP 275 produces (+)-germacrene A (276), a 10-membered ring consisting of two internal (E)-alkenes that originate from the olefin configuration inherent to FPP 275 (Scheme 2.4). (+)-Germacrene A-hydroxylase oxidizes the isopropenyl side chain to primary alcohol 277 prior to further oxidation by $\operatorname{NAD}(\mathrm{P})^{+}$-dependent dehydrogenases to give germacrene acid (279). Subsequent C6 hydroxylation and lactonization provides (+)-costunolide (281). ${ }^{191-194}$

Scheme 2.4. Biosynthesis of (+)-costunolide (281).
Enzymatic epoxidation affords parthenolide (282), a germacranolide geared by ring strain toward trans-annular cyclization to generate the guaianolide framework (Scheme 2.5). Alternatively, the enzymatic C3 hydroxylation of (+)-costunolide (281) and subsequent dehydration/cyclization sequence to give the guaianolide core has also been proposed. ${ }^{195}$ Additional oxidative manipulation to the $5,7,5$-membered ring system ultimately leads to the various functionality patterns observed amongst the diverse guaianolide natural product class.

Scheme 2.5. Biosynthesis of guaianolides 284.
Despite the existence of several synthetic strategies toward monocyclic γ-butyrolactone natural products there are considerably fewer approaches towards the contruction of bi- and tricyclic γ-butryolactone frameworks such as the guaianolides (Figure 2.7). Therefore it is important to highlight some of the synthetic achievements and strategies in guaianolide natural
product total synthesis. Although eupalinilide E (256) has not been previously synthesized it is included for structural comparison.

thapsigargin (289)

compressanolide (287)

(+)-absinthin (290)

(+)-cladanthiolide (288)

(-)-8-epigrosheimin (291)

Figure 2.7. Representative guaianolide natural products achieved in total synthesis.
Racemic total syntheses of guaianolide natural products began to surface in the 1980s and were focused on the elaboration of 7-membered rings (Scheme 2.6). En route to (\pm)compressanolide (287) and (\pm)-estafiatin (302). Vandewalle developed a novel approach toward the 5,7-hydroazulene core through the oxidative diol cleavage of 5,4,5-tricycle (\pm)-295. ${ }^{196-199} \mathrm{An}$ efficient protocol starting with the photochemical [2+2] cycloaddition between 1,2bis[trimethylsiloxy]cyclopentene 293 and cyclopentenone 292 generated 5,4,5-tricycle (\pm)-294 as a single diastereomer. Subsequent Wittig reaction and TMS removal primed diol $(\pm) \mathbf{- 2 9 5}$ for ring expansion by lead(IV) acetate mediated oxidative cleavage to give key intermediate (\pm)-296. Shea was also capable of synthesizing the important 5,7-hydroazulene intermediate (\pm)-296 using a bridged-to-fused-ring-interconversion strategy. ${ }^{200} \mathrm{An}$ intramolecular Diels-Alder reaction of triene 297 gave rise to bridged ring (\pm)-298. After carbonyl reduction and alcohol protection ozonolysis disconnected the bridgehead to give $(\pm) \mathbf{2 9 9}$, which set the stage for an intramolecular aldol condensation to afford Vandewalle's intermediate $(\pm)-296$ following deprotection and oxidation.

Scheme 2.6. Synthesis of key intermediate (\pm)-296.
The racemic total syntheses of (\pm)-compressanolide (287) and (\pm)-estafiatin (302) were completed upon further functional group manipulation of 5,7-hydroazulene (\pm)-296 (Scheme 2.7). It is of interest to note the strategy to use the addition of a prenyl group as a latent surrogate for the lactone by way of ozonolysis, Jones oxidation, and intramolecular esterification.

Scheme 2.7. Synthesis of (\pm)-compressanolide (287) and (\pm)-estafiatin (302).
Adopting Vandewalle's approach toward guaianolides through the initial construction of the hydroazulene core Rigby and co-workers took advantage of the 7-membered ring already present in commercially available 2,4,6-cycloheptatrienone (tropone, 303) (Scheme 2.8). ${ }^{201,202}$ Utilizing the appropriate nucleophiles 1,8 -addition afforded alkylated species (\pm) - $\mathbf{3 0 4}$ and (\pm) 306, which were further elaborated to reactive aldehyde (\pm) - 305 and diazoketone (\pm)-307, respectively.

Scheme 2.8. Functionalization of tropone 303.
Lewis acid promoted cyclization of $(\pm)-305$ followed by reductive opening of the oxo bridge generated 5,7-hydroazulene precursor (\pm)-309 from which (\pm)-dehydrocostus lactone (310) and (\pm)-estafiatin (302) could be accessed (Scheme 2.9). Alternatively, intramolecular cyclopropanation of (\pm) - $\mathbf{3 0 7}$ generated tricycle (\pm)-311, which was opened by a Lewis acid mediated homoconjugate addition to give intermediate (\pm)-312 for the synthesis of (\pm) grosshemin (313).

Scheme 2.9. Synthesis of (\pm)-dehydrocostus lactone (310), (\pm)-estafiatin (302), and (\pm)grosshemin (313).

In a similar strategy, Deprés took advantage of the readily available tropylium cation 314 (Scheme 2.10). ${ }^{203}$ Methylation and regioselective [2+2] cycloaddition provided dichloro intermediate (\pm)-315 which underwent ring expansion to form hydroazulene intermediate (\pm) 316. Subsequent 1,6 -conjugate addition of an (E)-ketene acetal provided a handle for trans
lactone formation. Further manipulation provided guaianolide intermediate (\pm)-318 and eventually the 6,12-guaianolide natural product (\pm)-geigerin (319).

Scheme 2.10. Synthesis of (\pm)-geigerin (319).
Semi-synthetic and biosynthetic efforts have led to a few guaianolide enantioselective total syntheses. It was discovered that photoirradiation of the eudesmanolide $(-)$ - α-santonin (320) in acetic acid provided 5,7,5-tricycle 321 (Scheme 2.11). ${ }^{204,205}$ With an expedient entry into the guaianolide core estafiatin (302) was synthesized once again. ${ }^{206-208}$ Zhang and Lei took advantage of this reactivity en route to their biomimetic dimerizations to synthesize $(+)$-absinthin (290) and (+)-ainsliadimer A (326), respectively. ${ }^{209,210}$ Although analogous photoreactions involving derivatives and $(-)$ - α-santonin like compounds have been reported they are quite limited in scope and utility. ${ }^{211-213}$

$(-)-\alpha-$ santonin (320)

321 $\downarrow \left\lvert\, \begin{gathered}13 \% \\ 10 \text {-steps }\end{gathered}\right.$

324

325

(+)-ainsliadimer A (326)

Scheme 2.11. Rearrangement of (-)- α-santonin (320) towards (+)-absinthin (290) and (+)ainsliadimer A (326).

Biomimetic syntheses of the guaianolide scaffold have also been accomplished from germacranolide natural products such as the proposed biosynthetic precursor parthenolide (282) (Scheme 2.12). Zhang and Chen were able to achieve a p-toluenesulfonic acid induced rearrangement of parthenolide (282) to an advanced intermediate that required only two additional steps to complete the total synthesis of arglabin (328). ${ }^{214}$ Similar to the eudesmanolide rearrangements modified and germacrolide oriented scaffold rearrangements have been reported but are prone to complex product mixtures and poor yields. ${ }^{215-226}$ Despite offering advanced intermediates in as little as one step the use of complex natural product starting materials limit the opportunity for diversity oriented synthesis and renders these strategies useful to only a small subset of guaianolide oxidation patterns.

Scheme 2.12. Synthesis of arglabin (328) from parthenolide (282).
As guaianolides became popular targets for total synthesis innovative strategies arose for their enantioselective syntheses from simple starting materials. Reiser utilized basic furan derivatives to construct two important synthons for the total synthesis of (+)-arglabin (326) (Scheme 2.13). ${ }^{227,228}$ CuI-catalyzed asymmetric cyclopropanation of methyl-2-furoate 330 followed by ozonolysis provided cyclopropylcarbaldehyde 332. Furfuryl alcohol 329 on the other hand generated allylsilane $\mathbf{3 3 1}$ prior to enzymatic resolution and straightforward functional group manipulations. These two building blocks were combined with high stereocontrol dictated by the Felkin-Ahn paradigm. Base promoted saponification of the more labile oxalic ester in $\mathbf{3 3 3}$ and subsequent retroaldol-lactonization afforded lactone 334. Hosomi-Sakurai allylation and acetylation provided ring closing metathesis (RCM) precursor 335. Grubbs II catalyst efficiently provided the guaianolide core, which was eventually transformed into (+)-arglabin (328).

Scheme 2.13. Synthesis of (+)-arglabin (328).

Lee and co-workers developed a concise four-step synthesis of key cyclopentane intermediate 339 from (R)-carvone 337 (Scheme 2.14). ${ }^{229}$ This was an attractive approach because the stereochemical information contained by the carvone precursor could provide substrate control for subsequent stereoselective reactions. Chlorohydrin 328 was synthesized in three steps from (R)-carvone 337 setting the stage for a stereoselective Favoskii reaarangement to furnish highly substituted cyclopentanecarboxylate 339. This approach was adopted by several research groups and led to several guaianolide total syntheses.

Scheme 2.14. Synthesis of cyclopentanecarboxylate 339.
Lee successfully elaborated cyclopentane $\mathbf{3 3 9}$ to bromoacetal $\mathbf{3 4 0}$ which underwent a smooth radical cyclization intiated by azobisisobutyronitrile and tributyltin hydride to provide protected lactone 341 in quantitative yield and perfect diastereoselectivity (Scheme 2.15). The synthesis of (+)-clandantholide (288) was subsequently obtained. ${ }^{230}$ In a parallel manner Lee synthesized (-)-estafiatin (302) from α-chloro species 342 using oxidative radical conditions. Hall was able to use Lee's work combined with a unique tandem allyboration/lactonization reaction sequence to give RCM precursor 347 which resulted in the total synthesis of (+)chinensiolide B (348). ${ }^{231}$

Scheme 2.15. Synthesis of (+)-clandantholide (288), (-)-estafiatin (302), and (+)-chinensiolide B (347).

Utilizing Lee's strategy Ley and co-workers began with (S)-carvone 337 in their synthesis of several members of the thapsigargin family (Scheme 2.16). Upon optimization of several stereoselective addition reactions advanced intermediate $\mathbf{3 4 9}$ was obtained and subjected to ring closing metathesis to forge hydroazulene core 350. Following an array of synthetic manipulations Ley was able to arrive at five stereochemically complex and heavily oxygenated thapsigargin natural products. ${ }^{232-235}$

Scheme 2.16. Synthesis of thapsigargin (289).

Interestingly, in Xu's synthesis of (-)-8-epigrosheimin (291) the closure of the 7membered ring was a diastereoselective event that not only delivered the exocyclic olefin but also the C8 hydroxylated functionality (Scheme 2.17). The strategy involved the initial construction of the butyrolactone prior to ring closure. In the first synthetic route carvone derived cyclopentane aldehyde 351 was subjected to a Mukaiyama aldol addition to install the latent butyrolactone. An aldehyde-ene reaction promoted by dichlorotitanium diisopropoxide smoothly provided the tricyclic core 355 in excellent yield. ${ }^{326}$ In a second-generation synthesis a Barbier reaction was cleverly devised to install the latent butyrolactone in less steps. Subsequent functional group manipulations provided the natural product. ${ }^{237}$

351

353

354

358

355
3 -steps
66%

(-)-8-epigrosheimin (291)

Scheme 2.17. Synthesis of (-)-8-epigrosheimin (291).
In an effort to devise a synthetic strategy for the construction of eupalinilide E (256) we realized that retrosynthetic analysis could trace the natural product back to previously synthesized (+)-8-epigrosheimin (291) (Scheme 2.18). ${ }^{236,237}$ Besides chlorohydrin formation from
the requisite exocyclic olefin and tigloyl ester formation at the C8 hydroxyl group the key transformation would entail the conversion of the cyclopentanone to the allylic alcohol present in eupalinilide E (256). Fortunately, there was already precedence for such a transformation in the guaianolide natural product literature.

Scheme 2.18. Retrosynthetic analysis of eupalinilide E (256).
One method relied on a Rubottom oxidation to install the C 4 hydroxyl group followed by a Shapiro reaction to transform the ketone into the desired trisubstituted olefin. ${ }^{230}$ According to this report the undesired diastereomer in our case may arise; however, if this event is unavoidable a simple inversion protocol could easily rectify the problem. Alternatively, elimination of the oxygenated functionality at C 3 could afford the trisubstituted olefin $\mathbf{3 6 1}$ prior to allylic oxidation setting the stage for a diastereoselective reduction to furnish the allylic alcohol. ${ }^{206,230}$

Although synthetic reports detail the synthesis of biologically active (-)-8-epigrosheimin (291) the authors comment that they also synthesized the natural enantiomer from (R)-carvone 337 (Scheme 2.19). ${ }^{237}$ This is a convenient route that sets the stereocenters associated with the cis hydroazulene core, trans bicyclic butyrolactone junction, and C8 hydroxyl group of eupalinilide E (256). Starting from (R)-carvone 337 a hydrogen peroxide mediated epoxidation followed by lithium chloride induced ring opening and tetrahydropyran protection generated precursor 338. A stereoeselective Favorskii rearrangement would ensue to afford cyclopentane $\mathbf{3 3 9}$ that contains
the stereochemical information necessary for the cis hydroazulene assembly. Subsequent protecting group and oxidation state manipulations provided key aldehyde $\mathbf{3 5 6}$ primed for a stereo- and regioselective allylation addition. Zinc promoted Barbier coupling provided α methylene γ-butyrolactone 358 that underwent a base induced intramolecular translactonization to furnish primary alcohol 362. Finally, a Dess-Martin oxidation and aldehyde-ene cyclization encouraged by boron trifluoride diethyl etherate provided (+)-8-epigrosheimin (291).

Scheme 2.19. Synthesis of (+)-8-epigrosheimin (291).
Initial synthetic studies quickly revealed that the late-stage manipulation of $(+)-8-$ epigrosheimin (291) would be difficult and tedious so it was decided that the early construction of the allylic alcohol bearing cyclopentane would be more prudent. Unfortunately, attempts to transform Favorskii product 339 into the desired allylic alcohol were plagued with complications surrounding poor yields and scalability as well as problems associated with epimerization and isomerization.

While investigating alternative carvone derived rearrangements a solution presented itself in the form of a cascade sequence capable of transforming tribomide 364 into bicyclic lactone 368 (Scheme 2.20). This underutilized transformation was discovered by Wallach in 1899 and
was briefly studied by Wolinsky some 60 years later. ${ }^{238-242}$ The reaction presumably occurs through an initial Favorskii reaction in which the resulting carbanion 365 proceeds to eliminate bromide providing olefin intermediate 366. Subsequent engagement of the tertiary bromide by the amide gives bicyclic imidate 367 that upon hydrolysis affords bicyclic lactone 368, an attractive intermediate that retains the stereochemical information required moving forward and possesses the trisubstituted olefin that had previously been a synthetic challenge.

Scheme 2.20. Tribromide 364 Favorskii rearrangement.
Consequently (R)-carvone 337 was treated with dry hydrobromic acid to selectively hydrobrominate the terminal olefin prior to its reaction with molecular bromine to furnish tribromide 364 (Scheme 2.21). The Favorskii precursor $\mathbf{3 6 4}$ was then exposed to isopropyl amine and allowed to stir overnight to provide bicyclic imidate $\mathbf{3 6 6}$ that gave bicyclic lactone $\mathbf{3 6 8}$ following acetic acid assisted hydrolysis. Due to the constant shifting between acidic and basic media in highly volatile solvents such as diethyl ether and isopropyl amine these reactions were conducted slowly and with extreme caution in order to avoid violent exothermic reactions. Nonetheless this convenient four-step sequence was routinely run on 100 gram scale to provide pure bicyclic lactone $\mathbf{3 6 8}$ following recrystallization from hexanes as a light-amber crystalline solid in a satisfying 50% overall yield.

Scheme 2.21. Synthesis of bicyclic lactone 368.
The rigid and durable structure of bicyclic lactone $\mathbf{3 6 8}$ seemed like a good candidate for allylic oxidation and indeed Mori had already shown the validity of this reaction (Scheme
2.22). ${ }^{243-245}$ In the presence of a large excess of chromium trioxide and 3,5-dimethylpyrazole in methylene chloride at ambient temperature bicyclic lactone 368 was converted to enone 370. Despite the low yield and painstaking effort to purify enone $\mathbf{3 7 0}$ by multiple iterations of column chromatography the product could still be produced as a clear crystalline solid on multigram scale.

Standard Luche reduction conditions followed by protection using freshly prepared p methoxybenzyl 2,2,2-trichloroacetamide afforded PMB alcohol $\mathbf{3 7 1}$ as a single diastereomer. ${ }^{246,247}$ Lithium aluminum hydride was then used to open the bicycle followed by monoacylation to provide tertiary alcohol 372. Subsequent elimination utilizing the Burgess reagent gave the desired terminal olefin $\mathbf{3 7 3}$ as the only detectable product. ${ }^{248}$ Unfortunately, significant decomposition as evidenced by the expulsion of p-methoxybenzyl alcohol lead to poor yields. Short reaction times (2 minutes) were critical in avoiding the complete deterioration of material. Nevertheless pushing forward through a deacylation and Dess-Martin oxidation furnished key aldehyde $\mathbf{3 7 4}$ for the intended Barbier coupling. ${ }^{249}$

Scheme 2.22. Synthesis of key aldehyde 374.
To our dismay the Barbier coupling of key aldehyde $\mathbf{3 7 4}$ with bromolactone $\mathbf{3 5 7}$ did not proceed as it had before (Scheme 2.23). In fact no level of reactivity could be realized even after screening various conditions. Since the Barbier coupling was hypothesized to occur through a six-membered transition state we believed that the steric load of our substrate was the main
culprit. A series of six aldehydes 276-281 were synthesized with varying degrees of unsaturation and oxygenation to see if the Barbier coupling could be achieved. None were successful and it was concluded that an adjacent sp^{2} carbon center or a syn methyl relationship prohibits reactivity.

Scheme 2.23. Failed Barbier coupling.
In order to circumvent the difficulties associated with the Barbier reaction we planned to elaborate aldehyde 374 in hopes of employing a radical or transition metal catalyzed transformation to furnish the requisite lactone (Scheme 2.24). To that end allylic alcohol $\mathbf{3 8 2}$ was prepared by treating aldehyde 374 with vinyl magnesium bromide. The goal was to install a propargyl ester that upon enyne cyclization would reveal the α-methylene γ-butyrolactone directly. Unfortunately, allylic alcohol $\mathbf{3 8 2}$ possessed very limited reactivity and despite extensive efforts the only viable reaction that was achieved was its propargylation using potassium hydride with the assistance of 18 -crown-6 to furnish enyne $\mathbf{3 8 3}$. We were confident that once cyclized the activated methylene position would be poised for allylic oxidation and that the lactone could be obtained later on in the synthesis.

With enyne $\mathbf{3 8 3}$ in hand we needed a cyclization capable of installing functionality that could be transformed into the key aldehyde-ene precursor. A suitable transformation was
realized by adapting a borylative enyne cyclization reported by our group that was originally developed for the construction of elaborated cyclopentanes. ${ }^{250,251}$ Upon treatment of enyne 383 with palladium(II) acetate in the presence of bis(pinacolato)diboron and an equivalent of methanol in toluene at $50^{\circ} \mathrm{C}$ the desired cyclization took place in which a five-membered cyclic ether was constructed as well as a terminal boronate ester which gave alcohol $\mathbf{3 8 4}$ following oxidative work-up.

Subsequent Swern oxidation provided the key aldehyde that underwent ring closure when treated with diethylaluminum chloride in methylene chloride at $-78^{\circ} \mathrm{C}$ to afford $5,7,5$-tricycle 385 in 53% overall yield as a single diastereomer. ${ }^{237,252}$ In order to test the validity of our hypothesized lactone formation by way of allylic oxidation the primary alcohol 385 was protected as an acetate. At first various attempts to obtain the desired allylic oxidation only lead to decomposition of the starting material. Eventually it was discovered that when oxidized using Jone's conditions the lactone was formed with concomitant deprotection of the p-methoxybenzyl group followed by oxidation to the resultant enone to give guaianolide 386. ${ }^{253}$

Scheme 2.24. Synthesis of guaianolide 386.
Although it seemed reasonable that the synthesis of eupalinilide E (256) could be obtained from guaianolide 386 in due course, the lengthy step count and sequence of poor yielding reactions influenced our attempt to streamline our synthetic route to provide more material for end game chemistry (Scheme 2.25). Instead of vinyl addition on discrete aldehyde 374 we believed that the installation of this group directly from a lactol would be much more
direct. Therefore PMB bicycle 371 was treated with diisobutylaluminum hydride prior to the addition of vinyl magnesium bromide at elevated temperature to give diol 387. Propargylation of this substrate was more facile than before and could be achieved with sodium hydride. Interestingly, attempts to do the boralytive enyne cyclization on this substrate only returned starting material. The use of Burgess reagent encountered similar problems as before but gave similar yields in providing substrate 389. ${ }^{248}$ Proceeding through the borylative enyne/oxidation sequence and Swern oxidation/aldehyde-ene transformation resulted in 5,7,5-tricycle 391 as a single diastereomer that did not match the spectral data for 5,7,5-tricycle 386. ${ }^{237,250-252}$

Scheme 2.25. Attempt to streamline synthetic route.
Once again protection of primary alcohol $\mathbf{3 9 1}$ as its acetate prior to Jone's oxidation gave an analogous compound 391 possessing a lactone and enone that was also different from guaianolide 386 procured earlier. ${ }^{253}$ Acylation of alcohol 391 with 3,5-dinitrobenzoylchloride provided dinitrobenzoate 394 as a highly crystalline solid. X-ray analysis unambiguously identified the structure as having the desired atomic connectivity with inverted stereochemistry at three of the stereocenters. This result suggests that the vinyl addition to the lactol provided the allylic alcohol resulting from chelation control whereas the addition to discrete aldehyde $\mathbf{3 7 4}$ followed the Felkin-Anh paradigm. ${ }^{254-257}$

Scheme 2.26. Synthesis of incorrect guaianolide diastereomer 394.
With experience concerning allylic oxidation on the guaianolide system in hand it was hypothesized that a late-stage dual allylic oxidation would significantly improve our synthetic route. We believed that by combining two inherently poor yielding reactions into a single transformation performed toward the end of the synthesis we could significantly facilitate the ability to acquire late-stage material. Furthermore, complications regarding the decomposition of PMB alcohol substrates would be avoided.

Therefore bicyclic lactone 368 was cleaved with lithium aluminum hydride prior to acetate pyrolysis to give terminal olefin 397 (Scheme 2.27). The acetate pyrolysis reaction was initially unpredictable and gave variable mixtures of terminal and tetrasubstituted olefins ranging from $2: 1$ to complete conversion to tetrasubstituted olefin 396. The intermediate diaceate 395 was also isolated on occasssion. However, simply adding activated crushed mol sieves to the reaction lead to a consistent 91% yield with a respectable $2: 1$ ratio in favor of terminal olefin 397. Separation of these two compounds was extremely difficult but mitigated when the mixture was deacylated prior to separation. A subsequent Dess-Martin oxidation afforded simplfied aldehyde 398 devoid of the allylic alcohol. ${ }^{249}$

In an attempt to improve the propargylation step we decided to install the vinyl group with vinyl lithium instead of the previously used vinyl magnesium bromide. We thought that we
could take advantage of the in situ generated nucleophilic lithium alkoxide and achieve propargylation in a single reaction vessel. The in situ generation of vinyl lithium from tetravinyltin and n-butyllithium smoothly provided the allylic alkoxide within minutes. At which point the lithium cation was sequestered with freshly distilled hexamethylphosphoramide prior to the introduction of propargyl bromide to afford the desired enyne substrate. Following a quantitative trimethylsilyl protection of the terminal alkyne enyne precursor $\mathbf{4 0 0}$ was obtained in a gratifying 80% yield over three steps. ${ }^{258}$ The protected alkyne would immediately pay dividends as it increased the yield of the enyne cyclization and would also serve to protect the reactive α-methylene- γ-butyrolactone moiety.

Scheme 2.27. Synthesis of enyne precursor 400.
With our new enyne precursor 400 in hand the enyne cyclization proceeded in 62% yield which was a two-fold increase over previous substrates (Scheme 2.28). ${ }^{250,251}$ Furthermore, the product was highly crystalline and x-ray analysis unambiguously confirmed the Felkin-Anh addition from discrete aldehyde 398 and that the enyne cyclization provided the desired trans cyclic ether. Even more impressive was the quantitative yield acquired following the Swern oxidation and diethylaluminum chloride induced aldehyde-ene cyclization to give carbocycle 402. ${ }^{237,252}$

At this point we were convinced that we could finish the synthesis of eupalinilide E (256) and confirm stereochemistry by analysis of the final product. The C8 tigloyl ester was installed using standard Yamaguchi conditions. ${ }^{259}$ Exposure of 5,7,5-tricycle 402 to a premixed solution of
tiglic acid and 2,4,6-trichlorobenzyol chloride in the presence of base afforded tiglic ester $\mathbf{4 0 3}$ in good yield.

To our delight treatment of carbocycle 403 with excess chromium trioxide and 3,5dimethylpyrazole at $-20^{\circ} \mathrm{C}$ in methylene chloride gave the corresponding enone/butyrolactone product 404 while leaving the tigloyl group untouched. ${ }^{243-245}$ However, the unoptimized reaction only gave a 30% isolated yield with nothing else available for recovery. Despite the low yield this reaction could be performed on gram scale to consistently provide hundreds of miligrams of the desired guaianolide 404. It is important to note that this yield is on par with other cyclopentene allylic oxidations on guaianolide scaffolds and in our case we also achieve allylic oxidation to form the lactone. ${ }^{206}$ With guaianolide scaffold 404 possessing the protected α -methylene- γ-butyrolactone moiety in hand a straightforward Luche reduction furnished allylic alcohol 405 as a single diastereomer in 92% yield. ${ }^{246}$ In the absence of the trimethylsilyl protecting group the selective reduction of the enone could not be achieved.

Scheme 2.28. Synthesis of allylic alcohol 405.
While the fluoride-induced cleavage of Si- $\mathrm{C}_{\text {sp }}$ bonds in silyl acetylenes is common practice in organic synthesis, the analogous cleavage of $\mathrm{Si}_{\mathrm{Cp} 2}$ bonds in vinyl silanes is quite
rare. ${ }^{260}$ Consequently, the treatment of vinyl silane $\mathbf{4 0 5}$ with tetrabutylammonium fluoride had no effect. An alternative way to remove vinyl silanes involves acid promoted protodesilylation. This reaction proceeds through the initial protonation of the olefin to give a carbocation β to the silicon atom prior to elimination. In the presence of trifluoroacetic acid vinyl silane $\mathbf{4 0 5}$ readily decomposed. This is not surprising given that under the aforementioned pathway the resultant carbocation would also be located α to a carbonyl group, which is highly unfavorable.

In order to address these shortcomings Bachi disclosed a strategy for the removal of vinyl silanes en route to α-methylene- γ-butyrolactones (Scheme 2.29). ${ }^{261-263}$ Initial conjugate addition of thiophenol leads to a $\mathrm{Si}^{-} \mathrm{C}_{\mathrm{sp} 3}$ bond that is readily cleaved by a fluoride source to generate a thioadduct 408. Subsequent oxidation to the sulfoxide $\mathbf{4 0 9}$ facilitates elimination and the desired α, β-unsaturated lactone 410 is obtained. Upon further investigation Bachi discovered that the expulsion of thiophenol occurred in some capacity during the desilylation event. In order to prevent displaced thiophenol from adding back in, an excess of methyl acrylate was added to sequester the nucleophile and allow for the tandem desilylation/sulfide elimination to take place in a single operation.

Scheme 2.29. Bachi's desilylation strategy.

Although Bachi's conditions for the Michael addition of thiophenol did not work on our system, a modified procedure using sodium hydride afforded thio silane 414 in good yield (Scheme 2.30). It is noteworthy that this reaction was sluggish and required at least 48 hours to reach full conversion. Initial attempts to implement the tandem desilylation/sulfide elimination sequence seemed promising, however despite extensive efforts there was always an appreciable quantity of thioadduct 416 in the reaction mixture. A respectable 53% yield of the desired α -methylene- γ-butyrolactone 415 in greater than 90% purity could be obtained but the complete removal of the thioadduct $\mathbf{4 1 6}$ impurity was quite difficult. This was problematic because even trace amounts of thioadduct 416 significantly hindered the success of the following epoxidation reaction.

This minor setback was easily navigated by performing the desired sequence of transformations in a more traditional stepwise fashion. Treatment of thio silane 414 with tetrabutylammonium fluoride in tetrahydrofuran uneventfully furnished thioadduct 416. Subsequent oxidation to the corresponding sulfoxide was carried out with sodium periodate prior to the 1,8-diazabicycloundec-7-ene induced elimination to afford pure α-methylene- γ butyrolactone 415 in 70\% yield over four-steps as a white solid.

Scheme 2.30. Vinyl TMS deprotection.
All that remained to finish the total synthesis of eupalinilide E (256) was the installation of the chlorohydrin. Exposure of guaianolide 415 to m-chloroperoxybenzoic acid did not affect the α-methylene- γ-butyrolactone but it was not selective between the exocyclic olefin and allylic alcohol giving rise to a mixture of products. We hypothesized that the use of a bulky epoxidizing agent may provide the selectivity needed to selectively oxidize the exocyclic olefin. This was realized when the Shi catalyst afforded desired epoxide 418. ${ }^{264}$ Subsequent epoxide opening with lithium chloride in the presence of dry hydrochloric acid cleanly revealed the chlorohydrin thus completing the first enantioselective total synthesis of eupalinilide E (256). ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectral analysis matched that of reported values and 2D-NMR experiments of our own added credence to the assigned structure.

Scheme 2.31. Synthesis of eupalinilide E (256).
The first enantioselective total synthesis of eupalinilide E (256) has been achieved in 20steps starting from commercially available (R)-carvone 337. Highlighted by a unique Favoskii rearrangement, boralytive enyne cyclization, aldehyde-ene cyclization, and a late-stage dual allylic oxidation a convenient route toward C8 oxygenated guaianolides has been established. Future endeavors will focus on reaction optimization to provide greater quantities of the natural product for subsequent biological testing. Ultimately, we hope to use this knowledge to synthesize affinity probes for mode of action studies to gain insight on how more potent analogs for HSC expansion could be developed.

Experimental Section

General Information
All reactions were performed in flame dried round bottom or modified Schlenk (Kjedahl shape) flasks fitted with rubber septa under a positive pressure of argon or nitrogen, unless otherwise indicated. Air- and moisture-sensitive liquids and solutions were transferred via syringe or cannula. Organic solutions were concentrated by rotary evaporation at 20 torr in a water bath heated to $40{ }^{\circ} \mathrm{C}$ unless otherwise noted. Diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$), methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, tetrahydrofuran (THF) and toluene (PhMe) were purified using a Pure-Solv MD-5 Solvent Purification System (Innovative Technology). Acetonitrile (MeCN) was purified using a Vac 103991 Solvent Purification System (Vacuum Atmospheres). Dimethoxyethane (DME) was purchased from Acros ($99+\%$, stabilized with BHT), N,N,-Dimethylformamide (DMF) was purchased from Acros (99.8\%, anhydrous), ethanol (EtOH) was purchased from Pharmco-Aaper (200 proof, absolute), and methanol (MeOH) was purchased from Sigma-Aldrich $(99.8 \%$, anhydrous). Where necessary, solvents were deoxygenated by iterative freeze-pump thaw using liquid nitrogen three times. The molarity of n-butyllithium was determined by titration against diphenylacetic acid. All other reagents were used directly from the supplier without further purification unless otherwise noted. Analytical thin-layer chromatography (TLC) was carried out using 0.2 mm commercial silica gel plates (silica gel 60, F254, EMD chemical) and visualized using a UV lamp and/or aqueous ceric ammonium molybdate (CAM) or aqueous potassium permanganate (KMnO4) stain, or ethanolic vanillin. Infrared spectra were recorded on a Nicolet 380 FTIR using neat thin film or KBr pellet technique. High-resolution mass spectra (HRMS) were recorded on a Karatos MS9 and are reported as m / z (relative intensity). Accurate masses are reported for the molecular ion $[\mathrm{M}+\mathrm{Na}]^{+},[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}]$ or $[\mathrm{M}-\mathrm{H}]^{-}$. Nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}-\mathrm{NMR}$ and $\left.{ }^{13} \mathrm{C}-\mathrm{NMR}\right)$ were recorded with a Varian Gemini $\left[\left(400 \mathrm{MHz},{ }^{1} \mathrm{H}\right.\right.$ at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 100 MHz), ($500 \mathrm{MHz},{ }^{1} \mathrm{H}$ at $500 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 125 MHz), ($600 \mathrm{MHz},{ }^{1} \mathrm{H}$ at $600 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 150 MHz$\left.)\right]$. For CDCl_{3} solutions the chemical shifts are reported as parts per million (ppm) referenced to residual protium or carbon of the solvent; $\mathrm{CHCl}_{3} \delta \mathrm{H}(7.26 \mathrm{ppm})$ and
$\mathrm{CDCl}_{3} \delta \mathrm{D}(77.0 \mathrm{ppm})$. For $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ solutions the chemical shifts are reported as parts per million (ppm) referenced to residual protium or carbon of the solvents; $\left(\mathrm{CD}_{3}\right)\left(\mathrm{CHD}_{2}\right) \mathrm{SO} \delta \mathrm{H}$ (2.50 ppm) or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} \delta \mathrm{C}(39.5 \mathrm{ppm})$. For $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ solutions the chemical shifts are reported as parts per million (ppm) referenced to residual protium or carbon of the solvents; $\left(\mathrm{CD}_{3}\right)\left(\mathrm{CHD}_{2}\right) \mathrm{CO} \delta \mathrm{H}(2.50 \mathrm{ppm})$ or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO} \delta \mathrm{C}(29.8 \mathrm{ppm})$. For $\mathrm{C}_{6} \mathrm{D}_{6}$ solutions the chemical shifts are reported as parts per million (ppm) referenced to residual protium or carbon of the solvents; $\mathrm{C}_{6} \mathrm{HDD}_{5} \delta \mathrm{H}(7.16 \mathrm{ppm})$ or $\mathrm{C}_{6} \mathrm{D}_{6} \delta \mathrm{C}(128 \mathrm{ppm})$. For $\mathrm{CD}_{3} \mathrm{OD}$ solutions the chemical shifts are reported as parts per million (ppm) referenced to residual protium or carbon of the solvents; $\mathrm{CHD}_{2} \mathrm{OD} \delta \mathrm{H}(3.31 \mathrm{ppm})$ or $\mathrm{CD}_{3} \mathrm{OD} \delta \mathrm{C}(49.0 \mathrm{ppm})$. For $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solutions the chemical shifts are reported as parts per million (ppm) referenced to residual protium or carbon of the solvents; $\mathrm{CHDCl}_{2} \delta \mathrm{H}(5.32 \mathrm{ppm})$ or $\mathrm{CD}_{2} \mathrm{Cl}_{2} \delta \mathrm{C}(53.5 \mathrm{ppm})$. Coupling constants are reported in Hertz (Hz). Data for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra are reported as follows: chemical shift (ppm, referenced to protium; $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, td $=$ triplet of doublets, $\mathrm{ddd}=$ doublet of doublet of doublets, $\mathrm{ddq}=$ doublet of doublet of quartets, $\mathrm{bs}=$ broad singlet, $\mathrm{bd}=$ broad doublet, $\mathrm{m}=$ multiplet, coupling constant (Hz), and integration $)$. Melting points were measured on a MEL-TEMP device without corrections.

(3aR,6aR)-3,3,6-trimethyl-3,3a,4,6a-tetrahydro-1H-cyclopenta[c]furan-1-one (368) ${ }^{243}$
To a stirred solution of 33% hydrobromic acid in acetic acid ($219 \mathrm{~mL}, 1.33 \mathrm{mmol}, 2.0$ equiv.) at $0{ }^{\circ} \mathrm{C}$ was slowly added a solution of R-carvone $337(104 \mathrm{~mL}, 666 \mathrm{mmol}, 1.0$ equiv.) in acetic acid $(100 \mathrm{~mL})$ dropwise over 15 minutes. After 45 minutes, the reaction mixture was poured over ice $\mathrm{H}_{2} \mathrm{O}(600 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 800 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(800 \mathrm{~mL})$, half sat. aq. $\mathrm{NaHCO}_{3}(800 \mathrm{~mL})$ and brine $(800 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give crude monobromide as an amber oil.

To a stirred solution of crude monobromide ($154 \mathrm{~g}, 666 \mathrm{mmol}, 1.0$ equiv.) in AcOH (440 $\mathrm{mL}, 1.5 \mathrm{M}$) at $23{ }^{\circ} \mathrm{C}$ in a water bath was added a solution of bromine ($41 \mathrm{~mL}, 800 \mathrm{mmol}, 1.2$ equiv.) in $\mathrm{AcOH}(70 \mathrm{~mL})$ dropwise over 1 hour. After 1.5 hours, the reaction mixture was poured over ice $\mathrm{H}_{2} \mathrm{O}(600 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 600 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(600 \mathrm{~mL})$, quarter sat. aq. $\mathrm{NaHCO}_{3}(5 \times 600 \mathrm{~mL})$ and brine $(600 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give crude tribromide $\mathbf{3 6 4}$ as an amber oil.

To a stirred solution of crude tribromide 364 (260 g , $7.32 \mathrm{~mol}, 1.0$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}$ (2.66 $\mathrm{L}, 0.25 \mathrm{M}$) at $0{ }^{\circ} \mathrm{C}$ was slowly added isopropyl amine ($630 \mathrm{~mL}, 7.32 \mathrm{~mol}, 11$ equiv.) over 30 minutes. Upon complete addition, the reaction mixture was allowed to warm to $23^{\circ} \mathrm{C}$. After 12 hours, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ before carefully adding $10 \% \mathrm{aq} . \mathrm{H}_{2} \mathrm{SO}_{4}(600 \mathrm{~mL})$. The aqueous layer was separated and the organic layer was extracted with 10% aq. $\mathrm{H}_{2} \mathrm{SO}_{4}(3 \mathrm{x}$ 600 mL). The combined aqueous layers were cooled to $0{ }^{\circ} \mathrm{C}$ with stirring before being brought to $\mathrm{pH}=8.0$ with $10 \mathrm{~N} \mathrm{NaOH}(600 \mathrm{~mL})$. The neutralized solution was extracted with EtOAc (4 x 600 mL), washed with brine (600 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give crude imidate as an amber oil.

A stirred solution of crude imidate ($138 \mathrm{~g}, 666 \mathrm{~mol}, 1$ equiv.) in a $3: 1$ solution of THF: 10% aq. AcOH ($1.33 \mathrm{~L}, 0.5 \mathrm{M}$) was heated to $50^{\circ} \mathrm{C}$. After 3 hours, the reaction mixture was cooled to $23{ }^{\circ} \mathrm{C}$ before pouring over ice and sat. aq. $\mathrm{NaHCO}_{3}(1 \mathrm{~L})$. The reaction mixture was extracted with EtOAc (4 x 600 mL), washed with brine (600 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography ($5: 1$ hexanes:EtOAc) followed by recrystallization from hexanes to give pure bicycle 368 ($55.3 \mathrm{~g}, 333 \mathrm{mmol}, 50 \%$ over 4 -steps) as a white solid (m.p. $33-35^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.41$ (silica gel, $5: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.23$ (bd, $J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.39(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81,(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{t}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{t}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}$), $1.68(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.2,135.5$, 126.1, 85.2, 56.1, 47.9, 33.1, 30.2, 23.4, 14.1; IR (film, cm^{-1}): 1758, 1270, 1119; HRMS (ESI) calc. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 189.08860$, obs. 189.08940.

2-((1R,2R)-2-(hydroxymethyl)-3-methylcyclopent-3-en-1-yl)propan-2-ol (419)
To a stirred solution of bicycle $\mathbf{3 6 8}\left(32 \mathrm{~g}, 193 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}$ ($960 \mathrm{~mL}, 0.2 \mathrm{M}$) at $0{ }^{\circ} \mathrm{C}$ was slowly added a 4.0 M solution of lithium aluminum hydride in $\mathrm{Et}_{2} \mathrm{O}(48 \mathrm{~mL}, 193$ mmol, 1.0 equiv.) over 20 minutes. After 40 minutes, the reaction mixture was carefully quenched with $\mathrm{H}_{2} \mathrm{O}(7.3 \mathrm{~mL}), 15 \%$ aq. $\mathrm{NaOH}(7.3 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(21.9 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give pure diol 419 ($32.4 \mathrm{~g}, 191$ $\mathrm{mmol}, 99 \%$) as a white solid (m.p. $73-75^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.23$ (silica gel, 2:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.43$ (bs, 1H), 4.57 (bs, 1H), 4.36 (bs, 1H), 3.77 (d, $J=12 \mathrm{~Hz}, 1 \mathrm{H}$), 3.51 (dd, $J=11,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.5 (bd, $J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.31-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{bd}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 1 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 139.9,125.8,71.1,60.1,53.6,51.4,32.2,29.8,29.4,15.1$; IR (film, cm^{-1}): 3282, 1360, 1053, 1004; HRMS (ESI): calc. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 193.11930$, obs. 193.11990.

A stirred solution of diol 419 ($40 \mathrm{~g}, 235 \mathrm{mmol}, 1$ equiv.), activated $4.0 \AA$ molecular sieves ($20 \mathrm{~g}, 50 \%$ by weight), and $\mathrm{Ac}_{2} \mathrm{O}(160 \mathrm{~mL}, 1.5 \mathrm{M})$ was heated to $150^{\circ} \mathrm{C}$. After 16 hours, the reaction mixture was cooled to $23{ }^{\circ} \mathrm{C}$ and passed through a short silica gel plug (10:1 hexanes:EtOAc) to give an inseparable 2:1 mixture of acetates 397 and $396(41.5 \mathrm{~g}, 214 \mathrm{mmol}$, 91\%) as an amber oil.
((1R,5R)-2-methyl-5-(prop-1-en-2-yl)cyclopent-2-en-1-yl)methyl acetate (397) (S)-(2-methyl-5-(propan-2-ylidene)cyclopent-2-en-1-yl)methyl acetate (396)
$\mathbf{R}_{f}=0.46$ (silica gel, $10: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathbf{3 9 7}] 5.48(\mathrm{bs}, 1 \mathrm{H})$, $4.86(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=11,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=11,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{bs}$, 1H), 2.88 (bs, 1H), 2.43 (td, $J=11,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{dd}, J=15,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.79$ (s, 3H), 1.75 (s, 3H), [396] 5.49 (bs, 1H), 4.25 (dd, $J=11,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), , 3.97 (dd, $J=11,6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.93(\mathrm{q}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{bs}, 1 \mathrm{H}), 2.73(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}$, 3H), $1.73(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.0,170.9,144.5,140.4$, $133.4,126.2,125.4,124.9,110.9,110.9,66.2,63.6,63.6,50.2,49.6,48.5,36.3,33.8,23.1,21.0$, 20.9, 20.5, 16.0, 15.9; IR (film, cm^{-1}): 1741, 1379, 1252, 1038.

2-((1R,2R)-2-(acetoxymethyl)-3-methylcyclopent-3-en-1-yl)propan-2-yl acetate (395)

$\mathbf{R}_{f}=0.30$ (silica gel, 10:1 hexanes:EtOAc); ${ }^{1} \mathbf{H - N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.47$ (bs, 1H), 4.44 (dd, $J=11,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=11,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.30(\mathrm{~m}$, 2H), $2.15(\mathrm{dd}, J=11,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}$, 3H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.0,170.2,141.9,125.8,125.8,82.1,64.6,55.0,47.7$, 31.2, 25.5, 22.4, 21.1, 16.6; IR (film, cm^{-1}): 1732, 1367, 1228, 1023.

((1R,5R)-2-methyl-5-(prop-1-en-2-yl)cyclopent-2-en-1-yl)methanol (420)
To a stirred solution of acetates 396 and 397 ($41.5 \mathrm{~g}, 214 \mathrm{mmol}$, 1.0 equiv.) in $\mathrm{Et}_{2} \mathrm{O}$ (1.1 $\mathrm{L}, 0.2 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was slowly added a 4.0 M solution of lithium aluminum hydride in $\mathrm{Et}_{2} \mathrm{O}(26.7$ $\mathrm{mL}, 107 \mathrm{mmol}, 0.5$ equiv.) over 20 minutes. After 40 minutes, the reaction mixture was carefully quenched with $\mathrm{H}_{2} \mathrm{O}(4.1 \mathrm{~mL}), 15 \%$ aq. $\mathrm{NaOH}(4.1 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(12.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give a clear oil. The crude material was purified via silica gel column chromatography (50:1 to 20:1 hexanes:EtOAc) to give pure alcohol 420 ($15.9 \mathrm{~g}, 105 \mathrm{mmol}, 49 \%$ over 2-steps) as a clear oil.
$\mathbf{R}_{f}=0.36$ (silica gel, $5: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.51(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s}$, $1 \mathrm{H}), 4.91$ (s, 1H), 3.56 (dd, $J=9.4,4.7,2 \mathrm{H}), 2.96(\mathrm{q}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{bs}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J$ $=12,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=12,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-$ NMR (100 MHz, CDCl_{3}): $\delta 146.4,139.5,126.2,110.8,61.3,52.6,49.3,34.3,23.5,15.5$; IR (film, cm^{-1}): 3381, 1447, 1037, 888; HRMS (EC-CI): calc. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$ [M]: 152.1201, obs. 152.1196.

($1 R, 5 R$)-2-methyl-5-(prop-1-en-2-yl)cyclopent-2-ene-1-carbaldehyde (398)
To a stirred solution of alcohol $420\left(26.2 \mathrm{~g}, 172 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(860 \mathrm{~mL}$, $0.2 \mathrm{M})$ at $23{ }^{\circ} \mathrm{C}$ was added solid $\mathrm{NaHCO}_{3}(43.4 \mathrm{~g}, 517 \mathrm{mmol}, 3$ equiv.), solid Dess-Martin periodinane ($110 \mathrm{~g}, 258 \mathrm{mmol}, 1.5$ equiv.), and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. After 45 minutes, the reaction mixture was diluted with sat. aq. $\mathrm{NaHCO}_{3}(500 \mathrm{~mL})$ and sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ and stirred for 10 minutes. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 800 \mathrm{~mL})$, washed with brine (800 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography (10:1 hexanes:EtOAc) to give pure aldehyde 398 $(22.5 \mathrm{~g}, 150 \mathrm{mmol}, 87 \%)$ as a clear oil.
$\mathbf{R}_{f}=0.56$ (silica gel, 5:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.35(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, 1H), 5.77 (bs, 1H), $4.90(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 3.22(\mathrm{q}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.71(\mathrm{t}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=16,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.1,143.2,135.5,130.0,111.7,63.4,49.7,34.6,22.9,15.6$; IR (film, cm^{-1}): 1720, 1446, 892.

(4R,5R)-1-methyl-4-(prop-1-en-2-yl)-5-((S)-1-(prop-2-yn-1-yloxy)allyl)cyclopent-1-ene (421)
To a stirred solution of tetravinyl tin ($11 \mathrm{~mL}, 59.9 \mathrm{mmol}, 0.4$ equiv.) in THF (600 mL) at $-78{ }^{\circ} \mathrm{C}$ was added a 2.14 M solution of n-butyllithium in hexanes $(91 \mathrm{~mL}, 195 \mathrm{mmol}, 1.3$ equiv.). The reaction mixture was warmed and stirred at $23{ }^{\circ} \mathrm{C}$ for 15 minutes before being cooled back down to $-78{ }^{\circ} \mathrm{C}$ and adding a solution of aldehyde $398(22.5 \mathrm{~g}, 150 \mathrm{mmol}, 1$ equiv.) in THF (150 mL). After 15 minutes, freshly distilled neat hexamethylphosphoramide (52 mL , 299 mmol, 2 equiv.) was added. After an additional 10 minutes an 80% solution of propargyl bromide in toluene ($83 \mathrm{~mL}, 749 \mathrm{mmol}, 5$ equiv.) was added. Upon complete addition the reaction mixture was allowed to warm to $23^{\circ} \mathrm{C}$. After 3 hours, the reaction mixture was diluted with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, washed with $3.0 \mathrm{~N} \mathrm{LiCl}(3 \times 50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give a yellow oil. The crude material was purified via silica gel column chromatography (straight hexanes to $50: 1$ to $20: 1$ hexanes:EtOAc) to give pure enyne $421(26.2 \mathrm{~g}, 121 \mathrm{mmol}, 81 \%)$ as a clear oil.
$\mathbf{R}_{f}=0.50$ (silica gel, 2:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.86$ (ddd, $J=17,11$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{bs}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 4.10$ $(\mathrm{dd}, J=13,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=13,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=8.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{q}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{bd}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{ddq}, J=20,9.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{t}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.12(\mathrm{dd}, J=11,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 145.3, 139.4, 137.7, 127.4, 116.8, 111.7, 80.7, 80.4, 73.5, 55.7, 54.9, 51.1, 34.8, 23.5, 17.8; IR (film, cm^{-1}): 1384, 1074, 404; HRMS (EC-CI): calc. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}$ [M]: 216.1514, obs. 216.1515.

trimethyl(3-(((S)-1-((1R,5R)-2-methyl-5-(prop-1-en-2-yl)cyclopent-2-en-1-yl)allyl)oxy)prop-1-yn-1-yl)silane (400)

To a stirred solution of enyne $421(26.2 \mathrm{~g}, 121 \mathrm{mmol}, 1.0$ equiv.) in THF (1.2 L, 0.1 M) at $-78{ }^{\circ} \mathrm{C}$ was added a 2.14 M solution of n-butyllithium in hexanes $(68 \mathrm{~mL}, 145 \mathrm{mmol}, 1.2$ equiv.). After 20 minutes, freshly distilled neat trimethylsilyl chloride ($31 \mathrm{~mL}, 242 \mathrm{mmol}, 2$ equiv.) was added. Upon complte addition the reaction mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$. After 30 minutes, the reaction mixture was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(400 \mathrm{~mL})$, extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 400 \mathrm{~mL})$, washed with brine (400 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give pure TMS enyne $400(35 \mathrm{~g}, 121 \mathrm{mmol}, 99 \%)$ as a clear oil.
$\mathbf{R}_{f}=0.44$ (silica gel, 20:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.85$ (ddd, $J=17$, $11,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{bs}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H})$, $4.11(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=7.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{q}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.63(\mathrm{bd}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{ddq}, J=20,9.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dd}, J=7.8,2.7 \mathrm{~Hz}$, 1H), $1.81(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 145.1,139.6$, 137.6, 127.1, 116.8, 111.7, 102.3, 90.3, 80.2, 56.3, 54.8, 50.9, 34.8, 23.3, 17.7, -0.3; IR (film, cm^{-1}): 1384, 1251, 1076, 843, 403; HRMS (EC-CI): calc. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{OSi}$ [M]: 288.1909, obs. 288.1901.

((2R,3R,Z)-2-((1R,5R)-2-methyl-5-(prop-1-en-2-yl)cyclopent-2-en-1-yl)-4-((trimethylsilyl)methylene)tetrahydrofuran-3-yl)methanol (401)

To a stirred solution of TMS enyne 400 ($20.8 \mathrm{~g}, 72.1 \mathrm{mmol}, 1.0$ equiv.) in PhMe (720 $\mathrm{mL}, 0.1 \mathrm{M})$ at $23{ }^{\circ} \mathrm{C}$ was added solid bis(pinacolato)diboron ($20.1 \mathrm{~g}, 79 \mathrm{mmol}, 1.1$ equiv.), palladium(II) acetate ($809 \mathrm{mg}, 3.60 \mathrm{mmol}, 0.05$ equiv.), and $\mathrm{MeOH}(2.92 \mathrm{~mL}, 72.1 \mathrm{mmol}, 1.0$ equiv.). The reaction mixture was heated to and stirred at $50{ }^{\circ} \mathrm{C}$. After 15 hours, the reaction mixture was cooled to $23^{\circ} \mathrm{C}$ and concentrated in vacuo to give the boronate ester as an amber oil.

To a stirred solution of crude boronate ester ($30 \mathrm{~g}, 72.0 \mathrm{mmol}, 1.0$ equiv.) in THF (1.4 L, 0.05 M) at $0^{\circ} \mathrm{C}$ was carefully added 3.33 N NaOH ($64.9 \mathrm{~mL}, 216 \mathrm{mmol}, 3$ equiv.) and 50% aq. $\mathrm{H}_{2} \mathrm{O}_{2}$ ($130 \mathrm{~mL}, 2.16 \mathrm{~mol}, 30$ equiv.) over 1 hour. The reaction mixture was diluted with brine (700 mL), extracted with EtOAc ($3 \times 500 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give a yellow oil. The crude material was purified via silica gel column chromatography (5:1 hexanes:EtOAc) to give pure alcohol $401(13.7 \mathrm{~g}, 44.7 \mathrm{mmol}, 62 \%$ over 2 -steps $)$ as a white solid (m.p. $62-64{ }^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.41$ (silica gel, 5:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.54(\mathrm{bs}, 1 \mathrm{H}), 5.50(\mathrm{q}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=14,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dt}, J=14,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.91(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dt}, J=11,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dt}, J=11,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{q}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.66(\mathrm{bm}, 2 \mathrm{H}), 2.45(\mathrm{ddq}, J=15,8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=14,7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): ~ \delta 157.9,145.9,140.3,127.2,119.9,111.9,81.2,70.2,64.0,53.5,51.8,51.1,34.7,22.8$, 17.8, -0.7; IR (film, cm^{-1}): 3404, 1384, 401; HRMS (ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 329.19070, obs. 329.19090 .

(2R,3S,Z)-2-((1R,5R)-2-methyl-5-(prop-1-en-2-yl)cyclopent-2-en-1-yl)-4-((trimethylsilyl)methylene)tetrahydrofuran-3-carbaldehyde (422)

To a stirred solution of oxalyl chloride ($5.23 \mathrm{~mL}, 59.8 \mathrm{mmol}, 1.5$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (250 mL) at $-78^{\circ} \mathrm{C}$ was slowly added a solution of dimethyl sulfoxide ($14.2 \mathrm{~mL}, 199 \mathrm{mmol}, 5$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ over 10 minutes. After 30 minutes, a solution of alcohol $401(12.2 \mathrm{~g}, 39.9$ mmol, 1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}$) was added. After 2 hours, neat trimethylamine ($28.0 \mathrm{~mL}, 199$ mmol, 5 equiv.) was added in a single portion and the reaction mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$. The reaction mixture was then diluted with $0.1 \mathrm{~N} \mathrm{HCl}(200 \mathrm{~mL})$. The organic layer was separated and washed with $0.1 \mathrm{~N} \mathrm{HCl}(2 \mathrm{x} 200 \mathrm{~mL})$ and $3.0 \mathrm{~N} \mathrm{LiCl}(400 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give crude aldehyde $422(12.1 \mathrm{~g}, 39.9 \mathrm{mmol}$, yield taken after subsequent step) as a clear oil.
$\mathbf{R}_{f}=0.69$ (silica gel, 5:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.32(\mathrm{~d}, J=3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 5.53(\mathrm{bs}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{dd}, J=14,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.22(\mathrm{dd}, J=14,2.4 \mathrm{~Hz}, 1 \mathrm{H}) 3.40(\mathrm{bt}, J=2.4,1 \mathrm{H}), 2.93(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{t}, J=6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=15,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=15,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H})$, 0.08 (s, 9H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 196.6,151.9,144.9,139.8,127.4,124.0,112.4$, $78.7,70.2,63.7,51.7,50.6,34.7,22.9,17.4,-0.9$; IR (film, cm^{-1}): 1722, 1249, 840; HRMS (ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 327.17510$, obs. 327.17530.

(3aR,4R,6aR,9aR,9bR,Z)-9-methyl-6-methylene-3-((trimethylsilyl)methylene)-2,3,3a,4,5,6,6a,7,9a,9b-decahydroazuleno[4,5-b]furan-4-ol (402)

To a stirred solution of crude aldehyde $422\left(12.1 \mathrm{~g}, 39.9 \mathrm{mmol}\right.$, 1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(400 \mathrm{~mL}, 0.1 \mathrm{M})$ at $-78^{\circ} \mathrm{C}$ was added a 1.0 M solution of diethylaluminum chloride in hexanes ($19.9 \mathrm{~mL}, 19.9 \mathrm{mmol}, 0.5$ equiv.) in a single portion. After 10 minutes, the reaction mixture was quenched with $10 \% \mathrm{aq}$. $\mathrm{NaOH}(20 \mathrm{~mL})$. The reaction mixture was warmed to $23{ }^{\circ} \mathrm{C}$, further diluted with brine (200 mL), and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give a yellow oil. The crude material was purified via silica gel column chromatography ($5: 1$ hexanes:EtOAc) to give pure $5,7,5$-tricycle $402(12.1 \mathrm{~g}, 39.9 \mathrm{mmol}, 99 \%$ over 2-steps) as a white solid (m.p. 64-66 ${ }^{\circ} \mathrm{C}$).
$\mathbf{R}_{f}=0.60$ (silica gel, $5: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.47(\mathrm{~s}, 1 \mathrm{H}), 5.45(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dt}, J=8.2,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.09 (dt, $J=14,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{t}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.54-2.40(\mathrm{~m}, 5 \mathrm{H}), 1.96(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.6,145.2,142.3,125.1,117.3,115.0,79.3,71.1,66.4,57.0,56.1,49.1,36.8$, 17.3, -0.6; IR (film, cm^{-1}): 3413, 1065, 838; HRMS (ESI): calc. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 327.17510, obs. 327.17510.

(3aR,4R,6aR,9aR,9bR,Z)-9-methyl-6-methylene-3-((trimethylsilyl)methylene)-2,3,3a,4,5,6,6a,7,9a,9b-decahydroazuleno[4,5-b]furan-4-yl (E)-2-methylbut-2-enoate (403)

To a stirred solution of tiglic acid ($13.8 \mathrm{~g}, 138 \mathrm{mmol}, 2.0$ equiv.) in $\mathrm{PhMe}(345 \mathrm{~mL})$ at 23 ${ }^{\circ} \mathrm{C}$ was added neat trimethylamine ($38.4 \mathrm{~mL}, 276 \mathrm{mmol}, 4.0$ equiv.) and neat $2,4,6$ trichlorobenzoyl chloride ($23.7 \mathrm{~mL}, 152 \mathrm{mmol}, 2.2$ equiv.). After 1 hour, a solution of 5,7,5tricycle 402 ($21.0 \mathrm{~g}, 69.0 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{PhMe}(345 \mathrm{~mL}$) and solid dimethylaminopyridine $\left(21.9 \mathrm{~g}, 179 \mathrm{mmol}, 2.6\right.$ equiv.) were added. The reaction mixture was then heated to $80^{\circ} \mathrm{C}$. After 45 minutes, the reaction mixture was cooled to $23^{\circ} \mathrm{C}$, diluted with sat. aq. NaHCO_{3}, extracted with EtOAc ($3 \times 500 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give an amber oil. The crude material was purified via silica gel column chromatography (20:1 hexanes:EtOAc) to give pure tigloyl ester $403(24.0 \mathrm{~g}, 62.1 \mathrm{mmol}, 90 \%)$ as a clear oil.
$\mathbf{R}_{f}=0.18$ (silica gel, 20:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.75(\mathrm{q}, J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 5.41(\mathrm{q}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=$ $14 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=14,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=14,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.43$ (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}$), 0.0 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.5,156.6,144.7,142.1,136.9,128.6$, $125.3,117.3,115.1,80.5,71.0,69.8,56.3,55.1,48.7,39.4,37.0,17.3,14.3,12.0,-0.7$; IR (film, cm^{-1}): 1713, 1250, 1066, 805; HRMS (ESI): calc. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 409.21710$, obs. 409.21690.

(3aR,4R,6aR,9aR,9bR,Z)-9-methyl-6-methylene-2,7-dioxo-3-((trimethylsilyl)methylene)-2,3,3a,4,5,6,6a,7,9a,9b-decahydroazuleno[4,5-b]furan-4-yl (E)-2-methylbut-2-enoate (404)

To a stirred solution of $\mathrm{CrO}_{3}\left(20.7 \mathrm{~g}, 207 \mathrm{mmol}, 20\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL}, 0.05 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was added solid 3,5-dimethylpyrazole ($19.9 \mathrm{~g}, 207 \mathrm{mmol}$, 20 equiv.) in a single portion. A solution of carbocycle $403\left(4.0 \mathrm{~g}, 10.4 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was then added. After 45 minutes, the reaction mixture was directly purified via florasil column chromatography (2:1 hexanes:EtOAc) to give pure guaianolide $404(1.29 \mathrm{~g}, 3.10 \mathrm{mmol}, 30 \%)$ as a clear oil.
$\mathbf{R}_{f}=0.22$ (silica gel, 2:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.70(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.37(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.53(\mathrm{td}, J=4.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}$, $1 \mathrm{H}), 4.54(\mathrm{dd}, J=11,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{t}, 9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dt}, J=$ 8.6, 2.7 Hz, 1H), $2.55(\mathrm{bs}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13}$ C-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.1,177.9,168.6,166.9,145.5,138.9,138.5,138.1,132.3$, $127.9,120.4,78.1,67.1,56.2,53.4,51.2,41.1,19.9,14.3,11.9,-1.0$; IR (film, cm^{-1}): 1765, 1707, 1249; HRMS (ESI): calc. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 437.17550$, obs. 437.17580 .

(3aR,4R,6aR,7R,9aR,9bR,Z)-7-hydroxy-9-methyl-6-methylene-2-oxo-3-((trimethylsilyl)methylene)-2,3,3a,4,5,6,6a,7,9a,9b-decahydroazuleno[4,5-b]furan-4-yl (E)-2-methylbut-2-enoate (405)

To a stirred solution of enone 404 ($755 \mathrm{mg}, 1.82 \mathrm{mmol}, 1.0$ equiv.) in MeOH (36 mL , $0.05 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was added solid cerium(III) chloride heptahydrate $(1.36 \mathrm{~g}, 3.64 \mathrm{mmol}, 2.0$ equiv.). After 20 minutes, solid sodium borohydride ($138 \mathrm{mg}, 3.64 \mathrm{mmol}, 2.0$ equiv.) was added in three even portions. After 15 minutes, the reaction mixture was warmed to $23{ }^{\circ} \mathrm{C}$ and diluted with 0.2 M aq. $\mathrm{pH}=7.0$ phosphate buffer. The organic layer was separated and the aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give pure allylic alcohol $405(700 \mathrm{mg}, 1.68 \mathrm{mmol}, 92 \%)$ as a clear oil.
$\mathbf{R}_{f}=0.24$ (silica gel, 3:1 hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.69(\mathrm{q}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.24(\mathrm{~d}, ~ J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{bs}, 1 \mathrm{H}), 5.43(\mathrm{td}, J=7.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09$ (s, 2H), 4.71 (bt, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=11,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dt}, J=6.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.88(\mathrm{dd}, J=14,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=14,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~s}$, $3 \mathrm{H}), 1.74(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{~s}, \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.4$, $167.2,147.8,144.5,142.0,139.9,137.9,128.9,128.0,119.0,80.8,79.0,68.5,56.2,52.6,49.8$, 38.7, 17.3, 14.3, 11.9, -1.0; IR (film, cm^{-1}): 3485, 1764, 1709, 1259, 1247; HRMS (ESI): calc. for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 439.19110$, obs. 439.19110 .

(3aR,4R,6aR,7R,9aR,9bR)-7-hydroxy-9-methyl-6-methylene-2-oxo-3-((phenylthio)(trimethylsilyl)methyl)-2,3,3a,4,5,6,6a,7,9a,9b-decahydroazuleno[4,5-b]furan-4-yl (E)-2-methylbut-2-enoate (414)

To a stirred solution of vinyl silane $405(267 \mathrm{mg}, 0.641 \mathrm{mmol}, 1.0$ equiv.) in EtOH (6.4 $\mathrm{mL}, 0.1 \mathrm{M})$ at $23{ }^{\circ} \mathrm{C}$ was added neat thiophenol ($2.88 \mathrm{~mL}, 28.2 \mathrm{mmol}, 44$ equiv.) and $60 \% \mathrm{NaH}$ in mineral oil ($103 \mathrm{mg}, 2.56 \mathrm{mmol}, 4.0$ equiv.). After 48 hours, the reaction mixture was concentrated in vacuo and purified directly via silica gel column chromatography (straight hexanes to $2: 1$ hexanes:EtOAc) to give pure thio silane $414(238 \mathrm{mg}, 0.452 \mathrm{mmol}, 71 \%)$ as a white foam.

HRMS (ESI): calc. for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O} 5 \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+}: 549.21010$, obs. 549.21030.

(3aR,4R,6aR,7R,9aR,9bR)-7-hydroxy-9-methyl-3,6-dimethylene-2-oxo-
2,3,3a,4,5,6,6a,7,9a,9b-decahydroazuleno[4,5-b]furan-4-yl (E)-2-methylbut-2-enoate (415)
To a stirred solution of thio silane $414(238 \mathrm{mg}, 0.452 \mathrm{mmol}, 1.0$ equiv.) in THF (4.5 mL , $0.1 \mathrm{M})$ at $23{ }^{\circ} \mathrm{C}$ was added a 1.0 M of tetrabutylammonium fluoride in THF ($0.90 \mathrm{~mL}, 1.38$ mmol, 1.5 equiv.). After 30 minutes, the reaction mixture was passed through a plug of silica gel (2:1 hexanes:EtOAc) to give crude thio adduct 416 as an amber oil.

To a stirred solution of crude thio adduct 416 ($205 \mathrm{mg}, 0.452 \mathrm{mmol}, 1.0$ equiv.) in MeOH $(4.5 \mathrm{~mL}, 0.1 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was added a solution of sodium periodate $(145 \mathrm{mg}, 0.678 \mathrm{mmol}, 1.5$ equiv.) in $\mathrm{H}_{2} \mathrm{O}(4.5 \mathrm{~mL})$. After 15 hours, the reaction mixture was extracted with EtOAc (3 x 10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give crude sulfone 417 as a white solid.

A solution of crude sulfone 417 ($220 \mathrm{mg}, 0.452 \mathrm{mmol}, 1.0$ equiv.), basic alumina (220 $\mathrm{mg}, 100 \%$ by weight), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL}, 0.1 \mathrm{M})$ was stirred at $23{ }^{\circ} \mathrm{C}$. After 2 hours, the reaction mixture was passed through a plug of Celite to give a clear oil. The crude material was purified via silica gel column chromatography ($2: 1$ hexanes:EtOAc) to give pure butyrolactone 415 ($109 \mathrm{mg}, 0.316 \mathrm{mmol}, 70 \%$) as a clear oil.
$\mathbf{R}_{f}=0.54$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.73(\mathrm{q}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.29(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{bs}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=11,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, 1H), 5.12 (s, 1H), 5.11 (s, 1H), 4.73 (bs, 1H), 4.66 (dd, $J=11,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$ (dd, $J=12,2.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.17 (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.85(\mathrm{dd}, J=14,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=14,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.68(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, 1H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.6,167.2,147.3,141.7,138.3,134.2,129.2,128.0$,
$122.4,119.2,80.8,78.8,67.8,56.1,52.6,47.8,39.1,17.3,14.4,12.0$; IR (film, cm^{-1}): 3413, 1384, 1137; HRMS (ESI): calc. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 367.15160$, obs. 367.15200.

(3aR,4R,6R,6aS,7R,9aR,9bR)-7-hydroxy-9-methyl-3-methylene-2-oxo-3,3a,4,5,6a,7,9a,9b-octahydro-2H-spiro[azuleno[4,5-b]furan-6,2'-oxiran]-4-yl (E)-2-methylbut-2-enoate (418)

To a stirred solution of allylic alcohol $415(38 \mathrm{mg}, 0.110 \mathrm{mmol}, 1.0$ equiv.) in $2: 1$ DMM:MeCN ($2.2 \mathrm{~mL}, 0.05 \mathrm{M}$) at $23{ }^{\circ} \mathrm{C}$ was added tetrabutylammonium bisulfate $(4 \mathrm{mg}, 0.011$ mmol, 0.1 equiv.), the Shi catalyst ($6 \mathrm{mg}, 0.022 \mathrm{mmol}, 0.2$ equiv.), and $\mathrm{pH}=9.3$ phosphate buffer. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ before adding a solution of potassium carbonate ($0.088 \mathrm{mg}, 0.640 \mathrm{mmol}, 5.8$ equiv.) in $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ and a solution of Oxone ($0.075 \mathrm{mg}, 0.121$ mmol, 1.1 equiv.) in $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ simultaneously over 1 hour. The reaction mixture was diluted with brine (2 mL), extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 5 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give a white solid. The crude material was purified via silica gel column chromatography ($2: 1$ hexanes:EtOAc) to give pure epoxide $418(18 \mathrm{mg}, 0.050 \mathrm{mmol}, 45 \%$ BRSM) as a clear oil.
$\mathbf{R}_{f}=0.54$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H - N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.70(\mathrm{q}, J=6.4 \mathrm{~Hz}$, 1H), 6.33 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.71$ (bs, 1H), 5.57 (td, $J=8.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.55$ (d, $J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.68(\mathrm{bs}, 1 \mathrm{H}), 4.67(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=8.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{q}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.77(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=14,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J$ $=15,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.6,167.1,148.9,138.3,133.9,128.9,128.0,123.0,100.0,81.0,66.8$, 56.3, 55.8, 55.4, 52.4, 47.9, 36.6, 17.5, 14.4, 12.1; IR (film, cm^{-1}): 3477, 1768, 1339, 1140, 1037; HRMS (ESI): calc. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 383.14650$, obs. 383.14680.

eupalinilide \mathbf{E} (256)

To a stirred solution of crude epoxide $418(10 \mathrm{mg}, 0.028 \mathrm{mmol}, 1.0$ equiv.) in THF (1.0 $\mathrm{mL}, 0.3 \mathrm{M}$) at $23{ }^{\circ} \mathrm{C}$ was added solid lithium chloride ($6 \mathrm{mg}, 0.139 \mathrm{mmol}, 5.0$ equiv.) in a single portion followed by a 1.25 M solution of hydrochloric acid in $\mathrm{MeOH}(0.02 \mathrm{~mL}, 0.028 \mathrm{mmol}, 1.0$ equiv.). After 5 minutes, the reaction mixture was diluted with brine (1.0 mL), extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 2 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give a white solid. The crude material was purified via silica gel column chromatography (2:1 hexanes:EtOAc) to give pure eupalinilide E (256) (11 mg, $0.028 \mathrm{mmol}, 99 \%$) as a white solid (m.p. $\left.{ }^{\circ} \mathrm{C}\right)$.
$\mathbf{R}_{f}=0.63$ (silica gel, $1: 1$ hexanes:EtOAc); ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.70(\mathrm{q}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.27(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{bs}, 1 \mathrm{H}), 5.65(\mathrm{td}, J=8.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.59(\mathrm{bs}, 1 \mathrm{H}), 4.58(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{bs}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=$ $11 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ (dd, $J=11,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.44$ (m, 4H), 2.04 (s, 3H), 1.74 (d, $J=5.3 \mathrm{~Hz}$, 3H), 1.73 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.7,167.2,150.6,138.1,134.4,128.6$, 128.1, 122.1, 82.0, 75.1, 73.6, 66.4, 55.2, 55.0, 52.2, 47.4, 36.4, 18.0, 14.4, 12.0; IR (film, cm^{-1}): 3409, 1654, 1384, 1129; HRMS (ESI): calc. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{ClO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 419.12320$, obs. 419.12290 .

Appendix A: Crystallographic Data for 394

Table 1. Crystal data and structure refinement for 394.

Empirical formula	C30 H30 N2 O9
Formula weight	562.56
Temperature	140(2) K
Wavelength	$0.71073 \AA$
Crystal system	monoclinic
Space group	P 21
Unit cell dimensions	$a=25.044(3) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=5.4847(12) \AA \quad \beta=97.558(6)^{\circ}$.
	$\mathrm{c}=29.751(4) \AA \quad \gamma=90^{\circ}$.
Volume	4051.1(11) \AA^{3}
Z	6
Density (calculated)	$1.384 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.103 \mathrm{~mm}^{-1}$
F(000)	1776
Crystal size	$0.300 \times 0.050 \times 0.040 \mathrm{~mm}$
Theta range for data collection	1.640 to 24.999°.
Index ranges	$-29<=\mathrm{h}<=29,-6<=\mathrm{k}<=6,-35<=1<=35$
Reflections collected	53001
Independent reflections	$14309[\mathrm{R}($ int $)=0.1855]$
Completeness to theta $=25.242^{\circ}$	97.3 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00 and 0.854
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	14309 / 1/1114
Goodness-of-fit on F^{2}	0.980
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0737, \mathrm{wR} 2=0.1139$
R indices (all data)	$\mathrm{R} 1=0.1907, \mathrm{wR} 2=0.1502$
Absolute structure parameter	-0.6(10)
Extinction coefficient	n / a
Largest diff. peak and hole	0.278 and -0.315 e. \AA^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 394 . $U(e q)$ is defined as one third of the trace of the orthogonalized $U{ }^{i j}$ tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
C1	-1326(3)	7658(16)	3274(3)	25(2)
C2	-1166(3)	5296(17)	3086(3)	21(2)
C3	-675(3)	4387(15)	3391(2)	16(2)
C4	-271(3)	2970(16)	3167(2)	18(2)
C5	253(3)	2409(15)	3482(2)	16(2)
C6	566(3)	4643(16)	3649(3)	20(2)
C7	455(3)	5860(16)	4078(3)	21(2)
C8	597(3)	4116(17)	4496(3)	24(2)
C9	58(3)	3235(18)	4593(2)	25(2)
C10	-342(3)	4545(16)	4401(3)	19(2)
C11	-151(3)	6487(15)	4098(2)	16(2)
C12	-472(3)	6753(15)	3629(3)	20(2)
C13	-89(3)	3234(19)	2404(3)	21(2)
C14	183(3)	4770(16)	2087(2)	15(2)
C15	475(3)	6817(16)	2247(3)	19(2)
C16	759(3)	8050(16)	1950(3)	20(2)
C17	771(3)	7365(16)	1505(3)	21(2)
C18	481(3)	5271(16)	1365(2)	16(2)
C19	198(3)	3955(17)	1643(2)	21(2)
C20	1505(3)	2930(18)	4481(3)	30(2)
C21	1844(3)	1005(17)	4317(3)	23(2)
C22	1865(3)	692(19)	3853(3)	34(3)
C23	2172(3)	-1109(17)	3691(3)	28(2)
C24	2476(3)	-2622(18)	3982(3)	28(2)
C25	2480(3)	-2298(19)	4446(3)	35(3)
C26	2171(3)	-532(19)	4607(3)	35(3)
C27	2717(3)	-5080(20)	3382(3)	43(3)
C28	-1403(3)	4243(18)	2711(3)	35(3)
C29	942(3)	5548(17)	3419(3)	29(2)
C30	-923(3)	$4409(18)$	4487(3)	31(2)
C31	4504(3)	3555(18)	86(3)	34(3)

C32	4255(3)	1330(17)	274(3)	21(2)
C33	3797(3)	542(16)	-77(3)	17(2)
C34	3287(3)	-302(16)	88(2)	21(2)
C35	2845(3)	-904(16)	-291(2)	18(2)
C36	2642(3)	1288(16)	-572(3)	18(2)
C37	2898(3)	1955(15)	-990(2)	18(2)
C38	2809(3)	-126(16)	-1351(3)	22(2)
C39	3352(3)	-1248(16)	-1348(2)	22(2)
C40	3743(3)	31(17)	-1115(3)	22(2)
C41	3523(3)	2245(16)	-898(3)	22(2)
C42	3736(3)	2725(17)	-403(2)	23(2)
C43	3016(3)	1034(19)	796(3)	23(2)
C44	2701(3)	3002(17)	999(3)	18(2)
C45	2407(3)	4736(17)	734(3)	26(2)
C46	2103(3)	6420(17)	939(3)	20(2)
C47	2088(3)	6444(18)	1398(3)	26(2)
C48	2371(3)	4653(19)	1651(3)	25(2)
C49	2674(3)	2921(17)	1463(3)	21(2)
C50	1879(3)	-1067(17)	-1433(3)	26(2)
C51	1481(3)	-2766(16)	-1262(3)	20(2)
C52	1261(3)	-4718(17)	-1517(3)	23(2)
C53	928(3)	-6382(17)	-1345(3)	26(2)
C54	814(3)	-6088(17)	-903(3)	22(2)
C55	1007(3)	-4097(16)	-649(3)	20(2)
C56	1337(3)	-2458(17)	-829(3)	26(2)
C 57	490(3)	-7994(18)	-269(2)	35(3)
C58	4399(3)	381(18)	678(3)	35(3)
C59	2235(3)	2639(17)	-465(3)	26(2)
C60	4333(3)	-427(19)	-1103(3)	35(3)
C61	7746(3)	12627(16)	3645(3)	27(2)
C62	7581(3)	10201(16)	3812(3)	20(2)
C63	7113(3)	9303(15)	3475(2)	17(2)
C64	6696(3)	7723(16)	3660(2)	19(2)
C65	6198(3)	7229(15)	3320(2)	19(2)
C66	5876(3)	9458(17)	3158(3)	25(2)
C67	6011(3)	10825(16)	2748(2)	21(2)

C68	5921(3)	9217(17)	2304(3)	24(2)
C69	6476(3)	8578(16)	2220(2)	21(2)
C70	6849(3)	9898(16)	2455(3)	18(2)
C71	6612(3)	11576(16)	2773(2)	17(2)
C72	6902(3)	11710(15)	3254(3)	20(2)
C73	6576(3)	7755(18)	4445(3)	23(2)
C74	6348(3)	9158(16)	4800(3)	18(2)
C75	6041(3)	11239(16)	4699(3)	19(2)
C76	5816(3)	12390(17)	5039(3)	23(2)
C77	5850(3)	11479(18)	5471(3)	27(2)
C78	6153(3)	9408(19)	5562(3)	27(2)
C79	6401(3)	8217(17)	5237(3)	22(2)
C80	5021(3)	7825(18)	2222(3)	33(3)
C81	4668(3)	5639(18)	2232(3)	26(2)
C82	4450(3)	4500(19)	1830(3)	30(2)
C83	4096(3)	2596(19)	1836(3)	33(3)
C84	3965(3)	1759(18)	2248(3)	30(3)
C85	4172(3)	2846(19)	2645(3)	33(3)
C86	4526(3)	4767(19)	2633(3)	33(3)
C87	3461(4)	-1130(20)	2623(3)	49(3)
C88	7806(3)	9080(17)	4187(3)	27(2)
C89	5472(3)	10191(17)	3367(3)	31(2)
C90	7436(3)	9986(17)	2389(3)	29(2)
N1	1091(3)	10165(14)	2121(2)	24(2)
N2	515(3)	4361(17)	905(2)	29(2)
N3	1797(3)	8310(16)	660(3)	30(2)
N4	2324(3)	4562(19)	2142(2)	41(2)
N5	5473(3)	14554(15)	4927(3)	30(2)
N6	6164(3)	8291(19)	6016(3)	41(2)
O1	-949(2)	8131(11)	3668(2)	24(2)
O2	-118(2)	4395(10)	2794(2)	18(1)
O3	-251(2)	1186(12)	2308(2)	28(2)
O4	1085(2)	10769(11)	2514(2)	32(2)
O5	1348(2)	11211(12)	1859(2)	30(2)
O6	761(2)	5621(12)	657(2)	36(2)
O7	303(2)	2387(12)	794(2)	30(2)

O8	$951(2)$	$2162(10)$	$4420(2)$	$24(2)$
O9	$2778(2)$	$-4511(12)$	$3857(2)$	$35(2)$
O10	$4271(2)$	$3728(11)$	$-378(2)$	$28(2)$
O11	$3088(2)$	$1622(10)$	$368(2)$	$20(1)$
O12	$3171(2)$	$-776(12)$	$998(2)$	$28(2)$
O13	$1765(2)$	$8084(12)$	$247(2)$	$36(2)$
O14	$1600(2)$	$9974(12)$	$857(2)$	$37(2)$
O15	$2061(3)$	$6174(14)$	$2295(2)$	$46(2)$
O16	$2564(3)$	$2921(16)$	$2358(2)$	$59(2)$
O17	$2414(2)$	$-1907(10)$	$-1273(2)$	$20(1)$
O18	$498(2)$	$-7897(11)$	$-752(2)$	$25(2)$
O19	$7376(2)$	$13203(11)$	$3249(2)$	$24(2)$
O20	$6518(2)$	$8977(10)$	$4050(2)$	$19(1)$
O21	$6778(2)$	$5764(11)$	$4508(2)$	$26(2)$
O22	$5401(2)$	$15205(11)$	$4529(2)$	$31(2)$
O23	$5297(2)$	$15604(12)$	$5239(2)$	$37(2)$
O24	$5981(3)$	$9452(15)$	$6307(2)$	$56(2)$
O25	$6367(3)$	$6249(15)$	$6073(2)$	$48(2)$
O26	$5584(2)$	$7163(10)$	$2320(2)$	$25(2)$
O27	$3607(2)$	$-186(13)$	$2208(2)$	$39(2)$

Table 3. Bond lengths $[\AA]$ and angles [${ }^{\circ}$] for 394.

C1-O1	1.428(8)	C14-C15	1.389(11)
C1-C2	1.487(11)	C14-C19	1.400(10)
C1-H1A	0.99	C15-C16	1.383(10)
C1-H1B	0.99	C15-H15	0.95
C2-C28	1.325(10)	C16-C17	1.378(10)
C2-C3	1.513(10)	C16-N1	1.478(10)
C3-C4	1.500(10)	C17-C18	1.393(11)
C3-C12	1.532(11)	C17-H17	0.95
C3-H3	1.00	C18-C19	1.366(10)
C4-O2	1.450(8)	C18-N2	1.470(10)
C4-C5	1.539(10)	C19-H19	0.95
C4-H4	1.00	C20-O8	$1.439(9)$
C5-C6	1.504(11)	C20-C21	1.477(11)
C5-H5A	0.99	C20-H20A	0.99
C5-H5B	0.99	C20-H20B	0.99
C6-C29	1.332(10)	C21-C26	1.393(11)
C6-C7	1.498(11)	C21-C22	1.400(11)
C7-C11	1.565(10)	C22-C23	1.377(12)
C7-C8	1.571(10)	C22-H22	0.95
C7-H7	1.00	C23-C24	1.359(11)
C8-O8	1.427(9)	C23-H23	0.95
C8-C9	1.498(11)	C24-O9	1.362(10)
C8-H8	1.00	C24-C25	1.391(11)
C9-C10	1.302(10)	C25-C26	$1.365(12)$
C9-H9	0.95	C25-H25	0.95
C10-C30	1.512(10)	C26-H26	0.95
C10-C11	1.512(11)	C27-O9	$1.435(9)$
C11-C12	1.523(9)	C27-H27A	0.98
C11-H11	1.00	C27-H27B	0.98
C12-O1	1.432(9)	C27-H27C	0.98
C12-H12	1.00	C28-H28A	0.95
C13-O3	1.215(10)	C28-H28B	0.95
C13-O2	1.333(9)	C29-H29A	0.95
C13-C14	1.494(11)	C29-H29B	0.95

C30-H30A	0.98	C43-C44	1.509(12)
C30-H30B	0.98	C44-C45	$1.385(11)$
C30-H30C	0.98	C44-C49	1.391(10)
C31-O10	1.429(8)	C45-C46	$1.389(11)$
C31-C32	1.510(11)	C45-H45	0.95
C31-H31A	0.99	C46-C47	1.372(10)
C31-H31B	0.99	C46-N3	1.477(11)
C32-C58	1.314(10)	C47-C48	1.377(11)
C32-C33	1.509(10)	C47-H47	0.95
C33-C34	1.502(10)	C48-C49	1.379(11)
C33-C42	1.537(11)	C48-N4	1.482(10)
C33-H33	1.00	C49-H49	0.95
C34-O11	1.472(9)	C50-O17	1.439(8)
C34-C35	$1.510(9)$	C50-C51	1.500(11)
C34-H34	1.00	C50-H50A	0.99
C35-C36	1.513(11)	C50-H50B	0.99
C35-H35A	0.99	C51-C52	$1.385(11)$
C35-H35B	0.99	C51-C56	$1.392(11)$
C36-C59	1.332(11)	C52-C53	1.379(11)
C36-C37	1.517(10)	C52-H52	0.95
C37-C41	1.561(10)	C53-C54	1.392(10)
C37-C38	1.563(10)	C53-H53	0.95
C37-H37	1.00	C54-C55	1.378(11)
C38-O17	1.429(9)	C54-O18	1.381(10)
C38-C39	1.492(11)	C55-C56	$1.376(11)$
C38-H38	1.00	C55-H55	0.95
C39-C40	1.324(10)	C56-H56	0.95
C39-H39	0.95	C57-O18	1.438(8)
C40-C60	1.495(10)	C57-H57A	0.98
C40-C41	1.513(11)	C57-H57B	0.98
C41-C42	1.521(10)	C57-H57C	0.98
C41-H41	1.00	C58-H58A	0.95
C42-O10	1.443(9)	C58-H58B	0.95
C42-H42	1.00	C59-H59A	0.95
C43-O12	1.199(10)	C59-H59B	0.95
C43-O11	1.346 (9)	C60-H60A	0.98

C60-H60B	0.98	C74-C75	1.387(10)
C60-H60C	0.98	C74-C79	1.389(10)
C61-O19	1.435(8)	C75-C76	1.375(11)
C61-C62	1.497(11)	C75-H75	0.95
C61-H61A	0.99	C76-C77	1.370(11)
C61-H61B	0.99	C76-N5	$1.478(11)$
C62-C88	1.333(10)	C77-C78	1.372(12)
C62-C63	1.520(10)	C77-H77	0.95
C63-C64	1.516(10)	C78-C79	1.381(11)
C63-C72	1.536(11)	C78-N6	1.479(11)
C63-H63	1.00	C79-H79	0.95
C64-O20	1.466(8)	C80-O26	1.448(9)
C64-C65	1.524(9)	C80-C81	1.492(12)
C64-H64	1.00	C80-H80A	0.99
C65-C66	1.509(11)	C80-H80B	0.99
C65-H65A	0.99	C81-C86	1.376(11)
C65-H65B	0.99	C81-C82	$1.395(11)$
C66-C89	1.316(10)	C82-C83	1.373(12)
C66-C67	1.510(11)	C82-H82	0.95
C67-C71	1.555(10)	C83-C84	1.388(11)
C67-C68	1.579(10)	C83-H83	0.95
C67-H67	1.00	C84-C85	1.363(11)
C68-O26	1.413(9)	C84-O27	1.388(10)
C68-C69	1.484(10)	C85-C86	1.381(12)
C68-H68	1.00	C85-H85	0.95
C69-C70	1.309(10)	C86-H86	0.95
C69-H69	0.95	C87-O27	1.431(10)
C70-C71	1.496(10)	C87-H87A	0.98
C70-C90	1.510(10)	C87-H87B	0.98
C71-C72	1.520(9)	C87-H87C	0.98
C71-H71	1.00	C88-H88A	0.95
C72-O19	1.444(9)	C88-H88B	0.95
C72-H72	1.00	C89-H89A	0.95
C73-O21	1.207(10)	C89-H89B	0.95
C73-O20	$1.345(9)$	C90-H90A	0.98
C73-C74	1.480 (11)	C90-H90B	0.98

C90-H90C	0.98	N4-O16	1.217(10)
N1-O5	1.217(8)	N4-O15	$1.225(10)$
N1-O4	1.219(8)	N5-O23	$1.225(8)$
N2-O6	1.232(9)	N5-O22	1.227(8)
N2-O7	1.233(9)	N6-O24	1.213(9)
N3-O14	1.223(9)	N6-O25	1.232(10)
N3-O13	1.227(8)		
O1-C1-C2	106.6(7)	C29-C6-C5	120.4(8)
O1-C1-H1A	110.4	C7-C6-C5	119.8(7)
C2-C1-H1A	110.4	C6-C7-C11	114.9(6)
O1-C1-H1B	110.4	C6-C7-C8	110.7(7)
C2-C1-H1B	110.4	C11-C7-C8	102.9(6)
H1A-C1-H1B	108.6	C6-C7-H7	109.4
C28-C2-C1	125.6(8)	C11-C7-H7	109.4
C28-C2-C3	126.9(8)	C8-C7-H7	109.4
C1-C2-C3	107.4(7)	O8-C8-C9	112.5(8)
C4-C3-C2	116.5(6)	O8-C8-C7	114.4(7)
C4-C3-C12	116.2(7)	C9-C8-C7	103.4(6)
C2-C3-C12	101.0(7)	O8-C8-H8	108.8
C4-C3-H3	107.5	C9-C8-H8	108.8
C2-C3-H3	107.5	C7-C8-H8	108.8
C12-C3-H3	107.5	C10-C9-C8	113.5(8)
O2-C4-C3	108.8(7)	C10-C9-H9	123.2
O2-C4-C5	106.6(6)	C8-C9-H9	123.2
C3-C4-C5	113.8(6)	C9-C10-C30	126.9(8)
O2-C4-H4	109.2	C9-C10-C11	111.3(8)
C3-C4-H4	109.2	C30-C10-C11	121.5(7)
C5-C4-H4	109.2	C10-C11-C12	116.3(7)
C6-C5-C4	113.8(7)	C10-C11-C7	104.6(6)
C6-C5-H5A	108.8	C12-C11-C7	112.5(6)
C4-C5-H5A	108.8	C10-C11-H11	107.7
C6-C5-H5B	108.8	C12-C11-H11	107.7
C4-C5-H5B	108.8	C7-C11-H11	107.7
H5A-C5-H5B	107.7	O1-C12-C11	108.7(6)
C29-C6-C7	119.8(8)	O1-C12-C3	104.8(6)

C11-C12-C3	116.4(7)	C21-C22-H22	119.1
O1-C12-H12	108.9	C24-C23-C22	120.5(8)
C11-C12-H12	108.9	C24-C23-H23	119.7
C3-C12-H12	108.9	C22-C23-H23	119.7
O3-C13-O2	126.2(8)	C23-C24-O9	125.2(8)
O3-C13-C14	122.6(8)	C23-C24-C25	118.9(9)
O2-C13-C14	111.2(8)	O9-C24-C25	115.9(8)
C15-C14-C19	120.2(8)	C26-C25-C24	120.7(9)
C15-C14-C13	120.2(7)	C26-C25-H25	119.7
C19-C14-C13	119.1(8)	C24-C25-H25	119.7
C16-C15-C14	117.9(7)	C25-C26-C21	121.7(8)
C16-C15-H15	121.0	C25-C26-H26	119.1
C14-C15-H15	121.0	C21-C26-H26	119.1
C17-C16-C15	123.9(8)	O9-C27-H27A	109.5
C17-C16-N1	117.5(8)	O9-C27-H27B	109.5
C15-C16-N1	118.5(7)	H27A-C27-H27B	109.5
C16-C17-C18	115.9(8)	O9-C27-H27C	109.5
C16-C17-H17	122.1	H27A-C27-H27C	109.5
C18-C17-H17	122.1	H27B-C27-H27C	109.5
C19-C18-C17	123.1(8)	C2-C28-H28A	120.0
C19-C18-N2	118.9(8)	C2-C28-H28B	120.0
C17-C18-N2	117.9(8)	H28A-C28-H28B	120.0
C18-C19-C14	118.9(8)	C6-C29-H29A	120.0
C18-C19-H19	120.5	C6-C29-H29B	120.0
C14-C19-H19	120.5	H29A-C29-H29B	120.0
O8-C20-C21	109.6(7)	C10-C30-H30A	109.5
O8-C20-H20A	109.7	C10-C30-H30B	109.5
C21-C20-H20A	109.7	H30A-C30-H30B	109.5
O8-C20-H20B	109.7	C10-C30-H30C	109.5
C21-C20-H20B	109.7	H30A-C30-H30C	109.5
H20A-C20-H20B	108.2	H30B-C30-H30C	109.5
C26-C21-C22	116.2(8)	O10-C31-C32	106.0(7)
C26-C21-C20	123.0(8)	O10-C31-H31A	110.5
C22-C21-C20	120.7(8)	C32-C31-H31A	110.5
C23-C22-C21	121.9(8)	O10-C31-H31B	110.5
C23-C22-H22	119.1	C32-C31-H31B	110.5

H31A-C31-H31B	108.7	C37-C38-H38	108.4
C58-C32-C33	127.6(8)	C40-C39-C38	113.3(8)
C58-C32-C31	125.5(8)	C40-C39-H39	123.4
C33-C32-C31	106.8(7)	C38-C39-H39	123.4
C34-C33-C32	117.6(6)	C39-C40-C60	125.7(8)
C34-C33-C42	115.3(7)	C39-C40-C41	111.3(7)
C32-C33-C42	102.6(7)	C60-C40-C41	122.6(8)
C34-C33-H33	106.9	C40-C41-C42	116.8(7)
C32-C33-H33	106.9	C40-C41-C37	104.8(7)
C42-C33-H33	106.9	C42-C41-C37	113.8(6)
O11-C34-C33	109.3(7)	C40-C41-H41	106.9
O11-C34-C35	108.0(6)	C42-C41-H41	106.9
C33-C34-C35	113.2(6)	C37-C41-H41	106.9
O11-C34-H34	108.7	O10-C42-C41	108.8(6)
C33-C34-H34	108.7	O10-C42-C33	104.3(6)
C35-C34-H34	108.7	C41-C42-C33	118.0(7)
C34-C35-C36	113.5(7)	O10-C42-H42	108.4
C34-C35-H35A	108.9	C41-C42-H42	108.4
C36-C35-H35A	108.9	C33-C42-H42	108.4
C34-C35-H35B	108.9	O12-C43-O11	126.8(9)
C36-C35-H35B	108.9	O12-C43-C44	122.8(8)
H35A-C35-H35B	107.7	O11-C43-C44	110.4(8)
C59-C36-C35	121.5(8)	C45-C44-C49	119.7(8)
C59-C36-C37	118.7(8)	C45-C44-C43	122.0(7)
C35-C36-C37	119.8(7)	C49-C44-C43	118.1(8)
C36-C37-C41	113.7(6)	C44-C45-C46	119.2(8)
C36-C37-C38	110.4(7)	C44-C45-H45	120.4
C41-C37-C38	104.2(6)	C46-C45-H45	120.4
C36-C37-H37	109.5	C47-C46-C45	122.1(8)
C41-C37-H37	109.5	C47-C46-N3	118.2(8)
C38-C37-H37	109.5	C45-C46-N3	119.6(7)
O17-C38-C39	111.5(7)	C46-C47-C48	117.3(8)
O17-C38-C37	115.4(6)	C46-C47-H47	121.3
C39-C38-C37	104.5(6)	C48-C47-H47	121.3
O17-C38-H38	108.4	C47-C48-C49	122.7(8)
C39-C38-H38	108.4	C47-C48-N4	117.5(8)

C49-C48-N4	$119.8(8)$	H58A-C58-H58B	120.0
C48-C49-C44	$118.9(8)$	C36-C59-H59A	120.0
C48-C49-H49	120.6	C36-C59-H59B	120.0
C44-C49-H49	120.6	H59A-C59-H59B	120.0
O17-C50-C51	$108.7(7)$	C40-C60-H60A	109.5
O17-C50-H50A	109.9	C40-C60-H60B	109.5
C51-C50-H50A	109.9	H60A-C60-H60B	109.5
O17-C50-H50B	110.0	C40-C60-H60C	109.5
C51-C50-H50B	110.0	H60A-C60-H60C	109.5
H50A-C50-H50B	108.3	O60B-C60-H60C	109.5
C52-C51-C56	$117.9(8)$	O19-C61-C62	$106.9(7)$
C52-C51-C50	$121.9(8)$	C66-C65-H61A	110.3
C56-C51-C50	$120.2(8)$	O64-H65B	$109-C 65-\mathrm{C}$

H65A-C65-H65B	107.5	O20-C73-C74	110.9(8)
C89-C66-C65	120.6(8)	C75-C74-C79	119.4(8)
C89-C66-C67	119.8(9)	C75-C74-C73	121.9(7)
C65-C66-C67	119.5(7)	C79-C74-C73	118.4(8)
C66-C67-C71	114.3(6)	C76-C75-C74	119.1(8)
C66-C67-C68	112.2(7)	C76-C75-H75	120.4
C71-C67-C68	102.6(6)	C74-C75-H75	120.4
C66-C67-H67	109.2	C77-C76-C75	122.8(9)
C71-C67-H67	109.2	C77-C76-N5	117.9(8)
C68-C67-H67	109.2	C75-C76-N5	119.0(8)
O26-C68-C69	113.2(7)	C76-C77-C78	116.9(8)
O26-C68-C67	115.8(7)	C76-C77-H77	121.6
C69-C68-C67	103.9(6)	C78-C77-H77	121.6
O26-C68-H68	107.9	C77-C78-C79	122.7(8)
C69-C68-H68	107.9	C77-C78-N6	117.9(9)
C67-C68-H68	107.9	C79-C78-N6	119.1(9)
C70-C69-C68	113.4(8)	C78-C79-C74	118.9(9)
C70-C69-H69	123.3	C78-C79-H79	120.5
C68-C69-H69	123.3	C74-C79-H79	120.5
C69-C70-C71	111.4(7)	O26-C80-C81	110.9(7)
C69-C70-C90	125.9(8)	O26-C80-H80A	109.4
C71-C70-C90	122.4(7)	C81-C80-H80A	109.5
C70-C71-C72	116.4(7)	O26-C80-H80B	109.4
C70-C71-C67	105.5(6)	C81-C80-H80B	109.4
C72-C71-C67	113.5(6)	H80A-C80-H80B	108.0
C70-C71-H71	107.0	C86-C81-C82	118.2(9)
C72-C71-H71	107.0	C86-C81-C80	121.2(8)
C67-C71-H71	107.0	C82-C81-C80	120.6(9)
O19-C72-C71	108.0(6)	C83-C82-C81	120.6(9)
O19-C72-C63	104.7(6)	C83-C82-H82	119.7
C71-C72-C63	117.1(7)	C81-C82-H82	119.7
O19-C72-H72	108.9	C82-C83-C84	119.5(9)
C71-C72-H72	108.9	C82-C83-H83	120.3
C63-C72-H72	108.9	C84-C83-H83	120.3
O21-C73-O20	125.6(8)	C85-C84-C83	120.9(9)
O21-C73-C74	123.5(8)	C85-C84-O27	125.4(9)

C83-C84-O27	113.7(8)	O6-N2-O7	124.4(8)
C84-C85-C86	119.0(9)	O6-N2-C18	117.4(8)
C84-C85-H85	120.5	O7-N2-C18	118.2(8)
C86-C85-H85	120.5	O14-N3-O13	125.2(8)
C81-C86-C85	121.8(9)	O14-N3-C46	117.9(7)
C81-C86-H86	119.1	O13-N3-C46	116.9(8)
C85-C86-H86	119.1	O16-N4-O15	126.2(8)
O27-C87-H87A	109.5	O16-N4-C48	116.5(8)
O27-C87-H87B	109.5	O15-N4-C48	117.3(9)
H87A-C87-H87B	109.5	O23-N5-O22	125.0(8)
O27-C87-H87C	109.5	O23-N5-C76	117.6(8)
H87A-C87-H87C	109.5	O22-N5-C76	117.4(8)
H87B-C87-H87C	109.5	O24-N6-O25	124.5(9)
C62-C88-H88A	120.0	O24-N6-C78	118.0(9)
C62-C88-H88B	120.0	O25-N6-C78	117.5(9)
H88A-C88-H88B	120.0	C1-O1-C12	107.8(6)
C66-C89-H89A	120.0	C13-O2-C4	117.3(7)
C66-C89-H89B	120.0	C8-O8-C20	111.6(6)
H89A-C89-H89B	120.0	C24-O9-C27	116.2(7)
C70-C90-H90A	109.5	C31-O10-C42	106.5(6)
C70-C90-H90B	109.5	C43-O11-C34	117.4(7)
H90A-C90-H90B	109.5	C38-O17-C50	111.2(6)
C70-C90-H90C	109.5	C54-O18-C57	115.8(6)
H90A-C90-H90C	109.5	C61-O19-C72	108.0(6)
H90B-C90-H90C	109.5	C73-O20-C64	116.6(6)
O5-N1-O4	124.1(8)	C68-O26-C80	111.3(6)
O5-N1-C16	118.0(7)	C84-O27-C87	116.1(7)
O4-N1-C16	117.9(7)		

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 394. The anisotropic displacement factor exponent takes the form: $-2 \mathbf{a}^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
C1	17(5)	28(6)	28(5)	1(5)	-9(4)	-1(5)
C2	20(5)	24(6)	20(5)	3(5)	3(4)	-3(5)
C3	19(5)	17(5)	15(5)	2(4)	10(4)	2(4)
C4	35(6)	16(5)	6(4)	3(4)	8(4)	-8(5)
C5	18(5)	18(5)	12(4)	-3(4)	3(4)	0 (4)
C6	19(5)	19(6)	22(5)	-1(5)	-2(4)	-4(5)
C7	20(5)	18(6)	23(5)	2(4)	-5(4)	-6(5)
C8	24(5)	22(6)	24(5)	-6(5)	-4(4)	0 (5)
C9	32(6)	28(6)	14(5)	-4(5)	-1(4)	-2(5)
C10	22(5)	20(6)	15(5)	-1(4)	-3(4)	2(5)
C11	20(5)	13(5)	15(5)	-8(4)	-6(4)	3(4)
C12	15(5)	16(6)	28(5)	2(4)	3(4)	0(4)
C13	20(5)	28(6)	15(5)	4(5)	-1(4)	8(5)
C14	21(5)	18(5)	7(5)	7(4)	0 (4)	3(4)
C15	14(5)	29(6)	14(5)	$0(4)$	4(4)	$0(5)$
C16	28(5)	11(5)	19(5)	-3(4)	0(4)	6(5)
C17	19(5)	25(6)	18(5)	5(5)	1(4)	-1(5)
C18	17(5)	23(6)	7(5)	-4(4)	-2(4)	3(4)
C19	19(5)	27(6)	18(5)	3(5)	3(4)	4(5)
C20	25(6)	34(7)	28(5)	-5(5)	-8(4)	-3(5)
C21	$9(5)$	22(6)	37(6)	-11(5)	-3(4)	$0(5)$
C22	36(6)	36(7)	28(6)	9(5)	-5(5)	-1(6)
C23	31(6)	27(6)	25(5)	7(5)	4(5)	1(5)
C24	23(6)	34(7)	29(6)	$0(5)$	5(4)	1(5)
C25	30(6)	45(8)	28(6)	-5(5)	-9(5)	13(6)
C26	26(6)	52(8)	23(5)	-3(6)	-10(5)	1(6)
C27	47(6)	60(8)	24(6)	-8(5)	7(5)	13(6)
C28	37(6)	40(7)	27(6)	-5(5)	-1(5)	$7(6)$
C29	24(5)	29(6)	33(6)	$6(5)$	4(4)	-2(5)
C30	29(5)	40(7)	22(5)	6(5)	5(4)	-2(5)
C31	28(6)	44(8)	28(6)	-6(5)	-5(5)	-5(5)

C32	15(5)	30(6)	17(5)	-9(5)	3(4)	-6(5)
C33	9(5)	22(6)	20(5)	1(4)	0(4)	1(4)
C34	23(5)	22(6)	18(5)	-1(4)	-3(4)	-8(5)
C35	12(5)	25(6)	18(5)	3(4)	4(4)	-1(4)
C36	15(5)	19(5)	19(5)	-6(4)	$0(4)$	-1(4)
C37	15(5)	15(5)	22(5)	-2(4)	-6(4)	-1(4)
C38	22(5)	24(6)	19(5)	8(4)	1(4)	-6(5)
C39	30(6)	18(6)	22(5)	2(4)	11(4)	2(5)
C40	21(5)	30(6)	14(5)	5(4)	3(4)	4(5)
C41	19(5)	19(6)	27(5)	6 (5)	5(4)	-1(4)
C42	18(5)	29(6)	19(5)	-2(5)	-5(4)	-6(5)
C43	21(5)	33(7)	15(6)	-12(5)	-1(4)	-15(5)
C44	16(5)	22(6)	15(5)	2(5)	1(4)	-4(5)
C45	31(5)	29(6)	19(5)	-10(5)	9(4)	-17(5)
C46	18(5)	28(6)	15(5)	-1(5)	5(4)	2(5)
C47	10(5)	40(7)	28(6)	-11(5)	1(4)	1(5)
C48	20(5)	39(7)	15(5)	-6(5)	$0(4)$	1(5)
C49	17(5)	31(6)	15(5)	$0(5)$	0 (4)	2(5)
C50	22(5)	32(6)	20(5)	3(5)	-10(4)	1(5)
C51	17(5)	16(5)	22(5)	3(5)	-10(4)	-6(4)
C52	15(5)	35(7)	18(5)	$0(5)$	-3(4)	3(5)
C53	23(6)	25(6)	29(6)	-13(5)	-1(4)	-4(5)
C 54	20(5)	27(6)	21(5)	1(5)	5(4)	4(5)
C 55	19(5)	22(6)	18(5)	4(5)	3(4)	4(5)
C56	21(5)	21(6)	34(6)	-9(5)	2(4)	3(5)
C 57	40(6)	45(7)	22(5)	12(5)	13(4)	-7(5)
C 58	29(6)	42(7)	32(6)	-2(5)	-2(5)	-10(5)
C59	28(6)	31(6)	18(5)	-2(5)	-1(4)	-7(5)
C60	33(6)	48(7)	25(5)	-5(5)	12(4)	5(6)
C61	31(6)	21(6)	29(5)	-3(5)	2(5)	-1(5)
C62	20(5)	22(6)	18(5)	-6(4)	0(4)	-1(5)
C63	22(5)	12(5)	17(5)	-5(4)	2(4)	-2(4)
C64	35(6)	10(5)	12(5)	-9(4)	4(4)	3(5)
C65	19(5)	20(5)	18(5)	0(4)	-3(4)	-6(4)
C66	24(5)	25(6)	26(5)	-8(5)	1(4)	-2(5)
C67	23(5)	16(5)	22(5)	-4(4)	-6(4)	3(4)

C68	31(6)	22(6)	18(5)	-4(5)	-5(4)	1(5)
C69	29(6)	22(6)	13(5)	-3(4)	4(4)	8(5)
C70	23(5)	21(6)	9(5)	2(4)	-3(4)	-3(5)
C71	27(5)	11(5)	13(5)	-2(4)	-4(4)	-1(4)
C72	21(5)	17(6)	21(5)	-4(4)	2(4)	-9(4)
C73	22(5)	15(6)	31(6)	-7(5)	$0(4)$	-12(5)
C74	21(5)	20(6)	12(5)	5(4)	-2(4)	-6(5)
C75	20(5)	16(5)	18(5)	0(4)	-2(4)	1(5)
C76	22(5)	21(6)	25(5)	-3(5)	4(4)	-2(5)
C77	19(6)	31(7)	30(6)	-14(5)	6(4)	-5(5)
C78	27(6)	39(7)	14(5)	9(5)	-2(4)	-13(5)
C79	19(5)	27(6)	17(5)	-6(5)	-1(4)	-2(4)
C80	24(6)	31(7)	40(6)	-8(5)	-12(5)	4(5)
C81	13(5)	36(7)	28(6)	-12(5)	-1(4)	5(5)
C82	17(5)	47(7)	27(5)	-2(5)	5(4)	3(5)
C83	18(5)	50(7)	30(6)	-8(5)	2(4)	-6(5)
C84	19(6)	41(7)	30(6)	-2(5)	6(5)	0 (5)
C85	34(6)	50(8)	14(5)	3(5)	4(4)	11(6)
C86	25(6)	44(8)	28(6)	-10(5)	-7(5)	10(6)
C87	40(7)	50(8)	62(7)	10(6)	20(6)	1(6)
C88	20(5)	29(6)	31(6)	-1(5)	-2(4)	-4(5)
C89	29(6)	29(6)	35(6)	7(5)	2(5)	7(5)
C90	38(6)	29(6)	21(5)	-4(5)	12(4)	-1(5)
N1	30(5)	22(5)	19(5)	4(4)	3(4)	-3(4)
N2	20(4)	47(6)	20(5)	5(5)	4(4)	12(5)
N3	27(5)	32(6)	29(5)	5(5)	-1(4)	-13(4)
N4	32(5)	66(8)	25(5)	-21(5)	3(4)	2(5)
N5	26(5)	25(5)	37(5)	-7(5)	-1(4)	-6(4)
N6	42(6)	52(7)	27(5)	-1(5)	2(4)	-9(5)
O1	26(3)	23(4)	22(3)	-6(3)	-2(3)	8(3)
O2	23(3)	20(4)	13(3)	2(3)	6(3)	1(3)
O3	36(4)	28(4)	19(3)	-7(3)	4(3)	-5(3)
O4	41(4)	30(4)	27(4)	-8(3)	10(3)	-13(3)
O5	31(4)	28(4)	33(4)	-4(3)	14(3)	-10(3)
O6	44(4)	45(5)	21(4)	-5(3)	13(3)	-14(4)
O7	38(4)	23(4)	29(4)	-8(3)	6(3)	-5(4)

O8	$28(4)$	$23(4)$	$19(3)$	$-1(3)$	$-5(3)$	$3(3)$
O9	$39(4)$	$47(5)$	$20(4)$	$-5(3)$	$4(3)$	$12(4)$
O10	$28(4)$	$35(4)$	$21(3)$	$1(3)$	$-1(3)$	$-15(3)$
O11	$28(3)$	$21(4)$	$14(3)$	$-5(3)$	$9(3)$	$0(3)$
O12	$41(4)$	$26(4)$	$20(3)$	$5(3)$	$10(3)$	$2(4)$
O13	$45(4)$	$45(5)$	$20(4)$	$7(4)$	$12(3)$	$10(4)$
O14	$48(4)$	$24(4)$	$41(4)$	$-6(4)$	$14(3)$	$0(4)$
O15	$56(5)$	$63(6)$	$21(4)$	$-5(4)$	$14(3)$	$18(5)$
O16	$64(5)$	$88(7)$	$23(4)$	$6(4)$	$-4(4)$	$45(5)$
O17	$16(3)$	$21(4)$	$23(3)$	$4(3)$	$-1(3)$	$3(3)$
O18	$22(3)$	$32(4)$	$22(3)$	$-1(3)$	$3(3)$	$-7(3)$
O19	$32(4)$	$18(4)$	$21(3)$	$-4(3)$	$-4(3)$	$-3(3)$
O20	$28(3)$	$13(4)$	$16(3)$	$7(3)$	$3(3)$	$3(3)$
O21	$40(4)$	$18(4)$	$22(3)$	$2(3)$	$8(3)$	$4(3)$
O22	$28(4)$	$23(4)$	$42(4)$	$2(3)$	$3(3)$	$5(3)$
O23	$26(4)$	$34(5)$	$52(4)$	$-17(4)$	$7(3)$	$6(3)$
O24	$78(5)$	$71(6)$	$25(4)$	$1(4)$	$22(4)$	$9(5)$
O25	$67(5)$	$48(5)$	$30(4)$	$8(4)$	$8(4)$	$-15(5)$
O26	$23(4)$	$18(4)$	$30(3)$	$-2(3)$	$-8(3)$	$1(3)$
O27	$34(4)$	$47(5)$	$37(4)$	$3(4)$	$7(3)$	$0(4)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 394.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H1A	-1314	8977	3048	30
H1B	-1696	7555	3355	30
H3	-804	3304	3625	19
H4	-437	1405	3047	22
H5A	163	1474	3747	19
H5B	485	1364	3317	19
H7	675	7380	4126	25
H8	766	5099	4760	29
H9	12	1853	4776	30
H11	-165	8087	4257	20
H12	-249	7659	3429	24
H15	479	7354	2551	23
H17	964	8266	1307	25
H19	14	2509	1537	26
H20A	1624	3256	4806	36
H20B	1542	4456	4310	36
H22	1661	1752	3643	41
H23	2170	-1296	3373	33
H25	2699	-3315	4652	42
H26	2180	-346	4925	42
H27A	2860	-3734	3217	65
H27B	2335	-5311	3271	65
H27C	2915	-6576	3335	65
H28A	-1703	5006	2538	42
H28B	-1273	2726	2616	42
H29A	1138	6961	3526	35
H29B	1014	4781	3147	35
H30A	-979	5521	4735	46
H30B	-1007	2738	4572	46
H30C	-1160	4880	4212	46

H31A	4422	5033	256	41
H31B	4900	3372	109	41
H33	3933	-853	-246	21
H34	3368	-1789	280	26
H35A	2540	-1645	-160	22
H35B	2981	-2130	-492	22
H37	2734	3500	-1123	21
H38	2699	629	-1655	26
H39	3411	-2731	-1499	27
H41	3618	3699	-1074	26
H42	3498	3961	-282	28
H45	2414	4774	415	31
H47	1891	7648	1536	32
H49	2861	1695	1647	26
H50A	1823	-1033	-1768	31
H50B	1828	606	-1321	31
H52	1342	-4917	-1818	27
H53	780	-7708	-1525	31
H55	913	-3858	-353	23
H56	1469	-1084	-655	31
H57A	237	-6772	-182	53
H57B	851	-7654	-113	53
H57C	375	-9620	-185	53
H58A	4205	-961	776	42
H58B	4697	1038	870	42
H59A	2065	2234	-208	31
H59B	2115	4008	-646	31
H60A	4492	870	-1269	52
H60B	4388	-2003	-1245	52
H60C	4505	-447	-788	52
H61A	7731	13887	3882	33
H61B	8119	12550	3569	33
H63	7268	8332	3238	20
H64	6866	6133	3764	23
H65A	6313	6397	3053	23
H65B	5961	6094	3460	23

H67	5780	12316	2702	25
H68	5759	10282	2049	29
H69	6552	7334	2016	25
H71	6619	13253	2642	21
H72	6660	12503	3452	24
H75	5986	11861	4398	22
H77	5673	12245	5696	32
H79	6605	6779	5311	26
H80A	4955	8596	1919	40
H80B	4931	9028	2448	40
H82	4548	5048	1549	36
H83	3941	1857	1561	39
H85	4075	2291	2925	39
H86	4676	5508	2910	40
H87A	3292	157	2783	74
H87B	3785	-1722	2813	74
H87C	3207	-2484	2557	74
H88A	8098	9824	4374	33
H88B	7675	7536	4267	33
H89A	5381	9313	3621	38
H89B	5271	11596	3262	38
H90A	7518	11577	2265	43
H90B	7512	8697	2179	43
H90C	7660	9743	2682	43

Table 6. Torsion angles [${ }^{\circ}$] for 394.

O1-C1-C2-C28	-177.8(8)	C10-C11-C12-O1	79.7(8)
O1-C1-C2-C3	0.2(8)	C7-C11-C12-O1	-159.7(7)
C28-C2-C3-C4	30.9(12)	C10-C11-C12-C3	-38.3(10)
C1-C2-C3-C4	-147.0(7)	C7-C11-C12-C3	82.4(9)
C28-C2-C3-C12	157.9(9)	C4-C3-C12-O1	160.2(6)
C1-C2-C3-C12	-20.0(8)	C2-C3-C12-O1	33.1(7)
C2-C3-C4-O2	53.3(9)	C4-C3-C12-C11	-79.7(9)
C12-C3-C4-O2	-65.7(8)	C2-C3-C12-C11	153.2(7)
C2-C3-C4-C5	172.0(7)	O3-C13-C14-C15	-164.2(8)
C12-C3-C4-C5	53.0(9)	O2-C13-C14-C15	15.0(10)
O2-C4-C5-C6	56.9(8)	O3-C13-C14-C19	7.7(12)
C3-C4-C5-C6	-63.0(9)	O2-C13-C14-C19	-173.1(7)
C4-C5-C6-C29	-90.8(9)	C19-C14-C15-C16	2.4(12)
C4-C5-C6-C7	89.2(8)	C13-C14-C15-C16	174.2(7)
C29-C6-C7-C11	127.9(8)	C14-C15-C16-C17	-0.1(12)
C5-C6-C7-C11	-52.1(10)	C14-C15-C16-N1	-177.3(7)
C29-C6-C7-C8	-116.1(8)	C15-C16-C17-C18	-1.2(12)
C5-C6-C7-C8	64.0(9)	N1-C16-C17-C18	176.0(7)
C6-C7-C8-O8	19.2(9)	C16-C17-C18-C19	0.3(12)
C11-C7-C8-O8	142.5(7)	C16-C17-C18-N2	-175.3(7)
C6-C7-C8-C9	-103.5(8)	C17-C18-C19-C14	1.9(12)
C11-C7-C8-C9	19.8(8)	N2-C18-C19-C14	177.5(7)
O8-C8-C9-C10	-140.1(7)	C15-C14-C19-C18	-3.2(12)
C7-C8-C9-C10	-16.2(9)	C13-C14-C19-C18	-175.1(7)
C8-C9-C10-C30	-169.5(8)	O8-C20-C21-C26	-104.4(9)
C8-C9-C10-C11	4.8(10)	O8-C20-C21-C22	$77.8(10)$
C9-C10-C11-C12	133.6(8)	C26-C21-C22-C23	$3.0(13)$
C30-C10-C11-C12	-51.7(10)	C20-C21-C22-C23	-179.1(8)
C9-C10-C11-C7	8.8(9)	C21-C22-C23-C24	-1.4(14)
C30-C10-C11-C7	-176.5(7)	C22-C23-C24-O9	177.5(8)
C6-C7-C11-C10	102.9(8)	C22-C23-C24-C25	-1.0(13)
C8-C7-C11-C10	-17.6(8)	C23-C24-C25-C26	1.7(14)
C6-C7-C11-C12	-24.3(10)	O9-C24-C25-C26	-176.9(8)
C8-C7-C11-C12	-144.7(7)	C24-C25-C26-C21	-0.1(14)

C22-C21-C26-C25	-2.2(13)	$\mathrm{C} 40-\mathrm{C} 41-\mathrm{C} 42-\mathrm{O} 10$	76.0(9)
C20-C21-C26-C25	179.9(9)	C37-C41-C42-O10	-161.6(7)
O10-C31-C32-C58	172.9(8)	C40-C41-C42-C33	-42.6(10)
O10-C31-C32-C33	-10.5(9)	C37-C41-C42-C33	$79.9(9)$
C58-C32-C33-C34	36.8(13)	C34-C33-C42-O10	159.4(6)
C31-C32-C33-C34	-139.7(8)	C32-C33-C42-O10	30.2(8)
C58-C32-C33-C42	164.5(9)	C34-C33-C42-C41	-79.7(9)
C31-C32-C33-C42	-11.9(8)	C32-C33-C42-C41	151.1(7)
C32-C33-C34-O11	56.0(9)	O12-C43-C44-C45	-162.7(8)
C42-C33-C34-O11	-65.3(8)	O11-C43-C44-C45	16.9(11)
C32-C33-C34-C35	176.6(7)	O12-C43-C44-C49	11.9(12)
C42-C33-C34-C35	55.2(10)	O11-C43-C44-C49	-168.5(7)
O11-C34-C35-C36	55.4(8)	C49-C44-C45-C46	2.0(12)
C33-C34-C35-C36	-65.8(10)	C43-C44-C45-C46	176.6(8)
C34-C35-C36-C59	-90.1(9)	C44-C45-C46-C47	0.8(13)
C34-C35-C36-C37	91.1(8)	C44-C45-C46-N3	178.7(7)
C59-C36-C37-C41	127.6(8)	C45-C46-C47-C48	-2.7(13)
C35-C36-C37-C41	-53.6(10)	N3-C46-C47-C48	179.4(7)
C59-C36-C37-C38	-115.8(8)	C46-C47-C48-C49	1.9(13)
C35-C36-C37-C38	63.1(9)	C46-C47-C48-N4	-175.6(7)
C36-C37-C38-O17	13.9(9)	C47-C48-C49-C44	0.9(13)
C41-C37-C38-O17	136.4(7)	N4-C48-C49-C44	178.3(7)
C36-C37-C38-C39	-108.8(7)	C45-C44-C49-C48	-2.9(12)
C41-C37-C38-C39	13.7(8)	C43-C44-C49-C48	-177.6(8)
O17-C38-C39-C40	-135.7(7)	O17-C50-C51-C52	-93.6(9)
C37-C38-C39-C40	-10.5(9)	O17-C50-C51-C56	84.2(9)
C38-C39-C40-C60	-171.0(8)	C56-C51-C52-C53	-2.9(12)
C38-C39-C40-C41	2.3(10)	C50-C51-C52-C53	174.9(7)
C39-C40-C41-C42	133.8(8)	C51-C52-C53-C54	-0.3(12)
C60-C40-C41-C42	-52.6(11)	C52-C53-C54-C55	3.3(12)
C39-C40-C41-C37	6.9(9)	C52-C53-C54-O18	-177.1(7)
C60-C40-C41-C37	-179.6(7)	O18-C54-C55-C56	177.4(7)
C36-C37-C41-C40	107.8(7)	C53-C54-C55-C56	-3.2(12)
C38-C37-C41-C40	-12.5(8)	C54-C55-C56-C51	-0.1(12)
C36-C37-C41-C42	-21.1(10)	C52-C51-C56-C55	3.1(12)
C38-C37-C41-C42	-141.3(7)	C50-C51-C56-C55	-174.8(7)

O19-C61-C62-C88	-176.3(8)	C70-C71-C72-C63	-40.7(10)
O19-C61-C62-C63	3.4(8)	C67-C71-C72-C63	82.1(9)
C88-C62-C63-C64	30.9(12)	C64-C63-C72-O19	161.0(6)
C61-C62-C63-C64	-148.9(7)	C62-C63-C72-O19	33.6(8)
C88-C62-C63-C72	157.4(8)	C64-C63-C72-C71	-79.4(9)
C61-C62-C63-C72	-22.4(8)	C62-C63-C72-C71	153.2(7)
C62-C63-C64-O20	51.4(9)	O21-C73-C74-C75	-169.0(8)
C72-C63-C64-O20	-67.6(8)	O20-C73-C74-C75	9.9(11)
C62-C63-C64-C65	170.9(7)	O21-C73-C74-C79	4.7(12)
C72-C63-C64-C65	51.9(9)	O20-C73-C74-C79	-176.4(7)
O20-C64-C65-C66	57.7(9)	C79-C74-C75-C76	$3.0(12)$
C63-C64-C65-C66	-62.3(9)	C73-C74-C75-C76	176.6(8)
C64-C65-C66-C89	-92.1(10)	C74-C75-C76-C77	-4.7(13)
C64-C65-C66-C67	89.2(9)	C74-C75-C76-N5	-177.8(7)
C89-C66-C67-C71	128.4(8)	C75-C76-C77-C78	4.1(13)
C65-C66-C67-C71	-52.9(10)	N5-C76-C77-C78	177.3(7)
C89-C66-C67-C68	-115.3(9)	C76-C77-C78-C79	-2.0(13)
C65-C66-C67-C68	63.3(9)	C76-C77-C78-N6	-175.7(7)
C66-C67-C68-O26	19.2(10)	C77-C78-C79-C74	0.6 (13)
C71-C67-C68-O26	142.3(7)	N6-C78-C79-C74	174.2(7)
C66-C67-C68-C69	-105.6(8)	C75-C74-C79-C78	-1.0(12)
C71-C67-C68-C69	17.5(8)	C73-C74-C79-C78	-174.9(7)
O26-C68-C69-C70	-140.8(7)	O26-C80-C81-C86	83.4(10)
C67-C68-C69-C70	-14.3(10)	O26-C80-C81-C82	-100.1(9)
C68-C69-C70-C71	4.3(10)	C86-C81-C82-C83	1.3(13)
C68-C69-C70-C90	-169.1(8)	C80-C81-C82-C83	-175.4(8)
C69-C70-C71-C72	134.8(8)	C81-C82-C83-C84	-1.7(13)
C90-C70-C71-C72	-51.6(11)	C82-C83-C84-C85	1.9(14)
C69-C70-C71-C67	7.9(9)	C82-C83-C84-O27	-179.4(8)
C90-C70-C71-C67	-178.5(7)	C83-C84-C85-C86	-1.5(13)
C66-C67-C71-C70	106.2(7)	O27-C84-C85-C86	179.8(8)
C68-C67-C71-C70	-15.5(8)	C82-C81-C86-C85	-1.0(13)
C66-C67-C71-C72	-22.5(10)	C80-C81-C86-C85	175.7(8)
C68-C67-C71-C72	-144.1(7)	C84-C85-C86-C81	1.1(14)
C70-C71-C72-O19	77.1(9)	C17-C16-N1-O5	1.3(11)
C67-C71-C72-O19	-160.0(7)	C15-C16-N1-O5	178.6(7)

C17-C16-N1-O4	-179.5(7)	C9-C8-O8-C20	-160.3(6)
C15-C16-N1-O4	-2.1(11)	C7-C8-O8-C20	82.1(8)
C19-C18-N2-O6	178.1(7)	C21-C20-O8-C8	-169.5(7)
C17-C18-N2-O6	-6.1(11)	C23-C24-O9-C27	-7.1(12)
C19-C18-N2-O7	-2.6(11)	C25-C24-O9-C27	171.4(8)
C17-C18-N2-O7	173.2(7)	C32-C31-O10-C42	30.7(9)
C47-C46-N3-O14	8.6(11)	C41-C42-O10-C31	-165.3(7)
C45-C46-N3-O14	-169.3(8)	C33-C42-O10-C31	-38.5(8)
C47-C46-N3-O13	-171.7(8)	O12-C43-O11-C34	11.9(12)
C45-C46-N3-O13	10.4(11)	C44-C43-O11-C34	-167.7(6)
C47-C48-N4-O16	177.8(8)	C33-C34-O11-C43	-122.9(7)
C49-C48-N4-O16	0.3(12)	C35-C34-O11-C43	113.5(7)
C47-C48-N4-O15	-4.2(12)	C39-C38-O17-C50	-159.2(6)
C49-C48-N4-O15	178.3(8)	C37-C38-O17-C50	81.9(8)
C77-C76-N5-O23	$9.5(11)$	C51-C50-O17-C38	-168.9(6)
C75-C76-N5-O23	-177.0(8)	C55-C54-O18-C57	-16.1(11)
C77-C76-N5-O22	-172.7(7)	C53-C54-O18-C57	164.4(7)
C75-C76-N5-O22	0.8(11)	C62-C61-O19-C72	18.9(8)
C77-C78-N6-O24	-11.6(12)	C71-C72-O19-C61	-159.0(6)
C79-C78-N6-O24	174.4(8)	C63-C72-O19-C61	-33.5(8)
C77-C78-N6-O25	169.2(8)	O21-C73-O20-C64	2.6(12)
C79-C78-N6-O25	-4.7(12)	C74-C73-O20-C64	-176.2(6)
C2-C1-O1-C12	21.9(8)	C63-C64-O20-C73	-123.0(7)
C11-C12-O1-C1	-160.2(7)	C65-C64-O20-C73	113.7(7)
C3-C12-O1-C1	-35.1(8)	C69-C68-O26-C80	-157.2(6)
O3-C13-O2-C4	11.4(12)	C67-C68-O26-C80	83.0(8)
C14-C13-O2-C4	-167.8(6)	C81-C80-O26-C68	179.0(7)
C3-C4-O2-C13	-135.9(7)	C85-C84-O27-C87	-1.7(12)
C5-C4-O2-C13	101.0(7)	C83-C84-O27-C87	179.6(8)

Appendix B: Crystallographic Data for 401

Table 1. Crystal data and structure refinement for 401.

Empirical formula	C18 H30 O2 Si
Formula weight	306.51
Temperature	133(2) K
Wavelength	0.71073 A
Crystal system	monoclinic
Space group	P 21
Unit cell dimensions	$\mathrm{a}=10.9429(18) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=6.4395(12) \AA \quad \beta=102.480(6)^{\circ}$.
	$\mathrm{c}=13.070(3) \AA \quad \gamma=90^{\circ}$.
Volume	899.2(3) \AA^{3}
Z	2
Density (calculated)	$1.132 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.134 \mathrm{~mm}^{-1}$
F(000)	336
Crystal size	$0.39 \times 0.15 \times 0.10 \mathrm{~mm}$
Theta range for data collection	3.544 to 25.464°.
Index ranges	$-13<=\mathrm{h}<=9,-7<=\mathrm{k}<=7,-15<=\mathrm{l}<=15$
Reflections collected	5362
Independent reflections	$3151[\mathrm{R}(\mathrm{int})=0.0478]$
Completeness to theta $=25.242^{\circ}$	98.6 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00 and 0.923
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$3151 / 1 / 199$
Goodness-of-fit on F^{2}	1.062
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0606, \mathrm{wR} 2=0.1078$
R indices (all data)	$\mathrm{R} 1=0.0926, \mathrm{wR} 2=0.1184$
Absolute structure parameter	0.02(16)
Extinction coefficient	n / a
Largest diff. peak and hole	0.395 and -0.235 e. \AA^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $401 . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
C1	$5035(5)$	$6449(7)$	2871(4)	$16(1)$
$\mathrm{C} 2$	$5046(4)$	8692(8)	$2499(4)$	$13(1)$
C3	4088(5)	9811(8)	2976(4)	$14(1)$
$\mathrm{C} 4$	$3341(4)$	$8073(7)$	$3380(4)$	$12(1)$
C5	1921(4)	8183(8)	2992(4)	$15(1)$
C6	$1135(5)$	6748(7)	$3579(4)$	$17(1)$
C7	$917(5)$	$4763(8)$	2903(4)	$24(1)$
C8	$939(5)$	5602(9)	1831(5)	$24(1)$
C9	$1482(5)$	7454(8)	1866(4)	21(1)
C10	$5753(4)$	$9550(8)$	1899(4)	$18(1)$
$\mathrm{C} 11$	7376(6)	$5758(8)$	1539(5)	35(2)
C12	6430(5)	$8968(9)$	$-189(5)$	$34(2)$
C13	8431(5)	10151(9)	1705(5)	28(2)
$\mathrm{C} 14$	4774(5)	$11226(8)$	3853(4)	$18(1)$
C15	1615(5)	$6523(8)$	4739(4)	$20(1)$
$\mathrm{C} 16$	1716(5)	$8541(10)$	5356(4)	$29(1)$
C17	1880(5)	$4720(9)$	5225(5)	28(2)
C18	1693(5)	$8661(10)$	934(4)	$30(1)$
O1	3809(3)	$6122(5)$	3058(3)	$20(1)$
O2	3913(4)	12361(6)	4328(3)	$26(1)$
Sil	6991(1)	8566(2)	1248(1)	18(1)

Table 3. Bond lengths $[\AA]$ and angles [${ }^{\circ}$] for 401.

C1-O1	$1.430(5)$	C11-Sil	1.877(6)
C1-C2	$1.525(7)$	C11-H11A	0.98
C1-H1A	0.99	C11-H11B	0.98
C1-H1B	0.99	C11-H11C	0.98
C2-C10	1.335(6)	C12-Sil	1.864(6)
C2-C3	1.513(7)	C12-H12A	0.98
C3-C14	1.528(7)	C12-H12B	0.98
C3-C4	1.544(6)	C12-H12C	0.98
C3-H3	1.00	C13-Sil	1.864(6)
C4-O1	1.453(6)	C13-H13A	0.98
C4-C5	1.528(6)	C13-H13B	0.98
C4-H4	1.00	C13-H13C	0.98
C5-C9	1.521(7)	C14-O2	1.435(6)
C5-C6	1.571(7)	C14-H14A	0.99
C5-H5	1.00	C14-H14B	0.99
C6-C15	1.500(7)	C15-C17	1.325(7)
C6-C7	1.543(7)	C15-C16	1.521(8)
C6-H6	1.00	C16-H16A	0.98
C7-C8	1.507(8)	C16-H16B	0.98
C7-H7A	0.99	C16-H16C	0.98
C7-H7B	0.99	C17-H17A	0.95
C8-C9	1.329(7)	C17-H17B	0.95
C8-H8	0.95	C18-H18A	0.98
C9-C18	1.505(7)	C18-H18B	0.98
C10-Si1	1.860(5)	C18-H18C	0.98
C10-H10	0.95	O2-H2O	0.83(6)
O1-C1-C2	105.5(4)	C10-C2-C1	128.7(4)
O1-C1-H1A	110.6	C3-C2-C1	105.4(4)
C2-C1-H1A	110.6	C2-C3-C14	108.7(4)
O1-C1-H1B	110.6	C2-C3-C4	105.1(4)
C2-C1-H1B	110.6	C14-C3-C4	112.7(4)
H1A-C1-H1B	108.8	C2-C3-H3	110.0
C10-C2-C3	125.9(5)	C14-C3-H3	110.0

C4-C3-H3	110.0	H11A-C11-H11B	109.5
O1-C4-C5	109.9(4)	Si1-C11-H11C	109.5
O1-C4-C3	106.4(4)	H11A-C11-H11C	109.5
C5-C4-C3	115.4(4)	H11B-C11-H11C	109.5
O1-C4-H4	108.3	Si1-C12-H12A	109.5
C5-C4-H4	108.3	Si1-C12-H12B	109.5
C3-C4-H4	108.3	H12A-C12-H12B	109.5
C9-C5-C4	113.1(4)	Si1-C12-H12C	109.5
C9-C5-C6	101.5(4)	H12A-C12-H12C	109.5
C4-C5-C6	115.8(4)	H12B-C12-H12C	109.5
C9-C5-H5	108.7	Si1-C13-H13A	109.5
C4-C5-H5	108.7	Si1-C13-H13B	109.5
C6-C5-H5	108.7	H13A-C13-H13B	109.5
C15-C6-C7	118.4(4)	Si1-C13-H13C	109.5
C15-C6-C5	116.2(4)	H13A-C13-H13C	109.5
C7-C6-C5	103.9(4)	H13B-C13-H13C	109.5
C15-C6-H6	105.8	O2-C14-C3	111.4(4)
C7-C6-H6	105.8	O2-C14-H14A	109.3
C5-C6-H6	105.8	C3-C14-H14A	109.3
C8-C7-C6	101.8(4)	O2-C14-H14B	109.3
C8-C7-H7A	111.4	C3-C14-H14B	109.3
C6-C7-H7A	111.4	H14A-C14-H14B	108.0
C8-C7-H7B	111.4	C17-C15-C6	124.2(5)
C6-C7-H7B	111.4	C17-C15-C16	120.7(5)
H7A-C7-H7B	109.3	C6-C15-C16	115.0(5)
C9-C8-C7	112.7(5)	C15-C16-H16A	109.5
C9-C8-H8	123.6	C15-C16-H16B	109.5
C7-C8-H8	123.6	H16A-C16-H16B	109.5
C8-C9-C18	125.5(6)	C15-C16-H16C	109.5
C8-C9-C5	110.9(5)	H16A-C16-H16C	109.5
C18-C9-C5	123.5(5)	H16B-C16-H16C	109.5
C2-C10-Si1	134.4(4)	C15-C17-H17A	120.0
C2-C10-H10	112.8	C15-C17-H17B	120.0
Si1-C10-H10	112.8	H17A-C17-H17B	120.0
Sil-C11-H11A	109.5	C9-C18-H18A	109.5
Sil-C11-H11B	109.5	C9-C18-H18B	109.5

$\mathrm{H} 18 \mathrm{~A}-\mathrm{C} 18-\mathrm{H} 18 \mathrm{~B}$	109.5	$\mathrm{C} 10-\mathrm{Si1-C13}$	$108.4(2)$
$\mathrm{C} 9-\mathrm{C} 18-\mathrm{H} 18 \mathrm{C}$	109.5	$\mathrm{C} 10-\mathrm{Si1-C12}$	$107.4(3)$
$\mathrm{H} 18 \mathrm{~A}-\mathrm{C} 18-\mathrm{H} 18 \mathrm{C}$	109.5	$\mathrm{C} 13-\mathrm{Si1-C12}$	$108.6(3)$
$\mathrm{H} 18 \mathrm{~B}-\mathrm{C} 18-\mathrm{H} 18 \mathrm{C}$	109.5	$\mathrm{C} 10-\mathrm{Si1-C11}$	$112.9(2)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 4$	$109.0(3)$	$\mathrm{C} 13-\mathrm{Sil-C11}$	$109.0(3)$
$\mathrm{C} 14-\mathrm{O} 2-\mathrm{H} 2 \mathrm{O}$	$102(4)$	$\mathrm{C} 12-\mathrm{Si1-C11}$	$110.4(3)$

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 401. The anisotropic displacement factor exponent takes the form: $-2 \mathbf{a}^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U}^{11}+\ldots+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
C 1	$17(3)$	$12(3)$	$18(3)$	$0(2)$	$5(2)$	$3(2)$
C 2	$14(2)$	$10(3)$	$15(3)$	$5(3)$	$2(2)$	$-1(3)$
C 3	$18(3)$	$12(3)$	$13(3)$	$3(2)$	$3(3)$	$1(2)$
C 4	$14(2)$	$10(3)$	$14(3)$	$1(2)$	$6(2)$	$3(2)$
C 5	$16(3)$	$14(3)$	$16(3)$	$1(2)$	$4(2)$	$3(2)$
C 6	$12(3)$	$18(3)$	$21(4)$	$3(2)$	$4(3)$	$2(2)$
C 7	$22(3)$	$23(3)$	$24(4)$	$-2(3)$	$0(3)$	$-6(3)$
C 8	$21(3)$	$32(4)$	$17(4)$	$-6(3)$	$-3(3)$	$-4(3)$
C 9	$13(3)$	$25(3)$	$21(4)$	$2(3)$	$-1(3)$	$2(2)$
C 10	$21(3)$	$9(3)$	$21(4)$	$2(2)$	$0(3)$	$3(2)$
C 11	$44(4)$	$17(3)$	$49(5)$	$-1(3)$	$24(4)$	$5(3)$
C 12	$35(3)$	$32(4)$	$37(4)$	$-1(3)$	$17(3)$	$-5(3)$
C 13	$27(3)$	$26(3)$	$31(4)$	$5(3)$	$7(3)$	$6(3)$
C 14	$17(3)$	$13(3)$	$27(4)$	$1(3)$	$7(3)$	$2(2)$
C 15	$17(3)$	$26(3)$	$20(4)$	$-1(3)$	$10(3)$	$0(3)$
C 16	$33(3)$	$30(3)$	$25(3)$	$-6(3)$	$12(3)$	$3(3)$
C17	$27(3)$	$34(4)$	$24(4)$	$8(3)$	$9(3)$	$-2(3)$
C18	$30(3)$	$34(3)$	$22(3)$	$2(3)$	$0(3)$	$3(3)$
O1	$13(2)$	$12(2)$	$36(3)$	$2(2)$	$11(2)$	$3(2)$
O2	$37(3)$	$15(2)$	$31(3)$	$0(2)$	$15(2)$	$3(2)$
Si1	$21(1)$	$16(1)$	$20(1)$	$2(1)$	$9(1)$	$2(1)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 401.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H1A	5199	5481	2327	19
H1B	5679	6234	3521	19
H3	3519	10652	2429	17
H4	3536	8124	4163	14
H5	1647	9654	3043	18
H6	296	7427	3491	21
H7A	1593	3735	3136	28
H7B	100	4116	2918	28
H8	600	4884	1198	29
H10	5586	10987	1776	21
H11A	8083	5356	1232	52
H11B	6647	4901	1238	52
H11C	7599	5549	2300	52
H12A	6193	10426	-326	50
H12B	5702	8080	-448	50
H12C	7099	8611	-549	50
H13A	8245	11613	1529	41
H13B	9090	9667	1361	41
H13C	8714	10007	2466	41
H14A	5328	10376	4394	22
H14B	5305	12215	3565	22
H16A	2006	8244	6105	43
H16B	893	9211	5237	43
H16C	2313	9469	5125	43
H17A	1767	3463	4835	33
H17B	2182	4684	5963	33
H18A	2587	8660	929	44
H18B	1406	10094	976	44
H18C	1223	8015	289	44
H2O	3720(50)	13360(100)	3920(50)	40(20)

Table 6. Torsion angles [${ }^{\circ}$] for 401.

O1-C1-C2-C10	$-154.5(5)$	C7-C8-C9-C18	$177.5(5)$
O1-C1-C2-C3	$26.7(5)$	C7-C8-C9-C5	$-0.2(6)$
C10-C2-C3-C14	$-71.2(6)$	C4-C5-C9-C8	$106.6(5)$
C1-C2-C3-C14	$107.7(5)$	C6-C5-C9-C8	$-18.2(5)$
C10-C2-C3-C4	$167.9(5)$	C4-C5-C9-C18	$-71.1(6)$
C1-C2-C3-C4	$-13.3(5)$	C6-C5-C9-C18	$164.1(5)$
C2-C3-C4-O1	$-4.3(5)$	C3-C2-C10-Si1	$178.7(4)$
C14-C3-C4-O1	$-122.6(4)$	C1-C2-C10-Si1	$0.1(9)$
C2-C3-C4-C5	$-126.5(4)$	C2-C3-C14-O2	$179.0(4)$
C14-C3-C4-C5	$115.2(5)$	C7-C6-C15-C17	$-64.8(5)$
O1-C4-C5-C9	$-43.9(5)$	C7-C6-C15-C15-C16	$0.7(8)$
C3-C4-C5-C9	$76.4(6)$	C5-C6-C15-C16	$-124.1(6)$
O1-C4-C5-C6	$72.7(5)$	C2-C1-O1-C4	$-175.8(5)$
C3-C4-C5-C6	$-167.0(4)$	C5-C4-O1-C1	$59.4(6)$
C9-C5-C6-C15	$160.4(4)$	C3-C4-O1-C1	$-30.4(5)$
C4-C5-C6-C15	$37.5(6)$	C2-C10-Si1-C13	$147.5(4)$
C9-C5-C6-C7	$28.6(5)$	C2-C10-Si1-C12	$21.9(5)$
C4-C5-C6-C7	$-94.4(5)$	$-123.5(5)$	
C15-C6-C7-C8	$-159.1(4)$	$119.3(5)$	
C5-C6-C7-C8	$-28.6(5)$	$-2.6(6)$	
C6-C7-C8-C9	$18.8(6)$		

Table 7. Hydrogen bonds for 401 [\AA and ${ }^{\circ}$].

D-H...A	d(D-H)	$d(H \ldots A)$	$d(D \ldots A)$	$<($ DHA $)$
O2-H2O...O1\#1	$0.83(6)$	$2.12(6)$	$2.924(6)$	$163(5)$

Symmetry transformations used to generate equivalent atoms:
\#1 x,y+1,z

Appendix C: Catalog of Spectra

/

$$
\begin{aligned}
& \begin{array}{l}
\text { ae_1x_07 } \\
\text { Archive directory: } \\
\text { Sample directory: }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ae_1x_07k1 }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { ae_vili_-s7p } \\
\text { Putise Sequence: s2pu1 }
\end{array}
\end{aligned}
$$

65

$$
t-\mathrm{BuO}_{2} \mathrm{C}=\mathrm{Me}_{\mathrm{Me}}^{\mathrm{OH}}
$$

$$
209
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { ae_vil1_-100p } \\
\text { Pulse sequence: } 52 \text { pu1 }
\end{array}
\end{aligned}
$$

ae_vili_ketoester

Pulse Sequence: szpui

\qquad	
Pulse sequence: 52 pu 1	
Relax, delay 2.D00 sec 	
matr	

Pulse sequencet s2pul Solvent: CDC13 Amblent tenperature Mercury-400BB "nmre" Relax. delay 2.000 sec Pulse 16.4 degrees Acq, tine 2.856 sec 15 repetitions OBSERVE H1, 400.2659733 DATA PROCESSING DATA Processing Line broadening 0.1 Hz fT size 32768

68

$$
\begin{aligned}
& \begin{array}{l}
\text { enamenone } \\
\text { Pulse Sequence: } 52 \mathrm{pu} 1 \\
\text { solvent, cocil }
\end{array}
\end{aligned}
$$

Mon Jan 16 14:02:19 2012 (GMT-06:00)
FIND PEAKS:
Spectrum: \quad *Mon Jan 16 13:58:09 2012 (GMT-06:00)
$\begin{array}{lll}\text { Spectrum: } & & \text { *Mon Jan } 16 \\ \text { Region: } & \text { 13:58:09 } \\ \text { R } & 4000.00 & 400.00\end{array}$
Region: ${ }^{\text {Absolute threshold: }} 1 \mathbf{1 5 0 0 . 8 8 9}$
Sensitivity: 50
Sensitivity
Peak list:
No peaks were found.

Pulse Sequence: s2pul Solvent: Dnso Anbient temperature Mercury-4008s "nur 6" Relax. delay 2.000 sec Pulse 16.4 degrees Acq. time 2.859 sec $\forall i d t h 11185.7 \mathrm{~Hz}$ 64 repetitions OBSERVE H1, 400.2688727 DATA PROCESSING Line broadening 0.1 Hz FT gize 65535

$180 \quad 160 \quad 140$
$20 \quad 100-80$
20 ppm

aja_tricycle_ester

FT site broadening 0.5 Hz
Total time 19 min . 34 sec

600 MHz nmrox	
aja_tricycle_acid	
exp4 carbon	
	${ }_{\substack{\text { teap } \\ \text { gin }}}^{\text {SPECIAL }}{ }^{27.0}$
${ }^{+11} 1_{\text {acoursitron }}{ }^{\text {exp }}$	
mididitnt	
	DISPLAY not used
toftowrpur	
	$\underset{19}{\text { ¢p }}$
	WC PLOT 250
$\underset{\text { dopur }}{\text { diar }}$	\%c

aja_xanthofulvin_3_c13 Archive directory: Sample directory: Pulse Sequence: s2pul Solvent : dmso Temp- $27.0 \mathrm{C}, 300.1 \mathrm{~K}$ User: aja_xanthofulvin_3_c13 File: aja_-x "narelroy" INOVA-500 " Relax, delay 2.000 sec Pulse 30.0 degrees Aca. time 1.958 5ec Width $30165,9 \mathrm{~Hz}$ 57774 repetitions SBSERVE C13, 125.6916839 MHz DECOUPLE H1, 499.8693899 MHz DECOUPLE H1, Power 38 dB cont inuous ly on WALTZ-16 modulat DATA PROCESSING FT size 131072 Total time $66 \mathrm{hr}, 7 \mathrm{~min}, 18 \mathrm{sec}$

a_vinaxanthone-x_090_
a_vinaxanthone-x_090_
Archve directory:/Mome/staff31/vnarsys/data Ma73,0
Archve directory:/Mome/staff31/vnarsys/data Ma73,0
Sulse Sequence: 52pu1
Sulse Sequence: 52pu1
*)
*)
Re.atax.delay 1.00 sec
Re.atax.delay 1.00 sec
*)
*)
*)
*)
M,
M,

80
60

Pulse sequence: Solvent: cocl
Relax, delay $2.000 \leq e c$ Width $5602,2 \mathrm{~Hz}$ is repetitions OBSERVE H1, 400.2669779 MHz OATA PROCESSING LT size broadening 0.1 Hz

219

20 ppm

$$
\begin{aligned}
& 500 \text { NHz nmr1 } \\
& \text { exp4 carbon }
\end{aligned}
$$

$\begin{array}{lllll}11 & 10 & 9 & 8\end{array}$

Parameter	Value
1 Data File Name	C:/ Users/ mchin318/ Desktop/ 10/ fid
2 Tite	1D 1 H with 300 pulse 5 mmCP -TCI, 298K
	UCSD_PROTON
3 Origin	Bruker BioSpin GmbH
4 Owner	siegel
5 Solvent	CDC13
6 Pulse Sequence	29pg30
7 Acquisition Date	2015-02-24T21:20:44
8 Modification Date	
9 Temperature	298.0
10 Number of Scans	257
11 Spectrometer Frequency	150.90
12 Spectral Width	37878.8
13 Lowest Frequency	-3853.7
14 Nucleus	13 C
15 Acquired Size	32768
16 Spectral Size	65536

418

$\begin{array}{lllll}\text { Wed Feb } 25 & \text { 18:37:49 } & 2015 \text { (GMT-06:00) } & & \\ \text { FIND PEAKS: } & \text { "Wed Feb } & \text { 18:35:52 } & 2015 \text { (GMT-06:00) } \\ \text { Spectrum: } & \text { 4000.00 } & 400.00 & & \\ \text { Region: } & & & & \\ \text { Absolute threshold: } 89.790 & & & \\ \text { Sensitivity: } & 50 & & & \\ \text { Peak list: } & & & & \\ & & \text { Position: } & 1010.56 & \text { Intensity: } \\ & \text { Position: } & 1037.44 & \text { Intensity: } & 88.155 \\ & \text { Position: } & 1077.95 & \text { Intensity: } & 87.602 \\ & \text { Position: } & 1139.56 & \text { Intensity: } & 81.436 \\ & \text { Position: } & 1263.46 & \text { Intensity: } & 80.731 \\ & \text { Position: } & 1305.06 & \text { Intensity: } & 89.193 \\ & \text { Position: } & 1339.36 & \text { Intensity: } & 89.017\end{array}$

References

(1) May, M. Nature 2013, 503, S1.
(2) Cully, M. Nature 2013, 503, S10-S12.
(3) Afshari, F. T.; Kappagantula, S.; Fawcett, J. W. Expert Rev. Mol. Med. 2009, 11, 1-19.
(4) Chierzi, S.; Ratto, G. M.; Verma, P.; Fawcett, J. W. Eur. J. Neurosci. 2005, 21, 2051-2062.
(5) Davies, S. J.; Goucher, D. R.; Doller, C.; Silver, J. J. Neurosci. 1999, 19, 58105822.
(6) Silver, J.; Miller, J. H. Nat. Rev. Neurosci. 2004, 5, 146-156.
(7) Filbin, M. T. Nat. Rev. Neurosci. 2003, 4, 703-713.
(8) GrandPre, T.; Nakamura, F.; Vartanian, T.; Strittmatter, S. M. Nature 2000, 403, 439-444.
(9) He, Z.; Koprivica, V. Annu. Rev. Neurosci. 2004, 27, 341-368.
(10) McKerracher, L.; David, S.; Jackson, D. L.; Kottis, V.; Dunn, R. J.; Braun, P. E. Neuron 1994, 13, 805-811.
(11) Wang, K. C.; Koprivica, V.; Kim, J. A.; Sivasankaran, R.; Guo, Y.; Neve, R. L.; He, Z. Nature 2002, 417, 941-944.
(12) Schwab, M. E.; Kapfhammer, J. P.; Bandtlow, C. E. Annu. Rev. Neurosci. 1993, 16, 565-595.
(13) Chen, M. S.; Huber, A. B.; van der Haar, M. E.; Frank, M.; Schnell, L.; Spillmann, A. A.; Christ, F.; Schwab, M. E. Nature 2000, 403, 323-339.
(14) Domeniconi, M.; Cao, Z.; Spencer, T.; Sivasankaran, R.; Wang, K.; Nikulina, E.; Kimura, N.; Cai, H.; Deng, K.; Gao, Y.; He, Z.; Filbin, M. Neuron 2002, 35, 283290.
(15) Olson, L. Nature 2002, 416, 589-590.
(16) Bradbury, E. J.; Moon, L. D.; Popat, R. J.; King, V. R.; Bennett, G. S.; Patel, P. N.; Fawcett, J. W.; McMahon, S. B. Nature 2002, 416, 636-640.
(17) McKeon, R. J.; Schreiber, R. C.; Rudge, J. S.; Silver, J. J. Neurosci. 1991, 11, 3398-3411.
(18) Morgenstern, D. A.; Asher, R. A.; Fawcett, J.W. Prog. Brain Res. 2002, 137, 313332.
(19) De Winter, F.; Holtmaat, A. J.; Verhaagen, J. Adv. Exp. Med. Biol. 2002, 515, 115-139.
(20) Pasterkamp, R. J.; Giger, R. J.; Ruitenberg, M. J.; Holtmaat, A. J.; De Wit, J.; De Winter, F.; Verhaagen, J. Mol. Cell. Neurosci. 1999, 13, 143-166.
(21) Pasterkamp, R.J.; Anderson, P.N.; Verhaagen, J. Eur. J. Neurosci. 2001, 13, 457471.
(22) De Winter, F.; Oudega, M.; Lankhorst, A. J.; Hamers, F. P.; Blits, B.; Ruitenberg, M. J.; Pasterkamp, R. J.; Gispen, W. H.; Verhaagen, J. Exp. Neurol. 2002, 175, 61-75.
(23) Kim, J. E.; Li, S.; GrandPre, T.; Qiu, D.; Strittmatter, S. M. Neuron 2003, 38, 187-199.
(24) Simonen, M.; Pedersen, V.; Weinmann, O.; Schnell, L.; Buss, A.; Ledermann, B.; Christ, F.; Sansig, G.; van der Putten, H.; Schwab, M. E. Neuron 2003, 38, 201211.
(25) Li, S.; Liu, B. P.; Budel, S.; Li, M.; Ji, B.; Walus, L.; Li, W.; Jirik, A.; Rabacchi, S.; Choi, E.; Worley, D.; Sah, D. W.; Pepinsky, B.; Lee, D.; Relton, J.; Strittmatter, S. M. J. Neurosci. 2004, 24, 10511-10520.
(26) Kim, J. E.; Li, S.; GrandPre, T.; Qiu, D.; Strittmatter, S. M. Neuron 2003, 38, 187-199.
(27) Zheng, B.; Atwal, J.; Ho, C.; Case, L.; He, X. L.; Garcia, K. C.; Steward, O.; Tessier-Lavigne, M. Neuron 2003, 38, 213-224.
(28) Kim, J. E.; Liu, B. P.; Park, J. H.; Strittmatter, S. M. Neuron 2004, 44, 439-451.
(29) Zheng, B.; Atwal, J.; Ho, C.; Case, L.; He, X. L.; Garcia, K. C.; Steward, O.; Tessier-Lavigne, M. Proc. Natl. Acad. Sci. USA 2005, 102, 1205-1210.
(30) Zhang, L.; Kaneko, S.; Kikuchi, K.; Sano, A.; Maeda, M.; Kishino, A.; Shibata, S.; Mukaino, M.; Toyama, Y.; Liu, M.; Kimura, T.; Okano, H.; Nakamura, M. Molecular Brain 2014, 7:14.
(31) Kaneko, S.; Iwanami, A.; Nakamura, M.; Kishino, A.; Kikuchi, K.; Shibata, S.; Okano, H. J.; Ikegami, T.; Moriya, A.; Konishi, O.; Nakayama, C.; Kumagai, K.; Kimura, T.; Sato, Y.; Goshima, Y.; aniguchi, M.; Ito, M.; He, Z.; Toyama, Y.; Okano, H. Nat. Med. 2006, 12, 1380-1389.
(32) Kikuchi, K.; Kishino, A.; Konishi, O.; Kumagai, K.; Hosotani, N.; Saji, I.; Nakayama, C.; Kimura, T. J. Biol. Chem. 2003, 278, 42985-42991.
(33) Kumagai, K.; Hosotani, N.; Kikuchi, K.; Kimura, T.; Saji, I. J. Antibiot. (Tokyo) 2003, 56, 610-616.
(34) Kumagai, K.; Kishino, A.; Hosotani, N.; Ito, A.; Saji, I.; Kimura, T., Sumitomo Kagaku 2005, 2005-I, 1-8.
(35) Wilson, R. M.; Danishefsky, S. J. Acc. Chem. Res. 2006, 39, 539-549.
(36) Madigan, N. N.; McMahon, S.; O’Brien, T.; Yaszemski, M. J.; Windebank, A. J. Respir. Physiol. Neurobiol. 2009, 169, 183-199.
(37) Baier Leach, J.; Bivens, K. A.; Patrick, Jr., C. W.; Schmidt, C. E. Biotechnol. Bioeng. 2003, 82, 578-589.
(38) Struve, J.; Maher, P. C.; Li, Y. Q.; Kinney, S.; Fehlings, M. G.; Kuntz, C. T.; Sherman, L. S. Glia 2005, 52, 16-24.
(39) Gros, T.; Sakamoto, S.; Blesch, A.; Havton, L. A.; Tuszynski, M. H. Biomaterials 2010, 31, 6719-6729.
(40) Omoto, M.; Yoshida, S.; Miyashita, H.; Kawakita, T.; Yoshida, K.; Kishino, A.; Kimura, T.; Shibata, S.; Tsubota, K.; Okano, H.; Shimmura, S. PloS ONE 2012, 7, e47716.
(41) Antipenko, A.; Himanen, J. -P.; van Leyen, K.; Nardi-Del, V.; Lesniak, J.; Barton, W. A.; Rajashankar, K. R.; Lu, M.; Hoemme, C.; P Püschel, A. W.; Nikolov, D. B. Neuron 2003, 39, 589-598.
(42) Kolodkin, A.L.; Matthes, D.J.; Goodman, C.S. Cell 1993, 75, 1389-1399.
(43) Luo, Y.; Rabile, D.; Raper, J.A. Cell 1993, 75, 217-227.
(44) Goshima, Y.; Nakamura, F.; Strittmatter, P.; Strittmatter, S.M. Nature 1995, 376, 509-514.
(45) Taniguchi, M.; Yuasa, S.; Hajime, F.; Naruse, I.; Saga, S.; Mishina, M.; Yagi, T. Neuron 1997, 19, 519-530.
(46) Sasaki, Y.; Cheng, C.; Uchida, Y.; Nakajima, O.; Ohshima, T.; Yagi, T.; Taniguchi, M.; Nakayama, T.; Kishida, R.; Kudo, Y.; Ohno, S.; Nakamura, F.; Goshima, Y. Neuron 2002, 35, 907-920.
(47) Uchida, Y.; Ohshima, T.; Sasaki, Y. Suzuki, H.; Yanai, S.; Yamashita, N.; Nakamura, F.; Takei, K.; Ihara, Y.; Mikoshiba, K.; Kolattukudy, P.; Honnorat, J.; Goshima, Y. Genes Cells 2005, 10, 165-179.
(48) Winberg, M. L.; Noordermeer, J. N.; Tamagnone, L.; Comoglio, P. M.; Spriggs, M. K.; Tessier-Lavigne, M.; Goodman, C. S. Cell 1998, 95, 903-916.
(49) Skaper, S. D.; Moore, S. E.; Walsh, F. S. Prog. Neurobiol. 2001, 65, 593-608.
(50) Lee, J. K.; Chow, R.; Xie, F.; Chow, S. Y.; Tolentino, K. E.; Zheng, B. J. Neurosci. 2010, 30, 10899-10904.
(51) Aoki, M.; Itezono, Y.; Shirai, H.; Nakayama, N.; Sakai, A.; Tanaka, Y.; Yamaguchi, A.; Shimma, N.; Yokose, K.; Seto, H. Tetrahedron Lett. 1991, 32, 4737-4740.
(52) Wrigley, S. K.; Latif, M. A.; Gibson, T. M.; Chicarelli-Robinson, M. I.; Williams, D. H. Pure \& Appl. Chem. 1994, 66, 2383-2386.
(53) Zheng, C. J.; Sohn, M.; Kim, W. J. Antimicrob. Chemoth. 2009, 63, 949-953.
(54) Řezanka, T.; Řezanka, P.; Sigler, K. J. Nat. Prod. 2008, 71, 820-823.
(55) Leroux, F. ChemBioChem. 2004, 5, 644-649.
(56) Lösgen, S.; Schlörke, O.; Meindl, K.; Herbst-Irmer, R.; Zeeck, A. Eur. J. Org. Chem. 2007, 13, 2191-2196.
(57) Turner, W. B. J. Chem. Soc. Perkin Trans. I 1978, 1621.
(58) Kurobane, I.; Hutchinson, C. R. Tetrahedron Lett. 1981, 22, 493-496.
(59) Demetriadou, A. K.; Laue, E. D.; Leeper, F. J.; Staunton, J. J. Chem. Soc. Chem. Соттии. 1985, 762-764.
(60) Demetriadou, A. K.; Laue, E. D.; Staunton, J. J. Chem. Soc. Perkin Trans. I 1988, 763-768.
(61) Demetriadou, A. K.; Laue, E. D.; Staunton, J. J. Chem. Soc. Chem. Commun. 1985, 764-766.
(62) Demetriadou, A. K.; Laue, E. D.; Staunton, J. J. Chem. Soc. Perkin Trans. I 1988, 769-772.
(63) Tatsuta, K.; Kasai, S.; Amano, Y.; Yamaguchi, T.; Seki, M.; Hosokawa, S. Chem. Lett. 2007, 36, 10-11.
(64) Rao, D. V.; Stuber, F. A. Synthesis 1983, 308.
(65) Dakin, H. D. Am. Chem. J. 1909, 42, 477-498.
(66) Saneyoshi, H.; Seio, K.; Sekine, M. J. Org. Chem. 2005, 70, 10453-10460.
(67) Heck, R. F. Org. React. 1982, 27, 345.
(68) Tatsuta, K.; Akimoto, A.; Annaka, M.; Ohno, Y.; Kinoshita, M. Bull. Chem. Soc. Jpn. 1985, 58, 1699-1706.
(69) Pohnert, G. ChemBioChem. 2003, 4, 713-715.
(70) Stocking, E. M.; Williams, R. M. Angew. Chem. Int. Ed. 2003, 42, 3078-3115.
(71) Pitt, J. N.; Ferre-D'Amare, A. R. Nat. Struct. Mol. Bio. 2005, 12, 206-208.
(72) Jones, W. D.; Albrecht, W. L. J. Org. Chem. 1976, 41, 706-707.
(73) Ghosh, C. K. J. Chem. Soc. Perkin Trans. I 1988, 6, 1489-1493.
(74) Eiden, F.; Fenner, H. Chem. Ber. 1968, 101, 2894-2898.
(75) Beaudry, C. M.; Malerich, J. P.; Trauner, D. Chem. Rev. 2005, 105, 4757-4778.
(76) Zimmerman, T.; Fischer, G. W. J. Prackt. Chem. 1986, 328, 358-372.
(77) Kelly, T. R.; Bell, S. H.; Ohashi, N.; Armstrong-Chong, R. J. J. Am. Chem. Soc. 1988, 110, 6471-6480.
(78) Corey, E. J.; Cho, H.; Rücker, C.; Hua, D. H. Tetrahedron Lett. 1981, 22, 34553458.
(79) Balthazor, T. M.; Williams, E. L. Synth. Commun. 1992, 22, 1023-1026.
(80) Yerino, L. V.; Osborn, M. E.; Mariano, P. S. Tetrahedron 1982, 38, 1579-1591.
(81) Davis, R. B.; Scheiber, D. H. J. Am. Chem. Soc. 1955, 78, 1675-1678.
(82) Cornelius, L. A. M.; Bone, R. G. A.; Hastings, R. H.; Deardorff, M. A.; Scharlach, R. A.; Hauptmann, B. E.; Stankovic, C. J. Pinnick, H. W. J. Org. Chem. 1993, 58, 4774.
(83) Waters, S. P.; Fennie, M. W.; Kozlowski, M. C. Org. Lett. 2006, 8, 3243-3246.
(84) Fringuelli, F.; Taticchi, A. The Diels-Alder Reaction. Selected Practical Methods. John Wiley \& Sons, 2002.
(85) Fringuelli, F.; Taticchi, A. Dienes in the Diels-Alder Reaction. John Wiley \& Sons, 1990.
(86) Kappe, C. O.; Murphree, S. S.; Padwa, A. Tetrahedron 1997, 53, 14179-14233.
(87) Gorgues, A.; Simon, A.; LeCoq, A.; Hercouet, A.; Corre, F. Tetrahedron 1986, 42, 351-370.
(88) Boeckman, R. K.; Potenza, J. C. Tetrahedron Lett. 1985, 26, 1411-1414.
(89) Gammill, R. B. Synthesis 1979, 901-903.
(90) Xu, F.; Armstrong, J. D.; Zhou, G. X.; Simmons, B.; Hughes, D.; Ge, Z. H.; Grabowski, E. J. J. Am. Chem. Soc. 2004, 126, 13002.
(91) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd Edition. John Wiley \& Sons, 1990.
(92) Axelrod, A.; Eliasen, A. E.; Chin, M. R.; Zlotkowski, K.; Siegel, D. Angew. Chem. Int. Ed. 2013, 52, 3421-3424.
(93) Zubatyuk, R. I.; Volovenko, Y. M.; Shishkin, O. V.; Gorb, L.; Leszczynski, J. J. Org. Chem. 2007, 72, 725-735.
(94) Kleinpeter, E. Bölke, U.; Koch, A. J. Phys. Chem. A 2010, 114, 7616-7623.
(95) Krygowski, T. M.; Zachara-Horeglad, J. E.; Palusiak, M. J. Org. Chem. 2010, 75, 4944-4949.
(96) Ganguly, A. K.; Mahata, P. K.; Biswas, D. Tetrahedron Lett. 2006, 47, 13471349.
(97) Clarke, D. S.; Gabbutt, C. D.; Hepworth, J. D.; Heron, B. M. Tetrahedron Lett. 2005, 46, 5515-5519.
(98) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467-4470.
(99) Corey, E. J.; Schmidt, G. Tetrahedron Lett. 1979, 20, 399-402.
(100) Negishi, E.; Qian, M.; Zeng, F.; Anastasia, L.; Babinski, D. Org. Lett. 2003, 5, 1597-1600.
(101) Negishi, E.; Anastasia, L. Org. Lett. 2001, 3, 3111-3113.
(102) Zhao, L.; Xie, F.; Cheng, G.; Hu, Y. Angew. Chem. Int. Ed. 2009, 48, 6520-6523.
(103) Liu, Y.; Huagn, L.; Xie, F.; Chen, X.; Hu, Y. Org. Biomol. Chem. 2011, 9, 26802684.
(104) Liu, Y.; Huang, L.; Xie, F.; Hu, Y. J. Org. Chem. 2010, 75, 6304-6307.
(105) Ghosh, C. K.; Pal, C.; Maiti, J.; Sarkar, M. J. Chem. Soc., Perkin Trans 1 1988, 1489-1493.
(106) Yokoe, I.; Maruyama, K.; Sugita, Y.; Harashida, T.; Shirataki, Y. Chem. Pharm. Bull. 1994, 42, 1697-1699.
(107) Appel, B.; Rotzoll, S.; Kranich, R.; Reinke, H.; Langer, P. Eur. J. Org. Chem. 2006, 3638-3644.
(108) Mkrtchyan, S.; Iaroshenko, V. O.; Dukin, S.; Gevorgyan, A.; Vilches-Herrera, M.; Ghazaryan, G.; Volochnyuk, D. M.; Ostrovskyi, D.; Ahmed, Z.; Villinger, A.; Sosnovskikh, V. Y.; Langer, P. Org. Biomol. Chem. 2010, 8, 5280-5284.
(109) Dourtoglov, V.; Ziegler, J. C.; Gross, B. Tetrahedron Lett. 1978, 19, 1269-1272.
(110) Liu, K.; Tedeschi, A.; Park, K. K.; He, Z. Annu. Rev. Neurosci. 2011, 34, 131152.
(111) Pierce, K. L.; Premont, R. T.; Lefkowitz, R. J. Nat. Rev. Mol. Cell Biol. 2002, 3, 639-650.
(112) Kobilka, B. Angew. Chem. Int. Ed. 2013, 52, 2-11.
(113) Conn, P. J.; Christopolous, A.; Lindsley, C. W. Nat. Rev. Drug Discovery 2009, 8, 41-54.
(114) He, W.; Miao, F. J.-P.; Lin, D. C.-H.; Schwandner, R. T.; Wang, Z.; Gao, J.; Chen, J.-L.; Tian, H.; Ling, L. Nature 2004, 429, 188-193.
(115) Sapieha, P.; Sirinyan, M.; Hamel, D.; Zaniolo, K.; Joyal, J.-S.; Cho, J.-H.; Honoré, J.-C.; Kermorvant-Duchemin, E; Varma, D. R.; Tremblay, S.; Leduc, M.; Rihakova, L.; Hardy, P.; Klein, W. H.; Mu, X.; Mamer, O.; Lachapelle, P.; Di Polo, A.; Beauséjour, C.; Andelfinger, G.; Mitchell, G.; Sennlaub, F.; Chemtob, S. Nat. Med. 2008, 14, 1067-1076.
(116) Sapieha, P. Blood 2012, 120, 2182-2194.
(117) Joyal, J., -S.; Omri, S.; Sitaras, N.; Rivera, J. -C.; Sapieha, P.; Chemtob, S. Acta Paediatrica 2012, 101, 819-826.
(118) Carmeliet, P. Nat. Rev. Genet. 2003, 4, 710-720.
(119) Rydel, R. E.; Greene, L. A. Proc. Natl. Acad. Sci. USA 1998, 85, 1257-1261.
(120) Fries, K.; Finck, G. Ber. 1909, 41, 4271-4284.
(121) Chin, M. R.; Zlotkowski, K.; Han, M.; Patel, S.; Eliasen, A. M.; Axelrod, A.; Siegel, D. ACS Chem. Neurosci. 2015, XXX, XXX-XXX.
(122) Ellis, R. E.; Yuan, J. Y.; Horvitz, H. R. Annu. Rev. Cell Biol. 1991, 7, 663-698.
(123) Tabara, H.; Grishok, A.; Mello, C. C. Science 1998, 282, 430-431.
(124) Tabara, H.; Sarkissian, M.; Kelly, W. G.; Fleenor, J.; Grishok, A.; Timmons, L.; Fire, A.; Mello, C. C. Cell 1999, 99, 123-132.
(125) Fire, A.; Xu, S. Q.; Montgomery, M. K.; Kostas, S. A.; Driver, S. E.; Mello, C. C. Nature 1998, 391, 806-811.
(126) El Bejjani, R.; Hammarlund, M. Annu. Rev. Genet. 2012, 46, 499-513.
(127) Kwok, T. C. Y.; Ricker, N.; Fraser, R.; Chan, A. W.; Burns, A.; Stanley, E. F.; McCourt, P.; Cutler, S. R.; Roy, P. J. Nature 2006, 441, 91-95.
(128) Burns, A. R.; Kwok, T. C. Y.; Howard, A.; Houston, E.; Johanson, K.; Chan, A.; Cutler, S. R.; McCourt, P.; Roy, P. J. Nat. Protoc. 2006, 1, 1906-1914.
(129) Yanik, M. F.; Cinar, H.; Cinar, H. N.; Chisholm, A. D.; Jin, Y. S.; Ben-Yakar, A. Nature 2004, 432, 822.
(130) Gabel, C. V.; Antonie, F.; Chuang, C. F.; Samuel, A. D. T.; Chang, C. Development 2008, 135, 1129-1136.
(131) Hammarlund, M.; Nix, P.; Hauth, L.; Jorgensen, E. M.; Bastiani, M. Science 2009, 323, 802-806.
(132) Ghosh-Roy, A.; Wu, Z. L.; Goncharov, A.; Jin, Y. S.; Chisholm, A. D. J. Neurosci. 2010, 30, 3175-3183.
(133) Samara, C.; Rohde, C. B.; Gilleland, C. L.; Norton, S.; Haggarty, S. J.; Yanik, M. F. Proc. Natl. Acad. Sci. USA 2010, 107, 18342-18347.
(134) Chalfie, M.; Sulston, J. Dev. Biol. 1981, 82, 358-370.
(135) Chalfie, M.; Sulston, J. E.; White, J. G.; Southgate, E.; Thomson, J. N.; Brenner, S. J. Neurosci. 1985, 5, 956-964.
(136) Wu, Z.; Ghosh-Roy, A.; Yanik, M. F.; Zhang, A. Z.; Jin, Y. S.; Chisholm, A. D. Proc. Natl. Acad. Sci. USA 2007, 104, 15132-15137.
(137) Goodman, M. B.; Schwarz, E. M. Annu. Rev. Physiol. 2003, 65, 429-452.
(138) Syntichaki, P.; Tavernarakis, N. Nat. Rev. Neurosci. 2003, 4, 672-684.
(139) Richardson, P. M.; Issa, V. M. K. Nature 1984, 309, 791-793.
(140) Parikh, P.; Hao, Y. H.; Hosseinkhani, M.; Patil, S. B.; Huntley, G. W.; TessierLavigne, M.; Zou, H. Y. Proc. Natl. Acad. Sci. USA 2011, 108, E99-E107.
(141) Rao, G. N.; Kulkarni, S. S.; Koushika, S. P.; Rau, K. R. Opt. Express 2008, 16, 9884-9894.
(142) Chen, L. Z.; Chisholm, A. D. Trends Cell Biol. 2011, 21, 577-584.
(143) Neumann, B.; Nguyen, K. C. Q.; Hall, D. H.; Ben-Yakar, A.; Hilliard, M. A. Dev. Dyn. 2011, 240, 1365-1372.
(144) Längle, D.; Halver, J.; Rathmer, B.; Willems, E.; Schade, D. ACS Chem. Biol. 2014, 9, 57-71.
(145) Lairson, L. L.; Lyssiotis, C. A.; Zhu, S.; Schultz, P. G. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 107-125.
(146) Lyssiotis, C. A.; Lairson, L. L.; Boitano, A. E.; Wurdak, H.; Zhu, S.; Schultz, P. G. Angew. Chem. Int. Ed. 2011, 50, 200-242.
(147) Weissman, I. L. Cell 2000, 100, 157-168.
(148) Morrison, S. J.; Kimble, J. Nature 2006, 441, 1068-1074.
(149) Murry, C. E.; Keller, G. Cell 2008, 132, 661-680.
(150) Keller, G. Genes Dev. 2005, 19, 1129-1155.
(151) West, M. D.; Sargent, R. D.; Long, J.; Brown, C.; Chu, J. S.; Kessler, S.; Derugin, N.; Sampathkumar, J.; Burrows, C.; Vaziri, H.; Williams, R.; Chapman, K. B.; Larocca, D.; Loring, J. F.; Murai, J. Regener. Med. 2008, 3, 287-308.
(152) Zhao, C.; Deng, W.; Gage, F. H. Cell 2008, 132, 645-660.
(153) Pittenger, M. F.; Mackay, A. M.; Beck, S. C.; Jaiswal, R. K.; Douglas, R.; Mosca, J. D.; Moorman, M. A.; Simonetti, D. W.; Craig, S.; Marshak, D. R. Science 1999, 284, 143-147.
(154) Wagers, A. J.; Conboy, I. M. Cell 2005, 122, 659-667.
(155) Nowak, J. A.; Polak, L.; Pasolli, H. A.; Fuchs, E. Cell Stem Cell 2008, 3, 33-43.
(156) Barker, N.; van Es, J. H.; Kuipers, J.; Kujala, P.; van den Born, M.; Cozijnsen, M.; Haegebarth, A.; Korving, J.; Begthel, H.; Peters, J. P.; Clevers, H. Nature 2007, 449, 1003-1007.
(157) Weissman, I. L. Science 2000, 287, 1442-1446.
(158) Maitra, A.; Arking, D. E.; Shivapurkar, N.; Ikeda, M.; Stastny, V.; Kassauel, K.; Sui, G.; Culter, D. J.; Liu, Y.; Brimble, S. N.; Noaksson, K.; Hyliner, J.; Schulz, T. C.; Zeng, X.; Freed, W. J.; Crook, J.; Abraham, S.; Colman, A.; Sartipy, P.; Matsui, S. I.; Carpenter, M.; Gazdar, A. F.; Rao, M.; Chakravarti, A. Nat. Genet. 2005, 37, 1099-1103.
(159) James, D.; Levine, A. J.; Besser, D.; Hemmati-Brivanlou, A. Development 2005, 132, 1273-1282.
(160) Vallier, L.; Alexander, M.; Pedersen, R. A. J. Cell Sci. 2005, 118, 4495-4509.
(161) O’Rourke, P. P.; Abelman, M.; Heffernan, K. G. Cell Stem Cell 2008, 2, 307-312.
(162) Hofmeister C. C.; Zhang, J.; Knight, K. L.; Le, P.; Stiff, P. J. Bone Marrow Transplant. 2007, 39, 11-23.
(163) Wagner, J. E. Best Pract. Res. Clin. Haematol. 2009, 22, 551-555.
(164) Spangrude, G. J.; Heimfeld, S.; Weissman, I. L. Science 1988, 241, 58-62.
(165) Shizuru, J. A.; Negrin, R. S.; Weissman, I. L. Annu. Rev. Med. 2005, 56, 509-538.
(166) Young, J. C.; Wu, S.; Hansteen, G.; Du, C.; Sambucetti, L. Remisczewski, S.; O'Farrell, A. M.; Hill, B.; Lavau, C.; Murray, L. J. Cytotherapy 2004, 6, 328-336.
(167) Araki, H.; Mahmud, N.; Milhem, M.; Nunez, R.; Xu, M. Bearn, C. A.; Hoffman, R. Exp. Hematol. 2006, 34, 140-149.
(168) Peled, T.; Landau, E.; Mandel, J.; Glukhman, E.; Goudsmid, N. R. Nagler, A.; Fibach, E. Exp. Hematol. 2004, 32, 547-555.
(169) Peled, T.; Mandel, J. Goudsmid, R. N.; Landor, C.; Hasson, N. Harati, D.; Austin, M.; Hasson, A.; Fibach, E.; Shpall, E. J.; Nagler, A. Cytotherapy 2004, 6, 344355.
(170) Yang, M.; Li, K.; Ng, P. C.; Chuen, C. K. Y.; Lau, T. K. Stem Cells 2007, 25, 1800-1806.
(171) Boitano, A. E.; Wang, J.; Romeo, R.; Bouchez, L. C.; Parker, A. E.; Sutton, S. E.; Walker, J. R.; Flaveny, C. A.; Perdew, G. H.; Denison, M. S.; Schutlz, P. G.; Cooke, M. P. Science 2010, 329, 1345-1348.
(172) Fares, I.; Chagraoui, J.; Gareau, Y.; Gingras, S.; Ruel, R.; Mayotte, N.; Csaszar, E.; Knapp, D. J. H. P.; Miller, P.; Ngom, M.; Imren, S.; Roy, D. -C.; Watts, K. L.; Kiem, H. -P.; Herrington, R.; Iscove, N. N.; Humphries, R. K.; Eaves, C. J.; Cohen, S.; Marinier, A.; Zandstra, P. W.; Sauvageau, G. Science 2014, 345, 15091512.
(173) Boitano, A. E.; Schultz, P. G.; Cooke, M. P. unpublished results.
(174) de Lichtervelde, L.; Antal, C. E.; Boitano, A. E.; Wang, Y.; Krastel, P.; Peterson, F.; Newton, A. C.; Cooke, M. P.; Schultz, P. G. Chemistry and Biology 2012, 19, 944-1000.
(175) Blumberg, P. M. Cancer Res. 1988, 48, 1-8.
(176) Nishino, T.; Wang, C.;1 Mochizuki-Kashio, M.; Osawa, M.; Nakauchi, H.; Iwama, A. PLoS One 2011, 6, e24298.
(177) Zhang, C. C.; Kaba, M.; Ge, G.; Xie, K.; Tong, W.; Hug, C.; Lodish, H. F. Nat. Med. 2006, 12, 240-245.
(178) Delaney, C.; Heimfeld, S.; Brashem-Stein, C.; Voorhies, H.; Manger, R. L.; Bernstein, I. D. Nat. Med. 2010, 16, 232-236.
(179) Wang, Y.; Kellner, J.; Liu, L.; Zhou, D. Stem Cells Dev. 2011, 20, 1143-1152.
(180) de Lichtervelde, L.; Boitano, A. E.; Wang, Y.; Krastel, P.; Peterson, F.; Cooke, M. P.; Schultz, P. G. ACS Chem. Biol. 2013, 8, 866-870.
(181) Bouchez, L. C.; Boitano, A. E.; de Lichtervelde, L.; Romeo, R.; Cooke, M. P.; Schultz, P. G. ChemBioChem 2011, 12, 854-857.
(182) Rungeler, P.; Castro, V.; Mora, G.; Goren, N.; Vichnewski, W.; Pahl, H. L.; Merfort, I.; Schmidt, T. J. Bioorg. Med. Chem. 1999, 7, 2343-2352.
(183) Siedle, B.; Garcia-Pineres, A. J.; Murillo, R.; Schulte-Monting, J.; Castro, V.; Rungeler, P.; Klaas, C. A.; Da Costa, F. B.; Kisiel, W.; Merfort, I. J. Med. Chem. 2004, 47, 6042-6054.
(184) Huo, J.; Yang, S. P.; Ding, J.; Yue, J. M. J. Nat. Prod. 2004, 67, 1470-1475.
(185) Devreese, A. A.; De Clercq, P. J.; Vandewalle, M. Tetrahedron Lett. 1980, 21, 4767-4770.
(186) Hoffmann, H. M. R.; Rabe, J. Angew. Chem. 1985, 97, 96-112.
(187) Horbach, S.; Sahm, H.; Welle, R. FEMS Microbiol. Lett. 1993, 111, 135-140.
(188) Spurgeon, S. R.; Porter, J. W. Biosynthesis of Isoprenoid Compounds (Eds.: J. W. Porter, S. L. Spurgeon), John Wiley and Sons, New York, 1981, vol. 1, p. 1.
(189) N. Qureshi, J. W. Porter in Biosynthesis of Isoprenoid Compounds (Eds.: J. W. Porter, S. L. Spurgeon), John Wiley and Sons, New York, 1981, vol. 1, p. 47
(190) Bloch, K. Steroids 1992, 57, 378-383.
(191) De Kraker, J. -W.; Franssen, M. C. R.; Joerink, M.; De Groot, A.; Bouwmeester, H. J. Plant Physiol. 2002, 129, 257-268.
(192) Bouwmeester, H. J.; Kodde, J.; Verstappen, F. W. A.; Altug, I. G.; De Kraker, J. W.; Wallaart, T. E. Plant Physiol. 2002, 129, 134-144.
(193) De Kraker, J. -W.; Franssen, M. C. R.; Dalm, M. C. F.; De Groot, A.; Bouwmeester, H. J. Plant Physiol. 2001, 125, 1930-1940.
(194) De Kraker, J. -W.; Franssen, M. C. R.; De Groot, A.; Konig, W. A.; Bouwmeester, H. J. Plant Physiol. 1998, 117, 1381-1392.
(195) Song, Q.; Gomez-Barrios, M. L.; Hopper, E. L.; Hjortso, M. A.; Fischer, N. H. Phytochemistry 1995, 40, 1659-1665.
(196) Devreese, A. A.; Demuynck, M.; De Clercq, P. J.; Vandewalle, M. Tetrahedron 1983, 39, 3049-3054.
(197) Devreese, A. A.; Demuynck, M.; De Clercq, P. J.; Vandewalle, M. Tetrahedron 1983, 39, 3039-3048.
(198) Demuynck, M.; Devreese, A. A.; De Clercq, P. J.; Vandewalle, M. Tetrahedron Lett. 1982, 23, 2501-2504.
(199) Termont, D.; De Clercq, P.; De Keukeleire, D.; Vandewalle, M. Synthesis, 1997, 46.
(200) Gwaltney, S. L.; Sakata, S. T.; Shea, K. J. J. Org. Chem. 1996, 61, 7438-7451.
(201) Rigby, J. H.; Senanayake, C. J. Am. Chem. Soc. 1987, 109, 3147-3149.
(202) Rigby, J. H.; Wilson, J. Z. J. Am. Chem. Soc. 1984, 106, 8217-8224.
(203) Depres, J. -P.; Carret, S. Angew. Chem. Int. Ed. 2007, 46, 6870-6873.
(204) Heinz, D. R. Angew. Chem. 1989, 101, 1220-1234; Angew. Chem. Int. Ed. Engl. 1989, 28, 1193-1207.
(205) Barton, D. H. R. Helv. Chim. Acta 1959, 42, 2604-2616.
(206) Ando, M.; Ibayashi, K.; Minami, N.; Nakamura, T.; Isogai, K. J. Nat. Prod. 1994, 57, 433-445.
(207) Ando, M.; Kusaka, H.; Ohara, H.; Takase, K.; Ymaoka, H.; Yanagi, Y. J. Org. Chem. 1989, 54, 1952-1960.
(208) Edgar, M. T.; Greene, A. E.; Crabbe, P. J. Org. Chem. 1979, 44, 159-160.
(209) Zhang, W.; Luo, S.; Fang, F.; Chen, Q.; Hu, H.; Jia, X.; Zhai, H. J. Am. Chem. Soc. 2005, 127, 18-19.
(210) Lei, C.; Yu, X.; Lei, X. Org. Lett. 2010, 12, 4284-4287.
(211) Manzano, F. L.; Guerra, F. M.; Moreno-Dorado, F. J.; Jorge, Z. D.; Massanet, G. M. Org. Lett. 2006, 8, 2879-2882.
(212) Yuuya, S.; Hagiwara, H.; Suzuki, T.; Ando, M.; Yamada, A.; Suda, K. Kataoka, T.; Nagai, K. J. Nat. Prod. 1999, 62, 22-30.
(213) Bargues, V.; Blay, G.; Cardona, L.; Garcia, B.; Pedro, J. R. J. Nat. Prod. 2002, 65, 1703-1706.
(214) Zhai, J. -P.; Li, D.; Long, J.; Zhang, H. -L.; Lin, J. -P.; Qiu, C. -J.; Zhang, Q.; Chen, Y. J. Org. Chem. 2012, 77, 7103-7107.
(215) Moumou, M.; Hakmaoui, A. E.; Benharref, A.; Akssira, M. Tetrahedron Lett. 2012, 53, 3000-3003.
(216) Castañeda-Acosta, J.; Fischer, N. H.; Vargas, D. J. Nat. Prod. 1993, 56, 90-98.
(217) Neukirch, H.; Kaneider, N. C.; Wiedermann, C. J.; Guerriero, A.; D’ambrosio, M. Bioorg. Med. Chem. 2003, 11, 1503-1510.
(218) Govindachari, T. R.; Joshi, B. S.; Kamat, V. N. Tetrahedron 1965, 21, 1509-1519.
(219) Ogura, M.; Cordell, G. A.; Farnsworth, N. R. Phytochemistry 1978, 17, 957-961.
(220) Jacobsson, U.; Kumar, V.; Saminathan, S. Phytochemistry 1995, 39, 839-843.
(221) Gonzalez, A. G.; Galindo, A.; Mar Afonso, M.; Mansilla, H.; Palenzuela, J. A.; Gomez Rodriguez, M. A.; Martinez-Ripoll Tetrahedron 1988, 44, 4575-4584.
(222) Parodi, F. J.; Fischer, N. H. J. Chem. Soc. Chem. Commun. 1986, 1405.
(223) Gonzalez, A.; Galindo, A.; Palenzuela, J. A.; Mansilla, H. Tetrahedron Lett. 1986, 27, 2771-2774.
(224) Gonzalez, A.; Galindo, A.; Mansilla, H. Tetrahedron 1980, 36, 2015-2017.
(225) Gonzalez, A. G.; Galindo, A.; Mansilla, H.; Palenzuela, J. A. Tetrahedron Lett. 1983, 24, 969-972.
(226) Gonzalez, A. G.; Galindo, A.; Mansilla, H.; Gutierrez, A. J. Chem. Soc. Perkin Trans. 1 1982, 881-884.
(227) Kalidindi, S.; Jeong, W. B.; Schall, A.; Bandichhor, R.; Nosse, B.; Reiser, O. Angew. Chem. 2007, 119, 6478; Angew. Chem. Int. Ed. 2007, 46, 6361.
(228) Nosse, B.; Bandichhor, R.; Jeong, W. B.; Böhm, C.; Reiser, O. Org. Lett. 2003, 5, 941.
(229) Lee, E.; Yoon, C. H. J. Chem. Soc. Chem. Commun. 1994, 479.
(230) Lee, E.; Lim, J. W.; Yoon, C. H. J. Am. Chem. Soc. 1997, 119, 8391-8392.
(231) Elford, T. G.; Hall, D. G. J. Am. Chem. Soc. 2010, 132, 1488-1489.
(232) Andrews, S. P.; Ball, M.; Wierschem, F.; Cleator, E.; Oliver, S.; Högenauer, K.; Simic, O.; Antonello, A.; Hünger, U.; Smith, M. D.; Ley, S. V. Chem. Eur. J. 2007, 13, 5688-5712.
(233) Ball, M.; Andrews, S. P. Wierschem, F.; Cleator, E.; Smith, M. D.; Ley, S. V. Org. Lett. 2007, 9, 663-666.
(234) Andrews, S. P.; Tait, M. M.; Ball, M.; Ley, S. V. Org. Biomol. Chem. 2007, 5, 1427-1436.
(235) Oliver, S. F.; Hogenauer, K.; Simic, O.; Antonello, A.; Smith, M. D.; Ley, S. V. Angew. Chem. Int. Ed. 2003, 42, 5996-6000.
(236) Yang, H.; Qiao, X.; Li, F.; Ma, H.; Xie L.; Xu, X. Tetrahedron Lett. 2009, 50, 1110-1112.
(237) Yang, H.; Gao, Y.; Qiao, X.; Xie, L.; Xu, X. Org. Lett. 2011, 13, 3670-3673.
(238) Wallach, O. Liebigs Ann. Chem. 1899, 305, 245-259.
(239) Wallach, O. Liebigs Ann. Chem. 1911, 381, 51-95.
(240) Wallach, O. Liebigs Ann. Chem. 1913, 392, 49-59.
(241) Wolinsky, J.; Wolf, H.; Gibson, T. J. Org. Chem. 1963, 28, 274-275.
(242) Wolinsky, J.; Hutchins, R. O.; Gibson, T. W. J. Org. Chem. 1968, 33, 407-411.
(243) Mori, K. Tetrahedron Lett. 2007, 48, 5609-5611.
(244) Corey, E. J.; Fleet, G. W. J. Tetrahedron Lett. 1973, 4499-4501.
(245) Salmond, W. G.; Barta, M. A.; Havens, J. L. J. Org. Chem. 1978, 43, 2057-205.
(246) Gemal, A. L.; Luche, J. L. J. Am. Chem. Soc. 1981, 103, 5454-54459.
(247) Nakajima, N; Horita, K.; Abe, R.; Yonemitsu, O. Tetrahedron Lett. 1988, 29, 4139-4142.
(248) Atkins, G. M.; Burgess, E. M. J. Am. Chem. Soc. 1968, 90, 474-4745.
(249) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155-4156.
(250) Camelio, A. M.; Barton, T.; Guo, F.; Shaw, T.; Siegel, D. Lett. 2011, 13, 15171519.
(251) Marco-Martínez, J.; López-Carrillo, V.; Bunuel, E.; Simancas, R.; Cárdenas, D. J. J. Am. Chem. Soc. 2007, 129, 1874-1875.
(252) Omura, K.; Swern, D. Tetrahedron 1978, 34, 4537-4538.
(253) Bowden, K.; Heilbron, I. M.; Jones, E. R. H.; Weedon, B. C. L. J. Chem. Soc. 1946, 39-45.
(254) Reetz, M. T. Acc. Chem. Res. 1993, 26, 462-468.
(255) Chérest, M.; Felkin, H. Tetrahedron Lett. 1968, 2199, 2205-2208.
(256) Huet, J.; Maroni-Barnaud, Y.; Anh, N. T.; Seyden-Penne, J. Tetrahedron Lett. 1976, 155, 159-162.
(257) Anh, N. T.; Eisenstein, O. Nouv. J. Chim. 1977, 1, 61.
(258) Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190-6191.
(259) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989-1993.
(260) Weber, W. P. "Silicon Reagents for Organic Synthesis", Springer-Verlag, Berlin-Heidelberg-New York, 1983.
(261) Bachi, M. D.; Bosch, E. Tetrahedron Lett. 1988, 29, 2581-2584.
(262) Bachi, M. D.; Bosch, E. J. Org. Chem. 1992, 57, 4696-4705.
(263) Clive, D. L. J.; Joussef, A. C. J. Org. Chem. 1990, 55, 1096-1098.
(264) Tu, Y.; Wang, Z. -X.; Shi, Y. J. Am. Chem. Soc. 1996, 118, 9806-9807.

