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Abstract 
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Christine W. Cheng, Bachelor of Science 

The University of Texas at Austin, 2018 

 

Supervisor: Stephen Boyles, Ph.D. 

 

 As managed lanes (ML) become more integrated in regional urban networks with existing 

general purpose (GP) lanes, the distribution of travelers’ value of time (VOT) is becoming 

more important for transportation planning agencies to quantify in order to accurately predict 

future travel patterns. Since travelers’ VOT varies depending on a multitude of factors, this 

study investigates ways that we can determine the VOT distribution of a region from existing 

travel data as well as effective ways that we can model VOT using traffic assignment 

algorithms. In networks with available link volumes and toll data on segments where travelers 

have the option of choosing to stay on the GP lanes or entering a ML facility, a VOT 

distribution can be inferred assuming that travelers who enter the ML choose to do so based 

on a certain “threshold” VOT. When modeling these VOT distributions, errors are observed in 

the traffic assignment results when both the continuous nature of VOT distributions are 

discretized, and when varying toll values are assumed to be constant. Specifically in the 

context of TransCAD software, link travel time errors appear to be much less significant than 

flow errors when tested on a nine node network. Additional experimentation on larger 

regional networks is needed to verify the significance of these errors and their impact on 

predicted travel patterns.   
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I. Introduction 

 
Transportation planning is the process of forecasting future travel patterns in an urban area 

for the purpose of identifying necessary improvements to the transportation infrastructure in 

future years. As urban areas experience developing growth and require federal transportation 

funds to implement infrastructure changes, the reliance on accurate transportation modeling 

capabilities becomes more necessary [1]. For metropolitan planning organizations that are 

directly in charge of managing a region’s transportation planning model, one important aspect of 

transportation planning is travel forecasting using the Four-Step Travel Demand Model which 

includes trip generation, trip distribution, mode choice, and traffic assignment.  

One particular challenge in the area of traffic assignment is the process of quantifying 

and modeling travelers’ value of time (VOT) in order to predict their route choice behavior. 

Studying VOT becomes particularly important in networks with an increasing number of toll 

facilities and managed lanes (ML) that offer travelers a more reliable route to their destination 

for a specified monetary cost. While some travelers will continue to consistently use general 

purpose (GP) lanes, there are inevitably many travelers who will choose to utilize tolled facilities 

if their perceived travel time savings is worth the added cost. As these facilities become more 

integrated in existing urban transportation networks, planning agencies will need to incorporate 

regionally representative VOT distributions into their long-range planning models to ensure that 

their assignment results account for future changes in travel behavior.   

As Chapter 1 will discuss, a single average VOT value cannot accurately represent an 

entire region’s value of time, and is often best characterized with a continuous distribution. The 

research discussed in Chapters 2, 3, and 4 will attempt to estimate a continuous VOT distribution 
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from real time data as well as compare different ways to incorporate VOT in long-range planning 

models to improve agencies’ existing models.  
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II. Chapter 1: Literature Review 

 

 Before quantifying a VOT distribution from a specific dataset, an extensive review of 

existing literature was conducted to determine (i) past methods of estimating VOT/recommended 

ranges of VOT values, (ii) the variance of VOT based on factors such as trip purpose, annual 

income, and other factors (iii) past traffic assignment methods for multiple user class assignment 

to capture varying VOT values.  

i. Past Methods of Estimating VOT/Recommended Ranges of VOT values 

 

 In general, the two main methods of data collection for approximating VOT are revealed 

preference (RP) methods and stated preference (SP) methods. SP methods study the intended 

behaviors of travelers (how they think they will behave in a hypothetical situation) while RP 

methods study the actual decisions that travelers make. Table 1 below provides a summary of 

recommended values of VOT from several studies over a variety of regions in the United States 

using either RP, SP, or a combination of both methods.  

 

Table 1: Summary of Past Recommended VOT Values and Methods Used to obtain VOT 

 

Reference Type of Data Used Recommended VOT Values 

Small et al. (2005) RP & SP data from SR 91, CA $21.50/hour 

Brent & Gross (2017) RP data from SR167 lanes, WA $38/hour 

Burris et al. (2016) RP data from Katy Freeway, TX ($1.96-$8.06)/hour 

Lam & Small (2001) RP & SP data from SR 91, CA $22.87/hour 

He et al. (2012) RP data from MnPASS system $11.63/hour 
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As the recommended values illustrate, VOT has been modeled with average discrete values, but 

across different regions and with different data collection methods, the range of VOT is large and 

there is no consistently agreed upon value.  

In addition to the recommended VOT values discovered in this section of literature review, 

there were some other noteworthy findings that although did not directly inform the later 

analysis, served as important contextual background for the process of determining a VOT 

distribution. The National Cooperative Highway Research Program details a price metering 

method using SP data to determine the VOT of individuals by repeatedly changing the price 

point and time savings combination questions presented to each surveyed traveler until a 

“switching-point” (VOT) was discovered [14]. Additionally, in their analysis of the Katy 

Freeway ML network, Burris et al. observed that many I-10 travelers were willing to pay for ML 

usage even when little to no travel time was saved [3]. Assuming that travelers were aware of the 

travel time for both the GP lanes and ML, Devarasetty et al. conclude that predicting the use of 

ML should include variables other than VOT to model its usage accurately [5]. Finally, as a 

commentary on the differences observed between SP and RP methods, Small et al. conclude that 

the implied VOT values from SP data are much smaller on an average than the RP values 

possibly due to the tendency of travelers to overstate the travel time they experience during 

congestion periods (also termed as the stated preference bias) [18].  

The conclusion regarding this section of literature review is simply that although there are 

recommended values of VOT, no unique VOT value can be taken from existing studies and 

directly applied to a specific region. 
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ii. Variation of VOT based on Trip Purpose, Annual Income, and other factors 

Across an entire population, VOT varies and can be approximated with a probability 

distribution. Gardner et al. approximate VOT as an income distribution that is based on the 

assumption that travelers with higher incomes will have higher VOT values [8]. In addition to 

modeling VOT variation as a distribution, other studies have investigated the factors impacting 

this variation. In their study for determining VOT for the UK, Hess et al. demonstrate the 

variability and heterogeneity of the value with several factors: time and cost gains/losses, person 

characteristics (e.g. "age, gender, employment status, household composition and income"), trip 

mode, trip purpose, trip distance, and trip geography [10]. Using SP surveys and discrete choice 

models as well as three "games": SP1, SP2, SP3, they consider the trade-offs between time vs. 

money, time vs. money vs. reliability, and time vs. money vs. crowding/congestion 

respectively to estimate VOT. Brent and Gross use RP data on SR167 managed lanes in Seattle, 

WA, to show that VOT values on a corridor also depend on direction of travel, which can be 

explained by dependence of VOT on commuters’ trip purpose [2].   

Rezaeestakhruie et al. investigated VOT values for different passenger classes, trip purposes, 

trip time periods and different transportation modes with combined data from a SP and RP 

survey in Iran. They found that the values of VOT varied significantly between different 

passenger classes and transportation modes. For example, students who took the bus for trips 

unrelated to education had a VOT of $0.40/hr while highly educated workers who took the bus 

for trips related to work had a VOT of $6.04/hr [17]. With their results, they concluded that one 

unique VOT and/or VOR value cannot be used to represent all user classes.   

 

Patil et al. argue that VOT varies substantially based on the urgency of the trip (10%-300% 

higher than the VOT of an ordinary trip) [17]. Acknowledging that VOT has been shown to 



 
 

6 

depend heavily on users’ socio-economic characteristics and trip purposes, Paleti et al. also 

investigated the relationship between VOT and daily activity patterns and confirmed the intuitive 

hypothesis that a user’s VOT for two trips of the same purpose can vary depending on the 

mandatory or non-mandatory nature of the trip [15]. The authors classify trip time periods into 

three mandatory patterns: before primary mandatory (BPM), during primary mandatory (DPM), 

and after primary mandatory (APM). According to their results, VOT for users during the BPM 

and DPM periods is higher than during the APM period.   

The most common methods to deal with this VOT variation in planning models is to 

create sections of population based on income and trip purpose and use different VOT values for 

each group. However, Lemp and Rossi argue that “using average VOTs may not be sufficient, 

even when travelers are segmented by income or other measures” since the variation cannot 

be modeled accurately by an average number [12]. They propose creating VOT segments for 

different trip purposes and income classes and using household travel survey and income data to 

determine the percent of travelers in each income class and trip purpose belonging to each VOT 

segment. They propose using these percentages to generate modified origin-destination matrices 

for each VOT segment. The authors mention that they are currently validating the usefulness of 

the proposed method on the Metropolitan Washington Council of Government’s (MWCOG) 

planning model. Chapter 4 will discuss some anlaysis based on Lemp and Rossi’s idea of 

generating modified OD matrices for each VOT class.  

On the application front, Mouter and Chorus investigated the reliability of using behavioral 

VOT values for transportation policy purposes through a stated choice experiment and found 

no substantial proof to support a prior claim that users’ VOT as a consumer varied significantly 

from their VOT as a citizen (Mouter and Chorus, 2016). Thus, they assumed that users’ VOT 
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measured with consumer framed surveys is a good estimate of citizens’ VOT for modeling and 

policy purposes.  

iii. Traffic Assignment for Multiple User Class Assignment to Capture Varying VOT  

Improved traffic assignment models that capture varying VOT values include Robert B. 

Dial’s proposed bicriterion traffic assignment algorithm that accounts for multiple vehicle 

classes by making small changes to the user equilibrium principle [6]. This algorithm predicts 

likely traveler paths when VOT values fall within a certain range. Dial also later proposed a 

simplicial decomposition algorithm that uses multiclass assignment to produce user-optimal 

equilibrium [7]. Using variational inequality methods, Nagurney also approached the same 

multiclass assignment problem assuming convexity and “strict monotonicity…[for] both the 

travel time and travel cost functions” and found that although multiclass equilibrium’s total link 

flow output was unique, this did not always necessarily mean the individual vehicle class flows 

were also unique [13]. Chapter 4 will involve a comparison of multi-class traffic assignment 

results produced from Dial’s 1996 algorithm to those from Caliper Corporation’s travel demand 

modeling software, TransCAD.  
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III. Chapter 2: NPMRDS Data 

Based off data from National Performance Management Research Data Set (NPMRDS), this 

chapter will discuss the (i) objective of this analysis and the context behind the dataset, (ii) the 

methodology used to obtain a range of VOT values from real time travel data, present the (iii) 

resulting tables and figures that were generated from analyzing the dataset, and the (iv) final 

conclusions.  

i. Context and Objective 

The data obtained from NPMRDS was from a small section of the Lyndon B. Johnson (LBJ) 

Freeway TEXpress Lanes, which is a managed lane facility in Dallas, Texas. Along this roadway 

segment are four Traffic Message Channels (TMCs), two of which are directed in the eastbound 

(EB) direction, while the other two are directed in the westbound (WB) direction, both with 

speed limits of 70 mph. Figure 1 on the following page depicts the location of these TMCs in 

relation to the Dallas network.  

 
 

Figure 1: Location of 4 TMCs along LBJ TEXpress lanes in Dallas, TX 
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The corresponding data at these locations was provided in the form of NPMRDS trucks and 

passenger vehicle data between August 1, 2017 to September 30, 2017 averaged to every 15th 

minute. The objective of this analysis was to compare the travel times and volumes on the ML 

and GP lanes, quantify the difference, and obtain an idea of the range of VOT values for 

travelers in this location. In the case of this dataset, the eastbound direction was randomly 

selected as the direction of interest. Figure 2 below gives a simplified illustration of the layout of 

the two TMCs between at Exit 26 and 25 along EB Interstate 635.  

 

 

 

 

 

 

 

Figure 2: Simplified network illustration of sample TMC segments 

 

TMC_111N04675 is approximately 0.16 miles long while TMC_111-04674 is approximately 

1.15 miles long. As section (ii) will discuss in further detail, the decrease in volume from 

TMC_111N04675 to TMC_111-04674 is assumed to represent the volume along the ML facility 

at this location.  

ii. Methodology and Assumptions 

The provided NPMRDS dataset included speeds, and travel times for each TMC, however, 

volumes on the lanes were not provided, nor were toll values throughout the day. Thus, several 

assumptions were made in order to generate sufficient information to obtain VOT values. These 

assumptions included: 

1. Volume is measured at the end of each TMC section. 

2. Greenshield’s macroscopic fundamental diagram is applicable. 

TMC_111N04675 TMC_111-04674 
I-635 EB 
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a. Equation 1: 𝑄 = 𝑘𝑗 ∗ 𝑣 ∗ (1 −
𝑣

𝑣𝑓
)  

b. 𝑄 = flow or volume in veh/hr/lane 

c. 𝑘𝑗 = jam density (maximum density per km) = assumed value of 165 

veh/km (266 veh/mi) 

d. 𝑉 = speed (km/hr) or (mi/hr) 

e. 𝑉𝑓 = free-flow speed (speed limit) (km/hr) or (mi/hr) 

3. An average toll price of $0.1/mile applies during all times of day (TOD). 

4. The captured platoon of vehicles in TMC_111-04674 is the same as that captured in 

the data set for TMC_111N04675 despite the fact that NPMRDS collects data in 5-

minute time increments. 

After making these assumptions, the following methodology was applied for all times in a 

certain day to obtain a range of VOT values: 

1. Extract the date, speeds, and travel times from the NPMRDS readings.  

2. Calculate the travel time along TMC_111-04674 if one is traveling at the speed 

limit using the speed limit of 70 mph and the given distance of the TMC. This 

will be assumed to represent the travel time on the ML.   

3. Subtract the ML travel time from the travel time given in the NPMRDS data set 

for TMC_111-04674 (which represents the travel time along the GP lane). This 

will be (t1-tbar. ) 

4. Convert travel time on TMC_111-04674 to a volume based off Assumption 2 

using Greenshield’s fundamental diagram relationship. 

a. Calculate a value of Q using Equation 1 in Assumption 2 a.  
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b. Multiply this value by the total number of GP lanes on TMC_111-04674 

to obtain a veh/hr volume on the GP lane. This will be Volume 2. 

5. Repeat Step 4 with the travel time on TMC_111N04675. The resulting volume 

will be Volume 1.  

6. Calculate the proportion of travelers choosing to enter the ML facility out of all 

total travelers by computing: 

a.  Equation 2:  𝑀𝐿 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =
(𝑉𝑜𝑙𝑢𝑚𝑒 1 – 𝑉𝑜𝑙𝑢𝑚𝑒 2)

𝑉𝑜𝑙𝑢𝑚𝑒 2
  

7. Calculate the threshold VOT ($/hr) by computing: 

a. Equation 3: 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑉𝑂𝑇 =  
𝑇𝑜𝑙𝑙 𝑃𝑟𝑖𝑐𝑒

(𝑡1− 𝑡𝑏𝑎𝑟)∗3600
 

iii. Analysis and Results 

The above methodology in ii. was applied to travel data from Tuesday, August 1 2017. 

Unfortunately, the resulting VOT distribution plot (where f (x) = (1 −
𝑉𝑜𝑙𝑢𝑚𝑒1−𝑉𝑜𝑙𝑢𝑚𝑒2

𝑉𝑜𝑙𝑢𝑚𝑒1
 ) and x = 

VOT) from this analysis yielded no meaningful pattern between VOT and the proportion of 

travelers choosing the ML facility. This is most likely due to errors in the initial assumptions that 

were made regarding this dataset. Some of the signs of these errors were evident when the 

reported volumes on TMC_111-04674 exceeded those of TMC_111N04675 at certain times of 

day and thus yielded negative proportions. In addition, certain data points produced unreasonably 

large VOT values.  
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After removing the outlying incidents where the volume on TMC_111-04674 exceeded that of 

TMC_111N04675 and VOT was exceedingly large, the remaining differences in travel time 

between the GP lanes and the ML yielded a range of threshold VOT values between 

approximately $2-$86/hour. Contextually, these VOT values represent the range of points above 

which travelers will choose to remain on the GP lanes and below which travelers will choose to 

take the ML. Figure 3 below illustrates the frequency distribution of the threshold VOT values.  

 

 
Figure 3: Histogram of Threshold VOT for 08/01/17 

 

 

As Figure 3 shows, the threshold VOTs with the highest frequency fall between $30-$50/hr, 

with some falling in the lower and higher ranges.  

iv. Conclusions 

The 5-minute time gap in NPRMDS’s data combined with the assumptions that were made in 

order to conduct the analysis ultimately rendered the resulting VOT distribution unusable. 

Although the NPMRDS analysis did not yield a reliable VOT distribution for travelers along I-

635, it provided a reasonable preliminary idea of VOT threshold values along I-635. The 
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methodology laid a good framework for future analysis when reported volume and tolls at 

different TOD data becomes available. When recorded volume data as well as toll prices 

throughout the day becomes available within a dataset with more reliability than the one used in 

this analysis, the same methodology could theoretically be applied to obtain a more informative 

VOT distribution in the future.  
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IV. Chapter 3: TransCAD vs. Dial’s Multiclass Traffic Assignment 

 

Besides obtaining region-specific VOT distributions, another important objective for 

transportation planners is to determine ways to model VOT accurately in their long-range traffic 

assignment models. Currently, most Metropolitan Planning Organizations (MPOs) utilize 

TransCAD, a Geographic Information System (GIS) that fully integrates GIS with travel demand 

modeling capabilities. TransCAD has the ability to “run a multi-modal, multi-class equilibrium 

or stochastic equilibrium assignment model…that uses class specific values of time” [4]. 

However, TransCAD is unable to receive a continuous VOT distribution as an input in its traffic 

assignment component, and only provides for discrete VOT value inputs, as well as assumes a 

constant toll when a link is assigned a toll value. As a result, TransCAD is suspected to 

inherently produce assignment errors in link flows and/or travel times on a network.  

In order to quantify these errors and determine their significance for planning purposes, 

TransCAD was compared against Dial’s 1996 bicriterion traffic assignment model. Dial’s 

algorithm makes provisions for multiple vehicle classes with continuous VOT distribution, and 

thus its link flow and travel time outputs will be used as an accuracy benchmark against which 

TransCAD’s results will be compared [6].  

 

i. Introduction to Nine Node Network Problem Statement 

 

The traffic assignment capabilities of TransCAD will be tested on a nine node network that 

Dial presents as a numerical example with 1,000 OD trips to which he applies a parabolic VOT 

distribution. Figure 4a below gives thesymmetric parabolic probability density function (PDF) 

applied with the VOT PDF being 𝑓(∝) =  6(∝ −∝2), while Figure 4b below gives the network 

model and its final equilibrium link flows, and speeds (values above and to the right of each link 
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represent the flows, values below and to the left of each link represent the speeds). Note that arcs 

(4,5) and (5,6) possess a $1 toll value.  

 
Figure 4: Nine Node Network /1000 OD Trips: (a) Symmetric Parabolic PDF. (b) Volume, 

Speed, and Toll values on Illustrated Nine Node Network [6]. 

 

This network contains OD demand moving from Node 1 to Node 9 and was assumed as the 

network with which to compare traffic assignment results between TransCAD and Dial’s 

method.  

 
Figure 5: TransCAD Nine Node Network with node IDs (black) and link IDs (red) 
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Figure 6: Dataview Table from TransCAD containing link information 

Figure 5 above shows the network drawn in TransCAD with correspondingly labeled node and 

link IDs. Figure 6 above shows the capacity, free-flow travel time, and toll value inputs for each 

link in the TransCAD network. These values were obtained from Dial’s specified input values in 

his numerical example corresponding to this network.   

ii. Methodology 

 

In order to test the impact of TransCAD’s discrete VOT inputs on its traffic assignment 

results, Dial’s continuous parabolic VOT distribution was discretized in three ways:  

(1)  3 discrete, symmetric VOT classes (Figure 7 below) 

(2)  10 discrete, symmetric VOT classes (Figure 8 below) 

(3)  3 discrete, asymmetric VOT classes (Figure 9 below) 

In doing so, the effect of VOT discretization itself can be investigated as well as the question of 

whether different types of VOT discretization can improve the approximation of a continuous 

VOT distribution and consequently reduce the output error. In other words, if MPOs plan to 

continue using TransCAD in the future, what is the best method of providing discrete VOT input 

values in order to accommodate TransCAD’s inability to accept a continuous VOT distribution 

input?  
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Figure 7: Continuous VOT Distribution discretized into 3 symmetric VOT classes (V3S) 

 

 
Figure 8: Continuous VOT Distribution discretized into 10 symmetric VOT classes (V10S) 

 

 
Figure 9: Continuous VOT Distribution discretized into 3 asymmetric VOT classes (V3A) 

 

 

To account for the VOT discretization in TransCAD’s accompanying OD matrix input, 

the proportion of each VOT class (as shown in Figure 10 below) was multiplied by the total OD 

demand (1,000 trips). For example, in the V3S case, an OD matrix file was created with three 

nine-by-nine matrices nested within. The first matrix represented VOT Class 1 ($0.2/min), and 
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contained a value of (0.281 ∗ 1000)  = 281 trips in the element representing travel from Node 1 

to Node 9 (a1,9). The second matrix represented VOT Class 2 ($0.5/min), and contained a value 

of (0.439 ∗ 1000) = 439 trips in element a1,9. The third matrix represented VOT Class 3 

($0.8/min) and contained a value of (0.281 ∗ 1000) = 281 trips in element a1,9. 

 

 
Figure 10: Proportion of each VOT class with each discretization group  

 

 

For each of these three VOT cases, 4 cases of different toll and demand settings were also 

tested to verify whether any differences in output error were made more or less significant by 

increased values on the toll links and/or increased total OD demand. A total summary of all 12 

cases of traffic assignment runs tested on TransCAD against Dial’s algorithm is illustrated below 

in Table 2.  
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Table 2: Summary table of all traffic assignment cases tested on TransCAD 

 Low Toll ($1) High Toll ($4) 

Low Demand 

(1,000 OD Trips) 

-V3S 

-V10S 

-V3A 

-V3S 

-V10S 

-V3A 

High Demand 

(10,000 OD Trips) 

-V3S 

-V10S 

-V3A 

-V3S 

-V10S 

-V3A 

 

iii. Analysis and Results 

After comparing TransCAD’s outputs to those of Dial’s algorithm, discrepancies in link 

volumes and travel times were observed. Figure 11 below shows a comparison of all 3 VOT 

classes link flow outputs against those of Dial for the low demand, low toll case.  

 
Figure 11: Comparison of VOT Classes against Dial for link flow outputs (Low Demand, Low 

Toll) 

 

While TransCAD produces generally similar results to those of Dial, it is clear that certain 

links in the network experience greater volume differences in than others. In addition, V3S is 

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12

V
o

lu
m

e
 o

n
 L

in
k 

(v
e

h
/h

r)

Link ID

V3S V10S V3A Dial



 
 

20 

observed to give approximately the same link flows as V10S for all links in the network. From 

this, it can be inferred that increasing VOT discretization does not necessarily improve the 

accuracy of TransCAD’s traffic assignment results. However, on certain network links, the 

resulting volumes of the asymmetric discretization vary substantially from those of both 

symmetric discretizations. In fact, when comparing Root Mean Square Errors (RMSE) 

between all three discretization classes, V3A proves to yield the lowest value of error when 

compared to Dial’s volumes.  

In regards to travel time differences, similar conclusions to volume differences apply. 

Figure 12 below shows a comparison of travel time differences between the three VOT 

discretizations in the low demand, low toll case.  

 
Figure 12: Comparison of VOT Classes against Dial for link travel time outputs (Low 

Demand, Low Toll) 

 

 

Increasing discretization does not appear to improve the accuracy of the results and the 

asymmetric distribution seems to produce the least error when compared to Dial’s method 
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(approximately 41% less RMSE than that of V10S). Overall however, travel time differences 

on the network are much smaller (approximately 80% less) than volume differences.  

To compare the impact of toll values, Figure 13a and Figure 13b below show the travel 

time difference for a V10S low demand case with low toll and high toll respectively.  

 

Figure 13: (a) Travel time difference comparison for V10S, low demand, low toll 

 

Figure 13: (b) Travel time difference comparison for V10S, low demand, high toll 

Comparing with Dial’s method, TransCAD produces greater travel time difference error in 

the high toll case than in the low toll case.  
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In general, the relative toll values on each link in the network compared to the travel time on 

each link in the network makes a difference. 

iv. Conclusions 

Overall, TransCAD does produce some errors in its traffic assignment outputs when 

compared to Dial’s method. The differences observed in link volumes seem to be more 

significant than those observed in link travel times. This is most likely due to the fundamental 

theory of traffic flow – After the volume on a link reaches a certain value, the travel time 

difference on the link does not vary much with further changes in volume. If transportation 

planning agencies plan on continuing to utilize TransCAD’s multi-modal, multi-class traffic 

assignment capabilities, they should consider using an appropriately skewed VOT 

discretization as opposed to increasing the number of symmetric discretizations to achieve the 

greatest approximation to the results of a known continuous VOT distribution. The magnitude 

of the errors observed on the nine node network was small but in the future if the same tests 

were conducted on a larger network that is more representative of an urban region’s scale, the 

effect of TransCAD’s discrete VOT value inputs and constant toll assumption might be more 

significant.  
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V. Conclusion & Future Work 

 

Travelers’ VOT can vary depending on income class, trip purpose, and many other factors, 

making it clear that real-time data can and should be used to generate a region specific VOT 

distribution when possible. In this study of the distribution of VOT, using the idea of 

“threshold VOT” to reveal travelers’ VOT in the context of ML and GP lanes presents a 

promising methodology with which MPO’s can determine an approximation of the VOT 

distribution from travel volume and toll data on their network.  

When moving onto applying known VOT distributions in the context of multi-modal and 

multi-class traffic assignment in long-range planning models, TransCAD does produce 

inherent errors in its assigned volume and travel time outputs due to a combination of its 

simplified VOT capabilities and assumption of constant toll. To offset these errors, this study 

has revealed that increasing discretization of a continuous VOT distribution does not greatly 

impact the accuracy of traffic assignment. However, TransCAD does appear to be sensitive 

to changes in toll values on links. Future work will focus on investigating the effect of 

varying toll values in combination with a VOT input. In addition, similar tests as those 

conducted in Chapter 3 will be performed on a network of a larger scale to ascertain the 

magnitude of errors that MPOs face when using TransCAD.  
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