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Flow Modeling for CO2 Sequestration: The Frio Brine Pilot 

* Doughty, C (cadoughty@lbl.gov), Earth Sciences Division, Lawrence Berkeley National 
Laboratory, #1 Cyclotron Rd, Berkeley, CA 94720 United States  

Numerical modeling of the flow behavior of supercritical carbon dioxide (CO2) injected into a 
brine-bearing sandstone was an integral part of the Frio brine pilot for CO2 sequestration. 
Modeling was used to help design the pilot and to improve understanding of multi-phase and 
multi-component flow processes involved in geologic CO2 sequestration. During the design 
phase, modeling was used to determine which of several layers to inject into, how far apart 
injection and observation wells should be (in particular showing that existing wells were too far 
apart, necessitating the drilling of a new injection well), how much CO2 to inject, and at what 
rate. Modeling of pre-injection, site-characterization pump and tracer tests helped design these 
tests to optimize the information gained on formation flow properties, in situ phase conditions, 
and boundary conditions. As site-characterization proceeded, the model was modified to 
incorporate new information. CO2 injection was simulated prior to the actual pilot, to assess the 
model's predictive ability. Further model improvements were added subsequently, based on 
detailed comparisons to the observed subsurface CO2 distribution. Modeling illustrated the 
complex interplay between phase interference and buoyancy flow that occurs as CO2 is injected 
into a high-permeability, steeply dipping sand layer. By running simulations with a range of 
parameters and comparing model results to field data we improved our understanding of these 
flow processes. Generally good agreement between observed and modeled CO2 spatial 
distributions and travel times between injection and observation wells validated our ability to 
model CO2 injection, while discrepancies pointed out areas where future research is needed. The 
iterative sequence of model development, application, and refinement proved useful for getting 
early results in a timely manner as well as incorporating more complexities at later stages. This 
work has demonstrated that we have an effective modeling capability for representing the 
physical processes occurring during CO2 sequestration in brine-bearing sandstones, and 
moreover that the incorporation of modeling into geologic CO2 sequestration activities is 
beneficial from the earliest design stages through the final interpretation of field data.  
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Numerical modeling of the flow behavior of supercritical carbon dioxide (CO2) injected into a brine-
bearing sandstone was an integral part of the Frio brine pilot for CO2 sequestration.  Modeling was used to 
help design the pilot and to improve understanding of multi-phase and multi-component flow processes 
involved in geologic CO2 sequestration.  During the design phase, modeling was used to determine which of 
several layers to inject into, how far apart injection and observation wells should be (in particular showing 
that existing wells were too far apart, necessitating the drilling of a new injection well), how much CO2 to 
inject, and at what rate.  Modeling of pre-injection, site-characterization pump and tracer tests helped 
design these tests to optimize the information gained on formation flow properties, in situ phase conditions, 
and boundary conditions.  As site-characterization proceeded, the model was modified to incorporate new 
information.  CO2 injection was simulated prior to the actual pilot, to assess the model’s predictive ability.  
Further model improvements were added subsequently, based on detailed comparisons to the observed 
subsurface CO2 distribution. 

Pre-Test Modeling
• Design experiment
• Design site-characterization studies
• Predict CO2 arrival at observation well
• Predict spatial distribution of CO2 in 

subsurface

• Multi-phase, multi-component fluid 
flow through porous/fractured geologic 
media with heat flow
─ Multi-phase Darcy’s law  

─ Hysteretic capillary pressure and relative 
permeability (Finsterle et al., 1998; Niemi 
and Bodvarsson, 1988)

─ Modified version of Land (1969) equation 
for residual gas saturation

Experiment Design
• How much CO2 to inject: budget versus monitorable constraints
• What rate to inject: pressure regulations versus field time
• What layer to inject into: compact, thick plume versus extensive, thin plume
• Well separation for timely/economical breakthrough: existing well spacing 150 m 

determined to be too large, new well drilled for 30 m separation

Site characterization

• Doublet tracer test: Single-phase breakthrough time constrains layer thickness       
TOUGH2 model Streamline model with random walk

Vary sand thickness to match tracer peak        Estimate dispersivity α = 0.1 m

Complex interplay between phase interference and buoyancy flow occurs as CO2 is 
injected into a high-permeability, steeply dipping sand layer  

Running simulations with a range of parameters and comparing model results to field data 
improves understanding of flow processes  

Generally good agreement between observed and modeled CO2 spatial distributions and 
travel times validates ability to model CO2 injection, while discrepancies identify areas for 
future research

Iterative sequence of model development, application, and refinement is useful for getting 
early results in a timely manner and incorporating more complexities at later stages 

Work has demonstrated
• an effective modeling capability for representing physical processes occurring during CO2

sequestration in brine-bearing sandstones 
• incorporation of modeling into geologic CO2 sequestration activities is beneficial from the earliest 

design stages through the final interpretation of field data
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Three-dimensional Model of Frio C Sand at South Liberty Site, Texas 
(Hovorka et al., 2004; Doughty and Pruess, 2004)

• Porosity and permeability profiles from wire 
line logs calibrated to core sample analysis

• Other properties (kv/kh, Slr, Sgrmax) from 
literature-based correlations

Post-Test Modeling
• Compare model results to field 

observations
• Assess state of knowledge

• Equation of State:  ECO2 (Pruess and 
García, 2002)
─ Water (liquid, gas)
─ CO2 (supercritical free phase, dissolved)
─ NaCl (dissolved, precipitate)
─ Supercritical CO2 is much less dense and 

viscous than brine, strongly buoyant

• Integral-finite-difference method for 
spatial discretization

• Present simulations isothermal

Numerical simulator TOUGH2 (Pruess et al., 1999)

• RST – saturation profiles in wells
Injection well Observation well

• Crosswell seismic
Saturation distribution between wells

Comparison with Observations
• U-tube sampling – CO2 arrival at observation well

Predictions
• CO2 arrival at observation well – compare to tracer test

• CO2 spatial distributions

Feature Tracer Test CO2 Injection Impact on CO2

Flow field Doublet Single well 3 times slower

Phase conditions Single-phase Two-phase Faster

Density contrast None 1.5 Faster

Viscosity contrast None 12 Faster

Injection rate 50 gpm 40 gpm 20% slower

Density in situ 1060 kg/m3 ~700 kg/m3 50% faster

Arrival at observation well 9 days
(peak 12 days)

Predict 3 days

• Interference well-test
─ Pump from observation well at 50 gpm
─ Monitor pressure-transients at both wells 
─ Well-test analysis

Confirms core permeabilities ~2400 md
Suggests small fault ~100 m from 
observation well is not closed
Pressure transients insensitive to outer 
fault block boundaries
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